

Lecture Notes in Computer Science 4484
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jin-Yi Cai S. Barry Cooper
Hong Zhu (Eds.)

Theory andApplications
of Models
of Computation

4th International Conference, TAMC 2007
Shanghai, China, May 22-25, 2007
Proceedings

13

Volume Editors

Jin-Yi Cai
University of Wisconsin, Madison, Computer Sciences Department
1210 West Dayton Street, Madison, WI 53706, USA
E-mail: jyc@cs.wisc.edu

S. Barry Cooper
University of Leeds, School of Mathematics
Leeds LS2 9JT, UK
E-mail: s.b.cooper@leeds.ac.uk

Hong Zhu
Fudan University, Department of Computer Science and Engineering
220 Handan Road, Shanghai, 200433, China
E-mail: hzhu@fudan.edu.cn

Library of Congress Control Number: 2007926619

CR Subject Classification (1998): F.1.1-2, F.2.1-2, F.4.1, I.2.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72503-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72503-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12063888 06/3180 5 4 3 2 1 0

Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in computer science, mathematics (especially logic) and the
physical sciences. This cross-disciplinary character, together with its focus on
algorithms, complexity and computability theory, gives the conference a special
flavor and distinction.

TAMC 2007 was the fourth conference in the series. The previous three meet-
ings were held May 17 – 19, 2004 in Beijing, May 17 – 20, 2005 in Kunming, and
May 15 – 20, 2006 in Beijing, P. R. China. TAMC 2007 was held in Shanghai,
May 22 – 25, 2007. Future annual meetings are planned.

At TAMC 2007 we were very pleased to have two plenary speakers, Miklós
Ajtai and Fan Chung Graham, each gave a one hour invited talk. Miklós Aj-
tai spoke on “Generalizations of the Compactness Theorem and Godel’s Com-
pleteness Theorem for Nonstandard Finite Structures,” and Fan Chung Graham
spoke on “Detecting Sharp Drops in PageRank and a Simplified Local Partition-
ing Algorithm.” Their respective papers accompanying the talks are included in
these proceedings.

In addition, there were two special sessions organized by Barry Cooper and
Andrew Lewis on “Computability and Randomness” and by Manindra Agrawal
and Angsheng Li on “Algorithms and Complexity.” The invited speakers in-
cluded George Barmpalias, Cristian Calude, Bjorn Kjos-Hanssen, Andre Nies,
and Jan Reimann in the “Computability and Randomness” special session, and
Manindra Agrawal, Alberto Apostolico, Jin-Yi Cai, Andreas Dress, Naveen Garg
and Jaikumar Radhakrishnan in the “Algorithms and Complexity” special ses-
sion.

The TAMC conference series arose naturally in response to important scien-
tific developments affecting how we compute in the twenty-first century. At the
same time, TAMC is already playing an important regional and international
role, and promises to become a key contributor to the scientific resurgence seen
throughout China and other parts of Asia.

The enthusiasm with which TAMC 2007 was received by the scientific com-
munity is evident in the large number of quality articles submitted to the con-
ference. There were over 500 submissions, originating from all over the world.
This presented the Program Committee with a major assessment task. The Pro-
gram Committee finally selected 67 papers for presentation at the conference
and inclusion in this LNCS volume. This results in an acceptance rate of just
over 13%, making TAMC an extremely selective conference, compared to other
leading international conferences.

We are very grateful to the Program Committee, and the many outside ref-
erees they called on, for the hard work and expertise which they brought to

VI Preface

the difficult selection process. We also wish to thank all those authors who sub-
mitted their work for our consideration. The Program Committee could have
accepted many more submissions without compromising standards, and were
only restrained by the practicalities of scheduling so many talks, and by the
inevitable limitations on the size of this proceedings volume.

Finally, we would like to thank the members of the Editorial Board of Lecture
Notes in Computer Science and the Editors at Springer for their encouragement
and cooperation throughout the preparation of this conference.

Of course TAMC 2007 would not have been possible without the support of
our sponsors, and we therefore gratefully acknowledge their help in the realiza-
tion of this conference.

May 2007 Jin-Yi Cai
S. Barry Cooper

Hong Zhu

Organization

The conference was organized by: the Software School of Fudan University; Uni-
versity of Leeds, UK; and the University of Wisconsin–Madison, USA.

Conference Chair

Jin-Yi Cai (University of Wisconsin)

Program Committee Co-chairs

S. Barry Cooper (University of Leeds)
Hong Zhu (Fudan University)

Program Committee

Giorgio Ausiello (University of Rome)
Eric Bach (University of Wisconsin)
Nicolò Cesa-Bianchi (University of Milan)
Jianer Chen (Texas A&M University)
Yijia Chen (Shanghai Jiaotong University)
Francis Chin (University of Hong Kong)
C.T. Chong (National University of Singapore)
Kyung-Yong Chwa (KAIST, Korea)
Decheng Ding (Nanjing University)
Rodney Downey (University of Wellington)
Martin Dyer (University of Leeds)
Rudolf Fleischer (Fudan University)
Oscar Ibarra (UC Santa Barbara)
Hiroshi Imai (University of Tokyo)
Kazuo Iwama (Kyoto University)
Tao Jiang (University of California-Riverside/Tsinghua)
Satyanarayana Lokam (Microsoft Research-India)
D. T. Lee (Academia Sinica, Taipei)
Angsheng Li (Institute of Software, CAS, Beijing)
Giuseppe Longo (CNRS - Ecole Normale Superieure, Paris)
Tian Liu (Peking University)
Rüdiger Reischuk (Universität zu Lübeck)
Rocco Servedio (Columbia University)
Alexander Shen (Institute for Information Transmission Problems, Moscow)
Yaoyun Shi (University of Michigan)
Theodore A. Slaman (UC Berkeley)

VIII Organization

Xiaoming Sun (Tsinghua University)
Shanghua Teng (Boston University)
Luca Trevisan (UC Berkeley)
Christopher Umans (Cal Tech)
Alasdair Urquhart (University of Toronto)
Hanpin Wang (Peking University)
Osamu Watanabe (Tokyo Institute of Technology)
Zhiwei Xu (Institute of Computing Technology, CAS, Beijing)
Frances Yao (City University of Hong Kong)
Mingsheng Ying (Tsinghua University)

Organizing Committee

Jin-Yi Cai (The University of Wisconsin-Madison, USA)
S. Barry Cooper (University of Leeds, UK)
Angsheng Li (Institute of Software, Chinese Academy of Sciences, China)
Hong Zhu (Fudan University, China)

Sponsoring Institutions

The National Natural Science Foundation of China
Chinese Academy of Sciences
Microsoft Research, Asia
Science and Technology Commission of Shanghai Municipality
Software School of Fudan University

Table of Contents

Plenary Lectures

Detecting Sharp Drops in PageRank and a Simplified Local Partitioning
Algorithm . 1

Reid Andersen and Fan Chung

Generalizations of the Compactness Theorem and Gödel’s Completeness
Theorem for Nonstandard Finite Structures . 13

Miklós Ajtai

Contributed Papers

Approximation Algorithms for 3D Orthogonal Knapsack 34
Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and
Henning Thomas

A Comparative Study of Efficient Algorithms for Partitioning a
Sequence into Monotone Subsequence . 46

Bing Yang, Jing Chen, Enyue Lu, and S.Q. Zheng

The Hardness of Selective Network Design for Bottleneck Routing
Games . 58

Haiyang Hou and Guochuan Zhang

A Polynomial Time Algorithm for Finding Linear Interval Graph
Patterns . 67

Hitoshi Yamasaki and Takayoshi Shoudai

Elementary Differences Among Jump Hierarchies . 79
Angsheng Li

Working with the LR Degrees . 89
George Barmpalias, Andrew E.M. Lewis, and Mariya Soskova

Computability on Subsets of Locally Compact Spaces 100
Yatao Xu and Tanja Grubba

A New Approach to Graph Recognition and Applications to
Distance-Hereditary Graphs . 115

Shin-ichi Nakano, Ryuhei Uehara, and Takeaki Uno

Finding a Duplicate and a Missing Item in a Stream 128
Jun Tarui

X Table of Contents

Directed Searching Digraphs: Monotonicity and Complexity 136
Boting Yang and Yi Cao

Protecting Against Key Escrow and Key Exposure in Identity-Based
Cryptosystem . 148

Jin Wang, Xi Bai, Jia Yu, and Daxing Li

Encapsulated Scalar Multiplications and Line Functions in the
Computation of Tate Pairing . 159

Rongquan Feng and Hongfeng Wu

A Provably Secure Blind Signature Scheme . 171
Xiaoming Hu and Shangteng Huang

Construct Public Key Encryption Scheme Using Ergodic Matrices over
GF(2) . 181

Pei Shi-Hui, Zhao Yong-Zhe, and Zhao Hong-Wei

New Left-to-Right Radix-r Signed-Digit Recoding Algorithm for
Pairing-Based Cryptosystems . 189

Fanyu Kong, Jia Yu, Zhun Cai, and Daxing Li

The Strongest Nonsplitting Theorem . 199
Mariya Ivanova Soskova and S. Barry Cooper

There is an Sw-Cuppable Strongly c.e. Real . 212
Yun Fan

On Computation Complexity of the Concurrently Enabled Transition
Set Problem . 222

Li Pan, Weidong Zhao, Zhicheng Wang, Gang Wei, and
Shumei Wang

Synchronization of Some DFA . 234
A.N. Trahtman

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 244
Sheng-Lung Peng and Yi-Chuan Yang

On Exact Complexity of Subgraph Homeomorphism 256
Andrzej Lingas and Martin Wahlen

Searching a Polygonal Region by Two Guards . 262
Xuehou Tan

On the Internal Steiner Tree Problem . 274
Sun-Yuan Hsieh, Huang-Ming Gao, and Shih-Cheng Yang

Approximately Optimal Trees for Group Key Management with Batch
Updates . 284

Minming Li, Ze Feng, Ronald L. Graham, and Frances F. Yao

Table of Contents XI

On Deciding Deep Holes of Reed-Solomon Codes . 296
Qi Cheng and Elizabeth Murray

Quantum Multiparty Communication Complexity and Circuit Lower
Bounds . 306

Iordanis Kerenidis

Efficient Computation of Algebraic Immunity of Symmetric Boolean
Functions . 318

Feng Liu and Keqin Feng

Improving the Average Delay of Sorting . 330
Andreas Jakoby, Maciej Lískiewicz, Rüdiger Reischuk, and
Christian Schindelhauer

Approximating Capacitated Tree-Routings in Networks 342
Ehab Morsy and Hiroshi Nagamochi

Feedback Arc Set Problem in Bipartite Tournaments 354
Sushmita Gupta

Studying on Economic-Inspired Mechanisms for Routing and
Forwarding in Wireless Ad Hoc Network . 362

Yufeng Wang, Yoshiaki Hori, and Kouichi Sakurai

Enhancing Simulation for Checking Language Containment 374
Jin Yi and Wenhui Zhang

QBF-Based Symbolic Model Checking for Knowledge and Time 386
Conghua Zhou, Zhenyu Chen, and Zhihong Tao

A Characterization of the Language Classes Learnable with Correction
Queries . 398

Cristina Tı̂rnăucă and Satoshi Kobayashi

Learnable Algorithm on the Continuum . 408
Zhimin Li and Xiang Li

Online Deadline Scheduling with Bounded Energy Efficiency 416
Joseph Wun-Tat Chan, Tak-Wah Lam, Kin-Sum Mak, and
Prudence W.H. Wong

Efficient Algorithms for Airline Problem . 428
Shin-ichi Nakano, Ryuhei Uehara, and Takeaki Uno

Efficient Exact Arithmetic over Constructive Reals 440
Yong Li and Jun-Hai Yong

Bounding Run-Times of Local Adiabatic Algorithms 450
M.V. Panduranga Rao

XII Table of Contents

A Note on Universal Composable Zero Knowledge in Common
Reference String Model . 462

Andrew C.C. Yao, Frances F. Yao, and Yunlei Zhao

A Note on the Feasibility of Generalized Universal Composability 474
Andrew C.C. Yao, Frances F. Yao, and Yunlei Zhao

t-Private and Secure Auctions . 486
Markus Hinkelmann, Andreas Jakoby, and Peer Stechert

Secure Multiparty Computations Using a Dial Lock 499
Takaaki Mizuki, Yoshinori Kugimoto, and Hideaki Sone

A Time Hierarchy Theorem for Nondeterministic Cellular Automata . . . 511
Chuzo Iwamoto, Harumasa Yoneda, Kenichi Morita, and
Katsunobu Imai

Decidability of Propositional Projection Temporal Logic with Infinite
Models . 521

Zhenhua Duan and Cong Tian

Separation of Data Via Concurrently Determined Discriminant
Functions . 533

Hong Seo Ryoo and Kwangsoo Kim

The Undecidability of the Generalized Collatz Problem 542
Stuart A. Kurtz and Janos Simon

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs in
Doubling Dimensional and Nearly-Euclidean Spaces 554

Yingchao Zhao and Shang-Hua Teng

Maximum Edge-Disjoint Paths Problem in Planar Graphs 566
Mingji Xia

An Efficient Algorithm for Generating Colored Outerplanar Graphs 573
Jiexun Wang, Liang Zhao, Hiroshi Nagamochi, and Tatsuya Akutsu

Orthogonal Drawings for Plane Graphs with Specified Face Areas 584
Akifumi Kawaguchi and Hiroshi Nagamochi

Absolutely Non-effective Predicates and Functions in Computable
Analysis . 595

Decheng Ding, Klaus Weihrauch, and Yongcheng Wu

Linear-Size Log-Depth Negation-Limited Inverter for k-Tonic Binary
Sequences . 605

Hiroki Morizumi and Jun Tarui

Table of Contents XIII

The Existence of Unsatisfiable Formulas in k-LCNF for k ≥ 3 616
Qingshun Zhang and Daoyun Xu

Improved Exponential Time Lower Bound of Knapsack Problem Under
BT Model . 624

Xin Li, Tian Liu, Han Peng, Liyan Qian, Hongtao Sun, Jin Xu,
Ke Xu, and Jiaqi Zhu

Phase Transition of Multivariate Polynomial Systems 632
Giordano Fusco and Eric Bach

Approximation Algorithms for Maximum Edge Coloring Problem 646
Wangsen Feng, Li’ang Zhang, Wanling Qu, and Hanpin Wang

Two Improved Range-Efficient Algorithms for F0 Estimation 659
He Sun and Chung Keung Poon

Approximation to the Minimum Rooted Star Cover Problem 670
Wenbo Zhao and Peng Zhang

Approximability and Parameterized Complexity of Consecutive Ones
Submatrix Problems . 680

Michael Dom, Jiong Guo, and Rolf Niedermeier

Parameterized Algorithms for Weighted Matching and Packing
Problems . 692

Yunlong Liu, Jianer Chen, and Jianxin Wang

Kernelizations for Parameterized Counting Problems 703
Marc Thurley

Revisiting the Impossibility for Boosting Service Resilience 715
Xingwu Liu, Zhiwei Xu, and Juhua Pu

An Approximation Algorithm to the k-Steiner Forest Problem 728
Peng Zhang

A Distributed Algorithm of Fault Recovery for Stateful Failover 738
Indranil Saha and Debapriyay Mukhopadhyay

Path Embedding on Folded Hypercubes . 750
Sun-Yuan Hsieh

An Approximation Algorithm Based on Chain Implication for
Constrained Minimum Vertex Covers in Bipartite Graphs 760

Jianxin Wang, Xiaoshuang Xu, and Jianer Chen

Author Index . 771

Detecting Sharp Drops in PageRank and a

Simplified Local Partitioning Algorithm

Reid Andersen and Fan Chung

University of California at San Diego, La Jolla CA 92093, USA
fan@ucsd.edu, http://www.math.ucsd.edu/~fan/

randerse@ucsd.edu, http://www.math.ucsd.edu/~randerse/

Abstract. We show that whenever there is a sharp drop in the numer-
ical rank defined by a personalized PageRank vector, the location of the
drop reveals a cut with small conductance. We then show that for any
cut in the graph, and for many starting vertices within that cut, an ap-
proximate personalized PageRank vector will have a sharp drop sufficient
to produce a cut with conductance nearly as small as the original cut.
Using this technique, we produce a nearly linear time local partitioning
algorithm whose analysis is simpler than previous algorithms.

1 Introduction

When we are dealing with computational problems arising in complex networks
with prohibitively large sizes, it is often desirable to perform computations whose
cost can be bounded by a function of the size of their output, which may be
quite small in comparison with the size of the whole graph. Such algorithms
we call local algorithms (see [1]). For example, a local graph partitioning al-
gorithm finds a cut near a specified starting vertex, with a running time that
depends on the size of the small side of the cut, rather than the size of the input
graph.

The first local graph partitioning algorithm was developed by Spielman and
Teng [8], and produces a cut by computing a sequence of truncated random
walk vectors. A more recent local partitioning algorithm achieves a better run-
ning time and approximation ratio by computing a single personalized PageRank
vector [1]. Because a PageRank vector is defined recursively (as we will describe
in the next section), a sweep over a single approximate PageRank vector can
produce cuts with provably small conductance. Although this use of PageRank
simplified the process of finding cuts, the analysis required to extend the ba-
sic cut-finding method into an efficient local partitioning algorithm remained
complicated.

In this paper, we consider the following consequence of the personalized
PageRank equation,

p = αv + (1 − α)pW,

where p is taken to be a row vector, v is the indicator vector for a single vertex v,
and W is the probability transition matrix of a random walk on the graph (this

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 R. Andersen and F. Chung

will be defined in more detail later). When a random walk step is applied to the
personalized PageRank vector p, every vertex in the graph has more probability
from pW than it has from p, except for the seed vertex v. This implies something
strong about the ordering of the vertices produced by the PageRank vector p:
there cannot be many links between any set of vertices with high probability
in p and any set of vertices with low probability in p. More precisely, whenever
there is a sharp drop in probability, where the kth highest ranked vertex has
much more probability than the k(1 + δ)th vertex, there must be few links
between the k highest ranked vertices and the vertices not ranked in the top
k(1 + δ).

We will make this observation rigorous in Lemma 1, which provides an intu-
itive proof that personalized PageRank identifies a set with small conductance.
In the section that follows, we will prove a series of lemmas that describe nec-
essary conditions for a sharp drop to exist. In the final section, we will use
these techniques to produce an efficient local partitioning algorithm, which finds
cuts in nearly linear time by detecting sharp drops in approximate PageRank
vectors.

2 Preliminaries

PageRank was introduced by Brin and Page [3,7]. The PageRank vector pr(α, s)
is defined to be the unique solution of the equation

pr(α, s) = αs + (1 − α)pr(α, s)W, (1)

where α is a constant in (0, 1) called the teleportation constant , s is a vec-
tor called the starting vector, and W is the random walk transition matrix
W = D−1A. Here D denotes the diagonal matrix whose diagonal entries are
the degrees of the vertices, and A denotes the adjacency matrix of the graph.

The PageRank vector that is usually associated with search ranking has a
starting vector equal to the uniform distribution 1

n1. PageRank vectors whose
starting vectors are concentrated on a smaller set of vertices are often called
personalized PageRank vectors. These were introduced by Haveliwala [5], and
have been used to provide personalized search ranking and context-sensitive
search [2,4,6]. We will consider PageRank vectors whose starting vectors are
equal to the indicator function 1v for a single vertex v. The vertex v will be
called the starting vertex, and we will use the notation pr(α, v) = pr(α, 1v).

The volume of a subset S ⊆ V of vertices is Vol(S) =
∑

x∈S d(x). We remark
that Vol(V) = 2m, and we will sometimes write Vol(G) in place of Vol(V). We
write e(S, T) to denote the number of edges between two disjoint sets of vertices
S and T . The conductance of a set is

Φ(S) =
e(S, T)

min (Vol(S), 2m − Vol(S))
.

Detecting Sharp Drops in PageRank 3

The amount of probability from a vector p on a set S of vertices is written
p(S) =

∑
x∈S p(x). We will sometimes refer to the quantity p(S) as an amount

of probability even if p(V) is not equal to 1. As an example of this notation,
the amount of probability from the PageRank vector pr(α, v) on a set S will be
written pr(α, χv)(S). The support of a vector is the set of vertices on which it
is nonzero, Support(p) = {v | p(v) �= 0}.

2.1 Approximate Personalized PageRank Vectors

Here are some useful properties of PageRank vectors (also see [5] and [6]).

Proposition 1. For any starting vector s, and any constant α in (0, 1], there
is a unique vector pr(α, s) satisfying pr(α, s) = αs + (1 − α)pr(α, s)W.

Proposition 2. For any fixed value of α in (0, 1], there is a linear transfor-
mation Rα such that pr(α, s) = sRα. Furthermore, Rα is given by the matrix

Rα = αI + α

∞∑

t=1

(1 − α)tW t. (2)

This implies that a PageRank vector pr(α, s) is linear in its starting vector s.

Instead of computing the PageRank vector pr(α, v) exactly, we will approximate
it by another PageRank vector pr(α, v − r) with a slightly different starting
vector, where r is a vector with nonnegative entries. If r(v) ≤ εd(v) for every
vertex in the graph, then we say pr(α, v − r) is an ε-approximate PageRank
vector for pr(α, v).

Definition 1. An ε-approximate PageRank vector for pr(α, v) is a PageRank
vector pr(α, v − r) where the vector r is nonnegative and satisfies r(u) ≤ εd(u)
for every vertex u in the graph.

We will use the algorithm ApproximatePR(v, α, ε) described in the following
theorem to compute ε-approximate PageRank vectors with small support. The
running time of the algorithm depends on ε and α, but is independent of the
size of the graph.

Theorem 1. For any vertex v, any constant α ∈ (0, 1], and any constant ε ∈
(0, 1], The algorithm ApproximatePR(v, α, ε) computes an ε-approximate PageR-
ank vector p = pr(α, v− r) with support Vol(Support(p)) ≤ 2

(1−α)ε . The running
time of the algorithm is O(1

εα).

The proof of this theorem, and the description of the algorithm, were given in
[1]. We will use the algorithm as a black box.

4 R. Andersen and F. Chung

3 A Sharp Drop in PageRank Implies a Good Cut

We describe a normalized rank function derived from a PageRank vector, and
the ordering of the vertices induced by that rank function.

Definition 2. Given a PageRank vector p, we define the following.

– Define the rank function q to be q(u) = p(u)/d(u).
– Let π be a permutation that places the vertices in nonincreasing order of

rank, so that
q(π(1)) ≥ q(π(2)) ≥ · · · ≥ q(π(n)).

This is the ordering induced by the PageRank vector. An integer j ∈ [1, n]
will be called an index, and we will say that π(j) is the vertex at index j.

– Let Sj = {π(1), . . . , π(j)} be the set containing the j vertices of highest rank.
The set Sj is called the jth level set of the PageRank vector.

– Define the shorthand notation q(j) = q(π(j)) and V (j) = Vol(Sj).

We now prove the main lemma. If there is a sharp drop in rank at Sj, then the
set Sj has small conductance. We will prove the contrapositive instead, because
that is how we will eventually apply the lemma. Namely, we will prove that
either the set Sj has small conductance, or else there is an index k > j where
the volume Vol(Sk) is significantly larger than Vol(Sj), and the rank q(k) is not
much smaller than q(j).

Lemma 1 (Sharp Drop Lemma). Let p = pr(α, v − r) be an approximate
PageRank vector. Let φ ∈ (0, 1) be a real number, and let j be any index in
[1, n]. Either the number of edges leaving Sj satisfies e(Sj , S̄j) < 2φVol(Sj), or
else there is some index k > j such that

Vol(Sk) ≥ Vol(Sj)(1 + φ) and q(k) ≥ q(j) − α/φVol(Sj).

Proof. For any set S of vertices,

pW (S) = p(S) −
∑

(u,v)∈e(S,S̄)

q(u) − q(v).

Since p = pr(α, v − r) and the vector r is nonnegative,

pW = (1 − α)−1(p − α(v − r)) ≥ p − αv.

The two equations above imply that
∑

(u,v)∈e(S,S̄)

q(u) − q(v) ≤ α. (3)

Now consider the level set Sj . If Vol(Sj)(1 + φ) > Vol(G), then

Detecting Sharp Drops in PageRank 5

e(SjS̄j) ≤ Vol(G)(1 − 1
1 + φ

) ≤ φVol(Sj),

and the theorem holds trivially. If Vol(Sj)(1 + φ) ≤ Vol(G), then there is a
unique index k such that

Vol(Sk−1) ≤ Vol(Sj)(1 + φ) ≤ Vol(Sk).

If e(Sj , S̄j) < 2φVol(Sj), we are done. If e(Sj , S̄j) ≥ 2φVol(Sj), then e(Sj , S̄k−1)
is also large,

e(Sj, S̄k−1) ≥ ∂(Sj) − Vol(Sk−1 \ Sj) ≥ 2φVol(Sj) − φVol(Sj) = φVol(Sj).

Using equation (3),

α ≥
∑

(u,v)∈e(Sj ,S̄j)

q(u) − q(v) ≥
∑

(u,v)∈e(Sj ,S̄k−1)

q(u) − q(v)

≥ e(Sj , S̄k−1)(q(j) − q(k))
≥ φVol(Sj) · (q(j) − q(k)).

This shows that q(j) − q(k) ≤ α/φVol(Sj), completing the proof.

4 Ensuring That a Sharp Drop Exists

In this section, we will introduce several tools that will allow us to show that
a sharp drop in rank exists for many personalized PageRank vectors. When we
present the local partitioning algorithm in the next section, these tools will be
used to prove its approximation guarantee.

Throughout this section and the next, we have two PageRank vectors to
consider, the PageRank vector p = pr(α, v), and the approximate PageRank
vector p̃ = pr(α, v−r) that will be computed by the local partitioning algorithm.
These two PageRank vectors induce two different orderings π and π̃, which lead
to two different rank functions q(k) and q̃(k), which produce two collections of
level sets Sk and S̃k, which have different volumes V (k) = Vol(Sk) and Ṽ (k) =
Vol(S̃k).

We start by showing there is some index i where the rank q(i) is not much
smaller than 1/V (i). This lemma doesn’t use any special properties of PageRank
vectors, and is true for any nonnegative vector whose entries sum to 1.

Lemma 2 (Integration Lemma). Let q be the rank function of any vector p
for which ‖p‖1 = 1. Then, there exists an index i such that q(i) ≥ 1

H(2m)V (i) ,

where H(2m) =
∑2m

k=1 1/k = O(log m).

6 R. Andersen and F. Chung

Proof. If we assume that q(i) < c/V (i) for all i ∈ [1, n], then

n∑

i=1

q(i)d(i) < c

n∑

i=1

d(i)
V (i)

≤ c

2m∑

k=1

1
k

= cH(2m).

If c = 1/H(2m), this would imply ‖p‖1 =
∑n

i=1 q(i)d(i) < 1, so we must have
q(i) ≥ 1

H(2m)V (i) for some index i.

We now give a lower bound on the rank function of an ε-approximate PageRank
vector p̃ = pr(α, v−r) that depends on the rank function of the PageRank vector
p = pr(α, v) that is being approximated, and on the error parameter ε.

Lemma 3 (Approximation Error Lemma). Let q be the rank function for
a PageRank vector p = pr(α, v), and let q̃ be the rank for an ε-approximate
PageRank vector p̃ = pr(α, v − r). For any index i, there is an index j such
that

q̃(j) ≥ q(i) − ε and Vol(S̃j) ≥ Vol(Si).

Proof. If v ∈ Si, then p(v)/d(v) ≥ q(i). Since p̃ is an ε-approximation of p,

p̃(v)/d(v) ≥ p(v)/d(v) − ε ≥ q(i) − ε.

Therefore, the set of vertices for which p̃(v)/d(v) ≥ q(i) − ε has volume at
least Vol(Sj), which proves the lemma.

The following lemma shows what happens when you repeatedly apply the Sharp
Drop Lemma, but fail to find a cut with small conductance. You will find a
sequence of larger and larger indices for which the rank does not drop very
quickly. We give a lower bound on the rank of the final index in the sequence.
We will eventually contradict this lower bound, which will show that one of the
applications of the Sharp Drop Lemma finds a cut with small conductance.

Lemma 4 (Chaining Lemma). Let {k0 . . . kf} be an increasing sequence of
indices such that for each i ∈ [0, f − 1], the following holds.

q(ki+1) ≥ q(ki) − α/φV (ki) and V (ki+1) ≥ (1 + φ)V (ki).

Then, the last index kf satisfies

q(kf) ≥ q(k0) − 2α/φ2V (k0).

Detecting Sharp Drops in PageRank 7

Proof. The bound on the change in volume implies that V (ki) ≥ (1 + φ)iV (k0)
for all i ∈ [0, f − 1]. Therefore,

q(kf) ≥ q(k0) − α

φV (k0)
− α

φV (k1)
− · · · − α

φV (kf−1)

≥ q(k0) − α

φV (k0)

(

1 − 1
(1 + φ)

− · · · − 1
(1 + φ)f−1

)

≥ q(k0) − α

φV (k0)
(
1 + φ

φ
)

≥ q(k0) − 2α

φ2V (k0)
.

This completes the proof of the Chaining Lemma.

To contradict the lower bound from the Chaining Lemma, we will place a lower
bound on pr(α, v)(C), that depends on the conductance of C. This bound will
apply to many starting vertices v within C.

Definition 3. Given a set C, let Cα be the set of vertices v within C such that
pr(α, v)(C̄) is at most 2Φ(C)/α.

Lemma 5 (Probability Capturing Lemma). For any set C and value of α,
we have Vol(Cα) ≥ (1/2)Vol(C).

Proof. Let πC be the probability distribution obtained by sampling a vertex v
from C with probability d(v)/Vol(C). It is not difficult to verify the following
statement, which was proved in [1].

pr(α, πC)W (C̄) ≤ pr(α, πC)(C̄) + Φ(C).

We will apply this observation to the personalized PageRank equation.

pr(α, πC)(C̄) = [απC + (1 − α)pr(α, πC)W](C̄)
= (1 − α)[pr(α, πC)W](C̄)
≤ (1 − α)pr(α, πC)(C̄) + Φ(C).

This implies

pr(α, πC)(C̄) ≤ Φ(C)/α.

If we sample a vertex v from the distribution πC , then at least half of the time
pr(α, v)(C̄) is at most twice its expected value of pr(α, πC)(C̄), and hence at
least half the time v is in Cα. This implies that the volume of the set Cα is at
least half the volume of C.

8 R. Andersen and F. Chung

5 Local Partitioning Algorithm

The local partitioning algorithm can be described as follows:

Local Partition(v, φ, x):
The input to the algorithm is a starting vertex v, a target conductance
φ ∈ (0, 1/3), and a target volume x ∈ [0, 2m].
PageRank computation:

1. Let γ = H(2m), let α = φ2

8γ , and let ε = 1
2γx .

2. Compute an ε-approximate PageRank vector p̃ = pr(α, v − r),
using ApproximatePR(v, α, ε).

3. Order the vertices so that q̃(1) ≥ q̃(2) ≥ · · · ≥ q̃(n).

Finding a cut:
The algorithm will now examine a sequence of vertices, looking for a
sharp drop. We let {ki} be the indices of the vertices examined by the
algorithm. The first index examined by the algorithm will be k0, and the
last index examined will be kf . We will now describe how these indices
are chosen.

1. Let the starting index k0 be the largest index such that
q̃(k0) ≥ 1/2γṼ (k0). If no such index exists, halt and output FAIL:
NO STARTING INDEX.

2. While the algorithm is still running:
(a) If (1 + φ)Ṽ (ki) > Vol(G) or if Ṽ (ki) > Vol(Support(p̃)),

then let kf = ki, output FAIL: NO CUT FOUND and quit.
(b) Otherwise, let ki+1 be the smallest index such that

Ṽ (ki+1) ≥ Ṽ (ki)(1 + φ).
(c) If q̃(ki+1) ≤ q̃(ki) − α/φṼ (ki), then let kf = ki, output the set

Ski , and quit. Otherwise, repeat the loop.

Remarks:
When we analyze the algorithm, we will need the following ob-
servations. Regardless of whether the algorithm fails or successfully
outputs a cut, the sequence of indices {k0, . . . , kf} examined by the algo-
rithm satisfies the conditions of Lemma 4. If the algorithm fails during
the loop of step 2, then kf satisfies either (1 + φ)Ṽ (kf) > Vol(G) or
Ṽ (kf) > Vol(Support(p̃)).

Theorem 2. The running time of Local Partition(v, φ, x) is O(x log2 m
φ2).

Proof. The running time of the algorithm is dominated by the time to compute
and sort p̃. Computing p̃ can be done in time O(1/εα) = O(xγ/α) = O(x log m

α)

Detecting Sharp Drops in PageRank 9

using ApproximatePR. The support of this vector has volume O(1/ε) = O(γx) =
O(x log m), so the time required to sort p̃ is

O(|Support(p̃)| log |Support(p̃)|) = O(x log2 m).

Since we have set α = Ω(φ2/ log m), the total running time is

O(x
log m

α
+ x log2 m) = O(x

log2 m

φ2
).

Theorem 3. Consider a run of the algorithm Local Partition on the input
values v, φ, and x. Let p̃ = pr(α, v − r) be the ε-approximate PageRank vector
computed by the algorithm. Note that α = φ2/8γ and ε = 1/2γx. The following
statements are true.

1. Let q be the rank function of the PageRank vector p = pr(α, v). There exists
an index K such that q(K) ≥ 1/γVol(SK). Furthermore, if the target volume
x satisfies x ≥ Vol(SK), then the algorithm finds a starting index k0 that
satisfies Vol(S̃k0) ≥ Vol(SK).

2. Assume there exists a set C whose volume satisfies Vol(C) ≤ 1
2Vol(G), whose

conductance satisfies Φ(C) ≤ α/80γ, and for which the starting vertex v is
contained in Cα. If the target volume x satisfies x ≥ Vol(SK), then the
algorithm successfully outputs a set. Furthermore, the set S output by the
algorithm has the following properties.
(a) (Approximation guarantee) Φ(S) ≤ 3φ = 3

√
8γα.

(b) (Volume lower bound) Vol(S) ≥ Vol(SK).
(c) (Volume upper bound) Vol(S) ≤ (5/9)Vol(G).
(d) (Intersection with C) Vol(S ∩ C) ≥ (9/10)Vol(S).

Proof. We begin by considering the PageRank vector p = pr(α, v) in order to
prove claim 1 of the theorem. Lemma 2 shows that there is some index K for
which q(K) ≥ 1/γVol(SK), which proves part of the claim. To prove the other
part, we assume that x ≥ Vol(SK), and show that the algorithm finds a starting
index k0 that satisfies Vol(S̃k0) ≥ Vol(SK). Lemma 3 shows that there exists an
index j such that Vol(S̃j) ≥ Vol(SK) and

q̃(j) ≥ q(K) − ε ≥ 1
γVol(SK)

− ε.

Since x ≥ Vol(SK), we have ε = 1/2γx ≤ 1/2γVol(SK), which implies the
following.

q̃(j) ≥ 1
γVol(SK)

− 1
2γx

≥ 1
2γVol(SK)

≥ 1
2γVol(S̃j)

.

This shows that j may be chosen as a starting index, so the algorithm is
assured of choosing some starting index k0 ≥ j, which we know will satisfy

Vol(S̃k0) ≥ Vol(SK) and q̃(k0) ≥ 1
2γVol(S̃k0)

.

This proves Claim 1 of the theorem.

10 R. Andersen and F. Chung

We now move on to the proof of Claim 2. Let kf be the index of the last
vertex considered by the algorithm. We will give a lower bound on q̃(kf). Because
the rank q̃(ki+1) is not much smaller than q̃(ki) at each step, Lemma 4 shows
that

q̃(kf) ≥ q̃(k0) − (2α/φ2)
Vol(S̃k0)

.

We have set α = φ2/8γ to ensure that 2α/φ2 ≤ 1/4γ, and so

q̃(kf) ≥ q̃(k0) − (2α/φ2)
Vol(S̃k0)

≥ 1
2γVol(S̃k0)

− 1
4γVol(S̃k0)

≥ 1
4γVol(S̃k0)

.

We now use the assumptions that v ∈ Cα and Φ(C) ≤ α/80γ, and apply
Lemma 5 to give the following bound on p̃(C̄).

p̃(C̄) ≤ p(C̄) ≤ 2Φ(C)/α ≤ 1/40γ.

Combining our lower bound on q̃(kf) with our upper bound on p̃(C̄) gives the
following bound on the intersection of S̃kf

with C̄.

Vol(S̃kf
∩ C̄) ≤ p̃(C̄)

q̃(kf)

≤ 4γVol(S̃k0)
40γ

≤ 1
10

Vol(S̃kf
).

This implies

Vol(S̃kf
) ≤ Vol(C) + Vol(S̃kf

∩ C̄) ≤ Vol(C) +
1
10

Vol(S̃kf
).

We now use the fact that Vol(C) ≤ (1/2)Vol(G),

Vol(S̃kf
) ≤ (10/9)Vol(C) ≤ (5/9)Vol(G) ≤ Vol(G)

1 + φ
.

The last step follows by assuming that φ ≤ 1/3. We can do so without loss
of generality because the approximation guarantee of the theorem is vacuous if
φ ≥ 1/3.

Detecting Sharp Drops in PageRank 11

The equation above shows that the algorithm will not experience a fail-
ure caused by (1 + φ)Vol(S̃kf

) > Vol(G), and our lower bound on q̃(kf) en-
sures that the algorithm will not experience a failure caused by Vol(S̃kf

) >
Vol(Support(p̃)). This ensures that the algorithm does not fail and output FAIL:
NO CUT FOUND. We have already ensured that the algorithm does not fail
and output FAIL: NO STARTING INDEX. Since we have ruled out all of the
possible failure conditions, the algorithm must successfully output a set.

We must still prove that the set output by the algorithm satisfies all the
properties in claim 2. We have already proved that Vol(S̃kf

) ≤ (5/9)Vol(G),
which proves claim 2(b). We have proved Vol(S̃kf

∩ C̄) ≤ 1
10Vol(S̃kf

), which
proves claim (2d). We have proved Vol(S̃kf

) ≥ Vol(S̃k0) ≥ Vol(SK), which proves
claim (2c).

For the coup de grâce, we will apply the Sharp Drop Lemma. Since the set S̃kf

was output by the algorithm, that set must have the following property: if kf+1

is the smallest index such that Vol(S̃kf+1) ≥ Vol(S̃kf
)(1 + φ), then q̃(kf+1) <

q̃(kf)−α/φVol(S̃kf
). We can then apply the Sharp Drop Lemma to show that the

number of edges leaving Skf
satisfies e(S̃kf

, ¯̃Skf
) < 2φVol(S̃kf

). Since Vol(S̃kf
) ≤

5
9Vol(G), we have Vol(G) − Vol(S̃kf

) ≥ 4
9Vol(G) ≥ 4

5Vol(S̃kf
), and so

Φ(S̃kf
) =

e(S̃kf
, ¯̃Skf

)

min(Vol(S̃kf
), Vol(G) − Vol(S̃kf

))

≤ 2φVol(S̃kf
)

(4/5)Vol(S̃kf
)

≤ 3φ.

This proves the approximation guarantee of claim (2a).

References

1. R. Andersen, F. Chung, and K. Lang. Local graph partitioning using PageRank
vectors. In Proc. 47th Annual Symposium on Foundations of Computer Science,
(2006).

2. P. Berkhin, Bookmark-Coloring Approach to Personalized PageRank Computing,
Internet Mathematics, to appear.

3. S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine,
Computer Networks and ISDN Systems, (1998), 107–117.

4. D. Fogaras and B. Racz, Towards scaling fully personalized PageRank, Proceedings
of the 3rd Workshop on Algorithms and Models for the Web-Graph (WAW), (2004),
105–117.

5. T. H. Haveliwala, Topic-Sensitive PageRank: A Context-Sensitive Ranking Algo-
rithm for Web Search, IEEE Trans. Knowl. Data Eng.,
(2003), 784-796.

12 R. Andersen and F. Chung

6. G. Jeh and J. Widom, Scaling personalized web search, Proceedings of the 12th
World Wide Web Conference (WWW), (2003), 271-279.

7. L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking:
Bringing Order to the Web, Stanford Digital Library Technologies Project, 1998.

8. D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems, ACM STOC (2004), 81–90.

Generalizations of the Compactness Theorem

and Gödel’s Completeness Theorem for
Nonstandard Finite Structures

Miklós Ajtai

IBM Research, Almaden Research Center

Abstract. The compactness theorem and Gödel’s completeness theo-
rem are perhaps the most important tools of mathematical logic for cre-
ating extensions of an existing model of a given theory. Unfortunately
none of these theorems hold if we restrict our attention to finite models.
In this paper we give generalizations of these theorems which can be
used to construct extensions of nonstandard versions of finite structures.
Therefore, although the structures are infinite, some finiteness proper-
ties will be true both for the original and the extended structures. These
types of model extensions are closely related to questions in complexity
theory.

1 Introduction

1.1 The Formulation of the Results

The compactness theorem and Gödel’s completeness theorems are fundamental
tools of mathematical logic. Unfortunately if we restrict our attention to finite
models (which is the natural choice if we study algorithmic questions), then these
theorems are not valid any more, and they do not have natural analogues.

In this paper we describe generalizations (for the compactness and complete-
ness theorems) that are, in some sense, applicable for the finite case as well. We
do not deal directly with finite structures. The new generalized theorems hold
for infinite structures that are finite in a nonstandard model of arithmetic (or
equivalently finite set theory). Using specific properties of these structures, e.g.
that the Axiom-scheme of Induction holds in them, which reflect the fact that
they are “finite” in some sense, the new generalized theorems make possible to
construct new models in a way that are not possible with the original versions
of the same theorems.

We will formulate an analogue of the compactness theorem and describe its
proof in detail. We also state the analogue of Gödel’s completeness theorem but
describe only the basic ideas of the proof. These two new theorems, at least
in their present formulations, are not equivalent, although their proofs have a
common core.

Our basic setup is the following. Suppose that we have a nonstandard model
M of Peano Arithmetic and M is a structure whose universe consists of the

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 13–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 M. Ajtai

first n natural numbers in M, that is, the set {0, 1, . . . , n − 1}, where n is a
nonstandard element of M. Assume further that M contains the restriction
of the algebraic operations +,× and the ordering ≤ to universe(M). Apart
from that, M may contain a finite number of other functions and relations with
finite arities. We assume that all of these functions and relations are first-order
definable in M. Our basic question is whether M can be extended into another
model of Peano Arithmetic, possibly with different properties, in a way that no
new elements are introduced into the interval [0, n−1], that is, the initial segment
{0, 1, . . . , n−1} remains exactly what it was in the original model, together with
the relations and functions given in M. In general, we may be looking for other
extensions of M, which are not models of Peano Arithmetic, but e.g., models
of Zermelo-Fraenkel set Theory, or any other system of axioms. The important
point is that no new elements are introduced into the interval [0, n− 1] and the
existing functions and relations remain unchanged. It is possible e.g., that M,
the original model of Peano Arithmetic cannot be extended into a model of ZF
at all, but M can be extended. The basic question investigated in this paper is
the following: given M how can we decide whether such an extension exists or
not. We want to be able to decide this question remaining “inside M”, that is,
in a way that we only have to deal with objects which are first-order definable
in M.

We show that, for a countable M, we can answer this question if we know
which first-order sentences are true in the structure M. Moreover we will show
that if we want to extend a countable M into a model of a theory G (where we
have some reasonable conditions on the way as G is given, e.g., a recursive set of
sentences like Peano Arithmetic or ZF will be good) then such an extension of
M exists iff it exists for every finite subset of G. This statement is the analogue
of the compactness theorem.

The analogue of the completeness theorem involves the same type of exten-
sions of a countable structure M. We have the same conditions on the theory
G. We show that M has such an extension into a model of G, iff G and the
diagram of the model M are consistent in a sense described below. (We define
the diagram of M as follows. We introduce constant symbols for each elements
of the universe of M. The diagram of M is the set of all statements ϕ with the
following properties: (i) ϕ may contain the newly introduced constants symbols
and symbols corresponding to the relations and function of M, (ii) ϕ holds in
M, and (iii) ϕ is either an atomic formula or the negation of an atomic formula.)

We show that an extension of M with the required properties does not exist
iff there is a proof P in M formulated in Gentzen’s proof system LK, which
shows a contradiction in the theory G+“the diagram of M” so that there is a
standard natural number d with the property that in M the following assertions
hold:

(a) In the proof P the length of each formula is at most d
(b) P is first-order definable in Mc for some standard c, with a formula whose

length is at most d.

Generalizations of the Compactness Theorem 15

In other words the existence of an extension is equivalent to the statement that
the corresponding theory is consistent provided that we restrict our attention
to proofs which contain only short (standard size formulas) and which are first-
order definable in Mc. The latter statement implies that the overall size of the
proof must be polynomial in n. This suggests a connection between questions of
complexity theory and the theory of extensions of nonstandard models. (Several
connections of this type have been made already as we will describe it in the
next section).

We have used Gentzen type proofs for the description of the analogue of the
Completeness Theorem since in this case the bounds on the size of the various
parameters of the proofs can be formulated in a very simple and transparent
way. The results can be modified for Hilbert type proof systems as well, but in
that case the formulation of the bounds are more complicated because we have
to allow formulas whose lengths are nonstandard natural numbers.

Unlike its original version, the new Completeness Theorem does not hold at
all for Gentzen type proofs without the Cut Rule. The reason is that a cut-free
proof can be greater by an exponential factor than the corresponding proof with
cuts, so its size may exclude first-order definability in Mc.

Finally we note that Gödel’s Incompleteness Theorem also has a natural ana-
logue in the context described above. We intend to return to this question in a
separate paper.

1.2 Connection with Complexity Theory

There is a known close connection between complexity theory and the extensions
of models of arithmetic or its fragments in the sense used in the present paper.
We give the outline of a few results to illustrate this connection. Máté has shown
in 1990 that the P =? NP and NP =?co−NP questions are closely connected
to questions about model extensions (see [9]) and described many related results.
In particular Theorem 1 of [9] formulates a statement about model extensions
which implies NP �= co−NP . Here we do not describe the theorem in its full
generality, but only state an illuminating special case. Assume that M , N are
nonstandard models of Peano Arithmetic which are True models of Arithmetic
in the sense that a statement is true in them iff it is true in the standard model
of arithmetic, which consists of the natural numbers. Assume further that there
is an initial segment of the models, up to a nonstandard integer n which are
identical, and N is an extension of M up to 2nk

for all standard integers k. (The
last condition means that every element of M less than 2nk

is also an element
of N and the arithmetic operations on such elements are the same in the two
models.) Suppose now that there is a graph G which is in both M and N , and
its nodes are the first n natural numbers. If G does not have a Hamiltonian cycle
in M , but G has a Hamiltonian cycle in N then NP �= co−NP . In other words
if we are able to prove the existence of an extension of the model M which keeps
[1, n− 1] and G unchanged, while only increases the powersets of all of the sets
{0, 1, . . . , nk}, where k is standard, and at the same time adds a Hamiltonian
cycle to the graph G, then we have proved NP �= co−NP .

16 M. Ajtai

If in the statement of the described theorem, we drop the condition that
M and N are True models (see Theorem 2 of [9]) then, roughly speaking, the
conclusion of the theorem is that we cannot prove in Peano Arithmetic that
NP = co−NP by proving about a fixed nondeterministic Turing machine T
and a fixed positive integer k that T decides in time nk whether a property in
co−NP holds on an input of size n. (This does not exclude the possibility that
we can prove NP = co−NP in some other way.)

Another connection between complexity and model extensions is the following.
For the theorem that parity cannot be computed by an AC0 circuit (see Ajtai
[1], Furst, Saxe, Sipser [4]), we have the following equivalent statement in model
theory. If M is a countable model of Peano Arithmetic, then there exists a
model N of Peano Arithmetic, which is identical to M up to n, where N is a
nonstandard integer, and there exists a set A ⊆ {0, 1, . . . , n − 1}, so that the
set A is both in M and N , but in M the integer |A| is even, while in N the
integer |A| is odd. The proof of this equivalence is given in [1], and it contains
the proof of a special case of the compactness theorem formulated in this paper.
The improved subexponential lower bounds on constant depth parity circuits
(see Yao [11] and Hastad [6]) have also equivalent reformulations in terms of
model extensions. In this case the set A ⊆ {0, 1, . . . , n − 1} is of size (log n)c,
where c is an arbitrarily small but nonstandard positive integer.

The third example is the theorem that PHPn, that is, the Pigeonhole Princi-
ple for sets of size n, formulated as a propositional statement, cannot be proved
by a constant depth polynomial size Frege system, which do not introduce new
variables. In this case the first proof was found using model theoretic motivation
and the proof itself is using model theoretic arguments in addition to combina-
torial ones, (see [2]). Later purely combinatorial improvements were given (see
[3]), but it seems likely, that it would have been much more difficult to find a
first proof without the model theoretic motivation.

In this case we start with a countable model M of Peano Arithmetic with a
nonstandard integer n in it and a k-ary relation R on A, so that R ∈ M . Now
the extended model N is not a model of Peano Arithmetic, it is the following
structure. The universe of N is the set {0, 1, . . . , n−1}, that is, an initial segment
of M up to n. N also contains the arithmetic operations of M restricted to
the set {0, 1, . . . , n − 1} and the relation R. Finally N contains a one-to-one
function f , which maps the set {0, 1, . . . , n − 1} onto the set {0, 1, . . . , n − 2},
that is, it violates the Pigeonhole Principle. It is proved in [2], that if such
an extension exists, so that in N the induction holds (that is, each first-order
definable nonempty subset has a smallest element), then there is no polynomial
size constant depth Frege proof for PHPn, and in fact, the two statements
are equivalent. In [2] such a model N is constructed partly with combinatorial
techniques related to constant depth circuits and partly with a model theoretic
technique which is the nonstandard analogue of Cohen’s method of forcing. The
method of forcing is applicable in general to make connections between problems
of proof complexity and model extensions (see Krajicek [8]).

Generalizations of the Compactness Theorem 17

2 Set Theory

2.1 Finite Set Theory

We assume that the reader is familiar with the basic concepts of Zermelo-
Fraenkel set theory (see e.g. [7]).

If x is a set then then let I1(x) =
⋃

x and In+1(x) = I1(In(x)) for n = 1, 2,
The set x∪⋃∞

i=1 In(x) is the transitive closure, or transitive hull of the set x. The
transitive closure of the set x will be denoted by cl(x). A set is called hereditarily
finite if its transitive closure is finite. (Or equivalently x is hereditarily finite if
there is a natural number n so that In(x) is finite and In(x) = In+1(x)). If we
omit the axiom of infinite set from Zermelo-Fraenkel axiom system of set theory
and add the axiom that every set is hereditarily finite, then the resulting system
of axioms will be called Finite Set Theory. This system is equivalent to Peano
Arithmetic in the sense, that the natural numbers (that is, ordinals) in a model
of Finite Set Theory form a model of Peano Arithmetic, and conversely, if we
start with a model of Peano Arithmetic, then we may define sets, e.g., by Gödel
numbering, so that altogether they form a model of Finite Set Theory. Moreover
if we do these steps one after the other, starting with any of the two models,
then we get back the original model (up to isomorphism). In this paper we prefer
Finite Set Theory to Peano Arithmetic, since it makes the statement and proofs
of our results simpler.

2.2 Standard and Nonstandard Sets

Definition 1. Assume that M is a model of Finite Set Theory and x0 is an
element of universe(M). We say that x0 is a standard element of M if there is
no infinite sequence x1, x2, . . . with the property that for all i = 0, 1, . . ., we have
xi, xi+1 ∈ universe(M), and M |= xi+1 ∈ xi. It is easy to see that the standard
elements of a nonstandard model M of Finite Set Theory form a submodel which
is isomorphic to the model of hereditarily finite sets (in the world) and there is
a unique isomorphism ι between the two models. Therefore, unless we explicitly
state otherwise, we will assume that M has the property that for each standard
x ∈ M we have x = ι(x). In other words, the standard part of M is the set of
hereditarily finite sets and on its elements the relation “∈” is the same as in the
world. In particular, the natural numbers of the world form an initial segment of
the natural numbers of M, and on this segment the arithmetic operations and
ordering in the world is the same as in M.

Definition 2. Suppose that M is a model of Finite Set Theory and B ∈ M.
The set of all standard elements x of M with the property M |= x ∈ B, will be
called the standard part of B, and will be denoted by standard(B).

3 First-Order Formulas

In our terminology concerning first-order logic and Gentzen style proofs, we
follow Takeuti’s “Proof Theory” (see [10]), with the following exception. Since we

18 M. Ajtai

will not use variables for functions and relations, the meaning of the expressions
“function symbol”, “relation symbol” resp. “constant symbol”, will be the same
as “function constant”, “predicate constant”, resp. “individual constant” in [10].

Definition 3. If we say that L is a first-order language then we will always as-
sume, unless we explicitly state otherwise, that L is a first-order language with
equality and with a finite number of relation, function and constant symbols.
By definition each constant symbol is a 0-ary function symbol as well. There-
fore the expression “all function symbols of a language” includes the constant
symbols of the language. Let s(L) be the set of symbols that we can use for
the construction of a first-order formula of L. That is, s(L) contains relation,
function, and constant symbols, symbols for free and bound variables, symbols
for the boolean logical operations, symbols for universal/existential quantifiers,
left and right parenthesis, and the symbol ”,”. Each first-order formula is a finite
sequence constructed from the elements of s(L) according to certain rules (see
e.g. [10]). With this definition a language has an infinite number of symbols.

We will assume that each first-order language is represented in set theory, that
is, its symbols are sets. The sets which are representing the various symbols
can be arbitrarily chosen, but if we say that L is a first-order language then we
assume that such a representation is fixed for L. For another language K the
representation can be different, e.g., the logical symbol “∧” can be represented
by different sets in the languages L and K. Usually it is assumed that a language
has an infinite (perhaps countably infinite) number of free and bound variables,
and it is not important how these variables are represented in set theory. Our
situation is somewhat different, since we will want to consider a language as an
element of a finite structure. Of course the infinite number of variables cannot
be in a finite structure, but they can be in its Cartesian powers. To make this
possible we will always assume that the variables are finite sequences made from
the elements of the universe, as explained in the following definitions.

Definition 4. Assume that L is a first-order language. We introduce two new
symbols, which will be denoted by b and f . If we omit the free and bound
variables from s(L) but add the symbols b and f , the resulting set will be
denoted by Symb(L).

Definition 5. Assume L, H are first-order languages and M is a model of
H. We say that L is in M iff there is a positive integer k so that Symb(L) ⊆
(universe(M))k, and the following conditions are satisfied:

(1) x is a free variable of L iff there exists a natural number k and there exist
a1, . . . , ak ∈ universe(M) so that x = 〈f , a1, . . . , ak〉
(2) u is a bound variable of L iff there exists a natural number k and there exist
a1, . . . , ak ∈ universe(M) so that u = 〈b, a1, . . . , ak〉

Generalizations of the Compactness Theorem 19

4 Extensions of Interpretations

Definition 6. Assume that K,L are first-order languages and K ⊆ L, that is,
every relation or function symbol of K is also a symbol of the same type (relation
or function) in L and has the same arity. Suppose further that L has a unary
relation symbol U not contained in K. In this case we say that L is a U-extension
of K.

Definition 7. Suppose that L is a U-extension of K. The interpretation λ of
L is a U-extension of the interpretation κ of K if the following conditions are
satisfied:

(3) universe(κ) ⊆ universe(λ) and for all x ∈ universe(λ) we have that
x ∈ universe(κ) iff λ |= U(x)

(4) Assume that R is a k-ary relation symbol in K. Then, for all
a1, . . . , ak ∈ universe(κ), we have κ |= R(a1, . . . , ak) iff λ |= R(a1, . . . , ak)

(5) Assume that f is a k-ary function symbol in K. Then, for all a1, . . . , ak, b ∈
universe(κ), we have κ |= b = f(a1, . . . , ak) iff λ |= b = f(a1, . . . , ak)

Definition 8. Assume that L is a U-extension of K, κ is an interpretation of
K, and T is a theory in L. We say that T has a model over κ if there exists an
interpretation λ of L, so that λ is a U -extension of κ and λ is a model of T .

5 First-Order Definability

In all of the definitions in this section we assume that K is a first-order language
and κ is an interpretation of K.

To formulate the compactness theorem we need the notion of first-order de-
finability for relations and functions. In this section we provide the definitions
of these concepts.

Definition 9. Suppose that k is a nonnegative integer and R is a k-ary relation
on universe(κ). We say that R is first-order definable iff there is a nonnegative
integer l, there are elements a1, . . . , al of universe(κ) and there is a first-order
formula ϕ(x1, . . . , xl, y1, . . . , yk) of K so that

κ |= ∀y1, . . . , yk, R(y1, . . . , yk) ↔ ϕ(a1, . . . , al, y1, . . . , yk)

In this case we say that R is first-order definable in κ with formula ϕ at
〈a1, . . . , al〉. If R is a k-ary relation on (universe(κ))i, than R is first-order
definable in κ if the corresponding ik-ary relation is first-order definable in κ.

Definition 10. Assume now that f(x1, . . . , xk) is a k-ary function defined on
universe(κ) and with values in universe(κ). We say that f is first-order defin-
able in κ if the k + 1-ary relation y = f(x1, . . . , xk) is first-order definable in κ.
If f is a k-ary function on (universe(κ))i with values in (universe(κ))j , then f
is first-order definable in κ if the corresponding j + ik-ary relation is first-order
definable in κ.

20 M. Ajtai

Definition 11. Suppose that k is a nonnegative integer and B is a subset of
(universe(κ))k. B is first-order definable in κ if the k-ary relation, which holds
exactly on the elements of B, is first-order definable in κ.

Definition 12. Assume that λ is the interpretation of a first-order language L.
We say that λ is first-order definable in κ, if there exists a positive integer k
so that universe(λ) ⊆ (universe(κ))k, moreover universe(λ) and all of the
relations and functions of the structure defined by λ are first-order definable
in κ.

Remark. Suppose that M is a model of Finite set Theory. We consider M as
an interpretation of the language of set theory, therefore the definitions of this
section are applicable for M.

6 Compactness Theorem

We formulate now the analogue of the Compactness Theorem.

Theorem 13. Assume that L, K are first-order languages, L is a U-extension
of K, M is a model of Finite Set Theory, and κ is an interpretation of K so that
the following conditions are satisfied:

(6) universe(κ) is a countable set.

(7) κ is first-order definable in M.

(8) There is an X ∈ M so that for all x ∈ M we have, x ∈ universe(κ) iff
M |= x ∈ X.

(9) M contains a nonstandard natural number.

Assume further that G is a theory in L so that there is a set B ∈ M with the
property that G = standard(B). For each positive integer k, let Gk be the set
of those formulas from G whose length is less than k. Then, the theory G has a
model over κ iff for each positive integer k, the theory Gk has a model over κ.

Remark. The assumption that M is a model of Finite Set Theory can be re-
placed by much weaker assumptions, e.g., M can be a suitably chosen segment
of a model of Finite Set Theory. A sufficient condition on the segment, which
guarantees that the theorem remains true, will be described in a more detailed
version of the present paper.

7 First-Order Definability of Sets Sequences

In all of the definitions in this section we assume that K is a first-order language
and κ is an interpretation of K.

Generalizations of the Compactness Theorem 21

Definition 14. Assume that s, r1, . . . , ri are nonnegative integers, and H is a
set, so that each element of H is a sequence S = 〈S1, . . . , Ss〉, where Si is an
ri-ary relation on universe(κ) for i = 1, . . . , s. The set H is first-order definable
in κ if there exists a nonnegative integer l, there exists a set B ⊆ (universe(κ))l

first-order definable in κ, and for each i = 1, . . . , s there exists a first-order
formula ϕi(x1, . . . , xl, y1, . . . , yri) of K, so that the following two conditions are
satisfied:

(10) For each 〈a1, . . . , al〉 ∈ B there exists an S = 〈S1, . . . , Ss〉 ∈ H so that for
each i = 1, . . . , s, Si is first-order definable in κ with formula ϕi at 〈a1, . . . , al〉.
(11) For each S = 〈S1, . . . , Ss〉 ∈ H there exists an 〈a1, . . . , al〉 ∈ B so that for
each i = 1, . . . , s, Si is first-order definable in κ with formula ϕi at 〈a1, . . . , al〉.
Definition 15. Assume that d is a positive integer and ξ is an interpretation of
a language L so that universe(ξ) ⊆ (universe(κ))d. Assume that the language
L has t1 relation symbols R1, . . . , Rt1 with arities r1, . . . , rti , and L has t2 func-
tion symbols f1,, ft2 with arities s1, . . . , st2 . Let W0, W1, . . .Wt1+t2 be the
following sequence of relations on (universe(κ))d. For all x ∈ (universe(κ))d,
W0(x) iff x ∈ universe(ξ). Wi = ξ(Ri) for i = 1, . . . , t1. For all i = 1, . . . , t2
Wt1+i is an si+1-ary relation, and for all y, x1, . . . xsi ∈ (universe(κ))d, we have
Wt1+i(y, x1, . . . , xsi) iff ξ |= y = fi(x1, . . . , xsi).

For each i = 0, 1, . . . , t1 + t2 we define a relation W ′
i on universe(κ). If

the arity of Wi is q then the arity of W ′
i is dq. For all x1, . . . , xdq, we have

W ′
i (x1, . . . , xdq) iff Wi(〈x1, . . . , xd〉, . . . , 〈xd(q−1)+1, . . . , xdq〉). We will use the no-

tation S(ξ) = 〈W ′
0, . . . , W

′
t1+t2〉.

The interpretation ξ is first-order definable in κ if all of the following relations
are first-order definable in κ: W ′

0, . . . , W
′
t1+t2 .

Definition 16. Suppose that W is a set of interpretations of L and d is a
positive integer so that for all ξ in W , universe(ξ) ⊆ (universe(κ))d. We say
that the set W is first-order definable in κ, if the set of sequences of relations
{S(ξ) | ξ ∈ W} is first-order definable in κ, where S(ξ) is defined in the previous
definition.

8 The Proof of the Compactness Theorem

We will use the following lemmas and definitions in the proof of the theorem.

Lemma 17. For each positive integer k there exists a first-order formula of ψk of
L so that |= Gk ↔ ψk. Moreover there is a u ∈ M so that M |= “u is a function”
and for each (standard) positive integer k we have that M |= ψk = u(k).

Proof of Lemma 17. Since the number of sentences of L with depth less than k
is finite, their conjunction is a sentence equivalent to Gk. We will denote this
sentence by ψk. By the assumptions of the theorem, G is the standard part of a
set B in M. Let g be the function which assigns to each formula of L its depth.

22 M. Ajtai

There is a function v in M which is an extension of g. Therefore the described
construction of ψk can be carried out in M which gives the function u with the
properties listed in the lemma. Q.E.D.(Lemma 17).

Definition 18. In the following ψk will denote a formula of L with the proper-
ties described in Lemma 17.

Definition 19. Let Kκ be the extension of K by a new constant symbol ca for
each a ∈ K and let κ′ be the extension of κ to K′ with the property κ′(ca) = a
for all a ∈ K. We assume that the new constant symbols are not contained in
L. We will use the notations L′ = K′ ∪ L. L′ is a U-extension of K′. We will
assume that these constant symbols are represented by the elements of Kc for
some constant c, so the language L′ is in Kc.

Definition 20. Let d(κ) be the theory in K′ consisting of all satements σ of K′

so that (a) σ is either an atomic formula or the negation of an atomic formula,
and (b) κ′ |= σ.

Definition 21. Assume that κ is an interpretation of the language K with the
properties described in the theorem and a1, . . . , al ∈ universe(κ). dκ[a1, . . . , al]
will denote the set of all atomic formulas σ of K′ with the following two
properties:

(i) σ ∈ d(κ),
(ii) if a ∈ universe(κ) and ca occurs in σ then a ∈ {a1, . . . , al}

Lemma 22. For all positive integers l, r we have that, for all propositional for-
mulas P (z1, . . . , zl) of the language L with the only free variables z1, . . . , zl, there
exists a propositional formula P ′

r(z1, . . . , zl) of the language K so that for each
interpretation κ of K with the properties listed in the theorem the following holds.

For all a1, . . . , al ∈ universe(κ), κ |= P ′
r(a1, . . . , al) iff the following holds:

in the theory dκ[a1, . . . , al] ∪ {P (ca1 , . . . , cal
)} of the language L′ there is no

contradiction of length at most r.

Proof of Lemma 22. Suppose that 〈a(j)
1 , . . . , a

(j)
l 〉 ∈ K l for j = 0, 1. We say that

〈a(0)
1 , . . . , a

(0)
l 〉, 〈a(1)

1 , . . . , a
(1)
l 〉 are equivalent if for all t-ary relation symbols R

and for all t-ary function symbols f of K we have that for all i0, i1, . . . , it ∈
{1, . . . , l} the following two conditions hold:

(i) κ |= R(a(0)
i1

, . . . , a
(0)
il

) iff κ |= R(a(1)
i1

, . . . , a
(1)
il

) and

(ii) κ |= a
(0)
i0

= f(a(0)
i1

, . . . , a
(0)
il

) iff κ |= a
(1)
i0

= f(a(1)
i1

, . . . , a
(1)
il

).

This defines an equivalence relation on the ordered l tuples of K. The number
of equivalence classes is clearly finite and remains below a bound which is a
primitive recursive function of l. The truth value of statement S ≡“in the theory
dκ[a1, . . . , al] ∪ {P (ca1 , . . . , cal

)} there is a contradiction of length at most r”
depends only on the equivalence class of the l-tuple 〈a1, . . . , al〉. Therefore the
formula Pr(z1, . . . , zr) simply describes those equivalence classes, in terms of
ca1 , . . . , cal

, where statement S holds. Q.E.D.(Lemma 22).

Generalizations of the Compactness Theorem 23

Definition 23. We assume that τ = 〈τ1, τ2, . . .〉 is a finite or infinite sequence
of sentences of L′ each in prenex form. For each k = 1, 2, . . ., where τk is defined,
we introduce skolem functions for the formula τk as new function symbols. The
skolemized version of τk will be denoted by skolem(τk). For each fixed positive
integer k, the extension of L′ with the newly introduced function symbols is a
first-order language that we denote by s(τ)

k . We assume that the new function
symbols introduced for various values of k are distinct. We will denote by S(τ)

k

the union of the languages s1, . . . , sk.

Definition 24. We assume that for each k = 1, 2, . . . the formula ψk, as defined
in the proof of Lemma 17, is in prenex form. We will use the definition of S(τ)

k

mainly in the special case τ = ψ = 〈ψ1, ψ2, . . .〉. In this case we will write Sk as
an abbreviation for S(ψ)

k .

Definition 25. Assume that P (x1, . . . , xs) is a propositional formula of a lan-
guage with the only variables x1, . . . , xs, and W is a finite set of closed terms
of the same language. subst(P, W) will denote the conjunction of all of the for-
mulas that we can get by substituting elements of W for each of the variables
x1, . . . , xs in the formula P . (Note that the elements of subst(P, W) do not
contain variables.)

Definition 26. Assume that τ = 〈τ1, τ2, . . .〉 is a finite or infinite sequence of
sentences from L′. For each positive integer k where τk is defined we will use
the notation τ (k) = 〈τ1, . . . , τk〉. Suppose further that such an integer k is fixed

and H is a set of terms of S(τ)(k)

k . For each j-ary function symbol g of S(τ)
k , let

g(H) = {g(t1, . . . , tj)|t1, . . . , tj ∈ H} and let Hτ = H ∪ ⋃
g(H), where the union

is taken for all function symbols g of S(τ)
k . (In the case of τ = ψ we may omit

the superscript ψ.)

Definition 27. We define a full information game between two players: Player 1
and Player 2. The game depends on a finite or infinite sequence τ = 〈τ1, τ2, . . .〉
whose elements are sentences from the language L and a positive integer k so
that τk is defined. If τ is fixed then we will denote the corresponding game by
G(τ, k).

The players move alternately, starting with Player 1. There will be altogether k
moves. The moves are numbered by the positive integers in increasing order. At
move i first Player 1 is making her ith move then Player 2. We will define the
position of the game after the ith move of Player j and will denote it by Qi,j .
The starting position is denoted by Q0,2 (since intuitively it can be considered
as the position after the “0th move” of the Player).

Qi,j is a pair 〈Vi,j , fi,j〉.
By definition the starting position is Q0,2 = 〈∅, ∅〉.
For all i = 1, . . . , k, the ith move of Player 1 is an arbitrary element bi of K.

The new position Qi,1 after this move is defined by

Vi,1 = (Vi−1,2 ∪ {bi})(〈τ1,...,τi〉), fi,1 = fi−1,2

24 M. Ajtai

For all i = 1, . . . , k, the ith move of Player 2 is an extension of the function
fi,1 to the set Vi,1 with the property that each new value of the function is in
K. This extension is fi,2 and Vi,2 = Vi,1.

Player 1 wins, if there is a contradiction shorter than k in the theory TG(τ,k)

which is the set of sentences:

dκ[b1, . . . , bk]∪
⋃k

i=1

{(∧
q∈Vi,2

U(q) → q = cfk,2(q)

)
∧ subst

(∧i
l=1 skolem(τl), Vi,2

)}

Lemma 28. Assume that 1 ≤ k < l are integers. If Il is an instance of the
game G(τ, l) where Player 2 is the winner then Player 2 is also the winner in
the instance Ik of the game G(τ, k), where Ik consists of the first k moves of the
game Il.

Proof. The definition of the games G(τ, k), G(τ, l) clearly imply that all of the
moves of Ik are legal in the game G(τ, k). This is an immediate consequence of
the fact that the definition of the legality of the ith move in the game G(τ, k)
does not depend on k. The theory TG(τ,k) with respect to the game Ik is clearly
a subset of the theory TG(τ,l) with respect to the game I2. We know that there
is no contradiction of length less than l in the theory TG(τ,l), therefore k < l
implies that there is no contradiction of length less than k in the theory TG(τ,k).
Q.E.D.(Lemma 28).

Lemma 29. Under the conditions of Theorem 13, for all positive integers k,
Player 2 has a winning strategy in the game G(ψ, k).

Proof. The assumptions of the theorem imply that there exists an interpretation
ζ of L′ so that ζ |= Gk and ζ is a U-extension of κ′. By Lemma 17 we have that
ζ |= ∧k

j=1 ψj

The strategy of Player 2, that we will denote by Sk, is the following. Assume that
we are at move i. Player 2 has to extend the function fi,1 to the set Vi,1. Each
element of Vi,1 is a closed term of Sk. Assume that q is an element of Vi,1 so that
fi,1(q) is not defined. If ζ |= ¬U(q) then fi,2(q) is an arbitrary element of K. If
ζ |= U(q) then, the fact that ζ is a U-extension of κ′ implies that ζ |= q = ca

for some a ∈ K. In this case let fi,2(q) = a for one of the elements a with this
property.

The definition of the moves of Player 2 implies that ζ is a model of the theory
TG . Since ζ is a model of theory TG we have that TG theory does not contain
contradictions at all. This implies that the strategy Sk, that we have described,
is a winning strategy for Player 2 in the game G(ψ, k). Q.E.D.(Lemma 22).

Now we may complete the proof of Theorem 13. We will work with games
in the world and in M. First consider an infinite game G(ψ,∞), in the world,
played by Player 1 and Player 2. The players move alternately and Player 1
starts the game. The kth move of Player i is a legal move if it would be a legal
move in the game G(ψ, k). Player 2 wins, if for each positive integer k = 1, 2, . . .,
Player 2 wins in the game G(ψ, k) where the moves are the first k-moves of the
infinite game G(ψ,∞).

Generalizations of the Compactness Theorem 25

Now we consider the following instance of the game G(ψ,∞). Player 1 plays
according to the following strategy. K is countable, therefore there exists an
enumeration a1, a2, . . . of all of the elements of K. The ith move of Player 1 is
the element ai (that is bi = ai using the notation of the definition of the game
G(τ, k)).

For the definition of the strategy of the second player we consider the games
ψ(G, k), k = 1, 2, . . . in M. According to Lemma 29 for each fixed standard
positive integer k the following holds: M |= “ Player 2 has a winning strategy
in the game G(ψ, k)”. This together with the facts that M is a model of Finite
Set Theory and it contains a nonstandard natural number imply that there is
a nonstandard k0 ∈ M so that M |= “Player 2 has a winning strategy Sk0 in
game G(ψ, k0)”. Now we can define the strategy of Player 2 in the game G(ψ,∞).
For each (standard) positive integer i Player 2 makes his i-th move according to
strategy Sk0 .

Assume that in the game G(ψ,∞) the players are playing according to the
described strategies. Lemma 28 implies that Player 2 wins in all of the games
G(ψ, k) for k = 1, 2, Therefore for each k = 1, 2, . . . in the theory

dκ[a1, . . . , ak]∪
k⋃

i=1

⎧
⎨

⎩

⎛

⎝
∧

q∈Vi,2

U(q) → q = cfk,2(q)

⎞

⎠ ∧ subst

(
i∧

l=1

skolem(τl), Vi,2

)⎫
⎬

⎭

there is no contradiction of length less than k. The various functions fk,2 are
compatible, so if f is their common extension then for all k = 1, 2, . . . in the
theory

T (k) = dκ[a1, . . . , ak]∪
k⋃

i=1

⎧
⎨

⎩

⎛

⎝
∧

q∈Vi,2

U(q) → q = cf(q)

⎞

⎠ ∧ subst

(
i∧

l=1

skolem(τl), Vi,2

)⎫
⎬

⎭

there is no contradiction of length shorter than k. As a consequence of this and
the fact that universe(κ) = {a1, a2, . . .}, we have that the theory

T = d(κ)∪
∞⋃

k=1

k⋃

i=1

⎧
⎨

⎩

⎛

⎝
∧

q∈Vi,2

U(q) → q = cf(q)

⎞

⎠ ∧ subst

(
i∧

l=1

skolem(τl), Vi,2

)⎫
⎬

⎭

does not contain a contradiction. By the compactness theorem there exists a
model D of T . Since T does not contain quantifiers, D has a minimal submodel
D0, containing the values of all closed terms. T contains the skolemized version
of the theory {ψk | k = 1, 2, . . .} therefore D0 is a model of G =

⋃∞
k=1 Gk. We

claim the D0 is a U-extension of κ. Indeed D0 consists of the values of the terms
in the set

⋃∞
i=1 Vi,2. Moreover for each term q in this set, the theory T contains

a sentence which implies U(q) → q = cf(q). Consequently all of the elements of

26 M. Ajtai

D0 where the relation U holds belong to K. On the other hand for each element
of K there is q so that f(q) = a. Indeed, the choice of the strategy of Player
1 implies that a = bi for some positive integer i, and so ca∈Vi,1 which implies
a ∈ range(fi,2) and o K ⊆ D0. Finally, since d(κ) ⊆ T , all of the relation
and function symbols of K has the interpretation in D0 that is required by the
definition of a U-extension. Q.E.D.(Theorem 13)

Lemma 30. Assume that L, K are first-order languages, L is a U-extension of
L, k is a positive integer, τ = 〈τ1, . . . , τk〉 is a sequence of sentences of L. Then
there is a sentence η of the language K such that for each interpretation κ we
have the following

κ |= η iff Player 2 has a winning strategy in game G(τ, k).

Proof. η will be the sentence whose Ehrenfeucht-Frechet game is the game G(τ, k).
Each move of Player 1 is an element of K = universe(κ), and each move of
Player 2 is a sequent of elements from K. The choices of Player 1 correspond to
variables bound by the universal quantifiers and for Player 2 the variables bound
by the existential quantifier. The number of elements of K that Player 2 has to
give in a single move, may depend on the earlier moves of Player 1. However
this is not a problem since there is a finite upper bound on this number. (This
bound is a primitive recursive function of 〈τ1, . . . , τl〉.) Suppose that the moves
of the players, that is, the corresponding sequence of elements are fixed. Lemma
22 shows that Player 2 is the winner if a propositional formula of K is true in κ
if we substitute the moves of the players for its variables. Q.E.D.(Lemma T1.8)

9 The Completeness Theorem

9.1 Proofs in LK

We will formulate and prove a generalization of Gödel’s completeness theorem
for the proof system introduced by Gentzen, namely the “logistischer klassischer
Kalkül” or LK described in [5] or [10].

We assume that the reader is familiar with LK. Here we give only a brief
sketch of its definition without formulating its rules of inference.

Definition 31. Assume that 〈T,≤〉 is a partially ordered set and x, y ∈ T . x is
a predecessor of y if x < y and there is no z ∈ T with x < z < y. In this case y
is called the successor of x.

Definition 32. A triplet 〈T,≤T , C〉 is a binary PO-set if the following condi-
tions are satisfied.

(12) T is a nonempty set, ≤T is a partial ordering of T with a smallest element 0T .

(13) Each element of T has at most two successors.

Generalizations of the Compactness Theorem 27

(14) C is a binary relation on T with the property that if b, c ∈ T , b �= c are both
successors of a t ∈ T , then C(b, t) ≡ ¬C(c, t).

According to its definition, an LK proof in the first-order language H is a pair of
functions g0, g1, defined on the set of nodes of a finite binary PO-set 〈T,≤T , C〉,
so that for each t ∈ T , both g0(t) and g1(t), are finite sequences whose elements
are formulas of H. The sequence g0(t) is the antecedent and the sequence g1(t)
is the succedent. The pair 〈g0(t), g1(t)〉 is the sequent assigned to the node t.
Moreover the sequents assigned to a node t and to its successors in the PO-set
must be formed according to an inference rule of LK, and the sequents assigned
to source nodes must be initial sequents of LK.

For the definition of inference rules and initial sequents of LK see e.g., [10].
We will denote by I the set of symbols of the language H occurring in the

proof.

Definition 33. In the above definition of a proof in LK we have used the
notion of sequences at two different places. Namely formulas are sequences, the
antecedents and succedents are sequences of formulas. For the present purposes
we define a sequence in the following way. We fix an arbitrary finite totally
ordered set Λ and we represent the sequence 〈a0, a1, . . . , ak−1〉 by the function
f which is defined on the smallest k elements λ0 < λ1 < . . . < λk−1 of Λ by
f(λi) = ai. Of course only sequences of length at most |Λ| can be represented
this way. The element of the sequence which is assigned to the element a of Λ
will be called the a-placed element of the sequence.

Using this definition of a sequence we represent the functions g0, g1 by relations
R0, R1 on the set T×Λ×Λ×I, namely R0(t, a, b, c) holds iff the a-placed element
of the antecedent g0(t) is a formula whose b-placed element is c. The definition
of R1 is the same using the succedent g1(t).

Therefore an LK proof P in the language H consists of a finite binary PO-set
T , a finite totally ordered set Λ, a finite set I ⊆ s(H) and relations R0, R1 on
the set T × Λ × Λ × I, which has to satisfy the conditions of the definition of
LK. (Clearly these conditions are formulated in Finite Set Theory.) If the proof
P has this structure we will write P = 〈T , Λ, I, R1, R2〉.

Assume that τ is an interpretation of a first-order language L, and P =
〈T , Λ, I, R1, R2〉 is an LK proof in H, where T = 〈T,≤, C〉. We say that P
is first-order definable in τ if T,≤, C, Λ, I, R1, R2 are all first-order definable in
τ . This clearly implies that the sizes of the sets T, Λ, and I are smaller than
|universe(τ)|c, where c depends only on the lengths of the first-order formulas
used in the definitions of T,≤, C, Λ, I, R1, R2 in τ .

Definition 34. Assume that L is a first-order language, H is a theory in L,
and P is an LK proof in L. We say that the proof reaches a contradiction in
the theory H , if all of the formulas of the antecedent of the sequent assigned
to the root of the PO-set belong to H , and the succedent of this sequent is
empty.

28 M. Ajtai

9.2 Diagrams, and Induction Axioms

Definition 35. In this definition it is important that we consider equality as a
relation symbol of each first-order language. Assume K is a first-order language
and κ is an interpretation of K. We extend the language K, by a new constant
symbol ca for each element of universe(κ). The diagram of κ, which will be
denoted by diag(κ), consists of all of the formulas of the type:

(15) R(ca1 , . . . , cak
) for all k-ary relation symbols of K and for all

a1, .., ak ∈ universe(κ) so that κ |= R(a1, . . . , ak), for k = 1, 2, . . .

(16) ¬R(ca1 , . . . , cak
) for all k-ary relation symbols of K and for all

a1, .., ak ∈ universe(κ) so that κ |= ¬R(a1, . . . , ak), for k = 1, 2, . . .

(17) ca0 = f(ca1 , . . . , cak
), for all k-ary function symbols of K (including cons-

tant symbols if k = 0) and for all a0, a1, .., ak ∈ universe(κ) so that κ |= a0 =
f(a1, . . . , ak) for k = 0, 1, 2,

Definition 36. Suppose that the first-order language L is a U-extension of the
first-order language K. L′ will denote the language that we get from L by adding
the new constant symbols introduced in the definition of diag(κ). (Note that L′

may have an infinite number of constant symbols if κ has an infinite universe.)
We will always assume that the language L′ is in κ in the sense defined earlier.
Moreover, those symbols of L′ that are not in L, are represented in κ so that
each symbol ca of L′ is the element a itself.

Definition 37. 1. Assume that H is a first-order language and ≤ is a binary
relation in H. The axiom-scheme of Induction for the language H with respect
to the binary relation “≤”, consists of the axiom “≤ is a total ordering of the
universe” and for each positive integer k and first-order formula ϕ(x0, x1, . . . , xk)
of H, with the only free variables x0, x1, . . . , xk, the sentence:

∀t,
(
∃x, ϕ(x, t)

)
→

(

∃y∀z, ϕ(y, t) ∧
(
ϕ(z, t) → y ≤ z

))

where t stands for t1, . . . , tk.
2. If the language H, in addition to the binary relation “≤”, also contains a

unary relation symbol U, then the Axiom-scheme of Induction for the language
H, with respect to “≤”, and restricted to U, consists of the statement that “≤ is a
total ordering of the set where U holds”, and for each positive integer k and first-
order formula ϕ(x0, x1, . . . , xk) of H, with the only free variables x0, x1, . . . , xk,
the sentence given in the previous definition, with the modification that the ∃x,
∃y, and ∀z quantifiers are all restricted to the set of elements where U holds.

Remark. We may also say, that the induction scheme with respect to ≤ is the set
of statements expressing, that the universe is well-ordered by ≤, provided that
we consider only first-order definable sets in the definition of a well-ordering. The
induction scheme with respect to ≤ and restricted to U expresses the statement,
that the set where U holds is well-ordered in the same sense.

Generalizations of the Compactness Theorem 29

9.3 The Statement of the Completeness Theorem

Definition 38. Assume that M is a model of finite set theory. If X ∈ M then
X �M will denote the set of all x ∈ M with M |= x ∈ X . (The difference between
X and X �M is that X is a set in M, while X �M is a set in the world. X as a
set in the world may have quite different elements.) In a similar way if M |=
“R is a relation on the set X” then R�M will be a relation in the world defined
on the set X �M by R �M (x) iff M |= R(x). If f ∈ M is a function in M then
f �M will denote the unique function g with domain(f)�M = domain(g) and for
all x, y ∈ M, y = g(x) iff M |= y = f(x). We define the same notion for relations
and functions with arities larger than 1 in a similar way.

Definition 39. If L is a language so that Symb(L) is a hereditarily finite set
then we will say that L is a hereditarily finite language. If L is such a language
and M is a model of Finite Set Theory then L is also a language in M, (since we
assumed that such a model always contains the hereditarily finite sets). Suppose
now that σ ∈ M so that M |=“σ is a interpretation of L”. Then σ�M will denote
the unique interpretation τ of L in the world so that M |=“X is the universe of
σ” implies X �M = universe(τ), and for each relation or function symbol Q of
L we have M |= Y = σ(Q) iff Y �M = τ(Q).

The statement of the following lemma is an immediate consequence of the
definitions.

Lemma 40. Assume that K is a hereditarily finite language M is a model of
finite set theory, and κ is a interpretation of K which is first-order definable in
M. Suppose further that there exists an X ∈ M so that universe(κ) ⊆ X �M.
Then there exists a unique element κ̄ ∈ M so that κ = κ̄�M.

Definition 41. Under the assumption of Lemma 40, the unique interpretation
κ̄, whose existence is stated in the lemma, will be denoted by κ̄(M) and we
will omit the superscript if the choice of M is clear from the context. Suppose
L is a hereditarily finite language as well, and it is a U-extension of K. If an
interpretation κ is fixed then we have defined the language L′. Suppose that κ
satisfies the assumptions of Lemma 40. In this case we may define L′ in M with
respect to κ̄. This language will be denoted by L̄′.

Notation. Under the assumptions of the previous definition if we write a state-
ment M |= ϕ, then in the formula ϕ we will write κ instead of κ̄ and we will
write L′ instead of L̄′ to make the statement more transparent.

Remark. In the formulation of the theorem we will use the fact, that in a model
of Finite Set Theory each natural number q is the set of all natural numbers less
than q.

Theorem 42. Assume that L, K are hereditarily finite first-order languages,
L is a U-extension of K, M is a model of Finite Set Theory, and κ is an
interpretation of K so that the following conditions are satisfied:

30 M. Ajtai

(18) universe(κ) is a countable set.

(19) κ is first-order definable in M.

(20) There exists a q so that M |= “q is a natural number and
universe(κ) = q”.

(21) The language K contains a binary relation “≤” and κ(≤) is the natural
ordering of the natural numbers in M on universe(κ).

(22) If we restrict the + and × operations, of the natural numbers in M to the set
universe(κ), then both of them, as ternary relations, are first-order definable
in κ.

Assume further that G is a theory in L so that there is a set B ∈ M with the
property that G = standard(B), and in G all of the statements are provable,
which belong to the the Axiom-scheme of Induction for the language L with
respect to the relation ≤K, and restricted to U. Then, the theory G has a model
over κ iff there exists a (standard) natural number d and a P ∈ M, so that the
following three requirements are met

(23) M |= “ P is a proof in LK in the language L′, and P reaches a contradiction
in the theory Gd + diag(κ)”

(24) M |= “every formula contained in P is of length at most d”.

(25) M |= “P is first-order definable in κ with formulas of length less than d.

9.4 The Sketch of the Proof of the Completeness Theorem

In the proof of the theorem we use the following lemma.

Lemma 43. Suppose that M is a structure with a total ordering of the uni-
verse with a smallest element 0 and largest element 1. Assume further that each
nonempty first-order definable subset of the universe has a smallest element, and
each nonzero element has a predecessor. Then each nonempty partially ordered
set, which is first-order definable in M, has a minimal element.

Proof. The assumptions of the lemma imply that each nonempty first-order defin-
able subset U of the universe has a largest element in the total ordering. Indeed
if U does not contain the largest element 1 of the universe then let Y be the set
of those elements of the universe which are strictly larger than each element of
U . According to the assumptions of the lemma Y has a smallest element y and
it has a predecessor u. Clearly u is the largest element of U .

Assume that the statement is not true and P is a first-order definable partially
ordered set without a minimal element. ≤P denotes the partial ordering of P
and ≤ denotes the total ordering of the universe. Let X be the set of all elements
x of P with the following property:

Generalizations of the Compactness Theorem 31

(26) for all y ∈ P there exists a z ∈ P so that z <P y and z < x

X is nonempty since, the indirect assumption implies that, 1 is in X . Let v be
the smallest element of X with respect to the total ordering. v cannot be 0,
(the smallest element of the total ordering), since 0 does not satisfy condition
(26). By the assumptions of the lemma, v has a predecessor u. We claim that in
contradiction to the minimality of v in X , the element u also satisfies condition
(26) with x → u. Indeed, let y ∈ P be arbitrary. Since v ∈ X , there is a z ∈ P
so that z <P y and z < v. If z �= u then z < u and so condition (26) is satisfied.
Assume now that z = u. Using again that v ∈ X we get that there exists a t ∈ P
with t <P z = u and t < x. Now t <P u implies that t �= u, so by t < v we have
t < u. On the other hand t <P z <P < y and so t <P < y. Therefore condition
(26) is satisfied by x → u and so u ∈ X in contradiction to the minimality of v.
Q.E.D.(Lemma 43)

Sketch of the proof of Theorem 42. In this sketch we sometimes will refer to the
sets X and X �M with the same symbol. The choice of the right set however will
be clear from the context.

Assume first that there is an LK proof P in M which shows a contradiction
in the theory Gd +diag(κ) and first-order definable in κ with formulas of length
at most d, but contrary to the assertion of the theorem there is a model G of
G + diag(κ) over κ. (Note that G is not necessarily first-order definable in M.)
First we note that, since the proof P is first-order definable in κ̄ with a formula
of standard size, there is a standard integer i so that the set of nodes of the
binary PO-set T is a subset of D = (universe(κ))i. D is a totally ordered set
with respect to the lexicographic ordering. universe(κ) is well ordered in G
with respect to first-order definable sets, since G contains the induction scheme
restricted to U. Therefore D is also well-ordered in G in the same sense. Clearly
G also has a largest and smallest element, and every element of D has both a
predecessor and a successor. Applying Lemma 43 we get that in every first-order
definable partially ordered set X ⊆ D, X ∈ G, has the property that every
subset which is first-order definable in G has a smallest element.

Therefore the binary PO-set T satisfies this condition as well. Since the
lengths of the formulas of the proof P remain below a standard bound d we
have that the truth values of these formulas in the model G can be defined in
G, moreover the function which assigns to each formulas its truth value is first-
order definable in G. Therefore we may assign a truth value to each sequent of
the proof namely if g0(t) the antecedent contains the set of formulas Γ and g1(t)
the succedent contains the set of formulas Θ then the value assigned to t will be
τ(t) ≡ ∧

γ∈Γ τ(γ) → ∨
ϑ∈Θ τ(ϑ). It is easy to see that the function τ is first-order

definable in G. By our assumptions about T , the value assigned by τ to the root
of the tree is “FALSE” while the values assigned by τ to the maximal nodes
are all “TRUE”. Since τ is first-order definable there is a maximal node of m
of T so that τ(m) is “FALSE”. m cannot be a maximal node in the whole set
T , since there τ is “TRUE”. Therefore the sequents assigned to m and to its
successors by the pair 〈g0, g1〉 must satisfy one of the inference rules. It is easy

32 M. Ajtai

to show that this is impossible if τ(m) is “FALSE” but τ(x) is true for all of
the successors of m. This completes the proof of the theorem in one direction.

Assume now that the theory H = G+diag(κ) has no model over κ. First note
that it is sufficient to prove the theorem for the special case when the theory H
contains only prenex universal formulas. (We will say that such a theory is uni-
versal.) Indeed introducing Skolem functions as new function symbols, as it was
done in the proof of the generalized Compactness Theorem we get an equivalent
universal theory. It is not clear whether, in general, a LK proof showing a con-
tradiction in the universal theory can be transformed, in a first-order definable
way, into a LK proof in the original theory. In our case however, this is possible.
We will tell more about this later.

We suppose now that the theory H is universal and it has no model over κ.
In the proof of the generalized Compactness Theorem we have seen that if in
M it is true that Player 2 has a winning strategy in the game G(ψ, k0), for a
nonstandard k0, then H has a model over κ. Therefore our present assumption
implies that Player 1 has a winning strategy in all of these games. Therefore
the smallest k, so that Player 1 has a winning strategy in game G(ψ, k), is a
standard natural number. Suppose a standard k is fixed so that Player 1 has a
winning strategy in the game G(ψ, k).

This game is of the following type. The players alternately have to tell elements
ai (perhaps more than one at a time) of universe(κ). The total number of these
elements remain standard. Player 2 essentially has to evaluate skolem functions
at places dj which depend on the elements ai which already occurred in the game.
The evaluation must be done only under the assumption that the value of the
skolem function is in universe(κ). The elements dj are given as terms of elements
ai which has occurred earlier. At the end Player 1 wins if some of the universal
axioms of H turned into propositional formulas at evaluating the quantified
variables at various terms (without variables), and some of the declarations of
Player 2 about the values of the Skolem functions are contradictory (in the
propositional calculus) and there is such a contradiction of length at most k.

If X is the sequence of moves in the game, then let HG(X) be the theory
that we get from H if we add to it all of the propositional statements about the
values of Skolem functions made by Player 2 provided that X was the sequence
of moves. Our assumptions imply that Player 1 has a strategy so that there is an
LK proof (satisfying the conditions of the theorem) that shows a contradiction
in the theory HG(X). Indeed the mentioned propositional contradiction can be
easily transformed into such a proof.

Using induction we show, that for each i = 0, 1, . . . , k, there is a similar game
G′ so that the length of the game is at most k − i and Player 1 has a strategy
which guarantees that there is an LK proof P which shows a contradiction in
the theory HG′(X). At the end, with a game of length 0 we get an LK proof
which shows a contradiction in the theory H . This inductive proof leads to a
recursive construction of the LK proof P . With the help of the fact that the
number of recursive steps is a standard integer we can prove that P satisfies all
of our requirements, in particular it is first-order definable in M, and the length

Generalizations of the Compactness Theorem 33

of the formulas in it remain below a standard bound. Following this recursion
we may also transform a proof in the universal theory to a proof in the original
theory.

We do not describe here the inductive step, only note that it involves the use
of the cut rule n times where n = |universe(κ)|.

References

1. M. Ajtai, Σ1
1 -formulae on finite structures, Annals of Pure and Applied Logic, 24

(1983), 1-48.
2. M. Ajtai, The Complexity of the Pigeonhole Principle, Combinatorica 14 (4),

(1994) 417-433. 1993.
3. P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P.Pudlák and A. Woods, Ex-

ponential Lower Bound for the Pigeonhole Principle (extended abstract), in: Proc.
ACM Symp. on Theory of Computing, ACM Press, (1992), pp.200-220.

4. M. Furst, J.B. Saxe and M. Sipser, Parity, Circuits and the Polynomial Time
Hierarchy, Mathematical Systems Theory, (17):13-17, 1984.

5. G. Gentzen Unterschungen über das logische Schliessen, Matematische Zeitschrift
39 (1934) 176-210, 405-431

6. J. Hastad Almost optimal lower bounds for small depth circuits Proc. 18th Annu.
ACM Symp. Theory Computing 6-20 (1986).

7. T. Jech, Axiomatic Set Theory, Academic Press, San Diego, 1978.
8. J. Krajicek, Forcing with random variables and proof complexity, eds. A.Beckmann,

U.Berger, B.Löwe, and J.V.Tucker: Logical Approaches to Computational Barriers,
2nd Conference on Computability in Europe, CiE 2006, Swansea, UK, July 2006,
Lecture Notes in Computer Science, Springer, (2006), pp.277-278.

9. A. Máté, Nondeterministic polynomial-time computation and models of Arithmetic,
Journal of the ACM, Vol. 37, (1), January 1990, pp. 175-193.

10. G. Takeuti, Proof Theory, North-Holland, Studies in Logic and the Foundations
of Mathematics, Vol. 81, Second edition, 1987.

11. A. Yao Separating the polynomial time hierarchy by oracles Proc. 26th Annu. IEEE
Symp. Found. Comp. Sci. 1-10 (1985).

Approximation Algorithms for

3D Orthogonal Knapsack�

Florian Diedrich1, Rolf Harren2, Klaus Jansen1,
Ralf Thöle1, and Henning Thomas1

1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel,
Olshausenstr. 40, 24098 Kiel, Germany

2 Fachbereich Informatik, Universität Dortmund,
Otto-Hahn-Str. 14, 44227 Dortmund, Germany

Abstract. We study non-overlapping axis-parallel packings of 3D boxes
with profits into a dedicated bigger box where rotation is forbidden; we
wish to maximize the total profit. Since this optimization problem is
NP-hard, we focus on approximation algorithms. We obtain fast and
simple algorithms with approximation ratios 9+ ε and 8+ ε as well as an
algorithm with approximation ratio 7 + ε that uses more sophisticated
techniques; these are the smallest approximation ratios known for this
problem. Topics: Algorithms, computational and structural complexity.

1 Introduction

Given a list L = {R1, . . . , Rn} of boxes with sizes Ri = (xi, yi, zi) and posi-
tive profits pi for each i ∈ {1, . . . , n} and a dedicated box Q = (a, b, c), we
study non-overlapping axis-parallel packings of sublists of L into Q which we
call feasible. For simplicity call Q a bin. We wish to select a sublist that permits
a packing and maximizes the profit. This problem will be called the orthogo-
nal three-dimensional knapsack problem or OKP-3 for short and we denote the
optimal profit by OPT. It is a natural generalization of the knapsack problem
(KP) which is known to be NP-hard. This makes an exact algorithm with a
polynomial worst-case runtime bound impossible unless P = NP holds. W.l.o.g.
we assume a = b = c = 1 and that each Ri ∈ L can be packed by otherwise
removing infeasible boxes and scaling in O(n) time.

Related problems. Different geometrically constrained two- and three-dimen-
sional packing problems were studied, resulting in three main directions. In strip
packing the target area is a strip of infinite height; the objective is to minimize
� Research supported in part by DFG Project, “Entwicklung und Analyse von

Approximativen Algorithmen für Gemischte und Verallgemeinerte Packungs- und
Überdeckungsprobleme, JA 612/10-1”, in part by the German Academic Exchange
Service DAAD, in part by project AEOLUS, EU contract number 015964, and in
part by a grant “DAAD Doktorandenstipendium” of the German Academic Ex-
change Service DAAD. Part of this work was done while visiting the ID-IMAG,
ENSIMAG, Grenoble.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 34–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximation Algorithms for 3D Orthogonal Knapsack 35

the height of the packing. For the 2D case, [22] yields an approximation ratio
of 5/2; in [1], an asymptotic approximation ratio of 5/4 was obtained. The best
known absolute approximation ratio of 2 was obtained with different techniques
in [21,23]. In [13], an asymptotic fully polynomial time approximation scheme
(AFPTAS – see [24] for a definition) was presented. For the 3D case, research
has focused mainly on the asymptotic approximation ratio [20]. An asymptotic
ratio of 2+ε was obtained in [10]; this was improved to 1.691 by Bansal et al. [3].
In [17] the on-line version was studied, resulting in a competitive ratio of 29/10.
In bin packing the objective is to minimize the number of identical bins. For
the 1D case, an asymptotic polynomial time approximation scheme (APTAS –
see [24]) was presented in [7], while in [18] the currently best known asymptotic
approximation ratio of 11/9 for the popular FFD algorithm is proved. For the
2D case, an asymptotic approximation ratio of 1.691 was obtained in [4]. In [2] it
was proved that d-dimensional bin packing does not admit an APTAS for d ≥ 2
and therefore no FPTAS, but an APTAS for packing d-dimensional cubes into
the minimum number of unit cubes was presented. In the knapsack scenario the
number of bins is a fixed constant [5], usually 1. For the 2D case, [11] yields an
approximation ratio of 2 + ε. Classical 1D knapsack problems are relatively well
understood, see [12,19] for surveys. Although the problems are closely related,
results cannot be transferred directly. One main difference between bin/strip
packing and knapsack packing is that in the first setting all boxes of the instance
must be packed but in the latter a selection of items is needed.

Previous results and applications. Harren [8] obtained a ratio of 9/8+ ε for
the special case of packing cubes into a cube and proved the APX-completeness
of the general case [9]. A cutting stock application is cutting blocks with given
profits from larger pieces of material to maximize the profit; another application
is the problem of selecting boxes to be transported in a container. Besides these,
the problem is motivated from multiprocessor scheduling on grid topology. In
this perspective, for a time slice of fixed duration, a set of jobs to be executed
must be chosen and each job requires a subgrid of prespecified rectangular shape.
For a special case of this application, in [25] an on-line algorithm is presented;
See [6] for a study of similar problems.

New results. Our contribution is a fast and simple (9 + ε)-approximation
algorithm based on strip packing (Section 2) which is refined to an (8 + ε)-
approximation algorithm in Section 3. Both of these have practical running
times. In Section 4 we obtain a (7 + ε)-approximation algorithm using more
costly techniques before concluding with open problems in Section 5.

2 An Algorithm Based on Strip Packing

We approximately solve a relaxation by selecting L′ ⊆ L that is at least near-
optimal and has a total volume of at most 1 which is partitioned into 9 sublists.
For each of these a packing into the bin will be generated. Out of these one
with maximum profit is chosen, resulting in a (9 + ε)-approximation algorithm.

36 F. Diedrich et al.

More precisely L′ will be packed into a strip [0, 1] × [0, 1] × [0,∞) by a level-
oriented algorithm, improving a result from [16]. We partition the strip into
packings of sublists of L′ and among these return one with maximum profit. For
each box Ri the rectangle (xi, yi) is called the base rectangle of Ri, denoted as
br(Ri). Such a rectangle (xi, yi) is called big :⇔ xi ∈ (1/2, 1] ∧ yi ∈ (1/2, 1],
long :⇔ xi ∈ (1/2, 1] ∧ yi ∈ (0, 1/2], wide :⇔ xi ∈ (0, 1/2] ∧ yi ∈ (1/2, 1], and
small :⇔ xi ∈ (0, 1/2] ∧ yi ∈ (0, 1/2]. For each list L of boxes use V (L) :=∑

Ri∈L xiyizi to denote the total volume of L and for each list L of rectangles
ri = (xi, yi) use A(L) :=

∑
ri∈L xiyi to denote the total area of L. Furthermore,

P (L) :=
∑

Ri∈L pi denotes the total profit of L. Finally, for each list L of boxes
use H(L) to denote the height of a packing of L where the packing itself will
be clear from the context. We use the following theorem from [11] which is a
refinement of the main result from [23].

Theorem 1. Let L be a list of n rectangles such that A(L) ≤ 1/2 holds and
no long rectangles or no wide rectangles occur in L. Then L permits a feasible
packing into the unit square which can be generated in time O(n log2 n/ log log n).

First we apply the modified strip packing algorithm, then we construct the par-
tition of the strip. The strip packing algorithm uses Theorem 1 to obtain an area
guarantee for each but the last level, improving a result from [16].

Algorithm A

1. Partition L into two sublists L1 := {Ri|br(Ri) is long} and L2 := L \ L1.
W.l.o.g. let L1 = {R1, . . . , Rm} and L2 = {Rm+1, . . . , Rn}.

2. Generate the packing for L1 as follows.
2.1. Find the boxes Ri in L1 for which the area of br(Ri) is greater than

1/4 which are Rp+1, . . . , Rm w.l.o.g. Stack these on top of one another
in direction z, each on its own level.

2.2. Sort the remaining boxes R1, . . . , Rp in non-increasing order of zi, re-
sulting in a list L′

1.
2.3. Partition L′

1 into consecutive sublists L′′
1 , . . . , L′′

v where the total base
area of each sublist is as close to 1/2 as possible but not greater. Pack
each of these sublists on a level by itself using Theorem 1. Stack all of
these levels on top of one another in direction z.

3. Generate the packing for L2 in a similar way as for L1 by Theorem 1. The
resulting steps are called Steps 3.1 – 3.3.

4. Concatenate the packings of L1 and L2 to obtain a packing of L.

Theorem 2. For each list L of n boxes Algorithm A generates a packing of
height at most 4V (L) + Z1 + Z2 where Z1 and Z2 are the heights of the first
levels generated in Steps 2.3 and 3.3. The construction can be carried out in
time O(n log2 n/ log log n).

The proof is omitted due to page limitations; the result can be obtained by
replacing the area bound 7/32 by 1/4 in the proof of Theorem 4 from [16]. The
second part is a partition applied to the output of Algorithm A; see Figure 1.

Approximation Algorithms for 3D Orthogonal Knapsack 37

Algorithm B

1. Set δ := ε/(9 + ε). Use an FPTAS for KP from [12,14] to select L′ ⊆ L such
that V (L′) ≤ 1 and P (L′) ≥ (1 − δ)OPT holds, where OPT denotes the
optimum of the generated KP instance.

2. Use Algorithm A to generate a packing of L′ into the strip but separate the
first levels generated in Steps 2.3 and 3.3. Pack these into a bin each.

3. By Theorem 2 the remaining strip has a height of at most 4V (L′) ≤ 4.
Consider the three cutting unit squares [0, 1] × [0, 1] × {i} for i ∈ {1, 2, 3}.
Generate a partition of the region [0, 1]× [0, 1]× [0, 4] into 7 subsets, namely
4 subsets which are each positioned in the regions [0, 1]× [0, 1]× [i− 1, i] for
i ∈ {1, . . . , 4} but not intersecting any of the unit squares and 3 subsets of
boxes which each intersect with one of the three cutting unit squares.

4. Out of the sets generated in Steps 2 and 3 return one with maximum profit.

Each set generated in Steps 2 and 3 permits a feasible packing into the unit cube
which is available as a byproduct of Algorithm A. L′ is partitioned into at most
9 subsets by Algorithm B, as illustrated in Figure 1.

Theorem 3. Algorithm B is a (9+ ε)-approximation algorithm for OKP-3 with
running time O(TKP(n, ε) + n log2 n/ log log n), where TKP(n, ε) is the running
time of the FPTAS used for KP from [12,14]. Furthermore this bound is tight.

Proof. Clearly 9+ε is an upper bound for the ratio and the running time is dom-
inated by solving the knapsack instance and by Algorithm A. For the following
instance this bound can be attained. We have 10 boxes R1 := (1/2, 1/2, 2/15),
R2 := (3/4, 1/3, 2/15), R3 := (1, 2/7, 3/4), R4 := . . . := R7 := (1, 2/7, 1/2),
R8 := (1, 2/7, 1/4+2/15), R9 := (1, 2/7, 2/15) and R10 := (1, 1, 1). Furthermore
p1 := . . . := p9 := 1/9 − ε/[9(9 + ε)] and p10 := 1. Let S1 := {R1, . . . , R9} and
S2 := {R10}. It is clear that S2 is an optimal solution; elementary calculation
shows V (S1) = 1 and P (S1) = 1 − δ, hence S1 may be selected in Step 1 of
Algorithm B. Applying Algorithm B and assuming that the boxes are stacked
in increasing order of index in Step 2.1 of Algorithm A, we obtain 9 bins each
containing an item with profit 1/(9 + ε). 	

Note that only the subset that is returned needs to be packed level-wise using the
algorithm from Theorem 1 while the discarded subsets need not to be arranged.

1

Z1

2

Z2

3

4

5

6

7

8

9

Fig. 1. At most 9 bins are generated by Algorithm B

38 F. Diedrich et al.

Algorithm B can be used to solve the special cases where we wish to maximize
the number of selected boxes or the volume by setting pi := 1 or pi := xiyizi

for each i ∈ {1, . . . , n}. This also holds for the other two algorithms that we
present. In [14] approximation algorithms for various knapsack problems are
found. Using these, Algorithm B can be generalized by replacing the KP solver
in Step 1, yielding algorithms for unbounded OKP-3 and multiple-choice OKP-3;
see [14] for notions and details. Algorithm B can be modified to yield a ratio of
18 with a much better running time by using a 2-approximation algorithm for
classical KP. Call Ri small :⇔ xi ∈ (0, 1/2] ∧ yi ∈ (0, 1/2] ∧ zi ∈ (0, 1/2]. We
obtain a criterion for packability of a list of boxes; the proof is omitted due to
space restrictions.

Lemma 1. Each list L of small boxes for which V (L) ≤ 1/8 holds can be packed
into the unit cube in time O(n log2 n/ log log n).

3 A Refined Construction

In Algorithm A and the proof of Theorem 2, the area bound 1/2 from Theorem 1
was used. We separate boxes with base area greater than 1/4, resulting in the
area guarantee 1/2 − 1/4 = 1/4 for each level generated in Steps 2.2 and 2.3
except the last ones. The height bound can be improved if this area guarantee is
improved. We have arbitrarily chosen direction z to be the axis for level genera-
tion, but any direction d ∈ {x, y, z} will do. The two levels of height Z1 and Z2

are the result of partitioning the instance. We study the packing of small boxes
more closely; Algorithm C is applied only to lists of small boxes.

Algorithm C

1. Find the boxes Ri in L for which the area of br(Ri) is greater than 1/10 which
are R1, . . . , Rm w.l.o.g. Sort these in non-increasing order of zi, resulting in
a list L1. Arrange these in groups of 4 boxes each, except for the last group.
Each group can be put on a seperate level by placing the boxes into the
corners of the level. Stack these levels on top of one another in direction z.

2. Sort the remaining boxes Rm+1, . . . , Rn in non-increasing order of zi, result-
ing in a list L2.

3. Partition L2 into consecutive sublists L′′
1 , . . . , L′′

v where the total base area
of each sublist is as close to 1/2 as possible but not greater. Pack each of
these sublists on a level by itself using Theorem 1. Stack all of these levels
on top of one another in direction z.

4. Concatenate the packings of L1 and L2 to obtain a packing of L.

Note that we formed two groups and obtain an area guarantee of 2/5 for each
layer except the last ones generated in Steps 1 and 3. To avoid confusion we
point out that the area guarantee does not hold for the last generated layers,
while the summands Z1 and Z2 in Theorem 2 are the heights of the respective
first layers. Similar to the proof of Theorem 2, we obtain the following results.

Approximation Algorithms for 3D Orthogonal Knapsack 39

Theorem 4. For each list L of n small boxes Algorithm C generates a feasible
packing of height at most 5/2V (L) + Z1 + Z2 where Z1 ≤ 1/2 and Z2 ≤ 1/2 are
the heights of the first levels generated in Steps 1 and 3. The construction can
be carried out in time O(n log2 n/ log log n).

Lemma 2. Each list L of n small boxes with V (L) ≤ 1 permits a feasible packing
into at most 5 bins. The construction can be carried out algorithmically in time
O(n log2 n/ log log n); the bound of 5 is tight for the used construction.

Proof. Use Algorithm C to arrange L in a strip, but separate the first levels
generated in Steps 1 and 3. Since L contains only small boxes, these two levels can
be packed together into a bin. By Theorem 4, the remaining strip has a height of
at most 5/2. Consider the two cutting unit squares [0, 1]×[0, 1]×{i} for i ∈ {1, 2}.
Generate a partition of the region [0, 1]× [0, 1]× [0, 5/2] into 5 subsets, namely
first 3 subsets which are each positioned in the regions [0, 1]× [0, 1]× [i−1, i] for
i ∈ {1, 2} as well as the region [0, 1]×[0, 1]×[2, 5/2] but not intersecting any of the
unit squares, and furthermore 2 subsets of boxes which each intersect with one of
the two cutting unit squares. The first three sets can be packed into one bin each.
Since L contains only small boxes, the last two sets can be arranged together
into one additional bin. We have at most 5 bins; see Figure 2. The running
time is dominated by Algorithm C and thus bounded by O(n log2 n/ log log n).
To show the tightness of the bound let γ := 1/500 and consider the instance
L consisting of R1 := . . . := R29 := (1/2, 1/5 + γ, 1/3 + γ), R30 := (γ, γ, 1/2),
R31 := . . . := R33 := (1/2, 1/5, γ) and R34 := (1/2, 1/5 − 2γ2, γ). Note that
V (L) = 29/30+122/15γ+15γ2−γ3 < 29/30+1/60. Application of Algorithm C
results in 9 layers with height greater than 1/3, which means that the layers
cannot be arranged in less than 5 bins. 	

Now we refine Algorithm B to yield a better approximation ratio, but we need
to solve a stronger relaxation. For any direction d ∈ {x, y, z} a box Ri is called
d-big :⇔ di ∈ (1/2, 1] and we use X, Y and Z to denote the set of boxes that are
d-big for the corresponding direction. Any box that is d-big for every direction
d ∈ {x, y, z} will be called a big box.

Lemma 3. Let L be a list of n boxes in which no small boxes and at most 3 big
boxes occur. Then L can be partitioned into sets X ′, Y ′ and Z ′ in time O(n),
such that each of these contains at most one big box and the x-projections of
boxes in X ′, the y-projections of boxes in Y ′ and the z-projections of boxes in
Z ′ contain no long or no wide rectangles.

Proof. Remove the at most 3 big boxes from L and distribute them in X ′, Y ′

and Z ′ such that in each of these sets at most one big rectangle occurs. Set

1

Z1

Z2

2

3

4

5

Fig. 2. The small boxes can be packed into at most 5 bins

40 F. Diedrich et al.

X ′ := X ′ ∪ {Ri ∈ L|xi > 1/2, zi ≤ 1/2}, Y ′ := Y ′ ∪ {Ri ∈ L|yi > 1/2, xi ≤ 1/2}
and finally Z ′ := Z ′ ∪ {Ri ∈ L|zi > 1/2, yi ≤ 1/2} to obtain the claim. 	

To avoid repetition, we enumerate the cases in the analysis only.

Algorithm D

1. Set δ := ε/(8+ε). Use a PTAS for non-geometric 4D KP from [12,14] to select
L′ ⊆ L such that P (L′) ≥ (1 − δ)OPT where OPT denotes the optimum of
the integral linear program

maximize
n∑

i=1

piRi subject to R ∈ P

where Ri is an indicator variable for the box of the same name and the
polytope P of nonnegative integers is defined by the constraints

n∑

i=1

xiyiziRi ≤ 1,
∑

Ri∈X

yiziRi ≤ 1,
∑

Ri∈Y

xiziRi ≤ 1,
∑

Ri∈Z

xiyiRi ≤ 1.

2. Partition L′ into at most 8 subsets which permit a feasible packing as de-
scribed below. Out of these, return one with maximum profit.

Theorem 5. Algorithm D is an (8 + ε)-approximation algorithm for OKP-3
with running time O(T4DKP(n, ε) +n log2 n/ log log n), where T4DKP(n, ε) is the
running time of the PTAS used for 4D KP from [12,14]. Furthermore this bound
is tight.

Proof. We have not imposed a bound on the number of big boxes in the relax-
ation; due to the area conditions there are at most 3 big boxes in the selected
set. Case 1: There is a direction d ∈ {x, y, z} such that the d-projection area of
all d-big boxes in L′ is larger than or equal to 1/2. In this case all d-big boxes
can be packed into at most 3 bins with a construction from [11], which can be
carried out in time O(n log2 n/ log log n), resulting in a volume of at least 1/4
being packed. The total volume of the remaining boxes is bounded by 3/4 and
each remaining box has a d-height of at most 1/2. We apply Algorithm A in
direction d which results in a strip of d-height at most 3 and two additional
levels of d-height at most 1/2 each. All of these sets can be packed into at most
5 bins, generating at most 8 bins in total. Case 2: For all d ∈ {x, y, z} the
total projection area of all d-big boxes is smaller than 1/2. By Lemma 3 we
partition the set {Ri ∈ L′|Ri is not small} into sets X ′, Y ′ and Z ′ such that
the total projection area of X ′, Y ′ and Z ′ for the corresponding direction is
not greater than 1/2 and the x-projections of boxes in X ′, the y-projections
of boxes in Y ′ and the z-projection of boxes in Z ′ contain no long or no wide
rectangles, respectively, and each of these sets contains at most one big box.
By Theorem 1 the sets X ′, Y ′ and Z ′ can be packed into at most one bin
each, resulting in at most 3 bins in total. Let S denote the set of small boxes;

Approximation Algorithms for 3D Orthogonal Knapsack 41

these are not yet packed. Clearly V (S) ≤ 1 holds, so by Lemma 2 the set S
can be packed into at most 5 bins, which results in at most 8 bins in total.
The runtime bound follows from the fact that we can distinguish between the
two cases in time O(n). For the tightness of the bound, consider the instance
L in which R1, . . . , R34 are as in the proof of Lemma 2, R35 := (1, 1, 1/180),
R36 := (1, 1/180, 1), R37 := (1/180, 1, 1), and R38 := (1, 1, 1). The profits are
defined by pi := 1/[9(8 + ε)] for i ∈ {1, . . . , 4, 30, . . . , 34}, pi := 1/[8(8 + ε)]
for i ∈ {5, . . . , 28}, pi := 1/(8 + ε) for i ∈ {29, 35, 36, 37} and p38 := 1. Let
S1 := L\{R38} and S2 := {R38}. Since P (S1) = 8/(8+ε) = (1−δ) < 1 = P (S2),
S2 is an optimal solution. Elementary calculation verifies that S1 may be chosen
in Step 1 of Algorithm D. Application of Algorithm D leads to Case 2 in the
analysis above, where X ′ = {R35}, Y ′ = {R37} and Z ′ = {R36}. Each of these
sets is packed into a separate bin. The remaining items are small and are packed
into 5 bins by the proof of Lemma 2. In total, 8 bins are generated; the profits
are chosen such that each bin yields a profit of exactly 1/(8 + ε). 	

4 Enumerations and a Shifting Technique

The algorithms above generate cutting areas in the strip, resulting in subsets
that have to be re-packed. We permit further loss of profit by discarding more
boxes to remove inconvenient layers; the loss will be suitably bounded. The
improvement will be at the cost of a considerably larger running time due to a
large enumeration. Since the running time is not practicable anyway we omit the
run time analysis of this approach. First we remove sets intersecting the cutting
areas and the additional layers with a shifting technique.

Lemma 4. Let L = {R1, . . . , Rn} be a list of boxes with zi ≤ ε for each Ri ∈ L.
Suppose L admits a packing into a strip of height at most h and let m be a
positive integer. Then we can create m gaps of shape [0, 1] × [0, 1] × [0, ε] in the
packing by deleting boxes such that for the remaining list L′ ⊆ L the inequality
P (L′) ≥ (1 − 2(m + 1)ε/h)P (L) holds. The construction can be done in time
polynomial in n.

Proof. We partition the strip into regions of height ε and eventually one region
of smaller height. More precisely we define p := �h/ε and partition the strip
of height h into p regions S1, . . . , Sp of shape [0, 1] × [0, 1] × [0, ε] where the
uppermost region is of possibly smaller height. Then for each i ∈ {1, . . . , p}
let Ti = {Rj ∈ L|Rj ∩ Si �= ∅} and let U1, . . . , Um+1 be the m + 1 sets out
of T1, . . . , Tp which have the smallest profit. Removing these from the packing
causes a loss of profit which is 2(m + 1)/pP (L) at most; we remove m + 1 sets
since we might select the uppermost region; in this way we assert that we have
at least m regions of height ε. Let L′ be the set of remaining boxes; finally
2(m + 1)/pP (L) ≤ 2(m + 1)(h/ε)−1P (L) = 2(m + 1)ε/hP (L) holds. 	

Note that the construction above can be carried out in any direction.

42 F. Diedrich et al.

Theorem 6. Let L = {R1, . . . , Rn} be a list of boxes with zi ≤ ε for each Ri ∈ L
and V (L) ≤ α with α ∈ [1/4, 1] holds. Then it is possible to select L′′ ⊆ L such
that P (L′′) ≥ (1− 12ε)P (L) holds and L′′ admits a feasible packing into at most
�4α bins. The construction can be carried out in time polynomial in n.

Proof. Use Algorithm A to pack L into a strip of height at most h := 4α and
two additional layers L1 and L2 by Theorem 2. Let L′ be the set of boxes in L
arranged in the strip; the following construction is illustrated in Figure 3. Use
Lemma 4 to generate at most 5 suitable gaps in the strip, resulting in a loss of
profit of at most 12ε/hP (L′) ≤ 12ε/hP (L); since α ∈ [1/4, 1], this loss is bounded
by 12εP (L). The remaining set of boxes in the strip and L1 and L2 is denoted as
L′′. Consider the 3 cutting unit squares [0, 1]× [0, 1]×{i} for i ∈ {1, 2, 3} and L3,
L4 and L5 be the sets of boxes in the strip that intersect with these unit squares,
respectively. W.l.o.g. none of the sets L1, . . . , L5 is empty; otherwise it is removed
from consideration. Note that each of the sets L1, . . . , L5 can be arranged on a
layer of height at most ε, so we generate a feasible packing by arranging them into
the 5 gaps. In the resulting packing, the 3 cutting unit squares [0, 1]× [0, 1]×{i}
for i ∈ {1, 2, 3} do not intersect with any box. Furthermore, all layers L1, . . . , L5

are merged in the strip; the packing can be rearranged into �4α bins. 	

Z1

Z2

Fig. 3. The shifting technique described in Theorem 6

Similar as before for any d ∈ {x, y, z} a box Ri is called d-ε-big :⇔ di ∈ (ε, 1],
and d-ε-small :⇔ di ∈ (0, ε]. We explain the details in the proof only.

Algorithm E

1. Set δ := ε/[35(7 + ε)], let L1 := {Ri|Ri is d-δ-big for each d ∈ {x, y, z}} and
L2 := L \ L1.

2. For each L3 ⊆ L1 such that |L3| ≤ �1/δ3� use an exact algorithm to verify
whether L3 is feasible. Store feasible L3 of maximum total profit.

3. Use an FPTAS for classical KP from [12,14] to select L4 ⊆ L2 such that
V (L4) ≤ 1 and P (L4) ≥ (1 − δ)OPT holds.

4. Use the construction described below to select L5 ⊆ L4 which can be packed
into at most 6 bins under a small loss of profit.

5. Out of the at most 7 sets generated in Step 2 and Step 4 return one with
maximum profit.

Theorem 7. Algorithm E is a (7+ε)-approximation algorithm for OKP-3. Fur-
thermore, this bound is asymptotically tight in the sense that it cannot be im-
proved for ε arbitrary small.

Approximation Algorithms for 3D Orthogonal Knapsack 43

Proof. Note that �1/δ3� is an upper bound for the number of boxes from L1 in
a feasible solution since δ3 is a lower bound for the volume of each Ri ∈ L1.
Step 2 can be carried out in time polynomial in δ and thus polynomial in 1/ε
using an exact optimization algorithm as in [2]. We show that in Step 4 at
most 6 sets are generated, resulting in at most 7 bins in total. Partition L2

into 3 subsets X ′, Y ′ and Z ′ such that in each of these all boxes Ri are d-
ε-small for the correspondig direction; note that V (X ′) + V (Y ′) + V (Z ′) ≤ 1
holds. We apply the construction from Theorem 6 in each of the three directions.
Study the following cases, where V (X ′) ≥ V (Y ′) ≥ V (Z ′) holds w.l.o.g. Case 1:
V (X ′) ∈ (3/4, 1]. The boxes in X ′ can be packed into at most 4 bins. We
have V (Y ′) + V (Z ′) ≤ 1/4. This means V (Y ′) ≤ 1/4 and V (Z ′) ≤ 1/4 holds.
Consequently Y ′ and Z ′ can be packed into one bin each, resulting in at most
7 bins in total. Case 2: V (X ′) ∈ (1/2, 3/4]. The boxes in X ′ can be packed
into at most three bins. Furthermore V (Y ′) + V (Z ′) < 1/2, which means that
V (Y ′) < 1/2 holds. Consequently the boxes in Y ′ can be packed into at most
2 bins. Furthermore V (Z ′) < 1/4 holds and finally the boxes in Z ′ can be
packed into 1 bin; this generates at most 7 bins in total. Case 3: We have
V (X ′) ∈ [0, 1/2]. The boxes in X ′ can be packed into at most two additional
bins. Furthermore V (Y ′) ≤ 1/2 and V (Z ′) ≤ 1/2 holds. This means that the
boxes in Y ′ and Z ′ can be packed into at most two bins each. In total at most 7
bins are generated. In each of these cases at most 7 bins are generated; now we
prove the ratio. Fix an optimal solution S and let P ∗

1 be the profit of boxes in
S∩L1 and let P ∗

2 be the profit of boxes in S∩L2. Consequently P ∗
1 +P ∗

2 ≥ OPT
holds. Let P1 be the profit of the set that is stored in Step 2 and let P2 be the
profit of the set that is selected in Step 3. By construction we have P1 ≥ P ∗

1 and
P2 ≥ (1 − δ)P ∗

2 . Furthermore, by threefold application of the construction from
Theorem 6 the loss of profit in P2 is bounded by 36δP2. The profit of the set
returned in Step 5 is at least

(P1 + P2)/7 ≥ (P ∗
1 + (1 − δ)(1 − 36δ)P ∗

2)/7
≥ (P ∗

1 + P ∗
2)(1 − δ)(1 − 36δ)/7
= OPT(1 − δ)(1 − 36δ)/7 ≥ OPT/(7 + ε)

which proves the claimed approximation ratio. The instance for the tightness of
the bound is omitted for space reasons. 	

5 Conclusion

We contributed approximation algorithms for an NP-hard combinatorial opti-
mization problem, where the runtimes of the simpler algorithms are practical. It
is an open problem whether here an algorithm with a ratio less than 7+ ε exists.
We are interested in a reduction of the running time, especially for Algorithm E.
In [15] it was proved that it is NP-complete to decide whether a set of squares
can be packed into the unit square. However, it is an open problem whether
checking the feasibility of cubes into the unit cube is NP-complete. Lemma 4

44 F. Diedrich et al.

reminds of the main result from [23], but is less flexible and structural. Further
research is necessary to generalize the main result from [23] to the 3D case.

Acknowledgements. The authors thank the anonymous referees for valuable
comments. Florian Diedrich thanks Denis Naddef for hospitality during the
preparation of this article.

References

1. B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algorithm for two-dimensional
packing. Journal of Algorithms, 2(4):348–368, 1981.

2. N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Mathematics of
Operations Research, 31:31–49, 2006.

3. N. Bansal, X. Han, K. Iwama, M. Sviridenko, and G. Zhang. Harmonic algorithm
for 3-dimensional strip packing problem. accepted at the ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2007.

4. A. Caprara. Packing two-dimensional bins in harmony. In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 490–499,
2005.

5. F. Diedrich. Approximative Algorithmen für Rucksackprobleme. Diploma the-
sis, Institut für Informatik und Praktische Mathematik der Christian-Albrechts-
Universität zu Kiel, 2004.

6. A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines.
Theoretical Computer Science (Special Issue on Dynamic and On-line Algorithms),
130(1):49–72, 1994.

7. W. Fernandez de la Vega and G. Lueker. Bin packing can be solved within 1 + ε
in linear time. Combinatorica, 1(4):349–355, 1981.

8. R. Harren. Approximating the orthogonal knapsack problem for hypercubes. In
Proceedings of the 33rd International Colloquium on Automata, Languages and
Programming (ICALP), pages 238–249, 2006.

9. R. Harren. Approximation Mehrdimensionaler Packungsprobleme. Diploma thesis,
Universität Dortmund, 2006.

10. K. Jansen and R. Solis-Oba. An asymptotic approximation algorithm for 3d-strip
packing. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 143–152, 2006.

11. K. Jansen and G. Zhang. Maximizing the total profit of rectangles packed into a
rectangle. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 197–206, 2004.

12. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
13. C. Kenyon and E. Rémila. A near-optimal solution to a two dimensional cutting

stock problem. Mathematics of Operations Research, 25:645–656, 2000.
14. E. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4:339–356, 1979.
15. J. Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing

squares into a square. Journal of Parallel and Distributed Computing, 10:271–275,
1990.

16. K. Li and K.-H. Cheng. On three-dimensional packing. SIAM Journal of Compu-
tation, 19(5):847–867, 1990.

Approximation Algorithms for 3D Orthogonal Knapsack 45

17. K. Li and K.-H. Cheng. Heuristic algorithms for on-line packing in three dimen-
sions. Journal of Algorithms, 13:589–605, 1992.

18. R. H. Li and M. Y. Yue. The proof of FFD(L) ≤ (11/9)OPT(L) + (7/9). Chinese
Science Bulletin, 42:1262–1265, 1997.

19. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. Wiley, 1990.

20. F. K. Miyazawa and Y. Wakabayashi. An algorithm for the three-dimensional
packing problem with asymptotic performance analysis. Algorithmica, 18:122–144,
1997.

21. I. Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Pro-
ceedings of the Second Annual European Symposium on Algorithms (ESA), pages
290–299, 1994.

22. D. D. K. Sleator. A 2.5 times optimal algorithm for packing in two dimensions.
Information Processing Letters, 10(1):37–40, 1980.

23. A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal of Computation, 26(2):401–409, 1997.

24. V. V. Vazirani. Approximation Algorithms. Springer, 2001.
25. D. Ye and G. Zhang. Online scheduling of parallel jobs with dependencies on 2-

dimensional meshes. In Proceedings of the 14th Annual International Symposium
on Algorithms and Computation (ISAAC), pages 329–338, 2003.

A Comparative Study of Efficient Algorithms

for Partitioning a Sequence into
Monotone Subsequences

Bing Yang1, Jing Chen2, Enyue Lu3, and S.Q. Zheng2,4

1 Cisco Systems, 2200 East President George Bush Highway, Richardson, TX 75082
2 Telecom. Engineering Program, University of Texas at Dallas, Richardson, TX 75083

3 Math. and Computer Science Dept., Salisbury University, Salisbury, MD 21801
4 Dept. of Computer Science, University of Texas at Dallas, Richardson, TX 75083

Abstract. Tradeoffs between time complexities and solution optimal-
ities are important when selecting algorithms for an NP-hard problem
in different applications. Also, the distinction between theoretical upper
bound and actual solution optimality for realistic instances of an NP-
hard problem is a factor in selecting algorithms in practice. We consider
the problem of partitioning a sequence of n distinct numbers into mini-
mum number of monotone (increasing or decreasing) subsequences. This
problem is NP-hard and the number of monotone subsequences can reach⌊√

2n + 1
4 − 1

2

⌋
in the worst case. We introduce a new algorithm, the

modified version of the Yehuda-Fogel algorithm, that computes a solu-

tion of no more than
⌊√

2n + 1
4 − 1

2

⌋
monotone subsequences in O(n1.5)

time. Then we perform a comparative experimental study on three al-
gorithms, a known approximation algorithm of approximation ratio 1.71
and time complexity O(n3), a known greedy algorithm of time complex-
ity O(n1.5 log n), and our new modified Yehuda-Fogel algorithm. Our
results show that the solutions computed by the greedy algorithm and
the modified Yehuda-Fogel algorithm are close to that computed by the
approximation algorithm even though the theoretical worst-case error
bounds of these two algorithms are not proved to be within a constant
times of the optimal solution. Our study indicates that for practical use
the greedy algorithm and the modified Yehuda-Fogel algorithm can be
good choices if the running time is a major concern.

Keywords: monotone, subsequence, permutation, algorithm, NP-
complete, approximation, complexity.

1 Introduction

A subsequence of a sequence of distinct numbers is monotone if it is increasing
or decreasing. Partitioning a sequence into monotone subsequences is a problem
that has many applications. This problem has attracted attention for many years
(e.g. [1]-[17]). As early as 1935, Erdös and Szekeres [1] proved that every sequence

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 46–57, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Comparative Study of Efficient Algorithms 47

of n numbers has a monotone subsequence of size �√n �. In 1950, Dilworth proved
his famous Dilworth Theorem, which says that for any sequence with elements in
a partially ordered set, the size of a longest increasing (decreasing) subsequence
equals to the minimum number of decreasing (increasing) subsequences that the
sequence can be partitioned into [12]. There were several extensions of Dilworth’s
results on the partition problems on partially ordered sets, including [13]-[17].

Though the problem of partitioning a sequence into minimum number of in-
creasing (decreasing) subsequences can be easily solved, the problem of parti-
tioning a sequence into minimum number of monotone subsequences is diffi-
cult. In 1994, Wagner [5] proved that this problem is NP-hard. In 1998, Yehuda
and Fogel [2] gave a O(n1.5)-time algorithm to partition a sequence into 2�√n�
monotone subsequences. In 2002, Fomin, Kratsch and Novelli [3] gave an O(n3)-
time approximation algorithm (which is be named the Fomin-Kratsch-Novelli
algorithm in this paper) of approximation ratio 1.71 for this problem. In [3], an
O(N1.5 log n)-time greedy algorithm is also presented. It is shown that the solu-
tions computed by this algorithm have solution values no more than lnn times
the optimal solution values.

A related topic is finding a tight upper bound for the minimum monotone
subsequences that a sequence can be divided into. The results of Erdös et al. [1]
and Dilworth’s [12] led to a bound of 2�√n�. In 1986, Brandstädt and Kratsch

[4] gave a smaller bound of
⌊√

2n + 1
4 − 1

2

⌋
and proved it is existentially tight.

A generalized result was stated by Erdös et al. [6] in 1991.
In this paper, we first present a new O(n1.5)-time algorithm based on the

speedup techniques of [2]. This algorithm, which is named the the modified

Yehuda-Fogel algorithm, uses the upper bound
⌊√

2n + 1
4 − 1

2

⌋
as a heuristic and

guarantees a solution of no more than
⌊√

2n + 1
4 − 1

2

⌋
monotone subsequences.

Noticing that the Fomin-Kratsch-Novelli algorithm, the greedy algorithm and
the modified Yehuda-Fogel algorithm have different time complexities, we com-
pare their performances in terms of solution optimality by running them on
randomly generated data sets. Our experiments show that their actual perfor-
mances are quite close. Since tradeoffs between time complexities and solution
optimalities and the distinction between theoretical upper bound and actual so-
lution optimality for realistic instances of an NP-hard problem are important
when selecting algorithms for an NP-hard problem in different applications, our
study provides evidence that for random inputs the partition algorithms of lower
time complexities are desirable for time-critical applications.

2 Modified Yehuda-Fogel Algorithm

Denote the set of all permutations π = (π(1), π(2), · · · , π(n)) of integers
{1, 2, · · · , n} by Π(n). A permutation in Π(n) is called (x, y)-partitionable
if it can be partitioned into x increasing and y decreasing subsequences, and
such a partition is called a (x, y)-partition. Let p(x, y) denote the subset of

48 B. Yang et al.

permutations in Π(n) that are (x, y)-partitionable. For a permutation π, we
define P (π) = min{x + y : π ∈ p(x, y)} and Pn = maxπ∈Π(n) P (π).

Theorem 1 ([4]). Pn ≤
⌊√

2n + 1
4 − 1

2

⌋
.

In the greedy algorithm of [3], the most time-consuming portion is iteratively
finding the longest increasing subsequences. In each iteration, the search for
a longest increasing sequence starts freshly without considering the remaining
data structure at the end of the previous iteration. Yehuda and Fogel [2] con-
sidered using a layered data structure to reduce running time. Their algorithm
guarantees at most 2�√n� monotone subsequences, and runs in O(n1.5) time,
which is faster than the greedy algorithm. We modify the original Yehuda-Fogel
algorithm to produce fewer monotone subsequences while keeping the same time
complexity.

Let π = (π(1), π(2), · · · , π(n)) ∈ Π(n) be any permutation, and P be a sub-
sequence of π. For an element p = π(i) in P , define p.x and p.y as i and π(i),
respectively. Element q dominates element p if q.x > p.x and q.y > p.y. An
element p in P is called a maximal element in P if there is no element in P dom-
inating p. The set of all maximal elements in P is denoted as M(P). Yehuda
and Fogel defined a layer structure on P as

L (P) =
(
L1(P), L2(P), · · · , Ll(P)

)
,

where Li(P), called the ith-layer of P , is defined recursively as follows:

L1(P) = M(P)

Li(P) = M
(
P −

⋃

1≤j<i

Lj(P)
)

For example, the layer structure on a permutation π = (9, 5, 11, 4, 1, 3, 2,
10, 7, 6, 8) is: L (π) = (L1, L2, L3, L4), where L1 = (11, 10, 8), L2 = (9, 7, 6),
L3 = (5, 4, 3, 2) and L4 = (1), as shown in Figure 1.

Clearly, each layer Li(P) is a decreasing subsequence. Yehuda and Fogel
showed that |L (P)|, the number of layers, is the size of a longest increasing
subsequence in P , and the layer structure of P can be computed in O(n log n)
time[2]. We name such an algorithm the Layer-Construction algorithm.

It is shown in [2] that, given L (P) and an integer k ≤ |L (P)|, an increasing
subsequence of k elements from k consecutive layers of L (P) can be found in
O(|P |) time. We name such an algorithm the Increasing Subsequence algorithm.

Let S be an increasing subsequence of P computed by the Increasing Subse-
quence algorithm. Yehuda and Fogel gave an algorithm that computes the layer
structure L (P − S) of P − S from L (P) in O(n + |S|2) time, where |P | ≤ n.
We name this algorithm the Layer Update algorithm.

A Comparative Study of Efficient Algorithms 49

L

L

L

L

1

2

3

4

x

y

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Fig. 1. Layer structure of π = (9, 5, 11, 4, 1, 3, 2, 10, 7, 6, 8)

Now, we present a monotone subsequence partition algorithm based on the
Yehuda-Fogel algorithm[2] with improved solution optimality. We call our algo-
rithm the modified Yehuda-Fogel algorithm.

Input: A permutation π = (π(1), π(2), · · · , π(n)).
Output: A list of monotone subsequences S = (S1, S2, · · · , Sk) with k ≤⌊√
2n + 1

4 − 1
2

⌋
.

1. Let S be an empty set for monotone subsequences.
2. Let K :=

⌊√
2n + 1

4 − 1
2

⌋
, P := π and S := ∅.

3. Use the Layer Construction algorithm to compute L (P) = (L1, L2, · · · , Ll),
the layer structure of P .

4. For k = K down to 1 by -1 do
(a) Let l := |L (P)|.
(b) If l ≤ k then include Lj, 1 ≤ j ≤ l, as SK−k+j , and go to Step 5.
(c) If l > k then construct L (P ′) = (Ll−k+1, L2, · · · , Ll) from L (P) = (L1,

L2, · · · , Ll), with P ′ being the set of elements in (Ll−k+1, L2, · · · , Ll).
(d) Use the Increasing Subsequence to find a increasing subsequence D of

P ′ and include D into S as SK−k+1.
(e) Use the Layer Update algorithm to get L (P ′ − D) = (L′

1, · · · , L′
k′).

(f) Let P := P − D. If P = ∅ then go to Step 5.
(g) For j = 1 to k′ do: rename L′

j as Ll−k+j .
(h) Let L (P) := (L1, L2, · · · , Ll−k+k′).

5. Return S.

The difference between the original Yehuda-Fogel algorithm and the modi-
fied Yehuda-Fogel algorithm lies in the selection of k in Step 4. In the original

50 B. Yang et al.

Yehuda-Fogel algorithm, k is the fixed value of �√n �. Instead of using a fixed
number in Step 4, our modified algorithm uses a flexible control mechanism to
achieve a smaller number of resulting monotone subsequences, which is at least
about

√
2 times smaller than the solution computed by the original Yehuda-Fogel

algorithm.
The correctness proof of the Modified Yehuda-Fogel algorithm is similar to the

correctness proof of the Yehuda-Fogel algorithm[2]. The time complexity of the
modified Yehuda-Fogel algorithm is determined by the performance of Step 4.
Each substep takes O(n) time, with only Step 4.e requiring explanation. It takes

O(n + k2) = O(n) time, since k ≤
⌊√

2n + 1
4 − 1

2

⌋
. The for-loop of Step 4 runs

for at most
⌊√

2n + 1
4 − 1

2

⌋
= O(n0.5) iterations, resulting total O(n1.5) time

complexity of Step 4. In summary, we have the following claim.

Theorem 2. Any permutation π in Π(n) can be partitioned into at most√
2n + 1

4 − 1
2 monotone subsequences by the modified Yehuda-Fogel algorithm

in O(n1.5) time.

3 Average Performance

The problem of partitioning a sequence into minimum number of monotone
subsequences was shown NP-hard. The Fomin-Kratsch-Novelli algorithm (F-K-N
for short), the greedy algorithm (Greedy for short), the Yehuda-Fogel algorithm,
(Y-F for short) and the modified Yehuda-Fogel algorithm (M.Y-F for short) are
approximation/heuristic algorithms for this problem. Their time complexities
and solution optimalities (in terms of the worst-case theoretical ratios of the
obtained solution values and the optimal solution values), are summerized in
the following table.

Time Provable worst ratio to P (π)
F-K-N O(n3) 1 + 1√

2
≈ 1.71

Greedy O(n1.5 log n) ln(n)
Y-F O(n1.5) 2�√n�/P (π)

M.Y-F O(n1.5)
⌊√

2n + 1
4 − 1

2

⌋
/P (π)

There is an issue of tradeoffs between algorithm time complexities and the
solution optimalities. For example, a natural question arises: what are the aver-
age performances of these algorithms? The answer to this question is important
in determining time/optimality tradeoffs for practical uses. One way of answer-
ing this question is by theoretical analysis, which can be very difficult. Another
way is by experiments, which is much easier and more meaningful for practical
purposes. Evaluating the performances of approximation/heuristic algorithms by
experiments can provide strong evidence on the effectiveness of these algorithms,

A Comparative Study of Efficient Algorithms 51

and this approach has been widely used in practice. Since the modified Yehuda-
Fogel algorithm always outperforms the Yehuda-Fogel algorithm, we conduced
extensive experiments only on the Fomin-Kratsch-Novelli algorithm, the greedy
algorithm and the modified Yehuda-Fogel algorithm.

We implemented these three algorithms and applied them to randomly gen-
erated permutations (i.e. sequences) with size n equals 50, 100, 500, 1000, 2000,
3000, and 4000, respectively. The numbers m of random permutations used are
summerized in the following table. Since the algorithms take much longer time
to execute when the permutation size increases, a smaller m is chosen for a
larger n.

n 50 100 500 1000 2000 3000 4000

m 10000 10000 2000 500 200 100 50

The effectiveness of our new modified Yehuda-Fogel algorithm is derived from
comparing the average numbers of monotone subsequences computed by the
three algorithms.

Let Pm(n) = {Π1(n), Π1(n), · · · , Πm(n)} be a set of m random permutations
of size n, and NA(Πi(n)) the number of monotone subsequences produced by
applying algorithm A to permutation Πi(n). Define

NA,Pm(n) =

∑
Πi(n)∈Pm(n) NA(Πi(n))

m
.

That is, NA,Pm(n) is the average number of monotone subsequences obtained by
applying algorithm A to the random permutations of Pm(n). Figures 2 and Fig-
ure 3 show the average numbers of monotone subsequences (i.e. NF−K−N,Pm(n),
NGreedy,Pm(n), and NM.Y −F,Pm(n)) computed by the three algorithms with ran-
dom permutations (sequences) of various sizes. Figure 4 shows the performance
differences NA,Pm(n)

NF −K−N,Pm(n)
of the three algorithms, using the average subsequences

numbers computed by the Fomin-Kratsch-Novelli algorithm as basis (i.e. 100%).

50 100
0

2

4

6

8

10

12

14

Sequence Size

M
e
a
n
 o

f
S

e
q
u
e
n
c
e
 N

u
m

b
e
r

F−K−N
Greedy
M. Y−F

(a)

500 1000
0

5

10

15

20

25

30

35

40

45

Sequence Size

M
e
a
n
 o

f
S

u
b
s
e
q
u
e
n
c
e
 N

u
m

b
e
r

F−K−N
Greedy
M. Y−F

(b)

Fig. 2. NA,Pm(n), mean number of monotone subsequences, with n = 50, 100, 500,
and 1000

52 B. Yang et al.

2000 3000 4000
0

10

20

30

40

50

60

70

80

90

Sequence Size
M

e
a
n
 o

f
S

u
b
s
e
q
u
e
n
c
e
 N

u
m

b
e
r

F−K−N
Greedy
M. Y−F

Fig. 3. NA,Pm(n), mean number of monotone subsequences, with n = 2000, 3000,
and 4000

50 100 500 1000 2000 3000 4000
0

20%

40%

60%

80%

100%

120%

140%

Sequence Size

R
el

at
iv

e
M

ea
n

of
 S

ub
se

qu
en

ce
 N

um
be

r

F−K−N
Greedy
M. Y−F

Fig. 4. Mean number of monotone subsequences compared with the mean number of
monotone subsequences computed by the Fomin-Kratsch-Novelli algorithm

These figures show that the average solution values computed by the modi-
fied Yehuda-Fogel algorithm are only about 10% larger than the average solution
values computed by the other two algorithms (except n = 50). This indicates
that, in average, the solutions computed by the modified Yehuda-Fogel algo-
rithm within about 1.71× 1.10 = 1.88 times the optimal solutions. As expected
the modified Yehuda-Fogel algorithm is the fastest among the three, but it pro-
duces less accurate results. If the running time is the major concern in some
applications, the modified Yehuda-Fogel algorithm can be used.

Somewhat surprisingly, the average solution values computed by the greedy
algorithm are about the same as (and for n = 50, even better than) the average
solution values computed by the Fomin-Kratsch-Novelli algorithm, even though
its O(n1.5 log n) time complexity is significantly lower than the O(n3) complexity
of the Fomin-Kratsch-Novelli algorithm.

A Comparative Study of Efficient Algorithms 53

4 A Closer Look at Greedy Algorithm

Our experiment show that, not only the average performance, the monotone
subsequence numbers on individual permutations computed by the greedy al-
gorithm are also very close to those computed by the Fomin-Kratsch-Novelli
algorithm (which is a constant ratio approximation algorithm).

Let

OA,k(Πi(n)) =
{

1, if NA(Πi(n)) = k;
0, otherwise.

Define

ORA,Pm(n)(k) =

∑
Πi(n)∈Pm(n) OA,k(Πi(n))

m
.

ORA,Pm(n)(k) is the occurrence ratio of the exactly k monotone subsequences
obtained by applying algorithm A to the set Pm(n) of m random permutations of
size n. Subfigure (a) of each of Figures 5 to 11 compares the ORF−K−N,Pm(n)(k)
and ORGreedy,Pm(n)(k) for the same Pm(n)s.
Let

ODk(Πi(n)) =

⎧
⎨

⎩

1, if NF−K−N (Πi(n))
−NGreedy(Πi(n)) = k;

0, otherwise.

Define

ODRPm(n)(k) =

∑
Πi(n)∈Pm(n) ODk(Πi(n))

m
.

ODRPm(n)(k) is the occurrence difference ratio of the difference of exactly k
between the monotone subsequences obtained by applying the Fomin-Kratsch-
Novelli algorithm and the greedy algorithm to the set Pm(n) of m random
permutations of size n. Subfigure (b) of each of Figures 5 to 11 displays the
distribution of ODRPm(n)(k). For example, Figure 5(b) shows that the number
of subsequences computed by the greedy algorithm is at most 1 more than the

5 6 7 8 9
0

10%

20%

30%

40%

50%

60%

70%

80%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−3 −2 −1 0 1 2
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Difference of Subsequence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 5. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 50

54 B. Yang et al.

10 11 12 13 14
0

10%

20%

30%

40%

50%

60%

70%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−3 −2 −1 0 1 2
0

10%

20%

30%

40%

50%

60%

70%

80%

Difference of Subsequence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 6. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 100

25 26 27 28 29
0

10%

20%

30%

40%

50%

60%

70%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−3 −2 −1 0 1 2
0

10%

20%

30%

40%

50%

60%

70%

Difference of Subsequence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 7. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 500

37 38 39 40 41
0

10%

20%

30%

40%

50%

60%

70%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−3 −2 −1 0 1 2
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

Difference of Subsequence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 8. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 1000

A Comparative Study of Efficient Algorithms 55

54 55 56 57 58
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−3 −2 −1 0 1 2
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Difference of Subsequence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 9. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 2000

66 67 68 69 70 71
0

10%

20%

30%

40%

50%

60%

70%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−4 −3 −2 −1 0 1
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Difference of Seubsquence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 10. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 3000

78 79 80 81 82
0

10%

20%

30%

40%

50%

60%

70%

Subsequence Number

O
c
c
u
rr

e
n
c
e
 R

a
ti
o

F−K−N
Greedy

(a)

−4 −3 −2 −1 0 1
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

Difference of Subsequence Number

O
c
c
u
rr

e
n
c
e
 D

if
fe

re
n
c
e
 R

a
ti
o

(b)

Fig. 11. (a) ORA,Pm(n)(k) and (b) ODRPm(n)(k), n = 4000

56 B. Yang et al.

number of subsequences computed by the Fomin-Kratsch-Novelli algorithm for
n = 50 in our experiments; furthermore, the number of subsequences computed
by the greedy algorithm is 1 less than the number of subsequences computed by
the Fomin-Kratsch-Novelli algorithm in about 10% of tested instances.

By comparing the subsequence numbers and subsequence numbers differences,
we can easily see that the Fomin-Kratsch-Novelli algorithm and the greedy al-
gorithm compute roughly identical number of subsequences. Since the Fomin-
Kratsch-Novelli algorithm has a constant approximation ratio, our experiments
show strong evidence that the greedy algorithm is likely to be an approxima-
tion algorithm with a constant approximation ratio. Since the greedy algorithm
is much faster than the Fomin-Kratsch-Novelli algorithm, the greedy algorithm
should be given preference in real-world usage.

5 Concluding Remarks

In this paper we proposed a modified Yehuda-Fogel algorithm for partitioning

any sequence with size n into at most
⌊√

2n + 1
4 − 1

2

⌋
monotone subsequences.

This algorithm guarantees a solution better than the one computed by the orig-
inal Yehuda-Fogel algorithm without taking more time. Then we compared this
algorithm with other two known algorithms (the Fomin-Kratsch-Novelli algo-
rithm and the greedy algorithm) of higher time complexities by experiments.
Our experiments show that in average the modified Yehuda-Fogel algorithm
computes comparable solutions. The input paterns, if any, for which the greedy
algorithm and the modified Yehuda-Fogel algorithm compute results that are
significantly worse than the Fomin-Kratsch-Novelli algorithm may be very rare.

By experiments, we also compared the performances of the Fomin-Kratsch-
Novelli algorithm and the greedy algorithm. Our experiments show that the
solutions computed by these two algorithms are almost identical. Our study
shows that for practical use both of the modified Yehuda-Fogel algorithm and
the greedy algorithm are good choices. For time-critical applications that tolerate
certain degree of inaccuracy, the modified Yehuda-Fogel algorithm because of its
lower time complexity.

In [3], Fomin et al. posed a question of whether or not the greedy algorithm
is an approximation algorithm with a constant approximation ratio. Our exper-
iments show that it is very likely that the answer to this question is affirmative.
However, proving or disproving this conjecture remains to be an outstanding
open problem.

References

1. P. Erdös and G. Szekeres, “A Combinatorial Problem in Geometry”, Compositio
Mathematica 2 (1935) 463-470.

2. R. B. Yehuda and S. Fogel, “Partitioning a Sequence into Few Monotone Subse-
quences”, Acta Informatica 35 (1998) 421-440.

A Comparative Study of Efficient Algorithms 57

3. F. V. Fomin, D. Kratsch and J. Novelli, “Approximating Minimum Cocolorings”,
Information Processing Letters 84 (2002) 285-290.

4. A. Brandstädt and D. Kratsch, “On Partitions of Permutations into Increasing and
Decreasing Subsequences”, Elektron. Inf. Verarb. Kybern. 22 (1986) 263-273.

5. K. Wagner, “Monotonic Coverings of Finite Sets”, Elektron. Inf. Verarb. Kybern.
20 (1984) 633-639.

6. P. Erdös, J. Gimbel and D. Kratsch, “Some Extremal Results in Cochromatic and
Dichromatic Theory”, Journal of Graph Theory 15 (1991) 579-585.

7. J. S. Myers, “The Minimum Number of Monotone Subsequences”, Electronic Jour-
nal of Combinatorics 9(2) (2002) R4.

8. C. A. Tracy and H. Widom, “On the Distributions of the Lengths of the Longest
Monotone Subsequences in Random Words”, Probab. Theory Relat. Fields 119
(2001) 350-380.

9. R. Siders, “Monotone Subsequences in Any Dimension”, Journal of Combinatorial
Theory, Series A 85 (1999) 243-253.

10. J. Matous̆ek and E. Welzl, “Good splitters for counting points in triangles”, The
5th Ann. ACM Conf. On Computational Geometry (1989) 124-130.

11. M. L. Fredman, “On Computing the Length of Longest Increasing Subsequences”,
Discrete Mathematics 11 (1975) 29-35.

12. R.P. Dilworth, “A Decomposition Theorem for Partially Ordered Sets”, Annals of
Mathematics 51(1) (1950) 161-166.

13. A. Frank, “On Chain and Antichain Families of a Partially Ordered Set”, Journal
of Combinatorial Theory, Series B 29 (1980) 176-184.

14. A. J. Hoffman and D. E. Schwartz, “On Partitions of a Partially Ordered Set”,
Journal of Combinatorial Theory, Series B 23 (1977) 3-13.

15. C. Greene and D. J. Kleitman, “The Structure of Sperner k-Families”, Journal of
Combinatorial Theory, Series A 20 (1976) 41-68.

16. C. Greene, “Some Partitions Associated with a Partially Ordered Set”, Journal of
Combinatorial Theory, Series A 20 (1976) 69-79.

17. C. Greene and D. J. Kleitman, “Strong Versions of Sperner’s Theorem”, Journal
of Combinatorial Theory, Series A 20 (1976) 80-88.

The Hardness of Selective Network Design for

Bottleneck Routing Games�

Haiyang Hou and Guochuan Zhang

Department of Mathematics, Zhejiang University, Hangzhou 310027, China
{yang629,zgc}@zju.edu.cn

Abstract. In this paper, motivated by the work of Azar et al. [3] we
consider selective network design on bottleneck routing games. Assuming
P �= NP we achieve the following results. For the unsplittable bottleneck
games the trivial algorithm is a best possible approximation algorithm.
For the k-splittable unweighted bottleneck games it is NP-hard to com-
pute a best pure-strategy Nash equilibrium. Moreover no polynomial time
algorithms can have a constant approximation ratio if the edge latency
functions are continuous and non-decreasing.

1 Introduction

A lot of research has recently gone into the study of communication networks
within the framework of game theoretic analysis. Because of the lack of a central
authority that manages traffic, network users are free to act according to their
own performance without regard to the social optimum. It is a well known fact
that if each user chooses an action to optimize his own utility, then the selfish
behavior of users would lead to a globally inefficient solution.

Koutsopias and Papadimitriou [10] and Papadimitriou [13] proposed to study
of the price of anarchy (also referred to as the coordination ratio): How much
worse is the cost of selfish behavior compared to a hypothetical centralized so-
lution? This question has been studied in various different models (e.g. [2], [7],
[16]). Another prominent measure is the price of stability [1], which is the best-
case cost of selfish behavior compared to a hypothetical centralized solution. It
captures how efficient stability can get.

The concept of k-splittable flows was first studied in Baier et al. [4], as an
intermediate problem between splittable and unsplittable flows. In such a sit-
uation, each commodity may split its flow along a finite number k of different
paths. Meyers [11] applied the idea of k-splittable flows to network congestion
games.

Banner et al. [5] considered bottleneck routing games, in which we are given
a network, finitely many (selfish) users, each associated with a positive flow
demand and a load-dependent latency function for each edge; the cost of a user

� Research supported in part by NSFC (60573020) and NSF of Zhejiang Province
(Y605353).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 58–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Hardness of Selective Network Design for Bottleneck Routing Games 59

is the performance of the worst edge that he employs; the social (i.e. system)
objective is to optimize the performance of the worst element in the network
(i.e. the network bottleneck).

Braess’s Paradox is the counterintuitive phenomenon that adding additional
edges to a network with selfish routing can make all of the traffic worse off. This
paradox was first discovered by Braess [6] and later reported by Murchland [12].
Braess’s paradox motivates the following network design problem for improving
the performance of a network with selfish users: given a network, which edges
should be removed to obtain the best social cost in a pure-strategy Nash equilib-
rium? A natural variant of the problem is the selective network design problem:
given a network G = (V, E) and E1 ⊆ E, how do we find a subgraph H of G
containing the edges of E1 that obtain the best social cost in pure-strategy Nash
equilibrium?

Previous Work. Roughgarden [14] studied the problem of network design prob-
lem for splittable routing games by presenting a detailed analysis. It was proved
that the best possible inapproximability results are 4/3 for linear edge latency
functions, Θ(d/lnd) for polynomials of degree d edge latency functions, and n/2
for general continuous non-decreasing edge latency functions, respectively. More-
over the trivial algorithm is best possible in terms of approximation.

Azar et al. [3] investigated the network design problem and the selective net-
work design problem for unsplittable routing games in which the users can have
general demands and each user must choose a single path between his source and
his destination. For linear edge latency functions they proved that (3 +

√
5)/2 is

the best possible bound for the network design problem and the selective network
design problem. For polynomials of degree d edge latency functions and weighted
demands they showed a lower bound of Ω(dd/4) for any approximation algo-
rithm for the network design problem and the selective network design problem.
For general continuous non-decreasing edge latency functions no approximation
algorithm for network design problem has a constant approximation ratio.

Banner et al. [5] dealt with bottleneck routing games for two routing scenarios,
one of which is the unsplittable bottleneck game (a user only traffic over one path)
and another of which is the splittable bottleneck game. They proved the existence,
convergence, price of anarchy and price of stability of pure Nash equilibria in such
games.

Our Results. In this paper, we focus the selective network design problem on
the bottleneck routing games. We consider two routing scenarios, namely the un-
splittable bottleneck game and the k-splittable unweighted bottleneck game (each
player has identical weight, and split its traffic equally into k parts. Each part
must choose a path, and thus each user uses at most k paths).

– If the edge latency functions are polynomial with a degree p, there is a lower
bound of Ω(|E|p) on the approximation ratio of any polynomial time algo-
rithm for unsplittable bottleneck Selective Network Design Problem, unless
P = NP . Meanwhile we show that the trivial algorithm is best possible in
this sense.

60 H. Hou and G. Zhang

– We show that a k-splittable unweighted bottleneck game admits a pure-strategy
Nash equilibrium, but computing the best pure-strategy Nash equilibrium is
NP-hard.

– For general continuous, non-decreasing edge latency functions, assuming
P �= NP , the approximation ratio of any polynomial time approximation
algorithm for k-splittable unweighted bottleneck Selective Network Design
problem is unbounded.

2 Preliminaries

Bottleneck Routing Games. There is a directed graph G = (V, E). Each edge
e ∈ E is given a load-dependent performance function fe : R+ −→ R+. We
assume that, for all e ∈ E, fe is continuous and non-decreasing. Given n users,
each user j has a positive bandwidth request defined by a triple (sj , tj , ωj),
where sj , tj ∈ V are the source/destination pair, and ωj ∈ R+ corresponds to
the required bandwidth. Denote by Λj the set of all paths from the source sj

to the destination tj and by Λ the set of all paths in the network. We further
denote by ljP the flow of user j on a path P ∈ Λj. User j can assign any value
to ljP , as long as ljP ≥ 0 (nonnegative constraint) and

∑

P∈Λj

ljP = ωj (demand

constraint). This assignment of traffic to paths shall also be referred to as the
user strategy. Each user is aware of the strategies made by all other users when
making his decision. The set of all possible strategies of a user is referred to
as the user strategy space. The product of all user strategy spaces is termed
the joint strategy space; each element in the joint strategy space is termed a
(flow vector) profile; effectively it is a global assignment of traffic to paths that
satisfies the demands of all users.

Given a profile l = {ljP } and a path P ∈ Λ, denote by lP the total flow that

is carried over P , i.e. lP =
n∑

j=1

ljP . Let lje be the total flow that user j transfers

though e, i.e. lje =
∑

P |e∈P

ljP . Finally, for a profile l and an edge e ∈ E, denote

the total flow carried by e as le. We define the network bottleneck B(l) of a flow
l as the performance of the worst edge in the network, i.e. B(l) � max

e∈E
{fe(le)}.

Analogously, we define the bottleneck of user j as the performance of the worst
edge that j employs, i.e. bj(l) � max

e∈E|lje>0
{fe(le)}.

We assume that the users are non-cooperative, who wish to minimize their own
bottlenecks giving no regard to the global optimum. In this paper, we consider
two games. The triple 〈G, N, {fe}〉 is termed an unsplittable bottleneck game if
each user can employ only a single path, while it is termed k-splittable unweighted
bottleneck game if each player has identical weight and can split its traffic equally
into k parts, each of which can choose a path.

A profile is said to be at pure-strategy Nash equilibrium (PNE) if there is
no incentive for any user to change its strategy. More formally, considering an

The Hardness of Selective Network Design for Bottleneck Routing Games 61

unsplittable (k-splittable unweighted) bottleneck game, l = {ljP} is an unsplit-
table (k-splittable unweighted) Nash flow if, for each user j and every flow vector
l̃ = {l̃jP } that satisfies liP = l̃iP for each i ∈ N \ {j}, we get bj(l) ≤ bj(l̃).

The price of anarchy (PoA) of a bottleneck routing game is defined as the
largest ratio between the cost of a PNE of the game and the cost of the optimal
(minimum network bottleneck B(l)) outcome. The PoA of a game can be viewed
as the worst-case loss in efficiency due to uncoordinated behavior by selfish users.

Formalizing the Network Design Problem. Let B(H, l) be the network bottleneck
incurred by a given profile l in a PNE for subgraph H of G. If there is a user j
such that Λj = ∅ in H , then B(H, l) = ∞. We denote by B(H) the maximum
network bottleneck obtained for the graph H , where the maximum is taken
over all profiles l in the PNE for the graph H . The Selective Network Design
Problem is stated as follows. Given a bottleneck routing game with directed
graph G = (V, E) and E1 ⊆ E, find a subgraph H of G containing the edges
of E1 that minimizes B(H). Let H∗ be the subgraph containing E1 produced
by an optimal algorithm and H be the subgraph containing E1 obtained by
an approximation algorithm A. The approximation ratio of algorithm A is thus
defined to be the worst case ratio between B(H) and B(H∗) over all instances.

3 Main Results

We first consider unsplittable bottleneck games. Banner et al. [5] proved that a
PNE always exists and the PoA is unbounded. More specifically, they showed

Proposition 1. Given an unsplittable bottleneck game 〈G, N, {fe}〉, where
fe(le) = a · (le)p for each e ∈ E, the PoA is Θ(|E|p).
We aim at finding a subgraph H of G such that B(H) is minimum. A trivial
algorithm for the problem simply outputs the entire network G without checking
with any proper subgraph of G. The following corollary can be easily observed
with the similar analysis in [3].

Corollary 1. Given an unsplittable bottleneck game 〈G, N, {fe}〉, where
fe(le) = a · (le)p for each e ∈ E, the trivial algorithm for The Selective Net-
work Design Problem is an O(|E|p)-approximation algorithm.

Naturally the trivial algorithm may not produce a good solution. But, “unfor-
tunately”, it can be shown that the trivial algorithm is already best possible in
terms of approximation for The Selective Network Design Problem.

Theorem 1. For unsplittable bottleneck game 〈G, N, {fe}〉, where fe(le) =
a · (le)p for each e ∈ E, assuming P �= NP, the trivial algorithm is the best
approximation algorithm for The Selective Network Design Problem.

Proof. To prove this theorem we will use a reduction from the 2 Directed Dis-
joint Paths problem (2DDP), that was shown to be NP-complete in [8]. Given a

62 H. Hou and G. Zhang

directed graph G = (V, E) and distinct vertices s1, s2, t1, t2 ∈ V , the 2DDP asks
if there exists an s1-t1 path P1 and an s2-t2 path P2 such that P1 and P2 are
vertex disjoint. We are going to show that for an unsplittable bottleneck game
〈G, N, {fe}〉, where fe(le) = a · (le)p for each e ∈ E, any algorithm with approxi-
mation ratio better than Ω(|E|p) for The Selective Network Design Problem can
be used to distinguish “yes” and “no” instances of 2DDP in polynomial time.

G

s 1

v4

t1 v 4'

v k

vk'

w

t2s 2

u

v 1

v2

v2'

v3

v3'

Fig. 1. Proof of Theorem 1

Let I be an instance of 2DDP, where the directed graph is G = (V, E). Assume
|E| = k. We expand graph G by adding vertices and edges as shown in Figure 1.
The new network is denoted by G

′
= (V

′
, E

′
). Let E1 = E

′−E be the set of edges
which the subgraph H of G

′
must contain. All the edges in G

′
have performance

function fe(le) = a · (le)p. We consider an unsplittable bottleneck game with
k + 4 players who use the network G

′
. Let γ > ε > 0. Player 1 has a bandwidth

request (s1, t1, ε) (player 1 has to move ε units of bandwidth from s1 to t1).
Player 2 has a bandwidth request (s2, t2, ε). Player 3 has a bandwidth request
(s1, w, γ). Player 4 has a bandwidth request (s2, w, γ). Player i (4 < i ≤ k + 4)
has a bandwidth request (u, w, γ). It is easy to see that the new instance I

′
can

be constructed from I in polynomial time. To complete the proof, it suffices to
show the following two statements.

(1) If I is a “yes” instance of 2DDP, then G
′
contains a subgraph H of G

′
with

B(H) = a(2γ)p.
(2) If I is a “no” instance of 2DDP, then B(H) ≥ a(kγ)p for all subgraphs H

of G
′
.

Recall that the subgraph H of G
′

must contain all edges of E1. To prove (1),
let P1 and P2 be the vertex-disjoint paths in G, respectively. Construct H by

The Hardness of Selective Network Design for Bottleneck Routing Games 63

deleting all edges of G involved in neither P1 nor P2. Then, H is a subgraph
of G

′
that contains the paths s1 −→ t1, s2 −→ t2, s1 −→ t1 −→ v

′

k −→ w,
s2 −→ t2 −→ v1 −→ w, u −→ v1 −→ w, u −→ v2 −→ v

′

2 −→ w, · · · , u −→
vk −→ v

′

k −→ w. These paths are the direct paths of players 1, 2, . . . , (k + 4),
respectively. The optimal solution is obtained when each player chooses his direct
path and this solution is a PNE for I

′
in which the individual costs of the players

are a(γ + ε)p, a(γ + ε)p, a(2γ)p, a(2γ)p, a(2γ)p, a(γ)p, · · · , a(γ)p, and a(2γ)p

respectively. The network bottleneck B(H) = a(2γ)p and it is the unique value
for any PNE.

For (2), we may assume that H contains s1 −→ t1, s2 −→ t2 paths. In this
case the two paths are not disjoint and thus H must contain s1 −→ t2 path.
Consider a profile as follows: Player 1 uses its direct path s1 −→ t1; player 2 uses
its direct path s2 −→ t2; player 3 uses its indirect path s1 −→ t2 −→ v1 −→ w;
player 4 uses its direct path s2 −→ t2 −→ v1 −→ w; all other players use the
indirect path u −→ v1 −→ v2 −→ v

′

2 −→ v3 −→ v
′

3 −→ · · · −→ vk −→ v
′

k −→ w.
Then this is a PNE and the cost of players 3, 4, . . . , (k + 4) are a(2γ)p, a(kγ)p,
· · · , and a(kγ)p, respectively. The network bottleneck B(H) ≥ a(kγ)p.

Note that k = |E| and k = Ω(|E′ |). The proof is completed. �
In the following we turn to k-splittable unweighted bottleneck games with general
continuous, non-decreasing edge performance function. It is observed that the
proof of the existence of PNE for unsplittable bottleneck games in [5] can be
applied to k-splittable unweighted bottleneck games. Thus the following theorem
holds.

Theorem 2. A k-splittable unweighted bottleneck game admits a pure-strategy
Nash equilibrium.

A k-splittable unweighted bottleneck game may have more than one PNE. A
PNE is called the best PNE if amongst the set of PNE, it minimizes the maximum
network bottleneck. We show that computing the best PNE is NP-hard.

Theorem 3. Given a k-splittable unweighted bottleneck game 〈G, N, {fe}〉 and
a value B, it is NP-hard to determine if the game has a PNE with a bottleneck
of at most B.

Proof. The reduction is from the Disjoint Connecting Paths Problem [9]. In the
problem, given a network G = (V, E) and k distinct source-destination nodes
(s1, t1), (s2, t2), · · · , (sk, tk), we want to determine if we can find k mutually link-
disjoint paths connecting the k node pairs. For any instance I of the Disjoint
Connecting Paths Problem, where the corresponding graph is G, we create a new
network presented in Figure 2. Make k copies of the graph G. Add super sources
S1, S2, · · · , Sk and connect them to all the k copies of si in the original graph.
Similarly, add super sink T1, T2, · · · , Tk, that connect to all copies of ti node.
Denote the new network by G

′
= (V

′
, E

′
). We further define the following link

performance functions: the edges in the copied graphs have the same performance
function fe(le) = kBle, all other new added edges with performance function

64 H. Hou and G. Zhang

le = 0. We consider a k-splittable unweighted bottleneck game with k players
who use the network G

′
. Each player j needs to send a unit of flow from Sj to

Tj. Every unit flow is split equally into k parts. Each part must choose a path,
and thus each user can use st most k paths.

G

G

G

s1
1

tk
1sk

1

t2
1

s 2

1

t1
1

s 1
2

tk
2s k

2

t2
2s2

2

t1
2

s1
k

t k
ksk

k

t 2
ks2

k

t 1
k

S1

Tk

T 2

T1

Sk

S2

Fig. 2. Proof of Theorem 3

It is easy to show that there exist k mutually disjoint paths connecting the
k node pairs if and only if there is a Nash flow with a network bottleneck of at
most B. �
We show that the any approximation algorithm has an unbounded approxima-
tion ratio. The proof adopts the idea of [3].

Theorem 4. For a general continuous, non-decreasing function, assuming P �=
NP, the approximation ratio of any polynomial time algorithm for k-splittable
unweighted bottleneck Selective Network Design problem is unbounded.

Proof. We make a reduction from the problem 2DDP, similarly as the proof of
Theorem 1. Let G be the graph in an instance I of of 2DDP. Create a new network
denoted by G

′
= (V

′
, E

′
) in Figure 3. Let E1 = E

′ − E be the set of edges
that the subgraph H of G

′
should contain. We define the following performance

functions for the edges of E
′
: the edges (wi, v1), (v1, ui), (ui, v2), (v2, ui), (ui, v1),

(w
′

i, v2) (i = 1, · · · , k), are given the latency function f(x) = 0 for x ≤ 1/k and
f(x) = x−1/k for x ≥ 1/k. And all other agents are given performance function
f(x) = 0. We consider a k-splittable unweighted bottleneck game with six players

The Hardness of Selective Network Design for Bottleneck Routing Games 65

that uses the network G
′
. Player 1 has a bandwidth request (s1, t1, 1) (player 1

has to move a unit of bandwidth from s1 to t1). Player 2 has a bandwidth request
(s2, t2, 1). Player 3 has a bandwidth request (s1, v1, 1). Player 4 has a bandwidth
request (s2, v2, 1). Player 5 has a bandwidth request (v1, v2, 1). Player 6 has a
bandwidth request (v2, v1, 1). The new instance I

′
can be constructed from I in

polynomial time. We can show the following two statements and thus complete
the proof.

G

s 1 t1

t2s 2

w1

uk

w2

wk

w'1

w'2

w'k

v1

u1

v2

u2

Fig. 3. Proof of Theorem 4

(1) If I is a “yes” instance of 2DDP, then G
′
contains a subgraph H of G

′
with

B(H) = 0.
(2) If I is a “no” instance of 2DDP, then B(H) > 0 for all subgraphs H of G

′
.
�

References

1. E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. Proceed-
ings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 59-73, 2004.

2. B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC),
pages 331-337, 2005.

3. Y. Azar and A. Epstein. The hardness of network design for unsplittable flow
with selfish users. Proceedings of the 3rd Workshop of Approximation and Online
Algoeithms (WAOA), pages 41-54, 2005.

4. G. Baier, E. Köhler, and M. Skutella. On the k-splittable flow problem. Proceedings
of the 10th European Symposium on Algorithms (ESA), pages 101-113, 2002.

66 H. Hou and G. Zhang

5. R. Banner and A. Orda. Bottleneck Routing Games in Communication Networks.
Proceedings of the 25th Conference on Computer Communications (IEEE INFO-
COM), 2006.

6. D. Braess. Uber ein paradoxon der verkehrsplanung. Unternehmensforschung, 12:
258-268, 1968.

7. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 67-73, 2005.

8. S. Fortune, J.E.Hopcroft, and J.C. Wyllie. The directed subgrph homeomorphism
problem. Theoretical Computer Science, 10(2): 111-121, 1980.

9. M.R. Garey and D.S. Johnson. Computers and Intractability, W.H. Freeman and
Co., 1979.

10. E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. Proceedings of the
16th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 404-413, 1999.

11. C. Meyers, Ph.D thesis, 2006, MIT.
12. J.D. Murchland. Braess’paradox of traffic flow. Transportation Research, 4:

391-394, 1970.
13. C.H. Papadimitriou. Algorithms, games, and the Internet. Proceedings of the 33rd

Annual ACM Symposium on Theory of Computing , pages 749-753, 2001.
14. T. Roughgarden. Designing networks for selfish users is hard. Proceedings of the

42th Annual IEEE Symposium on Foundations of Computer Science (FOCS) pages
472-481, 2001.

15. T. Roughgarden. The price of anarchy is independent of the network topology.
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pages
428-437, 2002.

16. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM
49(2): 236-259, 2002.

A Polynomial Time Algorithm for Finding

Linear Interval Graph Patterns

Hitoshi Yamasaki and Takayoshi Shoudai

Department of Informatics, Kyushu University
Motooka 744, Fukuoka 819-0395, Japan
{h-yama,shoudai}@i.kyushu-u.ac.jp

Abstract. A graph is an interval graph if and only if each vertex in the
graph can be associated with an interval on the real line such that any
two vertices are adjacent in the graph exactly when the corresponding
intervals have a nonempty intersection. A number of interesting appli-
cations for interval graphs have been found in the literature. In order to
find structural features common to structural data which can be repre-
sented by intervals, this paper proposes new interval graph structured
patterns, called linear interval graph patterns, and a polynomial time al-
gorithm for finding a minimally generalized linear interval graph pattern
explaining a given finite set of interval graphs.

1 Introduction

A graph G = (V, E) is an interval graph if and only if for each vertex v ∈ V ,
a closed interval Iv in the real line can be associated such that for each pair of
vertices u, v ∈ V (u �= v), (u, v) ∈ E if and only if Iu ∩ Iv �= ∅. For example,
in Fig. 1, G is an interval graph which has its interval representation R(G).
One important application of interval graphs is a physical mapping in genome
research, that is, to reconstruct the relative positions of fragments of DNA along
the genome from certain pairwise overlap information [12]. Reliable and complete
overlap information is very costly and practically not available. Probe interval
graphs were introduced by Zhang et al.[7,13] to represent only partial overlap
information. As another application, the mutual exclusion scheduling problem
is known to be formalized by a subclass of interval graphs [3].

It is known that the general problem of deciding graph isomorphism appears to
be hard. However for some special classes of graphs, isomorphism can be decided
efficiently. The class of interval graphs is the case. Lueker and Booth [6] gave a
linear time algorithm for interval graph isomorphism. The Lueker and Booth’s
isomorphism algorithm uses a data structure called a labeled PQ-tree which is
an extension of PQ-tree [2]. PQ-trees are used to represent the permutations of
a set in which various subsets of the set occur consecutively.

In order to represent interval patterns common to interval structured data, we
propose interval graph patterns which consist of interval graph structures and
simplicial variables. The formal definition is described in Section 2. An interval

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 67–78, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 H. Yamasaki and T. Shoudai

R(G)

k f
a

g

b
j hi

n

o

l

m

d

c

e

G

a

b

c

d

e

f

gh

i

j

k

l

m

n

o

x

y

z

x

y

z

g1 : g2 : g3 :

f :

R(g1): R(g2): R(g3):

R(f) :

x

y z

Fig. 1. An interval graph G (its interval representation R(G)) and an interval graph
pattern f (its interval representation R(f)). The interval graph G is the instance of f
by θ where θ = [x/g1, y/g2, z/g3].

graph pattern is called linear if all variables in it have mutually distinct variable
labels. For an interval graph pattern g, the interval graph language of g, denoted
by L(g), is the set of all interval graphs which are obtained from g by substituting
arbitrary interval graphs for all variables in g. In Fig. 1, f is a linear interval
graph pattern with three variables of variable labels x, y and z, and R(f) is an
interval representation of f . The interval graph G is obtained from f by replacing
x, y and z with g1, g2 and g3, respectively. Then G ∈ L(f).

For a finite set of interval graphs S, a minimally generalized linear interval
graph pattern explaining S is defined as a linear interval graph pattern g such
that S ⊆ L(g) and there exists no linear interval graph pattern g′ satisfying
S ⊆ L(g′) � L(g). In this paper, we give a polynomial time algorithm for finding
a minimally generalized linear interval graph pattern explaining a given finite
set of interval graphs. As related works, Horváth et al. [5] developed a frequent
subgraph mining algorithm in outerplanar graphs that works in incremental
polynomial time. We gave polynomial time learning algorithms for linear tree
patterns with internal structured variables [9,10] and two-terminal series-parallel
graph patterns [11] in the framework of inductive inference.

2 Interval Graph Patterns

For a graph G = (V, E) and a vertex u ∈ V , the set of vertices adjacent to u,
called the neighborhood of u, is denoted by NG(u). Occasionally we call NG(u)
the open neighborhood of u and NG(u) ∪ {u} the closed neighborhood of u.

A Polynomial Time Algorithm for Finding Linear Interval Graph Patterns 69

We denote the closed neighborhood of u by NG[u]. A clique of a graph G is a
complete subgraph of G. A vertex u is simplicial if the subgraph induced from
NG(u) is a clique.

Definition 1. Let G = (V, E) be an interval graph. Let Vg and Hg be a partition
of V such that Vg ∪Hg = V and Vg ∩Hg = ∅. A triplet g = (Vg , E, Hg) is called
an interval graph pattern if all vertices in Hg are simplicial and no two vertices
in Hg are adjacent. Let X be an infinite alphabet. We call an element in X
a variable label . Each variable in an interval graph pattern is labeled with a
variable label in X . We call elements in Vg and Hg a vertex and a variable,
respectively.

For any interval graph pattern g, we denote the sets of vertices, edges, and
variables by V (g), E(g), and H(g), respectively. The size of g is defined as
|V (g)|+ |H(g)|. For any u ∈ H(g), we denote the variable label of u by x(u). An
interval graph pattern g is called linear if all variables in H(g) have mutually
distinct variable labels in X , that is, for any two variables u, v ∈ H(g), x(u) �=
x(v). We denote the set of all interval graphs by IG, the set of all interval graph
patterns by IGP , and the set of all linear interval graph patterns by LIGP .

Definition 2. Let f and g be two interval graph patterns in IGP . We say
that f and g are isomorphic, denoted by f ∼= g, if there exists a bijection ϕ
from V (f) ∪ H(f) to V (g) ∪ H(g) such that (1) for any u, v ∈ V (f) ∪ H(f),
(u, v) ∈ E(f) if and only if (ϕ(u), ϕ(v)) ∈ E(g), (2) ϕ(V (f)) = V (g), and (3)
for any u, v ∈ H(f), x(u) = x(v) if and only if x(ϕ(u)) = x(ϕ(u)).

Definition 3. Let g1 and g2 be interval graph patterns in IGP . For a variable
label x ∈ X , the form x/g2 is called a binding for x. A new interval graph
pattern g1[x/g2] is obtained from g1 and x/g2 by connecting all vertices and
variables in V (g2) ∪ H(g2) to all vertices in Ng1(h) for each variable h such
that x(h) = x, and then removing h from g1. Formally g3 = g1[x/g2] is defined
as V (g3) = V (g1) ∪ V (g2), E(g3) = E(g1) ∪ E(g2) ∪ {(u, v) | u ∈ Ng1(h), v ∈
V (g2) ∪ H(g2)} − {(u, h) | u ∈ Ng1(h)}, and H(g3) = H(g1) ∪ H(g2) − {h}. A
substitution θ is a finite collection of bindings [x1/g1, . . . , xn/gn], where xi’s are
mutually distinct variable labels in X .

The interval graph pattern fθ, called the instance of f by θ, is obtained by
applying all the bindings xi/gi on f simultaneously. We give an example of a
substitution in Fig. 1. For an interval graph G and an interval graph pattern g,
we say that g matches G if there exists a substitution θ such that G ∼= gθ.

Definition 4 ([6]). A labeled PQ-tree is a node-labeled ordered tree whose
internal nodes consist of two classes, namely P-nodes and Q-nodes. Each leaf
and P-node is labeled with a nonnegative integer � and each Q-node with m
children is labeled with a lexicographically sorted sequence of m′ pairs of integers
(i1, j1), . . . , (im′ , jm′) where m′ ≥ 1 and 1 ≤ ik ≤ jk ≤ m for k = 1, 2, . . . , m′.
We denote the label of a node a by Label(a). We say that two labeled PQ-trees
T1 and T2 are equivalent, denoted by T1 ≡ T2, if T2 is obtained from T1 by
applying any combination of the following transformations:

70 H. Yamasaki and T. Shoudai

(a) arbitrarily reordering the children of a P-node, and
(b) reversing the ordering of the m children of a Q-node and replacing the label

(i1, j1), . . . , (im′ , jm′) with the lexicographically sorted sequence of (m + 1−
j1, m + 1 − i1), . . . , (m + 1 − jm′ , m + 1 − im′).

For a node a of a PQ-tree T , we denote the subtree induced from a and all
descendants of a by T [a]. For a Q-node a and its label Label(a), we denote the
label after applying the transformation (b) to a by Labelr(a). The frontier of
a PQ-tree T is the ordering of its leaves obtained by reading them from left
to right. The frontier of a node a, denoted by F (a), is the frontier of T [a]. An
ordering of the leaves of T is consistent with T if it is the frontier of a PQ-tree
equivalent to T . For each vertex u of a graph G, let C(u) be the set of maximal
cliques which contain u. It is known that G is an interval graph if and only
if there exists a linear ordering of all maximal cliques of G such that for each
vertex u of G, the elements of C(u) appear consecutively within the ordering.
Lueker and Booth [6] gave a linear time algorithm, given an interval graph G,
to construct a labeled PQ-tree T so that there is a bijection ψ from the set of all
leaves of T to the set of all maximal cliques of G satisfying the conditions(1)–(3).

(1) Let k be the number of leaves of T . An ordering (b1, . . . , bk) of the leaves of
T is consistent with T if and only if for any vertex u ∈ V (G), an element of
C(u) appears consecutively in (ψ(b1), . . . , ψ(bk)).

(2) For any vertex u ∈ V (G), the characteristic node of u is the deepest node a
in T such that F (a) contains all elements of C(u). For any leaf or P-node a,
Label(a) = |{u ∈ V (G) | a is the characteristic node of u}|.

(3) For any Q-node a and its children c1, . . . , cm, Label(a) contains (i, j) (1 ≤
i ≤ j ≤ m) if and only if there is a vertex u ∈ V (G) such that ψ−1(C(u)) is
the set of all leaves in the frontiers of ci, . . . , cj .

We denote the labeled PQ-tree obtained from an interval graph G by T (G).
We give an example of a linear interval graph G and its labeled PQ-tree T (G) in
Fig. 2. For a labeled PQ-tree T , we denote the sets of nodes and edges by V (T)
and E(T), respectively.

Theorem 1 ([6]). For interval graphs G1 and G2, G1
∼= G2 if and only if

T (G1) ≡ T (G2).

Definition 5. Let g be an interval graph pattern and G = (V (g)∪H(g), E(g)).
The PQ-tree pattern of g is the labeled PQ-tree with variables, denoted by T (g),
which is obtained from T (G) by, for all characteristic nodes a ∈ V (T (G)) of the
variables h ∈ H(g), decreasing the label of a by one and attaching the variable
label of h to a as its variable label. We note that the characteristic node of any
variable is a leaf in T (G) since all variables are simplicial in g.

A PQ-tree pattern is called linear if all variables in it have mutually distinct
variable labels. We give an example of an interval graph pattern f and its PQ-
tree pattern T (f) in Fig. 2. We denote the set of all labeled PQ-trees by PQT ,
the set of all PQ-tree patterns by PQT P , and the set of all linear PQ-tree
patterns by LPQT P .

A Polynomial Time Algorithm for Finding Linear Interval Graph Patterns 71

x

y

z

x

y

z

G :

f :

(1,2) (2,3) (3,4)

11 2

3 1(1,2) (2,3)

01 1

0T(G) :

(1,2) (2,3) (3,4)

00

1 0

0 1
x

y

z

T(f) :

Fig. 2. An interval graph G has 8 maximal cliques (see also Fig. 1). Each maximal clique
corresponds to one of leaves of T (G). T (f) is the PQ-tree pattern of a linear interval
graph pattern f (Definition 5). In this and subsequent figures, P-nodes are drawn as
circles, Q-nodes and leaves as rectangles, and variables as dot-filled rectangles.

Definition 6. Let t1 and t2 be PQ-tree patterns and r the root of t2. We assume
that if a PQ-tree pattern consists of a single node, the label of the node is a
positive integer. Let h be a variable of t1 whose variable label is x ∈ X . Let
x/t2 be a binding for x. A new PQ-tree pattern t1[x/t2] is obtained from t1 by
applying x/t2 to t1 in the following way (see Fig. 3).

1. If r is a Q-node with k children, r is identified with h (the new node is a
Q-node) and its label is the lexicographically sorted sequence of the concate-
nation of Label(r) and (1, k), . . . , (1, k)

︸ ︷︷ ︸
Label(h) times

.

2. If either r is a P-node or t2 is a single node, and
(a) if Label(r) + Label(h) = 0 and the parent of h is a P-node, the children

of r are directly connected to the parent of h (h and r are removed),
(b) otherwise, r is identified with h (the new node is a P-node) and its label

is Label(r) + Label(h).

A finite collection of bindings τ = [x1/t1, . . . , xn/tn] is called a substitution,
where xi’s are mutually distinct variable labels in X .

For example, in Fig. 4, the bindings x/t1, y/t2 and z/t3 are the cases (1), (2-a)
and (2-b), respectively. The PQ-tree pattern tτ , called the instance of t by τ ,
is obtained by applying all the bindings xi/ti on t simultaneously. We have the
next lemma for an interval graph pattern and a PQ-tree pattern.

Lemma 1. Let f and g be interval graph patterns and x a variable label of a
vertex in H(f). Then, T (f)[x/T (g)] ≡ T (f [x/g]).

For a PQ-tree T and a PQ-tree pattern t, we say that t matches T if there exists
a substitution τ such that T ≡ tτ .

72 H. Yamasaki and T. Shoudai

Case 1:

1

(1,2) (2,3) (1,2) (1,3) (2,3)

x

Case 2(a):

・・・

0

0

・・・

・・・

1

1

i

j

i+j

x

Case 2(b):

・・・

・・・

1

2
3

x

Fig. 3. Replacements of PQ-trees in Definition 6

(1,2) (2,3) (3,4)

00

1 0

0 1

(1,2) (2,3)

01 1

0

2 1 3

(1,2) (2,3) (3,4)

11 2

3 1(1,2) (2,3)

01 1

0

t

t1 t2 t3

x

y

z

T

Fig. 4. t1, t2 and t3 are the labeled PQ-trees of g1, g2 and g3 in Fig. 1, respectively.
And t is the PQ-tree patterns of f in Fig. 1. T is the instance of t by a substitution
τ = [x/t1, y/t2, z/t3].

3 Interval Graph Pattern Matching

Unfortunately the general interval graph pattern matching problem is hard to
compute. We can give a polynomial time reduction from the CLIQUE problem
to it.

Theorem 2. The problem of deciding, given an interval graph pattern g ∈ IGP
and an interval graph G ∈ IG, whether or not g matches G is NP-complete.

Here we give an outline of the proof. It is easy to see that the problem is in
NP. We reduce the CLIQUE problem, which is to decide whether a given graph
G = (V, E) has a clique of size k, to the matching problem. We assume that
V = {1, 2, . . . , |V |}. Each vertex in V is transformed uniquely into an interval
graph and its labeled PQ-trees (Fig. 5). By using these unique PQ-trees, we
transform the graph G to a labeled PQ-tree TG. The root of TG has just |E|
children each of which represents an edge in G (Fig. 6). We can see that there is
an interval graph G′ such that TG is the representation of G′. In a similar way,

A Polynomial Time Algorithm for Finding Linear Interval Graph Patterns 73

1: 2:

c

ad

e

bb

c

a

a
b c

a
b c
d e

1

1 1

1

1

1 1

1

b

c

ad

e

f

g

3:

a
b c
d e
f g

a
b c
d e
f g

1

1

1

1

1

1

1

Interval graph Labeled PQ-treeInterval graph Labeled PQ-tree Interval graph Labeled PQ-tree

Fig. 5. The first three interval graphs and their labeled PQ-trees which represent the
digits in V = {1, 2, . . . , |V |}

we transform k-clique to a PQ-tree pattern tk. We assume that all vertices of
k-clique are attached with different variable labels in X . The root of tk has just
|E| children which represent k(k − 1)/2 edges of k-clique and |E| − k(k − 1)/2
variables for garbage collections. It is easy to see that there is an interval graph
pattern gk such that tk is the representation of gk. Finally we can show that gk

matches G′ if and only if G has a k-clique.
Next we give a polynomial time algorithm for deciding, given a linear interval

graph pattern g ∈ LIGP and a given interval graph G ∈ IG, whether or not g
matches G.

Firstly, we transform g and G into a linear PQ-tree pattern T (g) and a labeled
PQ-tree T (G), respectively. These transformations need O(n+m) and O(N+M)
times, respectively, where n = |V (g)| + |H(g)|, m = |E(g)|, N = |V (G)|, and
M = |E(G)| [6].

From Theorem 1 and Lemma 1, there is a substitution θ such that G ∼= gθ
if and only if there is a substitution τ such that T (G) ∼= T (g)τ . Secondly, we
decide whether or not there is a substitution τ such that T (G) ∼= T (g)τ . Below,
we briefly denote T (G) by T and T (g) by t. We call a set of nodes of a given
labeled PQ-tree T a candidate set . We assign a candidate set to each node of
a given linear PQ-tree pattern t. We denote the candidate set of a node a in
V (t) by NS(a). For a node b in V (T), b ∈ NS (a) if and only if t[a] matches
T [b], where t[a] is the PQ-tree pattern induced from a and all the nodes and
variables which are descendants of a. The following algorithm computes NS(a)
for each a ∈ V (t) by using NS(a1), . . . ,NS (a�) where a1, . . . , a� are all children
of a. The algorithm terminates when a candidate set is assigned to the root of
t. We denote the root of t by rt. We can show that NS(rt) contains the root of
T if and only if t matches T .

Obviously, for any substitution τ and a node a ∈ V (t), the depth of a in tτ is
equal to that of a of t. Thus, if b is in NS(a) for any node b ∈ V (T), the depth of
b is equal to that of a. We show how to assign a candidate set NS (a) to a node
a in V (t). The assignment method depends on the type of a node a.

Leaf: For a leaf a, NS(a) := {b ∈ V (T) | b is a leaf of T and Label(b) =
Label(a)}.

Variable: Let us suppose that a labeled PQ-tree T is substituted for a variable
a. If T is a single node, its label must be at least 1. And if the root of T

74 H. Yamasaki and T. Shoudai

G

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

(1,3) (1,4)

1

1

1

1

1

1

1

1

1

1

(2,4)

11

0

TG

R(G’)

1 1

1 1

1

1 1 1

1 1

1

1

1

1 1

1

1 1

1

1

1

1

3 2

4 1

1

1

1

1

1

1

1

1 1

1

1

(2,3)

111

1 1

1 1 1

0

(x,y) (x,z) (y,z)

x xy yz z

u
1

0 0 0 0

0

0 0

x xy yz z
u
1

t
k

x

y z

k-clique (k=3)

R(g
k
)

u
K 0

K=|E|-k(k-1)/2

u
K

K=|E|-k(k-1)/2

Fig. 6. A graph G = (V, E) and a positive integer k = 3 are supposed to be instances
of CLIQUE. Both G and 3-clique are transformed into an interval graph G′ and an
interval graph pattern g3, respectively. In this figure, we only draw the labeled PQ-tree
TG and the PQ-tree pattern t3 instead of G and g3.

is a P-node, the label of the root is at least 0. Therefore NS(a) is the set
consisting of the following nodes:
(1) all leaves b such that Label(b) > Label(a),
(2) all P-nodes b such that Label(b) ≥ Label(a), and
(3) all Q-nodes b such that Label(b) contains at least Label(a) pairs of the

form (1, m) where m is the number of children of b.
P-node: Let us suppose that a P-node a has � children a1, . . . , a�. If a has a vari-

able with label 0 as its child, any node b ∈ NS (a) must be a P-node which has
at least � children and Label(b) = Label(a). Otherwise, any node b ∈ NS(a)
must be a P-node which has just � children and Label(b) = Label(a). The
nodes in NS(a) are picked up in all nodes b ∈ V (T) satisfying the above
condition by using the following procedure. Let b1, . . . , bm (m ≥ �) be the
children of a P-node b. We note that t[a] matches T [b] if and only if there is
an index subsequence m1, . . . , m� (1 ≤ m1 < · · · < m� ≤ m) such that bmk

∈
NS(ak) (1 ≤ k ≤ �). Therefore we compute the maximum matching prob-
lem for a bipartite graph G = (U, V, E) where U = {NS(a1), . . . ,NS(a�)},

A Polynomial Time Algorithm for Finding Linear Interval Graph Patterns 75

V = {b1, . . . , bm}, E = {(NS(ai), bj) | 1 ≤ i ≤ �, 1 ≤ j ≤ m, bj ∈ NS (ai)}).
A node b is in NS(a), i.e., t[a] matches T [b], if and only if the bipartite graph
G = (U, V, E) has a matching of size �.

Q-node: It is easy to see that any node b ∈ NS (a) must be a Q-node which
has just � children and satisfies either Label(b) = Label(a) or Label(b) =
Labelr(a). Let b1, . . . , b� be the children of a Q-node b. If Label(b) = Label(a),
a child bi must be in NS(ai) for all i (1 ≤ i ≤ �), and if Label(b) = Labelr(a),
a child b�−i+1 must be in NS(ai) for all i (1 ≤ i ≤ �). The candidate set
NS(a) is the set of all Q-nodes b which satisfies the above conditions.

We can show that the above PQ-tree pattern matching algorithm works in
O(nN1.5) time. Then the total complexity for linear interval graph pattern
matching is O(nN1.5 + m + M) time.

Theorem 3. The problem of deciding, given a linear interval graph pattern g ∈
LIGP and an interval graph G ∈ IG, whether or not g matches G is solvable in
polynomial time.

4 Minimally Generalized Linear Interval Graph Patterns

For an interval graph pattern g, let L(g) = {G ∈ IG | g matches G}. For a finite
set of interval graphs S ⊂ IG, a minimally generalized linear interval graph
pattern explaining S is defined as a linear interval graph pattern g ∈ LIGP
such that S ⊆ L(g) and there exists no linear interval graph pattern g′ ∈ LIGP
satisfying S ⊆ L(g′) � L(g).

For a PQ-tree pattern t, the PQ-tree pattern language LT (t) of t is defined as
{T ∈ PQT | t matches T }. For a finite set of PQ-trees ST ⊂ PQT , a minimally
generalized linear PQ-tree pattern explaining ST is defined as a linear PQ-tree
pattern t ∈ LPQT P such that ST ⊆ LT (t) and there exists no linear PQ-tree
pattern t′ ∈ LPQT P satisfying ST ⊆ LT (t′) � LT (t).

Let S be a finite set of interval graphs and ST = {T (g) | g ∈ S}. For a
linear interval graph pattern g, G ∈ L(g) if and only if T (G) ∈ LT (T (g)). Then,
S ⊆ L(g) if and only if ST ⊆ LT (T (g)). Moreover, for two linear interval graph
patterns g and g′, L(g′) ⊆ L(g) if and only if LT (T (g′)) ⊆ LT (T (g)). Therefore
we have the following lemma.

Lemma 2. For S ⊂ IG and g ∈ LIGP, g is a minimally generalized linear
interval graph pattern explaining S if and only if T (g) is a minimally generalized
linear PQ-tree pattern explaining ST .

The size of a PQ-tree pattern t is defined as |V (t)| + |H(t)|. Let ST be a finite
set of PQ-trees. Obviously there exists a minimally generalized linear PQ-tree
pattern explaining ST which has the maximum size in C = {t ∈ PQT P | ST ⊆
LT (t)}. We define the following 4 classes of linear PQ-tree patterns s, p, q(w,Z),
and r (Fig. 7).

76 H. Yamasaki and T. Shoudai

1

s

0

0

0

p r

1

(1,2) (2,3)

q((1,2)(2,3),{2})
q((1,2)(2,3),Ø)

0 0 0

(1,2) (2,3)

0 0 0

Fig. 7. A basic set of linear PQ-tree patterns. The 3rd and 4th linear PQ-tree patterns
are two examples of the form q(w, Z) which are obtained from the PQ-tree of minimum
size in ST .

(1,2) (2,3) (3,4)

1 11 0

(1,2) (2,3) (3,4)

1 11 0

(1,2) (1,3) (2,3)

11 2

(1,2) (2,3)

01 1

0

(1,2) (2,3)

00 0

(1,2) (2,3)

00 0

q[0][1]：

(1,2) (2,3)

00 0

(1,2) (2,3)

00 0

q[1][1]：

(1,2) (2,3) (3,4)

0 00 0

(1,2) (2,3) (3,4)

0 00 0

q[1][2]：

Fig. 8. A linear PQ-tree pattern q[i][j] is obtained from the j-th Q-node of depth i of
the left PQ-tree. Then we have q[0][1] = q((1, 2)(2, 3), ∅), q[1][1] = q((1, 2)(2, 3), {2})
and q[1][2] = q((1, 2)(2, 3)(3, 4), {3}).

– The linear PQ-tree pattern s consists of only one variable of label 1.
– The linear PQ-tree pattern p consists of one P-node with label 0 and two

variables with label 0. Both variables are the children of the P-node.
– The linear PQ-tree patterns q(w,Z) consist of one Q-node with label w and a

series of variables or leaves with label 0. All the variables and leaves are the
children of the Q-node. The index (w, Z) satisfies the following conditions: w
is the label of the Q-node which does not contain a pair (1, m), where m be
the number of children of the Q-node, and Z is the set {i ∈ {1, . . . , m} | w
contains two pairs (j, i) and (i, k), and the i-th child of the Q-node is a leaf}.

From the PQ-tree of minimum size in ST , we generate all linear PQ-tree
patterns of the form q(w,Z). For example, in Fig. 8, we obtain three linear PQ-
tree patterns q((1, 2)(2, 3), ∅), q((1, 2)(2, 3), {2}) and q((1, 2)(2, 3)(3, 4), {3})
from the left PQ-tree.

– The linear PQ-tree pattern r consists of only one leaf node of label 1.

The PQ-tree pattern consisting of only one variable with label 0 is only a linear
PQ-tree pattern whose language properly contains LT (s), LT (p), LT (q(w,Z)), and
LT (r). Let t be a linear PQ-tree pattern and h a variable in H(t) with variable
label x. It is easy to see that LT (t) properly contains LT (t[x/s]), LT (t[x/p]),
LT (t[x/q(w,Z)]), and LT (t[x/r]). Moreover, if T ∈ LT (t), we have either T ∈
LT (t[x/s]), T ∈ LT (t[x/p]), T ∈ LT (t[x/r]), or there are w and Z such that
T ∈ LT (t[x/q(w,Z)]).

We show an overview of our algorithm for finding a minimally generalized PQ-
tree pattern explaining ST . We start with the linear PQ-tree pattern t consisting

A Polynomial Time Algorithm for Finding Linear Interval Graph Patterns 77

0

(1,2) (1,3) (2,3)

10 1

(1,2) (2,3)

00 1

0

A target PQ-tree pattern

0

start

1

0

(1,2) (1,3) (2,3)

0 0

0

(1,2) (1,3) (2,3)

0(1,2) (2,3)

00 0

0

(1,2) (1,3) (2,3)

00

(1,2) (2,3)

00 0

00

(1,2) (1,3) (2,3)

01

(1,2) (2,3)

00 0

00

(1,2) (1,3) (2,3)

01 0

(1,2) (2,3)

00 0

00

(1,2) (1,3) (2,3)

01 1

(1,2) (2,3)

01 0

0

end

Fig. 9. A refinement process of our algorithm for finding a minimally generalized
PQ-tree pattern explaining ST

of only one variable with label 0. This pattern t generates all labeled PQ-trees.
Then we repeatedly apply a combination of the following refinements to all
variables of a temporary linear PQ-tree pattern t while ST ⊂ LT (t). Let h be a
variable of t whose variable label is x.

(1) if ST ⊆ LT (t[x/s]) then t := t[x/s];
(2) if ST ⊆ LT (t[x/p]) then t := t[x/p];
(3) if there are w and Z such that S ⊆ LT (t[x/q(w,Z)]) then t := t[x/q(w,Z)];

If none of the above refinements can be applied to the current linear PQ-tree
pattern t, we repeatedly apply the next refinement while ST ⊆ LT (t).

(4) if ST ⊆ LT (t[x/r]) then t := t[x/r];

An example of a process of refinements is shown in Fig. 9. We can show
that for a given finite set of labeled PQ-trees ST ⊂ PQT , the above algorithm
correctly outputs a minimally generalized linear PQ-tree patterns explaining ST .

Since the PQ-tree pattern matching algorithm in Section 4 works in O(nN1.5)
time, we need O(|ST |NminN

1.5
max) time to decide whether or not ST ⊆ LT (t),

where Nmin and Nmax are the minimum and maximum sizes of PQ-trees in ST .
Since the refinement operations (1)–(4) are applied at most O(N2

min) times, the
total time complexity of this algorithm is O(|ST |N3

minN
1.5
max) time.

For a given set S ⊂ IG of interval graphs, we find a minimally generalized lin-
ear interval graph pattern explaining S in the following way. First we transform
the set S into a set of labeled PQ-trees ST ⊂ PQT . The transformation needs
O(|S|(nmax +mmax)) time, where nmax (resp. mmax) is the maximum number of
vertices (resp. edges) of interval graphs in S. Then we find a minimally general-
ized linear PQ-tree pattern explaining ST . It needs O(|S|n3

minn1.5
max) time, where

nmin is the minimum number of vertices of interval graphs in S. Finally we trans-
form the obtained minimally generalized linear PQ-tree pattern explaining ST

into the minimally generalized linear interval graph pattern explaining S. The
time complexity of the algorithm is O(|S|(n3

minn1.5
max + mmax)).

78 H. Yamasaki and T. Shoudai

Theorem 4. For a given finite set of interval graphs S ⊂ IG, a minimally gen-
eralized linear interval graph pattern explaining S can be computed in polynomial
time.

5 Conclusions and Future Work

From Theorems 3 and 4, we can conclude that the class of linear interval graph
pattern languages is polynomial time inductively inferable from positive data by
using the theorems in [1,8]. We are now considering the polynomial time learn-
ability of graph languages on the classes of graph structured patterns expressing
probe interval graphs, chordal graphs, and outerplanar graphs.

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21, pp. 46–62, 1980.

2. K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13,
pp. 335–379, 1976.

3. F. Gardi. The mutual exclusion scheduling problem for proper interval graphs. LIF
Research Report 02-2002, Laboratoire d’Informatique Fondamentale de Marseille,
April, 2002.

4. J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matching in bipartite
graphs. SIAM J. Comput., 2(3), pp. 225–231, 1973.

5. T. Horváth, J. Ramon, and S. Wrobel. Frequent Subgraph Mining in Outerplanar
Graphs. Proc. KDD 2006, pp. 197–206, 2006.

6. G.S. Lueker and K.S. Booth. A Linear Time Algorithm for Deciding Interval Graph
Isomorphism. J. ACM, 26(2), pp. 183–195, 1979.

7. F.R. McMorris, C. Wang, and P. Zhang. On probe interval graphs. Disc. Appl.
Math., 88, pp. 315–324, 1998.

8. T. Shinohara. Polynomial time inference of extended regular pattern languages.
Proc. RIMS Symp. Software Science and Engineering, Springer-Verlag, LNCS 147,
pp. 115–127, 1982.

9. Y. Suzuki, T. Shoudai, T. Miyahara, and S. Matsumoto. Polynomial Time Induc-
tive Inference of Ordered Tree Languages with Height-Constrained Variables from
Positive Data. Proc. PRICAI 2004, Springer-Verlag, LNAI 3157, pp. 211–220,
2004.

10. Y. Suzuki, T. Shoudai, T. Miyahara, and T. Uchida. Ordered Term Tree Languages
Which Are Polynomial Time Inductively Inferable from Positive Data. Theor.
Comput. Sci., 350, pp. 63–90, 2006.

11. R. Takami, Y. Suzuki, T. Uchida, T. Shoudai, and Y. Nakamura. Polynomial
Time Inductive Inference of TTSP Graph Languages from Positive Data. Proc.
ILP 2005, Springer-Verlag, LNAI 3625, pp. 366-383, 2005.

12. P. Zhang, E.A. Schon, S.G. Fisher, E. Cayanis, J. Weiss, S. Kistler, and
P.E. Bourne. An algorithm based on graph theory for the assembly of contings in
physical mapping of DNA. CABIOS, 10, pp. 309–317, 1994.

13. P. Zhang. Probe Interval Graph and Its Applications to Physical Mapping of DNA.
Int. Conf. Computational Molecular Biology RECOMB 2000 (Poster Session), 2000.

Elementary Differences Among Jump

Hierarchies

Angsheng Li�

State Key Laboratory of Computer Science, Institute of Software
Chinese Academy of Sciences, P.O. Box 8718, Beijing 100080, P.R. China

angsheng@ios.ac.cn

Abstract. It is shown that Th(H1) �= Th(Hn) holds for every n > 1,
where Hm is the upper semi-lattice of all highm computably enumerable
(c.e.) degrees for m > 0, giving a first elementary difference among the
highness hierarchies of the c.e. degrees.

1 Introduction

Let n ≥ 0. We say that a computably enumerable (c.e.) degree a is highn (or
lown), if a(n) = 0(n+1) (or a(n) = 0(n)), where x(n+1) = (x(n))′, x(0) = x, y′ is
the Turing jump of y. Let Hn (Ln) be the set of all highn (lown) c.e. degrees.
For n = 1, we also call an element of H1 (or L1) high (or low).

Sacks [1963] showed a (Sacks) Jump Theorem that for any degrees s and c,
if s is c.e.a in 0′ and 0 < c ≤ 0′, then there exists a c.e. degree a such that
a′ = s and c �≤ a, and that there exists a non-trivial high c.e. degree. Note that
an easy priority injury argument gives a nonzero low c.e. degree. By relativis-
ing the construction of high and low c.e. degrees to 0(n) and using the Sacks
Jump Theorem, it follows that for all n, Hn ⊂ Hn+1 and Ln ⊂ Ln+1. And Mar-
tin [1966a], Lachlan [1965] and Sacks [1967] each proved that the union of the
high/low hierarchies does not exhaust the set E of the c.e. degrees. And Sacks
[1964] proved the (Sacks) Density Theorem of the c.e. degrees. While early re-
searches were aiming at characterisations of the high/low hierarchy. The first
result on this aspect is the Martin [1966b] Characterisation of High Degrees: A
set A satisfies ∅′′ ≤T A

′
iff there is a function f ≤T A such that f dominates all

computable functions. And Robinson [1971a] proved a Low Splitting Theorem
that if c < b are c.e. degrees and c is low, then there are c.e. degrees x,y such
that c < x,y < b and x ∨ y = b. In the proof of this theorem, a characterisa-
tion of low c.e. degrees was given. The lowness is necessary, because Lachlan
[1975] proved a Nonsplitting Theorem that for some c.e. degrees c < b, b is

� The author was partially supported by an EPSRC Research Grant, “Turing Defin-
ability”, No. GR/M 91419 (UK) and by NSF Grant No. 69973048 and NSF Ma-
jor Grant No. 19931020 (P.R. CHINA), by NSFC grants No. 60310213, and No.
60325206.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 79–88, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

80 A. Li

not splittable over c. The strongest nonsplitting along this line has been given
by Cooper and Li [2002]: there exists a low2 c.e. degree above which 0′ is not
splittable.

Extending both the Sacks Jump Theorem and the Sacks Density Theorem,
Robinson [1971b] proved an Interpolation Theorem: given c.e. degrees d < c and
a degree s c.e. in c with d′ ≤ s, there is a c.e. degree a such that d < a < c
and a′ = s. Using this theorem, we can transfer some results from lower levels
to higher levels of the high/low hierarchy. For instance, every high c.e. degree
bounds a properly highn, and a properly lown c.e. degree for each n > 0, so
any ideal I of E contains an element of H1 will contain elements of Hn+1 −Hn,
Ln+1 − Ln for all n > 0. However the transfer procedure is constrained by the
non-uniformity of the Robinson Interpolation Theorem.

Based on Martin’s Characterisation of High Degrees, Cooper [1974a] proved
that every high1 c.e. degree bounds a minimal pair. And Lachlan [1979] showed
that there exists a nonzero c.e. degree which bounds no minimal pair. And
Cooper [1974b] and Yates proved a Noncupping Theorem: there exists nonzero
c.e. degree a such that for any c.e. degree x, a ∨ x = 0′ iff x = 0′. This result
was further extended by Harrington [1976] Noncupping Theorem: for any high1

c.e. degree h, there exists a high1 c.e. degree a ≤ h such that for any c.e. degree
x, if h ≤ a ∨ x, then h ≤ x. In contrast Harrington [1978] also proved a Plus
Cupping Theorem that there exists c.e. degree a �= 0 such that for any c.e. degrees
x,y, if 0 < x ≤ a ≤ y, then there is a c.e. degree z < y such that x ∨ z = y.
And remarkably, Nies, Shore and Slaman [1998] have shown that Hn, Ln+1 are
definable in E for each n > 0.

A basic question about the high/low hierarchies is the following:

Question 1.1. (i) Are there any m �= n such that Th(Lm) = Th(Ln)?
(ii) Are there any m �= n such that Th(Hm) = Th(Hn)?
Since this paper was written in 2001, part (i) has been answered negatively.

Jockusch, Li, and Yang [2004] proved a nice join theorem for the c.e. degrees:
For any c.e. degree x �= 0, there is a c.e. degree a such that (x ∨ a)

′
= 0

′′
= a

′′
.

Cholak, Groszek and Slaman [2001] showed that there is a nonzero c.e. de-
gree a which joins to a low degree with any low c.e. degree. By combining
the two theorems above, we have that for any n > 1, Th(L1) �= Th(Ln).
While the remaining case was resolved by Shore [2004] by using coding of
arithmetics.

For part (ii) of question 1.1, we know nothing, although Cooper proved that
every high c.e. degree bounds a minimal pair, and Downey, Lempp and Shore
[1993] (and independently both Lerman and Kučera) could construct a high2

c.e. degree which bounds no minimal pair.
In this paper, we show that

Theorem 1.2. There exists a high2 c.e. degree a such that for any c.e. degrees
x,y, if 0 < x ≤ a ≤ y, then there is a c.e. degree z such that z < y and x ∨ z = y.
Then we have:

Elementary Differences Among Jump Hierarchies 81

Theorem 1.3. For each n > 1, Th(H1) �= Th(Hn).

Proof. Let P be the following

∀x∃a ≤ x∀y(a ∨ y = 0′ ↔ y = 0′).

By Harrington’s Noncupping Theorem, P holds for H1. Note that for any
incomplete c.e. degree a, there is an incomplete high c.e. degree h ≥ a. So by
theorem 1.2, for each n > 1, P fails to hold for Hn.

Theorem 1.3 follows. ��
This gives a partial solution to question 1.1 (ii), while the remaining case of it
is still an intriguing open question.

We now outline the proof of theorem 1.2. In section 2, we formulate the
conditions of the theorem by requirements, and describe the strategies to satisfy
the requirements; in section 3, we arrange all strategies on nodes of a tree, the
priority tree T and analyse the consistency of the strategies.

Our notation and terminology are standard and generally follow Soare [1987].

2 Requirements and Strategies

In this section, we formulate the conditions of theorem 1.2 by requirements, and
describe the strategies to satisfy the requirements.

The Requirements. To prove theorem 1.2, we construct a c.e. set A, a Turing
functional Γ to satisfy the following properties and requirements,

(1) For any x, y, z, Γ (A; x, y, z) is defined.
(2) For any x, y, limz Γ (A; x, y, z) exists.
(3) For any x, limy limz Γ (A; x, y, z) exists.
Px: ∅′′′

(x) = limy limz Γ (A; x, y, z)
Re: We = Φe(A)→(∃Xe, Ωe)[Xe ≤T Ve⊕A&Ve⊕A=Ωe(We, Xe)&(a.e.i)Se,i]
Se,i : [We = Φe(A) & A = Ψi(Xe)] → We ≤T ∅

where x, y, z, e, i ∈ ω, {(We, Φe, Ve) | e ∈ ω} is an effective enumeration of all
triples (W, Φ, V) of c.e. sets W, V and of Turing functionals Φ, {Ψi | i ∈ ω} is an
effective enumeration of all Turing functionals Ψ , Xe is a c.e. set built by us, Ωe

is a Turing functional built by us for each e ∈ ω.
Clearly meeting the requirements is sufficient to prove the theorem. We as-

sume that the use function φ of a given Turing functional Φ is increasing in
arguments, nondecreasing in stages. We now look at the strategies to satisfy the
requirements.

A P-Strategy. Since ∅′′′ ∈ Σ3, we can choose a c.e. set J such that for all x,
both (i) and (ii) below hold,

(i) x ∈ ∅′′′
iff (a.e.y)[J [〈y,x〉] = ω[〈y,x〉]].

(ii) x �∈ ∅′′′
iff (∀y)[J [〈y,x〉] =∗ ∅].

82 A. Li

To satisfy Px, we introduce infinitely many subrequirements Qx,y for all y ∈ ω.
Q-strategies will define and rectify the Turing functional Γ . Before describing
the Q-strategies, we look at some properties of Γ .

Γ -Rules. We ensure that the Turing functional Γ will satisfy the following
properties, which are called Γ -rules.

(i) Whenever we define Γ (A; x, y, z), we locate it at a node ξ say.
Let Γ (A; x, y, z)[s] be located at ξ.
(ii) γ(x, y, z)[s] ↓�= γ(x, y, z)[s+1] iff γ(x, y, z)[s] is enumerated into As+1−As

iff there is a strategy ξ′ <L ξ which is visited at stage s + 1.

Therefore for all x, y, z, the permanent computation Γ (A; x, y, z) is the com-
putation which is located at a node, ξ say, at a stage, s say, such that there is
no α <L ξ which can be visited at any stage v > s.

A Q-Strategy. Given a Qx,y-strategy σ, we use Jσ to denote the set J [〈y,x〉]

which is measured by σ. We say that s is σ-expansionary, if Jσ[v] ⊂ Jσ[s] for all
v < s at which some α ⊇ σ is visited. Then σ will proceed as follows.

1. If s is σ-expansionary, then
– let 〈y′, z′〉 be the least pair 〈m, n〉 such that m ≥ y and Γ (A; x, m, n) is
not defined,
– define Γ (A; x, y′, z′) ↓= 1 with γ(x, y′, z′) fresh in the sense that it is the
least natural number greater than any number mentioned so far, and
– locate Γ (A; x, y′, z′) at σ 〈̂0〉.

2. Otherwise, then
– let z′ be the least n such that Γ (A; x, y, n) ↑,
– define Γ (A; x, y, z′) ↓= 0 with γ(x, y, z′) fresh, and locate it at σ 〈̂1〉.

So the possible outcomes of σ are 0 <L 1 to denote infinite and finite actions
respectively. By the strategy, if there are infinitely many σ-expansionary stages,
then for almost every pair 〈y′, z′〉 with y′ ≥ y, Γ (A; x, y′, z′) ↓= 1 is defined and
located at σ 〈̂0〉. In this case, limy limz Γ (A; x, y, z) ↓= 1, and by the choice of
J , x ∈ ∅′′′

. Px is satisfied. Otherwise, then by the Qx,y-strategy σ, we have that
for almost every z, Γ (A; x, y, z) ↓= 0 is defined and located at σ 〈̂1〉, so that
limz Γ (A; x, y, z) ↓= 0, giving limy limz Γ (A; x, y, z) ↓= 0. Therefore in any case,
Px is satisfied.

An R-Strategy. First we define the notion of α-believable computation. Given a
node α, we say that Φ(A; w) ↓= v is α-believable, if for any x, y, z, if Γ (A; x, y, z)
is defined and located at some node ξ with α <L ξ, then φ(w) < γ(x, y, z).

An R-strategy, α say, will satisfy an R-requirement, R say (we drop the
index), we define the length function of agreement l(α) = (W, Φ(A)) as usual, of
course α uses only α-believable computations. We say that s is α-expansionary,
if l(α)[s] > l(α)[v] for all v < s at which α is visited.

Elementary Differences Among Jump Hierarchies 83

If there are only finitely many α-expansionary stages, then either l(W, Φ(A))[s]
is bounded over the construction, or there is a fixed w say such that there are
infinitely many stages at which α is visited and at which Φ(A; w) ↓ is not α-
believable, and by the Γ -rules, at which some elements ≤ φ(w) are enumerated
into A. In this case, φ(w)[s] will be unbounded over the construction. Therefore
in either case, W �= Φ(A), R is satisfied.

Suppose that there are infinitely many α-expansionary stages. Then we will
build a c.e. set X , two Turing functionals Ξ and Ω such that both (a) and (b)
below hold.

(a) X = Ξ(V, A),
(b) V ⊕ A = Ω(W, X).

For Ξ, whenever we define Ξ(V, A; x), we define Ξ(V, A; x) ↓= X(x) with
ξ(x) = x. And once V � (x + 1) or A � (x + 1) changes, we set Ξ(V, A; x) to be
undefined. We ensure that an element x is enumerated into X , only if Ξ(V, A; x)
is currently undefined. So if Ξ(V, A) is total, then Ξ(V, A) = X .

For Ω, whenever we define Ω(W, X ; x), we define Ω(W, X ; x) ↓= (V ⊕ A)(x)
with ω(x) fresh. And if Ω(W, X ; x) ↓�= (V ⊕ A)(x), we enumerate ω(x) into X .
This ensures that if Ω(W, X) is total, then Ω(W, X) = V ⊕ A.

Of course we have to ensure that W -change will never make Ω(W, X) partial,
in fact, we ensure that Ω and Ξ will have the following properties,

(i) if Ω(W, X) is total, then Ξ(V, A) is total, and
(ii) if Ω(W, X) is partial, then either Φ(A) is partial or W ≤T ∅.
Finally we define the possible outcomes of an R-strategy to be 0 <L 1 to

denote infinite and finite actions respectively.

An S-Module. An Se,i-module assumes that an Re-strategy α, say, is building
a Turing functional Ω. It will try to satisfy its S-requirement, Se,i. For simplicity,
we drop the indices e, i in the following discussion.

Suppose that β is an S-module. Let α 〈̂0〉 ⊆ β. Then β will have to deal with
the injury from the building of Ω(W, X). It will work with a fixed threshold k say.
Whenever we define the threshold, we define it as fresh. If (V ⊕ A) � k changes,
then any previous action of β is cancelled but keep the threshold k unchanged,
in which case, we say that β is reset. Clearly β is reset only finitely many times.
Then the S-module β will build a Turing function f and will proceed as follows.

1. Define an agitator a to be fresh.
[Note that if both a and ω(k) are defined, then a < ω(k), where k is the
threshold of β.]

2. (Create a Link (α, β)) Wait for a stage, v say, at which
(2a) Ψ(X ; a) ↓= 0 = A(a),
(2b) W � (ω(k) + 1) = Φ(A) � (ω(k) + 1) via β-believable computations.
Then:
– define r = −1 to be the A-restraint of β,
– enumerate a into A, and
– create a link (α, β).

84 A. Li

3. (Travel the Link (α, β)) Wait for the next α-expansionary stage at which
W � (ω(k) + 1) = Φ(A) � (ω(k) + 1) via α-believable computations. Then
travel the link (α, β) through one of the following cases.
Case 3a. Wv � (ω(k) + 1) �= W � (ω(k) + 1). Then
– set ω(k) to be undefined,
– remove the link (α, β) and stop.
[Now we have created and preserved an inequality Ψ(X ; a) ↓= 0 �= 1 = A(a).
S is satisfied.]
Case 3b. Otherwise, and Φ(A) � (ω(k) + 1) are β-believable. Then:
– remove the link (α, β),
– for each x ≤ ω(k), if f(x) ↑, then define f(x) = W (x),
– enumerate ω(k) into X ,
– define an agitator a as fresh, and
– define r = φ(ω(k)) to be the A-restraint of β.
[The enumeration of a into A at stage v created a (V ⊕A) � ω(k)-permission
via Ω, which has been kept by the link (α, β). So we can enumerate ω(k)
into X at this stage.]
Case 3c. Otherwise, then do nothing.

The Possible Outcomes
The possible outcomes of the S-module are as follows.

g: Case 3b occurs infinitely many times.

In this case, ω(k)[s] will be unbounded, so that f is defined to be a computable
function. We prove that for every x, if f(x) ↓= y, then W (x) = y. Given x, let
s1 be the stage at which f(x) is defined for the first time, then f(x) = Ws1 (x).
Let v1 be minimal greater than s1 at which step 2 of the module occurs. By
the A-restraint r[s] = r[s1] for all s ∈ [s1, v1), f(x) = Wv1(x). Let s2 be the
least stage greater than v1 at which case 3b of β occurs. By the choice of s2,
Ws2(x) = f(x). Suppose by induction that sn ≥ s2, that case 3b of β occurs
at stage sn, and that Wsn(x) = f(x). Let vn be the least stage > sn at which
step 2 of β occurs. Then for each s ∈ [sn, vn), r[s] = r[sn], which ensures that
Wvn(x) = f(x). Let sn+1 be the least stage greater than vn at which case 3b of
β occurs. By the choice of sn+1, we have that Wsn+1(x) = f(x). It follows that
there are infinitely many stages at which W (x) = f(x), giving W (x) = f(x).
Since x is arbitarily given we have that f = W . R is satisfied.

u: Otherwise, and case 3c occurs infinitely many times.

In this case, there is a link (α, β) which was created and which will neither be
cancelled nor be removed, and which is called a permanent link. We note that
lims ω(k)[s] ↓= v < ω for some v, and that there are infinitely many stages at
which Φ(A; v) is not β-believable, and at which some elements γ(x, y, z) ≤ φ(v)
are enumerated into A, by the Γ -rules. Therefore Φ(A) is partial. Both R and
S are satisfied.

However every ξ strictly between α and β is covered by β in the sense that ξ
is visited only finitely many times. The solution is the following observation:

Elementary Differences Among Jump Hierarchies 85

(1) If ξ is either an R- or a P-strategy, then ξ’s requirement has lower pri-
ority than that of α, we can introduce a backup strategy below β 〈̂u〉 for the
requirement of ξ. Therefore the injury of ξ from β is harmless.

(2) If ξ is a Q- or an S-strategy which works on a subrequirement whose
global requirement has lower priority than that of α, then we can neglect this ξ,
because, for a P-, or an R-requirement, we are allowed to give up finitely many
subrequirements Q or S.

(3) Otherwise and ξ = σ is a Q-strategy. Then we have that σ 〈̂1〉 ⊆ β holds.
Now in case 3c of β, we may allow σ to act if the current stage is σ-expansionary.

(4) Otherwise and ξ = β′ is an S-strategy. Then β′ 〈̂w〉 ⊆ β holds. In this
case, whenever case 3c of β occurs, we may allow β′ to act, if β′ is ready to create
a link (or to open an A-gap), in the sense that step 2 of strategy β′ appears.

w: Otherwise. Now it is easy to see that one of the following cases occurs.

Case 1. Case 3a of β occurs. Then Ψ(X ; a) ↓= 0 �= 1 = A(a) is created and
preserved for some fixed a.

Case 2. Otherwise, and (2a) in step 2 fails to hold infinitely often. This means
that Ψ(X ; a) �= 0 = A(a).

Case 3. Otherwise, then there are infinitely many stages at which if W �
(ω(k) + 1) = Φ(A) � (ω(k) + 1), then Φ(A; ω(k)) is not β-believable, in which
case, by the Γ -rules, some elements γ(x, y, z) ≤ φ(ω(k)) are enumerated into A
infinitely many times. We have that W �= Φ(A).

So in any case, we have that either Ψ(X) �= A or W ��= Φ(A), S is satisfied.
We define the priority ordering of the possible outcomes of β by g <L u <L w.

And a general S-strategy is just an modification of the S-module according
to the observations in (1)–(4) above.

3 The Priority Tree T

In this section, we build the priority tree T and analyse some basic properties
about the priority tree. First we define the priority ranking of the requirements.

Definition 3.1. Given a sequence L = (X0, X1, · · · , Xn) of requirements, let m
be the greatest j ≤ n such that Xj is a P- or an R-requirement. Then:

(i) We say that Px is complete in L if there is a k such that m < k ≤ n and
Xk = Qx,y for some y ∈ ω.

(ii) We say that Re is complete in L, if there is a k such that m < k ≤ n and
Xk = Se,i for some i ∈ ω.

(iii) We say that L = (X0, X1, · · · , Xn) is complete, if for every j, if Xj is a
P- or an R-requirement, then Xj is complete in L.

We now define the priority ranking L of the requirements inductively.

Definition 3.2. (i) Define the priority ranking of the P- and R-requirements
such that Pe < Re < Pe+1 < Re+1 holds for each e ∈ ω.

86 A. Li

(ii) Define L = ∅.
Suppose by induction that L = (X0, X1, · · · , Xn) has been defined.
(iii) If L is not complete, then let j be the least k such that Xk is a P- or an

R-requirement which is not complete in L. If Xj = Px for some x, then let y be
minimal such that Qx,y is not in L, and set Xn+1 = Qx,y. If Xj = Re for some
e, then let i be the least i′ such that Se,i′ is not in L and set Xn+1 = Se,i.

Set L = (X0, X1, · · · , Xn, Xn+1) and go back to (iii).
(iv) Otherwise, then let Xn+1 be the least P- or R-requirement as defined in

(i) which is not in L, set L = (X0, X1, · · · , Xn, Xn+1) and go back to (iii).
(v) Suppose that L = (X0, X1, · · ·). Then we define Xi < Xj iff i < j, giving

the priority ranking of the requirements.

Proposition 3.3. Suppose that L is the priority ranking of the requirements
defined in definition 3.2. Then for all e ∈ ω, we have:

(i) Pe < Re < Pe+1 < Re+1,
(ii) Pe < Qe,i < Qe,i+1 for all i ∈ ω, and
(iii) Re < Se,i < Se,i+1 for all i ∈ ω.

Proof. This is immediate from definitions 3.1 and 3.2. ��
Definition 3.4. We define the possible outcomes of a strategy as the same as
that in section 2.

Definition 3.5. Given a node ξ:

(i) Px is satisfied at ξ, if there are Px-strategy τ and Qx,y-strategy σ for some
y such that
(a) τ ⊂ τ 〈̂0〉 ⊆ σ ⊂ σ 〈̂0〉 ⊆ ξ,
(b) there is no Se,i-strategy β such that σ 〈̂0〉 ⊆ β ⊂ β 〈̂u〉 ⊆ ξ for any e < x.

(ii) Px is active at ξ, if Px is not satisfied at ξ and there is a Px-strategy τ such
that τ ⊂ ξ and there is no Se,i-strategy β such that τ ⊂ τ 〈̂0〉 ⊆ β ⊂ β 〈̂u〉 ⊆ ξ
for any e < x.

(iii) Re is satisfied at ξ, if either (a) or (b) below holds,
(a) there is an Re-strategy α such that α 〈̂1〉 ⊆ ξ and there is no Se′,i′ -strategy
β such that α 〈̂1〉 ⊆ β ⊂ β 〈̂u〉 ⊆ ξ for any e′ < e.
(b) there is an Se,i-strategy β such that β 〈̂a〉 ⊆ ξ for some a ∈ {g, u} and such
that there is no Se′i′ -strategy β′ with β 〈̂a〉 ⊆ β′ ⊂ β′ 〈̂u〉 ⊆ ξ for any e′ < e.

(iv) We say that Re is active at ξ, if Re is not satisfied at ξ, and there is an
Re-strategy α such that
(a) α 〈̂0〉 ⊆ ξ,
(b) there is no Qx,y-strategy σ such that α 〈̂0〉 ⊆ σ ⊂ σ 〈̂0〉 ⊆ ξ for any x ≤ e,
and
(c) there is no Se′,i′ -strategy β such that α 〈̂0〉 ⊆ β ⊂ β 〈̂b〉 ⊆ ξ for any b ∈ {g, u}
and any e′ < e.

(v) We say that Qx,y is satisfied at ξ if there is a Qx,y-strategy σ ⊂ ξ.
(vi) We say that Se,i is satisfied at ξ if there is an Se,i-strategy β ⊂ ξ.

We now define the priority tree T .

Elementary Differences Among Jump Hierarchies 87

Definition 3.6. Let L be the priority ranking of the requirements defined in
definition 3.2. Then:

(i) Define the root node ∅ to be the strategy for the first requirement in L,
which is actually P0.

(ii) The immediate successors of a node are the possible outcomes of the
corresponding strategy.

(iii) A node ξ will work on the least element in L which is not satisfied, and
not active at ξ.

As usual, we have the following:

Proposition 3.7. (Finite Injury Along Any Path Proposition) Let f be an
infinite path through T . Then for every P- or R-requirement X , there is a fixed
n0 such that either X is satisfied at f � n for all n ≥ n0, or X is active at f � n
for all n ≥ n0.

Proof. By induction on the priority ranking of the requirements. ��
Given an Se,i-strategy, we define the top of β to be the longest Re-strategy α
such that α 〈̂0〉 ⊆ β, denoted by top(β).

We also need some more properties about the structure of the priority tree T .

Proposition 3.8. Let β ∈ T be an Se,i-strategy, and α = top(β). Then:

(i) If σ is a Qx,y-strategy and α ⊂ α 〈̂0〉 ⊆ σ ⊂ σ 〈̂0〉 ⊆ β, then x > e.
(ii) If β′ is an Se′,i′ -strategy such that α ⊂ α 〈̂0〉 ⊆ β′ ⊂ β′ 〈̂a〉 ⊆ β for some

a ∈ {g, u}, then for α′ = top(β′), α ⊂ α′ ⊂ β′ ⊂ β, and e′ > e.
(iii) If α′ is an Re′ -strategy such that α ⊂ α′ ⊂ β, then e′ > e.
(iv) If τ is a Px-strategy such that α ⊂ τ ⊂ β, then x > e.

Proof. It is straightforward from definitions 3.5 and 3.6. ��
The full construction and its verification is a 0

′′′
-priority tree argument which

will be given in the full version of the paper.

References

1. S. B. Cooper [1974a], On a theorem of C. E. M. Yates (handwritten notes).
2. S. B. Cooper [1974b], Minimal pairs and high recursively enumerable degrees, J.

Symbolic Logic 39 (1974), 655–660.
3. S. B. Cooper and Angsheng Li, Splitting and nonsplitting, II: A low2 c.e. degree

above which 0′ is not splittable, the Journal of Symbolic Logic, Vol. 67, No. 4,
Dec. 2002.

4. R. G. Downey, S. Lempp and R. A. Shore [1993], Highness and bounding minimal
pairs, Math. Logic Quarterly, Vol. 39, 475–491.

5. L. Harrington [1976], On Cooper’s proof of a theorem of Yates, Parts I and II
(handwritten notes).

6. Carl G. Jockusch, JR., Angsheng Li, and Yue Yang, A join theorem for the com-
putably enumerable degrees, Transactions of the American Mathematical Society,
Vol. 356, No. 7, pages 2557 –2568.

88 A. Li

7. L.Harrington [1978], Plus cupping in the recursively enumerable degrees, (hand-
written notes).

8. A. H. Lachlan [1965], On a problem of G. E. Sacks, Proc. Amer. Math. Soc. 16
(1965), 972–979.

9. A. H. Lachlan [1975], A recursively enumerable degree which will not split over all
lesser ones, Ann. Math. Logic 9 (1975), 307–365.

10. A. H. Lachlan [1979], Bounding minimal pairs, J. Symbolic Logic, 44 (1979),
626–642.

11. D. A. Martin [1966a], On a question of G. E. Sacks, J. Symbolic Logic 31 (1966),
66–69.

12. D. A. Martin [1966b], Classes of recursively enumerable sets and degrees of un-
solvability, 2, Math. Logik Grundlag Math. 12 (1966), 295–310.

13. D. Miller [1981], High recursively enumerable degrees and the anti-cupping prop-
erty, in M. Lerman, J. H. Schmerl and R. I. Soare (editors), Lecture Notes in
Mathematics No. 859, Springer-Verlag, Berlin, Heidelberg, Tokyo, New York, 1981.

14. A. Nies, R. A. Shore and T. A. Slaman [1998], Interpretability and definability in
the recursively enumerable degrees, Proc. London Math. Soc. (3), 77 (2): 241–291,
1998.

15. R. W. Robinson [1971a], Interpolation and embedding in the recursively enumer-
able degrees, Ann. of Math. (2) 93 (1971), 285–314.

16. R. W. Robinson [1971b], Jump restricted interpolation in the recursively enumer-
able degrees, Ann. of Math. (2) 93 (1971), 586–596.

17. G. E. Sacks [1963], Recursive enumerability and the jump operator, Tran. Amer.
Math. Soc. 108 (1963), 223–239.

18. G. E. Sacks [1964], The recursively enumerable degrees are dense, Ann. of Math.
(2) 80 (1964), 300–312.

19. G. E. Sacks [1967], On a theorem of Lachlan and Martin, Proc. Amer. Math. Soc.
18 (1967), 140–141.

20. R. A. Shore, The lowm and lown r.e. degrees are not elementarily equivalent,
Science in China, Series A, 2004.

21. R. A. Shore and T. A. Slaman [1990], Working below a low2 recursively enumerable
degree, Archive for Math. Logic, 29 201–211.

22. R. A. Shore and T. A. Slaman [1993], Working below a high recursively enumerable
degree, J. Symbolic Logic, Vol. 58 No. 3, Sept. 1993, 824–859.

23. R. I. Soare [1987], Recursively Enumerable Sets and Degrees, Springer-Verlag
Berlin, Heidelberg New York London Pairs Tokyo, 1987.

The proof of this paper was written in 2001, but has not appeared in the
literature. 1991 Mathematics Subject Classification. Primary 03D25, 03D30;
Secondary 03D35.

Working with the LR Degrees�

George Barmpalias1, Andrew E.M. Lewis2, and Mariya Soskova1

1 School of Mathematics, University of Leeds, Leeds, LS2 9JT, U.K.
2 Dipartimento di Scienze Matematiche ed Informatiche Via del Capitano 15, 53100

Siena

Abstract. We say that A ≤LR B if every B-random number is A-
random. Intuitively this means that if oracle A can identify some patterns
on some real γ, oracle B can also find patterns on γ. In other words, B
is at least as good as A for this purpose. We propose a methodology for
studying the LR degrees and present a number of recent results of ours,
including sketches of their proofs.

1 Introduction

The present paper is partly a short version of a longer draft [1] with the full
proofs of the results presented here, but it also contains additional very recent
material which does not appear in [1]. One of the goals of this work is to present
a uniform approach to studying the LR degrees, both globally and locally. So far
the known results about this degree structure have mostly been scattered and
in papers dealing with a wider range of themes in algorithmic randomness (see
for example [11]). An exception is Simpson’s recent paper [16] which deals with
themes like almost everywhere domination which are very closely related to the
LR degrees.

Also, a number of results in this area have been proved via a mix of frameworks
like martingales, prefix-free complexity and Martin-Löf tests, with more than one
framework sometimes appearing in the same proof (see [11,12]). In contrast, we
present proofs of new and old results using only the Martin-Löf approach, i.e.
Σ0

1 classes and (in the relativised case) c.e. operators. We work in the Cantor
space 2ω with the usual topology generated by the basic open intervals [σ] =
{β | β ∈ 2ω ∧ σ ⊆ β} (where σ is a finite binary string and σ ⊆ β denotes that
σ is a prefix of β) and the Lebesgue measure generated by μ([σ]) = 2−|σ|.

We systematically confuse sets of finite strings U with the class of reals which
extend some string in U . Thus
� Barmpalias was supported by EPSRC Research Grant No. EP/C001389/1 and would

also like to thank Steve Simpson for a number of stimulating discussions, as well
as Doug Cenzer for his hospitality during a visit to the University of Florida,
September-November 2006. Lewis was supported by Marie-Curie Fellowship No.
MEIF-CT-2005-023657. Soskova was supported by the Marie Curie Early Training
grant MATHLOGAPS (MEST-CT-2004-504029). All authors were partially sup-
ported by the NSFC Grand International Joint Project, No. 60310213, New Direc-
tions in the Theory and Applications of Models of Computation.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 89–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 G. Barmpalias, A.E.M. Lewis, and M. Soskova

– we write μ(U) for the measure of the corresponding class of reals
– all subset relations U ⊂ V where U, V are sets of strings actually refer to

the corresponding classes of reals
– Boolean operations on sets of strings actually refer to the same operations

on the corresponding classes of reals.

In section 2 we review the basic definition of an oracle Martin-Löf test and
make the simple observation that there exists a universal test with certain nice
properties that will later be useful. It is worth noting that not all universal (even
unrelativised) Martin-Löf tests have the same properties and for some arguments
it is convenient to assume that we hold a special test. This is not new—see for
example [9] where a property of the test derived by its construction (and not
the general definition) is used to show that random sets are effectively immune.
In section 3 we give the definition of ≤LR and the induced degree structure and
mention some known properties. In section 4 we show that there is a continuum
of reals which are LR-reducible to the halting problem and then extend this
argument to show that the same is true of any α which is not GL2. We also give
a method for diagonalization in the LR degrees.

In section 5 we study the structure of the computably enumerable LR de-
grees. The main goal here is to show how techniques from the theory of the
c.e. Turing degrees can be transferred to the c.e. LR degrees. We deal with two
fundamental techniques: Sacks coding and Sacks restraints. First we show that
if A has intermediate c.e. Turing degree then the lower cone of c.e. LR degrees
below it properly extends the corresponding cone of c.e. Turing degrees. The
second example demonstrates the use of Sacks restraints in the LR context and
is a splitting theorem for the LR degrees: every c.e. set can be split into two c.e.
sets of incomparable LR degree. Also some results are given concerning further
connections between the LR and the Turing degrees.

Most of the proofs are either omitted or given as sketches. The exceptions are
the proofs of theorems 7 and 9 which are given in full. For the full proofs we
refer the reader to the draft [1] which is available online. Theorems 9 and 14 do
not appear in [1].

2 Oracle Martin-Löf Tests

An oracle Martin-Löf test (Ue) is a uniform sequence of oracle machines which
output finite binary strings such that if Uβ

e denotes the range of the e-th machine
with oracle β ∈ 2ω then for all β ∈ 2ω and e ∈ N we have that μ(Uβ

e) < 2−(e+1)

and Uβ
e ⊇ Uβ

e+1. A real α is called β-random if for every oracle Martin-Löf test
(Ue) we have α /∈ ∩eU

β
e . A universal oracle Martin-Löf test is an oracle Martin-

Löf test (Ue) such that for every α, β ∈ 2ω, α is β-random iff α 	∈ ∩eU
β
e . The

following theorem concerns oracle-enumerations of random sets.

Theorem 1. For every n ≥ 1 there exist sets which are n-random and which
are properly n-c.e. in ∅(n).

Working with the LR Degrees 91

Given any oracle Martin-Löf test (Ue), each Ue can be thought of as a c.e. set
of axioms 〈τ, σ〉. If β ∈ 2ω then Uβ

e = {σ | ∃τ(τ ⊂ β ∧ 〈τ, σ〉 ∈ Ue)} and for
ρ ∈ 2<ω we define Uρ

e = {σ | ∃τ(τ ⊆ ρ ∧ 〈τ, σ〉 ∈ Ue)}. There is an analogy
between oracle Martin-Löf tests as defined above and Lachlan functionals i.e.
Turing functionals viewed as c.e. sets of axioms. This analogy will be exploited
in a number of constructions below, especially in the constructions of c.e. LR
degrees. The following lemma is easily proved and provides a universal oracle
Martin-Löf test with properties which will later be useful.

Lemma 1. There is an oracle Martin-Löf test (Ue) such that

– For every oracle Martin-Löf test (Ve), uniformly on its c.e. index we can
compute k ∈ N such that for every real β and all e, V β

e+k ⊆ Uβ
e .

– If 〈τ1, σ1〉, 〈τ2, σ2〉 ∈ Ue and τ1 ⊆ τ2 then σ1|σ2.
– If 〈τ, σ〉 ∈ Ue then |τ | = |σ| and 〈τ, σ〉 ∈ Ue[|τ |] − Ue[|τ | − 1].

From the properties of (Ue) as described in lemma 1 we get the following.

Corollary 1. Let (Ue) be the universal oracle Martin-Löf test of lemma 1 and
let U be any member of it. There is a computable function which, given any input
〈τ, τ ′〉 such that τ ⊆ τ ′, outputs the finite (clopen) set U τ ′ − U τ .

Different Martin-Löf tests may have different properties and some are more useful
than others. If we only require the first clause of theorem 1 we can achieve the
stronger condition

For every oracle Martin-Löf test (Ve), uniformly on its c.e. index
we can compute k ∈ N such that Ve+k ⊆ Ue (as sets of axioms)
for all e.

(1)

The following result demonstrates an application of property (1) of a universal
Martin-Löf test (Ue).

Theorem 2. If U is a member of an oracle Martin-Löf test satisfying property
(1) and T ∈ Σ0

1 , μ(T) < 1 then there are only finitely many β ∈ 2ω such
that Uβ ⊆ T . Also, there are universal Martin-Löf tests which do not have this
property.

It is worth mentioning that there are tests which satisfy both the conditions
of lemma 1 and the property of theorem 2. In fact, a standard construction
of the oracle Martin-Löf test of theorem 2 gives a test with these properties.
Note that if V is a member of an oracle Martin-Löf test and T ∈ Σ0

1 then the
class {β | V β ⊆ T } consists of the infinite paths through a 0′ computable tree.
Since the paths through a 0′ computable tree with only finitely many infinite
paths are Δ0

2, by theorem 3 we get Nies’ result [11] that all low for random sets
are Δ0

2.

3 LR Reducibility and Degrees

The LR reducibility was introduced in [13].

92 G. Barmpalias, A.E.M. Lewis, and M. Soskova

Definition 1. [13] Let A ≤LR B if every B-random real is A-random. The
induced degree structure is called the LR degrees.

Intuitively this means that if oracle A can identify some patterns on some real
γ, oracle B can also find patterns on γ. In other words, B is at least as good as
A for this purpose. It is not hard to show (especially in view of theorem 3) that
≤LR is Σ0

3 definable and this has been noticed by a number of authors. Being
Σ0

3 means that it has some things in common with ≤T (which is also Σ0
3) and

this can be seen more clearly in section 5 where techniques from the theory of
c.e. Turing degrees are seen to be applicable in the c.e. LR degrees. For more
examples of similar Σ0

3 relations see [16]. We point out (after [13,16]) that a
strict relativization of the notion of low for random [8] gives that A is low for
random relative to B when A ⊕ B ≤LR B, which is different than A ≤LR B. In
particular, ⊕ does not define a least upper bound in the LR degrees and it is an
open question as to whether any two degrees always have a least upper bound
in this structure [13,16].

Theorem 3. [7] For all A, B ∈ 2ω the following are equivalent:

– A ≤LR B
– For every Σ0

1(A) class T A of measure < 1 there is a Σ0
1(B) class V B such

that μ(V B) < 1 and T A ⊆ V B.
– For some member UA of a universal Martin-Löf test relative to A there is

V B ∈ Σ0
1(B) such that μ(V B) < 1 and UA ⊆ V B .

The following result shows how two universal oracle Martin-Löf tests are related
(or how ‘similar’ they are).

Theorem 4. If (Ui) is an oracle Martin-Löf test, V is a member of a universal
oracle Martin-Löf test and τ0, σ0 ∈ 2<ω such that [σ0] 	⊆ ∩γ⊃τ0V

γ then there
exist τ, σ ∈ 2<ω and m ∈ N such that

– τ ⊃ τ0 and σ ⊃ σ0

– there is β ⊃ τ such that [σ] 	⊆ V β

– for all γ ⊃ τ , Uγ
m ∩ [σ] ⊆ V γ.

A natural question about reducibilities � on the reals is to determine the mea-
sure of upper and lower cones. For the Turing reducibility the lower cones are
countable (hence they are null) and the non-trivial upper cones have measure 0
[14]. For ≤LR although lower cones are not always countable (see section 4) it is
not difficult to show that they are null. Indeed, given A the A-random numbers
have measure 1 and so it is enough to show that if β is A-random then β 	≤LR A.
But this is obvious since β is not β-random.

Theorem 5. For every A the set {β | β ≤LR A} has measure 0.

For the upper cones it is tempting to think that a version of the majority vote
technique which settled the question for ≤T (see [4] for an updated presentation
of the argument) would work for ≤LR (especially if one thinks of randomness in
terms of betting strategies). However Frank Stephan pointed out (in discussions

Working with the LR Degrees 93

with the first author) that the answer is most easily given by an application
of van Lambalgen’s theorem (a simple theorem with many applications) which
asserts that A ⊕ B is random iff A is random and B is A-random.

Theorem 6 (Frank Stephan). If A is random then it is B-random for almost
all B ∈ 2ω. Also, any non-trivial upper cone in the LR degrees has measure 0.

4 Global Structure

In computability theory we are used to structures in which every degree has only
countably many predecessors. Below we show that the LR degrees do not have
this property1 and that, in fact, whenever α is not GL2 the degree of α has an
uncountable number of predecessors.

Lemma 2. Let U be a member of an oracle Martin-Löf test, n ∈ N and τ0 ∈
2<ω. Then there exists τ1 ⊃ τ0 such that for all τ2 ⊃ τ1, μ(U τ2 − U τ1) < 2−n.

In [13] (see [16] for a different proof and more detailed presentation) it was shown
that the LR degrees are countable equivalence classes.

Theorem 7. In the LR degrees the degree of ∅′ bounds 2ℵ0 degrees.

Proof. By cardinal arithmetic it is enough to show that the set B = {β | β ≤LR

∅′} has cardinality 2ℵ0 . Let U be the second member of the universal oracle
Martin-Löf test of lemma 1, so that by definition μ(Uβ) < 2−2 for all β ∈ 2ω.
It suffices to define a ∅′-computable perfect tree T (as a downward closed set
of strings) such that μ(A) < 1

2 where A = ∪τ∈T U τ . Then |[T]| = 2ℵ0 (where
[T] is the set of infinite paths through T), and for all β ∈ [T], Uβ ⊆ A. Since
A is ∅′-c.e., we have by theorem 3 that for all β ∈ [T], β ≤LR ∅′. We ask that
μ(A) < 1

2 (rather than μ(A) < 1) simply in order that figures used should be
in line with what appears in the proof of theorem 8 in [1]. It remains to define
such a tree T and verify the construction.

First find a string τ such that for any extension τ ′ of τ , μ(U τ ′ − U τ) <
2−4 and define T (∅) = τ . The existence of such a string is ensured by lemma
2. Note that μ(UT (∅)) < 2−2. Now for each of the one element extensions of
T (∅), say τi, i = 0, 1 find some extension τ ′

i ⊇ τi such that for any τ ′ ⊃ τ ′
i

we have μ(U τ ′ − U τ ′
i) < 2−6. Define T (0) = τ ′

0, T (1) = τ ′
1 and note that

μ((UT (0) ∪UT (1))−UT (∅)) < 2 ·2−4 = 2−3 by the previous step. Continue in the
same way so that at the n-th stage, where we define T (σ) for all σ with |σ| = n, we
choose a value τ for T (σ) such that for all τ ′ ⊃ τ we have μ(U τ ′−U τ) < 2−(2n+4).
Let

Cn = {T (σ) | σ ∈ 2<ω ∧ |σ| ≤ n}
and note that Cn ⊆ Cn+1. Also let An = ∪τ∈CnU τ and note that An ⊆ An+1

and A = ∪nAn. By induction, for all n, μ(An) <
∑n

i=0 2i · 2−(2i+2) = 1
2 . Note

1 Joe Miller and Yu Liang have independently announced the existence of an LR
degree with uncountably many predecessors.

94 G. Barmpalias, A.E.M. Lewis, and M. Soskova

that the factor 2i in the above sum comes from the number of strings of level i
in T (and where we say that τ is of level i in T if τ = T (σ) for σ of length i).
It remains to show that we can run the construction of T computably in ∅′, but
this follows immediately from corollary 1.

After we proved theorem 7 and since high degrees often resemble 0′, we con-
sidered showing that every high LR degree has uncountably many predecessors.
Using a combination of highness techniques from [6,10,15] we succeeded in show-
ing that if A is generalized superhigh (i.e. A′ ≥tt (A⊕∅′)′) then A has uncountably
many ≤LR-predecessors. The following theorem is a stronger result showing that
if A is merely GL2 (i.e. generalized non-low2, A′′ >T (A ⊕ ∅′)′) then it has the
same property. For other GL2 constructions we refer the reader to [10].

Theorem 8. If α is GL2 then in the LR degrees the degree of α bounds 2ℵ0

degrees.

The basic idea behind the proof remains the same as in the proof of theorem 7 but
now we need to define T using only an oracle for α (rather than an oracle for ∅′)
and α-approximate a perfect tree T ∗ ⊆ T during the course of the construction.
By theorem 8 and a cardinality argument we obtain the following.

Corollary 2. There are A <LR B such that for every A0 ≡LR A, B0 ≡LR B
we have A0|T B0. In fact for every GL2 set B there is A with the above property.

Next, we provide a method for destroying LR reductions (a kind of diagonaliza-
tion). As an illustration of this method we construct an antichain of LR degrees
of cardinality 2ℵ0 .

Theorem 9. There exists an antichain of cardinality 2ℵ0 in the LR degrees.

Proof. We wish to define a perfect tree T such that, for all distinct A, B ∈ [T],
A 	≤LR B. In order to do so, will make use of the following lemma which was
originally proved by Kučera and which is frequently very useful in dealing with
Π0

1 classes of positive measure. For a very simple proof we refer the reader to
[5].

Lemma 3. [9] Given any Π0
1 class P of positive measure there exists a Π0

1 class
of positive measure K(P) ⊆ P such that the intersection of K(P) with any Π0

1

class is either empty or of positive measure.

Fix a member U of a universal oracle Martin-Löf test. Assume we are given an
effective listing {Ve}e∈ω of all c.e. operators V for which there exists q ∈ Q such
that for all A, μ(V A) < 1−q. We say A is LR reducible to B via Ve if UA ⊆ V B

e .
Clearly A ≤LR B iff A ≤LR B via some Ve. For each e we must ensure that for
all distinct A, B ∈ [T], A is not LR reducible to B via Ve. The following lemma
provides a basic diagonalization technique for the ≤LR reducibility.

Lemma 4. For any e and any τ0, τ1,P0,P1 such that τ0, τ1 ∈ 2<ω, P0 ⊆ [τ0],
P1 ⊆ [τ1] and P0, P1 are Π0

1 classes of positive measure there exist τ ′
0, τ

′
1,P ′

0,P ′
1

such that

Working with the LR Degrees 95

– τ ′
0 ⊇ τ0, τ

′
1 ⊇ τ1,

– P ′
0 ⊆ P0, P ′

1 ⊆ P1 and P ′
0,P ′

1 are Π0
1 classes of positive measure,

– P ′
0 ⊆ [τ ′

0], P ′
1 ⊆ [τ ′

1],
– If A ∈ P ′

0 and B ∈ P ′
1 then A is not LR reducible to B via Ve.

Proof. First we define Q0 = K(P0), where K is as defined in the statement of
lemma 3. Now let A be any member of Q0 such that A 	≤LR ∅ (hence {β | A ≤LR

β} is null). For any τ ⊂ A we have that Q0∩ [τ] is of positive measure. We define
Q1 to be the set of all B ∈ P1 such that A is not LR reducible to B via Ve. Since
upper cones in the LR degrees are of measure 0, Q1 is of positive measure. We
define for each σ, Q1,σ = {B : B ∈ P1 and [σ] 	⊆ V B

e }. Since a countable union
of sets of measure 0 is of measure 0 and Q1 =

⋃
σ∈UA Q1,σ there exists σ ∈ UA

such that Q1,σ is of positive measure. Letting σ be such, we define τ ′
0 ⊃ τ0 to

be an initial segment of A such that σ ∈ U τ ′
0 . We define τ ′

1 = τ1, P ′
0 = P0 ∩ [τ ′

0]
and P ′

1 = Q1,σ.

It is now clear how to use lemma 4 in order to define T . Suppose that at stage
n we have already defined T (σ) for all σ of length ≤ n and that for each leaf τ
of T (as presently defined) we have specified some Π0

1 class of positive measure
Pτ such that all strings in T extending τ must lie in Pτ . For each leaf τ we first
choose two incompatible extensions τ0, τ1 such that for each i ≤ 1, Pτ ∩ [τi] is
of positive measure. These are potential leaves of T for the next stage. Through
successive applications of lemma 4 to all pairs of potential leaves we can then
define T (σ) and Pτ for all σ of length n + 1 and each τ = T (σ), in such a way
that if A and B extend τ0 = T (σ), τ1 = T (σ′) respectively for distinct strings σ
and σ′ of length n + 1 and A ∈ Pτ0, B ∈ Pτ1 , then A is not LR reducible to B
via Vn. Since for each n there exist an infinite number of n′ with Vn = Vn′ , this
completes the proof of the theorem.

5 Computably Enumerable LR Degrees

In this section we study the structure of the c.e. LR degrees and their relationship
with the Turing reducibility. The results have been chosen so that they demon-
strate how to transfer selected basic techniques from the c.e. Turing degrees (like
Sacks coding and restraints) to the c.e. LR degrees. We note that the relation-
ship between ≤LR and ≤T is nontrivial and goes beyond what we discuss here.
For example there is a half of a minimal pair in the c.e. Turing degrees which
is LR-complete [2,3]. The first author, using methods similar to those in [2],
has shown that there is a noncuppable c.e. Turing degree which is LR-complete.
This implies that every c.e. set which is computable by all LR-complete c.e.
sets must be noncuppable. It is unknown if there are such noncomputable sets.
For background in the theory of c.e. degrees we refer the reader to [17]. The
following theorem demonstrates how infinitary Sacks coding can be handled in
the LR degrees.

Theorem 10. If W is an incomplete c.e. set, i.e. ∅′ 	≤T W , then (uniformly in
W) there is a c.e. set B such that B ≤LR W and B 	≤T W .

96 G. Barmpalias, A.E.M. Lewis, and M. Soskova

We sketch the proof. A relativisation of the classic non-computable low for ran-
dom argument of [8] (also see [4]) merely gives that for all A there exists B
c.e. in A such that B 	≤T A and A ⊕ B ≤LR A. If we assumed that W is low
we could prove theorem 10 with a finitary argument similar to [8] by using a
lowness technique (namely Robinson’s trick). To prove the full result we need
infinitary coding combined with cost efficiency considerations (see [12] for ex-
amples of cost-function arguments). We need to construct a c.e. operator V and
a c.e. set B such that UB ⊆ V W where U is a member of the universal oracle
Martin-Löf test of lemma 1 (so that μ(U) < 2−1), μ(V W) < 1, and the following
requirements are satisfied

Pe : ΦW
e = B ⇒ Γ W

e = ∅′

where (Φe) is an effective enumeration of all Turing functionals and Γe are Turing
functionals constructed by us. It is useful if we assume the hat trick for the
functionals as well as the c.e. operators U, V (see [17] for more on this). This
means, for example, that there will be infinitely many stages where (the current
approximation to) UB contains only permanent strings. The operator V can
be defined ahead of the construction and it essentially enumerates into V the
strings of UB with large use. We can also make sure that V is enumerated in a
prefix-free way. By such a definition of V we immediately get that UB ⊆ V W

is satisfied. So the main conflict we face is that on the one hand we want a
Sacks coding for each of the Pe requirements (enumerations into ∅′ may trigger
B-enumerations infinitely often) and on the other hand B-enumerations may
force μ(V W) = 1 (via the the way that V is defined). The connection between
B-enumerations and superfluous measure in V W (in the sense that it does not
serve UB ⊆ V W , it corresponds to intervals which are not in UB) is roughly
as in the noncomputable low for random construction of [8]: some interval σ is
enumerated into UB with use u, it enters V W with use v and subsequently B � u
changes thus ejecting σ from UB. Then W � v could freeze, thus capturing a
useless interval in V W . We already have μ(V W) ≥ μ(UB) so we want to make
sure that the measure corresponding to useless strings is bounded by 2−1.

Here, however, we have an advantage over the classic argument in [8] as W may
also change, thus extracting the useless string from V W . We use this fact in order
to make infinitary coding into B possible while satisfying μ(V W) < 1. The full
proof can be found in [1]. This approach works even if we require UB⊕W ⊆ V W

instead of UB ⊆ V W . In that case we obtain B ⊕ W ≡LR W , W <T B ⊕ W
and hence the following theorem, given that there are T -incomplete sets in the
complete LR degree and the known embedding results for the c.e. Turing degrees
(an antichain is embeddable in every nontrivial interval).

Theorem 11. Every c.e. LR degree contains infinitely many c.e. Turing degrees
(in the form of chains and antichains) and every incomplete c.e. LR degree has
no maximal c.e. Turing degree.

As far as the global structure is concerned, we can get a similar result by relativis-
ing known constructions of low for random degrees. In particular, the relativised

Working with the LR Degrees 97

noncomputable low for random construction [8] gives that for every B there is
A which is B-c.e. and A⊕B ≡LR B, B <T A⊕B; and a slight extension of the
argument gives that every B is T -below an antichain of T degrees in the same
LR degree, hence the following theorem.

Theorem 12. Every LR degree contains infinitely many Turing degrees (in the
form of chains and antichains) and no maximal Turing degree.

Next we show a splitting theorem which also shows how Sacks restraints work
in the LR degrees.

Theorem 13. If A is c.e. and not low for random then there are c.e. B, C such
that B ∩ C = ∅, B ∪ C = A, B 	≤LR C and C 	≤LR B.

Proof. Here is a sketch of the proof. The main idea is as in the classic Sacks split-
ting theorem. We just have to translate the main tools like length of agreement
and Sacks restraints to the case of LR reductions. This will not be a problem
as ≤LR is Σ0

3 . Fix a member U of a universal oracle Martin-Löf test; an LR
reduction is defined via a c.e. operator V (as opposed to a Turing functional), a
q ∈ Q and A is LR reducible to B via V, q if

μ(V B) < 1 − q and UA ⊆ V B. (2)

To define the length of agreement (UA, V B) of this possible reduction consider
computable enumerations of U, V, A, B. Let Ms be the set of strings σ such that
σ ∈ UAt

s for some t ≤ s and let (σs) be a computable enumeration of M = ∪sMs.
Now for all s we define (UA, V B)[s] to be the maximum n such the following
hold:

– σn[s] ↓ (i.e. the nth member of M has been enumerated by stage s)
– ∀i ≤ m ([σi] ⊆ V Bs

s ∨ σi /∈ UAs
s)

– μ({σi | i < n ∧ [σi] ⊆ V Bs
s }) < 1 − q.

It is clear that reduction (2) is total iff lim infs (UA, V B)[s] = ∞. Now in general,
if we wish to destroy a given reduction like (2) where A is a given c.e. set of
nontrivial LR degree and B is enumerated by us, its enough if we respect the
following restraint at every stage s:

r(V, q, s) = μt [∀i ≤ (UA, V B)[s] ([σi] ⊆ V Bs
s with B-use < t ∨ σi /∈ UAs

s)].

Indeed, it can be shown that if r(V, q, s) is respected for a cofinite set of stages
then

lim
s

(UA, V B)[s] < ∞. (3)

So either there is a stage where the measure goes over the threshold 1 − q, or
there is some i such that σi is a permanent resident of UA and σi is never covered
by strings in V B. In any case (2) is destroyed and the restraint comes to a limit.
This is all we need in order to apply the classic Sacks splitting argument (see
[17] for a presentation). For more details we refer to [1].

98 G. Barmpalias, A.E.M. Lewis, and M. Soskova

The Sacks restraints argument in theorem 13 works exactly as in the Turing
degrees, only that the restraints are defined in a different way. Hence it is natural
to ask whether given a noncomputable B we can run the restraints argument in
the Turing degrees, constructing some A such that B 	≤T A, while we code part
of B into A so that B ≤LR A. It turns out that this is possible and the reason is
that compared to the Turing restraints, the LR restraints are more demanding.
For example a single B-enumeration below the length of agreement of some
potential reduction ΦA = B (accompanied by the existing restraint) suffices in
order to destroy the reduction; but no single such enumeration suffices in order
to destroy a potential LR reduction UB ⊆ V .

Theorem 14. Given noncomputable c.e. B there is a c.e. A such that B 	≤T A
and B ≤LR A. Moreover A can be chosen such that A <T B.

References

1. Barmpalias, G., Lewis, A.E.M., Soskova, M.: Randomness, Lowness and De-
grees, Draft submitted for publication, 19 pages, current version available at
http://www.maths.leeds.ac.uk/~georgeb/.

2. Barmpalias G., Montalban, A.: A cappable almost everywhere dominating com-
putably enumerable degree, Electronic Notes in Theoretical Computer Science,
Volume 167 (2007).

3. Binns, S., Kjos-Hanssen, B., Miller, J.S., Solomon, R.: Lowness notions, measure
and domination, in preparation.

4. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity, in prepa-
ration. Current draft available at http://www.mcs.vuw.ac.nz/~downey/.

5. Downey, R., Miller, J.S.: A basis theorem for Π0
1 classes of positive measure and

jump inversion for random reals, Proceedings of the American Mathematical Soci-
ety 134 (1), pages 283-288 (2006).

6. Jockusch, C.G.: Simple proofs of some theorems on high degrees of unsolvability,
Canadian Journal of Mathematics 29 (1977)

7. Kjos-Hanssen, B.: Low for random reals and positive-measure domination, to ap-
pear in the Proceedings of the AMS.

8. Kučera, A., Terwijn, S.A.: Lowness for the class of random sets, Journal of Symbolic
Logic, vol. 64 (1999) 1396–1402.

9. Kučera, A.: Measure, Π0
1 classes and complete extensions of PA. In Recursion

theory week (Oberwolfach, 1984), Volume 1141 of Lecture Notes in Math., pages
245-259. Springer, Berlin, 1985.

10. Lerman, M.: Degrees of Unsolvability: Local and Global Theory, Springer-Verlag
(July 1983)

11. Nies, A.: Low for random sets: the story. Unpublished draft which is available at
the authors webpage http://www.cs.auckland.ac.nz/~nies/.

12. Nies, A.: Computability and Randomness, monograph to appear. Current draft
available at http://www.cs.auckland.ac.nz/~nies/.

13. Nies, A.: Lowness properties and randomness. Advances in Mathematics, 197: 274-
305 (2005).

14. Sacks, G.: Degrees of Unsolvability, Princeton University Press, 1963.

Working with the LR Degrees 99

15. Shore R., Slaman, T.: Working below a high recursively enumerable degree, Journal
of Symbolic Logic 58 (1993), 824–859.

16. Simpson, S.G.: Almost everywhere domination and superhighness. Draft available
at http://www.math.psu.edu/simpson/.

17. Soare, R.I.: Recursively enumerable sets and degrees, Berlin London: Springer-
Verlag, 1987

Computability on Subsets of Locally Compact

Spaces

Yatao Xu1 and Tanja Grubba2

1 Nanjing University, China
yataoxu@gmail.com

2 University of Hagen, Germany
Tanja.Grubba@FernUni-Hagen.de

Abstract. In this paper we investigate aspects of effectivity and com-
putability on closed and compact subsets of locally compact spaces. We
use the framework of the representation approach, TTE, where conti-
nuity and computability on finite and infinite sequences of symbols are
defined canonically and transferred to abstract sets by means of notations
and representations. This work is a generalization of the concepts intro-
duced in [4] and [22] for the Euclidean case and in [3] for metric spaces.
Whenever reasonable, we transfer a representation of the set of closed
or compact subsets to locally compact spaces and discuss its properties
and their relations to each other.

1 Introduction

Computable Analysis connects Computability/Computational Complexity with
Analysis/Numerical Computation by combining concepts of approximation and
of computation. During the last 70 years various mutually non-equivalent models
of real number computation have been proposed ([19], Chap. 9 in [22]). Among
these models the representation approach (Type-2 Theory of Effectivity, TTE)
proposed by Grzegorczyk and Lacombe [7,14] seems to be particularly realis-
tic, flexible and expressive. So far the study of computability on sets of points,
sets (open, closed, compact) and continuous functions has developed mainly
bottom-up, i.e., from the real numbers to Euclidean space and metric spaces
[26,4,24,22,27,3,28]. But often generalizations to more general spaces are needed
(locally compact Hausdorff spaces [5], non-metrizable spaces [25], second count-
able T0-spaces [17,8]).

In this article we investigate computability on locally compact spaces with
the following motivation:

– Computability on metric spaces has been widely and deeply studied. How-
ever, the concept of a metric space is not powerful enough to capture all
the interesting phenomena in computable analysis. Many results in classi-
cal topology, that hold for more general spaces such as Hausdorff spaces or
locally compact spaces, can be tied with effectivity.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 100–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computability on Subsets of Locally Compact Spaces 101

– Locally compact spaces inherit some nice properties of metric spaces. Roug-
hly speaking, a locally compact space with a countable base is metrizable.
This demonstrates that locally compact spaces are “quite close” to metric
spaces.

– Furthermore general topological spaces, especially locally compact spaces,
have practical applications. For example in [5] Collins used locally compact
spaces to study computability of reachable sets for nonlinear dynamic and
control systems.

For these reasons it is necessary, reachable and meaningful to study computabil-
ity on locally compact spaces.

In [4] and [22] and in [3] several representations are introduced for subsets of
the Euclidean space and of a metric space respectively. We don’t consider those,
which are defined by means of the metric distance function. We prove that the
properties δunion ≡ δSierpinski ≡ δdom ≡ δ> ≡ δfiber and δ< ≤ δrange for closed
sets and δmin−cover ≤ δcover ≡ δ>

K for compact sets, shown in [3] for metric
spaces, hold true for locally compact spaces as well. A crucial point for the fact,
that these results can be transfered to locally compact spaces, are two additional
axioms that are required in the metric case for some of these reductions,

1. the existence of nice closed balls,
2. the effective covering property.

Both properties hold true for computably locally compact spaces. The first fol-
lows directly from the definition of computably locally compact spaces, as the
closure of each base element is compact. The second property utilizes the com-
pleteness of the cover representation: a name lists all names of all finite basic
covers of a compact set (shown in Lemma 1). Furthermore we introduce a new
representation κnet where a compact set is denoted by a decreasing sequence of
finite basic covers whose intersection equals to the compact set. We show that
κnet is equivalent to the cover representation.

This article is organized as follows: In Section 2, we sketch some basic notions
on TTE and provide some fundamental definitions and properties of represen-
tations of points and sets in computable T0-spaces. In Section 3, we introduce
and characterize computably locally compact spaces and computably Hausdorff
spaces. In Section 4 we define and compare various representations of closed sub-
sets and compact subsets of computably locally compact, computably Hausdorff
spaces. The conclusion is drawn in the last Section. Since this is an extended
abstract proofs of the main theorems are given in the Appendix.

2 Preliminaries

This Section consists of two parts. In Section 2.1, we sketch the concept of
TTE. In Section 2.2, we introduce computable T0-spaces and the underlying
representations of points and sets.

102 Y. Xu and T. Grubba

2.1 Type-2 Theory of Effectivity (TTE)

In this article we use the framework of TTE (Type-2 theory of effectivity) [22] to
explore several aspects of computability in locally compact spaces. The Type-2
theory of effectivity defines computability on Σ∗ and Σω via Type-2 machines
and transfers a computability concept to “abstract” sets by means of naming
systems.

We assume that Σ is a fixed finite alphabet containing the symbols 0 and 1 and
consider computable functions on finite and infinite sequences of symbols Σ∗ and
Σω, respectively, which can be defined, for example, by Type-2 machines, i.e.,
Turing machines reading from and writing on finite or infinite tapes. A Type-2
machine may have several one-way read-only input tapes, several two-way work
tapes and a unique one-way write-only output tape. It permits infinite input
or output, and has a finiteness property, that is, each group of prefixes of the
inputs determines a unique prefix of the output. A partial function from X to Y is
denoted by f : ⊆X → Y . For αi ∈ {∗, ω}, a function f : ⊆Σα1×. . .×Σαk → Σα0

is called computable if f = fM for some Type-2 machine M .
The “wrapping function” ι : Σ∗ → Σ∗, ι(a1a2 . . . ak) := 110a10a20 . . . ak011

encodes words such that ι(u) and ι(v) cannot overlap properly. We consider
standard functions for finite or countable tupling on Σ∗ and Σω denoted by
〈 · 〉 and projections of the inverse πi for i ∈ N. By “�” we denote the subword
relation. A sequence p ∈ Σ∗ ∪ Σω is called a list of M if M = {u | ι(u) � p}.

We use the concept of multi-functions. A multi-valued partial function, or
multi-function for short, from A to B is a triple f = (A, B, Rf) such that Rf⊆A×
B (the graph of f). Usually we will denote a multi-function f from A to B by
f : ⊆A⇒ B. For X⊆A let f [X] := {b ∈ B | (∃a ∈ X)(a, b) ∈ Rf} and for a ∈ A
define f(a) := f [{a}]. Notice that f is well-defined by the values f(a)⊆B for all
a ∈ A. We define dom(f) := {a ∈ A | f(a) �= ∅}. In the applications we have in
mind, for a multi-function f : ⊆A⇒ B, f(a) is interpreted as the set of all results
which are “acceptable” on input a ∈ A. Any concrete computation will produce
on input a ∈ dom(f) some element b ∈ f(a), but usually there is no method
to select a specific one. In accordance with this interpretation the “functional”
composition g ◦ f : ⊆ A ⇒ D of f : ⊆ A ⇒ B and g : ⊆ C ⇒ D is defined by
dom(g ◦ f) := {a ∈ A | a ∈ dom(f) and f(a)⊆dom(g)} and g ◦ f(a) := g[f(a)]
(in contrast to “non-deterministic” or “relational” composition gf defined by
g f(a) := g[f(a)] for all a ∈ A).

Notations ν : ⊆ Σ∗ → M and representations δ : ⊆ Σω → M are used for
introducing relative continuity and computability on “abstract” sets M . For
a representation δ : ⊆ Σω → M , if δ(p) = x then the point x ∈ M can be
identified by the “name” p ∈ Σω. For representations δ : ⊆ Σω → M and
δ′ : ⊆Σω → M ′ define [δ, δ′] : ⊆Σω → M × M ′ by [δ, δ′]〈p, p′〉 := δ(p) × δ(p′)
and [δ]ω : ⊆Σω → Mω by [δ]ω〈p0, p1, p2, . . .〉 := δ(p0) × δ(p1) × δ(p2) ×

For a naming systems γ : ⊆ Yi → Mi, Yi = Σ∗ or Σω, the set X is called
γ-open (γ-clopen, γ-r.e. , γ-decidable), iff γ−1[X] is open (clopen, r.e. open,
decidable) in dom(γ).

Computability on Subsets of Locally Compact Spaces 103

For naming systems γi : ⊆ Yi → Mi (i = 0, . . . , k), a function h : ⊆ Y1 ×
. . . × Yk → Y0 is a (γ1, . . . , γk, γ0)-realization of f : ⊆ M1 × . . . × Mk ⇒ M0,
if γ0 ◦ h(p1, . . . , pk) ∈ f(γ1(p1), . . . , γk(pk)) whenever f(γ1(p1), . . . , γk(pk)) ex-
ists. The function h is called a strong realization of f , if h(p1, . . . , pk) = ↑ for
all 〈p1, . . . , pk〉 ∈ dom([γ1, . . . , γk]) with [γ1, . . . , γk](p1, . . . , pk) �∈ dom(f). The
multi-function f is (γ1, . . . , γk, γ0)-continuous (-computable), if it has a contin-
uous (computable) (γ1, . . . , γk, γ0)-realization.

For naming systems γ : ⊆Y → M and γ′ : ⊆ Y ′ → M ′ (Y, Y ′ ∈ {Σ∗, Σω}),
let γ ≤t γ′ (t-reducible) and γ ≤ γ′ (reducible), iff there is some continuous or
computable function f : ⊆Y → Y ′ such that γ(y) = γ′f(y) for all y ∈ dom(γ),
respectively. Define t-equivalence and equivalence as follows: γ ≡t γ′ ⇐⇒ (γ ≤t

γ′ and γ′ ≤t γ) and γ ≡ γ′ ⇐⇒ (γ ≤ γ′ and γ′ ≤ γ), respectively.
Two representations induce the same continuity or computability, iff they are

t-equivalent or equivalent, respectively. If multi-functions on represented sets
have realizations, then their composition is realized by the composition of the re-
alizations. In particular, the computable multi-functions on represented sets are
closed under composition. Much more generally, the computable multi-functions
on represented sets are closed under flowchart programming with indirect ad-
dressing [23]. This result allows convenient informal construction of new com-
putable multi-functions on multi-represented sets from given ones.

Let νN : ⊆ Σ∗ → N be some standard notation of the natural numbers, ρ
the standard representation of R. A ρ<-name represents a real number by lower
rational bounds. ρ<(p) = x, if p is a list of all rational numbers a < x and ηab a
standard representation of F ab, the partial continuous functions f : ⊆σa → σb

with open or Gδ domain, if b = ∗ or b = ω respectively, with properties utm(ηab)
and smn(ηab).

2.2 Representations of Points and Sets in Computable T0-Spaces

In this Section we introduce computable T0-spaces together with some funda-
mental representations of points and sets.

A topological space X = (X, τ) is a T0-space, if for all x, y ∈ X such that
x �= y, there is an open set O ∈ τ such that x ∈ O iff y �∈ O. In a T0-space,
every point can be identified by the set of its neighborhoods O ∈ τ . X is called
second-countable, if it has a countable base [6].

In the following we consider only second countable T0-spaces. For introducing
concepts of effectivity we assume that some notation ν of a base β with recursive
domain is given.

Definition 1 (computable T0-space)
A computable T0-space is a tuple X = (X, τ, β, ν) such that (X, τ) is a second
countable T0-space and ν : ⊆Σ∗ → β is a notation of a base β of τ with recur-
sive domain, U �= ∅ for U ∈ β and X has computable intersection: there is a
computable function h : ⊆Σ∗ × Σ∗ → Σω such that for all u, v ∈ dom(ν),

ν(u) ∩ ν(v) =
⋃

{ν(w) | w ∈ dom(ν) and ι(w) � h(u, v)} . (1)

104 Y. Xu and T. Grubba

Call two computable T0-spaces X1 = (X, τ, β1, ν1) and X2 = (X, τ, β2, ν2)
recursively related, if and only if there are computable functions g, g′ : ⊆Σ∗ →
Σω such that

ν1(u) =
⋃

ι(w)�g(u)

ν2(w) and ν2(v) =
⋃

ι(w)�g′(v)

ν1(w) . (2)

We are interested in computability concepts which are “robust”, that is, which
do not change if a space is replaced by a recursively related one.

In the following let X = (X, τ, β, ν) be a computable T0-space. Now we intro-
duce the standard representation of X .

Definition 2 (standard representation δ of X). Define the standard repre-
sentation δ : ⊆Σω → X as follows: δ(p) = x iff

– u ∈ dom(ν) if ι(u) � p
– {u ∈ dom(ν) | x ∈ ν(u)} = {u | ι(u) � p}.

A δ-name p of an element x ∈ X is a list of all words u such that x ∈ ν(u).
The definition of δ corresponds to the definition of δ′S in Lemma 3.2.3 of [22], in
particular, δ is admissible with final topology τ (Sec. 3.2 in [22]).

Definition 3 (union representation of open and closed sets)

1. Define the union representation θun : ⊆Σω → τ by

dom(θun) := {q ∈ Σω|u ∈ dom(ν) if ι(u) � q} and θun(p) :=
⋃

ι(u)�p

ν(u) .

2. Define the union representation ψun : ⊆Σω → τc by ψun(p) := X \ θun(p) .

Thus, θun(p) is the union of all ν(u) such that u is listed by p. The union
representation of the closed sets is defined by the union representation of their
complements.

For technical reasons we define a notation ν∗ : ⊆Σ∗ → {M⊆β | M is finite} of
all finite sets of base elements by dom(ν∗) := {w ∈ Σ∗ | u ∈ dom(ν) if ι(u)�w}
and

ν∗(w) := {ν(u) | ι(u) � w}
and a notation θ∗ : ⊆Σ∗ → τfin of all open sets that can be written as the union
of finitely many base elements by

θ∗(w) :=
⋃

ν∗(w).

The representations δ and θun are not only very natural, but they can be
characterized up to equivalence as maximal elements among representations for
which the element relation is open or r.e., respectively. Furthermore the following
properties hold.

Lemma 1. For computable T0-spaces,

Computability on Subsets of Locally Compact Spaces 105

1. “O �= ∅” is θun-r.e.,
2. countable union on τ is ([θun]ω, θun)-computable,
3. intersection is (θun, θun, θun)-computable,
4. finite intersection is (ν∗, θun)-computable.

Proof. Omitted.

Equivalently to the computability of finite intersection on the base is the exis-
tence of an r.e. set I⊆Σ∗ × dom(ν), such that for all w ∈ Σ∗ and u ∈ dom(ν)

⋂

ι(v)�w

ν(v) =
⋃

(w,u)∈I

ν(u). (3)

Furthermore the set P := {w ∈ Σ∗ | (∃u ∈ dom(ν)) (w, u) ∈ I} of all finite
prefixes of δ-names is r.e..

A topological space is a T2-space (also called Hausdorff space), if for all x, y ∈
X such that x �= y, there are disjoint open sets O, O′ ∈ τ such that x ∈ O and
y ∈ O′. A subset K⊆X of a Hausdorff space (X, τ) is compact, if every open
cover of K by elements of the base has a finite subcover. Let

K(X) := {K⊆X | K compact}

denote the set of all compact subsets of a Hausdorff space (X, τ). We write K
instead of K(X), if there is no need to specify the space or if it’s obvious which
space we refer to.

In the following we generalize the representation κc of the compact subsets
of the Euclidean space [22] and δcover of the compact subsets of a computable
metric space [3] defined by listing all finite basic subcovers from a countable
base.

Definition 4 (cover representation κc of compact sets). Let X = (X, τ,
β, ν) be a computable T0-space and let (X, τ) be a Hausdorff space. Define a
representation κc : ⊆Σω → K as follows: K = κc(p) iff

– w ∈ dom(θ∗) if ι(w) � p,
– {w ∈ Σ∗ | ι(w) � p} = {w ∈ Σ∗ | K⊆θ∗(w)}.

Roughly speaking, p is a name of K, if it is a list of all (!) names of all finite
basic subcovers of K with base elements.

For technical reasons we define a representation of all finite sets of compact
sets κ∗ : ⊆Σω → {M⊆K | M is finite } by

κ∗(p) = {K1, . . . , Kk} : ⇐⇒ p = 1k0〈p1, . . . , pk〉 and
κc(pi) = Ki for all i ∈ {1, . . . , k}.

Lemma 2. Let X = (X, τ, β, ν) be a computable T0-space and let (X, τ) be a
Hausdorff space, then

106 Y. Xu and T. Grubba

1. “K⊆O” is (κc, θun)-r.e.,
2. finite union on K is (κ∗, κc)-computable,
3. countable intersection on K is ([κ]ω, κc)-computable.

Proof. Omitted.

Every closed subset of a compact set is compact. The next Lemma gives an
effective version.

Lemma 3. Let X = (X, τ, β, ν) be a computable T0-space and let (X, τ) be a
Hausdorff space. The mapping F : τc ×K → K defined by

F(A, K) := A ∩ K

is (ψun, κc, κc)-computable.

Proof. Omitted.

3 Effectivity in Locally Compact Hausdorff Spaces

In this Section we introduce an effective version of the Hausdorff property and
an effective version of locally compactness.

Definition 5 (computably Hausdorff). A computable T0-space X = (X, τ,
β, ν) is called computably Hausdorff if there exists an r.e. set H⊆dom(ν) ×
dom(ν) such that

(∀(u, v) ∈ H) ν(u) ∩ ν(v) = ∅, (4)
(∀x, y ∈ X with x �= y) (∃(u, v) ∈ H) x ∈ ν(u) ∧ y ∈ ν(v). (5)

Lemma 4. For computable T0-spaces,

X computably Hausdorff ⇐⇒ {(x, y) ∈ X × X | x �= y} is (δ, δ) − r.e..

Proof. Omitted.

Lemma 4 implies the robustness of the computably Hausdorff property, as δ is
robust.

Lemma 5. Let X = (X, τ, β, ν) be a computably Hausdorff space.

1. The mapping F1 : ⊆X × X ⇒ β × β defined by dom(F1) = {(x, y) | x �= y}
and

(U, V) ∈ F1(x, y) : ⇐⇒ x ∈ U and y ∈ V and U ∩ V = ∅

is (δ, δ, ν, ν)-computable.

Computability on Subsets of Locally Compact Spaces 107

2. The mapping F2 : ⊆X ×K⇒ β × τ defined by dom(F2) = {(x, K) | x �∈ K}
and

(U, O) ∈ F2(x, K) : ⇐⇒ x ∈ U and K⊆O and U ∩ O = ∅
is (δ, κc, ν, θ∗)-computable.

3. The mapping F3 : ⊆K×K⇒ τ×τ defined by dom(F3) = {(K, K ′) | K∩K ′ =
∅} and

(O, O′) ∈ F3(K, K ′) : ⇐⇒ K⊆O and K ′⊆O′ and O ∩ O′ = ∅
is (κc, κc, θ∗, θ∗)-computable.

Proof. Omitted.

Every compact subspace of a Hausdorff space is closed. The next theorem is an
effective version.

Theorem 1. For computably Hausdorff spaces, κc ≤ ψun.

Proof. See Appendix.

A topological space (X, τ) is called locally compact, if for every point x ∈ X ,
there exists a neighborhood O of x such that the closure Ō is compact. Next we
introduce an effective version of locally compactness by means of the represen-
tation κc of the compact subsets of a Hausdorff space.

Definition 6 (computably locally compact space). A computable T0-space
X′ = (X, τ, β′, ν′) is called a computably locally compact space if (X, τ) is a
Hausdorff space and there is some computable T0-space X = (X, τ, β, ν) such
that CLS : β → K(X) defined by CLS(U) := Ū is (ν, κc)-computable and X′ and
X are recursively related.

The definition of computably locally compactness ensures its robustness. In the
following if X = (X, τ, β, ν) is a computably locally compact space, we suppose
CLS to be (ν, κc)-computable (without changing the base or its notation).

If X is a computably locally compact space, then it is locally compact since
the closure of each base element is compact. Therefore X is Tychonoff, thus
regular (and a Hausdorff space) and even metrizable since X is second countable
([6]).

Lemma 6. For computably locally compact spaces,

1. “Ū⊆O” is (ν, θun)-r.e.,
2. “Ō⊆O′” is (θ∗, θun)-r.e..

Proof. Omitted.

In [3] and [5] property 1 is defined as the “effective covering property” of a
computable metric space. As this property holds true for each computably locally
compact space, we do not need an additional axiom.

For every compact subspace K of a locally compact space X and every open
set V ⊆X that contains K, there exists an open set U⊆X such that K⊆U⊆Ū⊆V
and Ū is compact. The next Lemma gives an effective version.

108 Y. Xu and T. Grubba

Lemma 7. Let X = (X, τ, β, ν) be a computably locally compact space. The
mapping F : ⊆K× τ ⇒ τ defined by dom(F) = {(K, O) ∈ K × τ | K⊆O} and

U ∈ F(K, O) : ⇐⇒ K⊆U⊆Ū⊆O

is (κc, θun, θ∗)-computable.

Proof. Omitted.

Computably regular spaces have been introduced in [17] and [9]. The following
theorem gives an effective version of the classical hierarchy, every locally compact
space is regular and every regular space is a Hausdorff space.

Theorem 2. 1. A computable T0-space is computably regular, if it is com-
putably locally compact and computably Hausdorff.

2. A computable T0-space is computably Hausdorff, if it is computably regular.

Proof. Omitted.

4 Computability on Subsets of Computably Locally
Compact, Computably Hausdorff Spaces

4.1 Computability on Closed Subsets

In this Section we study several representations of the closed subsets of a com-
putably locally compact, computably Hausdorff space.

Definition 7 (representations of closed sets). Let X = (X, τ, β, ν) be a
computably locally compact, computably Hausdorff space. Let ηω∗

p , ηωω
p be stan-

dard representation of the set of continuous functions of F : ⊆Σω → Σ∗ and
F : ⊆Σω → Σω, respectively.

1. Define the domain representation ψdom : ⊆Σω → τc by

ψdom(p) = A : ⇐⇒ ηω∗
p is a strong (δ, νN)-realization of f :⊆ X → N

such that dom(f) = Ac.

2. Define the Sierpinski representation ψsie : ⊆Σω → τc by

ψsie(p) = A : ⇐⇒ ηωω
p is a (δ, ρ<)-realization of cfA : X → R.

Here cfA : X → R means that

x �→
{

0 if x ∈ A
1 otherwise

3. Define the fiber representation ψfiber : ⊆Σω → τc by

ψfiber(p) = A : ⇐⇒ ηωω
p is a (δ, ρ)-realization of f : X → R

such that f−1{0} = A.

Computability on Subsets of Locally Compact Spaces 109

4. Define the inner representation ψ< : ⊆Σω → τc as follows: ψ<(p) = A iff
– u ∈ dom(ν) if ι(u) � p,
– {w | ι(w) � p} = {w | ν(w) ∩ A �= ∅} .

5. Define the enumeration representation ψrange : ⊆Σω → τc by

ψrange(0ω) := ∅,
ψrange(0k1p) := cls ◦ range([νN → δ]N(p)).

6. Define the outer representation ψ> : ⊆Σω → τc as follows ψ>(p) = A iff
– u ∈ dom(ν) if ι(u) � p,
– {w | ι(w) � p} = {w | (ν(w)) ∩ A = ∅} .

All these representations of closed sets with the exception of ψ> are well-
defined and robust even for computable T0-spaces.

The representation ψ> is well-defined for computably locally compact spaces,
as they are regular. For closed sets A and B, if

{w ∈ dom(ν) | ν(w) ∩ A = ∅} = {w ∈ dom(ν) | ν(w) ∩ B = ∅}

then
{w ∈ dom(ν) | ν(w)⊆Ac} = {w ∈ dom(ν) | ν(w)⊆Bc}.

Let x ∈ Ac then there exists some V ∈ β such that x ∈ V ⊆V̄ ⊆Ac as X is
regular. It follows x ∈ V ⊆Bc, then Ac⊆Bc. By symmetry we can conclude that
Ac = Bc, hence A = B.

However ψ> is not well-defined for Hausdorff spaces in general.

Example 1. Define a topological space (R, τ) by τ := {G \ E|G ∈ τR, E ⊆ Q},
where τR is the set of all open subsets of R. The space (R, τ) is a Hausdorff space,
since for any two different x1, x2 ∈ R, by the density of real numbers, there exists
x between them, then we can find two open sets (−∞, x)\E1, (x,∞)\E2, which
contains x1, x2 respectively, such that ((−∞, x) \ E1) ∩ ((x,∞) \ E2) = ∅.

Next we show that for any G ∈ τR, G \Ei have the same closure as G, i ∈ N.
In fact, we just need to prove Ḡ⊆G \ E, for any E⊆Q. Suppose x ∈ Ḡ by the
definition of closure, for any neighborhood G′\E′ of x, (G′\E′)∩G �= ∅. Since G
and G′ are open sets of R with common topology, and by the density of irrational
numbers we conclude that there exists some irrational number y ∈ (G′ \E′)∩G.
As E⊆Q, then y ∈ (G′ \ E′) ∩ (G \ E), that is, (G′ \ E′) ∩ (G \ E) �= ∅. Hence,
x ∈ G \ E, as required.

Given a closed subset Q ∈ τc, there is no open set G \E such that G∩Q = ∅,
where G is the closure of G \ E.

Theorem 3. For computably locally compact, computably Hausdorff spaces,

ψfiber ≡ ψdom ≡ ψsie ≡ ψun ≡ ψ>.

Proof. See Appendix.

110 Y. Xu and T. Grubba

Theorem 4. For computably locally compact, computably Hausdorff spaces,

ψrange ≤ ψ<.

Proof. See Appendix.

In general ψ< ≤ ψrange does not hold. See [3] for a counterexample for com-
putable metric spaces.

4.2 Computability on Compact Subsets

In this Section we study several representations of the set K of the compact
subsets of a computably locally compact, computably Hausdorff space.

Definition 8 (representations of compact sets). Let X = (X, τ, β, ν) be a
computably locally compact, computably Hausdorff space.

1. Define the minimal cover representation κmc : ⊆Σω → K as follows: K =
κmc(p) iff
– w ∈ dom(θ∗) if ι(w) � p,
– {w ∈ Σ∗ | ι(w)�p} = {w ∈ Σ∗ | K⊆θ∗(w) and (∀ι(u)�w) ν(u)∩K �=

∅}.
2. Define the union representation κun : ⊆Σω → K as follows: κun〈p, w〉 = K

iff
– p ∈ dom(ψun) and w ∈ dom(ν∗),
– K = ψun(p) and K⊆θ∗(w).

3. Define the net representation κnet : ⊆Σω → K as follows: K = κnet(p) iff
– p = 〈w1, w2, . . .〉 and wi ∈ dom(ν∗) for all i ∈ N,
– θ∗(wi+1)⊆θ∗(wi) for all i ∈ N,

– K =
∞⋂

i=1

θ∗(wi).

A κmc-name requires that each listed base element has nonempty intersection
with K.

For any compact subset of a second countable locally compact space, there
exists a “strictly” decreasing cover sequence converging to it. Since every locally
compact space is a Hausdorff space, then the limit of a cover sequence is unique.
Therefore, κnet is well-defined. Comparing with the cover representation, the
advantage of net representation is that it does not require all finite basic covers.

Theorem 5. For computably locally compact, computably Hausdorff spaces,

κmc ≤ κc ≡ κun ≡ κnet.

Proof. See Appendix.

Note that κc ≤ κmc is not true in general [22].

Computability on Subsets of Locally Compact Spaces 111

5 Conclusion and Future Work

In this article, we mainly generalize the representations of subsets of metric
spaces to locally compact spaces and analyze which relations among these rep-
resentations still hold. For this reason we define and characterize computably
locally compactness and computably Hausdorff spaces.

The next step is to include representations of sets of functions and generalize
this research to computable T0-spaces. Moreover, we will apply these represen-
tations to examine the effectivity of certain theorems in general topology.

Acknowledgement

The authors would like to thank Klaus Weihrauch for his valuable suggestions
and also thank Decheng Ding for his support. This work is supported by NSFC
10420130638 and DFG CHV113/240/0-1.

References

1. Brattka, V.: Recursive quasi-metric spaces. Theoret. Comput. Sci. 305 (2003)
17–42

2. Brattka, V., Hertling, P.: Continuity and computability of relations. Informatik
Berichte 164 Fern University in Hagen, Hagen (1994)

3. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoret. Com-
put. Sci. 305 (2003) 43–76

4. Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space I: Closed
and compact subsets. Theoret. Comput. Sci. 219 (1999) 65–93

5. Collins, P.: Continuity and computability on reachable sets. Theoret. Comput. Sci.
341 (2005) 162–195

6. Engelking, R.: General Topology. Heldermann, Berlin (1989)
7. Grzegorczyk, A.: Computable functions. Fund. Math. 42 (1955) 168–202
8. Grubba, T., Weihrauch, K.: A computable version of Dini’s theorem for topological

spaces. Lecture notes in computer science (2005) 927–936
9. Grubba, T., Weihrauch, K.: On computable metrization. CCA 2006, Third Inter-

national Conference on Computability and Complexity in Analysis. In: Cenzer,
D., Dillhage, R., Grubba, T., Weihrauch, K. (Eds.), Informatik Berichte 333, Fern
University in Hagen, Hagen (2006) 176–191

10. Hauck, J.: Berechenbare reelle funktionen. Z. math. Logik Grundlagen Math. 19
(1973) 121–140

11. Ko, K.I.: Complexity Theory of Real Functions. Birkhaeuser, Boston (1991)
12. Kreitz, C., Weihrauch, K.: A unified approach to constructive and recursive analy-

sis. In: Richter, M., Borger, E., Oberschelp, W., Schinzel, B., Thomas, W. (Eds.),
Computation and Proof Theory, Lecture Notes in Mathematics 1104 Springer,
Berlin. (1984) 259–278

13. Kusner, B.A.: Lectures on Constructive Mathematical Analysis 60 AMS, Provi-
dence (1984)

14. Lacombe, D.: Extension de la notion de fonction recursive aux fonctions d’une ou
plusieurs variables reelles I. Comptes Rendus Academie des Sciences Paris 240
(1955) 2478–2480

112 Y. Xu and T. Grubba

15. Mazur, S.: Computable Analysis 33 Razprawy Matematyczne, Warsaw (1963)
16. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Pers. in

Math. Logic. Springer, Berlin (1989)
17. Schröder, M.: Effective metrization of regular spaces. In: Ko, K.I., Nerode, A., Pour-

El, M.B., Weihrauch, K., Wiedermann, J. (Eds.), Computability and Complexity in
Analysis, Informatik Berichte 235, Fern University in Hagen, Hagen (1998) 63–80

18. Scott, D.: Outline of a mathematical theory of computation. Tech. Mono. PRG-2.
Oxford University, Oxford (1970)

19. Stoltenberg-Hansen, V., Tucker, J.V.: Concrete models of computation for topo-
logical algebras. Theoret. Comput. Sci. 219 (1999) 347–378

20. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. London Math. Soc. 42 (1936) 230–265

21. Weihrauch, K.: Computability on computable metric spaces. Theoret. Comput.
Sci. 113 (1993) 191–210

22. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
23. Weihrauch, K.: Multi-functions on multi-represented sets are closed under flowchart

programming. CCA 2005, Second International Conference on Computability and
Complexity in Analysis. In: Grubba, T., Hertling, P., Tsuiki, H., Weihrauch, K.
(Eds.), Informatik Berichte 326, Fern University in Hagen, Hagen (2005) 267–300

24. Yasugi, M., Mori, T., Tsujii, Y.: Effective properties of sets and functions in metric
spaces with computability structure. Theoret. Comput. Sci. 219 (1999) 467–486

25. Zhong, N., Weihrauch, K.: Computability theory of generalized functions. J. Asso.
for Comp. Mach 50(4) (2003) 469–505

26. Zhou, Q.: Computable real-valued functions on recursive open and closed subsets
of Euclidean space. Math. Logic Q. 42 (1996) 379–409

27. Ziegler, M.: Computability on regular subsets of Euclidean space. Math. Logic Q.
48(Suppl. 1) (2002) 157–181

28. Ziegler, M.: Computable operators on regular sets. Math. Logic Q. 50(4, 5) (2004)
392–404

6 Appendix: Proofs

Proof of Theorem 1:

Proof. Let κc(p) = K, I be the r.e. set for finite intersection defined in (3) and
H the r.e. Hausdorff set. From p a sequence r can be computed such that ι(w)�r
iff

(∃ι(u) � p listing u0 · · ·uk) (∃v ∈ Σ∗ listing v0 · · · vk)
((u0, v0), . . . , (uk, vk) ∈ H and (v, w) ∈ I).

Then ν(w)⊆Kc if ι(w) � r. Next we show, that Kc⊆ ⋃

ι(w)�r

ν(w) holds. Let y ∈
Kc. For all x ∈ K there is some (u, v) ∈ H such that x ∈ ν(u) and y ∈ ν(v).
The familiy of all these ν(u) covers K. As K is compact it has a finite subcover
{ν(ui) | j ∈ J} covering K. Let v list {vi | j ∈ J}. As y ∈ ⋂

j∈J

ν(vj) =
⋂

vj�v
ν(vj)

there is some w ∈ Σ∗ such that

(v, w) ∈ I and y ∈ ν(w)

Therefore r is a ψun-name of K.

Computability on Subsets of Locally Compact Spaces 113

Proof of Theorem 3:

Proof. ψfiber ≤ ψdom: (As in [4]:) Let A be a closed subset of X and ψfiber(p) =
A, that is, ηωω

p is a (δ, ρ)-realization of a function fp : X → R such that f−1
p {0} =

A. Define gp : ⊆X → N as follows:

gp(x) =
{

1 if fp(x) �= 0
↑ otherwise

for all x ∈ X . Then dom(gp) = Ac. As ηωω
p is a realization of fp, we have that,

if ρηωω
p (q) �= 0, gpδ(q) = 1; otherwise, gpδ(q) diverges. By utm-theorem, there is

a computable function G : ⊆Σω × Σω → Σ∗ such that gpδ(q) = νNG(p, q). And
by smn-theorem for ηω∗, there is a computable function H : Σω → Σω such
that gpδ(q) = νNηω∗

H(p)(q). Furthermore, for any x �∈ dom(gp), we have fp(x) = 0,
then G(p, q) diverges. This shows that ηω∗

H(p) is a strong realization. Therefore,
H(p) is a ψdom-name of A, as required.

ψdom ≤ ψsie: (As in [3]) Let ψdom(p) = A, that is, ηω∗ is a strong (δ, νN)-
realization of function fp : ⊆X → N such that dom(fp) = Ac. Let M be a
Type-2 machine computing the universal function of ηω∗. Define

H(p, q) =
{

0ω if M does not halt on input (p, q)
0k1ω if M halts on input (p, q) after k steps

Then H is computable and by utm- and smn-theorem for ηωω there exists a
computable function F such that ηωω

F (p)(q) = H(p, q). Now we have ρ<ηωω
F (p)(q) =

ρ<H(p, q) = cfAδ(q), that is, ηωω
F (p) is a (δ, ρ<)-realization of cfA. Therefore, F (p)

is a ψsie-name of A, as required.
ψsie ≤ ψun: Let ψsie(p) = A and M be a Type-2 machine computing the

universal function of ηωω. There is a Type-2 machine that on input p computes
a sequence r such that ι(u) � r iff
(∃w ∈ dom(ν∗)) (M on input (p, q) writes some 〈a〉 such that νQ(a) > 0 and
M has at most read the prefix w of q) and (w, u) ∈ I, where I is the r.e. set for
finite intersection defined in (3).

ψun ≤ ψ>: Note that a ψun-name of A is just a θun-name of Ac. Since Ū ⊆ Ac

is (ν, θun)-r.e. by Lemma 6, we can now construct a Type-2 machine M , which on
input a θun-name p outputs a list of u such that ν(u)⊆Ac, that is, ν(u)∩A = ∅.
Therefore, fM translates ψun to ψ>.

ψ> ≤ ψfiber : By Theorem 2 X is computably regular, if it is computably lo-
cally compact and a computably Hausdorff space. Then the multivalued Urysohn
operator UR mappping every pair (A, B) of disjoint closed sets to all continuous
functions f : X → [0; 1] such that f [A] = 0 and f [B] = 1 is (ψ>, ψ>, [δ → ρ])-
computable ([9]).

Let ψ>(p) = A and let p be a list of {ui ∈ dom(ν) | i ∈ N}. There is a Type-2
machine M that on input p

– computes a ψ>-name pi of ν(ui) for all i ∈ N (U → Ū is (ν, κc)-computable
and κc ≤ ψ>),

114 Y. Xu and T. Grubba

– computes a [δ → ρ]-name qi of some fi ∈ UR(ψ>(p), ψ>(pi)) for all i ∈ N,
– computes a [δ → ρ]-name q of f : X → [0; 1] defined by

f(x) :=
∞∑

i=0

2−ifi(x).

Then A = ψfiber(q).

Proof of Theorem 4:
Proof. Let ψrange(p) = A. If A = ∅ then p = 0ω and furthermore ψ<(0ω) = ∅.
If A �= ∅ then

ν(w) ∩ A �= ∅ ⇐⇒ there exists some x ∈ range([νN → δ](p)) such that x ∈ ν(w)
⇐⇒ there exists some u ∈ dom(νN) such that w is listed by ηp(u).

The following Typ-2 machine M realizes the reduction: On input p the machine
M copies all zeros on the input tape to the output tape until it reads a symbol
a �= 0. Then M writes ι(w) iff

(∃u ∈ dom(νN)) ι(w) � uη(p, u).

Proof of Theorem 5:
Proof. κmc ≤ κc: Let κmc(p) = K. As dom(ν∗) is r.e., there is a Type-2 machine
that on input p computes a sequence r ∈ Σω such that ι(w) � r iff

(∃ι(w′) � p)(∃w′′ ∈ dom(ν∗)) {u | ι(u) � w} = {u | ι(u) � w′} ∪ {u | ι(u) � w′′}.
κc ≤ κun: By theorem 1 κc ≤ ψun for computably Hausdorff spaces. Further-

more if p is a κc-name of K then K⊆θ∗(w) for any ι(w) � p.
κun ≤ κc: Let κun〈p, w〉 = K where w lists {v1, . . . , vk}. Then Kc = ψun(p)

and K⊆B :=
⋃{ν(vi) | i = 1, . . . k} As X is computably locally compact,

there is a Type-2 machine M that on input (v1, . . . , vk) computes a κ∗-name
〈q1, . . . , qk〉 ∈ Σω such that κc(qi) = ν(vi) for all i ∈ {1, . . . , k}. By Lemma 2
from 〈q1, . . . , qk〉 a sequence q ∈ Σω can be computed with κc(q) = B. By
Lemma 3 the mapping (K, B) → K ∩ B is (ψun, κc, κc)-computable. As K =
K ∩ B we have shown κun ≤ κc.

κnet ≤ κc: Let κnet(p) = K. There is a Type-2 machine that on input p
computes a sequence r such that ι(w) � r iff

(∃ι(w′) � p) θ∗(w′)⊆θ∗(w).

κc ≤ κnet: Let κc(p) = K, where p is a list of {wi ∈ dom(θ∗) | i ∈ N} and F
the (κc, θun, θ∗)-computable mapping from Lemma 7 with

U ∈ F(K, O) : ⇐⇒ K⊆U⊆Ū⊆O.

There is a Type-2 machine that on input p

– starts with output ι(w0).
– if ι(w′

0)ι(w
′
1) . . . ι(w′

i) has been written on the output tape, then M writes
some ι(w′

i+1) such that

θ∗(w′
i+1) ∈ F(κc(p), θ∗(w′

i) ∩ θ∗(wi+1)).

A New Approach to Graph Recognition and
Applications to Distance-Hereditary Graphs�

Shin-ichi Nakano1, Ryuhei Uehara2, and Takeaki Uno3

1 Department of Computer Science, Faculty of Engineering, Gunma University, Gunma
376-8515, Japan

nakano@cs.gunma-u.ac.jp
2 School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa

923-1292, Japan
uehara@jaist.ac.jp

3 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan
uno@nii.jp

Abstract. Distance-hereditary graphs consist of the isometric graphs, and hence
contain trees and cographs. First, a canonical and compact tree representation of
the class is proposed. The tree representation can be constructed in linear time us-
ing two prefix trees. Usually, the prefix trees are used to maintain a set of strings.
The prefix trees in our algorithm are used to maintain the neighbors for each ver-
tex, which is new approach comparing to the other known results based on the
lexicographically bread first search. Several efficient algorithms for the distance-
hereditary graphs based on the canonical tree representation are proposed; lin-
ear time algorithms for graph recognition and graph isomorphism, and efficient
enumeration algorithm. An efficient coding for the tree representation is also pre-
sented, which requires 4n bits for a distance-hereditary graph of n vertices, and
3n bits for a cograph. The results improve previously known upper bounds of the
number of distance-hereditary graphs and cographs.

Keywords: algorithmic graph theory, cograph, distance-hereditary graph, prefix
tree, tree representation.

1 Introduction

Recently, data-driven computations are studied in, e.g., data mining and bioinformatics.
We process over tons of data, find knowledge automatically, and classify them in these
areas. To achieve the purpose efficiently, we sometimes assume a structure of the data,
which is observed implicitly or explicitly. More precisely, we propose a possible struc-
ture for the data, enumerate them, and test if the model is feasible. The frequent pattern
discovery problem in data mining is a typical example, and widely investigated (see,
e.g., [16,19,29,1]). Once the feasible model is fixed, we move our attention to solve
the problem over the structured data. However, those structures are relatively primitive
from the graph algorithmic point of view, and there are many unsolved problems for
more complex structure.

� This work was partially done while the second and third authors were visiting ETH Zürich,
Switzerland.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 115–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

116 S. Nakano, R. Uehara, and T. Uno

We have to achieve three efficiencies to deal with the complex structure efficiently;
the structure has to be represented efficiently, essentially different instances have to be
enumerated efficiently, and the property of the structure has to be checked efficiently.
There are few results from this viewpoint except trees [22,23,25,13,20].

Recently, a variety of graph classes have been proposed and studied so far [4,14].
Since an early work by Rose, Tarjan, and Lueker [27], the lexicographic breadth first
search (LexBFS) plays an important role as a basic tool to recognize several graph
classes. The LexBFS gives us a simple ordering of vertices based on the neighbor-
preferred manner (see [9] for further details).

In this paper, instead of LexBFS, we use a prefix tree, which represents a set of
strings and supports to check whether a given string is included or not in the set. The
notion is also known as trie [21]. We define a string to represent the open and closed
neighbors, which will be defined later, and maintain those strings in two prefix trees.
Using two prefix trees we can find a set of vertices having identical (or similar) neigh-
bors efficiently. This is a quite different approach to the previously known algorithms
based on LexBFS [11,5].

We apply the idea to distance-hereditary graphs. Distance in graphs is one of the
most important topics in algorithmic graph theory, and there are many areas that have
some geometric property. Distance-hereditary graphs were characterized by Howorka
[17] to deal with the geometric distance property called isometric, which means that
all induced paths between pairs of vertices have the same length. More precisely, a
distance-hereditary graph is the graph that any pair of vertices u and v has the same
distance on any vertex induced subgraph containing u and v. Intuitively, any longer
path between them has a shortcut on any vertex induced subgraph.

Some characterizations of distance-hereditary graphs are given [2,12,15]. Especially,
Bandelt & Mulder [2] showed that any distance-hereditary graph can be obtained from
K2 by a sequence of operations called “adding a pendant vertex” and “splitting a vertex.”
Many efficient algorithms on distance-hereditary graphs are based on the characteriza-
tion [7,3,6,26,18,8]. We will show that the sequence can be found efficiently on the
prefix trees that represent open and closed neighbors of each vertex.

In this paper, there are two key contributions for the class of distance-hereditary
graphs. First, we propose a compact and canonical tree representation. This is a natural
generalization for the tree representation of the class of cographs. Secondly, we show a
linear time and space algorithm that constructs the tree representation for any distance-
hereditary graph. To achieve the linear time and space, two prefix trees for open and
close neighbors play important roles. The results have the following applications.

(1) The graph isomorphism problem can be solved in linear time and space. This is
conjectured by Spinrad in [28, p.309], but it was not explicitly given.

(2) The recognition problem can be solved in linear time and space. Our algorithm is
much simpler than the previously known recognition algorithm for the class (see [11,
Chapter 4] for further details); the original Hammer & Maffray’s algorithm [15] fails in
some cases, and Damiand, Habib, and Paul’s algorithm [11] requires to build the cotree
of a cograph in linear time. The cotree of a cograph can be constructed in linear time by
using a classic algorithm due to Corneil, Perl, and Stewart [10], or a recent algorithm
based on multisweep LexBFS approach by Bretscher, Corneil, Habib, and Paul [5].

A New Approach to Distance-Hereditary Graphs 117

(3) For given n, all distance-hereditary graphs with at most n vertices can be enumerated
in O(n) time per graph with O(n2) space.

(4) We propose an efficient encoding of a distance-hereditary graph. Any distance-
hereditary graph with n vertices can be represented in at most 4n bits. This encoding
gives us a upper bound of the number of distance-hereditary graphs of n vertices: there
are at most 24n non-isomorphic distance-hereditary graphs with n vertices. Applying
the technique to cographs, each cograph of n vertices can be represented in at most 3n
bits, and hence the number of cographs of n vertices is at most 23n. They improve the
previously known upper bounds; both are 2O(n log n) [28, p.20,p.98].

Due to space limitation, proofs and some details of algorithms are omitted.

2 Preliminaries

The set of the open neighbors of a vertex v in a graph G = (V, E) is the set N(v) = {u ∈
V | {u, v} ∈ E}. We denote the closed neighbors N(v) ∪ {v} by N[v]. Throughout the
paper, we denote by n := |V | and m := |E|. For a vertex subset U of V , we denote by
N(U) the set {v ∈ V | v ∈ N(u) for some u ∈ U}, and by N[U] the set {v ∈ V | v ∈
N[u] for some u ∈ U}. A vertex set C is a clique if all pairs of vertices in C are joined
by an edge in G. If a graph G = (V, E) itself is a clique, it is said to be complete, and
denoted by Kn. Given a graph G = (V, E) and a subset U of V , the induced subgraph by
U, denoted by G[U], is the graph (U, E′), where E′ = {{u, v} | u, v ∈ U and {u, v} ∈ E}.
For a vertex w, we sometimes denote the graph G[V \ {w}] by G − w for short. Two
vertices u and v are said to be twins if N(u) \ {v} = N(v) \ {u}. For twins u and v, we
say that u is a strong sibling of v if {u, v} ∈ E, and a weak sibling if {u, v} � E. We
also say strong (weak) twins if they are strong (weak) siblings. If a vertex v is one of
the strong or weak twins with another vertex u, we simply say that they are twins, and
v has a sibling u. Since twins make the transitive relation, we say that a vertex set S
with |S | > 2 is also strong (weak) twins if each pair in S consists of strong (weak)
twins. For two vertices u and v, the distance of the vertices, denoted by d(u, v), is the
minimum length of the paths joining u and v. We here extend the neighbors recursively
as follows: For a vertex v in G, we define N0(v) := {v} and N1(v) := N(v). For k > 1,
Nk(v) := N(Nk−1(v)) \ (∪k−1

i=0 Ni(v)). That is, Nk(v) is the set of vertices of distance k
from v.

The following operations for a graph play an important role; (α) pick a vertex x in
G and add a new vertex x′ with an edge {x, x′}, (β) pick a vertex x in G and add x′

with edges {x, x′} and {x′, y} for all y ∈ N(x), and (γ) pick a vertex x in G and add x′

with edges {x′, y} for all y ∈ N(x). For the operation (α), we say that the new graph is
obtained by attaching a pendant vertex x′ to the neck vertex x. In (β) and (γ), it is easy
to see that x and x′ are strong and weak twins, respectively. In the cases, we say that the
new graph is obtained by splitting the vertex x into strong and weak twins, respectively.
It is well known that the class of cographs is characterized by the operations as follows:

Theorem 1. A connected graph G with at least two vertices is a cograph iff G can be
obtained from K2 by a sequence of operations (β) and (γ).

118 S. Nakano, R. Uehara, and T. Uno

The operations are also used by Bandelt and Mulder to characterize the class of
distance-hereditary graphs [2]:

Theorem 2. A connected graph G with at least two vertices is distance-hereditary iff
G can be obtained from K2 by a sequence of operations (α), (β), and (γ).

In (α), a pendant vertex is attached, and in (β) and (γ), a vertex is split into two siblings.
We also use the following generalized operations for k ≥ 1; (α′) pick a neck x in G and
add k pendants to x, (β′) pick a vertex x in G and split it into k + 1 strong siblings, and
(γ′) pick a vertex x in G and split it into k + 1 weak siblings.

For a vertex set S ⊆ V of G = (V, E) and a vertex s ∈ S , the contraction of S into
s is obtained by: (1) for each edge {v, u} with v ∈ S \ {s} and u ∈ V \ S , add an edge
{u, s} into E. (2) Multiple edges are replaced by a single edge. (3) remove all vertices in
S \ {s} from V and their associated edges from E.

Let v1, v2, . . . , vn be an ordering of a vertex set V of a connected distance-hereditary
graph G = (V, E). Let Gi denote the graph G[{vi, vi+1, . . . , vn}] for each i. Then the or-
dering is pruning sequence if Gn−1 is K2 and Gi+1 is obtained from Gi by either pruning
a pendant vertex vi or contracting some twins vi and v ∈ Gi+1 into v for each i < n − 1.
For a connected cograph G, the pruning sequence of G is defined similarly with only
contractions of twins.

Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic iff there is a one-to-one
mapping φ : V → V ′ such that {u, v} ∈ E iff {φ(u), φ(v)} ∈ E′ for every pair of vertices
u, v ∈ V . We denote by G ∼ G′ if they are isomorphic.

2.1 Open and Closed Prefix Trees and Basic Operation

We here introduce the prefix trees, which are also called tries, of open and closed neigh-
bors. The details can be found in standard textbooks; see, e.g., [21]. A prefix tree is a
rooted tree T ; hereafter, the vertices of prefix trees are called nodes to distinguish from
the vertices in G. Except the root, each node in T is labeled by a vertex in G, and some
nodes are linked to vertices in G. We note that two or more nodes in T can have the
same label (the name of a vertex of G), but each vertex in G has exactly one pointer to a
node in T . The labels of a prefix tree satisfy; (1) if a node with label v is the parent of a
node of label v′, it holds v′ > v, and (2) no two children of a node have the same label.
We will maintain N(v) and N[v] = N(v) ∪ {v} for all vertices in G by two prefix trees as
follows. The path of a prefix tree from a node x to the root gives a set of labels (or vertex
set in G), denoted by set(x). If the node x is pointed by a vertex v, then we consider that
set(x) is associated with v. In this manner, two families of open/closed neighbors are
represented by two prefix trees, by considering the neighbor set as the associated set.
We call them the open/closed prefix trees, and denoted by T (G) and T [G], respectively.
The prefix trees T (G) and T [G] for the graph G in Fig. 1 are depicted in Fig. 2. Except
the root, each square is the node labeled by a vertex in G. Each circle indicates a vertex
v in G, and the thick arrows are pointers to the corresponding node. Since we can make
that every leaf of the prefix tree is pointed by at least one vertex, the size of prefix tree is
O(n+m). With suitable data structure, we can get the parent of a node in constant time,
but to find a specified child (by a label) takes linear time in the number of children.

A New Approach to Distance-Hereditary Graphs 119

1

15

14

13

12

11

2

3

10

9

8

7

4

6

5

Strong twins

Weak twins

Pendants
 and
 Neck

1

13

11

10

9

7

4

2

Strong

P & N

13

11

9

7

4

2

11

9

7

4

7

4

4

K2

P & N
P & N

Weak

(1) (2) (3)

(4)(5)(6)

Fig. 1. A distance-hereditary graph and its contracting/pruning process

54

5

T(G)

1

2

4

5

6

3

9

4

5

6

10 11

13

12

13

14

15

11 1211

12

7

8

9

10

1

23

456

7 8

9

10

11 12

13

14 15

T[G]

7

2

3

4

5

6

10

13

14

15

9

8 9

1011

12

14

1

2 3

4 5 6

7 8

9

10

11 12

13

14 15

1

8

15

10

11

12

2

3

4

5

6

7

4

5

6

11

12

8

9

7

11 12

10

9

13

102

3

7

8

9

10

6

7

8

9

10

6

4

5

6

7

8

9

10

9

10

10

Fig. 2. Two prefix trees for G in Fig. 1(1)

Lemma 1. For any given graph G = (V, E), T (G) and T [G] are constructed in O(n+m)
time and space.

Observation 3. Let u and v be any vertices in G. Then (1) u is pendant of the neck v iff
a child of the root of T (G) has label v and pointed by u, (2) u and v are strong twins iff
u and v point to the same node in T [G], and (3) u and v are weak twins iff u and v point
to the same node in T (G).

During the algorithm, we have to update prefix trees efficiently. Especially, removing a
node from a prefix tree is a key procedure, which is described in Algorithm 1.

Lemma 2. For a graph G = (V, E) and a vertex w, T (G−w) and T [G−w] are obtained
from T (G) and T [G], respectively, by Algorithm 1.

A node x pointed by the vertex w has an ancestor with label v iff w ∈ N(v) or w ∈ N[v].
Thus the number of ancestors of the node pointed by w is at most |N[w]|, and hence
steps 1 and 2 can be done in O(|N[w]|) time. Moreover, the number of nodes with label
w is bounded by |N[w]|, and the sum of the number of their children is also bounded
by |N[w]| since a node of label w appears only on the path from the root to the node

120 S. Nakano, R. Uehara, and T. Uno

Algorithm 1. Delete a vertex from a prefix tree
Input : An (open or closed) prefix tree T , vertex w to be deleted;
Output: Prefix tree T ′ which does not contain w;
let x be the node linked to the vertex w; // Remove N[w] in steps 1, 2.1

while x is a leaf pointed by no vertices do delete x and set x to be its parent;2

foreach node x with label w do3

// Remove all ws from N(v) or N[v]
attach the list of pointers from vertices to x to the list of the parent y of x;4

connect each child of x to y as a child of y;5

while y has two children z1, z2 with same label do6

unify z1 and z2 to a node z, and replace z1 and z2 by z;7

update y by z;8

delete x from T ;9

return T .10

pointed by v ∈ N[w]. Hence the loop from steps 3 to 9 will be repeated at most |N[w]|
times. Steps 4 and 9 can be done in O(1) time. Therefore, our main task is to perform
step 5 and the while loop from step 6 efficiently. We call the step 7 unification of z1 and
z2. The following lemma is a general property of a prefix tree.

Lemma 3. Suppose that Algorithm 1 deletes all vertices from G = (V, E). Then the
total number of unifications is O(n + m).
�
For each y, the unification cost of y is time complexity for finding the pair z1 and z2. We
will show that the unification cost of each y can be O(1).

3 Canonical Trees

We introduce the notion of the DH-tree, which is a canonical tree representation of a
distance-
hereditary graph. First, we define the DH-tree derived from a distance-hereditary graph
G. The derivation is constructive, and the resultant tree is uniquely determined up to iso-
morphism. But it can be redundant. Hence we next introduce the normalized DH-tree
obtained by reducing the redundancy which is also uniquely determined up to isomor-
phism. Hence it will be used as the canonical and compact representation of a distance-
hereditary graph.

We will deal with K1,K2 as special distance-hereditary graphs. Hereafter, we assume
that G = (V, E) is a connected distance-hereditary graph with at least three vertices. For
given G, we define three families of vertex sets as follows;

S := {S | x, y ∈ S iff N[x] = N[y] and |S | ≥ 2},
W := {W | x, y ∈ W iff N(x) = N(y), |W | ≥ 2, {x, y} � E, and |N(x)| = |N(y)| > 1}, and

P := {P | x, y ∈ P iff x is a pendant vertex and y is its neck}.

Lemma 4. (1) Each set P ∈ P contains exactly one neck with associated pendants. (2)
Each v ∈ V belongs to either (a) exactly one set in S ∪W ∪ P, or (b) no set in the
families. (3) For any distance-hereditary graph G, S ∪W ∪P � ∅.

A New Approach to Distance-Hereditary Graphs 121

We first introduce the notion of the DH-tree derived from a distance-hereditary graph
G, which is a rooted ordered tree, and each inner node1 has a label. The label of an
inner node is one of {s, w, p}, which indicate strong/weak twin, and pendant with neck,
respectively. The DH-tree derived from G is defined recursively from leaves to the root.
We have three basic cases:

(1) The DH-tree derived from K1 is defined by a single root with no label.

(2) When G ∼ Kn with n ≥ 2, the DH-tree of G is defined by a single root with label s
and n leaves with no labels. The tree represents that Kn can be obtained from a single
vertex K1 by splitting it into n strong siblings.

(3) The graph G is a star with n > 2 vertices which has a center vertex with n − 1
pendant vertices. In the case, the DH-tree derived from G is defined by a single root
with label p, and n leaves with no labels. We remind that the tree is ordered. In the tree,
the leftmost child of a node with label p indicates the neck. That is, the leftmost leaf
corresponds to the center of the star, and n− 1 leaves correspond to the n− 1 pendants.

We note that K2 is a clique, and not a star. Hence the root with label p of a DH-tree
has at least three children. We also note that the number of leaves of the tree is the
number of vertices in G. This is an invariant for the DH-tree.

We now define the DH-tree T derived from G = (V, E) with |V | = n > 2 in general
case. We assume that G is neither Kn nor a star. We start with independent n leaves of
T . Each leaf in T corresponds to a vertex in G, and we identify them hereafter. Then,
by Lemma 4(2), we can group the leaves by three kinds of families S,W, and P. Then,
S∪W∪P � ∅ by Lemma 4(3). Let S be any set in S. Then we make a common parent
with label s of the leaves. We repeat this process for each S in S. For each set W inW,
we similarly make a common parent with label w of them. Let P be any set in P. Then,
P contains exactly one neck v and some pendants u. We make a common parent with
label p of them, and make the neck v the leftmost child of the parent. The pendants are
placed on the right of the neck in arbitrary ordering.

After the process, we contract each vertex set in S∪W into a new vertex on G. Each
new vertex corresponds to a parent in the resultant T and we identify them. For each
P ∈ P, we also prune all pendant vertices except the neck in P. The neck corresponds
to the parent of the nodes in P. We repeat the process until the resultant graph becomes
one of the basic cases, and we obtain the DH-tree T derived from G = (V, E).

An example of the DH-tree derived from G in Fig. 1 is depicted in Fig. 3. The con-
traction of twins is described by removing all siblings except the smallest one. Each
node in the DH-tree corresponds to a vertex in the graph in Fig. 3.

The DH-tree derived from a distance-hereditary graph can be redundant: As a rule
(β) can be replaced by (β′), if a node with label “w” is the parent of the other nodes with
label “w,” they can be weak siblings (in Fig. 4, the case (1) can be replaced by (2)). The
same reduction can be applied to the nodes with label “s”.

Hence we can introduce the notion of the normalized DH-tree of a distance-
hereditary graph G, which is obtained from the DH-tree derived from G by applying
the reduction as possible as we can. The reduction can be done by the standard depth

1 We will use the notation “node” for a DH-tree to distinguish from a “vertex” in G.

122 S. Nakano, R. Uehara, and T. Uno

4 5 6

2 3

2
1

4 2

4 11

11 12

4 7

7

9

10 1514

10
9

9

1387

4

pp

p

p

s

s

s

w

ww

w

s

Fig. 3. DH-tree T derived from the
graph in Fig. 1(1)

Normalized DH-tree of G

a b

c

(1)

(2)

4

11 12

4 7

9
87

4

4 5 6

2 3

2
1

4 2

10 1514

10
9

9
13

s

ww

p p

s

p

s p

s

w

w

a b c

w

Fig. 4. Reduction rule, and the compact DH-tree

first search. Hence, the normalized DH-tree T of G can be obtained from the DH-tree
T ′ derived from G in O(|T |) = O(|T ′|) = O(n) time and space.

Theorem 4. The normalized DH-tree of a connected distance-hereditary graph is
canonical. That is, the normalized DH-tree T for a connected distance-hereditary graph
G is uniquely determined, and the original distance-hereditary graph G is uniquely con-
structed from the normalized DH-tree T .

Corollary 1. The normalized DH-tree T for a distance-hereditary graph G = (V, E)
requires O(|V |) space.
�

Note: By Theorems 1 and 2, the normalized DH-tree for a cograph only consists of the
nodes of labels s and w. The same notion for a cograph appears in many literature as the
cotree, e.g., [5,10,11]. Since only the nodes of label p require the ordering of children,
cotree of a cograph is the rooted non-ordered tree.

4 Linear Time Construction of Canonical Trees

In this section, we give a linear time algorithm for constructing the DH-tree of a
distance-hereditary graph. From Lemma 4(2) and Observation 3, a set W ∈ W (resp.,
S ∈ S) corresponds to a set of vertices pointing to the same node in T (G) (resp., T [G]).
From Lemma 4(1), a set P ∈ P contains one neck v. Then, by Lemma 4(1), (2), and
Observation 3, the set P corresponds to a node x of depth 1 in T (G) such that (1) x has
label v, (2) x is pointed by at least one vertex in G, and (3) all vertex in P \ {v} points to
x. The outline of the construction of the canonical tree for a distance-hereditary graph
is; (1) construct the open and closed prefix trees, (2) if G ∼ Kn or G is a star, complete
T and halt, (3) produce nodes of T for vertices in P ∪ S ∪W, (4) contract twins and
prune pendants with updates of prefix trees T (G) and T [G], and go to (2). Now we fix
the families P, S, andW. Let w be a vertex which will be removed from G since it is
one of twins or pendant. Hereafter, we assume that w is the largest vertex among them.
We have two cases.

Twin: We first assume that w is the largest twin that has a sibling w′ with w′ < w.

A New Approach to Distance-Hereditary Graphs 123

Lemma 5. Let x be any node of prefix tree with label w, and y the parent of x. Then x
is the largest node among the children of y.

By Lemma 5, no unification occurs in the while loop in Algorithm 1, since all children
of x are larger than any other child of y. Thus we have the following:

Theorem 5. The prefix trees T (G − w) and T [G − w] can be obtained from T (G) and
T [G] in O(|N(w)|) time, respectively.

Pendant: Next we assume that w is a pendant. For the maintenance of a pendant vertex
in a distance-hereditary graph, we introduce a technical vertex ordering, called levelwise
laminar ordering (LL-ordering, for short). We here introduce notations N+v (u), N−v (u),
and N0

v (u) as follows. Let v be a vertex in G = (V, E). Then N+v (u) := Nd(u,v)+1(v)∩N(v),
N−v (u) := Nd(u,v)−1(v)∩ N(v), and N0

v (u) := Nd(u,v)(v)∩ N(v). We define N−u (u) := ∅. Due
to space limitation, we only state here the properties of the LL-ordering below:

(L1) For any vi ∈ Nk(r) and v j ∈ Nk′ (r), i < j holds if 0 ≤ k < k′.
(L2) For any vi, v j ∈ Nk(r), k ≥ 1, i < j holds if N−r (v j) ⊂ N−r (vi).
(L3) Let vi, v j be any vertices in Nk(r), k ≥ 1, i < j such that N−r (vi) = N−r (v j).

Then we have N−r (vi) = N−r (v j) = N−r (v) for all vertices vi < v < v j.

The LL-ordering is a partial order weaker than the order by LexBFS. Thus our algorithm
runs under weaker assumption than the previous results in [2,11]. If the graph G is a
distance-hereditary graph, G has the LL-ordering, and it can be computed in linear time.
We also can remove a pendant or contract twins without violating the LL-ordering.

We are ready to remove the largest pendant w. Let w′ be the neck of w. Vertices are
ordered in the LL-ordering (r = v1, v2, . . . , vn) from the root r in V . Then we have two
subcases. First case is the special case that w = r; in the case, w is the only pendant,
since there are no other pendant larger than w. Due to lack of space, we omit the case,
and we now assume that we aim to remove the pendant w that is not the root.

Lemma 6. Let w be the largest pendant in Ni(r) with i ≥ 1 (for fixed P). We delete w
from T (G) and T [G] by Algorithm 1. Then the unification cost is always O(1).

Theorem 6. If G is a distance-hereditary graph, the DH-tree T derived from G can be
constructed in O(|V | + |E|) time and space.

5 Applications

Hereafter, we assume that given graph G = (V, E) is a distance-hereditary graph.

Theorem 7. (1) The recognition problem for distance-hereditary graphs can be solved
in O(n+m) time and space. (2) The graph isomorphism problem for distance-hereditary
graphs can be solved in O(n + m) time and space.

By the characterizations in [2], we have the following:

Corollary 2. For the following graph classes, we have the same results in Theorem 7:
cographs, bipartite distance-hereditary graphs.

124 S. Nakano, R. Uehara, and T. Uno

It is worth to remarking that our algorithm modified for a cotree is quite simple, since
we have no pendant vertices.

Enumeration: For given n, we efficiently enumerate each distance-hereditary graph
with at most n vertices exactly once as follows; (1) enumerate all unordered trees of
n leaves such that each inner node has at least two children,(2) for each tree obtained
in (1), enumerate all possible assignments of labels to all inner nodes, and (3) for each
label assignment in (2), enumerate all possible choices of one child as a neck for each
node with label p.Using the technique in [24], we have the following.

Theorem 8. Distance-hereditary graphs with at most n vertices can be enumerated in
O(n) time for each, with O(n2) space.

Compact encoding: We design an efficient encoding scheme for distance-hereditary
graphs. Our scheme encodes each distance-hereditary graphs G into only (at most) 4n
bits in O(m + n) time. Also one can decode from the string to G in O(m + n) time.

Given G, one can construct its normalized DH-tree T in O(m + n) time. The number
of leaves in T is n. Let ni be the number of inner nodes in T . Since each inner node has
two or more children, ni ≤ n − 1 holds.

We first encode T into a string S 1 with ignoring labels, then encode the labels into a
string S 2. The resulting string S 1 + S 2 has enough information to reconstruct T and so
does G.

Given a normalized (ordered) DH-treeT we traverseT starting at the root with depth
first manner. If we go down an edge of T then we code it with 0, and if we go up an
edge then we code it with 1. Thus we need two bits for each edge in T . The length of
the resulting bit string is 2(n + ni − 1) ≤ 4n − 4 bits. For instance, the bit string for the
tree in Fig. 4 is

000010101100010110111010110010100010010101110111

We can save ni bits from the string above as follows. For each inner node v, after
traversing v’s first child and its descendant with depth first manner, we return back to v
again then always go “down” to v’s second child. Note that each inner node has two or
more children. Thus we can omit this “down” to its second child for each inner node.
In the following bit string those ni = 10 bits are underlined.

000010101100010110111010110010100010010101110111

Thus we need only 2(n+ ni − 1) − ni ≤ 3n− 3 bits. Let S 1 be the resulting bit string.
Then we encode the labels of T as follows. Note that each inner node has one label

among {s, w, p}, and each leaf has no label. We are going to store those labels in preorder
with one bit for each label.

Let v be an inner node of T except for the root. Let u be the parent node of v. We
show that if the label of u is given then the label of v has only two choices. By properties
of the DH-tree, if the label of u is s, then the label of v is not s. Similarly, if the label of
u is w, then the label of v is not w. If the label of u is p, we have two subcases. If v is the
leftmost child of u, then the label of v is not p, otherwise the label of v is not w. (Note

A New Approach to Distance-Hereditary Graphs 125

that two or more neighbors are needed for weak twins.) Thus in any case the label of
node v has only two choices.

Also the label of the root is either s or p since we assume that given graph is con-
nected. Thus we can encode the label of each inner node with only one bit in preorder.
The detail is as follows.

If the label of the root is s then we encode it with 0, otherwise the label is p and we
encode it with 1. For each inner node v except for the root we have the following three
cases. Let u be the parent node of v.
Case 1: The label of u is s. If the label of v is w then we encode it with 0, otherwise the
label is p and we encode it with 1.
Case 2: The label of u is w. If the label of v is p then we encode it with 0, otherwise the
label is s and we encode it with 1.
Case 3: The label of u is p. We have two subcases.
Case 3(a): v is the leftmost child of u. If the label of v is s then we encode it with 0,
otherwise the label is w and we encode it with 1.
Case 3(b): v is not the leftmost child of u. If the label of v is s then we encode it with
0, otherwise the label is p and we encode it with 1.

In this way we can encode the label of each inner node with only one bit. By con-
catenating those bits in preorder we can encode the labels of inner nodes into a bit string
of ni ≤ n − 1 bits. Let S 2 be the resulting string.

Thus we have encoded a distance-hereditary graph into a string S 1 + S 2 with 2(n +
ni − 1) ≤ 4n − 4 bits. Now we have the following Theorem and Corollary.

Theorem 9. A distance-hereditary graph G can be represented in 4n bits.

Corollary 3. The number of distance-hereditary graphs of n vertices is at most 24n.

Using a simpler case analysis, we also have the following corollary.

Corollary 4. A cograph G can be represented in 3n bits, and the number of cographs
of n vertices is at most 23n.

References

1. T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering Frequent Substructures in Large
Unordered Trees. In Discovery Science (DS ’03), pages 47–61. Lecture Notes in Artificial
Intelligence Vol. 2843, Springer-Verlag, 2003.

2. H.-J. Bandelt and H.M. Mulder. Distance-Hereditary Graphs. Journal of Combinatorial
Theory, Series B, 41:182–208, 1986.

3. A. Brandstädt and F.F. Dragan. A Linear-Time Algorithm for Connected r-Domination and
Steiner Tree on Distance-Hereditary Graphs. Networks, 31:177–182, 1998.

4. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.
5. A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time LexBFS Cograph

Recognition Algorithm. In Graph-Theoretic Concepts in Computer Science (WG 2003),
pages 119–130. Lecture Notes in Computer Science Vol. 2880, Springer-Verlag, 2003.

126 S. Nakano, R. Uehara, and T. Uno

6. H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill-in and
treewidth for distance hereditary graphs. Discrete Applied Mathematics, 99:367–400, 2000.

7. M.-S. Chang, S.-Y. Hsieh, and G.-H. Chen. Dynamic Programming on Distance-Hereditary
Graphs. In Proceedings of 8th International Symposium on Algorithms and Computation
(ISAAC ’97), pages 344–353. Lecture Notes in Computer Science Vol. 1350, Springer-
Verlag, 1997.

8. M.-S. Chang, S.-C. Wu, G.J. Chang, and H.-G. Yeh. Domination in distance-hereditary
graphs. Discrete Applied Mathematics, 116:103–113, 2002.

9. D.G. Corneil. Lexicographic Breadth First Search — A Survey. In Graph-Theoretic Con-
cepts in Computer Science (WG 2004), pages 1–19. Lecture Notes in Computer Science
Vol. 3353, Springer-Verlag, 2004.

10. D.G. Corneil, Y. Perl, and L.K. Stewart. A Linear Recognition Algorithm for Cographs.
SIAM Journal on Computing, 14(4):926–934, 1985.

11. G. Damiand, M. Habib, and C. Paul. A Simple Paradigm for Graph Recognition: Application
to Cographs and Distance Hereditary Graphs. Theoretical Computer Science, 263:99–111,
2001.

12. A. D’Atri and M. Moscarini. Distance-Hereditary Graphs, Steiner Trees, and Connected
Domination. SIAM Journal on Computing, 17(3):521–538, 1988.

13. R. Geary, N. Rahman, R. Raman, and V. Raman. A Simple Optimal Representation for
Balanced Parentheses. In Symposium on Combinatorial Pattern Matching (CPM), pages
159–172. Lecture Notes in Computer Science Vol. 3109, Springer-Verlag, 2004.

14. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathe-
matics 57. Elsevier, 2nd edition, 2004.

15. P.L. Hammer and F. Maffray. Completely Separable Graphs. Discrete Applied Mathematics,
27:85–99, 1990.

16. L. B. Holder, D. J. Cook, and S. Djoko. Substructure Discovery in the SUBDUE System.
In Workshop on Knowledge Discovery in Databases, pages 169–180. AAAI Workshop on
Knowledge Discovery in Databases, AAAI, 1994.

17. E. Howorka. A Characterization of Distance-Hereditary Graphs. Quart. J. Math. Oxford (2),
28:417–420, 1977.

18. S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, and M.-T. Ko. Efficient Algorithms for the Hamiltonian
Problem on Distance-Hereditary Graphs. In COCOON 2002, pages 77–86. Lecture Notes in
Computer Science Vol. 2387, Springer-Verlag, 2002.

19. A. Inokuchi, T. Washio, and H. Motoda. An Apriori-Based Algorithm for Mining Frequent
Substructures from Graph Data. In European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), pages 13–23. Lecture Notes in Computer Sci-
ence Vol. 1910, Springer-Verlag, 2000.

20. D. E. Knuth. Generating All Trees, volume 4 of The Art of Computer Programming. Addison-
Wesley, fascicle 4 edition, 2005.

21. D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley Publishing Company, 2nd edition, 1998.

22. J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses, Static Trees
and Planar graphs. In Proc. 38th ACM Symp. on the Theory of Computing, pages 118–126.
ACM, 1997.

23. J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees.
SIAM Journal on Computing, 31:762–776, 2001.

24. S. Nakano and T. Uno. Constant Time Generation of Trees with Specified Diameter. In
Graph-Theoretic Concepts in Computer Science (WG 2004), pages 33–45. Lecture Notes in
Computer Science Vol. 3353, Springer-Verlag, 2005.

25. S.-I. Nakano. Efficient Generation of Plane Trees. Information Processing Letters,
84(3):167–172, 2002.

A New Approach to Distance-Hereditary Graphs 127

26. F. Nicolai and T. Szymczak. Homogeneous Sets and Domination: A Linear Time Algorithm
for Distance-Hereditary Graphs. Networks, 37(3):117–128, 2001.

27. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on
Graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

28. J.P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.
29. M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. In 8th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 71–80. ACM, ACM Press, 2002.

Finding a Duplicate and

a Missing Item in a Stream

Jun Tarui

Department of Info and Comm Eng
University of Electro-Comm

Chofu, Tokyo 182-8585 Japan
tarui@ice.uec.ac.jp

Abstract. We consider the following problem in a stream model: Given
a sequence a = 〈a1, a2, . . . , am〉 wich each ai ∈ [n] = {1, . . . , n} and
m > n, find a duplicate in the sequence, i.e., find some d = ai = al

with i �= l by using limited s bits of memory and r passes over the in-
put sequence. In one pass an algorithm reads the input sequence a in
the order a1, a2, . . . , am. Since m > n, a duplicate exists by the pigeon-
hole principle. Muthukrishnan [Mu05a], [Mu05b] has posed the following
question for the case where m = n + 1: For s = O(log n), is there a solu-
tion with a constant number of passes? We have described the problem
generalizing Muthukrishnan’s question by taking the sequence length m
as a parameter. We give a negative answer to the original question by
showing the following: Assume that m = n + 1. A streaming algorithm
with O(log n) space requires Ω(log n/ log log n) passes; a k-pass stream-
ing algorithm requires Ω(n1/(2k−1)) space. We also consider the following
problem of finding a missing item: Assuming that n < m, find x ∈ [m]
such that x �= aj for 1 ≤ j ≤ n. The same lower bound applies for
the missing-item finding problem. The proof is a simple reduction to the
communication complexity of a relation. We also consider one-pass algo-
rithms and exactly determine the minimum space required. Interesting
open questions such as the following remain. For the number of passes of
algorithms using O(log n) space, show an ω(1) lower bound (or an O(1)
upper bound) for: (1) duplicate finding for m = 2n, (2) missing-item
finding for m = 2n, and (3) the case where we allow Las-Vegas type
randomization for m = n + 1.

Keywords: Data stream algorithm, communication complexity, finding
duplicate, finding missing item, pigeonhole principle, proof complexity.

1 Introduction

The duplicate finding problem as originally posed by Muthukrishnan [Mu05a],
[Mu05b, Section 1.3: Pointer and Chaser] or as more generally described in the
abstract is interesting by its simplicity in addition to its nature as a basic data
stream problem. As we wil see, it also leads to interesting questions in commu-
nication complexity.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 128–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding a Duplicate and a Missing Item in a Stream 129

The missing-item finding problem is in a sense dual to the duplicate-finding
problem. Muthukrishnan [Mu05b, Section 1.1: Finding Missing Numbers] dis-
cusses in detail an easier version where all items in a sequence are guaranteed
to be distinct. Our consideration will show how the problem gets harder when
this guarantee is dropped: We will see that our arguments for the duplicate
finding problem also applies for the missing-item finding problem. But we note
that there does not seem to be a general transformation of an algorithm for one
problem into an algorithm for the other.

In a stream model, processing massive data in one pass is important for ap-
plications where data sequentially arrives one after another, e.g., packets passing
through a router. Processing with a small number of multiple passes is impor-
tant, e.g., for database applications where massive data has been stored in such
a way that sequential access can be efficiently performed but random access
is slower. For more information about the data stream model of computation,
see a survey by Muthukrishnan [Mu05a], which includes more explanations of
motivations and an extensive list of references.

Finding a duplicate and a missing item respectively corresponds to finding
a crowded pigeonhole and a missing pigeon in the language of the pigeonhole
principle. We have not yet really investigated a connection, if any, of our results
and questions to the proof complexity of the pigeonhole principle. We only give
some remarks in the final section. We do follow the convention of using index i
for pigeons and j for pigeonholes.

2 Simple Algorithms

We explain some simple algorithms for duplicate finding; being aware of them
will be useful for us.

1. Assume that m = n+1. With random access as opposed to streaming access,
the following finds a duplicate with time O(n) and space O(log n). Consider
a1, . . . , an+1 as pointers to some index i ∈ [n], and thus consider the sequence a
as a linked list. Starting with an+1 traverse the list with two pointers p1 and p2.
In each step, the pointer p1 advances following one pointer hop and the pointer
p2 advances following two pointer hops. The list must contain a loop and the
two pointers collide somewhere inside the loop; whey they collide a duplicate
has been found.

2. Assume that m = n+1. The following is a two-pass streaming algorithm that
uses space O(

√
n log n). Identify [n] ∼= [

√
n] × [

√
n]. In the first pass, for each

l ∈ [
√

n] count the number of ai’s such that ai ∈ l × [
√

n] using
√

n counters;
thus find l ∈ [

√
n] such that l × [

√
n] contains a duplicate. In the second pass

find a duplicate using
√

n-bit vectors.
By identifying instead [n] ∼= [

√
n/ log n]× [

√
n log n], one can reduce the space

from O(
√

n log n) to O(
√

n logn). Similarly, with k ≥ 2 passes, one can find a
duplicate with space O(n1/k (log n)(k−1)/k).

130 J. Tarui

3. Assume that m = n+1. In the first pass, count the number of items in [n/2].
If the number exceeds n/2, then there is a duplicate in [n/2], and otherwise in
[n] − [n/2]. The binary search finds a duplicate with log2 n passes and space
O(log n).

4. Assume that m = 2n. Randomly choose an index i ∈ [m]. In one pass,
“ignore” all a1, . . . , ai−1, “remember” d = ai, and check if d occurs among
ai+1, . . . , am; if so, declare that a duplicate d is found, or else declare a fail-
ure. The algorithm fails only when ai is the last occurrence of d = ai in the
sequence. Each j ∈ [n] has at most one last occurrence, and hence the algorithm
succeeds with probability at least (m − n)/m = 1/2. The algorithm uses one
pass and O(log n) space. Note that it is a Las-Vegas-type randomized algorithm
in the sense that it never reports a non-duplicate as a duplicate.

5. Let m = n + 1. Assume that there is a promise that the input sequence
contains precisely one duplicate, or equivalently, {a1, . . . , an+1} = [n]. Then one
can find a duplicate in one pass and with space O(log n) by summing ai’s.

3 Limitations of Multiple-Pass Streaming Algorithms

We give a negative answer to Muthukrishnan’s original question by showing the
following.

Theorem 1. Assume that m = n + 1. A streaming algorithm with O(log n)
space requires Ω(log n/ log log n) passes. A k-pass streaming algorithm requires
Ω(n1/(2k−1)) space.

Proof. Assume that n is odd; similar arguments apply for the case when n is
even. Consider the following transformation into a communication game. We
consider only a restricted set of input sequences such that the first (n + 1)/2
items are all distinct and the last (n + 1)/2 items are all distinct. Give Alice the
set A = {a1, . . . , a(n+1)/2} and give Bob the set B = {a(n+1)/2 +1, . . . , an+1};
the task for Alice and Bob is to agree on some x ∈ (A ∩ B). An algorithm that
finds a duplicate using s bits of memory and r passes yields a 2r-round proto-
col for the game with at most s communication bits per round. But the game
above is the monotone Karchmer-Wigderson communication game for Majority
([KW92]; also explained in [KN97] and [BS90]). In the game Alice and Bob are
respectively given a maxterm (or a 1-input x) and a minterm (or a 0-input y)
with respect to Majority, and they have to find some l lying in the intersection of
the maxterm and the minterm (or find some index l such that xl = 1 and yl = 0).
An r(n)-round protocol with s = O(log n) communication bits per round for the
game is equivalent to a monotone circuit for Majority with depth 2r(n) and fan-
in at most 2s(n) = poly(n). Boppana [Bo86] has shown that such a circuit must
have depth at least Ω(log n/ log log n). H̊astad [H̊a87] gave the same lower bound
for nonmonotone circuits computing Majority. (Explanations can also explained

Finding a Duplicate and a Missing Item in a Stream 131

in, e.g., [BS90].) The space lower bound for k-pass algorithms also follows from
the size lower bounds by Boppana and H̊astad for depth-k circuits with un-
bounded fan-in AND/OR gates. ��

Remark 1. For x ∈ {0, 1}n, let p(x) denote the fraction of i’s with xi = 1; i.e.,
p(x) = |{i : xi = 1}|/n. Consider the following computation: Given x ∈ {0, 1}n

with the promise that either (1) p(x) ≥ 1/2 + ε(n) or (2) p(x) ≤ 1/2 − ε(n),
output 1 in case (1) and 0 in case (2). Ajtai and Ben-Or have shown that for
ε(n) = log−O(1) n, such computations can be done by depth-O(1) polynomial-
size monotone circuits ([AB84]; also explained in [BS90]). Thus if we write m =
(1 + ε(n))n, our argument above cannnot produce an ω(1) lower bound for the
number of passes for the case where ε(n) ≥ log−O(1)(n).

Applying essentially the same argument readily yields the following.

Propostion 1. The bounds in Theorem 1 apply for streaming algorithms for
finding a missing item for the case where m = n + 1.

Proof. Give Alice and Bob respectively the complement, with respect to [m], of
the set of the first and the last (m−1)/2 items. An algorithm for finding a missing
item yields a protocol solving the same task as in the proof of Theorem 1. ��

4 The Minimum Space Required for One-Pass Algorithms

Now we consider the space complexity of one-pass algorithms. We measure the
space complexity in a detailed way: We consider the minimum required number
of states of algorithms.

First consider the duplicate finding problem. For the one pass case, it is mean-
ingful to distinguish two kinds of tasks: (1) Find a duplicate d. (2) Find a dupli-
cate d and some witnessing indices, i.e., some pair i
= l such that ai = al = d. A
natural model for the one pass case is an automaton with one way access to the
input. But we give a lower bound in a more general model of an n-way read-once
branching program [BC82][RWY02]: an internal node labeled by index i reads
ai and branches out to at most n nodes depending on the value of ai; each sink
node corresponds to an answer, i.e., a duplicate d for Task 1, and d together
with i
= l satisfying ai = al = d for Task 2.

For any m > n, we have the following natural automata for the two tasks.
For Task 1, remember the set of the integers ai that have appeared so far; for
Task 2, remember the set of the pairs (i, ai) that have appeared so far. If the
next input item is one that has already appeared, declare that a duplicate has
been found. The number of the internal nodes in the corresponding branching
programs are respectively 2n and 1 + Σn

k=1n(n − 1) · · · (n − k + 1).
Razborov, Wigderson, and Yao [RWY02] have given an asymptotically tight

lower bound for Task 2: Read-once branching programs solving Task 2 must
have size 2Ω(n log n). Their argument is by considering a adversarial Markov chain
defined in terms of the branching program that it tries to fool.

132 J. Tarui

By a simple adversary argument that does not involve any probability dis-
tribution, we exactly determine the one-pass space complexity of Task 1. One
cannot do any better than the automaton given above:

Theorem 2. For any m > n (including m = ∞), if P is a read-once branching
program solving Task 1, then the number of non-sink nodes in P is at least 2n.

Proof. Let P be a read-once branching program solving Task 2. For each internal
node u in P , define the set K(u) ⊆ [n] to be the set of the items that node u has
“seen for sure”; that is, define K(u) ⊆ [n] to be the set of items k ∈ [n] satisfying
the following condition: for every path w in P from the source (a unique initial
node) to node u there exists an edge in w that is labeled by “al = k” for some l.
Note that if a program P correctly solves the problem, then whenever it declares
d as a duplicate in node u, it holds that d ∈ K(u). Also note that if e = (u, v) is
a directed edge labeled by al = k, i.e., a program at node u reads al and follows
e if al = k, then K(v) ⊆ (K(u) ∪ {k}).

We claim that the family {K(u) : u is an internal node in P} equals the fam-
ily of all subsets of [n]. To see the claim, assume, for the sake of contradiction,
that a set S ⊆ [n] does not appear as K(u) for any node u. For the source
node u0 in P , K(u0) = ∅, and hence the set S must be nonempty. Consider in-
puts produced by the following adversary: Starting from the initial state, when
the value of ai is queried at node u, fix it to be any element in the nonempty
set S − K(u). When inputs are determined this way, a program remains in
nodes u such that K(u) is a proper subset of S, and never produces an answer; a
contradiction. ��
Similar, even simpler arguments yield the following.

Propostion 2 For m = n+1, if P is a read-once branching program solving the
missing-item finding problem, then the number of nodes in P is at least 2m − 1.

5 One-Pass Las-Vegas Randomized Algorithms

Theorem 3. Assume that m = n + 1. Let P be a Las-Vegas-type randomized
read-once oblivious branching program that finds a duplicate with probability at
least half, where one fixed ordering of reading inputs applies for all the executions
of the program. Then the number of nodes in P is at least 2n/4−o(n).

Proof. The proof is by considering the distributional complexity of a deter-
ministic algorithm and using the min-max principle for a two-person game; this
method is a common one in communication complexity: The lower bound for
distributional complexity is a lower bound for randomized complexity.

Assume that m = n + 1 is even. Let An be the set of sequences a = 〈a1, . . . ,
an+1〉 with ai ∈ [n] such that (1) {a1, . . . , an+1} = [n], i.e., each j ∈ [n] appears,

Finding a Duplicate and a Missing Item in a Stream 133

and that (2) a unique duplicate in a appears once in {a1, . . . , a(n+1)/2} and once
in {a(n+1)/2+1, . . . , an+1}. Let αn be the uniform distribution on An.

Let P be a deterministic oblivious branching program that either finds a
duplicate or reports a failure. Let ε > 0 be an arbitrary real number. We show
that if the number of nodes in P is at most 2(1/4−2ε)n, then the probability with
respect to αn that P fails is at least 1/2 + ε for sufficiently large n. Note that
this yields the asserion of the theorem. Assume that P has at most 2(1/4−2ε)n

nodes and assume that n is large enough so that 2−εn ≤ ε.
Let v be a node in P such that P reaches v after reading the first half from

some a ∈ An, i.e., afer reading some a1, . . . , a(n+1)/2 such that ai ∈ [n] and
ai
= al for 1 ≤ i < l ≤ (n + 1)/2. Consider the set K(v), where K(v) is defined
as in the proof of Theorem 2. It is not hard to see that the following holds.

Prα[P reaches v] ≤ 2−(|K(v)|−1).

Since P has at most 2(1/4−2ε)n nodes, the probability that after reading the
items in the first half the program P reaches some node v such that |K(v)| ≥
(1/4 − ε)n + 1 is at most

2(1/4−2ε)n · 2−(1/4−ε)n = 2−εn ≤ ε,

where the last inequality is our assumption.
Consider the case where after reading a1, . . . , a(n+1)/2 the program P reaches

a node v such that |K(v)| ≤ (1/4 − ε)n. The program P is not allowed to make
any error when it reports a duplicate. Thus a duplicate that P can report after
visiting node v must be an element of K(v). But with respect to distribution αn

each ai in {a1, . . . , a(n+1)/2} is a unique duplicate with equal probability. Thus
the probability that P fails conditioned upon the event that P reaches v is at
least

(1/2)(n + 1) − (1/4 − ε)n
(1/2)(n + 1)

> 1 − (1/4 − ε)n
(1/2)n

= 1 − (1/2 − 2ε) = 1/2 + 2ε.

Thus the probability with respect to αn that P fails is at least 1/2 + ε. ��

Remark 2. The algorithm 5 in Section 2 finds a duplicate for all the sequences
in An above, but it does produce an error when applied for arbitrary inputs.

Remark 3. The lower bound for space in Theorem 3 applies for randomized
one-way communication complexity of the Karchmer-Wigderson game. This can
be seen fairly directly from the proof above: For each possible message v from
Alice to Bob, let K(v) be the set of x ∈ [n] such that there is some input sequnce
that makes Bob output x as an answer after receiving v; then K(v) has the same
meaning as in the proof above.

134 J. Tarui

6 Open Problems and Discussions

There are interesting open problems that remain. First note the trivial fact that
the duplicate finding problem and the missing-item finding problem does not get
harder as m gets bigger and as n gets smaller.

Open Problem 1. Consider a duplicate finding streaming algorithm that uses
O(log n) space. Show an ω(1) or better lower bound for the number of passes
for bigger m, e.g., for m = 2n; we do not see the way how allowing bigger m
makes the problem any easier. Similarly consider and show limitations for the
missing-item finding problem for smaller n, e.g., n = m/2.

Open Problem 2. Consider the duplicate finding problem when we allow
randomization. In particular, show an ω(1) or better lower bound for the number
of passes for the case where m = n + 1.

A naturally corresponding question in terms of communication complexity
is the following: Allow randomization in the Karchmer-Wigderson protocol de-
scribed above and show limitations. Following the key work of Alon, Matias,
and Szegedy [AMS96] communication complexity arguments have often been
used for showing limitations of streaming algorithms including ones that use
randomization. These arguments usually focus on the communication complex-
ity of computing a function that is related to the problem considered. What
seems different for the problems described above is the fact that we are natu-
rally led to consider the randomized communication complexity of a relation in
the Karchmer-Wigderson framework. We also note that without the k-round re-
striction there is a deterministic protocol with O(log n)-bit communication that
solves the Karchmer-Wigderson game for Majority.

As mentioned in the introduction, a connection, if any, of this work to the
proof complexity of the pigeonhole principle has not been worked out. One trans-
lation of Theorem 1 seems to be the following. Consider the following form of
resolution refutation proofs of the pigeonhole principle. Let xij ’s be mn binary
variables representing whether pigeon i is in pigeonhole j. Split these variables
in two halves between Alice and Bob. In one round , Alice or Bob can perform
an arbitrary number of resolutions free-of-charge on those variables that she/he
owns, and writes down some formulas on a blackboard for the other party to
continue the next round. How much is written on the blackboard is the proof size
in this model. It can not be small since any resolution refutation proof can be
converted to an algorithm that, given an assignment, searchs for an unsatisfied
clause, which can be set to be a crowded pigeonhole or a missing pigeon.

Acknowledgements

The author would like to thank Muthu Muthukrishnan for stimulating discus-
sions. He would also like to thank Takeshi Tokuyama for stimulating discussions
and pointing out that a small number of multiple passes are important in data-
base applications.

Finding a Duplicate and a Missing Item in a Stream 135

References

[AB84] M. Ajtai and M. Ben-Or. A Theorem on Probabilistic Constant Depth
Circuits, Proc. of STOC84 , pp. 471–474, 1984.

[AMS96] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approxi-
mating the Frequency Moments, Proc. of STOC97 , pp. 20–29, 1996.

[Bo86] R. Boppana. Threshold Functions and Bounded Depth Monotone Circuits.
Journal of Computer and System Sciences, vol. 32, pp. 222-229, 1986.

[BS90] R. Boppana and M. Sipser. The Complexity of Finite Functions, in: J. van
Leeuwen, ed. Handbook of Theoretical Computer Science vol. A, MIT Press,
1990.

[BC82] A. Borodin and S. Cook. A Time-Space Trade-Off for Sorting on a General
Sequential Model of Computation. SIAM Journal on Computing , vol. 11,
pp. 287–297, 1982.

[H̊a87] J. H̊astad. Computational Limits for Small-Depth Circuits, MIT Press,
1987.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity , Cambridge Uni-
versity Press, 1997.

[KW92] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity Re-
quires Super-Logarithmic Depth, SIAM Journal on Discrete Mathematics,
vol. 5, no. 4, pp. 545–557, 1992.

[Mu05a] S. Muthukrishnan. talk given at the Kyoto Workshop on New Horizons in
Computing, March, 2005.

[Mu05b] S. Muthukrishnan. Data Streams: Algorithms and Applications, Founda-
tions and Trends in Theoretical Computer Science, volume 1, issue 2, 2005;
a preliminary version available at http://www.cs.rutgers.edu/~muthu.

[RWY02] A. Razborov, A. Wigderson, and A. Yao. Read-Once Branching Programs,
Rectangular Proofs of the Pigeon-Hole Principle and the Transversal Cal-
culus, Combinatorica, vol. 22, no. 4, pp. 555–574, 2002; also in Proc. of
STOC97 , pp. 739–748, 1997.

Directed Searching Digraphs: Monotonicity and

Complexity

Boting Yang1 and Yi Cao2

1 Department of Computer Science, University of Regina
boting@cs.uregina.ca

2 Department of Computing Science, University of Alberta
cao1@cs.ualberta.ca

Abstract. In this paper, we introduce and study two new search mod-
els on digraphs: the directed searching and mixed directed searching. In
these two search models, both searchers and intruders must follow the
edge directions when they move along edges. We prove the monotonic-
ity of both search models, and we show that both directed and mixed
directed search problems are NP-complete.

1 Introduction

Many real-world problems can be naturally modeled by graph search problems.
Examples include: capturing intruders in a building, clearing a complex system
of interconnected pipes which is contaminated by some noxious gas, and killing
a computer virus in a network system. The meaning of a cleared or contami-
nated edge varies with the problems. For example, in the problem of capturing
intruders, a cleared edge means that there is no intruder hiding along this edge,
while a contaminated edge means that there may be some intruders hiding along
this edge.

In general, a graph or digraph search problem is to find the minimum number
of searchers required to capture all the intruders hiding in a graph or digraph.
In the edge search problem introduced in [9], there are three types of actions
for searchers, i.e., placing, removing and sliding, and an edge is cleared only by
a sliding action in a proper way. In the node search problem introduced in [7],
there are only two types of actions for searchers, i.e., placing and removing, and
an edge is cleared if both end vertices are occupied by searchers. Kirousis and
Papadimitriou [7] showed that the node search number is equal to the pathwidth
plus one. Bienstock and Seymour [4] introduced the mixed search problem that
combines the edge search and node search problems. Thus, in the mixed search
problem, an edge is cleared if both end vertices are occupied by searchers or
cleared by a sliding action in a proper way. In these three graph search problems,
intruders are invisible and they can move along a path that contains no searchers
at a great speed at any time. Seymour and Thomas [13] introduced another
variant of the graph search problem in which an intruder hiding in the graph is
visible to searchers. They showed that the search number of this variant is equal
to the treewidth plus one.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 136–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Directed Searching Digraphs: Monotonicity and Complexity 137

When studying search problems from a computational complexity viewpoint,
we are interested in deciding the search number of a graph. Megiddo et al. [9]
showed that the edge search problem is NP-hard. This problem belongs to the
NP class follows from the monotonicity result of [8] in which LaPaugh showed
that recontamination of edges cannot reduce the number of searchers needed to
clear a graph. Monotonicity is a very important issue in graph search problems.
Bienstock and Seymour [4] proposed a method that gives a succinct proof for
the monotonicity of the mixed search problem, which implies the monotonicity
of the edge search problem and the node search problem. Fomin and Thilikos [5]
provided a general framework that can unify monotonicity results in a unique
minmax theorem.

An undirected graph is not always sufficient in representing all the information
of a real-world problem. For example, directed edges are required if the graph
models one-way streets in a road system. Johnson et al. [6] generalized the con-
cepts of tree-decomposition and treewidth to digraphs and introduced a digraph
search problem accordingly. Reed [11] defined another treewidth on digraphs.
Safari [12] introduced a new parameter of digraphs, d-width, which is related to
the directed treewidth of a digraph. Barat [2] generalized the cops-and-robber
game to digraphs. He proved that an optimal monotonic search strategy for a
digraph needs at most one more searcher than the search number of the di-
graph and he conjectured that the monotonicity is held for the cops-and-robber
game on digraphs. Yang and Cao [14] introduced the strong searching model in
which the intruder must follow the edge directions but searchers need not when
they move along edges. Yang and Cao [15] also introduced the weak search-
ing model in which searchers must follow the edge directions but the intruder
need not when they move along edges. In [16] Yang and Cao introduced the di-
rected vertex separation and investigated the relations between different digraph
searching models, directed vertex separation, and directed pathwidth. In the di-
graph searching models in [14,15], there are three types of actions for searchers:
placing, removing and sliding. Alspach et al. [1] proposed four digraph search
models in which searchers cannot be removed from digraphs.

Throughout this paper, we use D to denote a digraph, (u, v) to denote a
directed edge with tail u and head v, and u � v to denote a directed path from
u to v. All graphs and digraphs in this paper contain at least one edge.

A natural generalization of the edge search model is the directed search model.
In the directed search model, both searchers and intruders must move in the edge
directions. Initially, all edges of D are contaminated. Each intruder can move
from vertex u to vertex v along a directed path u � v that contains no searchers
at a great speed at any time. There are three types of actions for searchers:
(1) placing a searcher on a vertex, (2) removing a searcher from a vertex, and
(3) sliding a searcher along an edge from its tail to its head. A directed search
strategy is a sequence of actions such that the final action leaves all edges of D
uncontaminated (or cleared). A contaminated edge (u, v) can be cleared in one of
two ways by a sliding action: (1) sliding a searcher from u to v along (u, v) while
at least one searcher is located on u and (2) sliding a searcher from u to v along

138 B. Yang and Y. Cao

(u, v) while all edges with head u are already cleared. The digraph D is cleared
if all of the edges are cleared. The minimum number of searchers needed to clear
D in the directed search model is the directed search number of D, denoted by
ds(D).

A generalization of the mixed search model is the mixed directed search model,
which can be considered as a kind of combination of the directed search model
and node search model. We will give a precise definition of this search model in
the next section.

In the directed or mixed directed search model, a cleared edge will be reconta-
minated if there is a directed path from the head of a contaminated edge to the
tail of this cleared edge such that there is no searcher stationing on any vertex
of this path.

We say that a vertex in D is occupied at some moment if at least one searcher
is located on this vertex at this moment. Any searcher that is not on D at some
moment is said free at this moment.

In the directed or mixed directed search model, let S be a search strategy
and let Ai be the set of cleared edges immediately after the ith action. S is
monotonic if Ai ⊆ Ai+1 for each i. We say that this search model has the
property of monotonicity (or is monotonic) if for any digraph D, there exists a
monotonic search strategy that can clear D using k searchers, where k is the
search number of D in this search model.

This paper is organized as follows. In Section 2, we prove the monotonicity
of the mixed directed search model. In Section 3, we prove the monotonicity of
the directed search model. In Section 4, we show the NP-completeness results
for both directed and mixed directed search problems. Finally, we conclude this
paper in Section 5.

2 Monotonicity of the Mixed Directed Search Model

We will show the monotonicity of the mixed directed search model in this section,
which means that recontamination does not help to reduce the mixed directed
search number of a digraph. We will extend the method proposed by Bienstock
and Seymour [4]. We first give the definition of a critical vertex.

Definition 1. Let D be a digraph. For an edge set X ⊆ E(D), a vertex in V (D)
is critical if it is the tail of an edge in X and the head of an edge in E(D) −X .
The set of all critical vertices in V (D) is denoted by δ(X).

We then define the campaign and the progressive campaign.

Definition 2. Let D be a digraph. A campaign in D is a sequence (X0, X1,
. . . , Xn) of subsets of E(D) such that X0 = ∅, Xn = E(D) and |Xi −Xi−1| ≤ 1,
for 1 ≤ i ≤ n. The width of the campaign is defined as max0≤i≤n |δ(Xi)|. A
campaign is progressive if X0 ⊆ X1 ⊆ · · · ⊆ Xn and |Xi − Xi−1| = 1, for
1 ≤ i ≤ n.

Similar to [2] and [4], we have the following lemma for the progressive campaign.

Directed Searching Digraphs: Monotonicity and Complexity 139

Lemma 1. If there is a campaign in D of width at most k, then there is a
progressive campaign in D of width at most k.

In the remainder of this section, we will prove that the mixed directed search
problem is monotonic. The mixed directed search model can be obtained by mod-
ifying the directed search model as follows. Recall that there are two ways to
clear an edge by a sliding action in the directed search model. In the mixed
directed search model, we replace the first way by the node-search-clearing rule:
an edge can be cleared if both of its end vertices are occupied. Another mod-
ification is to disallow the recontamination caused by a sliding action, that is,
the action of sliding a searcher from u to v along edge (u, v) changes the state
of edge (u, v) from contaminated to clear, but it does not change the state of
any other edge. Thus, in a mixed directed search strategy, each sliding along an
edge must clear this edge if it is contaminated. More precisely, we define the four
types of actions in the mixed directed search model as follows.

Definition 3. Let S = (s1, s2, . . . , sn) be a mixed directed search strategy for
a digraph D. For 1 ≤ i ≤ n, let Ai be the set of cleared edges and Zi be the
set of occupied vertices immediately after action si such that δ(Ai) ⊆ Zi. Let
A0 = Z0 = ∅. Each action si, 1 ≤ i ≤ n, is one of the following four types:

(a) (placing a searcher on v) Zi = Zi−1 ∪ {v} for some vertex v ∈ V (D) −Zi−1

and Ai = Ai−1 (note that each vertex in Zi has exactly one searcher);
(b) (removing the searcher from v) Zi = Zi−1 − {v} for some vertex v ∈ Zi−1

and Ai = {e ∈ Ai−1: if there is a directed path u � w containing e and an
edge e′ ∈ E(D) − Ai−1 such that w is the head of e and u is the tail of e′,
then u � w has an internal vertex in Zi};

(c) (node-search-clearing e) Zi = Zi−1 and Ai = Ai−1 ∪ {e} for some edge
e = (u, v) ∈ E(D) with both ends u and v in Zi−1;

(d) (edge-search-clearing e) Zi = (Zi−1 − {u}) ∪ {v} and Ai = Ai−1 ∪ {e} for
some edge e = (u, v) ∈ E(D) with u ∈ Zi−1 and v ∈ V (D)−Zi−1 and every
(possibly 0) edge with head u belongs to Ai−1.

From Definition 3, we know that at most one edge can be cleared in one
action and each vertex is occupied by at most one searcher at any time. Note that
recontamination in the mixed directed search problem is caused only by removing
actions. In (c) and (d), if e ∈ Ai−1, then we say this action is superfluous. Adding
or deleting superfluous actions will not affect the number of searchers used in
a search strategy, however, sometimes allowing superfluous actions may make
arguments simple.

The mixed directed search number of a digraph D, denoted by mds(D), is the
minimum number of searchers needed to clear D in the mixed directed search
model. The following lemma reveals the relationship between the mixed directed
searching of D and a campaign in D.

Lemma 2. Let D be a digraph without any multiple edges. If mds(D) ≤ k, then
there is a campaign in D of width at most k − 1.

140 B. Yang and Y. Cao

Proof. Let S = (s1, s2, . . . , sm) be a mixed directed search strategy of D using
at most k searchers. For 1 ≤ i ≤ m, let Ai be the set of cleared edges and Zi be
the set of occupied vertices immediately after si, and let A0 = Z0 = ∅. We first
normalize S such that the normalized search strategy can also clear D using at
most k searchers. The normalized search strategy may contain some superfluous
actions, but this will not increase the number of searchers required to clear D.

The normalization is conducted by inserting some node-search-clearing actions
after each placing action and edge-search-clearing action. Specifically, for each
1 ≤ i ≤ m, if Zi − Zi−1 is empty, i.e., si is a removing or node-search-clearing
action, then we leave si unchanged; otherwise, Zi−Zi−1 contains a vertex v, i.e.,
si is a placing or edge-search-clearing action such that v is occupied, then let
E1

v = {(u, v) ∈ E(D): u ∈ Zi−1}, E2
v = {(v, u) ∈ E(D): u ∈ Zi−1 and all edges

with head u except (v, u) are in Ai−1}, and E3
v = {(v, u) ∈ E(D): u ∈ Zi−1 and

(v, u) /∈ E2
v}, and we then insert a subsequence of node-search-clearing actions

between si and si+1, such that each edge in E1
v is cleared first, then each edge

in E2
v , and finally each edge in E3

v (edges in the same set are cleared in an
arbitrary order). After the normalization, we obtain a new sequence of actions
that contains each old action and some new node-search-clearing actions. It is
easy to see that this new sequence of actions, denoted by (s′1, s′2, . . . , s′n), is still
a mixed directed search strategy of D using at most k searchers.

For 1 ≤ i ≤ n, let A′
i be the set of cleared edges and Z ′

i be the set of occupied
vertices immediately after s′i, and let A′

0 = Z ′
0 = ∅. Since δ(A′

i) ⊆ Z ′
i, |Z ′

i| ≤ k,
and |A′

i −A′
i−1| ≤ 1, 1 ≤ i ≤ n, we know that (A′

0, A
′
1, . . . , A

′
n) is a campaign in

D of width at most k.
We now show that the campaign (A′

0, A
′
1, . . . , A

′
n) can be converted into a

campaign (X0, X1, . . . , Xn) of width at most k − 1. For each i from 0 to n, if
|δ(A′

i)| ≤ k − 1, then let Xi = A′
i. If |δ(A′

i)| = k, then δ(A′
i) = Z ′

i. Let v be
the last vertex occupied by a searcher in Z ′

i. Recall that just after v receives a
searcher in a placing or edge-search-clearing action, the following actions clear
all edges in E1

v , E2
v and E3

v by node-search-clearing. Note that at the step when
an edge (u, v) ∈ E1

v is cleared, v is not a critical vertex at this step. When an
edge (v, u) ∈ E2

v is cleared, since D has no multiple edges, all edges with head
u are cleared and thus u is not a critical vertex. Hence, when |δ(A′

i)| = k, s′i
must be a node-search-clearing action that clears an edge in E3

v . Therefore, each
vertex in Z ′

i has at least one contaminated edge with tail not in Z ′
i. Let s′j be

the first removing action after s′i. Such an action must exist; otherwise, D will
not be cleared because each vertex in Z ′

i has at least one contaminated edge
with tail not in Z ′

i. Let R = A′
j−1 − A′

j and Xp = A′
p − R for i ≤ p ≤ j. Since

|A′
p − A′

p−1| ≤ 1, i ≤ p ≤ j, we know that |Xp − Xp−1| ≤ 1 for 1 ≤ p ≤ j.
Suppose that s′j removes the searcher on w. Then all edges with tail w must be
contaminated immediately after s′j , which means that A′

j contains no edges with
tail w. Hence, Xp contains no edges with tail w for i ≤ p ≤ j. Thus w /∈ δ(Xp)
and |δ(Xp)| ≤ k − 1 for i ≤ p ≤ j. We then consider A′

j+1 and construct Xj+1.
We can continue this process and finally we obtain a campaign (X0, X1, . . . , Xn)
in D of width at most k − 1.

Directed Searching Digraphs: Monotonicity and Complexity 141

Lemma 3. For a digraph D, if (X0, X1, . . . , Xn) is a progressive campaign in D
of width at most k − 1, then there is a monotonic mixed directed search strategy
that clears D using at most k searchers such that the edges of D are cleared in
the order e1, e2, . . . , en, where ei = Xi − Xi−1, 1 ≤ i ≤ n.

Proof. We construct the monotonic mixed directed search strategy inductively.
Suppose that we have cleared the edges e1, . . . , ej−1, 2 ≤ j ≤ n, in order, and that
no other edges have been cleared yet. Let ej = (u, v) and Cj−1 = {p ∈ V (D):
p has no in-edge or all in-edges of p belong to Xj−1}. Before we clear (u, v),
we may remove searchers such that each vertex in δ(Xj−1) is occupied by a
searcher and all other searchers are free. If |{u, v}∪ δ(Xj−1)| ≤ k, we may place
free searchers on both ends of ej and execute node-search-clearing. Assume that
|{u, v}∪ δ(Xj−1)| > k. Since |δ(Xj−1)| ≤ k− 1, it follows that |δ(Xj−1)| = k− 1
and {u, v} ∩ δ(Xj−1) = ∅. Thus, we have one free searcher. We now prove that
u ∈ Cj−1. If u /∈ Cj−1, then u ∈ δ(Xj) and |δ(Xj)| = k, which contradicts
the condition that (X0, X1, . . . , Xn) has width at most k − 1. Thus, u has no
contaminated in-edges and we can place the free searcher on u and then slide
the searcher from u to v along (u, v) to clear ej by edge-search-clearing.

From Lemmas 1, 2 and 3, we have the following result.

Lemma 4. Given a digraph D that has no multiple edges, the following are
equivalent:

(i) mds(D) ≤ k;
(ii) there is a campaign in D of width at most k − 1;
(iii) there is a progressive campaign in D of width at most k − 1; and
(iv) there is a monotonic mixed directed search strategy that clears D using at

most k searchers.

From Lemma 4, we can prove the monotonicity of the mixed directed search
model.

Theorem 1. Given a digraph D, if mds(D) = k, then there is a monotonic
mixed directed search strategy that clears D using k searchers.

3 Monotonicity of the Directed Search Model

In Section 2, we have proved that the mixed directed search problem is monotonic.
In this section we will prove that the monotonicity of the mixed directed search
problem implies the monotonicity of the directed search problem. The following
lemma describes a relationship between the directed searching and the mixed
directed searching.

Lemma 5. If D is a digraph, then ds(D) − 1 ≤ mds(D) ≤ ds(D).

142 B. Yang and Y. Cao

The two equalities in Lemma 5 can be achieved. From Lemma 5, we know that
the difference between ds(D) and mds(D) is not a fixed constant. It is not easy to
use this lemma to prove the monotonicity of the directed search model. However,
we can transform D into another digraph D∗ such that ds(D) = mds(D∗). Then
we can use this relation to prove the monotonicity of the directed search model.

Theorem 2. For a digraph D, let D∗ be a digraph obtained from D by replacing
each edge (u, v) ∈ E(D) by two directed paths (u, v′, v) and (u, v′′, v). For (u, v) ∈
E(D), let f1

(u,v) = (u, v′), f2
(u,v) = (v′, v), f3

(u,v) = (u, v′′) and f4
(u,v) = (v′′, v).

The following are equivalent:

(i) ds(D) ≤ k;
(ii) mds(D∗) ≤ k;
(iii) there is a progressive campaign (X0, X1, . . . , Xn) in D∗ of width at most

k − 1 such that for each (u, v) ∈ E(D), m1 < m2 and m3 < m4, where mi,
1 ≤ i ≤ 4, is the subscript of Xmi that is the first set containing f i

(u,v);
(iv) there is a monotonic mixed directed search strategy that clears D∗ using at

most k searchers such that for each (u, v) ∈ E(D), f1
(u,v) is cleared before

f2
(u,v) and f3

(u,v) is cleared before f4
(u,v); and

(v) there is a monotonic directed search strategy that clears D using at most k
searchers.

Proof. (i)⇒(ii). Let (s1, s2, . . . , sn) be a directed search strategy of D using at
most k searchers. We will inductively construct a mixed directed search strategy
(S′

1, S
′
2, . . . , S

′
n) of D∗ using at most k searchers, where S′

i is a subsequence of
actions corresponding to si. Since s1 is a placing action, let S′

1 be the same
placing action. Suppose that we have constructed S′

1, S
′
2, . . . , S

′
j−1 such that the

following two conditions are satisfied: (1) the set of occupied vertices immediately
after sj−1 is the same as the set of occupied vertices immediately after the
last action in S′

j−1, and (2) if (u, v) ∈ E(D) is cleared immediately after sj−1,
then the corresponding four edges f i

(u,v) ∈ E(D∗), 1 ≤ i ≤ 4, are also cleared
immediately after the last action in S′

j−1.
We now construct S′

j . If sj is a placing action that places a searcher on an
unoccupied vertex, S′

j will take the same action. If sj is a placing action that
places a searcher on an occupied vertex, S′

j will be empty. If sj is a removing
action that removes the only searcher from a vertex, S′

j will take the same action.
If sj is a removing action that removes a searcher from a vertex occupied by at
least two searchers, S′

j will be empty. If sj is a sliding action that slides a searcher
from vertex u to vertex v along edge (u, v) to clear the contaminated edge (u, v),
we have two cases.

Case 1. All edges with head u are cleared in D immediately before sj. By
the hypothesis, the vertex u ∈ V (D∗) is also occupied and all edges with head
u in D∗ are also cleared immediately after the last action in S′

j−1. If v is not
occupied, then we can construct S′

j as follows: edge-search-clearing (u, v′), edge-
search-clearing (v′, v), removing the searcher from v, placing the searcher on
u, edge-search-clearing (u, v′′) and edge-search-clearing (v′′, v). If v is occupied,

Directed Searching Digraphs: Monotonicity and Complexity 143

then we can construct S′
j as follows: edge-search-clearing (u, v′), node-search-

clearing (v′, v), removing the searcher from v′, placing the searcher on u, edge-
search-clearing (u, v′′), node-search-clearing (v′′, v), and removing the searcher
from v′′.

Case 2. At least one edge with head u is contaminated in D immediately before
sj . We know that there is at least one searcher on u while performing sj , which
implies that u is occupied by at least two searchers immediately before sj . By
the hypothesis, the vertex u ∈ V (D∗) is also occupied and we have at least one
free searcher immediately after the last action in S′

j−1. If v is not occupied, then
we can construct S′

j as follows: placing a searcher on v′, node-search-clearing
(u, v′), edge-search-clearing (v′, v), removing the searcher from v, placing the
searcher on v′′, node-search-clearing (u, v′′) and edge-search-clearing (v′′, v). If v
is occupied, then we can construct S′

j as follows: placing a searcher on v′, node-
search-clearing (u, v′), node-search-clearing (v′, v), removing the searcher from
v′, placing the searcher on v′′, node-search-clearing (u, v′′), node-search-clearing
(v′′, v), and removing the searcher from v′′.

If sj is a sliding action that slides a searcher from vertex u to vertex v along
edge (u, v) but does not clear the contaminated edge (u, v), we know that im-
mediately before sj, u is occupied by only one searcher and at least one edge
with head u is contaminated. By the hypothesis, the vertex u ∈ V (D∗) is also
occupied immediately after the last action in S′

j−1. If v is occupied, then S′
j

consists of only one action: removing the searcher from u. If v is not occupied,
then S′

j consists of two actions: removing the searcher from u and placing it
on v.

It is easy to see that (S′
1, S

′
2, . . . , S

′
n) can clear D∗ using at most k searchers.

(ii)⇒(iii). Since D∗ has no multiple edges, by Lemma 4, there is a progressive
campaign (X0, X1, . . . , Xn) in D∗ of width at most k − 1. We can modify this
campaign to satisfy the requirement of (iii). By Definition 2, we know that m1,
m2, m3 and m4 have different values. We have four cases regarding the smallest
value.

Case 1. m1 = min{m1, m2, m3, m4}. We already have m1 < m2. If m3 > m4,
then, for each m1+1 ≤ i ≤ m3, replace Xi by X ′

i = Xi−1∪{f3
(u,v)}. Since

X ′
m3

= Xm3−1 ∪ {f3
(u,v)} = Xm3 and v′′ /∈ δ(X ′

i), m1 + 1 ≤ i ≤ m3, it is
easy to see that the updated campaign is still a progressive campaign in
D∗ of width at most k − 1. Let the updated campaign still be denoted
by (X0, X1, . . . , Xn) and mi (1 ≤ i ≤ 4) is the subscript of Xmi that is
the first set containing f i

(u,v) in the updated campaign. Thus, we have
m1 < m2 and m3 = m1 + 1 < m4 in the updated campaign.

Case 2. m2 = min{m1, m2, m3, m4}. For each m2 ≤ j ≤ m1, replace Xj by
X ′

j = Xj−1 ∪ {f1
(u,v)}. After this modification, the first set containing

f1
(u,v) is X ′

m2
and the first set containing f2

(u,v) is X ′
m2+1. Since f2

(u,v) ∈
Xi and f1

(u,v) /∈ Xi for m2 ≤ i ≤ m1 − 1, we know that v′ ∈ δ(Xi),
m2 ≤ i ≤ m1 − 1. Thus, for m2 ≤ i ≤ m1 − 1, we have δ(X ′

i) ⊆
(δ(Xi) − {v′}) ∪ {u} and |δ(X ′

i)| ≤ |δ(Xi)|. We also know that X ′
m1

=
Xm1−1 ∪ {f1

(u,v)} = Xm1 . It follows that the updated campaign is still

144 B. Yang and Y. Cao

a progressive campaign in D∗ of width at most k − 1. Let the updated
campaign still be denoted by (X0, X1, . . . , Xn) and mi (1 ≤ i ≤ 4)
is the subscript of Xmi that is the first set containing f i

(u,v) in the
updated campaign. Thus, we have m1 < m2. Then we can use the
method described in Case 1 to achieve m3 < m4 by modifying the
campaign if necessary.

Case 3. m3 = min{m1, m2, m3, m4}. We already have m3 < m4 and we can
use the method described in Case 1 to modify the campaign such that
m1 < m2 in the updated campaign.

Case 4. m4 = min{m1, m2, m3, m4}. We can use the method described in Case
2 to modify the campaign such that m3 < m4 and m1 < m2 in the
updated campaign.

For each (u, v) ∈ E(D), we can repeat the above procedure for the correspond-
ing four edges f i

(u,v) ∈ E(D∗), 1 ≤ i ≤ 4. Finally, we can obtain a campaign as
required.

(iii)⇒(iv). Let (X0, X1, . . . , Xn) be the progressive campaign described in (iii).
The monotonic mixed directed search strategy constructed in Lemma 3 can use
at most k searchers to clear f1

(u,v) before f2
(u,v) and to clear f3

(u,v) before f4
(u,v)

for each (u, v) ∈ E(D).
(iv)⇒(v). Let S = (s1, s2, . . . , sn) be a monotonic mixed directed search strat-

egy of D∗ satisfying the condition of (iv). We will construct a monotonic directed
search strategy S′ of D using at most k searchers. For each edge (u, v) ∈ E(D),
without loss of generality, suppose that S clears f1

(u,v) before f3
(u,v). For each i

from 1 to n, consider si. If si is a placing or removing action on a vertex that is
also in V (D), S′ will take the same action. If si is a placing or removing action
on a vertex in V (D∗)−V (D), S′ will do nothing. If si is an edge-search-clearing
action that clears edge f1

(u,v), then in S′, we can clear (u, v) ∈ E(D) in the same
way as si does. If si is a node-search-clearing action that clears edge f1

(u,v) by
the searcher α on u and the searcher β on v′, then in S′, we know that α is also
on u and β is free. Thus, we can place β on u and then clear (u, v) ∈ E(D) by
sliding β from u to v along (u, v). If si clears edge f2

(u,v), f3
(u,v) or f4

(u,v), we do
nothing in S′. It is easy to see that S′ can clear D using at most k searchers.

(v)⇒(i). It is trivial.

4 NP-Completeness Results

Kirousis and Papadimitriou [7] proved that the node search problem is NP-
complete. In this section, we will establish a relationship between the mixed
directed searching and node searching. Using this relation, we can prove the
mixed directed search problem is NP-complete. We can then prove the directed
search problem is NP-complete from Theorem 2.

For an undirected graph G, the minimum number of searchers needed to clear
G in the node search model is the node search number of G, denoted by ns(G).

Directed Searching Digraphs: Monotonicity and Complexity 145

Theorem 3. Let G be an undirected graph. If Ḡ is a digraph obtained from G
by replacing each edge uv ∈ E(G) with two directed edges (u, v) and (v, u), then
mds(Ḡ) = ns(G).

Proof. In the mixed directed search model, there are four types of actions, plac-
ing, removing, node-search-clearing, and edge-search-clearing, and in the node
search model, there are only two types of actions, placing and removing. Note
that there is no “clearing” action in the node search model corresponding to the
node-search-clearing or edge-search-clearing. A contaminated edge is cleared in
the node search model if both end vertices are occupied, while a contaminated
edge is cleared in the mixed directed search model only by a node-search-clearing
or edge-search-clearing action.

We first show that mds(Ḡ) ≤ ns(G). Let Sn be a monotonic node search
strategy that clears G using k searchers. Notice that Sn is a sequence of placing
and removing actions. We will construct a mixed directed search strategy Sm

by inserting some node-search-clearing actions into Sn as follows. Initially, we
set Sm = Sn. For each placing action s in Sn, let As be the set of cleared edges
just after s and Bs be the set of cleared edges just before s. If As − Bs 	= ∅,
then for each edge uv ∈ As −Bs, we insert two node-search-clearing actions into
the current Sm such that they clear both (u, v) and (v, u). The order of these
clearing actions is arbitrary. Finally, we have a mixed directed search strategy
Sm for Ḡ. It is easy to see that Sm can clear Ḡ using k searchers. Therefore,
mds(Ḡ) ≤ ns(G).

We now show that ns(G) ≤ mds(Ḡ). Let Sm be a monotonic mixed directed
search strategy that clears Ḡ using k searchers. We first prove that there is no
edge-search-clearing action in Sm. Suppose that s′ is an edge-search-clearing ac-
tion in Sm, which clears edge (u, v) by sliding from u to v. From Definition 3,
all in-edges of u are cleared. Since (v, u) is cleared but (u, v) is contaminated
just before s′, the vertex v must contain a searcher to protect (v, u) from recon-
tamination. From Definition 3, (u, v) must be cleared by a node-search-clearing
action because both u and v are occupied just before s′. This is a contradiction.
Thus, Sm consists of only three types of actions: placing, removing, and node-
search-clearing. Let Sn be a sequence of actions obtained from Sm by replacing
each node-search-clearing action with an empty action. We next prove that Sn

is a node search strategy that clears G using k searchers.
When an edge (u, v) is cleared by a node-search-clearing action in Sm, the

corresponding edge uv in G is also cleared just before the corresponding empty
action in Sn because both u and v are occupied. Note that Sn may not be
monotonic. For any edge uv ∈ E(G), when both (u, v) and (v, u) are cleared
just after a node-search-clearing action in Sm, uv is also cleared just before the
corresponding empty action in Sn because both u and v are occupied. We now
show that this uv will keep cleared to the end of the search process. Notice
that only a removing action may cause recontamination in Sn. For the sake
of contradiction, suppose that there is a removing action in Sn such that just
after this action an edge, which is incident on the vertex from which a search
is just removed, becomes recontaminated, but the corresponding two edges in

146 B. Yang and Y. Cao

Ḡ are still cleared just after the corresponding removing action in Sm. Let r be
the first such a removing action which removes a search from vertex u, and let
edge uv ∈ E(G) becomes recontaminated just after r and both (u, v) and (v, u)
in Ḡ are cleared just after the corresponding removing action r′ in Sm. Since
uv becomes recontaminated just after r, there must exist a contaminated edge
incident on u just before r. Let wu be such a contaminated edge just before r.
If (w, u) is also contaminated just before r′, then (u, v) becomes recontaminated
just after r′. This contradicts the monotonicity of the strategy Sm. If both (w, u)
and (u, w) are cleared just before r′, then wu is also cleared because uv is the
first edge which is recontaminated but (u, v) and (v, u) are cleared. This is a
contradiction. Thus, just before r′, (w, u) is cleared and (u, w) is contaminated,
and w must contain a searcher to protect (w, u) from recontamination. Hence,
both w and u are occupied just before r′. It follows that wu is cleared just before
r. This is a contradiction. Therefore, for each edge uv ∈ E(G), if both (u, v) and
(v, u) in Ḡ are cleared, then uv is also cleared. It is easy to see that Sn can clear
G using k searchers. Thus, ns(G) ≤ mds(Ḡ).

Given a digraph D, the problem of determining ds(D) or mds(D) is the opti-
mization problem of finding the smallest k such that D can be cleared using
k searchers. The corresponding decision problem for the mixed directed search
problem is as follows.
Problem: Mixed Directed Searching
Instance: Digraph D, positive integer k.
Question: Can we use k searchers to clear D under the mixed directed search
model?

The decision problem for the directed search problem is to determine whether
we can clear D using k searchers.
Problem: Directed Searching
Instance: Digraph D, positive integer k.
Question: Can we use k searchers to clear D under the directed search model?

From Theorem 3, we have the following result.

Theorem 4. The Mixed Directed Searching problem is NP-complete.

Proof. We first show that the Mixed Directed Searching problem belongs to NP.
Suppose we are given a digraph D and a positive integer k. From Theorem 1, a
nondeterministic algorithm needs only to guess a monotonic mixed directed search
strategy such that the number of actions in this strategy is O(V (D) + E(D)). It
is easy to see that checking whether this strategy can clear D using k searchers
can be accomplished in deterministic polynomial time. Thus, the Mixed Directed
Searching problem is in NP. By Theorem 3, we know that the Mixed Directed
Searching problem is NP-hard because the node search problem is NP-complete
[7]. Therefore, the Mixed Directed Searching problem is NP-complete.

From Theorems 2 and 4, we can prove that the directed search problem is NP-
hard. From Theorem 2, we can prove that the directed search problem belongs
to NP. Therefore, we have the major result of this section.

Directed Searching Digraphs: Monotonicity and Complexity 147

Theorem 5. The Directed Searching problem is NP-complete.

5 Conclusion

In this paper, we investigated two new digraph searching models, directed search-
ing and mixed directed searching, in which both searchers and intruders must
move in the edge directions. Using the method proposed by Bienstock and Sey-
mour [4], we first proved the monotonicity of the mixed directed search model.
We then proved the monotonicity of the directed searching. We also give a re-
lationship between the mixed directed searching and the node searching. From
this relation and the monotonicity results, we showed that the mixed directed
and directed search problems are NP-complete.

References

1. B. Alspach, D. Dyer, D. Hanson and B. Yang, Some basic results in arc searching,
Technical report CS-2006-10, University of Regina, 2006.

2. J. Barat, Directed path-width and monotonicity in digraph searching, Graphs and
Combinatorics, 22 (2006) 161–172.

3. D. Berwanger, A. Dawar, P. Hunter and S. Kreutzer, DAG-width and parity games,
Proceedings of STACS, Lecture Notes in Computer Science, Vol.3884, 524–436,
2006.

4. D. Bienstock and P. Seymour, Monotonicity in graph searching, Journal of Algo-
rithms, 12 (1991) 239–245.

5. F. Fomin and D. Thilikos, On the monotonicity of games generated by symmetric
submodular functions, Discrete Applied Mathematics, 131 (2003) 323–335.

6. T. Johnson, N. Robertson, P. Seymour and R. Thomas, Directed tree-width, Jour-
nal of Combinatorial Theory Series B, 82 (2001) 138–154.

7. L. Kirousis and C. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci.,
47 (1996) 205–218.

8. A. LaPaugh, Recontamination does not help to search a graph. Journal of ACM,
40 (1993) 224–245.

9. N. Megiddo, S. Hakimi, M. Garey, D .Johnson and C. Papadimitriou, The com-
plexity of searching a graph, Journal of ACM, 35 (1998) 18–44.

10. T. Parsons, Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, 426–441, 1976.

11. B. Reed, Introducing Directed Tree Width, 6th Twente Workshop on Graphs and
Combinatorial Optimization (Enschede, 1999), 8 pp. (electronic), Electron. Notes
Discrete Math., 3, Elsevier, Amsterdam, 1999.

12. M. Safari, D-Width: A More Natural Measure for Directed Tree Width, Proceed-
ings of the 30th International Symposium on Mathematical Foundations of Com-
puter Science, Lecture Notes in Computer Science 3618, pp. 745–756, 2005.

13. P. Seymour and R. Thomas, Graph searching and a min-max theorem for tree-
width, Journal of Combinatorial Theory Series B, 58 (1993) 22–33.

14. B. Yang and Y. Cao, Monotonicity of strong searching on digraphs, submitted.
15. B. Yang and Y. Cao, On the monotonicity of weak searching on digraphs,

submitted.
16. B. Yang and Y. Cao, Digraph searching, directed vertex separation and directed

pathwidth, submitted.

Protecting Against Key Escrow and Key

Exposure in Identity-Based Cryptosystem

Jin Wang1, Xi Bai2, Jia Yu3, and Daxing Li1

1 Institute of Network and Information Security, Shandong University,
Jinan 250100, China

2 College of Computer Science and Technology, Jilin University,
Changchun 130012, China

3 College of Information Engineering, Qingdao University, Qingdao 266071, China
wangjin06@mail.sdu.edu.cn, xibai@email.jlu.edu.cn

Abstract. Standard identity-based cryptosystems typically rely on the
assumption that secret keys are kept perfectly secure. However, in prac-
tice, there are two threats to the key security in identity-based cryptosys-
tems. One inherent problem is key escrow, that is, the Key Generation
Center (KGC) always knows a user’s secret key and the malicious KGC
can impersonate the user. Meanwhile, another threat is that a user’s se-
cret key may be exposed to an adversary in an insecure device, and key
exposure typically means that security is entirely lost. At present, there
is no solution that can simultaneously solve both of above problems. In
this paper, we first present a secure key issuing and updating model for
identity-based cryptosystems. Our suggestion is an intermediate between
the identity-based key insulation and distributing authorities approach,
and can simultaneously solve both key escrow and key exposure prob-
lems. We formalize the definition and security notion of the correspond-
ing encryption scheme (IBKUE) and signature scheme (IBKUS), and
then propose an IBKUE scheme based on Boneh-Franklin’s scheme [2]
and an IBKUS scheme based on Cha-Cheon’s scheme [9]. Both of the
schemes are secure in the remaining time periods against an adversary
who compromises the KGC and obtains a user’s secret key for the time
periods of its choice. All the schemes in this paper are provably secure
in the random oracle model.

Keywords: Identity-based cryptography, key escrow, key exposure,
bilinear pairings, key-insulated cryptosystem.

1 Introduction

1.1 Background

In traditional public key cryptosystems (PKC), the association between a user’s
identity and his public key is bind with a certificate issued by a certification
authority (CA), anyone who wants to use a public key must first verify the cor-
responding certificate. In order to simplify the certificate management process,

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 148–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Protecting Against Key Escrow and Key Exposure 149

Shamir [1] introduced the concept of identity-based cryptography (IBC) in 1984.
Identity-based cryptography can eliminate the need for certificates by allowing
a user’s public key to be derived from his identity information, such as an email
address, while the corresponding private key is calculated by a trusted authority
called Key Generator Center (KGC). Ever since Boneh and Franklin [2] proposed
the first practical identity-based encryption scheme based on bilinear pairings in
2001, many identity-based schemes [8,9,10] have been proposed.

Standard identity-based cryptosystems typically rely on the assumption that
secret keys are kept perfectly secure. However, in practice, there are two threats
to the key security in identity-based cryptosystems. One inherent problem is
key escrow. In such cryptosystem, the KGC is involved in issuing secret keys to
users whose identity is assumed to be unique in the system. Knowing the KGC’s
master key should be able to impersonate a user, that is, carrying out any cryp-
tographic operations as the user, so there is no user privacy and authenticity
in the system. Another threat is that user’s secret key maybe exposure to an
adversary in an insecure device. In many cases, it is easier to obtain a secret key
from a stolen device than to break the computational assumption on which the
security of the system is based. This threat is increasing nowadays with more and
more cryptographic primitives are deployed on insecure devices such as mobile
devices.

1.2 Related Work

In recent years, to tackle the key escrow problem, several proposals have been
made using multiple authority approach [2,5] or using some user chosen secret
information [4,11]. Boneh and Franklin’s scheme [2] distributed the master key
of the KGC into multiple authorities, and a user’s private key is computed in a
threshold manner. In addition, Chen et al.’s scheme [5] generated a new private
key by adding subkeys from multiple authorities. In both the above approaches
the key escrow problem can be avoided, but multiple identification by each au-
thority is quite a burden. Lee et al. proposed a new scheme [3] in which a user’s
private key is issued by a KGC and its privacy is protected by multiple key pri-
vacy authorities (KPA). However, in this scheme private keys of all users have
to be reconstructed if even one KPA is compromised. Gentry [4] proposed a
certificate-based encryption where secure key issuing was provided using some
user-chosen secret information, but it became a certificate-based scheme losing
the advantage of identity-based cryptography. Certificateless public key cryptog-
raphy [11] successfully removed the necessary of certificate in a similar design
using user-chosen secret information, and secure in the attack from malicious
KGC or a malicious third party, but their scheme provides only implicit authen-
tication of the public key.

While on the other hand, to mitigate the damage caused by user’s key expo-
sure in identity-based cryptosystem, a recently proposed method is constructing
identity-based key-insulated cryptosystem [13,14,21]. Key-insulated mechanism
uses a combination of key splitting and key evolution to protect against key
exposure. In identity-based key-insulated model, the secret key associated with

150 J. Wang et al.

an ID is shared between the user and a physically-secure device. To perform
cryptographic operations, the user refreshes his secret key periodically by in-
teracting with the secure device. The life time of the system is divided into
distinct periods 1, ..., N . In an identity-based (t, N)-key-insulated cryptosystem
an adversary who compromises the insecure device and obtains keys for up to
t time periods is unable to violate the security of the cryptosystem for any of
the remaining N − t periods. Note, however, all of identity-based key-insulated
cryptosystems [13,14,21] still suffer from key escrow problem.

At present, no solutions exist that solves both key escrow and key exposure
problems in identity-based cryptosystems; schemes that solve the key escrow
problem still face the threat of key exposure on user’s insecure device, and vice
versa.

1.3 Our Contribution

First, we propose an identity-based key issuing and updating model that doesn’t
suffer from key escrow and key exposure. Our suggestion is involving an inter-
mediate between the identity-based key insulation and distributing authorities
approaches. The main idea of our paper is using multiple security mediators,
which we call key privacy authorities (KPAs) to provide private key privacy
service. Assume that there are n KPAs, each KPA is corresponding to some
specified time periods. Our suggestion supports unbounded number of time pe-
riods, in time period i, KPAk(k=i mod n) is responsible for providing key issuing
for a user, and the user generates his secret key by adding partial private keys
issued by KPAk and the KGC, so the key escrow can be eliminated. Further-
more, KPAk(k=1,. . . ,n) also provides user key updating information for time
periods Tk={i|k=i mod n}. Key exposure can be reduced by updating user’s
keys periodically with the help of the KPAs. The key pair generated in our
suggestion can be used for pairing-based identity-based cryptosystems, such as
encryptions, signatures, etc. Afterwards, we construct two implementation of our
key issuing and updating model: an identity-based encryption scheme based on
Boneh-Franklin’s scheme [2] and an identity-based signature scheme based on
Cha-Cheon’s scheme [9], both of the schemes are secure in the random oracle
model. To the author’s best knowledge, our proposed schemes are the first to
protect against both key escrow and key exposure problems simultaneously in
identity-based cryptosystems.

2 Preliminaries

Bilinear Pairings. Let G1 be an additive group of prime order q and G2be a
multiplicative group of the same order q. A bilinear pairing is a map ê: G1×
G1→ G2, with the following properties:

1.Bilniearity: ê(aP,bQ)=ê(P , Q)ab, for all P , Q ∈ G1, a,b ∈ Z∗
q ;

2.Non-degeneracy: There exist P ,Q ∈ G1, such that ê(P ,Q)�= 1;

Protecting Against Key Escrow and Key Exposure 151

3.Computability: There is an efficient algorithms to compute ê(P, Q) for all
P, Q ∈ G1.

The security of the pairing-based schemes relies the following mathematical
problems.

Bilinear Diffie-Hellman Problem (BDHP). Given (P , aP, bP, cP), com-
pute ê(P, P)abc. a, b, c be elements of Z∗

q .

Discrete Logarithm Problem (DLP). Given P ,Q, find an integer n such
that P=nQ, where such n exists.

Computational Diffie-Hellman Problem (CDHP). Given (P , aP, bP),
compute abP.P ,Q be elements of G1 and a,b be elements of Z∗

q .

Decisional Diffie-Hellman Problem (DDHP). Given (P ,aP,bP,cP), decide
whether c=ab in Z∗

q .

3 Our Key Issuing and Updating Model

In this section, we introduce a key issuing and updating model for identity-
based cryptosystem that can refresh user’s secret key periodically and doesn’t
suffer from key escrow. The main idea behind our scheme is using n KPAs to
provide private key privacy services. Our suggestion supports unbounded number
of time periods, each KPAk(k=1,. . . ,n) is corresponding to some specified time
periods Tk={i|k=i mod n}. The KPAk(k=1,. . . ,n) provides privacy service for
users by authenticating them and deliver a partial private key in key issuing
stage and generating key refreshing information in key updating stage for the
time periods which it associated with. There are two types of attacks that are
generally considered in our model:

Type 1-Key Exposure Attack. The adversary compromises a user’s secret key in
an insecure device for time period iand tries to impersonate the user in another
time period.
Type 2-Malicious KGC Attack. The adversary controls the master key of the
KGC and tries to impersonate a user.

3.1 Entities Involved

There are three entities involved namely KGC, KPA and user in our protocol.

- Key Generation Center (KGC). The KGC is the central entity meant
for user registration. It checks the user identity and issues partial private
keys to the registered users.

- Key Privacy Authority (KPA). Multiple KPAs are used to providing the
key privacy service. Each KPAk(k=1,. . . ,n)is corresponding to some speci-
fied time periods. In time period i, KPAk(k=i mod n) is responsible for au-
thenticating users and issuing partial private keys in parallel with the KGC
to tackle key escrow. Furthermore, each user is allowed to interact with the
KPAk (k=1,. . . ,n) to derive a temporary key for time period i (k=i mod n)
to eliminate key exposure damage.

152 J. Wang et al.

- User. A user is an entity that uses identity-based cryptosystem. In time
periodi, if a user wants to be issued a private key, he must be initially
registered at the KGC and gets partial private keys from the KGC and
KPAk(k=i mod n) in parallel. Any user can update its secret key periodically
by interacting with KPAs.

3.2 Framework and Security Model

Definition 1. Our identity-based Key issuing and updating model (IBKIU) is
3-tuple of algorithms (Setup, Extract, Upd), that are defined as follows:

- Setup: This algorithm takes security parameter k, and returns a list of
system parameters and the master key for the KGC and n KPAs. We assume
that parameters are publicly and authentically available.

- Extract: It takes as input a user’s identity ID, index i of a time period and
the master key of the KGC and the KPAk (k = i mod n), it returns his/her
base secret key.

- Upd: The user key-update algorithm. It takes as input indices i, j for time
periods, the master key of KPAk (k = j mod n) and a secret keySKi

ID, it
returns the secret key SKj

ID for time period j.

Therefore the key pair generated in our model can be used for pairing-based
identity-based cryptosystems, such as encryptions and signatures. We construct
two implementation of IBKIU model: an identity-based encryption scheme
(IBKIUE) and an identity-based signature scheme (IBKIUS).

Definition 2 (IBKIUE). An IBKIUE scheme consists five polynomial-time
algorithms (Setup, Extract, Upd, Encrypt and Decrypt).

- Setup, Extract, Upd are defined as the same in Definition 1.
- Encrypt: The encryption algorithm. On input system parameters, ID, index

i of a time period, and a message M , it returns a ciphertext C for ID at
time period i.

- Decrypt: The decryption algorithm. On input a secret key SKi
ID and a

ciphertext (ID, i, C), it returns a message M or the special symbol ⊥.

For security considerations, we define the following oracles:

- EO:The Extraction Oracle, on input ID, time period index i, master keys
of the KGC and KPAk(where k=i mod n), output the corresponding secret
key SKi

ID by running algorithm Extract.
- KEO:The Key Exposure Oracle, on input ID and i, the challenger runs

algorithm Upd to get the temporary secret key SKi
ID for time period i.

- DO :The Decryption Oracle, on input (ID, i, C), run Extract (ID, i) to get
the private key SKi

ID, then run algorithm Decrypt (ID, i, SKi
ID, C) and

return the resulting plaintext.

Protecting Against Key Escrow and Key Exposure 153

Here, we formalize more rigorous security notions than [2] to allow adversaries
who can make both types of attacks: compromising the KGC’s master key and
getting based keys or temporary keys for identities and time periods of their
choice. We define chosen ciphertext security for our scheme as follows.

Definition 3. We say that our IBKIUE scheme is semantically secure against
an adaptively chosen ciphertext attack (IND-ID-CCA) if no polynomially boun-
ded adversary A has a non-negligible advantage against the challenger C in the
following game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting system parameters. The challenger also gives the master-
key of the KGC to A.
Phase 1: A queries EO(ID, i), KEO (ID, i) and DO (ID, i, C) in arbitrary
interleave. These queries may be asked adaptively.
Challenge: Once A decides that Phase 1 is over it outputs the challenge identity
ID∗, time period i and two equal length plaintexts: M0 and M1. In particular,
the constraint is that (ID∗, i) did not appear in any query to EO and KEO
in phase 1. The challenger now picks a random bit b ∈ {0, 1} and computes
C∗ = Encrypt(ID∗, i, Mb). If the output of the encryption is ⊥, then A has
immediately lost the game. Otherwise, C∗ is delivered to A.
Phase 2: A issues a second sequence of requests as in Phase 1. In particular, no
private key extraction or key exposure query on (ID∗, i) is allowed. Moreover,
no decryption query can be made on (ID∗, i, C∗).
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b = b′. We define A’s advantage in the game to be Adv(A) = 2(Pr[b =
b′] − 1

2).

Definition 4 (IBKIUS). An IBKIUS scheme consists five polynomial-time al-
gorithms (Setup, Extract, Upd, Sign and Verify).

- Setup, Extract, Upd are defined as the same in Definition 1.
- Sign: On input ID, an index i of a time period, the secret key SKi

ID and a
message M , it generates a signature σ.

- Verify: On input system parameters, user identity ID, indexes i of a time
period, a message M and a signature σ, returns 1 or 0 for σ accept or reject,
respectively.
We also define the signature oracle as follows.

- SO: The Signing Oracle, on input a message M , ID and i, output σ as a
signature.

Definition 5. We say that our IBKIUS scheme is semantically secure against
adaptively chosen message and ID attack if no polynomially bounded adversary
A has a non-negligible advantage against the challenger C in the following game:

1. C takes a security parameter k and runs the Setup algorithm and the resulting
system parameters are given to A. C also sends the master key of the KGC
to A.

154 J. Wang et al.

2. A issues a number of queries on EO(ID, i), KEO(ID, i) and SO(ID, i, M).
These queries may be asked adaptively.

3. Finally, A outputs (ID∗, i, M∗, σ), where ID∗ is target identity chosen by
A, i is an index of a time period, M∗ is a message and σ is a signature. Here
(ID∗, i) is not equal to any input of EO and KEO; (ID∗, i, M∗) is not equal
to any input of SO.

A wins the game if σ is a valid signature of M∗ for identity ID∗ at period i.

4 Our Proposed Encryption Scheme

This section presents our IBKIUE scheme based on Boneh-Franklin’s IBE
scheme [2]. Our proposed scheme solves key escrow and key exposure problems
simultaneously.

4.1 The IBKIUE Scheme

Setup: Given a security parameter k, The KGC runs IG, BDH parameter gen-
erator, to output groups G1, G2 of prime order q, a generator P of G1,a bilinear
map ê : G1 × G1 → G2.It chooses three hash functions H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ → G1, H3 : G2 → {0, 1}n for some n. The message space is
M = {0, 1}n. The KGC then picks a random s0 ∈ Z∗

q as its secret key and
computes its public key P0 = s0P . Each KPAi(i = 1, ..., n) also chooses its mas-
ter key si and publishes Pi = siP .

Extract: In time period i, a user with identity ID first computes k = i mod n,
then request the KGC and the KPAk to issue a base private key by sending ID.
The KGC and the KPAk issue a partial private key in parallel as follows.

The KGC:

1. Checks the identification of the user.
2. Computes the public key of the user as QID = H1(ID).
3. Set the partial base key as d0

ID = s0QID, where s0 is the master key of the
KGC.

4. Sends d0
ID to the user securely.

The KPAk:

1. Checks the identification of the user.
2. Computes the public key of the user as QID =H1(ID) and TID,i = H2(ID, i).
3. Issue the partial base key as dk

ID = skQID, and tkID = skTID,i where sk is
the master key of the KPAk.

The user sets si
ID = d0

ID + dk
ID, its base secret key is SKi

ID = (si
ID, tiID).

Upd: Given a time indices i and an identity ID, the KGCk(k = i mod n) works
as follows:

Protecting Against Key Escrow and Key Exposure 155

1. Computes QID = H1(ID), TID,i = H2(ID, i).
2. Issues a partial private key for ID as dk

ID = skQID, tiID = skTID,i.
3. Sends dk

ID and tiID to the user.

The user computes si
ID = d0

ID + dk
ID and sets the secret key SKi

ID =
(si

ID, tiID) for time period i.
Encrypt: Given an index i of a time period, a message M , and an identity ID,
pick a random number r ∈ Z∗

q , set the cipher text to be C =< U = rP, V =
M ⊕ H3(gr

ID) >, where gID = (QID, P0 + Pk)ê(TID,i, Pk).
Decrypt: Given the secret key SKi

ID = (si
ID, tiID) and a cipher text C =<

U, V > for the identity ID at a time period i, computes M = V ⊕ H3(ê(si
ID +

tiID, U)).

4.2 Correctness

The decryption of our encryption scheme is justified by the following equations:

gr
ID = ê(QID, P0 + Pk)r ê(TID,i, Pk)r

= ê(QID, s0P + skP)r ê(TID,i, skP)r

= ê(s0QID + skQID, rP)ê(skTID,i, rP)
= ê(si

ID, rP)ê(tiID, rP)
= ê(si

ID + tiID, U)

4.3 Analysis and Comparison

Consider in time period i, the KGC can’t learn the KPAk’s(k = i mod n) pri-
vate key and, likewise, the KPAk can’t know the master key of the KGC. Note
that the KGC and the KPAk are two distinct authorities and do not collude with
each other. The user’s private key consists of two half parts si

ID and tiID. si
ID =

d0
ID + dk

ID is a sum of two partial keys generated by the KGC and the KPAk.
tiID is associated with the time index generated by the KPAk. So the KGC and
the KPAk never knows the both half of the user’s private key. Further more, if
the KGC collude with a KPAi, they can only obtain the user’s secret keys for the
time period corresponding to KPAi, and can not impersonate any users success-
fully in other time periods. On the other hand, even if all of n KPAs collude, they
can not work out the KGC’s master key and user’s secret key for any time period.

In our scheme, exposure of a user’s secret key at a given time will not enable
an adversary to derive the user’s key for the remaining time, it achieves the
similar property as identity-based (N − 1, N) key-insulated cryptosystems.

On the point of efficiency, remark that, in identity-based key-insulated cryp-
tosystem, authentication between the user and the physically-secure device is
necessary (Previous work assumed that authentication is handled by an under-
lying protocol). Considering in our scheme, if a user refreshes his secret key for
time period i, the corresponding KPAk(k = i mod n) also has to check user’s
identity, which is quite a burden. However, our scheme doesn’t suffer from key
escrow, which is still remained in identity-based key-insulated scheme.

Our scheme also has desirable properties such as unbounded number of time
periods, and random-access updates.

156 J. Wang et al.

4.4 Security Analysis

The proof of security for our scheme makes use of a weaker notion of security
known as semantic security against a chosen plaintext attack (denoted IND-ID-
CPA)[2]. IND-ID-CPA is similar to IND-ID-CCA except that the adversary is
more limited: it cannot issue decryption queries while attacking the challenge
public key.

Theorem 1. In the random oracle model, if an adversary A has an advantage
ε in IND-ID-CPA attack on our proposed encryption scheme with running in
a time t and making at most qH1 , qH2 , qH3 , qE and qK times queries to hash
functions H1, H2, H3, EO and KEO, respectively, then the BDHP can be solved
in G1 with an advantage

ε′ >
1
n
· 1
qH1

(1 − qE + qK

n · qH1

) · 2
qH3

ε

within a time

t′ < t + (qH1 + qH2 + qH3 + 3qE + 3qK + 3)tm

where tm denotes the running time of computing a scalar multiplication in G1.

Proof: The whole proof is omitted here for space limitation and can be seen in
the full version of our paper.

5 Our Proposed Signature Scheme

Our key issuing and updating model can also be applied to identity-based sig-
nature scheme. In this section, an IBKIUS scheme is presented based on Cha-
Cheon’s identity-based signature scheme [9].

5.1 The IBKIUS Scheme

Our proposed signature scheme consists of 5-tuple of poly-time algorithms
(Setup, Extract, Upd, Sign, Verify):

Setup: Given a security parameter k, the KGC selects two groups G1, G2 of
prime order q, a generator P of G1, a bilinear map ê : G1 ×G1 → G2, and three
hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G1, H3 : G2 → {0, 1}n. The
message space is M = {0, 1}n. The KGC then picks a random s0 ∈ Z∗

q as its
secret key and computes its public key P0 = s0P . Each KPAi(i = 1, ..., n) also
chooses its master key si ∈ Z∗

q and publishes Pi = siP .
Extract: As in IBKIUE scheme.
Upd: As in IBKIUE scheme.
Sign: On inputting an index i of a time period, a message M , and a secret
key SKi

ID = (si
ID, tiID), pick a random number r ∈ Z∗

q , compute U1 = rQID,

Protecting Against Key Escrow and Key Exposure 157

U2 = rTID,i, h = H3(M, U1 + U2), V = (r + h)(si
ID + tiID), and return (i, σ),

where σ = (U1, U2, V).
Verify: On inputting a tuple (i, σ), the public key P0, Pk(k = i mod n), and a
message M , the verifier does the following:

1. Parses σ as σ = (U1, U2, V).
2. Computes QID = H1(ID), TID,i = H2(ID, i), h = H3(M, U1 + U2).
3. Accepts the signature if ê(P, V) = ê(P0 +Pk, U1 +hQID)ê(Pk, U2 +hTID,i).

5.2 Security Analysis

Theorem 2. In the random oracle model, if an adversary A has an advantage
ε in adaptively chosen message and ID attack on our signature scheme with run-
ning in a time t and making at most qH1 , qH2, qH3 , qE , qK and qs times queries
to random oracles H1, H2, H3, EO,KEO, and SO respectively, then the CDHP
can be solved in G1 with an advantage

ε′ >
ε − (qS(qH3 + qS) + 1)/2k

e(1 + qE + qK)

within time

t′ < t + (qH1 + qH2 + qH3 + 3qE + 3qK + 6qS + 1)tm

where tm denotes the running time of computing a scalar multiplication in G1.

Proof: The whole proof is omitted here for space limitation and can be seen in
the full version of our paper.

6 Conclusion

In this paper, we consider how to solve both key escrow and key exposure prob-
lems in identity-based cryptosystems. In our suggestion, we subdivide the key
issuing authority into KGC and n KPAs. Each KPA is corresponding to some
specified time periods. With this separation, we could consider eliminating key
escrow of the KGC, and even if the KGC colludes with the KPAk(k = 1, ..., n),
they can only obtain the user’s secret keys for the time periods Tk = {i|k = i
mod n}, and can not impersonate users in other time periods. Furthermore,
KPAk(k = 1, ..., n) also provides key refreshing information for time periods
Tk. Key exposure on user’s insecure device can be reduced by updating keys
periodically with the help of the KPAs. The proposed concrete encryption and
signature scheme will be a practical solution to consider both key escrow and
key exposure simultaneously in identity-based cryptosystems.

158 J. Wang et al.

References

1. A.Shamir, Identity-based cryptosystems and signature schemes, CRYPTO’84,
LNCS 196, Springer-Verlag, pp.47-53, 1984.

2. D.Boneh and M.Franklin, Identity-based encryption from the Weil pairing,
CRYPTO’01, LNCS 2139, Springer-Verlag, pp.213-229, 2001.

3. B.Lee, C.Boyd, E.Dawson, K.Kim, J.Yang and S.Yoo, Secure Key Issuing in ID-
Based Cryptography, ACM Second Australasian Information Security Workshop,
New Zealand, pp.69-74, 2004.

4. C. Gentry, Certificate-based encryption and the certificate revocation prob-
lem. Cryptology-EUROCRYPT 2003, LNCS. 2656, Springer-Verlag, pp.
272-293,2003.

5. L.Chen, K.Harrison, N.Smart and D.Soldera, Applications of multiple trust author-
ities in pairing based cryptosystems, InfraSec 2002, LNCS 2437, Springer-Verlag,
pp.260-275, 2002.

6. Y. Dodis, J. Katz, S. Xu and M. Yung. Key-Insulated Public-Key Cryptosystems.
EuroCrypt’02, pp. 65-82, Springer-Verlag, 2002.

7. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. Crypto’99, LNCS 1666, pp. 537-554, Springer-Verlag, 1999.

8. F.Hess, Efficient Identity Based Signature Schemes based on Pairings, Selected
Areas in Cryptography 9th Annual International Workshop, SAC2002, LNCS 2595,
Springer-Verlag, pp.310-324, 2003.

9. J.C. Cha and J.H. Cheon, An Identity-Based Signature from Gap Diffie-Hellman
Groups, Public key Cryptography-PKC 2003, LNCS 2567, Springer-Verag, pp.1830,
2003.

10. K.G.Paterson, ID-based signatures from pairings on elliptic curves, Electronics Let-
ters, vol.38, no.18, pp.1025-1026, 2002.

11. S.Al-Riyami and K.G.Paterson, Certificateless public key cryptography, Asiacrypt
2003, LNCS 2894, Springer-Verlag, pp.452-473, 2003.

12. D.H. Yum and P.J. Lee. Efficient Key Updating Signature Schemes Based on IBS,
Cryptography and Coding’03, LNCS 2898, pp. 167-182, Springer-Verlag, 2003.

13. Y.Zhou,Z.Cao,Z. Chai. Identity Based Key Insulated Signature. ISPEC’06, LNCS
3903, pp. 226-234, Springer-Verlag, 2006.

14. Y.Hanaoka, G.Hanaoka, J.Shikata, H.Imai. Identity-Based Hierarchical Strongly
Key-Insulated Encryption and Its Application. AsiaCrypt’05, LNCS 3788, pp. 495-
514, Springer-Verlag, 2005.

15. D. Pointcheval and J. Stern, Security arguments for digital signatures and blind
signatures, J. of Cryptology, Vol. 13, pp. 361-396, 2000.

16. Ai-fen,et.al, Separable and Anonymous Identity-Based Key Issuing without Se-
cureChannel, Cryptology ePrint Archive, Report2004/322, 2004.

17. Y. Dodis, J. Katz, S. Xu and M. Yung. Strong Key-Insulated Signature Schemes.
PKC’03, LNCS 2567, pp. 130-144, Springer-Verlag, 2003.

18. A. Shamir, How to share secret, Comm. ACM, 22(11) pp. 612-613, 1979.
19. Y. Desmedt and Y. Frankel, Threshold cryptosystems, Crypto 1989, LNCS Vol.

435, pp. 307-315, 1989.
20. M. Bellare and S. Miner, forward-secure digital signature scheme, Crypto 1999,

LNCS Vol. 1666, pp. 431-448, 1999.
21. J.Li, F.Zhang and Y.Wang, A Strong Identity Based Key-Insulated Cryptosystem,

Advances in IFIP’2006 LNCS 4097.PP.353-362, Springer-Verlag, 2006.

Encapsulated Scalar Multiplications and Line

Functions in the Computation of Tate Pairing�

Rongquan Feng�� and Hongfeng Wu

LMAM, School of Math. Sciences, Peking University, Beijing 100871, P.R. China
fengrq@math.pku.edu.cn, wuhf@math.pku.edu.cn

Abstract. The efficient computation of the Tate pairing is a crucial
factor to realize cryptographic applications practically. To compute the
Tate pairing, two kinds of costs on the scalar multiplications and Miller’s
line functions of elliptic curves should be considered. In the present pa-
per, encapsulated scalar multiplications and line functions are discussed.
Some simplified formulas and improved algorithms to compute f3T , f4T ,
f2T±P , f6T , f3T±P and f4T±P etc., are presented from given points T
and P on the elliptic curve.

Keywords: Elliptic curve, scalar multiplication, line function, Tate
pairing, Miller’s path.

1 Introduction

With the discovery of the identity-based encryption scheme based on the Weil
pairing by Boneh and Franklin [4], cryptographic protocols based on the Weil
and Tate pairings on elliptic curves have attracted much attention in recent
years. Many cryptographic schemes based on the Weil or on the Tate pairing
have been introduced. The readers are referred to [11] for a survey. In most of
these pairing-based cryptographic schemes, the Tate pairing is the essential tool.
The pairing computations are often the bottleneck to realize the cryptographic
applications in practice. Therefore efficient computation of the Tate pairing is a
crucial factor to realize cryptographic applications practically.

Miller [20,21] provided an algorithm to compute the Weil/Tate pairing. The
Miller’s algorithm itself consists of two parts: the Miller’s function frP and a
final exponentiation. The main part of the computation for the Tate pairing
is calculating frP (Q). In the computation of the Miller’s function f(m+n)P (Q),
one needs to perform a conditional scalar multiplication and compute the line
functions lmP,nP (Q) and l(m+n)P (Q) from points mP and nP on the elliptic
curve. The total cost of the computation of the Tate pairing is the sum of the cost
of scalar multiplications and that of the computation of line functions lmP,nP (Q)
and l(m+n)P (Q). So a good algorithm must think over these two kinds of costs

� Supported by the NSF of China (10571005, 60473019), by 863 Project (No.
2006AA01Z434) and by NKBRPC (2004CB318000).

�� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 159–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

160 R. Feng and H. Wu

simultaneously. In the first, we need to find more efficient method to compute
the scalar multiplication, at the same time we need to modify the algorithm
so that it can be serviced to make the computation of line functions. Secondly,
we need other strategies to change and simplify the formula of f(m+n)P so that
the good algorithm of scalar multiplications can be used to the computation of
f(m+n)P . In the computation of the Tate pairing, we often need to compute the
following Miller’s functions f4T , f3T , fiT±P , f2kT , f3kT , f6T etc. In this paper,
efficient algorithms to compute some of these Miller’s functions are presented.
We propose a useful fact and use it to simplify fm+n. The simplified formula
of fm+n and new point multiplication algorithms make our algorithms more
efficient.

This paper is organized as follows. Some essential concepts to discuss pairings
are reviewed in Section 2. In Section 3, some efficient algorithms to compute
different Miller’s paths are described. An example using those results is given in
Section 4. And finally conclusions are proposed in Section 5.

2 Preliminaries

In this section, the basic arithmetic of elliptic curves, the Tate pairing and
Miller’s algorithm are described briefly. The readers are referred to [1] and [25]
for more details. Throughout this paper, the base field K is always assumed to
be the finite field Fq, where q = pm with p > 3, and K is the algebraic closure
of K.

An elliptic curve E over K is a curve that is given by an equation of the form

y2 = x3 + ax + b, (1)

where a, b ∈ K and 4a3 +27b �= 0. Let E(K) denote the set of points (x, y) ∈ K2

which satisfy the equation (1), along with a “point at infinity”, denoted by O.
For any positive integer k, F = Fqk is an extension field of K. Then E(F)
denotes the set of (x, y) ∈ F 2 that satisfy (1), along with O. There is an abelian
group structure in E(K). The addition formulas for affine coordinates are the
followings. Let P1 = (x1, y1) and P2 = (x2, y2) be two elements of E(K) that are
different from O. Then the addition P3 = P1 + P2 = (x3, y3) is defined by x3 =
λ2

P1,P2
−x1−x2 and y3 = λP1,P2(x1−x3)−y1, where λP1,P2 = (y2−y1)/(x2−x1) is

the slope of the line through P1 and P2 for P1 �= ±P2 and λP1,P2 = (3x2
1+a)/(2y1)

is the slope of the tangent line at P1 for P1 = P2.
Let � be a positive integer and let E[�] (resp. E(Fq)[�]) be the set of points

P ∈ E(Fq) (resp. P ∈ E(Fq)) satisfying �P = O. Let P be a point on E(Fq)
of order r, the point P , or the cyclic subgroup 〈P 〉, or the integer r is said to
have embedding degree k for some positive integer k if r | qk − 1 and r � qs − 1
for any 0 < s < k. The group E(Fq) is (isomorphic to) a subgroup of E(Fqk).
Let P ∈ E(Fq) be a point of order r such that P has embedding degree k. Then
E(Fqk) contains a point Q of the same order r but linearly independent with P
(see [1]).

Encapsulated Scalar Multiplications and Line Functions 161

Definition 1. Let r be a positive integer coprime to q and let k be the embedding
degree to r. The Tate pairing τr〈·, ·〉 is a map τr〈·, ·〉 : E(Fq)[r]×E(Fqk)[r] → F∗qk

defined by τr(P, Q) = frP (DQ)(q
k−1)/r for any P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r],

where frP is a rational function satisfying (frP) = r(P) − r(O), and DQ ∼
(Q) − (O) such that (fP) and DQ have disjoint supports.

From [2], we know that τr(P, Q) can be reduced to τr(P, Q) = frP (Q)(q
k−1)/r

when r � (p−1), Q �= O, and k > 1. Noting that in most cryptographic primitives,
r is set to be a prime such that r | �E(Fq). Furthermore, in practice, r is at least
larger than 160 bits.

In order to compute the Tate pairing τr(P, Q), we need to find the function
fP and then evaluate its value at Q. The algorithm, proposed by Miller [20], and
then called Miller’s algorithm, can be used to compute the Tate paring. Denoted
by lU,V the equation of the line through points U, V ∈ E(Fq). Naturally, if
U = V , then lU,V is the equation of the tangent line at U , and if either U or V is
the point at infinity O, then lU,V represents the vertical line through the other
point. Furthermore, for simplicity, we write lU instead of lU,−U . For a point P on
elliptic curve E, define a Miller’s function with parameter n ∈ N to be a rational
function fnP (or simply fn) on E such that (fn) = n(P) − (nP) − (n − 1)(O).

Theorem 1 ([1] Miller’s formula). Let P ∈ E(Fq), n be an integer and let
fn be the function with divisor (fn) = n(P) − (nP) − (n − 1)(O). Then for any
m, n ∈ Z,

fm+n(Q) = fm(Q) · fn(Q) · lmP,nP (Q)
l(m+n)P (Q)

.

We can use the Miller’s algorithm to compute fn and then evaluate the Tate
pairing. The standard double-and-add method to compute the Tate pairing is
the following algorithm.

Algorithm 1. Miller’s algorithm:
—————————————————————————-
Input: t = log r, r = (rt = 1, rt−1, . . . , r0)2, P , Q.
Output: frP (Q)(q

k−1)/r.
—————————————————————————-
1: T = P , f = 1
2: For i = t − 1 downto 0 do
3: f ← f2 · lT,T (Q) /l2T (Q) and T ← 2T ;
4: if ri = 1, then f ← f · lT,P (Q)/lT+P (Q) and T ← T + P

5: Return f (qk−1)/r

—————————————————————————-

Definition 2. Let P ∈ E(Fq) and Q ∈ E(Fqk), a Miller’s path about Q from
(n1P, n2P, · · · , nsP) to (n1+n2+ · · ·+ns)P is an algorithm A which can output
(n1 + n2 + · · · + ns)P and f(n1+n2+···+ns)(Q) when input (n1P, n2P, · · · , nsP)
and fn1 , fn2 , · · · , fns. When there is no confusion, this algorithm A is said to
be a Miller’s path to (n1P, n2P, · · · , nsP).

162 R. Feng and H. Wu

The computational cost (timing) of scalar multiplications and Tate pairings on
elliptic curve operations depend on the cost of the arithmetic operations that
have to be performed in the underlying field. In general, among these arithmetics,
a field squaring, a field multiplication and a field inversion are more expensive
than other field arithmetics, such as a field addition and a field subtraction. So
we only take into account the cost of inversion, multiplication, and squaring in
the field Fq, which we denote by I, M and S, respectively, while in the extension
field Fqk , those costs are denoted by Ik, Mk and Sk, respectively. Generally
it is assumed that 1S = 0.8M , 1Mk = k2M and 1Ik = k2M + I. Also the
multiplication between elements in F∗q and F∗qk costs kM .

3 Computation of Miller’s Paths

In the process of computing Tate pairings, we often need to compute (fmP+nT ,
mP +nT) from (fP , P) and (fT , T). A Miller’s path is to compute mP +nT and
fmP+nT at the same time. Different Miller’s paths have different computation
costs. A main problem is to find an optimized Miller’s path so that we can
quicken the computation of Tate pairings.

Throughout this section, we assume that P ∈ E(Fq) and Q ∈ E(Fqk). More-
over, though we don’t use the denominators discarded method [1] in here, our
strategies can also be used in those algorithms there.

3.1 Miller’s Path to 4T

In this subsection, an improved method for obtaining (f4T , 4T) from (fT , T) is
given. Firstly, some facts about elliptic curves will be given from which one can
simplify the computation of f4T .

Let P1 = (x1, y1) and P2 = (x2, y2) be points on E, Set P1 + P2 = P3 =
(x3, y3). Let lP1,P2 : y − λP1,P2(x − x1) − y1 = 0 be the equation of the line
through P1 and P2 and lP1+P2 : x−x3 = 0 be the vertical line through the point
P1 + P2. If P1 = P2 then lP1 is the tangent line at P1, and if P1 + P2 = O then
we take lP1+P2 = 1.

Lemma 1. For P1, P2 ∈ E(Fq), let P1 + P2 = P3. Then we have lP1,P2 ·
l−P1,−P2 = lP1 · lP2 · lP3 , i.e.,

(y − λP1,P2(x − x1) − y1)(y + λP1,P2(x − x1) + y1) = (x − x1)(x − x2)(x − x3).

Proof. The divisor of the function lP1,P2 is (lP1,P2) = (P1)+(P2)+(−P3)−3(O).
Since −P1 = (x1,−y1), we have (y + λP1,P2(x − x1) + y1) = (−P1) + (−P2) +
(P3) − 3(O). Thus

div((y − λP1,P2(x − x1) − y1)(y + λP1,P2(x − x1) + y1))
= (P1) + (P2) + (−P3) − 3(O) + (−P1) + (−P2) + (P3) − 3(O)
= (P1) + (−P1) − 2(O) + (P2) + (−P2) − 2(O) + (P3) + (−P3) − 2(O)
= div(x − x1) + div(x − x2) + div(x − x3)
= div((x − x1)(x − x2)(x − x3)).

Encapsulated Scalar Multiplications and Line Functions 163

From div(f) = 0 if and only if f is a constant function, we have that

(y − λP1,P2(x − x1)− y1)(y + λP1,P2(x− x1) + y1) = c · (x − x1)(x− x2)(x − x3)

for some constant c ∈ K. But since the coefficient of x3 is 1 in both sides we
have c = 1. �

Remark 1. From the lemma 1, we know fm−n(Q) =
fm

fn
(Q) · lmP

l−mP,nP
(Q), Thus

we have f2m−1(Q) = f2
m(Q) · lmP,mP

l−2mP,P
(Q).

We now describe an improved method for obtaining (f4T , 4T) from (fT , T). Note
that for any points T and S, we have l−T,−S(Q) = lT,S(−Q). By Lemma 1, we
have

f4T =
(

f2
T · lT,T

l2T

)2

· l2T,2T

l4T
= f4

T · l2T,T

l22T

· l2T,2T

l4T
= f4

T · l2T,T

l−2T,−2T
.

Let T = (x1, y1), 2T = (x2, y2) and 4T = (x4, y4). Then x2 = λ2
T,T − 2x1,

y2 = λT,T (x1 − x2) − y1; x4 = λ2
2T,2T − 2x2 and y4 = λ2T,2T (x2 − x4) − y2. Set

Q = (x, y). We have

f4T (Q) = f4
T · l2T,T

l−2T,−2T
(Q) =

f4
T · l2T,T (Q)

l2T,2T (−Q)
= f4

T · [y − y1 − λT,T (x − x1)]2

y + y2 + λ2T,2T (x + x2)
.

Furthermore, let λ be defined as λ = 3x2
1 + a. Then we have

1
2y2

=
(2y1)3

2λ(3x1 · (2y1)2 − λ2) − (2y1)4
.

Thus

λ2T,2T = (3x2
2 + a) · (2y1)4

2y1[2λ(3x1 · (2y1)2 − λ2) − (2y1)4]
;

λT,T = (3x2
1 + a) · 2λ(3x1 · (2y1)2 − λ2) − (2y1)4

2y1[2λ(3x1 · (2y1)2 − λ2) − (2y1)4]
.

So we have the following algorithm to compute 4T and f4T from T and fT .
In the above algorithm, we need I +7S +9M to compute λ1, λ2 and (x4, y4).

It is cheaper than two doubling method which cost 2I + 4S + 4M for in the
general finite field I/M ≥ 10. Also it is better than the algorithm in [6] where
the cost is I + 9S + 9M . Steps 7 and 8 cost Ik + 2Sk + 2Mk + 2kM when
Q = (x, y), x, y ∈ Fqk . For general algorithm, the cost is 2Ik + Sk + 2Mk + 2kM
(see [21]). So this algorithm is better than known algorithms not only for 4T , but
also for f4T .

164 R. Feng and H. Wu

Algorithm 2. (Path to 4T algorithm):
—————————————————————————-
Input: T = (x1, y1), Q = (x, y), fT .
Output: f4T (Q), 2T , 4T = (x4, y4).
—————————————————————————-
1: t1 = 3x2

1 + a; t2 = 2y1; t3 = (t22)
2; t4 = x1 · t3;

2: t5 = 2t1 · (3t4 − t21) − t3;
3: t6 = (t2 · t5)−1;
4: λ1 = t1 · t5 · t6; x2 = λ2

1 − 2x1; y2 = λ1(x1 − x2) − y1;
5: λ2 = (3x2

2 + a) · t3 · t6; x4 = λ2
2 − 2x2; y4 = λ2(x2 − x4) − y2;

6: f1 = y − y1 − λ1(x − x1); f2 = y + y2 + λ2(x + x2);
7: f4T (Q) = (fT (Q)2 · f1(Q))2 · f2(Q)−1;
8: Return f4T (Q), 2T , 4T = (x4, y4).
—————————————————————————-

3.2 Miller’s Path to 2T ± P

In this subsection, we will describe the efficient Miller’s path to (f2T+P , 2T +P)
and (f2T−P , 2T − P).

Miller’s Path to 2T + P . We first give an efficient Miller’s path to (f2T+P ,
2T + P) from (fT , T) and (fP , P) when T �= P .

First noting that

f2T+P = fT+P ·fT · lT+P,T

l2T+P
=

fT · fP · lT,P

lT+P
·fT · lT+P,T

l2T+P
=

f2
T · fP

l2T+P
· lT,P · lT+P,T

lT+P
.

Set T = (x1, y1), P = (x2, y2), T + P = (x3, y3) and 2T + P = (x4, y4). From
[12] we can replace (lT,P · lT+P,T)/lT+P by the following parabolas formula:

lT,P · lT+P,T

lT+P
= (x− x1)(x + x1 + x3 + λT,P λT,T+P)− (λT,P + λT,T+P)(y − y1).

Furthermore, λT,T+P can be expanded as follows:

λT,T+P =
y3 − y1

x3 − x1
=

(x1 − x3)λT,P − 2y1

λ2
T,P − 2x1 − x2

=
2y1(x2 − x1)3 − (y2 − y1)

[
(x2 − x1)2(2x1 + x2) − (y2 − y1)2

]

(x2 − x1) [(x2 − x1)2(2x1 + x2) − (y2 − y1)2]
.

Since

λT,P =
y2 − y1

x2 − x1
=

(y2 − y1)
[
(x2 − x1)2(2x1 + x2) − (y2 − y1)2

]

(x2 − x1) [(x2 − x1)2(2x1 + x2) − (y2 − y1)2]
.

So we need only to compute one inversion
{
(x2 − x1)

[
(x2 − x1)2(2x1 + x2)−

(y2 − y1)2
]}−1 in order to compute λT,P and λT,T+P simultaneously. Thus we

have the following formulas.

Encapsulated Scalar Multiplications and Line Functions 165

λT,P =
{
(x2 − x1)

[
(x2 − x1)2(2x1 + x2) − (y2 − y1)2

]}−1

· (y2 − y1)
[
(x2 − x1)

2 (2x1 + x2) − (y2 − y1)
2
]
;

λT,T+P =
{
(x2−x1)

[
(x2−x1)2(2x1+x2)−(y2−y1)2

]}−1 · 2y1 (x2−x1)
3−λT,P ;

x4 = (λT,T+P − λT,P) (λT,T+P + λT,P) +x2;
y4 = (x1 − x4)λT,T+P − y1.

Since x3 = λ2
T,P − x1 − x2, the new parabolas formula is

lT,P · lT+P,P

lT+P
= (x−x1)(λT,P (λT,P +λT,T+P)−x2+x)−(λT,P +λT,T+P)(y−y1).

This procedure is described by the following algorithm.

Algorithm 3. (Path to 2T + P algorithm):
——————————————————————————-
Input: T = (x1, y1), P = (x2, y2), fT , fP and Q = (x, y)
Output: f2T+P (Q) and 2T + P = (x4, y4).
——————————————————————————-
1: t1 = (x2 − x1)2(2x1 + x2) − (y2 − y1)2,t2 = (x2 − x1)t1,t3 = t−1

2 ;
2: λ1 = (y2 − y1)t1t3, λ2 = t3 · 2y1(x2 − x1)2(x2 − x1) − λ1;
3: x4 = (λ2 − λ1)(λ2 + λ1) +x2;
4: y4 = (x1 − x4)λ2 − y1;

5: f2T+P (Q) =
f2

T · fP

l2T+P
· [(x−x1)(λ1(λ1 +λ2)−x2 +x)− (λ1 +λ2)(y−y1)](Q)

6: return f2T+P (Q), 2T + P .
——————————————————————————–

In Algorithm 2, we require 1I + 2S + 10M to compute 2T + P and x1 + x3 +
λT,P λT,T+P , while in [12], 2I + 2S + 4M times are required to compute them.
We save 1I − 6M field computations.

Miller’s Path to 2T − P . Now we describe an efficient Miller’s path to
(f2T−P , 2T − P) from (fT , T) and (fP , P) when T �= P . We can use 2T + (−P)
to get f2T−P by Algorithm 3, but here we describe a direct path to f2T−P .

By Remark 1 in section 3.1 we know

f2T−P (Q) = f2
T (Q) · lT,T

l−2T,P
(Q).

Let P = (xP , yP),T = (xT , yT), 2T = (x2T , y2T) and 2T − P = (x2T−P , y2T−P).
Then x2T = λ2

T,T −2xT , y2T = λT,T (xT −x2T)−yT ; x2T−P = λ2
2T,−P −x2T −xP

and y2T−P = λ2T,−P (xP − x2T−P) + yP . Set Q = (x, y). We have

f2T−P (Q) = f2
T · lT,T

l−2T,P
(Q) = f2

T (Q) · y − yT − λT,T (x − xT)
y − yP + λ2T,−P (x − xP)

.

166 R. Feng and H. Wu

Furthermore, let λ be defined as λ = 3x2
T + a. Then we have

λT,T =
(3x2

T + a) · [λ2 − (2xT + xP)(2yT)2]
2yT [λ2 − (2xT + xP)(2yT)2]

;

λ2T,−P =
(2yT)3(y2T + yP)

2yT [λ2 − (2xT + xP)(2yT)2]
.

Therefore, when Q = (x, y) and x ∈ Fqk , y ∈ Fqk , to complete the Miller’s
path (f2T−P , 2T − P) from (fT , T) and (fP , P) we need only 1I + 5S + (2k +
9)M + Ik + Sk + 2Mk. However, we need 1I + 2S + (k + 10)M + Ik + Sk + 4Mk

when use the Algorithm 3 to compute (f2T−P , 2T − P).

3.3 Miller’s Path to 3T

In this subsection, a Miller’s path to (f3T , 3T) from (fT , T) is given. By the
Miller’s formula we have

f3T = f3
T · lT,T

l2T
· lT,2T

l3T
.

Let T = (x1, y1), 2T = (x2, y2), and 3T = (x3, y3). Then

lT,T · lT,2T

l2T
= (x − x1)(x + x1 + x2 + λT,T λT,2T) − (λT,T + λT,2T)(y − y1).

By x2 = λ2
T,T − 2x1, we have the following parabolas formula

lT,T · lT,2T

l2T
= (x − x1)(x + λ2

T,T − x1 + λT,T λT,2T) − (λT,T + λT,2T)(y − y1).

Noting that x3 = (λT,2T − λT,T)(λT,2T + λT,T) + x1, we need only λT,T , λT,2T

and 3T to compute (f3T , 3T). From

λT,2T =
y2 − y1

x2 − x1
=

λT,T (x1 − (λ2
T,T − 2x1)) − 2y1

(λ2
T,T − 2x1) − x1

=
2y1

3x1 − λ2
T,T

− λT,T

=
(2y1)3

(2y1)2(3x1) − (3x2
1 + a)2

− λT,T

and

λT,T =
3x2

1 + a2

2y1
=

3x2
1 + a2

2y1
· (2y1)2(3x1) − (3x2

1 + a)2

(2y1)2(3x1) − (3x2
1 + a)2

,

we have the follow algorithm:
In step 5 of Algorithm 4, Ik+Sk+4Mk+(k+1)M costs are needed to compute

f3T (Q). However the general double-add algorithm needs Ik +Sk +7Mk +2kM .
Our algorithm saves 3Mk + (k − 1)M field computations.

Encapsulated Scalar Multiplications and Line Functions 167

Algorithm 4. (Path to 3T algorithm):
————————————————————————————————–
Input: T = (x1, y1), fT , Q = (x, y).
Output: f3T (Q) and 3T = (x3, y3).
1: t1 = (2y1)2, t2 = t21, t3 = 3x2

1 + a;
2: t4 = 3x1 · t1 − t3, t5 = (2y1 · t4)−1, λ1 = t3t4t5, λ2 = t2t5 − λ1;
3: x3 = (λ2 − λ1)(λ2 + λ1) + x1;
4: y3 = (x1 − x3)λ2 − y1;

5: f3T (Q) =
f3

T (Q)
x − x3

· [(x− x1)(λ1(λ1 + λ2)− x1 + x)− (λ1 + λ2)(y − y1)](Q);

6: Return f3T (Q), 3T .
————————————————————————————————–

3.4 Miller’s Path to 6T

In this subsection, the Miller’s path to (f6T , 6T) from (fT , T) is considered. In the
first we see the Miller’s path [(fT , T) → (f2T , 2T) and (fT , T) → (f4T , 4T)] →
(f2T+4T , 2T + 4T). By Miller’s formula and the results in Section 3.1, we have

f6T =f4T ·f2T · l2T,4T

l6T
=f6

T ·
l2T,T

l−2T,−2T
· lT,T

l2T
· l2T,4T

l6T
=f6

T ·
l2T,T

l−2T,−2T
· lT,T · l2T,4T · l4T

l2T · l6T · l4T
.

So by Lemma 1,

f6T = f6
T · l3T,T

l−2T,−2T
· l2T,4T · l4T

l2T,4T · l−2T,−4T
= f6

T · l3T,T

l−2T,−2T
· l4T

l−2T,−4T
.

Let T = (x1, y1), 2T = (x2, y2), 4T = (x4, y4) and Q = (x, y). Then

f6T (Q) = (f2
T lT,T)3 · l4T

l−2T,−2T · l−2T,−4T
(Q)

=
(f2

T lT,T)3 · (x − x4)
[y + y2 + λ2T,2T (x + x2)] · [y + y2 + λ2T,4T (x + x2)]

.

Secondly, there is another way to (f6T , 6T) from (fT , T) as (fT , T)
→ (f3T , 3T) → (f3T+3T , 6T). Similarly, we have

f6T (Q) = f2
3T · l3T,3T

l6T
(Q)

=f6
T · [(x − x1)(λT,T (λT,T + λT,2T) − x1 + x) − (λT,T + λT,2T)(y − y1)]

2

l23T

· l3T,3T

l6T
(Q)

= f6
T · [(x − x2)(λT,T (λT,T + λT,2T) − x2 + x) − (λT,T + λT,2T)(y − y2)]

2

l−3T,−3T (Q)
.

By comparing with their costs, the second way (fT , T) → (f3T , 3T) → (f3T+3T ,
6T) is more efficient to compute (f6T , 6T). From this way, an algorithm to com-
pute f6T and 6T can be gotten.

168 R. Feng and H. Wu

3.5 Miller’s Path to iT ± P for i = 3, 4, 6.

In this subsection, we think about the Miller’s path to iT ±P from (fT , T) and
(fP , P), where i = 3, 4 and 6. Firstly, let us see an optimized one to (f3T+P ,
3T + P).

There are following four ways to get the Miller’s path to 3T +P from (fT , T)
and (fP , P). The first is as (fT , T) → (f3T , 3T) → (f3T+P , 3T + P). The second
is as [(fT , T) → (f2T , 2T) and(fP , P) → (fP+T , P +T)] → (f2T+(T+P), 2T +(T +
P)). The third is as (fT , T) → (f2T+P , 2T +P) → (f(2T+P)+T , (2T +P)+T), and
the fourth is as (fT , T) → (fT+P , T +P) → (f2T+(T+P), 2T+(P +T). Comparing
with the costs of these four ways we know that the second way is more efficient

than the others. Therefore, we have f3T+P (Q) = f3
T

lT,T · lT,P

l−2T,−T−P
(Q). The details

are omitted.
Similarly, for the Miller’s paths to 4T + P , We have the ways (fT , T) →

(f4T , 4T) → (f4T+P , 4T + P) and (fT , T) → (f2T , 2T) → (f2(2T)+P , 2(2T)+ P).
Comparing with the costs of these 2 ways we know that the first way is more
efficient than the second. Similarly, for the Miller’s paths to 6T + P , the way
(fT , T) → (f3T , 3T) → (f2(3T)+P ,2(3T)+P) is more efficient. From these results,
algorithms to compute f3T+P , f4T+p and f6T+P can be obtained.

The Miller’s path to iT − P are used to the algorithms using addition-
subtraction chains. Under conditions, direct compute fiT−P is more efficient. For

example, for the path to 3T − P we have f3T−P (Q) = f3
T [

lT,T lT,2T

l2T
]

1
l−3T,P

(Q).

For the path to 4T − P we have f4T−P (Q) = f4T (Q) · l4T

l−4T,P
(Q).

4 Example

As an example we describe a new algorithm to compute the Tate pairing in this
section.

Algorithm 5. Signed-Radix-2 Miller’s Algorithm
————————————————————————————————–
Input: r = (rt = 1, 0ht−1 , rt−1, · · · , 0h0, r0)2, P = (xP , yP), Q = (x, y)
Output: frP (Q)(q

k−1)/r ∈ F∗qk

————————————————————————————————–
1: T = P , f = 1;
2: For i = t − 1 downto 0 do
3: if hi is even, then use the Algorithm 2 to compute f4hi/2T and 4hi/2T ;

set T = 4hi/2T then to compute fT+P (Q) if ri+1 = 1 or

fT−P (Q) = fT
lT

l−T,P
(Q) if ri+1 = −1;

4: if hi is odd, then use the Algorithm 2 to compute f4(hi−1)/2T

and 4(hi−1)/2T ; set T = 4(hi−1)/2T then to compute f2T+P (Q)
if ri+1 = 1 or f2T−P (Q) if ri+1 = −1;

Encapsulated Scalar Multiplications and Line Functions 169

5: EndFor
6: Return f (qk−1)/r.
————————————————————————————————–

For an integer r, consider the signed radix-2 representation of r. This repre-
sentation is advantaged for the non-zero digits is one-third of the length of the
representation on average. We write the radix-2 representation of r as r = (rt =
1, 0ht−1 , rt−1, · · · , 0h0, r0)2, where the ri is 1 or −1. The above algorithm is a
modified Miller’s algorithm with the signed radix-2 representation.

5 Conclusion

In this paper, several strategies to compute the Tate pairing efficiently are given.
The concept of Miller’s path which let us consider the scalar multiplications and
the computation of line functions in the same time is proposed. A useful fact
is stated in Lemma 1 and simple formulas to compute f4T , f2T−P and f6T etc.
are presented. Similar idea as in [12] is used to compute f3T to simplify the
computation. These algorithms are also used to compute f3T±P , f4T±P and
f6T+P . Furthermore, these methods can also be applied to other algorithms for
the computation of Tate pairings. In practical applications, the computation
of f2kT or f3kT are also needed. Certainly, iterative method can be used to
reduce some cost, but it only reduce the cost of scalar multiplications. So, how
to simplify the formula of Miller’s functions f2kT and f3kT are still crucial open
problems.

Acknowledgements

The authors would like to thank anonymous referees for their valuable comments
and suggestions.

References

1. P.S.L.M. Barreto, H.Y. Kim, B. Lynn and M. Scott. Efficient algorithms for pairing-
based cryptosystems, Advances in Cryptology–Crypto’2002, LNCS 2442, 354-368,
Spriger-Verlag, 2002.

2. P.S.L.M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups, SAC 2003, LNCS 3006, 17-25, Spinger-Verlag, 2004.

3. I.F.Blake, V.Kumar Murty and Guangwu Xu. Refinements of Miller’s algorithm
for computing the Weil/Tate pairing, J.Algorithms 58(2), 134-149, 2006.

4. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing, SIAM
Journal of Computing 32, 586-615, 2003.

5. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. Ad-
vances in Cryptology–Asiacrypt 2001, LNCS 2248, 514–532, Springer-Verlag, 2001.

6. M. Ciet, M. Joye, K. Lauter, and P.L. Montgomery. Trading inversions for multi-
plications in elliptic curve cryptography, Design, Codes and Cryptography 39(2),
189-206, 2006.

170 R. Feng and H. Wu

7. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using
mixed coordinates, Advances in Cryptology–ASIACRYPT’98, LNCS 1514, 51–65,
Springer-Verlag, 1998.

8. S. Duquesne and G. Frey. Background on pairings, In Handbook of elliptic and
hyperelliptic curve cryptography, Discrete Math. Appl., 115-124, Chapman &
Hall/CRC, Boca Raton, FL, 2006.

9. S. Duquesne and G. Frey. Implementation of pairings, In Handbook of elliptic
and hyperelliptic curve cryptography, Discrete Math. Appl., 389-404, Chapman &
Hall/CRC, Boca Raton, FL, 2006.

10. S. Duquesne and T. Lange. Pairing-based cryptography, In Handbook of elliptic
and hyperelliptic curve cryptography, Discrete Math. Appl., 573-590, Chapman &
Hall/CRC, Boca Raton, FL, 2006.

11. R. Dutta, R. Barua and P. Sarkar. Pairing-based cryptography: a survey, Cryptol-
ogy ePrint Archive, Report 2004/064, 2004.

12. K. Eisenträger, K. Lauter and P.L. Montgomery. Fast elliptic curve arithmetic and
improved Weil pairing evaluation, CT-RSA 2003, LNCS 2612, 343-354, Springer-
Verlag, 2003.

13. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing, LNCS
2369, 324-337, Springer Verlag, 2002.

14. S. Galbraith. Pairings, Advances in elliptic curve cryptography, London Math. Soc.
Lecture Note Ser. 317, 183–213, Cambridge Univ. Press, 2005.

15. Robert Granger, Dan Page and Nigel Smart. High security pairing-based cryptog-
raphy revisited, LNCS 4076, 480–494, Springer Verlag, 2006.

16. D. Hankerson, A.J. Menezesand S. Vanstone, Guide to Elliptic Curve Cryptogra-
phy, Springer Verlag, 2004.

17. T. Izu and T. Takagi. Efficient computations of the Tate pairing for the large MOV
degrees. ICISC’02, LNCS 2587, 283-297, Springer-Verlag, 2003.

18. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels,
Cryptology ePrint Archive, Report 2005/076, 2005.

19. A.J. Menezes. Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-
lishers, 1993.

20. V. Miller. Short programs for functions on curves, unpublished manuscript, 1986.
21. V. Miller. The Weil pairing, and its efficient calculation, J. Cryptology 17(4),

235-261, 2004.
22. R. Sakai, K. Ohgishiand M. Kasahara. Cryptosystems based on pairing, SCIS’00,

no. C20, 2000.
23. M. Scott. Computing the Tate pairing, CT-RSA, Feb., 2005, San Francisco, LNCS

3376, 293-304, Springer-Verlag, 2005.
24. M. Scott, N. Costigan and W. Abdulwahab. Implementing cryptographic pairings

on smartcards, Cryptography ePrint Archive, Report 2006/144, 2006.
25. J.H. Silverman. The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag,

Berlin, 1986.

A Provably Secure Blind Signature Scheme

Xiaoming Hu and Shangteng Huang

Department of Computer Science and Engineering,
Shanghai JiaoTong University, Shanghai 200240, China

huxm@sjtu.edu.cn

Abstract. Some blind signature schemes have been constructed from
some underlying signature schemes, which are efficient and provably se-
cure in the random oracle. To the best of authors’ knowledge, a problem
still remains: does the security of the original signature scheme, by itself,
imply the security of the blind version? In this paper, we answer the
question. We show if the blind factors in the blind version come from
hash functions, the design of blind signature scheme can be validated
in random oracle model if the original scheme is provably secure. We
propose a blind version of Schnorr signature scheme and reduce the se-
curity of the proposed scheme to the security of ECDLP. What’s more,
the complexity of this reduction is polynomial in all suitable parameters
in the random oracle.

Keywords: Blind signature, Provably secure, Polynomial reduction,
Security arguments.

1 Instruction

Blind signatures, introduced by [1], provide anonymity of users in application
such as electronic voting and electronic payment systems. A blind signature
scheme is an interactive two-party protocol between a user and a signer. It allows
the user to obtain a signature of any given message, but the signer learns neither
the message nor the resulting signature. Blind signature plays a central role in
building anonymous electronic cash. A lot of work has been done in field of blind
signature schemes since Chaum [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20, 21, 22, 23]. Several blind signature schemes [1, 4, 6, 12] have been constructed
from some underlying signature schemes [24,25,26]. These underlying signature
schemes are efficient and have been validated in the so-called random oracle
model. However, a problem still remains: the security of the original signature
scheme does not, by itself, imply the security of the blind version.

The random oracle [27] model is a popular alternative of provable secu-
rity. Some blind signature schemes were proposed and proven secure in the
model [10, 11, 12, 13, 14, 28]. In [12, 28], Pointcheval and Stern prove the se-
curity of several blind digital signatures schemes, including blind variation of
the [8], [25], and [5] signature schemes. However, their security proofs, while
polynomial in the size of the keys, are poly-logarithmically bounded in the num-
ber of blind digital signatures. The authors leaves an open problem that whether

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 171–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 X. Hu and S. Huang

one can achieve polynomial time both in the number of signatures obtained by
the adversary and the size of the keys. Juels, et al. [29] gave a positive answer
to show that security and blindness properties for blind signatures could be
simultaneously defined and satisfied, assuming an arbitrary one-way trapdoor
permutation family. However, their proof was based on complexity. As they had
discussed, their schemes should be viewed merely as a proof of existence which
pave the way for efficient future implementations. Pointcheval et al. [10] pro-
posed a blind signature scheme based on factorization, unluckily it also need a
user to make a poly-logarithmically bounded number of interactions with the
signer. The less practical schemes of [11] are provably secure for a polynomial
number of synchronized signer interactions, where the synchronization forces
the completion of each step for all the different protocol invocations before the
next step of any other invocation is started, so some restrictions apply. [13]
requires a non-standard strong assumption - namely the RSA chosen-target in-
version problem is hard. [14] proposed an efficient three-move blind signature
scheme, which provides one more unforgeability with polynomially many signa-
tures. However, the scheme is a specific blind signature scheme which prevents
one-more unforgeability after polynomially many interactions with the signer,
so it isn’t a generic approach. In this paper, by using hash functions to gen-
erate the blind factors, we show that the design of blind signature scheme can
be validated in random oracle model if the original scheme is provably secure
in random oracle model. We propose a blind version of Schnorr signature scheme.
Moreover, we show that the proposed blind signature is provably secure if
ECDLP is hard, and the complexity of this reduction is polynomial in all suitable
parameters.

The rest of the paper is organized as follows. In section 2 we recall some
definitions for blind signatures. Section 3 proposes our blind signature scheme.
Section 4 gives the proof of nonforgeablility of the proposed scheme. Section 5
concludes this paper.

2 Preliminaries

In this section we review the formal definition and the standard security notion
of blind signature schemes [29].

Definition 1. A blind digital signature scheme is a four-tuple (Signer, User,
Gen, V erify).
- Gen(1k) is a probabilistic polynomial-time key-generation algorithm that takes
security parameter k and outputs a public and secret key pair (pk, sk).
- Signer(pk, sk) and User(pk, m) are a pair of polynomially-bounded probabilis-
tic Interactive Turing machines, each of which has a public input tape, a private
random tape, a private work tape, a private output tape, a public output tape,
and input and output communication tapes. The random tape and the input
tapes are read-only, and the output tapes are write-only. The private work tape is

A Provably Secure Blind Signature Scheme 173

read-write. They are both given pk generated by Gen(1k) on theirs public input
tapes. Additionally, the private input tape of Signer contains the private key sk,
and that for User contains message m. User and Signer engage in the signature
issuing protocol and stop in polynomial-time in k. At the end of this protocol,
Signer outputs either completed or not-completed on his public output tap, and
User outputs either ⊥ or σ(m) on his private output tap.
- Verify(pk, m, σ(m)) is a deterministic polynomial-time algorithm. On input
(pk, m, σ(m)) and outputs accept/reject. with the requirement that for any mes-
sage m, and for all random choices of key generation algorithm, if both Signer
and User follow the protocol then the Signer always outputs completed, and the
output of the user is always accepted by the verification algorithm.

Definition 2. If Signer and User follow the signature issuing protocol, then
with probability of at least 1 − 1/kc for every constant c and sufficiently large
k, Signer outputs completed and User outputs (m, σ(m)) that satisfies Verify
(pk, m, σ(m)) =accepted. The probability is taken over the coin flips of Gen,
Signer and User.
A blind digital signature scheme is secure if it holds the following two properties:

Definition 3. Let S∗ be adversarial signer, and u0 and u1 are two honest users.
- (pk, sk) ← Gen(1k).
- m0, m1 ← S∗(1k, pk, sk).
- Set the input tap of u0 and u1 as follows : Let b ∈R {0, 1}, put{mb, m1−b} on
the private input tap of u0 and u1, respectively;Put pk on the public input taps
of u0 and u1, respectively;Randomly select the contents of the private random
tapes.
- S∗ engages in the signature issuing protocol with u0 and u1.
- If u0 and u1 output valid signature (mb, σ(mb)) and (m1−b, σ(m1−b)), respec-
tively, then send (σ(mb), σ(m1−b)) to S∗. Give ⊥ to S∗ otherwise.
- S∗ outputs b′ ∈ {0, 1}. If b’= b, then S∗ wins.
A blind signature scheme is blind if all probabilistic polynomial-time algorithm
S∗, S∗ outputs b’= b with probability at most 1/2 + 1/kc for some constant c
and sufficiently large k. The probability is taken over the flips of Gen, S∗, u0

and u1.

Definition 4. Let U∗ be adversarial user and S be an honest signer.
- (Step1) : (pk, sk) ← Gen(1k).
- (Step2): U∗(pk) engages in the signature issuing protocol with S in adaptive,
parallel and arbitrarily interleaved way. Let L denote the number of executions,
where S outputted completed in the end of Step 2.
- (Step3): U∗ outputs a collection {(m1, σ(m1)), (mj , (mj))} subject to the con-
straint the all (mi, σ(mi)) for 1 ≤ i ≤ j are all accepted by verify (pk, mi, σ(mi)).
A blind signature scheme is nonforgeable if the probability, taken over the coin
flips of Gen, U∗ and S, that j > l is at most 1/kc for some constant c and
sufficiently large k.

174 X. Hu and S. Huang

3 The Proposed Scheme

In this section, we propose s blind signature scheme. It can be seen as a slight
modification of Schnorr Blind Signature Scheme.

Setup of System Parameters. Before the whole scheme can be initialized,
the following parameters over the elliptic curve domain must be known.
- A field size p, which is a large odd prime.
- Two parameters a, b ∈ Fp to define the equation of the elliptic curve E over
Fp(y2 = x3 + ax + b(mod p) in the case p > 3), where 4a3 + 27b2 �= 0(mod p).
The cardinality of E must be divisible by a large prime because of the issue of
security raised by Pohlig and Hellman [30].
- A finite point P whose order is a large prime number in E(Fp), where P �= O,
and O denotes infinity.
- The order of P is prime q.
- Two public cryptographically strong hash functions H1 : {0, 1}∗×E(Fp) → Zq

and H2 : Zq × Zq → Zq. We remark that H1 and H2 will be viewed as random
oracles in our security proof.

Setup of a Principal’s public/private key. The signer picks a random num-
ber x ∈R Z∗

q and computer Q = xP . His public key is Q and private key is x.
The public keys Q must be certified by the CA.

Signature Generation
- The signer randomly chooses d, e, r ∈ Zq , computes U ′ = rP , and sends
(U ′, d, e) to the user.
- Blind. The user randomly chooses mi, α′

i and β′
i ∈ Zq, 1 ≤ i ≤ n. He computes

αi = H2(α′
i, d) and βi = H2(β′

i, e) as blinding factors, Ui = U ′ − αiP − βiQ,
hi = H1(mi, Ui) and h′

i = hi + βi, 1 ≤ i ≤ n, sends to the signer n blinded
candidates h′

i, 1 ≤ i ≤ n.
- The signer verifies if the user constructs h′

i with the blind factors α or β which
are the outputs of the random oracle H2.The signer randomly chooses a subset
of n-1 blinded candidates indices R = ij, 1≤ ij ≤ n for 1≤ j ≤ n-1 and sends R
to the user.
- The user reveals (mi, α′

i and β′
i) to the signer for all i in R.

- The signer verifies h′
i for all i in R. He computes ki = H2(α′

i, d), λi = H2(β′
i, e),

Ui = U ′−kiP −λiQ, hi = H1(mi, Ui) and H ′
i = hi +λi for all i in R. He accepts

h′
i to be a valid blind message if H ′

i = h′
i. If the signer accepts h′

i for all i in R,
then the signer performs the following operations for the rest h′

i, i not belong to
R, denote by h′, and the corresponding parameters are (m, α, β, U, h, hi). The
signer stops otherwise.
- Blind Sign. The signer sends back s′, where s′ = r − xh′.
- Unblind. He outputs a signature σ = (s, h) where s = s′ − α. Then σ is the
signature of the message m.

Note: The method which the user prepares n blinded candidates but only 1 out
of n is finally used, all other n-1 are opened, verified and thrown away, inevitably

A Provably Secure Blind Signature Scheme 175

cause enormous computational and communication overhead. An alternative to
cut down computational and communication overhead is as follows.

The user prepares n blinded candidates and sends them to the signer. The
signer randomly chooses n/2 out of n to verify them. If all of them pass the
verification, then the signer randomly chooses 1 out of the rest n/2 blinded
candidates to perform blind signature. The signer stops otherwise. It is obvious
that the signer’s computational and communication overhead is almost half less
than the original’s, but we will show in Lemma3 that the probability of be caught
as the user doesn’t generate blind factors from the random oracle H2, is almost
the same with the original’s.

Signature Verification. The verifier or recipient of the blind signature accepts
the blind signature if and only if H1(m, sP + hQ) = h. Signature verification
works correctly because if (s, h) is a valid signature on the message m, then
sP +hQ = (s′−α)P +hQ = (r−xh′−α)P +hQ = rP − (h+β)Q−αP +hQ =
rP − αP − βQ = U ′ − αP − βQ = U.

It is straightforward to prove our scheme satisfies the blindness property [25].
So in this paper, we will only show that our scheme satisfies nonforgeability
property.

4 Security Proofs

In this section, we first show that the adversary should following the protocol.
Next, we prove that the security of our scheme can be reduced to security of
Schnorr signature scheme and further the security of ECDLP, and the complexity
of the reduction is fully polynomial in all suitable parameters.

Lemma 1. If an adversary constructs h′ with α or β which are not the outputs
of H2, the probability the signer accept h′ is negligible when the signer verify h′.

Proof. If signer verify h′, the adversary should find a pair(α′, β′) that satisfies:

α = H2(α′, d) . (1)

β = H2(β′, e) . (2)

U = U ′ − αP − βQ . (3)

h′ = H1(m, U) + β . (4)

Since H2 is a hash function, the probability he succeeds is negligible. �	
Lemma 2. Let A be the adversary who tries to destroy the requirement that
constructs blind candidates with blind factors α or β which are the outputs of the
random oracle H2. If there exists 1 out of n blinded candidates h′

i(1 ≤ i ≤ n),
which blind factors α or β are not the outputs of H2, then A is caught with
probability 1-1/n; If there exists ≥ 2 out of n blinded candidates h′

i(1 ≤ i ≤ n),
which blind factors α or β are not the outputs of H2, then A is caught with
probability 1.

176 X. Hu and S. Huang

Proof. There are n-1 blind candidates to satisfy the requirement of generating
blind factors from H2, so A isn’t caught with probability Cn−1

n−1/Cn−1
n , namely

1/n. Thus, the probability A is caught is 1-1/n. Similarly, we can get if there
exists ≥ 2 out of n blinded candidates, which blind factors α or β are not the
outputs of H2, then A is caught with probability 1. �	
Lemma 3. Consider the above alternative, namely chooses n out of 2n to verify.
Let A be the adversary who tries to destroy the requirement that constructs blind
candidates with blind factors α or β which are the outputs of the random oracle
H2. Let ε be the probability of blinded candidates that blind factors α or β are
not the outputs of the random oracle H2, then the signer signs finally on a blind
candidate, which blind factors α or β are the outputs of the random oracle H2,
with probability at least 1- ε2−2εn.

Proof. The number of blinded candidates which satisfy the requirement of gener-
ating blind factors from H2 is 2(1−ε)n, so A pass the verification with probability
at most

Cn
2(1−ε)n/Cn

2n = ((2n − 2εn)!n!)/((n − 2εn)!(2n)!) . (5)

Cn
2(1−ε)n/Cn

2n = n(n − 1)(n − 2εn + 1))/((2n)(2n − 1)(2n− 2εn + 1)) . (6)

Cn
2(1−ε)n/Cn

2n = 1/((1 + n/n)(1 + n/(n − 1))(1 + n/(n − 2n + 1))) . (7)

Then, the signer randomly chooses a blind candidate from the rest n blind
candidates. The probability of getting a blind candidate which blind factors α
or β are not the outputs of the random oracle H2, is 2n/n=. Thus, the signer
signs finally on a blind candidates, which blind factors α or β are the outputs of
the random oracle H2, with probability at least 1− εCn

2(1−ε)n/Cn
2n. It is obvious

that 2−2εn = 1/(1 + 1)2nε > Cn
2(1−ε)n/Cn

2n > 1/(1 + 1/(1 − 2ε − n−1)2nε) ⇒
Cn

2(1−ε)n/Cn
2n < 2−2εn ⇒ 1 − εCn

2(1−ε)n/Cn
2n > 1 − ε2−2εn.

So, the probability is at least 1−ε2−2εn. ε2−2εn is negligible when ε is sufficient
large. Thus, the signer is assured that he is signing on a blind candidate that
blind factors α or β are the outputs of the random oracle H2, except a negligible
probability. �	
Lemma 4. The proposed scheme is secure against one-more forgery assuming
Schnorr signature scheme is secure. Concretely, suppose there is a one-more
forgery adversary A that has advantage ε against our scheme within running
time t. Let H1, H2 be random oracles. Assume that A makes at most qH1 > 0
hash queries to H1, qH2 > 0 hash queries to H2, and qs > 0 signing queries to
the signer. Then there is an algorithm B that performs a valid forgery against
Schnorr signature scheme with probability ε in running time at most t+tH1qH1 +
tH2qH2 + (ts + τ)qs , where tH1 is time for answering an H1 query, tH2 is time
for answering an H2 query, ts is time for Schnorr signature scheme to generate
a signature, τ and is time for answering an signing query to our scheme.

Proof. Suppose C is the signer in Schnorr signature scheme. He keeps the secret
key sk and publishes the public key pk. We show how to construct a simulator

A Provably Secure Blind Signature Scheme 177

B that uses A to forge a signature of Schnorr signature scheme for C with
advantage ε. B first sends pk to A and claims that pk is his public key. Next,
define the queries as follows:
- Sign query. From Lemma 1, Lemma 2 and Lemma 3, we know that A should
follow the protocol. When A makes a signing query, B engages in blind signature
protocol with A as follows:

B randomly chooses randomly message m’ and makes a sign query to C for
signature on message m′. C returns a signature (m′, U, s, h). B randomly chooses
α, β, d, e ∈ Zq and computes U = U ′+αP +βQ, s = s′+α, and sends (U ′, d, e) to
A; A chooses α′, β′ ∈ Zq, and queries to B for H2(α′, d) and H2(β′, e). B returns
(α, β) to the adversary A; A computes U = U ′ − αP − βQ and queries B for
H1(m, U). B returns h = H1(m, U) to the adversary A; A computes h′ = h + β
and sends it to B; B returns s′ = s + α; A outputs a signature σ = (m, U, h, s)
where s = s′ − α.
- Hash query. If A makes H1 query to B, B sends the query to random oracle
H1 and returns the result from H1 to A. If A makes H2 query, B returns μ
randomly chosen from Zq.

It is straightforward to verify that signing query produce ”valid” signatures.
There is a collisions problem of the query result of H1 query. In the sign query,
B asks C to sign on the message m′ which is randomly choose, C returns a valid
signature (m′, U, h, s). h is the random oracle H1’s answer to query H1(m′, U).
B simulates random oracle H1 and cheats A that h = H1(m, U). But if A
queries the same query H1(m′, U) to B where the query does not come from
the sign query, B returns the random oracle H1’s answer h. This may cause
some ”collision”: a query result of H1 query may produce a value of H1 that
is inconsistent with other query results of H1. In this case, B just outputs fail
and exits. However, since the message m′ is randomly choose, the possibility of
collisions is negligible. �	
Lemma 5. B simulates the signer C with an indistinguishable distribution.

Proof. In the signing query, B simulates the signer without the secret key in
the blind signature protocol. Furthermore, in the above queries, the answer to
H1 query comes from random oracle H1 and the answer to H2 query is ran-
domly choose from Zq, so they are uniformly random in their respective spaces.
Therefore B simulates the signer with an indistinguishable distribution.

Since A is a successful adversary against the proposed scheme and B simulates
the signer with an indistinguishable distribution, A will forge a valid signature
(m0, U0, h0, s0). Since (m0, U0, h0, s0) is not equal to the outputs of the signing
query, h0 must be the right answer to query H1(m0, U0). So (m0, U0, h0, s0) is
a valid signature for C. Thus using A, B forges a valid signature of Schnorr
signature scheme for C. Since A has advantage ε within running time t, B
succeeds a forgery with advantage ε in running time at most t+tH1qH1+tH2qH2+
(ts + τ)qs. �	
By the above proof, we know that B makes - query to H1 and signing queries to
Schnorr signature scheme. Again, B has probability ε against Schnorr signature

178 X. Hu and S. Huang

scheme in running time at most t + tH1qH1 + tH2qH2 + (ts + τ)qs. According to
the Lemma 4 of [12], we obtain the following result:

Theorem 1. The proposed scheme is secure against one-more forgery assume
that ECDLP is hard in groups E(Fp). Concretely, assume that there is an one-
more forgery adversary A that has advantage ε against the proposed scheme
within running time t. Let H1, H2 are random oracles. Assume that A makes
at most qH1 ¿ 0 hash queries to H1, qH2 ¿ 0 hash queries to H2, and qs ¿ 0
sign queries to Signer. If ε ≥ 10(qs + 1)qH1/p, then there is an algorithm C that
solves the ECDLP problem in group E(Fp) with probability ε′ ≥ 1/9 and at most
time t′ ≤ 23(qH1 − qs)(t+ tH1qH1 + tH2qH2 +(ts + τ)qs)/ε, where tH1 is time for
answering an H1 query, tH2 is time for answering an H2 query, ts is time for
Schnorr signature scheme to generate a signature, and τ is time for answering
an signing query to the proposed scheme. �	
It is obvious that the complexity of this reduction is fully polynomial in all
suitable parameters.

5 Conclusions

In this paper, we present an efficient blind signature scheme which prevents one-
more forgery in the random oracle. The proof of security is fully polynomial in
all suitable parameters in random oracle model. We also show that using hash
functions to make the blind factors, the design of blind signature scheme can
be proved secure in random oracle model assume that the original scheme is
provably secure. The proposed security reduction can be an efficient technique
in the proof of security for blind signature schemes.

Acknowledgment. We thank the anonymous reviewers for comprehensive
comments.

References

1. Chaum, D.: Blind signatures for untraceable payments. Advances in Cryptology
Crypto’82, LNCS, (1982) 199-203

2. Chaum, D.: Blind signature system. Proceedings of Crypto’83, Plenum, (1983) 153
3. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. Proceedings of

Crypto’88, LNCS, (1988) 319-327
4. Chaum,D.: Security without identification. Transaction Systems to Make Big

Brother Obsolete. Commun- ications of the ACM 28, (1985)
5. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitter to se-

curity microprocessor minimizing both transmission and memory. EUROCRYPT,
(1988)

6. Chaum, D.: Privacy protected payments: unconditional payer and/or payee un-
traceability. In Smartcard 2000, (1989) 69-93

7. Chaum, D., Boen, B., Heyst, E.: Efficient off-line electronic check. In Quisquater
J, Vandewalle J, eds. Proceedings of the Eurocrypt’89, LNCS, 434 (1990) 294-301

A Provably Secure Blind Signature Scheme 179

8. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. CRYPTO, (1992)

9. Camenisch, J. L., Piveteau, J. M., Stadler, M. A.: Blind signatures based on
the discrete logarithm problem. Lecture Notes in Computer Science, 950 (1995)
428-432

10. Pointcheval, D., Stern, J.: New blind signatures equivalent to factorization. In ACM
SSS, ACM Press, (1997) 92-99

11. Pointcheval, D.: Strengthened security for blind signatures. Eurocrypt’98, LNCS,
(1998) 391-405

12. Pointcheval,D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology, 3(13) (2000) 361-396

13. Bellare, M., Namprempre, C., Pointcheval, D.: The power of RSA inversion oracles
and the security of Chaum’s RSA-based blind signature scheme. In Proceedings of
Financial Cryptography 01, Springer-Verlag, (2001)

14. Abe, M.: A secure three-move blind signature scheme for polynomially many sig-
nature. Eurocrypt’01, LNCS, 2045 (2001) 136-151

15. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
Proc. of Asiacrpt2002, LNCS, 2501 (2002) 533-547

16. Zhang, F., Kim, K.: Efficient ID-Based blind signature and proxy signature from
bilinear pairings. ACISP’03, LNCS, 2727 (2003) 312-323

17. Sherman, S.M., Lucas, C.K., Yiu, S.M.: Two improved partially blind signature
schemes from bilinear pairings. Available at: http://eprint.iacr.org/2004/108.pdf

18. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. Christian Cachin and Jan Camenisch, editors:
Advances in Cryptology EUROCRYPT 2004, Lecture Notes in Computer Science,
3027 (2004) 268-286

19. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. Blundo. Security in Communication Networks-SCN 2004, Lecture
Notes in Computer Science, Berlin Heidelberg New York, 3352 (2005) 134-148

20. Liao, J., Qi, Y.H., Huang, P.W.: Pairing-based provable blind signature scheme
without random oracles. CIS 2005, (2005) 161-166

21. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In Shai Halevi and Tal Rabin, editors, TCC 2006, 3rd Theory of Cryptography
Conference, Lecture Notes in Computer Science, New York, NY, USA, March 4-7,
3876 (2006) 80-99

22. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In Cynthia Dwork, editor, Advances in Cryptology, CRYPTO 2006,
Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 20-24, 4117
(2006) 60-77

23. Galindo, D., Herranz, J., Kiltz, K.: On the generic construction of identity-based
signatures with additional properties. ASIACRYPT, (2006) 178-193

24. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM, 2(21) (1978) 120-126

25. Schnorr, C. P.: Efficient identification and signatures for smart cards. In Crypto
’89, 435 (1990) 235-251

26. Schnorr, C. P.: Efficient signature generation by smart cards. Journal of Cryptology,
3(4) (1991) 161-174

27. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In Proc, of the 1st CSSS, ACM Press, (1993) 62-73

28. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. Asiacrypt,
(1996)

180 X. Hu and S. Huang

29. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In Proceed-
ings of Crypto’97, LNCS, 1294 (1997) 150-164

30. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Transactions on Information The-
ory, 24 (1978) 106-110

Construct Public Key Encryption Scheme Using

Ergodic Matrices over GF(2)�

Pei Shi-Hui, Zhao Yong-Zhe��, and Zhao Hong-Wei

College of Computer Science and Technology,
Jilin University, Changchun, Jilin, 130012, PRC

{peish, yongzhe, zhaohw}@jlu.edu.cn

Abstract. This paper proposes a new public key encryption scheme. It
is based on the difficulty of deducing x and y from A and B = x · A · y
in a specific monoid (m, ·) which is noncommutative. So we select and
do research work on the certain monoid which is formed by all the n ×n
matrices over finite field F2 under multiplication. By the cryptographic
properties of an “ergodic matrix”, we propose a hard problem based on
the ergodic matrices over F2, and use it construct a public key encryption
scheme.

1 Introduction

Public key cryptography is used in e-commerce systems for authentication (elec-
tronic signatures) and secure communication (encryption). The security of using
current public key cryptography centres on the difficulty of solving certain classes
of problems [1]. The RSA scheme relies on the difficulty of factoring large in-
tegers, while the difficulty of solving discrete logarithms provide the basis for
ElGamal and Elliptic Curves [2]. Given that the security of these public key
schemes relies on such a small number of problems that are currently considered
hard, research on new schemes that are based on other classes of problems is
worthwhile.

This paper provides a scheme of constructing a one-way(trapdoor)function,
its basic thoughts are as follows:

Let MF2
n×n be the set of all n × n matrices over F2, then (MF2

n×n, +,×) is a
1-ring, here + and × are addition and multiplication of the matrices over F2,
respectively. We arbitrarily select two nonsingular matrices Q1, Q2 ∈ MF2

n×n,
then:

1. (MF2
n×n,×) is a monoid, its identity is In×n.

2. (〈Q1〉,×) and (〈Q2〉,×) are abelian groups, their identities are In×n, too.

� This work supported by the National Research Foundation for the Doctoral Program
of Higher Education of China under Grant No. 20050183032, and the Jilin Province
Education Office Science Foundation Project of China under Grant No.2004150 and
No. 2005180.

�� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 181–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 S.-H. Pei, Y.-Z. Zhao, and H.-W. Zhao

3. for m1,m2 ∈ MF2
n×n, generally we have: m1×m2 �= m2×m1, i.e. the operation

× is noncommutative in MF2
n×n.

Let K = 〈Q1〉 × 〈Q2〉, then we can construct a function f : MF2
n×n × K −→

MF2
n×n, f(m, (k1, k2)) = k1 × m × k2; then f satisfies:

1. knowing x ∈ MF2
n×n and k ∈ K, it’s easy to compute y = f(x, k).

2. when |〈Q1〉| and |〈Q2〉| are big enough, knowing x, y ∈ MF2
n×n, it’s may be

hard to deduce k ∈ K such that y = f(x, k).
3. form k = (k1, k2) ∈ K, it’s easy to compute k−1 = (k−1

1 , k−1
2) ∈ K, and for

any x ∈ MF2
n×n, we always have: f(f(x, k), k−1) = x.

If 2 is true then by 1 and 2 we know that f has one-way property; by 3, we
can take k as the “trapdoor” of the one-way function f , hence we get a one-way
trapdoor function.

For ∀m ∈ MF2
n×n, we know that Q1 × m does corresponding linear transfor-

mation to every column of m, while m×Q2 does corresponding linear transfor-
mation to every row of m; So, Q1 × m × Q2 may “disarrange” every element of
m. This process can be repeated many times, i.e. Qx

1mQy
2(1 ≤ x ≤ |〈Q1〉|, 1 ≤

y ≤ |〈Q2〉|), to get a complex transformation of m. To increase the quality of
encryption(transformation), the selection of Q1,Q2 should make the generating
set 〈Q1〉 and 〈Q2〉 as big as possible. And the result, of which Q1 multiplying a
column vector on the left and Q2 multiplying a row vector on the right, should
not be convergent. For this purpose, we put forward the concept of ergodic
matrix.

2 Ergodic Matrices over Finite Field F2

Let Fn
2 be the set of all n-dimensional column vectors over finite field F2.

Definition 1. Let Q ∈ MF2
n×n, if for any nonzero n-dimensional column vec-

tor v ∈ Fn
2 \{0}, Qv, Q2v, . . . , Q2n−1v just exhaust Fn

2 \{0}, then Q is called an
“ergodic matrix” over F2. (0 = [0 0 · · · 0]T)

For example, select the following matrix Q ∈ MF2
2×2:

Q =
[

1 1
1 0

]

then Q2 =
[
0 1
1 0

]

Q3 =
[

1 0
0 1

]

We verify weather Q is an ergodic matrix.
Let v1 = [0, 1]T , v2 = [1, 0]T , v3 = [1, 1]T , then F 2

2 \{0} = {v1, v2, v3}.

Construct Public Key Encryption Scheme 183

To multiply v1 by Q1, Q2, Q3 respectively, we have:

Q1v1 =
[

1 1
1 0

] [
0
1

]

=
[

1
0

]

= v2

Q2v1 =
[

0 1
1 1

] [
0
1

]

=
[

1
1

]

= v3

Q3v1 =
[

1 0
0 1

] [
0
1

]

=
[

0
1

]

= v1

Their result just exhaust F 2
2 \{0}. For v2 and v3 the conclusion is the same.

By Definition 1 Q is an ergodic matrix.

Theorem 1. Q ∈ MF2
n×n is an ergodic matrix iff Q’s period, under the multipli-

cation, is (2n − 1).

Proof. If Q ∈ MF2
n×n is an ergodic matrix, then for ∀v ∈ Fn

2 \{0}, it must be
Q2n−1v = v. Let v respectively be [1 0 · · · 0]T , [0 1 0 · · · 0]T , . . . , [0 · · · 0 1]T , then
Q2n−1 = In×n, i.e. Q is nonsingular and Q’s period divides (2n − 1) exactly; by
Definition 1, Q’s period must be (2n − 1).

If the period of Q ∈ MF2
n×n under multiplication is (2n − 1), then 〈Q〉 =

{Q, Q2, . . . , Q2n−1 = In×n}. By Cayley-Hamilton’s theorem [3], we have:

F2[Q] = {p(Q)|p(t) ∈ F2[t]} = {p(Q)|p(t) ∈ F2[t] ∧ deg p ≤ n − 1}

i.e. |F2[Q]| ≤ 2n; Obviously 〈Q〉 ⊆ F2[Q]\{0n×n}, so that:

F2[Q] = {0n×n, Q, Q2, . . . , Q2n−1 = In×n}

Arbitrarily selecting v ∈ Fn
2 \{0} and Qs, Qt ∈ 〈Q〉, if Qsv = Qtv, then(Qs −

Qt)v = 0. Because (Qs − Qt) ∈ F2[Q] and v �= 0, we have (Qs − Qt) = 0n×n,
i.e. Qs = Qt. So, Qv, Q2v, . . . , Q2n−1v just exhaust Fn

2 \{0}, Q is an ergodic
matrix. ��
By Cayley-Hamilton’s theorem, and finite field theory [4], it’s easy to get the
following lemmas:

Lemma 1. If m ∈ MF2
n×n is nonsingular, then m’s period is equal to or less than

(2n − 1).

Lemma 2. If Q ∈ MF2
n×n is an ergodic matrix, then (F2[Q], +,×) is a finite

field with 2n elements.

Lemma 3. If Q ∈ MF2
n×n is an ergodic matrix, then QT must also be an ergodic

matrix.

Lemma 4. If Q ∈ MF2
n×n is an ergodic matrix, then for ∀v ∈ Fn

2 \{0}, vT Q, . . . ,

vT Q2n−1 just exhaust {vT |v ∈ Fn
2 }\{0T}.

184 S.-H. Pei, Y.-Z. Zhao, and H.-W. Zhao

Lemma 5. If Q ∈ MF2
n×n is an ergodic matrix, then for ∀a ∈ F2, aQ ∈ F2[Q].

Lemma 6. If Q ∈ MF2
n×n is an ergodic matrix, then there are just ϕ(2n − 1)

ergodic matrices in 〈Q〉 and we call them being “equivalent” each other. here
ϕ(x) is Euler’s totient function.

From above, we know that the ergodic matrices over MF2
n×n has a maximal gen-

erating set, and the result of multiplying a nonzero column vector on the left or
multiplying a nonzero row vector on the right by the ergodic matrix is thoroughly
divergent; thus it can be used to construct one-way(trapdoor) function.

3 New Public Key Encryption System

3.1 Hard Problem

Problem 1. Let Q1, Q2 ∈ MF2
n×n be ergodic matrices, knowing that A, B ∈

MF2
n×n, find Qx

1 ∈ 〈Q1〉, Qy
2 ∈ 〈Q2〉 such that B = Qx

1AQy
2 .

Suppose Eve knows A, B and their relation B = Qx
1AQy

2, for deducing Qx
1

and Qy
2 , he may take attacks mainly by [5,6,7]:

1. Brute force attack
For every Qs

1 ∈ 〈Q1〉, and Qt
2 ∈ 〈Q2〉, Eve computes B′ = Qs

1AQt
2 until

B′ = B, hence he gets Qx
1 = Qs

1, Qy
2 = Qt

2.
2. Simultaneous equations attack

Eve elaborately selects a1, a2, . . . , am ∈ 〈Q1〉 and b1, b2, . . . , bm ∈ 〈Q2〉, con-
structing the simultaneous equations as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1 = Qx
1A1Q

y
2

B2 = Qx
1A2Q

y
2 (Here Ak = akAbk Bk = akBbk are know)

...
...

Bm = Qx
1AmQy

2

Thus Eve may possibly deduce Qx
1 and Qy

2.
But all of these attacks are not polynomial time algorithm. We assume through

this paper the Problem 1 are intractable, which means there is no polynomial
time algorithm to solve it with non-negligible probability.

3.2 Public Key Encryption Scheme

Inspired by [8,9,10], We propose a new public key encryption scheme as follow:

- Key Generation.
The key generation algorithm select two ergodc matrices Q1, Q2 ∈ MF2

n×n

and a matrix m ∈ MF2
n×n. It then chooses s, t ∈ [0, 2n−1], and sets sk = (s, t),

pk = (Q1, Q2, m, Qs
1mQt

2).

Construct Public Key Encryption Scheme 185

- Encryption.
On input message matrix X , public key pk = (Q1, Q2, m, Qs

1mQt
2), choose

k, l ∈ [0, 2n−1] , computer Z = X +Qk
1Q

s
1mQt

2Q
l
2, and output the ciphertext

Y = (Z, Qk
1mQl

2).
- Decryption.

On input sk = (s, t), ciphertext Y = (Z, C), output the plaintext X =
Z − Qs

1CQt
2 = Z − Qs

1Q
k
1mQl

2Q
t
2 = Z − Qk

1Q
s
1mQt

2Q
l
2.

The security for the public key encryption scheme based on ergodic matrices
is defined through the following attack game:

1. The adversary queries a key generation oracle, the key generation oracle
computes a key pair (pk, sk) and responds with pk.

2. The challenger gives the adversary a challenge matrix c ∈ MF2
n×n.

3. The adversary makes a sequence of queries to a decryption oracle. Each
query is an arbitrary ciphertext matrix (not include c); the oracle responds
with corresponding plaintext.

4. At the end of the game, the adversary output a matrix a.

The advantage of an adversary is: Adv = Pr[a = Decryption(c, sk)].

Definition 2. A public key encryption scheme is said to be secure if no probabilis-
tic polynomial time adversary has a non-negligible advantage in the above game.

Theorem 2. The security of the public key encryption scheme based on ergodic
matrices is equivalent to the Problem 1.

3.3 Example

(1) Key generation: Select two ergodic matrices Q1, Q2 ∈ MF2
23×23:

Q1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1
1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0
1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1
0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1
1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1
1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0
1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1
1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1
1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1
1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0
0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0
1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1
1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

186 S.-H. Pei, Y.-Z. Zhao, and H.-W. Zhao

Q2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0
1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1
1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0
0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0
1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0
1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1
1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0
0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1
1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0
1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0
0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0
0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0
0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1
1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1
1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

the ergodic matrices Q1 and Q2 can be generated using following algorithm:

1. select a random matrix m ∈ MF2
n×n;

2. if Rank(m) < n, goto 1;
3. if m2n−1 �= In×n, goto 1;
4. m is a ergodic matrix.

Moveover, we need select a matrices m ∈ MF2
23×23 randomly:

m =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1
1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1
1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0
0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1
0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1
0 0
0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1
0 0
0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0
1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1
0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1
0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1
1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Construct Public Key Encryption Scheme 187

then select private key: s = 1367235 t = 2480563, and compute:

Q1367235
1 mQ2480563

2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1
0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0
1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1
1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1
0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0
1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1
0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0
1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1
1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1
0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1
0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 1
1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

so the public key is pk = (Q1, Q2, m, Qs
1mQt

2).
(2)In the process of Encryption, select two random integers: k = 4321506,

l = 3493641.

because Qk
1Q

s
1mQt

2Q
l
2 = Qs

1Q
k
1mQl

2Q
t
2, i.e.

Q4321506
1 Q1367235

1 mQ2480563
2 Q3483641

2 = Q1367235
1 Q4321506

1 mQ3483641
2 Q2480563

2 ,
the result is:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1
0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0
1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0
0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0
0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0
0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1
1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0
0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0
1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1
1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0
1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1
1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1
1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0
1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is easy to verify the process of encryption and decryption.

188 S.-H. Pei, Y.-Z. Zhao, and H.-W. Zhao

4 Conclusions

The ergodic matrices over MF2
n×n has a maximal generating set, and the result

of multiplying a nonzero column vector on the left or multiplying a nonzero row
vector on the right by the ergodic matrix is thoroughly divergent; thus it can be
used to construct one-way(trapdoor) function. In this paper, we propose a new
hard problem based on the ergodic matrices over F2, by which, we implement a
public key encryption scheme. Different from the previous approaches, we adopt
matrix to represent plaintext, which can encrypt more information once a time.

We plan to give the theoretical proof on the hard problem based on the ergodic
matrices over F2. Additional research is also required to compare the security
and performance with other public key encryption schemes such as RSA and
Elliptic Curves.

References

1. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone: Handbook of Applied Cryptog-
raphy, New York: CRC Press,1997.

2. Bruce Schneier: Applied Cryptography: protocols, algorithms, and source code in
C, USA, John Wiley & Sons, Inc. 1996.

3. F.R. Gantmacher: The Theory of Matrices, Vol.2, New York:Chelsea, 1974
4. R. Lidl, H. Niederreiter: Introduction to Finite Fields and Their Applications,

Cambridge: Univ. Press, 1994.
5. Y. Zhao, L. Wang L, W. Zhang: Information-Exchange Using the Ergodic Matri-

ces in GF(2), Proc. 2th International Conference on Applied Cryptography and
Network Security (ACNS 2004). ICISA PRESS, 2004: 388-397.

6. Y. Zhao, S. Huang, Z. Jiang: Ergodic matrices over GF(2k) and their properties,
Mini-Micro Systems, 2005, 26(12): 35-39.

7. Y. Sun, Y. Zhao, Y. Yang, R. Li: Scheme to construct one-way(trapdoor)functions
based on ergodic matrice, Journal of Jilin University, 2006, 24(5):554-560.

8. T. ElGamal: A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Inform. Theory, 31(4):469-472, 1985.

9. M. Gerard, M. Chris, R. Joachim: A public key cryptosystem based on actions by
semigroups, IEEE International Symposium on Information Theory-Proceedings,
2002, p.266-289

10. R. Arash, H. Anwar: A new construction of Massey-Omura parallel multiplier over
GF(2m), IEEE Transactions on Computers, v51(5), 2002:511-520.

New Left-to-Right Radix-r Signed-Digit Recoding

Algorithm for Pairing-Based Cryptosystems

Fanyu Kong1,2, Jia Yu3, Zhun Cai1,2, and Daxing Li1,2

1 Institute of Network Security, Shandong University, 27 Shanda Nanlu Road,
Jinan 250100, China

fanyukong@sdu.edu.cn
2 Key Laboratory of Cryptographic Technology and Information Security, Ministry

of Education, Jinan 250100, China
3 College of Information Engineering, Qingdao University, Qingdao 266071, China

Abstract. In pairing-based cryptosystems, radix-r signed-digit repre-
sentations are used to speed up point multiplication over supersingular
elliptic curves or hyper-elliptic curves in characteristic r. We propose a
left-to-right radix-r signed-digit recoding algorithm, which can obtain a
new signed-digit representation from left to right. It is proved that its
average non-zero density is asymptotically 1

2 − 2r+3
2r(r+1)2 , which is reduced

by 20%-50% compared with the previous left-to-right radix-r signed-digit
representations. The proposed algorithm can be applied to efficient im-
plementations of pairing-based cryptosystems over supersingular elliptic
curves or hyper-elliptic curves.

Keywords: Elliptic curve cryptosystems, pairing-based cryptosystems,
point multiplication, signed-digit number representations.

1 Introduction

The bilinear pairings over supersingular elliptic curves or hyper-elliptic curves
have been applied to construct an attractive family of pairing based cryptosys-
tems, such as tripartite Diffie-Hellmann scheme [1], ID-based encryption [2],
short digital signature [3], etc. However, the computation of the bilinear pairing
such as Weil and Tate pairing is computationally expensive. The fundamental
algorithm for computing bilinear pairings is developed by V. S. Miller [4]. Several
efficient algorithms for pairing based cryptosystems over supersingular elliptic
curves in characteristic three have been developed in [5, 6, 7]. At ASIACRYPT
2003, Duursam and Lee proposed an efficient implementation of Tate pairing
over hyper-elliptic curves in general characteristic r [8].

The radix-r signed-digit number representations play an important role in
the efficient implementation of pairing-based cryptosystems over supersingular
or hyper-elliptic curves in characteristic r. Signed-digit binary representations
of integers were firstly introduced to speed up parallel arithmetics such as mul-
tipliers, adders and so on, by A. D. Booth [9] and G. W. Reitwiesner [10]. Fur-
thermore, the generalized radix-r (r ≥ 2) non-adjacent form (GNAF) [11, 12]

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 189–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 F. Kong et al.

was proposed and its average density of non-zero digits is asymptotically r−1
r+1 ,

which is minimal among all radix-r signed-digit representations with the digit
set {0,±1, . . . ,±(r − 1)}. A very interesting problem introduced by J. A. Soli-
nas [13] and V. Müller [14] is how to develop left-to-right signed-digit recoding
algorithms, which are desirable for point multiplication over elliptic curves with a
smaller space requirement. Some excellent work [15,16,17,18] have proposed sev-
eral left-to-right signed-digit binary recoding algorithms. For radix-r signed-digit
representations, M. Joye and S.-M. Yen [19] proposed a left-to-right generalized
star form (GSF) with the same weight as the generalized non-adjacent form
(GNAF). Recently, J. A. Muir [20] gave another left-to-right radix-r signed-digit
recoding with the same weight as the GNAF and the GSF. In [21], F. Kong
analyzed the expected on-line efficiency of the left-to-right GNAF recoding al-
gorithm. At ISC 2004, T. Takagi, S.-M. Yen and B.-C. Wu [22] proposed the
radix-r non-adjacent form (rNAF), whose average non-zero density is asymptot-
ically r−1

2r−1 in contrast with the non-zero density r−1
r+1 of the GNAF.

In this paper, we propose a new left-to-right radix-r signed-digit recoding al-
gorithm and by the performance analysis, its average non-zero density is asymp-
totically 1

2 ×
(
1 − 1

r2 − 1
(r+1)2

− r−1
r2(r+1)2

)
, i.e. 1

2 − 2r+3
2r(r+1)2 , which is close to

that of the rNAF. By the comparison, its average non-zero density is reduced
by 20%-50% compared with the previous left-to-right radix-r signed-digit rep-
resentations such as the GNAF and the GSF. This algorithm can be applied to
speed up point multiplications over supersingular elliptic curves or hyper-elliptic
curves in characteristic r in pairing-based cryptosystems.

The rest of this paper is organized as follows. In Section 2, we summarize
radix-r signed-digit number representations and their applications in elliptic
curve cryptosystems (ECC). In Section 3, we propose a new left-to-right radix-r
signed-digit recoding algorithm. In Section 4, we analyze the proposed algorithm
and compare them with others, such as the GSF and so on. Finally, in Section 5
we conclude the paper.

2 Preliminaries

2.1 Notations

If an integer n =
∑k−1

i=0 ni × ri, where ni ∈ {0, 1, . . . , r − 1} and nk−1 �= 0, we
call (nk−1, . . . , n1, n0) the radix-r standard representation of n. Moreover, the
number of non-zero digits is called the Hamming weight of the representation
(nk−1, . . . , n1, n0). If n =

∑k−1
i=0 ni × ri with ni ∈ {0,±1, . . . ,±(r − 1)} and

nk−1 �= 0, we call (nk−1, . . . , n1, n0) a radix-r signed-digit representation of n.

2.2 Radix-r Signed-Digit Number Representations

Now we give several definitions and properties of various radix-r signed-digit
representations such as the GNAF and the rNAF, which have been described in
detail in [11, 12, 19, 20, 21, 22, 23, 24, 25].

New Left-to-Right Radix-r Signed-Digit Recoding Algorithm 191

Definition 1. [11,12] A signed radix-r representation (nk−1, . . . , n1, n0), where
ni ∈ {0,±1, . . . ,±(r−1)} and 0 ≤ i ≤ k−1, is called a generalized non-adjacent
form (GNAF) of n if and only if

(1) |ni + ni+1| < r, where 0 ≤ i ≤ k − 2, and
(2) |ni| < |ni+1| if ni · ni+1 < 0, where 0 ≤ i ≤ k − 2.

Theorem 1. [11,12] The GNAF has the following properties:
(1) Every integer n has a unique GNAF.
(2) The GNAF is an optimal signed-digit representation with the non-zero

density r−1
r+1 .

The properties and algorithms of the GSF and J. A. Muir’s representation can
be seen in the literature [19,20]. At ISC 2004, T. Takagi et al. [22] proposed the
radix-r non-adjacent form (rNAF), whose average non-zero density is asymp-
totically r−1

2r−1 . The definition and properties of the rNAF are given as follows.

Definition 2. [22] Suppose that an integer n =
∑k−1

i=0 ni × ri, where for 0 ≤
i ≤ k − 1, ni ∈ {0,±1, . . . ,±� r2−1

2 �} \ {±1r,±2r, . . . ,±� r−1
2 �r} and nk−1 > 0,

(nk−1, . . . , n1, n0) is called radix-r non-adjacent form (rNAF) if it satisfies that
ni · ni−1 = 0 for all i = 1, 2, . . . , k − 1.

Theorem 2. [22] The rNAF has the following properties:
(1) Every integer n has a unique rNAF representation.
(2) The rNAF is an optimal radix-r signed-digit representation with the min-

imal non-zero density r−1
2r−1 .

The rNAF representation of an integer n can be generated from the least sig-
nificant digit to the most significant digit, i.e. from right to left. The generation
algorithm for the rNAF representation [22] is described as follows. The notation
‘mods’ denotes the signed modulo, namely x mods r2 is equal to (x mod r2)−r2

if (x mod r2) ≥ r2/2, otherwise (x mod r2).

Algorithm 1. The generation algorithm for the rNAF representation [22]

Input: The integer n = (nk−1, . . . , n1, n0) =
∑k−1

i=0 ni × ri, where
ni ∈ {0, 1, . . . , r − 1} and nk−1 �= 0.

Output: The representation n = (n′
k, . . . , n′

1, n
′
0) =

∑k
i=0 n′

i × ri, where

ni ∈ {0, ±1, . . . , ±� r2−1
2 �} \ {±1r, ±2r, . . . , ±� r−1

2 �r}.
1. i ← 0; x ← n;
2. while x > 0 do

2.1 {if (x mod r)=0 then n′
i ← 0;

2.2 else {n′
i ← x mods r2; x ← x − n′

i;}
2.3 x ← x/r; i ← i + 1;}

3. end.

192 F. Kong et al.

2.3 Left-to-Right Recoding Algorithm and Its Application in ECC

The computation of point multiplication n · P (where n is a scalar and P is
a point) over elliptic curves is analogous operation as an exponentiation gk on
multiplicative groups. Various signed-digit number representations and sliding
window algorithms, which are surveyed in detail in [24,25], can be used to speed
up this operation. The point multiplication n ·P can be carried out from left to
right or from right to left, which are shown as follows.

Algorithm 2. The point multiplication algorithms for computing n · P

Input:The integer n =
∑k−1

i=0 ni × ri and a point P .
Output: Q = n · P .
(a) left-to-right algorithm (b) right-to-left algorithm
1. Q ← nk−1 · P ; 1. Q ← O; S ← P ;
2. for i = k − 2 downto 0 do 2. for i = 0 to k − 1 do

{ Q ← r · Q; { Q ← Q + ni · S;
Q ← Q + ni · P ; } S ← r · S; }

3. end. 3. end.

Note that the left-to-right point multiplication algorithms such as sliding
window methods, the w-NAF and radix-r representations, are superior to the
right-to-left counterparts since that ni · P can be precomputed and stored (See
[13,14,15,16,17,18,19,20,21]). However, this can not be implemented in right-to-
left algorithms. Indeed, various improvement techniques such as sliding window
methods, the w-NAF and radix-r representations, can’t work efficiently in right-
to-left point multiplication algorithms. Therefore, we should develop left-to-right
signed-digit recoding algorithms, otherwise we have to require more memory
space and time to firstly generate the signed-digit representations for the sake
of the coming point multiplications.

3 New Left-to-Right Radix-r Signed-Digit Recoding
Algorithm

3.1 The Basic Idea of Our Algorithm

Now we propose a heuristic left-to-right radix-r signed-digit recoding algorithm,
which obtains a new radix-r signed-digit representation. Note that the rNAF,
which was proposed by T. Takagi et al. [22], is probably the most efficient radix-r
signed-digit representation in spite of its large digit set. However, the rNAF can
only be computed from right to left.

The basic idea of our algorithm is to try to develop a new radix-r signed-
digit representation with the non-zero density close to that of the rNAF, which
can be generated from left to right. We can process two adjacent digits (ni,
ni−1) in one recurrence from left to right and obtain the two corresponding
signed digits (n′

i, n′
i−1). However, there is a problem to be resolved that is how

New Left-to-Right Radix-r Signed-Digit Recoding Algorithm 193

to deal with the carries produced during the computation. When we process
the digits (ni, ni−1), it is probable that a carry is produced to make us ad-
just the previous digits (n′

i+2, n′
i+1). Generally, this maybe come into a long

carry chain, which makes it impossible to generate the signed-digit representa-
tion from left to right. For the sake of simplicity, we resolve this problem by
extending the digit set of the rNAF to {0,±1, . . . ,±� r2−1

2 �,±(� r2−1
2 � + 1)} \

{±1r, . . . ,±� r−1
2 �r,± (� r−1

2 � + 1
)
r}. When the radix r is even, the digit set

does not be increased since that ±(� r2−1
2 �+1) is equal to ± (� r−1

2 � + 1
)
r. When

the radix r is odd, only two digits ±(� r2−1
2 � + 1) are added into the digit set

(Indeed, this requires only one more stored point for point multiplication over
elliptic curves since that the inverse of a point is easily computed.)

Now we can obtain the two signed digits (n′
i+2, n′

i+1) as soon as we calculate
the carry of (ni, ni−1). The main operations are seen from Step 3.1 to 3.3.4 in the
following Algorithm 3. Furthermore, we can improve this method by reducing
the non-zero digits. There are two kinds of cases that can be processed further.
One kind of case is that two adjacent signed digits (n′

i+3, n′
i+2) are both non-

zero. The other kind of case is that four adjacent signed digits (n′
i+5, n′

i+4, n′
i+3,

n′
i+2) may be recoded into the representations with less non-zero digits. These

improvements can be seen from Step 3.4.1 to 3.4.6 in Algorithm 3. Finally, we
need to deal with the last two signed digits separately, which are implemented
from Step 4 to 5 in Algorithm 3.

3.2 The Proposed Algorithm

The function sign(x) denotes the sign of the integer variable x such that sign(x)
is equal to x/|x|, where |x| denotes the absolute value of an integer x. The
proposed algorithm is described in the following Algorithm 3.

4 Analysis and Comparison

4.1 Analysis

We can prove the following theorem on the average non-zero density of the
radix-r signed-digit representation in Algorithm 3.

Theorem 3. The average non-zero density of the radix-r signed-digit represen-
tation in Algorithm 3 is asymptotically 1

2 ×
(
1 − 1

r2 − 1
(r+1)2

− r−1
r2(r+1)2

)
, i.e.

1
2 − 2r+3

2r(r+1)2 .

Proof. Algorithm 3 scans the radix-r representation (nk−1, nk−2, . . . , n0) of the
integer n from left to right. When two adjacent digits (ni, ni−1) are processed,
the signed digits (n′

i+2, n
′
i+1) are outputted, where at least one of (n′

i+2, n
′
i+1)

is 0 (Note that this property does not mean the Non-adjacent Form since that
i = (k − 1) − 2j, where j is positive integer.). Hence the non-zero density of
(n′

k, n′
k−1, . . . , n

′
0) must be less than 1/2. Indeed, for some cases, the adjacent

194 F. Kong et al.

Algorithm 3. New left-to-right radix-r signed-digit recoding algorithm

Input: The integer n = (nk−1, . . . , n1, n0) =
∑k−1

i=0 ni × ri, where
ni ∈ {0, 1, . . . , r − 1} and nk−1 �= 0.

Output: The representation n = (n′
k, n′

k−1, . . . , n
′
1, n

′
0) =

∑k
i=0 n′

i × ri, where

ni ∈ {0, ±1, . . . , ±� r2−1
2 �, ±(� r2−1

2 � + 1)} \ {±1r, ±2r, . . . , ±� r−1
2 �r,

±
(
� r−1

2 � + 1
)
r}.

1. Δ ← 0;
/* The Δ stores the value of (n′

i+2 × r + n′
i+1) to be processed.*/

2. i ← k − 1;
3. while i ≥ 1 do

/* Note: From Step 3.1 to 3.3.4, complete the main operations. */
3.1 { temp ← ni × r + ni−1;

3.2 if temp ≤ � r2−1
2 � then

3.2.1 { if r|Δ then (n′
i+2, n

′
i+1) ← (Δ/r, 0);

3.2.2 else (n′
i+2, n

′
i+1) ← (0, Δ);

3.2.3 Δ ← temp; }
3.3 else

3.3.1 {Δ ← Δ + 1;
3.3.2 if r|Δ then (n′

i+2, n
′
i+1) ← (Δ/r, 0);

3.3.3 else (n′
i+2, n

′
i+1) ← (0, Δ);

3.3.4 Δ ← temp − r2; }
end if

/* Note: From Step 3.4.1 to 3.4.6, reduce the non-zero digits further. */
3.4 if (n′

i+3 �= 0) and (n′
i+2 �= 0) then

3.4.1 { temp ← n′
i+3 × r + n′

i+2;

3.4.2 if (|temp| ≤ � r2−1
2 � + 1) then

3.4.3 (n′
i+3, n

′
i+2) ← (0, temp);

3.4.4 else if n′
i+5 = −sign(temp) then

3.4.5 { (n′
i+5, n

′
i+4) ← (0, n′

i+5 × r + sign(temp));
3.4.6 (n′

i+3, n
′
i+2) ← (0, temp − r2);}

end if
end if

3.5 i ← i − 2;}
end while

/* From Step 4 to Step 5.3.1, process the last two digits n′
1 and n′

0. */
4. if r|Δ then

4.1 (n′
i+2, n

′
i+1) ← (Δ/r, 0);

4.2 else (n′
i+2, n

′
i+1) ← (0, Δ);

5. if i = 0 then
5.1 { n′

0 ← n0;
5.2 Δ ← n′

1 × r + n′
0;

5.3 if (n′
1 �= 0) and (n′

0 �= 0) and (|Δ| ≤ � r2−1
2 � + 1) then

5.3.1 (n′
1, n

′
0) = (0, Δ);}

6. return (n′
k, n′

k−1, . . . , n
′
1, n

′
0).

New Left-to-Right Radix-r Signed-Digit Recoding Algorithm 195

signed digits (n′
i+2, n

′
i+1) may be both zero. Therefore, we need to count the

probability that (n′
i+2, n

′
i+1)=(0, 0). We assume that each digit ni of the stan-

dard radix-r representation of the integer n is randomly distributed in the digit
set {0, 1, . . . , r − 1}, which satisfies that Pr[ni = 0]=Pr[ni = 1]=. . . =Pr[ni =
r − 1]=1/r. There are four kinds cases, which are described as follows. In Case
1 and 2, (n′

i+2, n
′
i+1)=(0, 0) may occur in Step 3.2.1 and 3.3.2 in Algorithm 3.

In Case 3 and Case 4, (n′
i+4, n

′
i+3)=(0, 0) or (n′

i+6, n
′
i+5)=(0, 0) may occur in

Step 3.4.3 and 3.4.5 respectively in Algorithm 3.

Case 1: When (ni+2, ni+1) = (0, 0) and (ni, ni−1) ≤ � r2−1
2 �, we have that

(n′
i+2, n

′
i+1) = (0, 0) since that no carry is produced by (ni, ni−1). Since that

Pr[(ni+2, ni+1) = (0, 0)] = 1
r2 , we obtain that Pr[(ni, ni−1) ≤ � r2−1

2 �] = 1
2 .

Therefore, Pr[(ni+2, ni+1) = (0, 0) and (ni, ni−1) ≤ � r2−1
2 �] = 1

2r2 .

Case 2: When (ni+2, ni+1) = (r−1, r−1) and (ni, ni−1) ≥ � r2−1
2 �+1, a carry is

outputted and (n′
i+2, n

′
i+1) = (0, 0). Similar as Case 1, we have Pr[(ni+2, ni+1) =

(r − 1, r − 1) and (ni, ni−1) ≤ � r2−1
2 �] = 1

2r2 .

Case 3: When (n′
i+4, n

′
i+3) = (0, α), (n′

i+2, n
′
i+1) = (β, 0) and |α · r + β| ≤

� r2−1
2 � + 1, we have (n′

i+4, n
′
i+3, n

′
i+2, n

′
i+1) = (0, 0, α · r + β, 0).

Let x = � r2−1
2 � and y = � r−1

2 �. It can be obtained that Pr[(n′
i+4, n

′
i+3, n

′
i+2,

n′
i+1) = (0, α, β, 0), where α �= 0 and β �= 0]=x−y

x × y
x = xy−y2

x2 . If |α · r + β| ≤
� r2−1

2 �+1 holds, we have |α| ≤ � r−1
2 � and |β| ≤ � r−1

2 � with the probability y
x−y .

Therefore, we obtain that
Pr[(n′

i+4, n
′
i+3, n

′
i+2, n

′
i+1) = (0, α, β, 0) and |α · r + β| ≤ � r2−1

2 � + 1]

=xy−y2

x2 × y
x−y =

(
� r−1

2 �
� r2−1

2

)2

= 1
(r+1)2 .

Case 4: When (n′
i+5, n

′
i+4, n

′
i+3, n

′
i+2, n

′
i+1) = (−sign(α · r +β), 0, α, β, 0) and

|α · r + β| ≥ � r2−1
2 � + 2, we have (n′

i+5, n
′
i+4, n

′
i+3, n

′
i+2, n

′
i+1) = (0, n′

i+5 × r +
sign(temp), 0, temp− r2).

Note that Pr[(n′
i+5 = −sign(α · r + β) = ±1] = 1

r2 . Let x = � r2−1
2 � and y =

� r−1
2 �. According to Case 3, we have Pr[(n′

i+4, n
′
i+3, n

′
i+2, n′

i+1) = (0, α, β, 0),
where α �= 0 and β �= 0]=x−y

x × y
x = xy−y2

x2 . If |α · r + β| ≥ � r2−1
2 �+ 2 holds, we

have |α| ≥ � r−1
2 + 1 with the probability 1 − y

x−y . Therefore, we obtain that

Pr[(n′
i+5, n

′
i+4, n

′
i+3, n

′
i+2, n

′
i+1) = (−sign(α ·r+β), 0, α, β, 0) and |α ·r+β| ≥

� r2−1
2 � + 2] =xy−y2

x2 ×
(
1 − y

x−y

)
× 1

r2 = r−1
r2(r+1)2 .

According to Case 1, 2, 3 and 4, we obtain that the probability of two adjacent
zeros is

(
1
r2 + 1

(r+1)2
+ r−1

r2(r+1)2

)
. Therefore, the average non-zero density of the

radix-r signed-digit representation obtained by Algorithm 3 is asymptotically
1
2 ×

(
1 − 1

r2 − 1
(r+1)2

− r−1
r2(r+1)2

)
, i.e. 1

2 − 2r+3
2r(r+1)2 . �	

196 F. Kong et al.

4.2 Comparison

We give a comparison of various radix-r signed-digit recoding representations
such as the GSF [19], Muir’s algorithm [20] and the rNAF [22] in Table 1. Note
that the rNAF recoding algorithm is the only right-to-left algorithm while the
others are left-to-right ones.

When the radix r=3, the averagenon-zero density ofAlgorithm 3 is 0.406,which
is close to that of the rNAF and reduced by nearly 20% compared with the GSF
and Muir’s algorithm. When r → ∞, the average non-zero density of Algorithm 3
and the rNAF is nearly 0.5 in contrast with 1 of the GSF and Muir’s algorithm.

Table 1. Comparison of left-to-right radix-r signed-digit recoding algorithms

Representation Left-to-right Non-zero density (radix-r) radix-3

GSF YES r−1
r+1 0.5

Muir’s YES r−1
r+1 0.5

rNAF NO r−1
2r−1 0.4

Algorithm 3 YES 1
2 − 2r+3

2r(r+1)2 0.406

5 Conclusion

We have propose a new left-to-right radix-r signed-digit recoding algorithm,
which has the expected non-zero density 1

2 ×
(
1 − 1

r2 − 1
(r+1)2

− r−1
r2(r+1)2

)
, i.e.

1
2 − 2r+3

2r(r+1)2 , close to the r−1
2r−1 of the rNAF. Moreover, while the rNAF represen-

tation is computed from right to left, our proposed algorithm can be processed
from left to right and reduce the space requirement in the implementation of
pairing-based cryptosystems. An interesting problem is how to develop a left-to-
right radix-r signed-digit recoding algorithm, which can attain the same non-zero
density r−1

2r−1 as the rNAF.

Acknowledgments. Supported by National 863 High-tech Research and Devel-
opment Program of China (2003AA141120, 2004AA001260); National 973 Grand
Fundamental Research Program of China (G1999035802). The authors would like
to thank Professor Shaohan Ma and three graduates Baodong Qin, Ming Li and
Guangqing Zhang for their interesting discussions. The authors are very grateful
to the anonymous referees for their valuable comments and suggestions.

References

1. A. Joux, “A one-round protocol for tripartite Diffie-Hellman,” Algorithm Number
Theory Symposium - ANTS IV, Lecture Notes in Computer Science 1838, pp.
385-394, Springer-Verlag, 2000.

2. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Advances in Cryptology - CRYPTO 2001, Lecture Notes in Computer Science
2139, pp.213-229, Springer-Verlag, 2001.

New Left-to-Right Radix-r Signed-Digit Recoding Algorithm 197

3. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,”
ASIACRYPT 2001, Lecture Notes in Computer Science 2248, pp.514-532, Springer-
Verlag, 2002.

4. V. S. Miller. Short programs for functions on curves. Unpublished manuscript,
1986. Available at: http://crypto.stanford.edu/miller/miller.pdf.

5. P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient Algorithms for Pairing-
Based Cryptosystems,” CRYPTO 2002, Lecture Notes in Computer Science 2442,
pp.354-368, Springer-Verlag, 2002.

6. S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate pairing,”ANTS
V, Lecture Notes in Computer Science 2369, pp.324-337, Springer-Verlag, 2002.

7. N. Smart, and J.Westwood, “Point Multiplication on Ordinary Elliptic Curves over
Fields of Characteristic Three,” Applicable Algebra in Engineering, Communica-
tion and Computing, Vol.13, No.6, pp.485-497, 2003.

8. I. Duursma and H -S .Lee, “Tate Pairing Implementation for Hyperelliptic Curves
y2 = xp − x + d,” ASIACRYPT 2003, Lecture Notes in Computer Science 2894,
pp.111-123, Springer-Verlag, 2003.

9. A. D. Booth, “A Signed Binary Multiplication Technique,” Q. J. Mech. Appl.
Math., Vol. 4, No. 2, pp.236-240, 1951.

10. G. W. Reitwiesner, “Binary arithmetic”, Advances in Computers, Vol. 1, pp.
231-308, 1960.

11. W. Clark and J. Liang, “On Arithmetic Weight for a General Radix Representation
of Integers,” IEEE Transaction on IT, IT-19, pp.823-826, 1973.

12. S. Arno and F. S. Wheeler, “Signed digit representations of minimal hamming
weight,” IEEE Transactions on Computers, Vol. 42, No. 8, pp.1007-1010, 1993.

13. J. A. Solinas, “An improved algorithm for arithmetic on a family of elliptic curves,”
CRYPTO 1997, Lecture Notes in Computer Science 1294, pp.357-371. Springer-
Verlag, 1997.

14. V. Müller, “Fast Multiplication on Elliptic Curves over Small Fields of Character-
istic Two,” Journal of Cryptology, No.11, pp. 219-234, 1998.

15. M. Joye, and S.-M. Yen, “Optimal left-to-right binary signed-digit recoding”. IEEE
Trans. on Comp, Vol. 49, No. 7, pp.740-748, 2000.

16. R. M. Avanzi, “A Note on the Signed Sliding Window Integer Recoding and a
Left-to-Right Analogue,” SAC 2004, Lecture Notes in Computer Science 3357,
pp.130-143, Springer-Verlag, 2005.

17. Katsuyuki Okeya, Katja Schmidt-Samoa, Christian Spahn, Tsuyoshi Takagi,
“Signed Bi-nary Representations Revisited”, CRYPTO 2004, Lecture Notes in
Computer Science 3152, pp.123-139, Springer-Verlag, 2004.

18. J. A. Muir, and D. R. Stinson, “New Minimal Weight Representations for Left-
to-Right Window Methods,” CT-RSA 2005, Lecture Notes in Computer Science
3376, pp.366-383, Springer-Verlag , 2005.

19. M. Joye and S. -M. Yen, “New Minimal Modified Radix-r Representation with
Applications to Smart Cards,” PKC 2002, Lecture Notes in Computer Science
2274, pp.375-384, Springer-Verlag, 2002.

20. J. A. Muir, “A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-
r Representations,” IEEE Transactions on Information Theory, Vol.53, No.3,
pp.1234-1241, 2007.

21. F. Kong, J. Yu, Z. Cai and D. Li, “Left-to-right Generalized Non-adjacent Form
Recoding for Elliptic Curve Cryptosystems,” The First International Conference
on Hybrid Information Technology, IEEE Press, pp.299-303, 2006.

22. T. Takagi, S.-M. Yen, B.-C. Wu, “Radix-r Non-Adjacent Form,” ISC 2004, Lecture
Notes in Computer Science 3225, pp.99-110, Springer-Verlag, 2004.

198 F. Kong et al.

23. F. Kong, D. Li, “A Note on Signed Binary Window Algorithm for Elliptic Curve
Cryptosystems,” Cryptology and Network Security-CANS 2005, Lecture Notes in
Computer Science 3810, pp.223-235, Springer-Verlag, 2005.

24. D. M. Gordon, “A Survey of Fast Exponentiation Methods,” Journal of Algorithms,
Vol. 27 , pp.129-146,1998.

25. B. Phillips and N. Burgess, “Minimal Weight Digit Set Conversions,” IEEE Trans-
actions on Computers, Vol.53, No.6, pp.666-677, 2004.

The Strongest Nonsplitting Theorem

Mariya Ivanova Soskova� and S. Barry Cooper��

University of Leeds, Leeds, LS2 9JT, UK

1 Introduction

Sacks [14] showed that every computably enumerable (c.e.) degree ≥ 0 has a
c.e. splitting. Hence, relativising, every c.e. degree has a Δ2 splitting above each
proper predecessor (by ‘splitting’ we understand ‘nontrivial splitting’). Arslanov
[1] showed that 0′ has a d.c.e. splitting above each c.e. a < 0′. On the other hand,
Lachlan [9] proved the existence of a c.e. a > 0 which has no c.e. splitting above
some proper c.e. predecessor, and Harrington [8] showed that one could take
a = 0′. Splitting and nonsplitting techniques have had a number of consequences
for definability and elementary equivalence in the degrees below 0′.

Heterogeneous splittings are best considered in the context of cupping and
noncupping. Posner and Robinson [13] showed that every nonzero Δ2 degree
can be nontrivially cupped to 0′, and Arslanov [1] showed that every c.e. degree
> 0 can be d.c.e. cupped to 0′ (and hence since every d.c.e., or even n-c.e., degree
has a nonzero c.e. predecessor, every n-c.e. degree > 0 is d.c.e. cuppable.) Cooper
[2] and Yates (see Miller [11]) showed the existence of degrees noncuppable in
the c.e. degrees. Moreover, the search for relative cupping results was drastically
limited by Cooper [3], and Slaman and Steel [15] (see also Downey [7]), who
showed that there is a nonzero c.e. degree a below which even Δ2 cupping of
c.e. degrees fails.

We prove below what appears to be the strongest possible of such nonsplitting
and noncupping results.

Theorem 1. There exists a computably enumerable degree a < 0′ such that
there exists no nontrivial cuppings of c.e. degrees in the Δ2 degrees above a.

In fact, if we consider the extended structure of the enumeration degrees, The-
orem 1 is a corollary of the even stronger result:

Theorem 2. There exists a Π1 e-degree a < 0′
e such that there exist no non-

trivial cuppings of Π1 e-degrees in the Δ2 e-degrees above a.

This would appear to be the first example of a structural feature of the Turing
degrees obtained via a proof in the wider context of the enumeration degrees
(rather than the other way round).

Notation and terminology below is based on that of [5].
� The first author was partially supported by the Marie Curie Early Training Site

MATHLOGAPS (MEST-CT-2004-504029).
�� The second author was supported by EPSRC grant No. GR /S28730/01, and by

the NSFC Grand International Joint Project, No. 60310213, New Directions in the
Theory and Applications of Models of Computation.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 199–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

200 M.I. Soskova and S.B. Cooper

2 Requirements and Strategies

We assume a standard listing of all quadruples (Ψ, Θ, U, W) of enumeration op-
erators Ψ and Θ, Σ2 sets U and c.e. sets W . We will construct Π1 sets A and E
to satisfy the corresponding list of requirements:

NΨ : E �= ΨA,

PΘ,U,W : E = ΘU,W ∧ U ∈ Δ2 ⇒ (∃Γ, Λ)[K = Γ U,A ∨ K = ΛW,A],

where Γ U,A, for example, denotes an e-operator enumerating relative to the data
enumerated from two sources U and A. We describe the basic strategy to satisfy
these requirements, only using U ∈ Δ2 for satisfying P in the case of a successful
Γ -strategy.

2.1 The Naive NΨ -Strategy

Select a witness x for NΨ and wait for x ∈ ΨA. Then extract x from E while
restraining each y ∈ A � use(Ψ, A, x) (the use function use(Ψ, A, x) is defined in
the usual way by use(Ψ, A, x) = μy[x ∈ ΨA�y]).

2.2 The Naive PΘ-Strategy

Definition 1. Let Φ be an enumeration operator and A a set. We will consider
a generalised use function ϕ defined as follows:

ϕ(x) = max
{
use(Φ, A, y)|(y ≤ x) ∧ (y ∈ ΦA)

}

We progressively try to rectify ΓΘ at each stage by ensuring that z ∈ K ⇔ z ∈
Γ U,A for each z below l(E, ΘU,W). The definition of the enumeration operator
Γ involves axioms with two types of markers u(z) ∈ U and γ(z) ∈ A - the
generalised use functions for the operator Γ . Given a suitable choice of a marker
γ(z) ∈ A if z ↗ K, Γ can be rectified via A-extraction.

2.3 NΨ Below PΘ

In combining these two strategies the A-restraint for NΨ following the extraction
of x from E conflicts with the need to rectify ΓΘ. We try to resolve this by
choosing a threshold d for NΨ , and try to achieve γ(z′) > use(Ψ, A, x) for all z′ �
d at a stage previous to the imposition of the restraint. We try to maintain θ(x) <

u(d), in the hope that after we extract x from E, each return of l(E, ΘU,W) will
produce an extraction from U � θ(x) which can be used to avoid an A-extraction
in moving γ(d).

In the event that some such attempt to satisfy NΨ ends with a W � θ(x)-
change, then we must implement the ΛΘ,Ψ -strategy which is designed to allow
lower priority N -requirements to work below the ΓΘ-activity, using the W � θ(x)-
changes thrown up by ΓΘ to move ΛΘ,Ψ -markers. Each time we progress the

The Strongest Nonsplitting Theorem 201

ΛΘ,Ψ -strategy, we cancel the current witness of (NΨ , Γ), and if this happens
infinitely often, NΨ might not be satisfied. This means that NΨ must be ac-
companied by an immediately succeeding copy (NΨ , Λ), say, designed to take
advantage of the improved strategy for NΨ without any other PΘ′ intervening
between (NΨ , Γ) and (NΨ , Λ).

2.4 The Approximations

During the construction we approximate the given sets at each stage. We need
to choose these approximating sequences very carefully. Consider a PΘ,U,W re-
quirement.

Definition 2. We inductively say that a stage s + 1 is PΘ-expansionary if and
only if l(E[s + 1], ΘU,W [s + 1]) attains a greater value at stage s + 1 than at any
previous PΘ-expansionary stage.

If the length of agreement is bounded, PΘ,U,W is trivially satisfied and we do
not have to act on its behalf. The strategies act only on PΘ,U,W - expansionary
stages. It is essential that if PΘ,U,W turns out to be equal to E we have infinitely
many expansionary stages. We will work with a good approximating sequence
to U ⊕ W (basically one with sufficient thin stages, in the sense of Cooper [4])
as defined in [10]:

Consider a Δ2 approximating sequence {U ′
s} to U and the standard approx-

imating sequence {W ′
s} to the c.e. set W . We define

{
W

∗
s

}
to be the Δ2 ap-

proximating sequence to W constructed in the following way: W
∗
s = W ′

s � s.
Joining the two Δ2 approximating sequences, we get

{
U ′

s ⊕ W
∗
s

}
– that is, a Δ2

approximating sequence to U ⊕ W . It follows from [10] that we can construct
a good approximating sequence to U ⊕ W in the following way: (U ⊕ W)s =
U ′

s ⊕ W
∗
s � (μn[U ′

s ⊕ W
∗
s(n) �= U ′

s+1 ⊕ W
∗
s+1(n)]). The resulting good approxi-

mating sequence has the following properties:

1. ∀n∃s(U ⊕W � n ⊆ (U ⊕W)s ⊆ U ⊕W). Such stages are called good stages
and hence there are infinitely many of them.

2. ∀n∃s0∀s > s0(U ⊕ W � n = (U ⊕ W)s � n)
3. If G is the set of all good stages of the approximation, then ∀n∃s0∀s >

s0(s ∈ G ⇒ Θs((U ⊕ W)s) � n = Θ(U ⊕ W) � n). This is also a result from
[10].

From these properties and the fact that E is a Π1 set, we can conclude that
if Θ(U ⊕ W) = E then there are infinitely many expansionary stages.

We will use more information about the sequence
{
(U ⊕ W)s

}
– it will be

considered as a pair ((U ⊕ W)s, aps) = (U ′
s ⊕ W

∗
s � (μn[U ′

s ⊕ W
∗
s(n) �= U ′

s+1 ⊕
W

∗
s+1(n)]), μn[U ′

s ⊕ W
∗
s(n) �= U ′

s+1 ⊕ W
∗
s+1(n)]).

We will modify the definition of expansionary stages to incorporate the true-
ness of the approximations.

202 M.I. Soskova and S.B. Cooper

Definition 3. We inductively say that a stage s + 1 is PΘ-expansionary if and
only if l(E[s + 1], ΘU,W [s + 1]) attains a greater value at stage s + 1 than at any
previous PΘ-expansionary stage and aps+1 > l(E[s + 1], ΘU,W [s + 1]).

Note that if U is a properly Σ2 set, then we can still obtain a modified ap-
proximation to it in the way described above, but will not need to satisfy its
requirement P in that case.

2.5 The Basic Module for One PΘ- and One NΨ - Requirement

The (PΘ, Γ)-strategy tries to maintain the equality between K and Γ U,A at
expansionary stages. It scans elements n < l(ΘU,W , E) fixing their axioms as
appropriate.

Every strategy works below a right boundary R, assuming that as the stages
grow the right boundary will grow unboundedly.

(PΘ, Γ) builds an operator Γ by defining marker us(n) and γs(n) and corre-
sponding axioms for elements n ∈ K of the form 〈n, Us � us(n), As � γs(n)〉 at
stage s.

It may happen that the two strategies (PΘ, Γ) and (PΘ, Λ) influence each
other by extracting markers from A. In order to prevent that we define two
nonintersecting infinite computable sets AG and AL for the possible values of A-
markers for (PΘ, Γ) and (PΘ, Λ) respectively. Each time (PΘ, Γ) defines a new
marker for some n, it defines γ(n) big (bigger than any number that appeared
in the construction until now) and γ(n) ∈ AG.

Each time (PΘ, Λ) defines a new marker for some n, it defines λ(n) big and
λ(n) ∈ AL.

We will describe the modules in a more general way, so that we can use them
later in the construction involving all requirements.

The (PΘ, Γ) - Strategy

1. Wait for an expansionary stage. (o = l)
2. Choose n < l(ΘU,W , E) in turn (n = 0, 1, . . .) and perform the following

actions:

– If u(n) ↑, then define it anew as u(n) = u(n−1)+1 (if n = 0, then define
u(n) = 1). If u(n) is defined, but aps < u(n) skip to the next element.

– If n ∈ K:
• If γ(n) ↑, then define it anew, and define an axiom 〈n, (U � u(n) +

1, A � γ(n) + 1)〉 ∈ Γ .
• If γ(n) ↓, but Γ (U,A)(n) = 0 (due to a change in U or in A), then

enumerate the old axiom in a special parameter Old(n) – this being
a collection of all axioms that might later on turn out to be valid.
The element enumerated in Old(n) is of the form (γ(n), 〈n, (U �
u(n)+ 1, A � γ(n)+ 1)〉) – the pair of the old marker and old axiom.
Then define γ(n) anew and define an axiom 〈n, (U � u(n) + 1, A �
γ(n) + 1)〉 ∈ Γ .

The Strongest Nonsplitting Theorem 203

– If n /∈ K, but n ∈ Γ (U,A) then look through all axioms defined for n in
Old(n) and extract the γ(n) markers for any axiom that is valid.

Module for (NΨ , Γ). The basic module acts only at PΘ- expansionary stages.
If there are only finitely many expansionary stages, then PΘ is trivially satisfied
and NΨ moves to a truer path through the tree of outcomes.

At the beginning of each stage we check if the thresholds are correct, i.e. if
K � d has not changed since the last true stage. If so we initialize all strategies
below this one and start from initialization.

– Initialization

1. If a threshold has not yet been defined or is cancelled, choose a new
threshold d bigger than any defined until now.

2. If a witness has not yet been defined or is cancelled, choose a new witness
x > d, x ∈ E.

3. Wait for x < l(E, ΘU,W) . (o = w)
4. Extract all markers γ(d) – old and new – and empty the list Old(n) for

n ≥ d. Define u(d) anew, bigger than θ(x). This gives us control over
any axiom enumerated in Γ for the elements we are monitoring.

5. For every element y ≤ x, y ∈ E, enumerate into the list Axioms the
current valid axiom from Θ that has been valid longest.

– Honestification

Scan the list Axioms. If for any element y ≤ x, y ∈ E, the listed axiom is
not valid anymore, then update the list Axioms, let (o = h) and
1. Extract γ(d) from A for all markers of axioms – the current one and the

old ones. Empty the list Old(d). Redefine u(d) = max(θ(x), u(d)) + 1.
2. Cancel all markers u(n) for n > d and n ∈ K. Empty the list Old(n).

Notice that the extraction of all markers γ(d) guarantees that the old
axioms for elements n > d will never again be valid. Hence at the next
expansionary stage u(n) and γ(n) will be defined anew, bigger than θ(x).
This ensures the following property: for all elements z ≥ d, z ∈ K, the
U -parts of axioms both old and new in Γ include the U -parts of all
axioms listed in Axioms for elements y ≤ x, y ∈ E.

Otherwise go to:

– Waiting

If Γ is honest, i.e. u(d) > θ(x), and all the axioms enumerated in Axioms
have remained unchanged since the last stage, then wait for x ∈ ΨA with
use(Ψ, A, x) < R, returning at each successive stage to Honestification
(o = w).

– Attack

1. If x ∈ ΨA and u(d) > θ(x), then extract x from E and restrain A on
use(Ψ, A, x). (o = g)

2. Wait until the length of agreement has returned and aps > u(d).

204 M.I. Soskova and S.B. Cooper

3. Result –
Let x′ ≤ x be the least element that has been extracted from E during
the stage of the Attack. When the length of agreement returns x′ /∈
ΘU,W . Hence all axioms for x′ in Θ are not valid, in particular the one
enumerated in Axioms, say 〈x′, Ux′, W x′〉.

If W x′ ⊂ W s then the attack is successful and the activity at (PΘ, Γ)
lifts the γ-markers of all elements greater than d above the restraint to
maintain A � ψ(x). Note that this change affects not only the current
axiom, but also all axioms enumerated in Old, because we insured that
all possibly valid axioms in Γ – old and current – contain as a subset Ux′ .
If the change in Ux is permanent, then this will lead to success for NΨ .
Otherwise the attack is unsuccessful, and we are forced to capriciously
destroy Γ by extracting markers γ(d) from A, and to start over with a
bigger witness.

4. Successful attack: Then all valid axioms in Γ for n ≥ d have γ(n) >
use(Ψ, A, x). (o = f) Return to Result at the next stage. Note that the
Σ2-nature of the set U can trick us into believing that an attack is
successful, whereas in fact it later turns out not to be. This is why
we keep monitoring the witness and trying to prove that the attack is
unsuccessful.

5. Unsuccessful attack: Extract all γ- markers γ(d) from A for both the
current and the old axioms. Empty Old(n) for n ≥ d. Remove the re-
straint on A. Cancel the current witness x. Return to Initialization at
the next stage (choosing a new big enough witness) (o = g).

Analysis Of Outcomes: PΘ has two possible outcomes:

[l] – there is a stage after which l(ΘU,W , E) remains bounded by its previous
expansionary value say L. Then PΘ is trivially satisfied as if U is Δ2, then
ΘU,W �= E. In this case we implement a simple ‘Friedberg- Muchnik’ strategy
for NΨ working below (R = ∞).

[e] – infinitely many expansionary stages, on which (NΨ , Γ) acts:

The possible outcomes of the (NΨ , Γ)- strategy are:

[w] – There is an infinite wait at Waiting for ΨA(x) = 1. Then NΨ is satisfied
because E(x) = 1 �= ΨA(x) and the ΓΘ-strategy remains intact. Successive
strategies work below R = ∞)

[f] – There is a stage after which the last attack remains successful. At suffi-
ciently large stages K � d has its final value. So there is no injury to the outcomes
below f , ΨA(x) = 1, NΨ is satisfied, leaving the ΓΘ- strategy intact. Successive
strategies work below (R = ∞)

[h] – There are infinitely many occurrences of Honestification, precluding an
occurrence of Attack. Then there is a permanent witness x, which has unbounded
limsupθ(x). This means that ΘU,V (y) = 0 for some y ≤ x,y ∈ E. Thus PΘ

is again satisfied. In this case we also implement a simple Friedberg–Muchnik
strategy for NΨ working below (R = γ(d)).

The Strongest Nonsplitting Theorem 205

[g] – We implement the unsuccessful attack step infinitely often. As antici-
pated, we must activate the ΛΘ,Ψ -strategy for PΘ. NΨ is not satisfied, but we
have a copy of NΨ designed to take advantage of the switch of strategies for PΘ

below NΨ . It works below (R = x).

Module for the Strategies Below Outcome g: Notice that the outcome g
is visited in two different cases – at the beginning of an attack and when the
attack turns out to be unsuccessful. The first case starts a nonactive stage for
the subtree below g, allowing the other N -strategies to synchronize their attacks.
The second case starts an active stage for the strategies in the subtree below g.

The (PΘ, Λ) acts only on active stages in a similar but less complicated way
than (PΘ, Γ). Namely it does not have a list Old as any change in W � aps is
permanent.

The (NΨ , Λ)-strategy is again similar to the (NΨ , Γ)-strategy. It has its own
threshold d̂ > d and witness x̂ < x. It has the Initialization, Honestification and
Waiting modules which it executes on active stages. The corresponding outcomes
are h and w.

It attacks on nonactive stages. The next stage at which this strategy is acces-
sible after an attack will be an active stage – an unsuccessful attack for (NΨ , Γ).
Note that the least element extracted during the attack is x′ ≤ x̂ < x. So we
have a W � θ(x̂) - change. Hence there will be no unsuccessful attacks and no
outcome g, but only successful attacks and outcome f .

The tree of outcomes at this point looks as follows:

(PΘ,Γ)

l - (NΨ ,FM)

wf

e-(NΨ ,Γ)

wfh - (NΨ ,FM)

wf

g-(PΘ,Λ)

(NΨ ,Λ)

wfh- (NΨ ,FM)

wf

It is worth noticing that the outcomes on the tree, strictly speaking, are
outcomes relating to strategies, rather than outcomes telling us exactly how
the requirement is satisfied, and these subsume the “not Δ2” case of the P -
requirements. The properly Σ2 case only needs to be specially factored in when
one considers in the verification what the strategies deliver.

206 M.I. Soskova and S.B. Cooper

2.6 All Requirements

When all requirements are involved the construction becomes more complicated.
We will start by describing the tree of outcomes.

The requirements are ordered in the following way:

N0 < P0 < N1 < P1 . . .

Each P -requirement has at least one node along each path in the tree. Each
N -requirement has a whole subtree of nodes along each path, the size of which
depends on the number of P -requirements of higher priority.

Consider the requirement Ni. It has to clear the markers from A of i P -
requirements P0, P1, . . . Pi−1. Each of them can follow one of the three strategies
(NΨ , Γi), (NΨ , Λi) or (NΨ , FMi). There will be nodes for each of the possible
combinations in the subtree.

We distinguish between the following strategies:

1. For every Pi-requirement we have two different strategies: (Pi, Γ) with out-
comes e <L l and (Pi, Λ) with one outcome s.

2. For every Ni-requirement, where i > 0, we have strategies of the form
(Ni, S0, . . . Si−1), where Sj ∈ {Γj , Λj, FMj}. They are all equipped with
working boundaries (L, R). The requirement N0 has one strategy (N0, FM)
with (L = 0, R = ∞). The outcomes are f , w and for each j < i if
Sj ∈ {Γj , Λj} there is an outcome hj , if Sj = Γj , there is an outcome
gj . They are ordered according to the following rules:
– For all j1 and j2, gj1 <L hj2 <L f <L w
– If j1 < j2 then gj2 <L gj1 and hj1 <L hj2 .

Let O be the set of all possible outcomes and S be the set of all possible
strategies.

Definition 4. The tree of outcomes is a computable function T : D(T) ⊂ O∗ →
S which has the following properties:

1. T (∅) = (N0, FM)
2. T (α) = S and OS is the set of outcomes for the strategy S, then for every

o ∈ OS, αˆo ∈ D(T).
3.If S = (Ni, S0, S1, . . . , Si−1), then
T (αˆgj) = (Pj , Λj) and T (α ĝjˆs) = (Pj+1, Γj+1) . . . T (αˆgj ŝ̂ oj+1ˆoi−2) =

(Pi−1, Γi−1), where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i − 2.
All this means that, under an outcome gj the strategy Pj starts its work on

building the second possible functional Λj, and all strategies Pk for k > j start
their work from the beginning, i.e., start building the functional Γk again.

T (αˆgjˆŝ oj+1ˆoi−1) = (Ni, S0, . . . , Λj , . . . , Si−1), where Sk = Γk if ok = ek

and Sk = FMk if ok = lk for every k such that j < k < i.
Then there is a copy of the strategy Ni which starts work with the old strategies

Sl for l < j and the new strategies Sk for k ≥ j.
To illustrate this complicated definition here is a picture of this part of the

tree in the simpler case of only two P - requirements.

The Strongest Nonsplitting Theorem 207

(N2,Γ0, Γ1)

wfh1h0g0-(P0,Λ0)

s-(P1,Γ1)

l-(N2,Λ0,FM1)e -(N2,Λ0,Γ1)

g1-(P1,Λ1)

s- (N2,Γ0,Λ1)

The tree under outcome hj is built in a similar fashion.
T (αˆhj) = (Pj+1, Γj+1) . . . T (αˆhjˆoj+1ˆoi−2) = (Pi−1, Γi−1), where ok ∈

{ek, lk} for j + 1 ≤ k ≤ i − 2.
Hence all strategies Sk for k > j start their work from the beginning, building

a new functional Γk.
T (αˆhj ôj+1 ôi−1) = (Ni, S0, . . . , FMj, . . . , Si−1), where Sk = Γk if ok = ek

and Sk = FMk if ok = lk for every k such that j < k < i.
T (αˆf) = (Pi, Γi)
T (αˆw) = (Pi, Γi)
Say S = (Pi, Γ), and α = α′ˆf or α = α′ˆw, and T (α′) = (Ni, S0, S1, . . . , Si1).

It follows that this is not the case described and (Pi, Γ) appears for the first time,
and then

T (αˆe) = (Ni+1, S0, . . . , Si−1, Γi)
T (α l̂) = (Ni+1, S0, . . . , Si−1, FMi).

Interaction Between Strategies: In order to prevent unwanted interaction
between the different strategies on different nodes we will do the following:

Different P -strategies define and extract different A-markers at stages of the
construction. Extraction of markers for one P -strategy may influence the validity
of axioms for another P -strategy. Again we deal with this problem by separating
the A-markers for the different possible strategies. We have countably many
different nodes in the tree of outcomes, whose values are P -strategy. For each
such node α we define an infinite computable set Aα, from which the strategy
T (α) can choose A-markers. If α �= β then Aα ∩ Aβ = ∅.

Similarly we define separate nonintersecting sets Dα and Xα for the different
nodes on the tree which are labelled with N - strategies, from which they choose
their thresholds and witnesses.

As usual we give higher priority to nodes that are to the left or higher up in
the tree of strategies. This is achieved via two forms of initialization.

1. On each stage initialization is performed on all nodes that are bigger than
the last node visited on that stage.

2. The second case in which initialization is performed is when the thresholds
are not correct:

208 M.I. Soskova and S.B. Cooper

Every strategy α with T (α) = (Ni, S1, . . . , Sj, . . . , Si−1) has a threshold
dj for each strategy Sj . If K � (dj + 1) changes, then all successors of α
that assume that dj does not change infinitely many times are initialized.
These are strategies γ such that γ ⊇ α ĝk for k ≤ j or γ ⊇ αˆo, where
o ∈ {hl, s, w|l < j}. And hence are all strategies below and to the right of
outcome gj .

If α has not yet started an attack, then it continues from the Initialization
step.

If α has started an attack, and this change injures the equation that
α is trying to preserve, then α will choose a new witness and start from
Initialization. If the equation is not injured, then α will continue to restrain
A in the hope that no later change in K will ever destroy its work.

The Construction: At each stage s of the construction we build inductively a
string δs ∈ D(T) of length s, by visiting nodes from the tree and acting according
to their corresponding strategies.

δs(0) = ∅.
Let δs � n = α.

1. T (α) = (Pi, Γ) – on active stages we perform the actions as stated in the
main module. δs(n + 1) = l at nonexpansionary stages. At expansionary
stages δs(n + 1) = e and Rαˆδs(n+1) = Rα.

At nonactive stages no actions are performed. The strategy will have the
same outcome as it did on the previous active stage.

2. T (α) = (Pi, Λ) – on active stages we perform the actions as stated in the
main module. δ(n + 1) = s and Rαˆδs(n+1) = Rα.

At nonactive stages no actions are performed, δ(n + 1) = s.
3. T (α) = (Ni, S0, . . . , Si−1) –

Let Zj = U if Sj = Γ and Zj = W if Sj = Λ.

– Initialization
On active stages:
Each strategy Sj �= FMj picks a threshold if it is not already defined.
The different thresholds must be in the following order:

L < di−1 < di−2 < · · · < d0 < R

Strategy Sj picks its threshold so that it is bigger than any threshold it
has picked before and such that its marker has not yet been defined.

After all thresholds have been chosen, the strategy picks a witness
x, bigger than any witness used until now and such that d0 < x and
waits until l(E, Θ

Uj ,W j

j) > x for all j < i. δ(n + 1) = w, working below
(R = Rα).

On the first stage on which l(E, Θ
Uj ,W j

j) > x for all j < i, extract
all markers for all axioms old and new for all thresholds dj , cancel all
markers zj(n) for n ≥ dj and let zj(dj) > θj(x).

The Strongest Nonsplitting Theorem 209

For every element y ≤ x, y ∈ E enumerate in the list Axiomsj the
current valid axiom from Θj , that has been valid the longest.

Go to honestification at the next stage. Notice that this guarantees
that any axiom 〈n, Zn, An〉 enumerated in Sj for an element n ≥ dj ,
n ∈ K will have the property that for any y ≤ x, x ∈ E with axiom
〈y, Zy, Vy〉 ∈ Axiomsj , we will have that Zy ⊂ Zn.
δ(n + 1) = w, working below (R = Rα).

– Honestification

On active stages:
Scan all strategies from the list S0 . . . Si−1 in turn (j = 0, 1, . . . i − 1).
Perform Honestificationj from the main module for each Sj �= FMj .
If the outcome of Honestificationj is w go on to the next strategy. If it
is h, then extract all markers old and new sk(dk) for k > j from A and
empty their corresponding lists Oldk(n) for elements n ≥ dk.

The outcome is δ(n + 1) = hj working below (R = min(Rα, sj(dj))).
Start from Honestification at the next stage.

– Waiting

If all outcomes of all Honestificationj-modules are w, i.e all enumera-
tion operators are honest, then wait for x ∈ ΨA

i with use(Ψ, A, x) < Rα.
f(n+1) = w, working within below R = Rα). Return to Honestification
at the next stage.

– Attack

(a) Let β be the biggest node such that α ⊇ β ĝ. If there is such a node
β, then wait for a β-nonactive stage.

(b) If x ∈ ΨA, use(Ψ, A, x) < Rα and all operators are honest, then ex-
tract x from E and restrain A on use(Ψ, A, x). This starts a nonactive
stage for the strategies below the most recently visited outcome gj

(if none has been visited until now, then g0).
(c) Result –

Wait until the length of agreement has returned for all strategies and
they have been visited at an expansionary stage s with ap

Uj ,Wj
s >

u(dj).
Scan all strategies S0, . . . Si−1 in turn, starting with S0 and per-

form the corresponding Resultj from the main module on each.
• If the attack was successful for Sj , continue scan with Sj+1. If

all the strategies are scanned, then δ(n + 1) = f , working below
(R = Rα) go to Result at the next stage.

• If the attack was unsuccessful for Sj , hence Sj = Γj , then γj(dj)
has been extracted from A during Resultj and the correspond-
ing markers have been moved. In addition cancel the thresholds
dk, for k < j, cancel all markers sl(dl) old and new for l > j
and extract them from A, emptying the corresponding lists Oldl.
Cancel the witness. Start from Initialization at the next stage.
δ(n + 1) = gj, working below (R = min(x, Rα)).

210 M.I. Soskova and S.B. Cooper

Proof. The true path f is defined to be the leftmost path on the tree that
is visited infinitely many times. Such a path exists, because the tree is finitely
branching. We prove that the strategies along the true path satisfy their require-
ments.

Lemma 1. For every n there is a stage sn such that f � n does not get initialized
after stage sn.

Lemma 2. 1. Let α ⊂ f be the biggest (Pj , Γ)-strategy and assume Uj is Δ2.
If γ(n) moves off to infinity, then the following condition holds:
If ΘU,W

j = E and then there is an outcome gj along the true path.
2. Let α ⊂ f be the biggest Pj-strategy. It builds a function M . If m(n) moves

off to infinity then ΘU,W
j �= E.

Corollary 1. Every Pi-requirement is satisfied.

Proof. If ΘUi,W i

i �= E or Ui is properly Σ2, then the requirement is trivially
satisfied. Otherwise let α ⊂ f be the biggest (Pi, M) strategy along the true
path. The properties of the approximation guarantee that there are infinitely
many expansionary stages. According to the previous lemma all markers m used
to build the operator M are bounded, hence for each element n, there are finitely
many axioms in M .

Now it is easy to prove via induction on n that K(n) = MZ,A(n).

Lemma 3. Let α ⊂ f be an Ni requirement along the true path. And let s be a
stage after which α is not initialized. Then

1. None of the nodes to the right or to the left of α extract elements from A
that are less than Rα after stage s.

2. None of the Nj-nodes above α extract elements from A that are less than Rα

after stage s.
3. Suppose β ⊂ α is a Pj node such that there is another Pj node β′, with

β ⊂ β′ ⊂ α. Then β does not extract elements from A that are less than Rα

after stage s.

Hence the strategies that can injure a restraint imposed by an Ni-strategy α
along the true path are the active Pj-strategies at α and α itself.

Lemma 4. Every Ni-requirement is satisfied.

Proof. Let α be the last Ni requirement along the true path. We will prove that
it satisfies Ni.

α has true outcome w or f , or else there will be a successive copy of Ni along
the true path.

In the first case, α waits forever for ΨA(x) = 0. Hence ΨA(x) �= E(x).
Let the true outcome be f . And let s > sαˆf . After stage s, K � d1 will

not change anymore. Hence the active Pj-strategies can only extract markers of
elements n > dj .

The Strongest Nonsplitting Theorem 211

If Sj = Γj and the restraint is injured, then α would have outcome to the left,
because this would mean that the attack for x is unsuccessful. Suppose Sj = Λj .
Then α timed its attack, with some β, such that β ĝj ⊂ α. Note that the entries
in both lists Axiomsj at α and β are the same. Hence an unsuccessful β-attack
would mean that α gets the right W -permission.

References

1. M. M. Arslanov, Structural properties of the degrees below 0′, Dokl. Akad. Nauk.
SSSR 283 (1985), 270–273.

2. S. B. Cooper, On a theorem of C. E. M. Yates, (handwritten notes), 1974.
3. S. B. Cooper, The strong anti-cupping property for recursively enumerable degrees,

J. Symbolic Logic 54 (1989), 527–539.
4. S. B. Cooper, Enumeration reducibility, nondeterministic computations and rel-

ative computability of partial functions, in Recursion Theory Week, Proceedings
Oberwolfach 1989 (K. Ambos-Spies, G. H. Müller, G. E. Sacks, eds.), Lecture
Notes in Mathematics no. 1432, Springer-Verlag, Berlin, Heidelberg, New York,
1990, pp. 57–110.

5. S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematics, Boca
Raton, FL, New York, London, 2004.

6. S. B. Cooper, A. Sorbi, A. Li and Y. Yang, Bounding and nonbounding minimal
pairs in the enumeration degrees, J. Symbolic Logic 70 (2005), 741–766.

7. R. G. Downey, Δ0
2 degrees and transfer theorems, Illinois J. Math. 31 (1987),

419–427.
8. L. Harrington, Understanding Lachlan’s monster paper (handwritten notes), 1980.
9. A. H. Lachlan, A recursively enumerable degree which will not split over all lesser

ones, Ann. Math. Logic 9 (1975), 307–365.
10. A. H. Lachlan and R. A. Shore, The n-rea enumeration degrees are dense, Arch.

Math. Logic 31 (1992), 277–285.
11. D. Miller, High recursively enumerable degrees and the anti-cupping property,

in Logic Year 1979–80: University of Connecticut (M. Lerman, J. H. Schmerl,
R. I. Soare, eds.), Lecture Notes in Mathematics No. 859, Springer-Verlag, Berlin,
Heidelberg, Tokyo, New York, 1981.

12. P. G. Odifreddi, Classical Recursion Theory, Volume II, North-Holland/Elsevier,
Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, 1999.

13. D. B. Posner and R. W. Robinson, Degrees joining to 0′, J. Symbolic Logic 46
(1981), 714–722.

14. G. E. Sacks, On the degrees less than 0′, Ann. of Math. 77 (2) (1963), 211–231.
15. T. A. Slaman and J. R. Steel, Complementation in the Turing degrees, J. Symbolic

Logic 54 (1989), 160–176.
16. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin, Hei-

delberg, London, New York, Paris, Tokyo, 1987.

There is an Sw-Cuppable Strongly c.e. Real�

Yun Fan

1 Department of Mathematics, Nanjing University, China
2 Department of Mathematics, Southeast University, China

Abstract. The strong weak truth table (sw) reducibility was suggested
by Downey, Hirschfeldt and LaForte as a measure of relative randomness.
In this paper, in order to discuss the structure of sw-degrees further, we
introduce the definition of sw-cuppable for c.e. reals. For c.e reals, it is
natural to conclude that there exist sw-cuppable c.e. reals. The main
result of this paper is that there exists an sw-cuppable strongly c.e. real.

1 Introduction

In the very long and widely circulated manuscript [3] (a fragment of which
appeared in [4]), Solovay carefully investigated relationships between Martin-
Löf-Chaitin prefix-free complexity, Kolmogorov complexity, and properties of
random languages and reals. Solovay discovered that several important proper-
ties of Ω are shared by another class of reals he called Ω-like, whose definition
is model-dependent. To define this class, Solovay reducibility was introduced
between c.e. reals.

Although Solovay reducibility is a powerful tool in studying relative random-
ness, it was not sufficient, especially as far as non-c.e. reals are concerned. Mo-
tivated by certain shortcomings of Solovay reducibility, Downey, Hischfeldt, and
Laforte in [1] introduced a strengthening of the weak truth table reducibility as a
measure of relative complexity, which is called strong weak truth table reducibility
or sw-reducibility for short.

We work with reals between 0 and 1, identifying a real with its binary expan-
sion, and hence with the set of natural numbers whose characteristic function is
the same as that expansion. Our main concern will be computably enumerable
reals and strongly computably enumerable reals, whose definitions are given as
follows.

Definition 1.1 (Soare [2]). A set A is nearly computably enumerable if there
is a computable approximation {As}s∈w such that A(x) = lims As(x) for all x
and As(x) > As+1(x) ⇒ ∃y < x(As(y) < As+1(y)).

Definition 1.2. A real α is computably enumerable (c.e) if α = 0.χA where A
is a nearly c.e. set. A real α is strongly computably enumerable (strongly c.e.) if
α = 0.χA where A is a c.e. set.

� This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 212–221, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

There is an Sw-Cuppable Strongly c.e. Real 213

Sw-reducibility is more explicitly derived from the idea of initial segment com-
plexity. It is quite natural since it occurs in many proofs in classical computation
theory: it follows when we apply simple permitting for the construction of a set
“below” a given one.

Definition 1.3 (Downey, Hischfeldt, and Laforte in [1]). Let A, B ⊆ N .
We say that B is sw-reducible to A, written B ≤sw A, if there is a turning
functional Γ and a constant c such that B = Γ A and the use of this computation
on any argument x is bounded by x + c. For reals α = 0.χA and β = 0.χB, we
say that β is sw-reducible to α, and write β ≤sw α if B ≤sw A.

As sw-reducibility is reflexive and transitive, we can define the sw-degree degsw(α)
of a real α to be its sw-equivalence class. In this paper it further intends to
analyze the structure of sw-degrees.

Since Yu and Ding [5] showed that there is no sw-complete c.e. reals, the
definition of cuppable under sw-reducibility will be a little different from the
definition of cuppable under Turing reducibility. It is defined as follows:

Definition 1.4. A c.e.real α is sw-cuppable if there is a c.e. real β such that
there is no c.e. real above both of them respect to sw-reducibility.

From the definition of sw-cuppable, every computable real is non-sw-cuppable.
So there exist non-sw-cuppable (strongly) c.e. reals. In [5], Yu and Ding’s result
can be restated as following.

Theorem 1.5 (Yu and Ding [5]). There exist sw-cuppable c.e. reals.

To analyze the property of sw-cuppable, it is natural to ask for whether there
is an sw-cuppable strongly c.e. real. In this paper, we answer it positively as
follows:

Theorem 1.6. There is an sw-cuppable strongly c.e. real.

In order to analyze further property of sw-cuppable, the follows question is wait-
ing for answer.

Question 1.7. Is there a non-computable strongly c.e. real which is non-sw-
cuppable?

The notations and terminology are quite standard, which all contained in
Soare [2].

2 A Corollary

There is an interesting corollary deduced from Theorem 1.5 which was proved
by Barmpalias and Lewis [6].

Corollary 2.1 (Barmpalias and Lewis [6]). There is a non-random c.e. real
which cannot be sw-computed by any c.e. random real.

214 Y. Fan

Proof. By Theorem 1.5, there is a strongly c.e. real α and a c.e. real β so that
no c.e. real can sw-compute both of them. Then β must not be random since
Downey, Hirschfeldt and LaForte proved (see Theorem 13.7.1 in [1]) that every
c.e. random real sw-computes all strongly c.e. reals. Furthermore, no c.e. random
real can sw-compute β by the same reason above.

3 Procedure P (n, k)

From now on all reals will be c.e reals except explicitly stated otherwise. In this
section, we do some preparation for proof of theorem 1.6.

We want to construct a strongly c.e. real α0 and a c.e. real α1 in stages such
that any β which tries to sw-compute α0 and α1 simultaneously fails to do that.
In other words, β is unable to cope with α0 and α1 sw-coding needed.

The requirements are:

RΦ,Ψ,β : α0 �= Φβ ∧ α1 �= Ψβ ,

where Φ and Ψ run over all partial computable sw-functionals and β over all
c.e. reals in the unit interval.

Considering a single requirement, we picture β having to cope with the in-
structions : every change at x-th digit from αi should be sw-coded in β. If the
use of Φ and Ψ is the identity plus a constant c, the instruction will be ‘change
a digit of β below x + c’. But at this moment we assume c = 0 for simplicity.

As to express our idea clearly, some descriptions and definitions in Barmpalias
and Lewis [6] will be introduced .

Definition 3.1. The positions on the right of the decimal point in the binary
expansion are numbered as 1, 2, 3,... from left to right. The first position on the
left of the decimal point is 0. We say interval [h, l] means positions from h to
l.‘before position x’means positions ‘at x or higher ’,i.e. ≤ x.

We can think of the requirement above as a game between players A and B,
where A controls αi (i = 0, 1) and B controls β. A winning strategy for A means
that the instructions from an enumeration of αi make β fails to sw-compute
them. A winning strategy for B means that β satisfy all instructions from αi.
Once having a winning strategy for A, we can apply the same idea to deal with
all requirements.

The following lemma which was proved by Yu and Ding [5], and then made be
clearer by Barmpalias and Lewis [6], will simplify things in designing a winning
strategy for A.

Lemma 3.2. In the game described above between A and B, the best strategy
for B is to increase β by the least amount needed to satisfy A’s instruction(i.e.
a change of a digit in β below a certain level) when the request is put forward by
A. In other words, any other different strategy for B produces β′ which at every
stage s βs ≤ β′

s.

There is an Sw-Cuppable Strongly c.e. Real 215

The observation above shows that player A forces β to be larger and larger,
which provide us a winning strategy for A. Once the forcing from αi is strong
enough, player B has to give up it’s wining strategy. Otherwise even β from the
best B-strategy will exit the unit interval, which contradicts to ‘β is in [0, 1].’

Assuming the best B-strategy of Lemma 3.2, every A-strategy corresponds to
a single B-strategy and so a single β.

Since α0 is a strongly c.e. real, any digit of α0 cannot return back to 0 if it
changes from 0 to 1 during the game. Yu-Ding’s procedure in [5] guarantees the
whole proof. Compared with the proof in [5], it is impossible to perform their
procedure to produce the requests for sw-coding from a strongly c.e. α0.

The natural solution of our proof for theorem 1.6 is to design a finer procedure
which can utilize the requests from αi more effectively and takes any strong
forcing to β. We say ‘an n forcing procedure’ means that ‘player A forces β = n
after running this procedure’.

Definition 3.3. For arbitrary binary natural number n, k. We say that there is
a P (n, k) procedure when

• Player A forces β to be equal to n if A performs this procedure on interval
[1, ln,k] of αi

• For all positions x between the decimal point and k, α0(x) = 0

Remark 3.4. � More precisely, P (n, k) stands for a subclass of all procedures.
Every element in P (n, k) satisfies orders in definition 3.3. Without confusion, we
consider P (n, k) as a concrete procedure.

� Procedure P (n, k) just describes the whole program which meets with A’s
winning strategy when it runs at interval [1, l]. As a program, P (n, k) can be
used by player A at any interval [j, l+j]. But once A performs P (n, k) on [j, l+j],
player B controls β to be ‘n × 2−l’.

� Without confusion, ln,k is written as l.

Example 3.5. For n = 1, it is easy to give a P (1, k) procedure for any k. In figure
1, the first k + 1 digits of αi, β are shown in consecutive stages as the arrow
indicates. In other words, A performs P (1, k) on interval [1, k + 1] of αi, β and
one can see the action of A along with the response of B.

α0

α1

β
︸ ︷︷ ︸

k + 1

00 · · · 0
10 · · · 0
10 · · · 0

000 · · · 0
110 · · · 0
110 · · · 0

· · · · · · ·
000 · · · 0
111 · · · 1
111 · · · 1

.000 · · · 1

.111 · · · 1
1.000 · · · 0

�

Fig. 1.

For simplicity, we substitute consecutive 0 or 1 for ‘ · · ·’ in reals. In all figures,
the left position of decimal point (and decimal point)will be omitted if no
changes are involved in them.

216 Y. Fan

Observing Figure 1, till last stage player A only changes α1 from higher po-
sition 1 to lower position k + 1 continuously. At the last stage, the action which
A changes α0 at position k + 1 forces β = 1.

More precisely, all positions between the decimal point and k of α0 is still not
used for A’s winning.

Therefore, there is a P (1, k) procedure.

For case n > 1, the construction of P (n, k) will be more sophisticated. Before
giving the general method for producing P (n, k), we discuss two simple cases for
n = 10, k = 0 and n = 10, k = 1 as concrete examples, which help to explain the
idea of dealing with general cases.

Example 3.6. Case n = 10, k = 0: A P (10, 0) procedure is shown at the interval
[1, 3] of αi in consecutive stages by the following figure and one can see the action
of A along with the response of B.

α0

α1

β
︸ ︷︷ ︸

P (1, 1) at [2, 3]

000
010
010

000
011
011

001
011
100

.001

.100
1.000

.101

.100
1.100

︸ ︷︷ ︸

P (1, 0) at position 2

.101

.110
1.110

.111

.110
10.000

�

Fig. 2.

Looking at stage 1-3, player A forces β = 0.1 by remark 3.4 when running
P (1, 1) in interval [2, 3]. Fortunately running P (1, 1) assures the second position
of α0 still be empty .

In stage 4, A takes a 0.1 forcing to β by using the first position of α1 meanwhile
it makes next two lower positions clear and wait again.

In stage 5, by using the first position of α0, it takes a 0.1 forcing to β.
In stage 6, 7, since both the second positions of αi can be used, run P (1, 0) on

it which makes a 0.1 forcing to β again. Hence, β = 0.1 + 0.1 + 0.1 + 0.1 = 10.
Therefore, this is a P (10, 0) procedure.

Remark 3.7. This example indicates a general method how to get a stronger
forcing P (n + 1, 0) procedure to β from two weaker forcing P (n, k) procedures
when player A carries out this procedure on interval [1, l] . We explain its idea
by case 10.

The existence of P (1, k) provides a good foundation for constructing a stronger
forcing procedure P (10, 0). Whenever A use the forcing from the first positions
of αi, it always cause β to plus 1 compared with before using. In order to force
β = 10, the increasing amount of β from the other forcing of αi should be equal
to 1. Considering that higher position’s change can bring lower position clear for
c.e. real, the interval [2, l] of α1 can be used as often as two times. By remark
3.4, the actions which any procedure P (1, k) carried out on [2, l] can only force

There is an Sw-Cuppable Strongly c.e. Real 217

β to plus 0.1. So the solution to get P (10, 0) is to find an interval which permits
A to apply P (1, k) to [2, l] two times often, written as P (1, k1) and P (1, k2).

Since α0 is strongly c.e real, k1 �= k2. Suppose that k1 < k2. Run P (1, k2)
from the second position of [1, l], and k2 stands for the length of the unused
interval from position 2 of α0. After using clear forcing from the first position
of α1, both intervals [2, k2 + 1] of αi can be used again. If the length 1 + k1 of
the interval needed by carrying out P (1, k1) do not surpass k2, do P (1, k1) on
[2, k2 + 1] instantly and bring a 0.1 forcing to β again. The 0.1 forcing from the
first position of α0 can be arranged at any stage. . Considering all forcing to β,
β = 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 10.

P (10, 0) procedure is not unique and interval [1, l] only needs long enough to
apply those actions mentioned above. Since the shortest interval which permits
1 forcing to β is P (1, 0), choose k1 = 1 and then k2 � k1 + 1 = 2. Let k2 = 2,
and set l = 3, we get the P (10, 0) procedure in above example.

The cases for n = 11, 100, · · · can follow in similar way.

During the construction of a stronger forcing procedure, it is most important
that the first weaker forcing procedure could provide a sufficient unused interval
of α0 to wait for another weaker forcing procedure.

Considering case n = 11, it asks for an n = 10 weaker forcing procedure which
can provide such a sufficient interval to use P (10, 0). Since three positions are
needed for applying P (10, 0), looking for a P (10, 11) is our task.

Example 3.8. Case n = 10, k = 1: A P (10, 1) procedure is shown at the interval
[1, 5] of αi in consecutive stages by the following figure and one can see the action
of A along with the response of B.

α0

α1

β
︸ ︷︷ ︸

P (1, 11) at interval [2, 5]

00000
01000
01000

· · · · ··
00001
01111
10000

.00001

.10000
1.00000

.00001

.11000
1.01000

· · · · ··
.01111
.11100

10.00000
︸ ︷︷ ︸

P (10, 0) at interval [2, 4]

�

Fig. 3.

Looking at the stages for applying P (1, 3) to interval [2, 5]. A forces β = 0.1
by remark 3.4. Fortunately running P (1, 3) assures interval [2, 4] of α0 still be
empty.

In the following stage, A takes a 0.1 forcing to β by using the first position of
α1 meanwhile it makes next four positions clear and wait again.

Looking at next stages for applying P (10, 0), since both intervals [2, 4] of αi

can be used, run P (10, 0) on it which makes a 1.0 forcing to β again by remark
3.4. Hence, β = 0.1 + 0.1 + 1.0 = 10.

More precisely, first position of α0 keeps ‘0’ during the whole program.
Therefore, this is a P (10, 1) procedure.

218 Y. Fan

Remark 3.9. This example indicates a general method how to get a P (n, k + 1)
procedure from a P (n, k) procedure and some weaker forcing procedure P (n −
0.1, m) when player A carries out this procedure on interval [1, l]. We explain its
idea by case n = 10.

The first position of α0 can not be used forever. Whenever A use the forcing
from the first position of α1, it always cause β to plus 0.1. In order to force
β = 10, the increasing amount of β from the other forcing of αi should be equal
to 1.1. Considering that higher position’s change can bring lower position clear
for c.e. real, the interval [2, l] of α1 can be used as often as two times. By remark
3.4, the actions which some procedure P (1, m) carry out on [2, l] can only force
β to plus 0.1. So the solution to get P (10, k + 1) is to find an interval which
permits A to apply P (2, k) to [2, l].

Run P (1, m) from the second position of [1, l], and m stands for the length of
the unused interval from position 2 of α0. After using clear forcing from the first
position of α1, both intervals [2, m + 1] of αi can be used again. If the length
of the interval needed by carrying out P (2, k) do not surpass m, do P (2, k) on
[2, m + 1] instantly which brings a 1.0 forcing to β again and at the same time
keeps interval [2, k + 1] empty. During the whole program, it is not necessary
to utilize the first position of α0. Therefore, for all positions x between decimal
point and k+1, α0(x) = 0. Considering all forcing to β, β = 0.1+0.1+1.0 = 10.

P (10, 0) procedure is not unique and interval [1, l] only needs long enough to
apply those actions mentioned above. Since the length of the shortest interval
of P (1, 0) given by example 3.6 is 3, m � 3. Let m = 3. Since the length of
interval P (10, 1) procedure mentioned in example 3.5 is 5, let l = 5, and we get
the P (10, 0) procedure in above example.

By iteration, P (10, 1) procedures P (10, 10) and P (10, 10) procedures P (10, 11).

After generalizing those methods where example 3.6 and example 3.8 indi-
cates, we get a general conclusion in next lemma.

Lemma 3.10. There exists a procedure P (n, k) for arbitrary number (n, k).

Proof. For (1, k): P (1, k) is given by example 3.6.
For (n + 1, 0) (n > 1): Suppose that P (n′, k) have been given for any n′ < n,

set ln+1,0 = ln,ln,0 + 1. Then we describe a P (n + 1, 0) procedure in consecutive
stages when A runs it in interval [1, ln+1,0] of αi as follows:

� run P (n, ln,0) in interval [2, ln+1,0]
� change α0 at position 1
� change α1 at position 1 and clear next lower positions
� run P (n, 0) in interval [2, ln,0 + 1]

Looking at the stages for applying P (n, ln,0), player A produces a n/2 forcing
to β by remark 3.4. Fortunately running P (n, ln,0) assures interval [2, ln,0 + 1]
of α0 still be empty.

In the following two stages, by using both first positions of αi, it takes a
0.1 + 0.1 forcing to β.

There is an Sw-Cuppable Strongly c.e. Real 219

Looking at next stages for applying P (n, 0). Since both intervals [2, ln,0 + 1]
of αi can be used, run P (n, 0) on it which takes an n/2 forcing to β again by
remark 3.4.

Hence, β = n/2 + 0.1 + 0.1 + n/2 = n.
Therefore, this is a P (n + 1, 0) procedure.

For (n > 1, k + 1): Suppose that P (n′, k) have been given for any n′ < n and
n′ = n, k′ ≤ k, set ln,k+1 = ln−1,ln,k

+ 1. Then we describe a P (n, k + 1) pro-
cedure in consecutive stages when A runs it in interval [1, ln,k+1] of αi as follows:

� run P (n − 1, ln,k) in [2, ln,k+1]
� change α1 at position 1 and clear next lower positions.
� run P (n, k) in [2, ln,k + 1]

Looking at the stages for applying P (n − 1, ln,k), A produces a (n − 1)/2
forcing to β by remark 3.4. Fortunately running P (n − 1, ln,k) assures interval
[2, ln,k + 1] of α0 still be empty.

In the following stage, by using the first position of α1, it takes a 0.1 forcing
to β.

Looking at next stages for applying P (n, k). Since both intervals [2, ln,k + 1]
of αi can be used, run P (n, k) on it which takes an n/2 forcing to β again by
remark 3.4.

Hence, β = (n − 1)/2 + 0.1 + n/2 = n.
More precisely, all positions between decimal point and k + 1 α0 keeps ‘0’

during the whole program.
Therefore, this is a P (n, k + 1) procedure.

We make inductions on n and k respectively in above lemma. The only purpose
of induction on k is to assure the assumption when making induction on n.
During the construction of procedure P (n, k) for any n, k, the finial result we
want is to find a procedure which could take any stronger forcing to β when
running it in some interval of αi. In other words, a P (n, 0) procedure for any n
is what we really want.

Recall that so far we assumed that the use of the sw-functional which com-
putes αi from β is the identity. In general it will be x + c on argument x and so
for arbitrary c we consider the modification Pc(n, 0) of P (n, 0) which produces
the same n forcing to β.

Corollary 3.11. Suppose that αi force β with the use function x + c. There is
a procedure Pc(n, 0) which produces an n forcing to β when it runs in interval
[1, ln,k].

Proof. Set Pc(n, 0) = P (2c × n, 0).

220 Y. Fan

4 Proof of Theorem 1.6

Assume an effective list of all requirements

R1,1, R1,2, R2,1, · · ·

based on an effective list (Φ, Ψ , β) of computable sw-functional and c.e. reals in
(0, 1), where

Re,j : α0 �= Φβe

j ∧ α1 �= Ψβe

j

Now we adopt a priority list of all Re,j based on the following priority relation:

Re1,j1 < Re2,j2 ⇐⇒ 〈e1, j1〉 < 〈e2, j2〉

where 〈, 〉 is a standard pairing function.
To each Re,j , we assign an interval Ie

j where αi can apply some Pc(n, 0)
procedure, here c is the constant in the use of sw-functionals Φj and Ψj. Suppose
that the intervals for higher priority requirements have been defined and that
x0 is the least number larger than all numbers in these intervals. The winning
strategy for Re,j will be provided by running Pc(2x0 , 0) in Ie

j .

Lemma 4.1. Any β which follows the instructions of a Pc(2x0 , 0) procedure in
interval Ie

j has to be � 1.

Proof. Assume that β comes from the best strategy for B. By corollary 3.11 and
remark 3.4, running Pc(2x0 , 0) in interval Ie

j produces a 2x0 × 2−x0 = 1 forcing
to β. By lemma 3.2, it is proved.

Construction: We give the construction in stages.
At stage s = 0. Set α0,0 = α1,0 = 0.
At stage s. Assign an interval for requirement Re,j when 〈e, j〉 = s. Re,j requires
attention at stage s if α0 = Φβe

j ∧ α1 = Ψβe

j currently holds on all arguments
up to the largest number in interval Ie

j . Choose the least 〈e, j〉 ≤ s that Re,j

requires attention. Then perform the next step of its winning strategy and end
stage s.We say that Re,i receives attention at stage s.
If no Re,j requires attention, end stage s instantly.

Verification:
Considering how to assign interval Ie

j , we work in a fixed interval for each re-
quirement. One thing to note is that there is no interaction amongst all winning
strategies. It means the lack of induction in the verification.

Fixing e, j we will show that Re,j is satisfied. Once αi is successfully being
coded into β, it follows the instructions in a Pc(2x0 , 0) procedure. According to
lemma 3.12, if αi uses up all positions of Ie

j , then β � 1, a contradiction.

Through a tricky procedure, we complete proof of theorem 1.6.

There is an Sw-Cuppable Strongly c.e. Real 221

References

1. Rodney G. Downey, Denis Hirschfeldt. Randomness and reducibility. Springer-
Verlag Monographs in Computer Science. Preparation.

2. Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin,
1987.

3. R. M. Solovay. Draft of a paper (or series of papers) on chaitin’s work... done for the
most part during the period of Sept.-Dec. 1974 (May 1975), unpublished manuscript,
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 215 pages.

4. R. M. Solovay. On random r.e. sets, in A. Arruda, N.Da Costa, and R.Chuaqui(eds),
Non-Classical Logics, Model Theory, and Computability. Proceedings of the Third
Latin-American Symposium on Mathematical Logic, Campinas, July 11-17, 1976,
vol. 89 of studies in Logic and the Foundations of Mathematics (North-Holland,
Amsterdam, 1977) 283-307.

5. Liang Yu and Decheng Ding. There is no SW -complete c.e. real. J. Symbolic Logic
69 (2004), no. 4, 1163–1170.

6. Barmpalias, George; Lewis, Andrew E. M. A c.e. real that cannot be SW -computed
by any Ω number. Notre Dame J. Formal Logic 47 (2006), no. 2, 197–209

On Computation Complexity of the

Concurrently Enabled Transition Set Problem

Li Pan, Weidong Zhao, Zhicheng Wang, Gang Wei, and Shumei Wang

Tongji University, Shanghai 200092, China
CAD Research Center
panli12345@sohu.com

Abstract. In this paper, we propose a new decision problem, called
the concurrently enabled transition set problem, which is proved to be
NP-complete by reduction from the independent set problem. Then, we
present a polynomial-time algorithm for the maximal concurrently en-
abled transition set problem, and prove that some special subproblems
are in P by the proposed algorithm.

1 Introduction

Petri nets [1,2] are a powerful formal model for describing and studying con-
current and distributed systems. In these systems, transitions (actions, events,
etc.) usually depend on a limited set of places (conditions, resources, etc.),
which could be called the local environment. Petri nets model transitions by the
change of their environment, and transitions having disjoint locality can occur
concurrently.

In Petri nets, two types of execution strategies for the concurrency of transi-
tions are usually adopted: interleaving execution and step execution. The inter-
leaving execution is interpreted as firing concurrent transitions one by one in any
sequence, while the step execution as firing a concurrently enabled transition set
by a step. It is shown that step execution can efficiently reduce the state space
explosion problem due to the execution of concurrency by interleaving.

The execution of a step first needs to determine concurrently enabled transi-
tion sets of Petri nets. However, the number of concurrently enabled transition
sets, in general, is exponential magnitude of the number of enabled transitions.
Therefore, whether the decision problem w.r.t concurrently enabled transition
sets is NP-complete will directly determine the computation complexity of the
step execution.

Although the concept of concurrently enabled transition set or step has been
introduced or used in papers [3,4,5,6,7,8], none of these studies were done on the
computation complexity as a decision problem. In [3], Jeffrey et al. proposed the
concept of concurrently enabled transition set for describing a HCLGN-Based
parallel execution model. In [4], a step transition systems generated by Petri nets
was characterized in terms of concurrent step by Mukund. In [5], the definition
and computation of concurrency-degree was presented by Jucan and Vidraşcu.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 222–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Computation Complexity 223

In recent years, the concept of the transition step has been utilized to reduce
state space explosion in verification methods by Vernadat et al. [6,7]. And in [8],
concurrently enabled transition sets were adopted to analyze the reachability of
time Petri nets by Pan et al.

On the other hand, the research on NP-complete problems for Petri nets
focuses on several aspects as follow. (i) The deadlock problem, for safe free-
choice nets, is NP-complete [9]. (ii) The reachability problem, for live and safe
free-choice nets, acyclic nets, conflict-free nets, and normal and sinkless nets,
is NP-complete [10,11,12,13]. (iii) The liveness problem, for free-choice nets, is
NP-complete [9]. (iv) The legal firing sequence problem, for general Petri nets
and some free-choice nets, is NP-complete [14], [15]. (v) The synthesis problem,
for elementary net systems, is NP-complete [16]. In addition, the decidability
and complexity about the verification problem in Petri nets are also discussed
in [17].

This paper proposes for Petri nets a new decision problem, called the con-
currently enabled transition set problem, and this problem is proved to be
NP-complete. Furthermore, a polynomial-time algorithm for the maximal con-
currently enabled transition set problem is presented, and some subproblems
solvable in polynomial time are also analyzed.

The rest of the paper is organized as follows. Section 2 defines the Petri net and
the concurrently enabled transition set. Section 3 presents concurrently enabled
transition set problem and discusses its complexity. Section 4 analyzes some
special subproblems solvable in polynomial time. Finally, Section 5 concludes
the paper.

2 Basic Definitions

2.1 Petri Nets

Definition 1. A Petri Net (place/transition net) is a 4-tuple = (P, T, Pre,
Post), where:

(1) P = {p1, p2, . . . , pm} is a finite nonempty set of places;
(2) T = {t1, t2, . . . , tn} is a finite nonempty set of transitions;
(3) Pre ∈ NP×T is the forward incidence matrix;
(4) Post ∈ NP×T is the backward incidence matrix.

Pre(p, t) = i (i > 0) if and only if there is an arc with weight i from place p to
transition t; Pre(p, t) = 0 if and only if there is no arc from place p to transition t.
Pre(t) ∈ NP denotes the multi-set of input places of transition t, corresponding
to the vector of column t in the forward incidence matrix. •t = {p | Pre(p, t) > 0}
denotes the set of input places of transition t. p• = {t | Pre(p, t) > 0} denotes
the set of output transitions of place p. Similarly, Post(p, t), Post(t), t• and •p
are defined.

Note that the capacities of places are not described explicitly in the above
definition, and then the default value ∞ is assigned automatically.

224 L. Pan et al.

Definition 2. A marking of a Petri net Σ is a multi-set M ∈ NP . The ith
component M(pi) of marking M is the number of tokens in place pi.

A Petri net system is a pair (Σ, M0) where Σ is a Petri net and M0 is an
initial marking. But the definition only describes the static specification of a net
system, i.e., the net structure and the initial resource distribution. So we also
need to define the dynamic behaviors of a net system, which are given by the
evolution of the marking that is driven by the following rules.

Definition 3 (Enabling rule). A transition t is enabled at marking M in a
Petri net Σ, abbreviated M [t〉Σ, if and only if ∀p ∈ P : Pre(p, t) ≤ M(p).

Let EnΣ(M) = {t|M [t〉Σ} be the set of transitions enabled at M in Σ. The
notation ”[·〉Σ” and ”EnΣ(·)” will be simplified to ”[·〉” and ”En(·)” whenever
Σ is understood from context. Let dM (t) = min{M(p)/Pre(p, t) | p ∈ •t} denote
the enabling degree of transition t at marking M . A transition t is multi-enabled
at marking M if dM (t) ≥ 2.

In addition, the following marking arithmetic will be used later: M1 ≤ M2

iff ∀p ∈ P : M1(p) ≤ M2(p); M1 + M2 iff ∀p ∈ P : M1(p) + M2(p); k·M iff ∀p ∈
P : k·M(p); and if M2 ≤ M1, then M1 − M2 iff ∀p ∈ P : M1(p) − M2(p).

Definition 4 (Firing rule). If a transition t is enabled at marking M in a Petri
net Σ, then t may be fired yielding a new marking M ′, abbreviated M [t〉ΣM ′,
defined by M ′ = M + Post(t) − Pre(t).

Below we introduce several classical subclasses of Petri net.

Definition 5. Let Σ = (P, T, Pre, Post) be a Petri net.
(1) Σ is an ordinary net, if all of its arc weights are 1’s. i.e., ∀p ∈ P, ∀t ∈

T : Pre(p, t) ∈ {0, 1} ∧ Post(p, t) ∈ {0, 1}.
(2) Σ is a free-choice net, if it is an ordinary net such that ∀p1, p2 ∈ P : p1

• ∩
p2

•
= ∅ → |p1
•| = |p2

•| = 1.
(3) Σ is an extended free-choice net, if it is an ordinary net such that ∀p1, p2 ∈

P : p1
• ∩ p2

•
= ∅ → p1
• = p2

•.
(4) Σ is an asymmetric choice net, if it is an ordinary net such that ∀p1, p2 ∈

P : p1
• ∩ p2

•
= ∅ → p1
• ⊆ p2

• ∨ p2
• ⊆ p1

•.

2.2 Concurrently Enabled Transition Set

The behaviors of a transition exclusively depend on its locality, which is de-
fined as the totality of its input and output objects (places and arcs) together
with the transition itself. Transitions having disjoint locality can occur indepen-
dently (concurrently). Because all places’ capacities are defined as infinite, the
concurrency of transitions does not depend on their output objects any more.

Definition 6. Transitions t1 and t2 are said to be concurrently enabled at mark-
ing M , denoted by t1||M t2, if ∀p ∈ P : Pre(p, t1) + Pre(p, t2) ≤ M(p).

On Computation Complexity 225

If dM (t) ≥ 2, then ∀p ∈ P : 2Pre(p, t) ≤ M(p), and then t||M t. Therefore, the
multi-enabledness of a transition can be considered as being concurrently enabled
of the transition with itself. In order to simplify the treatment of the problem
discussed in this paper, we do not consider multi-enabledness of transitions. But
this does not influence the essence of the problem1.

Assumption 1. From now on, we assume that all Petri nets have no multi-
enabledness.

Definition 7. A transition set C ⊆ T is called a concurrently enabled transition
set at marking M , if

∑
t∈C Pre(t) ≤ M .

Let ConSetΣ(M) denote the set of all concurrently enabled transition sets at
marking M in a Petri net Σ. Obviously, the empty set and singletons are con-
currently enabled transition sets, i.e., ∅ ∈ ConSetΣ(M), and ∀t ∈ EnΣ(M): t ∈
ConSetΣ(M). If C is a concurrently enabled transition set, then all of transitions
in C may be fired by a step.

Assume that T ′ ⊆ EnΣ(M) is a set of enabled transitions. If ∀t1, t2 ∈
T ′: t1||M t2 ∧ •t1 ∩ •t2 = ∅, then

∑
t∈T ′ Pre(t) ≤ M , thus T ′ is a concurrently

enabled transition set.

Definition 8. A transition set C ∈ ConSetΣ(M) is a maximal concurrently
enabled transition set, if ¬∃C′ ∈ ConSetΣ(M): C ⊂ C′.

Let MaximalCSΣ(M) be the set of all maximal concurrently enabled transition
set at marking M in a Petri net Σ.

Definition 9. A transition set C ∈ MaximalCSΣ(M) is a maximum concur-
rently enabled transition set, if ∀C′ ∈ MaximalCSΣ(M): |C| ≥ |C′|.
Let MaximumCSΣ(M) be the set of all maximum concurrently enabled tran-
sition set at marking M in a Petri net Σ. The cardinality of a maximum con-
currently enabled transition set is said to be the concurrent number of (Σ, M),
denoted by λΣ(M). Consider a Petri net system (Σ, M) in Fig.1. It is not diffi-
cult to see that {t1}, {t1, t3}, and {t1, t3, t4} are concurrently enabled transition
sets, {t2, t4} and {t1, t3, t4} are maximal concurrently enabled transition sets,
{t1, t3, t4} is maximum concurrently enabled transition set, hence λΣ(M) = 3.

Fig. 1. Concurrently enabled transition sets

1 The multi-enabledness of transitions just leads us to consider concurrently enabled
transition multi-sets.

226 L. Pan et al.

Contrary, in some sense, to concurrency is the notion of conflict. Formally,
We have a situation of (effective) conflict if and only if the set of all transitions
enabled at a given marking is not a concurrently enabled transition set.

Definition 10. Two enabled Transitions t1 and t2 are said to be in effective
conflict at marking M , denoted by t1↑M t2, if ∃p ∈ P : Pre(p, t1) + Pre(p, t2) >
M(p).

Definition 11. Transitions t1 and t2 are said to be in structural conflict at
marking M , if they have at least one common input place, i.e., •t1 ∩ •t2
= ∅.
It is important to remark the difference between structural conflicts and effective
conflicts which depends on the marking. Two transitions are in structural conflict
when they are in effective conflict, but a structural conflict does not guarantee
the existence of an effective conflict.

Proposition 1. Let (Σ, M) be a Petri net system. If one of the following con-
ditions is satisfied:

(1) Σ is an extended free-choice net, or
(2) Σ is an ordinary net and ∀p ∈ P : M(p) ∈ {0, 1}, or
(3) ∀t ∈ T, ∀p ∈ •t: M(p) < 2Pre(p, t),

then ∀t1, t2 ∈ EnΣ(M): t1||M t2 if and only if •t1 ∩ •t2 = ∅.
Proof. (⇐). If •t1 ∩ •t2 = ∅, then ¬∃p ∈ P : Pre(p, t1) > 0 and Pre(p, t2) > 0.
If t1, t2 ∈ EnΣ(M), then ∀p ∈ P : Pre(p, t1) ≤ M(p) and Pre(p, t2) ≤ M(p). So
∀p ∈ P : Pre(p, t1) + Pre(p, t2) ≤ M(p). By Definition 6, we have t1||M t2.

(⇒). (1). Assume that •t1 ∩ •t2
= ∅, then •t1 = •t2 and ∀p ∈ P : Pre(p, t1) =
Pre(p, t2) = 1 by the definition of extended free-choice nets. If t1||M t2, then
∀p ∈ P : Pre(p, t1) + Pre(p, t2) ≤ M(p). Thus we obtain ∀p ∈ P : 2Pre(p, t1) ≤
M(p), this is a contradiction to Assumption 1.

(2). Assume that •t1∩•t2
= ∅, then ∃p′ ∈ •t1∩•t2: Pre(p′, t1) = Pre(p′, t2) =
1 by the definition of ordinary nets. If t1||M t2, then ∀p ∈ P : Pre(p, t1) +
Pre(p, t2) ≤ M(p). So ∃p′ ∈ P : M(p′) ≥ Pre(p′, t1) + Pre(p′, t2) = 2, this
is a contradiction to the condition (2).

(3). Assume that •t1 ∩ •t2
= ∅, then ∃p′ ∈ •t1 ∩ •t2: Pre(p′, t1) > 0 and
Pre(p′, t2) > 0. If t1||M t2, then ∀p ∈ P : Pre(p, t1)+Pre(p, t2) ≤ M(p). Without
loss of generality, assume that Pre(p′, t1) ≤ Pre(p′, t2). So we obtain M(p′) ≥
2Pre(p′, t1), this is a contradiction to the condition (3). ��

3 Computational Complexity

3.1 Independent Set Problem

Definition 12. Let G = (V, E) be a simple, undirected graph, where V is a
finite set of vertices and E is a set of edges. Two vertices v, w are adjacent if
(v, w) ∈ E. A set I of vertices is independent if (v, w) /∈ E for all v, w ∈ I. An
independent set I is a maximal independent set if I ∪{v} is not independent for
any v /∈ I. An independent set I is a maximum independent set if |I| ≥ |I ′| for
any independent set I ′.

On Computation Complexity 227

In computational complexity theory, a decision problem is a question in some
formal system with a yes-or-no answer. Below we introduce several important
complexity classes of decision problems.

Definition 13. P is the set of decision problems which can be solved by a deter-
ministic Turing machine in polynomial time. NP is the set of decision problems
that can be solved by a non-deterministic Turing machine in polynomial time. A
decision problem is NP-complete if it is in NP and every other problem in NP
is reducible to it.

Definition 14 (Independent Set Problem, IS). Given a simple, undirected
graph G = (V, E) and a positive integer k ≤ |V |, is there an independent set
I ⊆ V in G such that |I| ≥ k?

Lemma 1. If Y is an NP-complete problem, and X is a problem in NP with
the property that Y is polynomial-time reducible to X, then X is NP-complete.

Proof. See reference [18].

Lemma 2. IS is NP-complete.

Proof. See reference [18].

3.2 Concurrently Enabled Transition Set Problem

Definition 15 (Concurrently Enabled Transition Set Problem, CETS).
Given a Petri net system (Σ, M) and a positive integer k ≤ |T |, is there a
concurrently enabled transition set C ⊆ T in (Σ, M) such that |C| ≥ k?

Theorem 1. CETS is NP-complete.

Proof. Consider a nondeterministic algorithm (see Algorithm 1).

Algorithm 1. A nondeterministic algorithm for CETS
Input: (P, T, Pre,Post), M, k
begin

Nondeterministically guess a transition set T1, and verify that
(i) |T1| ≥ k
(ii)
�

t∈T1
Pre(t) ≤ M

If all these conditions hold, then accept
end

Assume that |P | = m, |T | = n, and v be the greatest integer found over the
incidence matrix Pre, Post and the marking M , then the sizes of P, T, Pre, Post,
M and k are O(logm), O(logn), O(mnlogv), O(mnlogv), O(mlogv) and O(logn)
respectively, hence the total input size belongs to O(mnlogv). The length of
T1 is O(n), thus verifying (i) needs time O(n). And verifying (ii) needs time

228 L. Pan et al.

O(mn2logv). So the time efficiency of this algorithm is in O(mn2logv). This is
a polynomial-time nondeterministic algorithm. Therefore, CETS ∈ NP.

To prove the NP-completeness, we shall reduce IS to CETS. Given an instance
of IS, note that it consists of a graph G = (V, E) and an integer s. The reduction
function maps such instance to the following instance of CETS:

vi ∈ V if and only if ti ∈ T
(vi, vj) ∈ E if and only if pij ∈ P ∧ Pre(pij , ti) = 1 ∧ Pre(pij , tj) = 1 ∧

M(pij) = 1
vi is an isolated vertex if and only if pi ∈ P ∧ Pre(pi, ti) = 1 ∧ M(pi) = 1
k = s
It is easy to see that a transition ti in Petri net system (Σ, M) corresponds to

a vertex vi in graph G, and every transition is guaranteed to be enabled at M .
Two enabled transitions share a common place, if and only if their correspond-
ing vertices are adjacent. A place has only an output transition, if and only if
the vertex corresponding to this output transition is isolated. Fig. 2 shows an
example of the construction from graph G to Petri net system (Σ, M). Graph
G includes an independent set {v1, v3, v4} in Fig. 2(a). And by using the above
map, a Petri net system (Σ, M) is obtained in Fig 2(b), which also includes a
concurrently enabled transition set {t1, t3, t4}.

Fig. 2. An example of construction from graph G to Petri net system (Σ, M)

Assume that I is an independent set with |I| ≥ s in graph G, then we have
∀vi, vj ∈ I: (vi, vj) /∈ E by Definition 12, and this holds if and only if ∀ti, tj ∈
C: •ti ∩ •tj = ∅ according to the reduction function. Further, this holds if and
only if ∀ti, tj ∈ C: ti||M tj by Proposition 1(2), and this means that C is a
concurrently enabled transition set with |C| ≥ k in Petri net system (Σ, M) by
Definition 7. Thus, I is an independent set with |I| ≥ s in G if and only if C is
a concurrently enabled transition set with |C| ≥ k in (Σ, M).

Now we prove that the map is indeed a polynomial-time reduction from IS to
CETS.

Let |V | = n, then the input sizes of V, E and s are respectively O(logn), O(n2)
and O(logn). Constructing transition set T from vertex set V is only in O(n),
and determining place set P from edge set E needs time O(n2). Since the weight
of every arc and the number of token in every place are 1, incidence matrices
Pre and Post are constructed in time O(n3) and marking M in time O(n2).
Therefore, this is a polynomial-time reduction.

On Computation Complexity 229

As IS has been proved NP-complete, and CETS is in NP, by Lemma 1 it
follows that CETS is NP-complete. ��

3.3 Maximal Concurrently Enabled Transition Set Problem

In computational complexity theory, a function problem [19] is a problem other
than a decision problem, that is, a problem requiring a more complex answer
than just YES or NO.

Definition 16. FP is the set of function problems which can be solved by a
deterministic Turing machine in polynomial time.

Definition 17 (Maximal Concurrently Enabled Transition Set Prob-
lem, MCETS). Given a Petri net system (Σ, M), to find a maximal concur-
rently enabled transition set C.

Obviously, CETS is a decision problem, while MCETS is a function problem.

Theorem 2. MCETS ∈ FP

Proof. Consider a deterministic algorithm (see Algorithm 2).

Algorithm 2. A deterministic algorithm for MCETS
Input: Σ, M
begin

C ← ∅
for each transition t in T

if (Pre(t) ≤ M) then
C ← C ∪ {t}
M ← M − Pre(t)

return C
end

This algorithm begins with an arbitrary transition t in T . If t is enabled at M ,
then it is added to transition set C, and Pre(t) is subtracted from M ; otherwise,
the next transition is selected. This process continues until all transitions in T
are visited. At this time the returned set is a maximal concurrently enabled
transition set.

Let Ci and Mi be the value of variables C and M on the ith while iteration,
respectively. We prove by mathematical induction that Ci is a concurrently en-
abled transition set.

For the basis case (i = 0), M0 = M and C0 = ∅. Because of ∅ ∈ ConSetΣ(M),
the assertion holds for i = 0.

Now assume that the assertion holds for i ≤ k, i.e. Ck is a concurrently enabled
transition set and Mk = M − ∑

t∈Ck
Pre(t).

Consider i = k+1. Assume that tk+1 is selected. If tk+1 ∈ En(Mk), by induc-
tion assumption,then Pre(tk+1) ≤ Mk = M−∑

t∈Ck
Pre(t), i.e.,

∑
t∈Ck

Pre(t)+
Pre(tk+1) ≤ M . By Definition 7, Ck+1 = Ck ∪ {tk+1} is a concurrently enabled

230 L. Pan et al.

transition set. Otherwise, if tk+1 /∈ En(Mk), then Ck+1 = Ck is a concurrently
enabled transition set by induction assumption.

Next we prove that C must be a maximal concurrently enabled transition set
when the algorithm stops.

Assume that Cn and Mn are the value of variables C and M when the al-
gorithm terminates. If Cn is not a maximal concurrently enabled transition set,
then this implies that there must exist a concurrently enabled transition set C′

such that Cn ⊂ C′. Without loss of generality, assume that t′ ∈ C′ and t′ /∈ Cn,
thus we have Cn ∪ {t′} ⊆ C′. Since C′ is a concurrently enabled transition set,
by Definition 7, we obtain

∑
t∈Cn

Pre(t) + Pre(t′) ≤ ∑
t∈C′ Pre(t) ≤ M , i.e.,

Pre(t′) ≤ M − ∑
t∈Cn

Pre(t) = Mn. According to the condition of the while
iteration, the algorithm is not terminated. This is a contradiction.

Since n iterations are made and each iteration’s time efficiency is in O(mlogv+
n), where m = |P |, n = |T | and v is the greatest integer found over the incidence
matrix Pre, Post and the marking M , the running time of the algorithm is
O(mnlogv + n2).

Therefore, MCETS can be computed in polynomial time. ��

4 Subproblem Analysis

In this section, we will analyze some special subproblems solvable in polynomial
time.

Theorem 3. Let Σ = (P, T, Pre, Post) be an asymmetric choice net and R =
{(t1, t2)|t1, t2 ∈ T ∧ •t1 ∩ •t2
= ∅} a binary relation over T , then R is an
equivalence relation.

Proof. ∀t ∈ T : •t ∩ •t
= ∅, then (t, t) ∈ R. Hence R is reflexive.
∀t ∈ T : t1, t2 ∈ T , if (t1, t2) ∈ R, then •t1 ∩ •t2
= ∅, i.e., •t2 ∩ •t1
= ∅, thus

(t2, t1) ∈ R. So R is symmetric.
∀t ∈ T : t1, t2, t3 ∈ T , if (t1, t2) ∈ R and (t2, t3) ∈ R, then •t1 ∩ •t2
= ∅

and •t2 ∩ •t3
= ∅. Without loss of generality, assume that p12 ∈ •t1 ∩ •t2 and
p23 ∈ •t2 ∩ •t3, then {t1, t2} ∈ p12

• and {t2, t3} ∈ p23
•, thus t2 ∈ p12

• ∩ p23
•.

Since Σ is an asymmetric choice net, we obtain p12
• ⊆ p23

• or p23
• ⊆ p12

•, i.e.,
{t1, t2, t3} ⊆ p12

• or {t1, t2, t3} ⊆ p23
•. And then •t1 ∩ •t3
= ∅, i.e., (t1, t3) ∈ R.

So R is transitive.
Therefore, R is an equivalence relation. ��

Note that Theorem 3 also holds for free-choice nets and extended free-choice
nets, because they are both the subclasses of asymmetric choice nets [1].

Let [t] = {t′|(t, t′) ∈ R} be the equivalence class of a transition t in T and
T/R = {[t]|t ∈ T } the quotient set of T by R. Furthermore, we denote by
RM the restriction of R to a subset En(M) of T . It is easy to see that RM is
also an equivalence relation, thus we can define [t]M = {t′|(t, t′) ∈ RM} and
T/RM = {[t]M |t ∈ En(M)}.

On Computation Complexity 231

Theorem 4. Let (Σ, M) be a Petri net system and R = {(t1, t2)|t1, t2 ∈ T ∧
•t1 ∩ •t2
= ∅} a binary relation over T . If the following conditions are satisfied:

(1) R is an equivalence relation, and
(2) ∀t1, t2 ∈ EnΣ(M): t1||M t2 if and only if •t1 ∩ •t2 = ∅,

then MaximumCSΣ(M) = MaximalCSΣ(M).

Proof. We only need to prove that |C| = |T/RM | for all C ∈ MaximalCSΣ(M).
Let f : C → T/RM be a (total) function such that f(t) = [t]M for all t ∈ C.

We will prove that f is a bijection.
According to Definition 7, ∀t1, t2 ∈ C(t1
= t2): t1||M t2. Then •t1 ∩ •t2 = ∅

by condition (2). And then (t1, t2) /∈ R and [t1]M
= [t2]M by condition (1).
Therefore, f is an injection.

Assume that ∃[t]M ∈ T/RM , ∀ti ∈ C: f(ti) = [ti]M
= [t]M , then ∀ti ∈
C: (ti, t) /∈ R ∧ •ti ∩ •t = ∅ by condition (1), and then ∀ti ∈ C: ti||M t by
condition (2). Because C is a concurrently enabled transition set, so is C ∪ {t}
by Definition 7. Thus C is not a maximal concurrently enabled transition set by
Definition 8. This is a contradiction. Therefore, f is a surjective.

Because C and T/RM are both finite sets and there must exists a bijection
between them, we obtain ∀C ∈ MaximalCSΣ(M): |C| = |T/RM |. Therefore,
MaximumCSΣ(M) = MaximalCSΣ(M). ��
Theorem 5. Assume that (Σ, M) is a Petri net system. If MaximumCSΣ(M) =
MaximalCSΣ(M), then CETS ∈ P.

Proof. Assume that we have a black box FIND-MCETS(Σ, M) that finds a
maximal concurrently enabled transition set using Algorithm 2. Now consider a
deterministic algorithm for CETS (See Algorithm 3).

Algorithm 3. A deterministic algorithm for CETS
Input: Σ, M, k
begin

S ← FIND-MCETS(Σ, M)
if |S| ≥ k then accept
else reject

end

According to Theorem 2, a maximal concurrently enabled transition set S
can be returned by FIND-MCETS(Σ, M) in polynomial time. And it is also a
maximum concurrently enabled transition set because of MaximumCSΣ(M) =
MaximalCSΣ(M). And then we can obtain a yes-or-no answer only by compar-
ing the size of S with k. Therefore, CETS can be solved in polynomial time by
the deterministic algorithm. ��
Corollary 1. Assume that (Σ, M) is an extended free choice net system, then
CETS ∈ P.

Proof. According to Theorem 3, Proposition 1(1), Theorem 4 and Theorem 5,
it follows that CETS is in P. ��

232 L. Pan et al.

Corollary 2. Assume that (Σ, M) is an asymmetric choice net system. If ∀p ∈
P : M(p) ∈ {0, 1}, then CETS ∈ P.

Proof. According to Theorem 3, Proposition 1(2), Theorem 4 and Theorem 5,
it follows that CETS is in P. ��

Corollary 3. Assume that (Σ, M) is a Petri net system and R = {(t1, t2)|t1, t2 ∈
T ∧ •t1 ∩ •t2
= ∅} is an equivalence relation over T . If ∀t ∈ T, ∀p ∈ •t: M(p) <
2Pre(p, t), then CETS ∈ P.

Proof. According to Proposition 1(3), Theorem 4 and Theorem 5, it follows that
CETS is in P. ��

5 Conclusions

This paper has presented the concurrently enabled transition set problem
(CETS), and determined the exact complexity of this problem. CETS turns
out to be NP-complete. The NP-hardness proof is a straightforward reduc-
tion from the independent set problem. A good result that CETS for extended
free choice nets and asymmetric choice nets belongs to P is also obtained in
this paper. This work will be quite useful to further study the concurrency of
Petri nets.

Our future research will aim at developing approximation or heuristic algo-
rithms to solve the problem.

References

1. T. Murata. Petri nets, properties, analysis and applications, Proc. IEEE 77(4)
(1989) 541-580.

2. C. Girault and R. Valk. Petri Nets for Systems Engineering A Guide to Modeling,
Verification, and Applications. Springer Verlag, 2003.

3. J. Jeffrey, J. Lobo and T. Murata. A High-Level Petri Net for Goal-Directed Se-
mantics of Horn Clause Logic. IEEE Transactions on Knowledge and Data Engi-
neering., Vol. 8, No. 2, pp.241 - 259, 1996.

4. M. Mukund. Petri Nets and Step Transition Systems. International Journal of
Foundations of Computer Science 3, 4, (1992) 443-478.

5. T. Jucan and C. Vidraşcu. Concurrency-degrees for Petri nets. In Proc. of the
1st Conference on Theoretical Computer Science and Informatics Technologies -
CITTI 2000, Ovidius University of Constanta, Romania, May 25-27, 2000. pages
108-114.

6. F. Vernadat, P. Azéma and F. Michel. Covering step graph. In: Proc. of the 17th In-
tel Conf. on Application and Theory of Petri Nets 96. LNCS 1091, Osaka: Springer-
Verlag, 1996. 516-535.

7. P. O. Ribet, F. Vernadat and B. Berthomieu. On combining the persistent sets
method with the covering steps graph method. In: Proc. of the FORTE 02. Springer
Verlag, LNCS 2529, 2002. pages 344-359.

On Computation Complexity 233

8. L. Pan, D. Chen, and W. Li. Reachability Analysis of Time-Independent Choice
TPN. In the 10th Joint International Computer Conference, Kunming, China,
Novermber 2004. 629-634.

9. A. Cheng, J. Esparza and J. Palsberg. Complexity Results for 1-safe Nets. Theoret.
Comput. Sci.147 (1995) 117-136.

10. J. Esparza. Reachability in live and safe free-choice Petri nets is NP-complete.
Theoretical Computer Science, Volume 198, Issue 1-2, May 1998, Pages: 211 - 224.

11. I. A. Stewart. On the reachablility problem for some classes of Petri nets. Research
Report, University of Newcastle upon Tyne, 1992.

12. R. Howell and L. Rosier. Completeness results for conflict-free vector replacement
system. Journal of Computer and System Science 37(1988), 349-366.

13. R. Howell, L. Rosier and H. Yen. Normal and Sinkless Petri Nets. Journal of Com-
puter and System Sciences 46(1993), 1-26.

14. T. Watanabe, et al. Time complexity of legal firing sequences and related problems
of Petri nets, Trans. IEICE of Japan, 1989, 72(12): 1400-1409.

15. T. Watanabe, Y. Mizobata and K. Onaga. Legal firing sequences and minimum
initial markings for Petri nets. IEEE International Symposium on Circuits and
Systems, 1989, vol.1, page(s): 323-326.

16. E. Badouel, L. Bernardinello and P. Darondeau. The synthesis problem for elemen-
tary net systems is NP-complete. Theoretical Computer Science 186(1997):107-l34.

17. J. Esparza. Decidability and complexity of Petri net problems - an introduction,
Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, Lecture Notes in
Computer Science, Vol.1491 (Springer Verlag, 1998) 374-428.

18. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

19. C. H. Paradimitriou. Computational Complexity. Addison-Wesley Publishing
Company, 1994.

Synchronization of Some DFA

A.N. Trahtman

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel
trakht@macs.biu.ac.il

Abstract. A word w is called synchronizing (recurrent, reset, directable)
word of deterministic finite automaton (DFA) if w brings all states of the
automaton to an unique state. Černy conjectured in 1964 that every n-
state synchronizable automaton possesses a synchronizing word of length
at most (n − 1)2. The problem is still open.

It will be proved that the minimal length of synchronizing word is not
greater than (n − 1)2/2 for every n-state (n > 2) synchronizable DFA
with transition monoid having only trivial subgroups (such automata
are called aperiodic). This important class of DFA accepting precisely
star-free languages was involved and studied by Schŭtzenberger. So for
aperiodic automata as well as for automata accepting only star-free lan-
guages, the Černý conjecture holds true.

Some properties of an arbitrary synchronizable DFA and its transition
semigroup were established.

http://www.cs.biu.ac.il/∼trakht/syn.html

Keywords: Deterministic finite automata, synchronization, aperiodic
semigroup, Černy conjecture.

1 Introduction

The natural problem of synchronization of DFA draws quite often the attention
and various aspects of this problem were touched upon the literature. The syn-
chronization makes the behavior of an automaton resistant against input errors
since, after detection of an error, a synchronizing word can reset the automaton
back to its original state, as if no error had occurred.

An important problem with a long story is the estimation of the shortest
length of synchronizing word of DFA. Best known as Černy’s conjecture, it was
raised independently by distinct authors. Jan Černy found in 1964 [1] an n-state
automaton with minimal length synchronizing word of (n− 1)2. He conjectured
that this is the maximum length of the shortest synchronizing word for any
DFA with n states. The conjecture is valid for big list of objects, but in general
the question still remains open. The best known upper bound is now equal to
(n3−n)/6 [3,5,7]. By now, this simple looking conjecture with rich and intriguing
story of investigations [4,7,10,12] is one of the most longstanding open problems
in the theory of finite automata.

The existence of some non-trivial subgroup in the transition semigroup of
the automaton is essential in many investigations of Černy conjecture [2,7,8].

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 234–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Synchronization of Some DFA 235

We use an opposite approach and consider transition semigroups without non-
trivial subgroups. This condition distinguishes a wide class of so-called aperiodic
automata that, as shown by Schützenberger [11], accept precisely star-free lan-
guages (also known as languages of star height 0). Star-free languages play a
significant role in the formal language theory.

It will be established that the synchronizable DFA has a synchronizing word
of length not greater than (n − 1)2/2 (n > 2) for automata with transition
semigroup having only trivial subgroups (aperiodic automata) and therefore the
Černy conjecture holds true for such DFA.

The necessary and sufficient conditions of synchronizability of an arbitrary
automaton are presented below in the following form:

An automaton with transition graph Γ is synchronizable iff Γ 2 has sink state.
(see also [1] for another wording). In the case of aperiodic automata holds:

An aperiodic automaton with sink state is synchronizable.
Some properties of an arbitrary synchronizable DFA were found by help of

some new concepts such as almost minimal SCC, m-cycle and set of 2-reset
words.

2 Preliminaries

We consider a complete DFA A with the input alphabet Σ, the transition graph
Γ and the transition semigroup S. The elements of S let us consider as words
over Σ.

A maximal strongly connected component of a directed graph will be denoted
for brevity as SCC.

If there exists a path from the state p to q and the consecutive transitions
of the path are labelled by σ1, ..., σk then for the word s = σ1...σk let us write
q = ps.

The state q is called sink if for every state p there exists a word s such that
ps = q.

The binary relation β is called stable if for any pair of states q,p and any
σ ∈ Σ from q β p follows qσ β pσ.

The graph Γ is complete if for every p ∈ Γ and every σ ∈ Σ the state pσ
exists.

|s| - the length of the word s in alphabet Σ.
|P | - the size of the set of states of the automaton (of vertices of the graph) P .
Let Ps denote the mapping of the graph (of the automaton) P by help of

s ∈ Σ∗.
The direct product Γ 2 of two copies of the transition graph Γ over an alphabet

Σ consists of pairs (p,q) and edges (p,q) → (pσ,qσ) labelled by σ. Here p,q ∈
Γ , σ ∈ Σ.

A word s ∈ Σ+ is called synchronizing (reset) word of an automaton with
transition graph Γ if |Γs| = 1.

236 A.N. Trahtman

A word w is called 2-reset word of the pair p,q if pw = qw and let us denote
by Syn(p,q) the set of all such words w.

Let φ be homomorphism of the DFA A. Suppose q ρ p iff qφ = pφ for
the states q and p from A. Then the relation ρ is a congruence on A. The
ρ-class containing the state q of A we denote by qρ. The quotient A/ρ is the
automaton with the set of states qρ and the transition function defined by the
rule qρσ = qσρ for any σ ∈ Σ.

An SCC M from Γ 2 will be called almost minimal if for every state (p,q)
∈ M and for every σ ∈ Σ such that pσ �= qσ there exists a word s such that
(pσ,qσ)s = (p,q). For every (p,q) ∈ M suppose p and q ∈ Γ (M).

Let us define a relation �M for almost minimal SCC M . Suppose p �M q if
(p,q) ∈ M and let �M be the transitive closure of this relation. Let �M be the
reflexive closure and ρM be equivalent closure of the relation �M .

Let M be almost minimal SCC. A non-trivial sequence of states p1,p2, ...pn =
p1 such that (pi,pi+1) for i = 1, ..., n−1 (n > 1) belong to M let as call t-cycle.

A t-cycle of minimal length let as call m-cycle.

3 The Graph Γ 2

Lemma 1. The relation �M for any almost minimal SCC M ∈ Γ 2 is stable.
The equivalent closure ρM of the relation �M is a congruence.

If R is a class of the relation ρM then for any word w the set Rw is a subset
of a class of the relation ρM .

Proof. In the case u �M v there exist a sequence of states u = p1, ...,pn = v
such that for every integer i < n (pi,pi+1) belongs to the almost minimal SCC
M . One has (pis,pi+1s) ∈ M or pis = pi+1s and therefore pis �M pi+1s.
Consequently, us �M vs.

Suppose u ρM v. Then there exist a sequence of states u = p1, ...,pn = v
such that for every integer i < n at least one of the states (pi+1,pi), (pi,pi+1)
belongs to the almost minimal SCC M . Therefore in the sequence of states us =
p1s, ...,pns = vs for any two distinct neighbors pis,pi+1s the state (pis,pi+1s)
or its dual belongs to M . Consequently, us ρM vs. Therefore for a class R of
the relation ρM and for any word w the set Rw is a subset of some class of the
relation ρM .

From the definitions of the almost minimal SCC and the relation �M follows

Proposition 2. If r �M q and for some word s one has rs �∈ Γ (M) or qs �∈
Γ (M), then rs = qs.

Proposition 3. Synchronizing word of Γ synchronizes also Γ/ρM for any M .

Synchronizing word of Γ is 2-reset word for any pair of states and therefore
unites every pair of states from different ρM -classes in one sink state.

The following lemma can be also reduced from [1]:

Synchronization of Some DFA 237

Lemma 4. An automaton A with transition graph Γ is synchronizable if and
only if Γ 2 has a sink state.

Proof. Let s be synchronizing word of A. Then the unique pair of the set Γ 2s is
a sink of Γ 2.

Conversely, the components of a sink of Γ 2 obviously are equal. Let (t, t) be
a sink. For any pair (p,q), there exists a word s such that (p,q)s = (t, t), that
is, ps = qs = t. Some product of such words s taken for all pairs of distinct
states from Γ is a synchronizing word of the graph Γ .

Lemma 5. Let M be almost minimal SCC of Γ 2. Suppose that for some word
s the state qs is either a maximal element of the order �M or qs �∈ Γ (M).

Then for any state t such that t �M q holds ts = qs. The word s unites all
ancestors of q.

Proof. By Lemma 1, ts �M qs or qs = ts. The case ts �M qs is excluded
because the state qs is a maximal state. In the case qs �∈ Γ (M) also ts = qs by
Proposition 2. Thus the word s is a common synchronizing word for set of all
states t such that t �M q.

Theorem 1. Let M be almost minimal SCC of Γ 2 of n-state synchronizable
automaton with transition graph Γ over an alphabet Σ. Let R be ρM -class defined
by states from M and suppose that |Rv| = 1 for non-empty word v of length not
greater [less] than c(|R| − 1)(n − 1) where c is some coefficient.

Then the automaton has synchronizing word in alphabet Σ of length not
greater [less] than c(n − 1)2.

Proof. Let us use the induction on n. The case n = 2 for non-empty v is trivial,
so let us suppose n > 2. For |R| = n the statement of the theorem is a tautology,
so let assume |R| < n. In view of |Γ (M)| > 1 the relation ρM is not trivial and
|R| > 1. So

n > |R| > 1
Let us consider the congruence ρM and the quotient Γ/ρM . Any synchronizing

word of Γ synchronizes also Γ/ρM (Proposition 3). Therefore the graph Γ has
a synchronizing word uv where u is a synchronizing word of Γ/ρM and v is
a synchronizing word of the preimage R of Γ/ρM u. In view of n > |R| > 1,
one has |Γ/ρM | ≤ n − |R| + 1 < n and we can use induction, assuming |u| ≤
c(|Γ/ρM | − 1)2 ≤ c(n − |R|)2. So |uv| ≤ c(n − |R|)2 + c(|R| − 1)(n − 1) and in
view of c(n−|R|)2 +c(|R|−1)(n−1) = c((n−1)2−(|R|−1)(n−|R|) < c(n−1)2

one has |uv| < c(n − 1)2. So for n > |R| the length is less than c(n − 1)2.

Lemma 6. For any word w, Syn(p,q) ⊆ Syn(r, t) implies Syn(pw,qw) ⊆
Syn(rw, tw). The relation Syn(p,q) is a stable binary relation.

Proof. Suppose word u ∈ Syn(pw,qw). Therefore the word wu synchronizes the
pair of states p,q. From Syn(p,q) ⊆ Syn(r, t) follows that the word wu synchro-
nizes the pair of states r, t and rwu = twu. Thus the word u from Syn(pw,qw)
synchronizes also the pair (rw, tw), whence Syn(pw,qw) ⊆ Syn(rw, tw).

238 A.N. Trahtman

4 Transition Semigroup of Automaton

For definitions of D- and H-class, ideal, left ideal, idempotent and right zero
see [6].

Lemma 7. Let Γ be strongly connected graph of synchronizing automaton with
transition semigroup S. Suppose Γa = Γb for reset words a and b. Then a = b.
Any reset word is an idempotent.

Proof. The elements a and b from S induce equal mappings on the set of states
of Γ . S can be embedded into the semigroup of all functions on the set of states
under composition [6]. Therefore a = b in S. Γa = Γa2, whence a = a2 for any
reset word a and the element a ∈ S is an idempotent.

Lemma 8. Let Γ be strongly connected graph of synchronizable automaton with
transition semigroup S. Suppose eSe is a group for some idempotent e.

Then every element s from eSe is a reset word and |Γs| = 1.

Proof. Suppose two states p and q belong to Γs. The automaton is synchroniz-
able, whence there exists a word t ∈ S such that pt = qt. The states p and q
belong to Γs, therefore pe = p, qe = q and pet = qet. It implies pete = qete.
The element ete belongs to the group eSe with unit e and has an inverse in
this group. Consequently, pe = qe. The states p and q belong to Γs = Γse. So
pe = p, qe = q, whence p = q in spite of our assumption.

Lemma 9. Let Γ be strongly connected graph of synchronizable n-state automa-
ton with transition semigroup S.

Then S contains n distinct reset words and they form a D-class Dr of S. Dr

is an ideal of S and a subsemigroup of right zeroes, subgroups of Dr are trivial.

Proof. For every state p from synchronizable automaton with strongly connected
transition graph by Lemma 7 there exists at most one reset word s such that
Γs = p. Γ is strongly connected, consequently for any state q there exists a
word t such that pt = q. Then Γst = q and st is also a reset word. So for any
state there exists its reset word and all these reset words of distinct states are
distinct. Thus there are at least n reset words. From Γs = p follows Γus = p
for every word u ∈ S, whence by Lemma 7 us = s, and in particular ts = s.
Because for every t ∈ S st is also reset word and ts = s the set of all reset words
is an ideal in S.

For two states p and q the corresponding reset words are s and st. So the
second word belongs to the left ideal generated by the first. The states p and q
are arbitrary, whence all reset words create the same left ideal and belong to one
D-class Dr. All words from D-class Dr are reset words because from |Γs| = 1
follows |Γvsu| = 1 for any words u and v. Distinct reset words map Γ on distinct
states, so in view of Lemma 7 |Dr| = n.

Any H-class of D-class Dr is a group with one idempotent [6] and consists of
reset words. By lemma 7 any reset word is an idempotent. Therefore any H-class
is trivial and in view of Lemma 8 the set of reset words Dr is a semigroup of
right zeroes.

Synchronization of Some DFA 239

Corollary 10. Let Γ be transition graph of synchronizable n-state automaton
with transition semigroup S. Let Γ have sink strongly connected maximal sub-
graph T of size k.

Then S contains k distinct reset words and they all are idempotents, form
a subsemigroup of right zeroes and an ideal of S. The difference between the
minimal lengths of two distinct reset words is less than k.

Proof. Any reset word of Γ is also a reset word of T . Therefore there are only
k distinct reset word and by Lemma 9 they are idempotents, form an ideal of S
and a subsemigroup of right zeroes.

Any reset word u maps Γ on some state p of T . Any other reset word v such
that Γv = q can be obtained as a product ut for t such that pt = q. |t| < k,
whence |v| − |u| < k.

5 The State Outside t-Cycle

Lemma 11. Let M be almost minimal SCC from Γ 2 having some t-cycle.
Then for any state (q,p) ∈ M the states q and p are consecutive states of
t-cycle and even of m-cycle.

If the states r, s of m-cycle are not consecutive then the state (r, s) of Γ 2 does
not belong to M .

Proof. A t-cycle of minimal length exists because Γ 2 is finite. Let the states q1,p1

be consecutive states of m-cycle C of length m from almost minimal SCC M of
Γ 2. So (q1,p1) ∈ M . For any state (q,p) from strongly connected component
M there exists a word w such that (q1,p1)w = (q,p). The word w maps m-cycle
C on some t-cycle of length j not greater than m. Because p �= q holds j > 1.
Therefore j = m and the states q,p are consecutive states of m-cycle Cw.

If the state (r, s) ∈ M but the states r, s are not consecutive states of m-
cycle from M then M contains a t-cycle with length less the length of m-cycle.
Contradiction.

Lemma 12. Let r be the number of ρM - classes of almost minimal SCC M
of n-state (n > 2) automaton with strongly connected graph Γ . Suppose some
state p does not belong to any t-cycle from M and let R be ρM - class from M .

Then |Rs| = 1 for some word s ∈ Σ∗ of length not greater than (n−r)(n−1)/2.

Proof. The ρM -class R is defined by a state from M , therefore |R| > 1.
Suppose first that p �∈ Γ (M). Then there exists a word w of length not greater

than n− |R| that maps some state from R on p. In virtue of Lemma 1 the class
Rw is out of Γ (M) and therefore the definition of ρM - class implies Rw = p.
So |Rw| = 1. From |R| > 1 follows (n − r)/2 ≥ 1. Therefore |w| ≤ n − |R| ≤
(n − 1)1 ≤ (n − r)(n − 1)/2 in the case p �∈ Γ (M).

Let us suppose now that p ∈ Γ (M). If there exists t-cycle in M then by
Lemma 11 any state from Γ (M) belongs to t-cycle. It contradicts to our as-
sumption that p does not belong to t-cycle. Therefore we can suppose absence
of t-cycles in M . The relation �M is a partial order in such case.

240 A.N. Trahtman

Let Max be the set of all maximal and Min be the set of all minimal states
from R according to the order �M . Both sets Max and Min are not empty
in view of |R| > 1. |Max| ∩ |Min| = ∅ because the relation �M is a partial
order and anti-reflexive by definition. Without loss of generality, let us assume
that |Max| ≥ |Min|. Then |Min| ≤ (n− r)/2. The relation �M by Lemma 1 is
stable. Therefore the number of all minimal states of Ru for any word u is also
not greater than (n − r)/2.

For any minimal state qu ∈ Ru there exists a word w of length not greater
than n − 1 that maps the state qu in Max. By Lemma 5, the word w maps
qu in Max together with all its ancestors. On this way, the number of minimal
states can be reduced to zero by help of at most |Min| words of length n− 1 or
less. The ρM -class without minimal elements is one-element, |Min| ≤ (n− r)/2,
whence for a word s of length not greater than (n− 1)(n− r)/2 holds |Rs| = 1.

Theorem 2. Let the transition graph Γ of an n-state (n > 2) synchronizable
automaton be strongly connected and let M be almost minimal SCC of Γ 2.
Suppose some state from Γ does not belong to t-cycle of M .

Then the automaton has reset word of length not greater than (n − 1)2/2.

Proof. Let r be the number of ρM - classes. By Lemma 12, the word v of length
not greater than (n− r)(n− 1)/2 synchronizes any ρM -class defined by states of
M . The size of any ρM -class R is not greater than n− r+ 1. Now by Theorem 1
for c = 1/2 in view of |R|−1 ≤ n−r, there exists a synchronizing word of length
not greater than (n − 1)2/2.

6 Aperiodic Strongly Connected DFA

Let us recall that the transition semigroup S of aperiodic automaton is finite and
aperiodic [11] and the semigroup satisfies identity xn = xn+1 for some suitable
n. So for any state p ∈ Γ , any s ∈ S and for some suitable k holds psk = psk+1.

Lemma 13. Let A be an aperiodic automaton. Then the existence of sink state
in A is equivalent to the existence of synchronizing word.

Proof. It is clear that, for any DFA, the existence of a synchronizing word implies
the existence of a sink.

Now suppose that A has at least one sink. For any state p and any sink p0,
there exists an element s from the transition semigroup S such that ps = p0. The
semigroup S is aperiodic, whence for some positive integer m we have sm = sm+1.
Therefore psm = psm+1 = p0sm, whence the element sm brings both p and p0

to the same state p0sm which is a sink again. We repeat the process reducing
the number of states on each step. Then some product of all elements of the
form sm arising on each step brings all states of the automaton to some sink.
Thus, we obtain in this way a synchronizing word.

Let us go to the key lemma of the proof.

Synchronization of Some DFA 241

Lemma 14. Let a DFA with the transition graph Γ be aperiodic.
Then the graph Γ has no t-cycle, the quasi-order �M for any almost minimal

SCC M is a partial order and no state belongs to t-cycle.

Proof. Suppose the states p1 �M p2, ..,pm−1 �M pm = p1 form t-cycle of the
minimal size m for some almost minimal SCC M .

Let us establish that m > 2. Indeed, p1 �= p2 by the definition of the relation
�M , whence m > 1. If m = 2 then two states (p1,p2) and (p2,p1) belong
to common SCC. For some element u from transition semigroup S, we have
(p1,p2)u = (p2,p1). Therefore p1u = p2, p2u = p1, whence p1u

2 = p1 �= p1u.
It implies p1u

2k = p1 �= p1u = p1u
2k+1 for any integer k. However, semigroup

S is finite and aperiodic and therefore for some k holds u2k = u2k+1, whence
p1u

2k = p1u
2k+1. Contradiction.

Thus we can assume that m > 2 and suppose that the states p1,p2,p3 are
distinct. For some element s ∈ S and for the states p1, p2, p3 from considered
t-cycle holds (p1,p2)s = (p2,p3). We have

p2 = p1s, p3 = p1s
2

For any word v ∈ S and any state (pi,pi+1) from M by Lemma 1 piv �M

pi+1v. Therefore for any word v ∈ S the non one-element sequence of states
p1v, ...,pmv forms t-cycle of minimal size m. It is also true for v = si for any
integer i.

The states p1,p1s,p1s
2 are distinct. Let us notice that in aperiodic finite

semigroup for some l holds sl �= sl+1 = sl+2. Therefore there exists such maximal
integer k ≤ l such that p1s

k �= p1s
k+1 = p1s

k+2 and in the t-cycle p1s
k, p2s

k =
p1s

k+1, p3s
k = p1s

k+2,..., pmsk holds p1s
k �= p2s

k = p3s
k. So the cardinality

of the obtained t-cycle is greater than one and less than m. Contradiction.

Corollary 15. Let M be almost minimal SCC of aperiodic DFA with transition
graph Γ . Then the relation �M is anti-reflexive.

Theorem 3. Let the transition graph Γ of an n-state (n > 2) synchronizable
automaton be strongly connected.

Then the automaton has reset word of length not greater than (n − 1)2/2.

Proof follows from Theorem 2 and Lemma 14.

7 The General Case of Aperiodic DFA

Lemma 16. Let Γ be transition graph of synchronizable n-state (n > 2) DFA
with transition semigroup without non-trivial subgroups. Suppose that SCC Γ1 of
Γ has no ingoing edges from another SCC and |Γ1| ≤ n−2. Then the automaton
has synchronizing word of length not greater than (n − 1)2/2.

Proof. Let us denote |Γ \ Γ1| = r. So |Γ1| = n − r and r > 1. By [9] (theorem
6.1), a word of length (n− r)(n− r +1)/2 maps Γ in Γ \Γ1. If r = 2 then Γ \Γ1

has reset word of length 1 and Γ has reset word of length 1+ (n− 2)(n− 1)/2 =
(n − 1)2/2 + (3 − n)/2 ≤ (n − 1)2/2 because n > 2. In the case r > 2 one can

242 A.N. Trahtman

assume by induction that the graph Γ \ Γ1 has reset word of length (r − 1)2/2.
Therefore Γ has reset word v of length (n − r)(n − r + 1)/2 + (r − 1)2/2. Now
from n > r > 1 and equality
(n−r)(n−r+1)+(r−1)2 = (n−r)2+n−r+(r−1)2+2(n−r)(r−1)−2(n−r)(r−1)
= (n − r + r − 1)2 + n − r − 2(n − r)(r − 1) = (n − 1)2 − (n − r)(2r − 3)
follows that the length of v is not greater than (n − 1)2/2.

Lemma 17. Let Γ be transition graph of synchronizable n-state (n > 2) DFA
with transition semigroup without non-trivial subgroups. Suppose that Γ is a
union of SCC Γ1 of size n−1 and sink p. Then the automaton has synchronizing
word of length not greater than (n − 1)2/2.

Proof. Let us denote Ci = i(i− 1)/2. Γ has only two SCC, Γ1 and {p}. For any
state t ∈ Γ1 there exists a word u(t) of minimal length such that tu(t) = p. If
we form a reset word s = s1...sn−1 such that si = u(t) for t ∈ Γ1s1...si−1 with
minimal u(t) (as in [9]) then |s| ≤ n(n − 1)/2 = Cn. Our aim is to reduce the
length |s| to (n − 1)2/2.

For any letter σ ∈ Σ there exists a minimal integer k such that Γσk = Γσk+1.
Then |Γσk| ≥ n − k. Let us form reset word s = σksk+1...sn−1, the subword si

is chosen as above, whence |si| ≤ i. Then |s| ≤ k +
∑n−1

i=k+1 i = k +
∑n−1

i=1 i −
∑k

i=1 i = k+n(n−1)/2−k(k+1)/2 = Cn−Ck. It is not greater than (n−1)2/2
if k(k − 1)/2 ≥ (n − 1)/2. So let us for any letter from Σ study only the case

k(k − 1) < n − 1
For any state q there exists a letter σ such that q �= qσ. Then the word σi of

length i ≤ k unites any pair of states q and qσj .
Let us form now a reset word s1...sn−1 and suppose Si = s1...si. For letter

σ with maximal value of k suppose si = σ for i ≤ k. So |Sk| = k. Let us go
to the values of i after k. If in Γ1Si either there exists a state t with u(t) ≤ i
or two states q and qσj for some σ then let us take as si+1 such u(t) or σk.
From k ≤ i and u(t) ≤ i follows |si+1| ≤ i. Therefore |Si+1| ≤ k +

∑i−1
j=k+1 j =

k +
∑i−1

j=1 j − ∑k
j=1 j = k + i(i − 1)/2 − k(k + 1)/2 ≤ Ci+1 − Ck.

The size of Γ1Si is at most n − 1 − i. If |Γ1Si| < n − 1 − i then let si+1 be
empty word. So |Γ1Si+1| ≤ n− 1− (i+1) and |Si+1| < Ci+1 −Ck. Thus anyway

|Si| ≤ Ci − Ck for i > k
Now remains only the case of Γ1Si of size n − 1 − i without pairs of states q

and qσj for some σ and with u(t) > i for all its states t. Γ1 has at most n−1− i
states with u(t) > i. Consequently the states t with u(t) > i form the set Γ1Si,
whence from tσ �= t follows tσ �∈ Γ1Si and u(t)σ ≤ i. Therefore u(t) ≤ i + 1 for
all t ∈ Γ1Si and the maximal value of u(t) in Γ1 is i + 1. So n − 1 − i states of
Γ1Si can be mapped in p by word v of length at most (n − 1 − i)(i + 1).
Therefore Siv is a reset word and |Siv| ≤ (n − 1 − i)(i + 1) + Ci − Ck =
(n− 1− i)(i + 1) + i(i− 1)/2−Ck = (n− 1)(i + 1)− i2 − i + i2/2− 0.5i−Ck =
(n − 1)(i + 1) − 0.5i2 − i − 0.5 + 0.5 − 0.5i − Ck =
(n − 1)2/2 − (n − 1)2/2 + (n − 1)(i + 1) − (i + 1)2/2 + 0.5 − 0.5i − Ck =
(n − 1)2/2 − (n − 2 − i)2/2 − 0.5(i − 1) − Ck ≤ (n − 1)2/2.

Synchronization of Some DFA 243

Theorem 4. Synchronizable n-state DFA (n > 2) with transition semigroup
having only trivial subgroups has synchronizing word of length not greater than
(n − 1)2/2.

Proof. Let the transition graph Γ of the automaton have SCC C of cardinality
r with sink. By Theorem 3 for Γ = C the assertion of the theorem is true. So
let Γ have several SCC. In the case Γ has more than two SCC or r > 1, a
synchronizing word of length not greater than (n−1)2/2 exists by Lemma 16. In
the case of two SCC and r = 1 the graph Γ by Lemma 17 also has synchronizing
word of length not greater than (n − 1)2/2. Thus a word of length not greater
than (n − 1)2/2 synchronizes the automaton.

Corollary 18. The Černy conjecture holds true for DFA with transition semi-
group having only trivial subgroups.

References

1. J. Černy, Poznamka k homogenym eksperimentom s konechnymi automatami,
Math.-Fyz. Čas., 14(1964) 208-215.

2. L.Dubuc, Sur le automates circulaires et la conjecture de Černy, RAIRO Inform.
Theor. Appl., no 1-3, 32(1998) 21-34.

3. P. Frankl, An extremal problem for two families of sets, Eur. J. Comb., 3(1982)
125-127.

4. J. Kari, Synchronizing finite automata on Eulerian digraphs. Springer, Lect. Notes
in Comp. Sci., 2136(2001), 432-438.

5. A.A. Kljachko, I.K. Rystsov, M.A. Spivak, An extremely combinatorial problem
connected with the bound on the length of a recurrent word in an automata.
Kybernetika. 2(1987) 16-25.

6. G. Lallement, Semigroups and Combinatorial Applications, Wiley, N.Y., 1979.
7. J.E. Pin, On two combinatorial problems arising from automata theory, Annals of

Discrete Mathematics 17(1983), 535-548.
8. I.K. Rystsov, Almost optimal bound on recurrent word length for regular automata.

Cybernetics and System An. 31, 5(1995) 669-674.
9. I.K. Rystsov, Reset words for commutative and solvable automata. Theoret. Com-

put. Sci. 172(1997) 273-279.
10. A. Salomaa, Generation of constants and synchronization of finite automata, J. of

Univers. Comput. Sci., 8(2) (2002), 332-347.
11. M.P. Schǔtzenberger, On finite monoids having only trivial subgroups. Inf. control,

8(1965) 190-194.
12. A.N. Trahtman, An efficient algorithm finds noticeable trends and examples con-

cerning the Černy conjecture. Lect. Notes in Comp. Sci., Springer, MFCS 2006,
4162(2006), 789-800.

On the Treewidth and Pathwidth of Biconvex

Bipartite Graphs

Sheng-Lung Peng� and Yi-Chuan Yang

Department of Computer Science and Information Engineering
National Dong Hwa University

Hualien 97401, Taiwan
slpeng@mail.ndhu.edu.tw

Abstract. In this paper we explore the biclique structure of a biconvex
bipartite graph G. We define two concatenation operators on bicliques
of G. According to these operations, we show that G can be decomposed
into two chain graphs GL and GR, and a bipartite permutation graph
GP . Using this representation, we propose linear-time algorithms for the
treewidth and pathwidth problems on biconvex bipartite graphs.

1 Introduction

Let G = (V, E) be a finite, simple, and undirected graph where V and E denote
the vertex and edge sets of G, respectively. G is called bipartite if V can be
partitioned into two sets X and Y such that every edge has its ends in different
sets. Equivalently, G is bipartite if and only if it is 2-colorable and is denoted
as G = (X, Y, E). A biclique is a complete bipartite subgraph. Let N(v) = {w |
(v, w) ∈ E} and N [v] = N(v) ∪ {v}.

A graph G is a permutation graph if there is some pair P , Q of permutations
of the vertex set such that there is an edge between vertices u and v if and only
if u precedes v in one of P, Q, while v precedes u in the other. Bipartite permu-
tation graphs simultaneously have both of the properties of bipartite graphs and
permutation graphs [20].

A bipartite graph G = (X, Y, E) is biconvex if both X and Y can be ordered
so that for every vertex v in X ∪ Y neighbors of v occur consecutively in the
ordering [1]. We say that X and Y each possess the convexity property, and that
V = X ∪ Y has a biconvex ordering.

A graph is chordal if it does not contain a chordless cycle of length greater
than three. A triangulation of a graph G = (V, E) is a graph H = (V, E′)
such that H is a supergraph of G and H is chordal. The treewidth of graph
G is the minimum k such that there is a triangulation of G with maximum
clique size at most k + 1 [3]. Given a graph G and an integer k, the treewidth
problem asks whether the treewidth of G is at most k. This problem remains NP-
complete on cobipartite graphs (complement of bipartite graphs) [2], bipartite
graphs [13], and graphs of maximum degree at most 9 [8]. For some special classes
� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 244–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 245

of graphs, it has been shown that it can be computed in polynomial time, such as
cographs [7], circular-arc graphs [21], chordal bipartite graphs [15], permutation
graphs [5,18], circle graphs [12], d-trapezoid graphs [6], and distance hereditary
graphs [9].

A graph G = (V, E) is an interval graph if one can put the vertices into
one-to-one correspondence with a set of intervals {Iu}u∈V on the real line, such
that (u, v) ∈ E if and only if Iu ∩ Iv �= ∅. The pathwidth of any graph G is the
minimum k such that G can be embedded into an interval graph with maximum
clique size at most k + 1. Given a graph G and an integer k, the pathwidth
problem asks whether the pathwidth of G is at most k. The pathwidth problem
is NP-complete on cobipartite graphs [2], bipartite graphs [13], chordal graphs
[10], cocomparability graphs [11], chordal domino graphs [16], bipartite distance-
hereditary graphs [14], and planar graphs [19]. The known graph classes for which
the pathwidth can be computed in polynomial time are cographs [7], permutation
graphs [5,18], d-trapezoid graphs [6], split graphs [10], and graphs with bounded
treewidth [4].

In this paper, we show that a bipartite permutation graph can be represented
by concatenating a sequence of bicliques. Then we extend this representation
to a biconvex bipartite graph. By using this representation we propose linear-
time algorithms for the treewidth and pathwidth problems on biconvex bipartite
graphs. The best algorithm for solving the treewidth problem on biconvex bi-
partite graphs runs in O(m3) time where m is the number of edges in the graph
[15]. However, the complexity of the pathwidth problem on biconvex bipartite
graphs is unknown. The only known result is that it is NP-complete on chordal
bipartite graphs (implied from [14]).

2 Bipartite Permutation Graphs

2.1 Biclique Structure

Let G = (X, Y, E) be a bipartite graph. An ordering of the vertices in X has the
adjacency property if for each vertex y in Y , vertices of N(y) are consecutive in
the ordering of X . An ordering of the vertices in X has the enclosure property if
for every pair of vertices v, w in Y such that N(v) is a subset of N(w), vertices
in N(w)\N(v) occur consecutively in the ordering of X . A strong ordering of
the vertices of G = (X, Y, E) consists of an ordering of X and an ordering of Y
such that for all edges (x, y), (x′, y′) in E where x, x′ are in X and y, y′ are in Y ,
x < x′ and y > y′ imply (x, y′) and (x′, y) are in E. The edges (x, y) and (x′, y′)
are called a crossing pair. Spinrad et al. give the following characterization of
bipartite permutation graphs.

Theorem 1. [20] The following statements are equivalent.

1. G = (X, Y, E) is a bipartite permutation graph.
2. There is a strong ordering of X ∪ Y .
3. There exists an ordering of X which has the adjacency and enclosure

properties.

246 S.-L. Peng and Y.-C. Yang

For a biclique B = (X, Y, E′), E′ = {(x, y) | x ∈ X and y ∈ Y } is completely de-
termined by X and Y . For convenience, in the following, we use B = (X, Y)
to denote a biclique and assume that vertices in X (and Y) are numbered
in order. Let first(X, k) (respectively, last(X, k)) be the first (respectively,
last) k vertices of X . For example, assume that X = {x1, x2, . . . , xr}. Then
first(X, k) = {x1, x2, . . . , xk} and last(X, k) = {xr−k+1, xr−k+2, . . . , xr−1, xr}.

For two bicliques B1 = (X1, Y1) and B2 = (X2, Y2) and two positive integers
k and l, we define a concatenation operator ⊕ on B1 and B2 as follows. B1⊕k

l B2

is the bipartite graph G = (X, Y, E) with X = X1 ∪ X2 where last(X1, k) =
first(X2, k), Y = Y1∪Y2 where last(Y1, l) = first(Y2, l), and E being the union
of edges in B1 and B2 and k, l satisfying the following two conditions.

1. k + l ≥ 1,
2. neither |X1| = |X2| = k nor |Y1| = |Y2| = l.

By Condition 1, G is connected. By Condition 2, it is impossible to have
|X1| = |X2| = k (or |Y1| = |Y2| = l). Otherwise, B1 ⊕k

l B2 becomes a biclique.
Note that B1 and B2 are two maximal bicliques of G. For convenience, we say
that last(X1, k) ∪ last(Y1, l) = first(X2, k) ∪ first(Y2, l) is the intersection of
B1 and B2. Figure 1 shows an example of G = B1 ⊕2

3 B2.

2

3
=

B1 B2 G

Fig. 1. G = B1 ⊕2
3 B2

In the following, if there is no confusion, then B1 ⊕k
l B2 is briefed as B1 ⊕B2.

We now define a bipartite graph Gr by concatenating a sequence of bicliques
B1, B2, . . . , Br as follows.

(1) G1 = B1,
(2) let Gi = B1 ⊕ B2 ⊕ · · · ⊕ Bi be the graph by concatenating B1, B2, · · · , Bi,

then Gi+1 = Gi ⊕ Bi+1 where ⊕ is applied on Bi and Bi+1.

Lemma 1. Gr is a bipartite permutation graph.

Proof. We prove this lemma by induction.

(i) G1 is a biclique which is a bipartite permutation graph.
(ii) Assume that Gi = B1⊕B2⊕· · ·⊕Bi is a bipartite permutation graph. Now,

we consider Gi+1 = Gi ⊕k
l Bi+1 = B1 ⊕ B2 ⊕ · · · ⊕ Bi ⊕k

l Bi+1 where Bi =
(Xi, Yi) and Bi+1 = (Xi+1, Yi+1). It is not hard to see that the neighborhoods
are changed only in the vertices of Bi ∩ Bi+1. By the definition, vertices in
Bi ∩Bi+1 satisfy the adjacency property. It is also not hard to see that they
satisfy the enclosure property. According to Theorem 1, Gi+1 is a bipartite
permutation graph.

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 247

Thus, by induction, Gr is a bipartite permutation graph. 	

Let G = Gr = B1 ⊕k1
l1

B2 ⊕k2
l2

· · · ⊕kr−1
lr−1

Br. Then we say that B1, B2, . . . , Br

is a generating base of G. On the other hand, given a bipartite permutation
graph G = (X, Y, E) with a strong ordering, we can obtain a generating base
as follows. Assume that X = {x1, x2, . . . , xa} and Y = {y1, . . . , yb}. Let the
largest index in N(x1) (respectively, N(y1)) be j (respectively, i). Let X1 =
{x1, . . . , xi} and Y1 = {y1, . . . , yj}. Then B1 = (X1, Y1) is a maximal biclique of
G. After B1 is determined, we delete x1 (respectively, y1) and the other vertices
whose neighborhood is N(x1) (respectively, N(y1)). It is not hard to see that
the remaining graph is still a bipartite permutation graph and the ordering of
vertices is still strong. By repeating this process, we can obtain B2, B3, . . . , Br.
Figure 2 shows an example for G = B1 ⊕1

1 B2 ⊕1
2 B3 ⊕1

0 B4.

B1 B2

G =

x1 x2 x3 x4

y1 y2 y3 y4 y5 y6 y7 y8 y9

 y1 y2 y3 y3 y4 y5 y6 y5 y6 y7 y8

B3

y9

B4

x1 x2 x2 x3 x3 x4 x4

Fig. 2. A generating base of bipartite permutation graph G

Finally, we have the following theorem.

Theorem 2. G is a connected bipartite permutation graph if and only if there
exists a generating base for G.

A bipartite graph G = (X, Y, E) is a chain graph if the neighborhoods of vertices
in X form a chain; i.e., there is an ordering {x1, x2, . . . , x|X|} on X such that
N(x1) ⊇ N(x2) ⊇ · · · ⊇ N(x|X|) [22]. It is easy to see that the neighborhoods
of the vertices in Y form also a chain. Let X = {x1, . . . , x|X|} with N(x1) ⊇
· · · ⊇ N(x|X|) and Y = {y1, . . . , y|Y |} with N(y1) ⊆ · · · ⊆ N(y|Y |). Then G has
a generating base, i.e., G = B1 ⊕k1

l1
B2 ⊕k2

l2
· · · ⊕kr−1

lr−1
Br with ki = 0 for all i and

li ≥ lj for all i < j. Therefore, we have the following corollary.

Corollary 1. The class of chain graphs is a subclass of bipartite permutation
graphs.

248 S.-L. Peng and Y.-C. Yang

2.2 Computing Treewidth in Linear Time

Given a bipartite permutation graph G = (X, Y, E) with vertices of X and
Y in a strong ordering, each crossing of (x, y) and (x′, y′) is contained in a
cycle x, y, x′, y′, x. That is, each crossing pair represents a 4-cycle in G. By the
definition, a graph is chordal if every cycle of length greater than three has a
chord. Therefore, to form a chordal graph, every 4-cycle must be destroyed (by
adding edges). The set of all the additional edges is called C4-destroying set.
A previous investigation by Spinrad et al. showed that the union of G and any
minimal C4-destroying set is chordal [20]. For a vertex set W , let EW = {(u, v) ∈
E | u, v ∈ W}. Spinrad et al. showed the following lemma.

Lemma 2. [20] Let E′ be a minimal C4-destroying set of G. If (u, w) is in E′
X

(respectively, E′
Y), then for all v in X (respectively, Y) such that u < v < w,

the edges (u, v) and (v, w) are also in E′
X (respectively, E′

Y).

By Lemma 2 we have the following lemma.

Lemma 3. Let B = (X ′, Y ′) be a biclique in bipartite permutation graph G,
then either X ′ or Y ′ must form a clique in any minimal C4-destroying set of G.

Intuitively, Lemma 3 tells us that we need to find all the possible maximal
bicliques of G for C4-destroying. In the following, we will see that a generating
base of G is enough. Now consider that G = (X, Y, E) is a bipartite permutation
graph with a generating base {B1, . . . , Br}. Assume that Bi = (Xi, Yi) for all
i ∈ {1, . . . , r} and Gi = B1 ⊕ · · · ⊕ Bi. Let Tri(Gi−1) be any triangulation of
Gi−1. With respect to Tri(Gi−1), we define six operations for triangulating Gi

as follows:

1. OU1
i : in the case that Yi−1 is a clique in Tri(Gi−1), vertices in Xi form a

clique;
2. OU2

i : in the case that Xi−1 is a clique in Tri(Gi−1), vertices in Xj ∪Xi form
a clique where j is the smallest index such that Yj ∩ Yi �= ∅;

3. OU3
i : in the case that Xi−1 is a clique in Tri(Gi−1), vertices in Xi and

Yi−1 ∩ Yi form respective cliques;
4. OD1

i : in the case that Xi−1 is a clique in Tri(Gi−1), vertices in Yi form a
clique;

5. OD2
i : in the case that Yi−1 is a clique in Tri(Gi−1), vertices in Yj ∪ Yi form

a clique where j is the smallest index such that Xj ∩ Xi �= ∅;
6. OD3

i : in the case that Yi−1 is a clique in Tri(Gi−1), vertices in Yi and
Xi−1 ∩ Xi form respective cliques.

If Gi is triangulated by Tri(Gi−1) with operation OZj
i , we call it Type Zj

i of
triangulation where Z ∈ {U, D} and j ∈ {1, 2, 3}. Let Bi∪j

i∩j (respectively, Bi∩j
i∪j)

be the bipartite graph B = (Xi∪Xj , Yi∩Yj) (respectively, B = (Xi∩Xj , Yi∪Yj)).
Furthermore, in the case of Yi∩Yj �= ∅ (respectively, Xi∩Xj �= ∅), B is a biclique.

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 249

Lemma 4. Let Tri(Gi−1) be an optimal triangulation of Gi−1. Then, there is
an optimal triangulation of Gi using Tri(Gi−1) with one of the six operations.

Proof. By the definition of concatenation operator, the maximal bicliques oc-
curred in Gi but not in Gi−1 are Bi, G(X(Bp∩i), Y (Bp∪i)) for all p with Xp∩Xi �=
∅, and G(X(Bq∪i), Y (Bq∩i)) for all q with Yq ∩ Yi �= ∅. For each maximal bi-
clique in a triangulation, at least one partite must become a clique by Lemma 3.
Assume that in Tri(Gi−1), Yi−1 forms a clique. Thus we only need to consider
the new bicliques occurred after adding Bi. We now show that U1

i is a mini-
mal triangulation of Gi. Since Yq ∩ Yi ⊆ Yi−1, all the bicliques with the form
G(X(Bq∪i), Y (Bq∩i)) are triangulated by the assumption. It is not hard to see
that the new maximal biclique Bi is triangulated by the definition, i.e., Xi forms
a clique. Similarly, all the bicliques with the form G(X(Bp∪i), Y (Bp∩i)) are tri-
angulated since Xp∩Xi ⊆ Xi. Hence type U1

i is a triangulation of Gi. The other
operations can be showed by a similar way. This completes the proof. 	

By the definition, we have the following theorem.

Theorem 3. For i ∈ {1, . . . , r}, we have the following statements.

1. U1
i = min{D1

i−1 + OU1
i , D2

i−1 + OU1
i , D3

i−1 + OU1
i };

2. U2
i = min{U1

i−1 + OU2
i , U2

i−1 + OU2
i , U3

i−1 + OU2
i };

3. U3
i = min{U1

i−1 + OU3
i , U2

i−1 + OU3
i , U3

i−1 + OU3
i };

4. D1
i = min{U1

i−1 + OD1
i , U2

i−1 + OD1
i , U3

i−1 + OD1
i };

5. D2
i = min{D1

i−1 + OD2
i , D2

i−1 + OD2
i , D3

i−1 + OD2
i };

6. D3
i = min{D1

i−1 + OD3
i , D2

i−1 + OD3
i , D3

i−1 + OD3
i }.

Let mintri(Gi) be the optimal triangulation of Gi. We have the following
theorem.

Theorem 4. mintri(Gi) = min{U1
i , U2

i , U3
i , D1

i , D
2
i , D

3
i }.

It is not hard to see that U1
1 = U2

1 = U3
1 and D1

1 = D2
1 = D3

1. The following is
our algorithm for the treewidth problem on bipartite permutation graphs using
dynamic programming approach.

Algorithm. Triangulating;
Input: G=B1 ⊕1 · · · ⊕r−1 Br where r > 1, Bi = Kpi

qi
and ⊕i =⊕ki

li
for all i;

Output: Opt(G) −− the treewidth of G;

1. initialize U1
1 , U2

1 , U3
1 , D1

1, D
2
1 , D

3
1;

2. for i = 2 to r do begin
3. compute U1

i , U2
i , U3

i , D1
i , D

2
i , D3

i ;
4. end;
5. Opt(G) = min{U1

r , U2
r , U3

r , D1
r , D

2
r , D

3
r}

For each Bi = (Xi, Yi), let |Xi| = pi and |Yi| = qi. Note that for each ⊕ki

li
,

li = |Yi ∩ Yi+1| and ki = |Xi ∩Xi+1|. The detailed variables and formula for our
algorithm are as follows.

250 S.-L. Peng and Y.-C. Yang

1. U1
1 = U2

1 = U3
1 = p1;

2. D1
1 = D2

1 = D3
1 = q1;

3. U1
i = min{max{D1

i−1, pi + li−1 − 1, qi−1 + ki−1 − 1},
max{D2

i−1, pi + li−1 − 1, qi−1 + ki−1 − 1},
max{D3

i−1, pi + li−1 − 1, qi−1 + ki−1 − 1}};
4. U2

i = min{max{U1
i−1, pi + Σi−1

t=j (pt − kt) − 1} ,
max{U2

i−1, pi + Σi−1
t=j (pt − kt) − 1} ,

max{U3
i−1, pi + Σi−1

t=j (pt − kt) − 1}};
5. U3

i = min{max{U1
i−1, pi + li−1 − 1, pi−1 + li−1 − 1},

max{U2
i−1, pi + li−1 − 1, pi−1 + li−1 − 1},

max{U3
i−1, pi + li−1 − 1, pi−1 + li−1 − 1}};

6. D1
i = min{max{U1

i−1, qi + ki−1 − 1, pi−1 + li−1 − 1},
max{U2

i−1, qi + ki−1 − 1, pi−1 + li−1 − 1},
max{U3

i−1, qi + ki−1 − 1, pi−1 + li−1 − 1}};
7. D2

i = min{max{D1
i−1, qi + Σi−1

t=j (qt − lt) − 1},
max{D2

i−1, qi + Σi−1
t=j (qt − lt) − 1},

max{D3
i−1, qi + Σi−1

t=j (qt − lt) − 1}};
8. D3

i = min{max{D1
i−1, qi + ki−1 − 1, qi−1 + ki−1 − 1},

max{D2
i−1, qi + ki−1 − 1, qi−1 + ki−1 − 1},

max{D3
i−1, qi + ki−1 − 1, qi−1 + ki−1 − 1}};

The time complexity of the algorithm depends on the computation of U2
i and

D2
i . In the case of U2

i , pi + Σi−1
t=j (qt − kt) = |Xj ∪Xj+1 ∪ · · · ∪Xi|. Since vertices

are ordered, the value can be computed by finding the smallest vertex va in Xj

and the largest vertex vb in Xi. Then pi +Σi−1
t=j (qt−kt) = b−a+1. That is, this

computation can be done in constant time. Similarly, D2
i can also be computed

in constant time. Thus, we have the following theorem.

Theorem 5. Algorithm Triangulating runs in linear time.

3 Biconvex Bipartite Graphs

3.1 Biclique Structure

Let G = (X, Y, E) be a biconvex bipartite graph with X = {x1, . . . , xp}, Y =
{y1, . . . , yq}, and X ∪ Y admitting a biconvex ordering. For any two vertices
u, v ∈ X (or u, v ∈ Y), we denote u < v if u is in the left side of v. Likewise,
we say u > v if u is right to v. For convenience, we denote u ≤ v if u < v or
u = v, and u ≥ v if u > v or u = v. Vertices in X ∪ Y admit straight ordering
(S-ordering for short) if xa < xb and yc < yd, edges (xa, yd) and (xb, yc) imply at
least (xa, yc) or (xb, yd) is an edge. Abbas and Stewart showed that any biconvex
bipartite graph has a biconvex S-ordering [1]. Furthermore, they mentioned that
it can be computed in linear time using the results in [17]. In the following, we
assume that a biconvex S-ordering is given for G.

In [1], Abbas and Stweart defined yl, yr, GP , GL, and GR as follows. Let yl

be the vertex with smallest index in N(x1) and yr be the vertex with largest

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 251

index in N(xp). We may assume y1 ≤ yl ≤ yr ≤ yq in a biconvex ordering of
G. Let GP = (XP , YP , EXP ∪YP) where XP = X and YP = {y | yl ≤ y ≤ yr}.
Let GL = (XL, YL, EXL∪YL) where XL = {x | x ∈ N(yi) for 1 ≤ i < l} and
YL = {y | y1 ≤ y < yl}. Similarly, GR = (XR, YR, EXR∪YR) where XR = {x |
x ∈ N(yi) for r < i ≤ q} and YR = {y | yr < y ≤ yq}. For example, please
see Figure 3. Abbas and Stweart showed the following lemmas [1] (implied by
Theorems 10 and 11 of their paper).

x1 xp

y1

XP

XL

XR

y l y r yq

YL YP YR

Fig. 3. GP , GL, and GR

Lemma 5 ([1]). Suppose that G = (X, Y, E) is a connected biconvex bipartite
graph. Then, there exists a biconvex S-ordering of X ∪ Y such that

1. GP is a connected bipartite permutation graph.
2. N(yi) ⊆ N(yj), where y1 ≤ yi < yj ≤ yl or yr ≤ yj < yi ≤ yq for all i, j.

By the definition of chain graphs, we have the following lemma.

Lemma 6. Both GL and GR are chain graphs.

By Lemma 5, for a biconvex bipartite graph G with a biconvex S-ordering, there
exists a bipartite permutation graph GP such that G can be decomposed into
GL, GP , and GR. By Lemma 6, GL and GR are both chain graphs. That is,
GL, GP , and GR are all bipartite permutation graphs. Now we assume that
GP = B1 ⊕ · · · ⊕ Bp and Bi = (Xi, Yi) is a biclique for i ∈ {1, . . . , p}.
Lemma 7. GL ∩ GP ⊆ G(X1) and GP ∩ GR ⊆ G(Xp).

Proof. The proof follows the property of biconvex S-ordering. 	

By Lemma 7, we define the operator ⊗ concatenating GL (respectively, GR) and
B1 (respectively, Bp) as follows. Let G+

L = GL ⊗ B1 by identifying vertices in
XL with vertices in X1 such that XL(⊂ X1) forms consecutive vertices in X1

and YL ∩ Y1 = φ. For example, Figure 4 shows the biconvex bipartite graph
G+

L = GL ⊗ B1.

252 S.-L. Peng and Y.-C. Yang

=

GL
+GL B1

Fig. 4. G+
L = GL ⊗ B1

We define G+
R = GR ⊗Bp in a similar way. Note that the strong ordering in a

bipartite permutation graph is symmetric, i.e., the reverse of a strong ordering
is still a strong ordering. Thus G+

R will be treated as G+
L if no confusion. By the

definition of chain graphs, we have the following lemma.

Lemma 8. Both G+
L and G+

R are chain graphs.

Assume that GL = B′
1⊕· · ·⊕B′

l and GR = B′′
1 ⊕ . . . B′′

r . Then we reindex all the
bicliques in generating bases of GL, GP , and GR such that GL = B1⊕· · ·⊕Bl},
GP = Bl+1 ⊕ · · · ⊕ Bl+p}, and GR = Bl+p+1 ⊕ · · · ⊕ Bl+p+r. Likewise, for each
Bi, 1 ≤ i ≤ l + p + r, let Bi = (Xi, Yi).

By Lemma 7, G can be represented as the following:

G = GL ⊗ GP ⊗ GR

= B1 ⊕ · · · ⊕ Bl ⊗ Bl+1 ⊕ · · · ⊕ Bl+p ⊗ Bl+p+1 ⊕ · · · ⊕ Bl+p+r

Finally, we have the following theorem.

Theorem 6. G is a biconvex bipartite graph if and only if G can be represented
by B1 ⊕ · · · ⊕Bl ⊗Bl+1 ⊕ · · · ⊕Bl+p ⊗Bl+p+1 ⊕ · · · ⊕Bl+p+r with B1 ⊕ · · · ⊕Bl

and Bl+p+1 ⊕ · · · ⊕ Bl+p+r satisfying the property of chain graphs.

We show an example in Figure 5 that G = B1 ⊕2
0 B2 ⊗ B3 ⊕2

2 B4 ⊗ B5. For
convenience, bicliques {B1, . . . , Bl+p+r} is also called a generating base of G.

3.2 Treewidth and Pathwidth

A tree decomposition of a graph G = (V, E) is a tree T = (I, F) with Ci ⊆ V for
all i ∈ I such that

–
⋃

i∈I Ci = V,
– for all edges (u, v) ∈ E, there exists a tree node i ∈ I such that u ∈ Ci and

v ∈ Ci, and
– for three tree nodes i, j, k ∈ I, if j is on the path from i to k in T , then

Ci ∩ Ck ⊆ Cj .

The width of a tree decomposition is maxi∈I |Ci|−1. The treewidth of G, denoted
by tw(G), is the smallest width over all possible tree decompositions. In the case

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 253

B1 B2

G =

B3 B4 B5

2

20

2

u v w

u uv vw ww w wv v v

Fig. 5. A generating base of biconvex bipartite graph G

that T = (I, F) is a path, then we call it a path decomposition of G. Similarly,
the pathwidth of G is defined in a similar way.

Let G = B1 ⊕ · · · ⊕ Bl ⊗ Bl+1 ⊕ · · · ⊕ Bl+p ⊗ Bl+p+1 ⊕ · · · ⊕ Bl+p+r. Due
to the space limitation, we sketch our algorithm as follows. First, using the
generating base B1, . . . , Bl+1, we compute Ul+1 = min{U1

l+1, U
2
l+1, U

3
l+1} and

Dl+1 = min{D1
l+1, D

2
l+1, D

3
l+1} using Algorithm Triangulating. Second, by us-

ing Ul+1 and Dl+1 as initial values, we compute Ul+i = min{U1
l+i, U

2
l+i, U

3
l+i}

and Dl+i = min{D1
l+i, D

2
l+i, D

3
l+i} using the same algorithm for i from 2 to p.

Finally, by letting Ul+p and Dl+p be the initial values, the treewidth of G can be
computed from Bl+p+1 to Bl+p+r using the same algorithm. It is not hard to see
that the correctness thanks to Lemma 3. Thus, we have the following theorem.

Theorem 7. The treewidth of a biconvex bipartite graph can be computed in
linear time.

It is not hard to see that a tree decomposition of a biconvex bipartite graph can
also be constructed by a back tracking after its treewidth is computed. Since
the triangulation of a bipartite permutation graph is an interval graph, the
tree decomposition of a biconvex bipartite graph looks like the tree depicted in
Figure 6.

For simplicity, in a tree decomposition of G, we use A, B, C, D, F to denote
the subpaths and L, R to denote the two nodes depicted in Figure 6, respectively.
In general, A, B, C, D, F, L, and R are partial path decompositions of the
tree decomposition. Let A ∩ B denote the vertex set consisting of vertices of
G in A and B. Then ABLC (respectively, ALBC) is the path decomposition
obtained by adding each node of B with A∩L (respectively, L∩C). We use ABC
to denote the path decomposition with minimum width of ABLC and ALBC.
The role of R is similar. For example, Figure 7 shows the path decomposition of
BACFD by assuming that BALC is better than BLAC and CFRD is better
than CRFD.

254 S.-L. Peng and Y.-C. Yang

A

B

C

D

F

L R

Fig. 6. A general tree decomposition of a biconvex bipartite graph

L R

B C D

+
B L

+
C R

A F

Fig. 7. The path decomposition of BACFD

Thus we can use a permutation of A, B, C, D, and F to represent a path
decomposition of G. By the symmetry property, we only need to compute 5!

2 = 60
permutations. Due to the limitation of space, we omit the detail. Finally, we have
the following theorem.

Theorem 8. The pathwidth of a biconvex bipartite graph can be computed in
linear time.

References

1. N. Abbas and L. K. Stewart, Biconvex graphs: ordering and algorithms, Discrete
Applied Mathematics 103 (2000) 1–19.

2. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings
in a k-tree, SIAM Journal of Algebraic and Discrete Methods 8 (1987) 277–284.

3. H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11 (1993)
1–23.

4. H. L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the path-
width and treewidth of graphs, Journal of Algorithms 21 (1996) 358–402.

5. H. L. Bodlaender, T. Kloks, and D. Kratsch, Treewidth and pathwidht of permu-
tation graphs, SIAM Journal on Discrete Mathematics 8 (1995) 606–616.

6. H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Müller, Treewidth and mini-
mum fill-in on d-trapezoid graphs, Journal of Graph Algorithms and Applications
2 (1998) 1–23.

7. H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs,
SIAM Journal on Discrete Mathematics 6 (1993) 181–188.

8. H. L. Bodlaender and D. M. Thilikos, Treewidth and small separators for graphs
with small chordality, Technical Report UU-CS-1995-02, Department of Computer
Science, Utrecht University, Utrecht, 1995.

On the Treewidth and Pathwidth of Biconvex Bipartite Graphs 255

9. H. Broersma, E. Dahlhaus, and T. Kloks, A linear time algorithm for minimum
fill in and treewidth for distance hereditary graphs, Scientific program 5th Twente
Workshop on Graphs and Combinatorial Optimization, 48–50, 1997.

10. J. Gustedt, On the pathwidth of chordal graphs, Discrete Applied Mathematics 45
(1993) 233–248.

11. M.Habib and R.H. Möhring, Treewidth of cocomparability graphs and a new order-
theoretical parameter, Order 11 (1994) 47–60.

12. T. Kloks, Treewidth of circle graphs, ISAAC 1993, LNCS 762, 108–117, 1993.
13. T. Kloks, Treewidth–computations and approximations, Lecture Notes in Com-

puter Science 842, Springer-Verlag, Berlin, 1994.
14. T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch, Computing treewidth amd

minimum fill-in: all you need are the minimal separators, ESA 1993, LNCS 726,
260–271, 1993. Erratum: ESA 1994, LNCS 855, 508–508, 1994.

15. T. Kloks and D. Kratsch, Treewidth of chordal bipartite graphs, Journal of Algo-
rithms 19 (1995) 266–281.

16. T. Kloks, K. Kratsch, and H. Müller, Dominoes, WG 1994, LNCS 903, 106–120,
1995.

17. W. Lipski and Jr., F.P. Preparata, Efficient Algorithms for finding maximum
matchings in convex bipartite graphs and related problems, Acta Informatica 15
(1981) 329–346.

18. D. Meister, Computing treewidth and minimum fill-in for permutation graphs in
linear time, WG 2005, LNCS 3787, 91–102, 2005.

19. B. Monien and I.H. Sudborough, Min cut in NP-complete for edge weighted trees,
Theoretical Computer Science 58 (1988) 209–229.

20. J. Spinrad, A. Brandstadt, and L. Stewart, Bipartite permutation graphs, Discrete
Applied Mathematics 18 (1987) 279-292.

21. R. Sundaram, K. S. Singh, and C. P. Rangan, Treewidth of circular arc graphs,
SIAM Journal on Discrete Mathematics 7 (1994) 647–655.

22. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal
on Algebraic Discrete Methods 2 (1981) 77–79.

On Exact Complexity of Subgraph

Homeomorphism

Andrzej Lingas and Martin Wahlen

Department of Computer Science, Lund University, 221 00 Lund, Sweden
{Andrzej.Lingas, Martin.Wahlen}@cs.lth.se

Abstract. The subgraph homeomorphism problem is to decide whether
there is an injective mapping of the vertices of a pattern graph into
vertices of a host graph so that the edges of the pattern graph can be
mapped into (internally) vertex-disjoint paths in the host graph. The
restriction of subgraph homeomorphism where an injective mapping of
the vertices of the pattern graph into vertices of the host graph is already
given is termed fixed-vertex subgraph homeomorphism.

We show that fixed-vertex subgraph homeomorphism for a pattern
graph on p vertices and a host graph on n vertices can be solved in time
O(2n−pnO(1)) or in time O(3n−pn6) and polynomial space. In effect,
we obtain new non-trivial upper time-bounds on the exact complexity
of the problem of finding k vertex-disjoint paths and general subgraph
homeomorphism.

1 Introduction

Regarded as an injective mapping, the subgraph isomorphism of a pattern graph
P into a host graph H consists of a mapping of vertices of P into vertices of
H so that edges of P map to corresponding edges of G. Generalizations of this
mapping include subgraph homeomorphism, also termed as topological embedding
or topological containment, where vertices of P map to vertices of H and edges
of P map to (internally) vertex-disjoint paths in H , and minor containment,
where vertices of P map to disjoint connected subgraphs of H and edges of P
map to edges of H.

All these problems are inherently NP-complete when the pattern graph P
and the guest graph G are not fixed [7]. For fixed P, all are solvable in polyno-
mial time, which in case of subgraph homeomorphism and minor containment
is highly non-trivial to show [13]. They remain to be NP-complete for several
special graph classes, e.g., for graphs of bounded treewidth [8,12]. Restricting
the pattern graph P to complete graphs or simple cycles or paths does not
help in the case of subgraph isomorphism. The maximum clique, Hamiltonian
cycle and Hamiltonian path problems are well known as basic NP-complete
problems [7].

There is an extensive literature on the exact complexity of the maximum
clique problem (or, equivalently the maximum independent set problem) and
the Hamiltonian cycle or path problem. At present, the best known upper-time

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 256–261, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Exact Complexity of Subgraph Homeomorphism 257

bounds are respectively O(20.288nnO(1)) [6] and O(2nnO(1)) [9], where n is the
number of vertices of the host graph (see also [2,11] for the recent upper time-
bounds for the related problem of graph coloring). For the general subgraph iso-
morphism problem the known upper bound is of the form O(n�p/3�ω+(p mod 3))
where p is the number of vertices of the pattern graph and ω is the exponent of
the fastest matrix multiplication algorithm (cf. [4])1.

For general subgraph homeomorphism and general minor containment, the
authors are not familiar with any non-trivial upper time-bounds on the exact
complexity of these problems. For example, Downey et al. mention on page 149
in [5], that subgraph homeomorphism (termed as topological containment) can
be solved in time O(nO(m)) where n is the number of vertices and m is the
number of edges of the host graph. Note that if the host graph is dense then
m = Ω(n2).

A natural simplification of subgraph homeomorphism is fixed-vertex subgraph
homeomorphism: Given a 1− 1 map f from the vertices of the pattern graph to
those of the host graph H, decide whether or not H contains a homeomorphic
image of P in which each vertex of P is identified with its image under f.

Note that fixed-vertex subgraph homeomorphism includes as a sub-problem
the important k-path problem: Given a graph G and k disjoint pairs (si, ti) of its
vertices, decide whether or not G contains k vertex-disjoint paths, one connecting
each pair (si, ti).

Similarly fixed-vertex subgraph homeomorphism and k-path problems are
solvable for fixed pattern graph or fixed k respectively in polynomial time [13]
and no non-trivial upper time-bounds on their exact complexity seem to be
known in the literature.

We show that fixed-vertex subgraph homeomorphism for a pattern graph on p
vertices and a host graph on n vertices can be solved in time O(2n−pnO(1)) or in
time O(3n−pn6) and polynomial space. Consequently, the k-path problem can be
solved within the same asymptotic bounds. Furthermore, it follows that subgraph
homeomorphism can be solved for a symmetric (i.e., with p! automorphisms)
pattern graph in time O(

(
n
p

)
2n−pnO(1)) or in time O(

(
n
p

)
3n−pn6) and polynomial

space. I follows also that in the general case subgraph homeomorphism is solvable
in time O(

(
n
p

)
p!2n−pnO(1)) or in time O(

(
n
p

)
p!3n−pn6) and polynomial space.

Our solution method for fixed-subgraph isomorphism is based on the use of
the principle of exclusion-inclusion to count the number of feasible solutions.
This method was originally used by Karp in [10] (rediscovered in [1]) in order to
count the number of Hamiltonian cycles using the concept of walks avoiding a
subset of the vertex set. We rely on and introduce a generalization of the latter
concept to include sets of avoiding walks. We also use the very recent result on
fast subset convolution by Björklund et al. [3] to reduce the term 3n−p to 2n−p

in our upper time-bounds.
In the next section, we introduce the concepts of subset avoiding walks

and subset avoiding sets of walks. In Section 3, we present our algorithm for

1 This upper bound can be marginally improved by using the rectangular matrix
multiplication instead of the square one.

258 A. Lingas and M. Wahlen

fixed-vertex subgraph homeomorphism. In the the following section, we refine
the algorithm by a reduction to the subset convolution problem. In Section 5,
we derive the upper time-bound for general subgraph homeomorphism.

2 Walks and Sets of Walks

Let G = (V, E) be an undirected graph on n vertices. For a subset S ⊆ V,
m ∈ {1, ..., n − 1}, 1 ≤ i, j ≤ n, let WALKm

i,j(S) be the set of all walks that
start in vertex i, end in vertex j, avoid all vertices in S and have total length m.

For a given subset S ⊆ V and m > 1, we can compute the cardinalities
|WALKm

i,j(S)| from the cardinalities |WALKm−1
i′,j′ (S)| using all the edges of G

with both endpoints outside S in time O(n3) and space O(n2). Hence, we have
the following lemma.

Lemma 1. For a given subset S ⊆ V, all m ∈ {1, ..., n− 1} and all i, j ∈ V, we
can compute the cardinalities |WALKm

i,j(S)| in time O(n4) and space O(n2).

For a subset U of V ×V, m = n−k+ |U | where k is the set of different vertices in
the pairs in U, and a subset S ⊆ V, we define SETWALKm

U (S) as the following
family of sets of walks

{
⋃

u∈U

{WALKmu
u (S)}|∀u∈Umu ∈ {1, ..., n− 1}&

∑

u∈U

mu = m}.

Given the cardinalities |WALKmu
u (S)| for u ∈ U and mu ∈ {1, ..., n− 1}, we

can compute the cardinality |SETWALKm
U (S)| by a straightforward dynamic

programming in time O((n + |U |)2|U |) and space O((n + |U |)|U |). Hence, by
Lemma 2, we obtain the following lemma.

Lemma 2. For a subset U of V × V, m = n − k + |U | where k is the set of
different vertices in the pairs in U, and a subset S ⊆ V, we can compute the
cardinality |SETWALKm

U (S)| in time O(n6) and space O(n4).

3 An Exact Algorithm for Fixed-Vertex Homeomorphism

To solve the fixed-vertex homeomorphism problem for a pattern graph P on p
vertices and a host graph H = (V, E) on n vertices, let us consider all possible
choices of the set I of l internal vertices on the paths interconnecting the p
vertices in H in one-to-one correspondence with the edges of P (

(
n−p

l

)
ways).

For the given p vertices with their assignments to the vertices of P, and the
subset I, define the graph G = (VG, EG) as the subgraph of H induced by the
union of the p vertices with I. Note that |VG| = l + p. Let U be the set of pairs
of the p vertices in one-to-one correspondence with the edges of the pattern
graph P.

For ml = |VG|− p+ |U |, i.e., ml = l + |U |, consider the family of sets of walks
SETWALKml

U (S) for G according to the definition from the previous section.
The next lemma follows from the inclusion exclusion principle.

On Exact Complexity of Subgraph Homeomorphism 259

Lemma 3. The number of sets of |U | (internally) vertex-disjoint paths intercon-
necting the p vertices in G in one-to-one correspondence with the edges of P and
covering all vertices in G is |SETWALKml

U (∅)|− |⋃i∈I SETWALKml

U ({i})| =
∑

S⊆I(−1)|S| × |SETWALKml

U (S)|.
By combing Lemma 2, 3, we can compute the number of sets of (internally)
vertex-disjoint paths interconnecting the p vertices in H in one-to-one corre-
spondence with the edges of P and covering all vertices in G in time O(2ln6)
and space O(n4).

Hence, we can solve the fixed subgraph homeomorphism problem for P and
H in time O(

∑n−p
l

(
n−p

l

)
2ln6), i.e., in time O(3n−pn6), and space O(n4).

Theorem 1. The fixed-vertex homeomorphism problem for a pattern graph on
p vertices and a host graph on n vertices can be solved in time O(3n−pn6) and
space O(n4).

Corollary 1. The k-path problem in a graph graph on n vertices is solvable in
time O(3n−2kn6), and space O(n4).

4 A Faster Algorithm for Fixed-Vertex Homeomorphism

By using the recent upper time-bound on the subset convolution by Björklund
et al. [3], we can obtain a substantially better upper time-bound for fixed-vertex
homeomorphism than that of Theorem 1.

In order to reduce the fixed subgraph homeomorphism problem to a collection
of subset convolution problems let us observe that the value of SETWALKml

U (S)
is really only a function of I \ S (more precisely, of the subgraph of H induced
by I \ S and the p fixed vertices) and l, since ml = l + |U |, U is fixed and
the avoided vertices from S in G do not affect it. Therefore, we may denote
SETWALKml

U (S) by gl(I \S). Next, let f(S) denote (−1)|S|, and let V ′ denote
the set of all vertices in V different from the p fixed vertices. By Lemma 2, we
may assume that the values of f(S) and gl(S′) are precomputed for all possible
values of l, and all possible subsets S, S′ of V ′ in time O(2nn7). It follows by
Lemma 3 that it remains to compute for each I ⊆ V ′, the sum

∑

S⊆I

f(S)g|I|(I \ S)

Thus, in particular, if we compute for l = 0, ..., n − p, the subset convolution
{hl(I)|I ⊆ V ′}, given by

hl(I) =
∑

S⊆I

f(S)gl(I \ S)

then we are done. By the recent result from [3], the subset convolution
{hl(I)|I ⊆ V ′} can be computed by using O(2|V | logO(1) |V | log M) additions
and multiplications in the integer sum-product ring, where M is an upper bound

260 A. Lingas and M. Wahlen

on the absolute values of f(S) and gl(I \ S). Hence, since |V ′| = n − p and
|SETWALKml

U (S)| ≤ 2nO(1)
, we obtain the following improved upper time-

bound.

Theorem 2. The fixed-vertex homeomorphism problem for a pattern graph on
p vertices and a host graph on n vertices can be solved in time O(2n−pnO(1)).

Corollary 2. The k-path problem in a graph graph on n vertices is solvable in
time O(2n−2knO(1)).

5 Exact Algorithms for Subgraph Homeomorphism

To reduce the subgraph homeomorphism problem for a pattern graph P on p
vertices and a host graph H on n vertices, let us consider all possible choices
of p vertices in H (

(
n
p

)
ways) and all possible one-to-one assignments of these

p vertices to the vertices of P (p! ways). Note that if the pattern graph is
symmetric, i.e., it has p! automorphisms, then we can skip the assignments.
Hence, we obtain the following theorem by Theorems 1, 2.

Theorem 3. The subgraph homeomorphism for a pattern graph on p vertices
and a host graph on n vertices is solvable for a symmetric pattern graph in time
O(

(
n
p

)
2n−pnO(1)) or in time O(

(
n
p

)
3n−pn6) and space O(n4). In general, this

problem is solvable in time O(
(

n
p

)
p!2n−pnO(1)) or in time O(

(
n
p

)
p!3n−pn6) and

space O(n4).

6 Final Remarks

Our upper time-bounds for fixed subgraph homeomorphism, and consequently,
for subgraph homeomorphism, hold for the decision versions of these problems.
To obtain the corresponding embedding in the host graph it is sufficient in the
case of fixed subgraph homeomorphism to prune the host graph to a minimal
subgraph satisfying the fixed subgraph homeomorphism test. The pruning can
be done by repeatedly removing edges and isolated vertices and thus it adds only
a multiplicative polynomial factor to the aforementioned upper time-bounds.

It is an interesting question whether or not one could use the inclusion-
exclusion principle to derive similar upper time-bounds for the minor
containment problem. The underlying interconnection structure in case of minor
containment is a set of trees while in case of subgraph homeomorphism just a
set of simple paths. This difference can make harder counting solutions to the
minor containment problem.

Acknowledgments

The authors are grateful to Fedor Fomin for inspiration, and to Andreas
Björklund and Thore Husfeldt for informing about their recent results.

On Exact Complexity of Subgraph Homeomorphism 261

References

1. E.T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path problem.
Information Processing Letters 47(4), pp. 203-207, 1993.

2. A. Björklund and T. Husfeldt. Inclusion-exclusion algorithms for set partitions.
Proc. 47th IEEE Symposium on Foundations of Computer Science, Berkeley 2006,
pp. 575-582.

3. A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto. Fourier meets Möbius: Fast
Subset Convolution. arXiv, 2006, to appear in proc. STOC’07.

4. A. Czumaj and A. Lingas. Finding a heaviest triangle is not harder than matrix
multiplication. Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’07), 2007.

5. R.G. Downey and M.R. Fellows. Parametrized Complexity. Springer, 1999, New
York.

6. F.V. Fomin, F. Grandoni and D. Kratch. Measure and conquer: A Simple 20.228n

Independent Set Algorithm. Proceedings SODA 2006.
7. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the

Theory of NP-completeness. W.H. Freeman and Company, New York 2003.
8. A. Gupta and N. Nishimura. The complexity of subgraph isomorphism for classes

of partial k-trees. Theoretical Computer Science, 164, pp. 287-298, 1996.
9. M. Held and R. Karp. A dynamic programming approach to sequencing problems.

Journal of SIAM 10, pp. 196-210.
10. R.M. Karp. Dynamic programming meets the principle of inclusion and exclusion.

Operations Research Letters 1(2), pp. 49-51, 1982.
11. M. Koivisto. An O∗(2n) algorithm for graph coloring and other partitioning prob-

lems via inclusion exclusion. Proc. 47th IEEE Symposium on Foundations of Com-
puter Science, Berkeley 2006, pp. 582-590.

12. J. Matoušek and R. Thomas. On the complexity of finding iso- and other mor-
phisms for partial k-trees. Discrete Mathematics, 108, pp. 343-364, 1992.

13. N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Combinatorial Theory, Ser. B., Vol. 63 (1995) pp. 65-110.

Searching a Polygonal Region by Two Guards

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. We study the problem of searching for a mobile intruder in
a polygonal region P by two guards. The objective is to decide whether
there exists a search schedule for two guards to detect the intruder, no
matter how fast he moves, and if so, generate a search schedule. Dur-
ing the search, two guards are required to walk on the boundary of P
continuously and be mutually visible all the time. We present a charac-
terization of the class of polygons searchable by two guards, and give an
optimal O(n) time algorithm for determining the two-guard searchability
of a polygon and an algorithm for generating a search schedule in time
linear in its size.

1 Introduction

Motivated by the relations to the well-known Art Gallery and Watchman Route
problems, much attention has been devoted to the problem of searching for a
mobile intruder in a polygonal region P of n vertices by a searcher [2, 5, 6, 7,
8, 9, 10, 11]. Both the searcher and the intruder are modeled by points that
can continuously move in P , and the intruder is assumed to be able to move
arbitrarily faster than the searcher. The intruder is said to be detected if he is
ever within the range of the searcher’s vision. The polygon is said to be searchable
if there is a schedule for the given searcher to detect the intruder.

The visibility of a searcher is usually defined by the flashlights he holds. The
k-searcher has k flashlights and can see only along the rays of the flashlights
emanating from his position. The endpoint of a ray may not be continuous on
the polygon boundary, but the 1-searcher should always move on the polygon
boundary continuously [5]. If the endpoint of the ray of the 1-searcher is also
required to move on the polygon boundary continuously, it introduces a slightly
different type of 1-searchers, which is termed as two guards [3, 4].

A simple polygon with an entrance and an exit is called the corridor. Icking
and Klein were the first to study the corridor search problem, in which two
guards start at the entrance and force the intruder out of the region through
the exit [4]. They gave O(n log n) time algorithm for determining whether a
corridor is walkable or searchable by two guards. A linear time algorithm was
later developed in [3].

Recently, Park et al. considered the problem of searching for an intruder by
two guards inside a room, which is a polygonal region P with a point door d
on the boundary of P [7]. In a search schedule, the intruder is kept untouched
to d. They gave a characterization of the rooms searchable by two guards, and

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 262–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Searching a Polygonal Region by Two Guards 263

sketched an O(n log n) time algorithm for the decision problem [7]. Whether
the requirement of the given door can further be dropped stands open by now
[7]. The main difficulty arises from the fact that the starting point (on the
polygon boundary) of any successful search may be touched by the intruder for
the second or more time. Therefore, the solutions of the room and/or corridor
search problems cannot simply be employed, and it is a challenging work to
characterize the class of polygons searchable by two guards.

In this paper, we present a characterization of the polygons searchable by
two guards in terms of non-redundant components, thus solving a long-standing
problem left open in [7]. Also, we present an optimal O(n) time algorithm for
determining the two-guard searchability of a polygon, and an O(n log n + m)
time for generating a search schedule , if it exists, where m (≤ n2) is the number
of search instructions reported.

Our first three necessary conditions state that any polygon P is not searchable
by two guards if a same type of the component configuration occurs for every
boundary point. Two other necessary conditions are a combination of several
pairs of disjoint components and one type of the component configuration. If
none of these five conditions is true, we can specify two boundary points of P
at which our search schedule starts and ends. This helps design a simple search
schedule, although two endpoints may be recontaminated during the search. A
close study on the structure of non-redundant components further gives critical
visibility events occurred in our search schedule. All of these ideas together
give a reasonably simple chracterization, although the proof consists of a rather
technical case analysis.

2 Preliminary

2.1 Basic Definitions

Let P denote a simple polygon. Two points x, y ∈ P are said to be mutually
visible if the line segment connecting them, denoted by xy, is entirely contained
in P . For two regions Q1, Q2 ⊆ P , we say that Q1 is weakly visible from Q2 if
every point in Q1 is visible from some point in Q2.

Let g1(t) and g2(t) denote the positions of the guards at a time t > 0. A search
schedule of two guards consists of the following motion actions; Two guards move
along segments of single edges such that (i) no intersections occur among all line
segments g1g2 during the movement, or (ii) any two segments g1g2 intersect each
other [4]. A point x ∈ P is said to be detected or illuminated at the time t if x is
contained in the segment g1(t)g2(t). Any region that might contain the intruder
at a time (whose position is unknown to the searcher as he is capable of moving
arbitrarily fast) is said to be contaminated; otherwise it is clear. A point is said
to be recontaminated if it becomes contaminated for the second or more time.
The polygon P is said to be searchable by two guards if there is a search schedule
of two guards that finally clears the polygon P .

For a vertex x of P , let Succ(x) denote the vertex immediately succeeding x
clockwise, and Pred(x) the vertex immediately preceding x clockwise. A vertex

264 X. Tan

of P is reflex if its interior angle is strictly greater than 180◦. The backward ray
shot from a reflex vertex r, denoted by Backw(r), is defined as the first point of
P hit by a “bullet” shot at r in the direction from Succ(r) to r, and the forward
ray shot Forw(r) is the first point hit by the bullet shot at r in the direction
from Pred(r) to r. See Fig. 1.

v
1

v
2

Forw(v) Backw(v)2
1

3v
q

p

q

pBackw(p)

Backw(q)
Forw(q)

Forw(p)

uu

v v

d

Forw(v)
3

(c)(b)(a)

Fig. 1. Illustration of ray shots, components and deadlocks

Let x, y denote two boundary points of P , and P [x, y] (resp. P (x, y)) the closed
(resp. open) clockwise chain of P from x to y. We define the chain P [r, Backw(r)]
(resp. P [Forw(r), r]) as the backward component (resp. forward component) of
the reflex vertex r. The vertex r is referred to as the defining vertex of the
component. See Figs. 1(a)-(b) for some examples. A backward (resp. forward)
component is said to be non-redundant if it does not contain any other backward
(resp. forward) component. See Fig. 1(c) for an example, where three components
of v1, v2 and v3 are non-redundant.

A pair of reflex vertices v1, v2 is said to give a d-deadlock, where d is a boundary
point of P , if both P (v1, Backw(v1)] and P [Forw(v2), v2) do not contain d, and
the points v1, Forw(v2), Backw(v1) and v2 are in clockwise order. See Fig. 1(c)
for an example. The point d may be identical to v1 or v2.

2.2 Two-Guard Searchability of Corridors

Denote by (P, u, v) the corridor with an entrance u and an exit v on the boundary
of P , and by L and R the chains P [u, v] and P [v, u], respectively. Note that u
and v can be two non-crossing, internal segments of P .

Lemma 1. [3, 4] A corridor (P, u, v) is walkable by two guards if and only if
L and R are mutually weakly visible and neither u-deadlocks nor v-deadlocks
occur. It takes Θ(n) time to test the two-guard walkability of a corridor, and an
optimal walk schedule can be reported in time linear in its size.

The so-called counter-walks are also used in our search schedule. A counter-walk
asks if there is a walk on P such that two guards move along L and R, one from
u to v and the other from v to u.

Lemma 2. [3, 4] A corridor (P, u, v) allows a counter-walk if and only if L and
R are mutually weakly visible and there are no two backward components nor

Searching a Polygonal Region by Two Guards 265

two forward components such that they are disjoint, one of them contains u and
the other contains v (Figs. 1(a)-(b)). It takes Θ(n) time to test the counter-
walkability of a corridor, and an optimal walk schedule can be reported in time
linear in its size.

3 Necessary Conditions

A boundary point d is said to have a BB-pair (resp. FF-pair) if there are two
vertices v1, v2 such that two components P [v1, Backw(v1)] and P [v2, Backw(v2)]
(resp. P [Forw(v1), v1] and P [Forw(v2), v2]) are disjoint and both of them do
not contain d. See Fig. 2(b) or 2(c) for an example, where all boundary points of
the polygon have BB-pairs. The point d is said to have a BF-pair if there are two
vertices v1, v2 such that both components P [v1, Backw(v1)] and P [Forw(v2), v2],
or both components P [Forw(v1), v1] and P [v2, Backw(v2)], do not contain d. See
Fig. 2(a) for an example, where all boundary points of the polygon have BF -
pairs. Note that a d-deadlock implies a BF -pair for the point d, and thus two
components giving a BF -pair may not be disjoint.

What is important in clearing P is to avoid a ’circle’ of recontaminations.
A cycle of recontaminations occurs if every boundary point of P has a BF -pair
(resp. a BB-pair or an FF -pair). It may occur in two other situations, which are
a combination of several pairs of disjoint components and a boundary interval
whose points all have BF -pairs.

v

3
v

2 Backw(v)

 3

 Backw(v)
1

 Backw(v)

2

(b)

2

v3

3
)
3

 Backw(v)
2

v

1
v

Backw(v)

p 2

Forw(v)

Backw(v)

(a) (c)

11

v
1

11

1

v'

v'

 1

 2

v

1

2

v1
Backw(v')

1

2
v
2

Forw(v')
1
v

Fig. 2. The polygons satisfying the condition C1 (a), or C2 (b)-(c)

Theorem 1. A simple polygon P is not searchable by two guards if (C1) every
boundary point p has a BF -pair.

Proof. Suppose first that for a boundary point p, there are two vertices v1 and
v2 such that they give a BF -pair for p and the chain P [v1, v2] contains p. See
Fig. 2(a). In order to clear the vertex Pred(v1) or Succ(v2), both guards have
to move to v1 or v2 once. But, at that moment, the area of the clear region is
zero. Thus, any search schedules starting at p are trivial.

Assume now that there are two vertices v′1 and v′2 such that they give a
BF -pair for p, but P [v′1, v

′
2] does not contain the point p. Also, assume that

a region containing p has been cleared at a time t > 0, but both Pred(v′1)
and Succ(v′2) are still contaminated. See Fig. 2(a) for an example, where the

266 X. Tan

shaded region denotes the clear part of P at time t. In order to clear, say,
Pred(v′1), the segment connecting two guards has to move to v′1Pred(v′1) by
a counter-walk. However, since P [Forw(v′1), v′1] and P [v′2, Backw(v′2)] are dis-
joint, such a counter-walk is impossible (Lemma 2). Thus, no search schedules
starting at p exist. Since all boundary points of P have BF -pairs, the proof is
complete. �

Theorem 2. A simple polygon P is not searchable if (C2) every boundary point
p has a BB-pair, or if (C3) every boundary point p has an FF -pair.

Proof. Omitted in this extended abstract. �

(b)

1

(c)

1

g

g

1

2

g
1

g
2

(a)

1a

2

a =a1

a

a3

g
1
g
1

g
2

(d)

a
2

4a

22

3,4,5

a
a =a 1a

a3

g
1

g
2

a
2

4a =a5

3,4,5

a5

Fig. 3. The polygons satisfying the condition C4

Theorem 3. A simple polygon P is not searchable by two guards if (C4) there
are five vertices ai (1 ≤ i ≤ 5) in clockwise order such that the component
P [a1, Backw(a1)] is disjoint from P [a3, Backw(a3)] and P [a4, Backw(a4)], the
component P [a2, Backw(a2)] is disjoint from P [a5, Backw(a5)], and all points of
P [a2, a3]∪P (a4, a5) have BF -pairs, or if (C5) there are five vertices bi (1 ≤ i ≤
5) in clockwise order such that the component P [Forw(b5), b5] is disjoint from
P [Forw(b3), b3] and P [Forw(b2), b2], the component P [Forw(b4), b4] is disjoint
from P [Forw(b1), b1], and all points of P [b3, b4] ∪ P (b1, b2) have BF -pairs.

Proof. Omitted in this extended abstract. �

4 Sufficiency

In this section, we show that the non-existence of C1 to C3 helps find a starting
point, and the non-existence of C4 nor C5 ensures that there is a search schedule
for P that starts at the chosen point and ends at some special point.

Theorem 4. A simple polygon P is searchable by two guards if none of the
conditions C1 to C5 applies.

In the rest of this section, we prove Theorem 4. Note that if a BB-pair and an
FF -pair for a boundary points d occur simultanesouly, a BF -pair for d occurs.
Our search schedule is then designed to deal with the following situations.

Searching a Polygonal Region by Two Guards 267

– Case 1: there is a boundary point d such that none of BF -pairs, BB-pairs
and FF -pairs for d occurs.

– Case 2 (resp. Case 3): there is a boundary point d and two vertices v1, v2

such that no BF -pairs for d occur, but v1 and v2 give the FF -pair (resp.
BB-pair) for d and all points of P [Forw(v1), v1] ∪ P [Forw(v2), v2] (resp.
P [v1, Backw(v1)] ∪ P [v2, Backw(v2)]) have BF -pairs.

Before giving our search schedule, we need more definitions. Let d be a bound-
ary point of P . We can then order all boundary points clockwise, starting and
ending at the point d. For a complete ordering, we consider d as two points d0
and d1 such that d0 ≤ p ≤ d1 holds for all boundary points p of P . For two
boundary points p, p′, we say that p precedes p′ (and p′ succeeds p) if we en-
counter p before p′ when traversing from d0 to d1. We write p < p′ if p precedes
p′. A reflex vertex is said to be critical if its non-redundant backward or forward
component does not contain d.

For a critical vertex r, we will denote by P (rBackw(r)) the region bounded
by P [Backw(r), r] and rBackw(r)), or by P (rForw(r)) the region bounded by
P [r, Forw(r)] and rForw(r). Thus, the point d is contained in P (rBackw(r))
or P (rForw(r)).

4.1 The Search Schedule for Case 1

In this case, there is a boundary point d such that none of BF -pairs, BB-pairs
and FF -pairs for d occurs. We will show that the absence of C4 and C5 is
sufficient for P to be searchable by two guards.

Let r1, . . ., rj (resp. l1, . . ., lm) be the clockwise sequence of critical vertices
which are defined by their non-redundant backward (resp. forward) components
not containing d. Assume that both j and m cannot be zero simultaneously;
otherwise, the whole polygon P is visible from the point d and thus P can simply
be cleared. Note that rj < l1 and either Backw(rj) > l1 or Forw(l1) < rj hold;
otherwise, rj and l1 give the BF -pair for d, a contradiction.

Assume below that j ≥ 1 and Forw(l1) < rj hold (if l1 exists). It follows
from the definition of critical vertices that rj < Backw(r1) < Backw(r2) . . . <
Backw(rj) holds. From the assumption Forw(l1) < rj , we also have Forw(l1) <
Forw(l2) < . . . < Forw(lm) < r1; otherwise, a BF -pair for d occurs. As-
sume also that BF -pairs for rj occur; otherwise, the polygon P or the corridor
(P, d, rj) can be cleared by a walk from d to rj . Denote by e the maximum ver-
tex of P (d0, rj] such that no BF -pairs for e occur, and f the minimum vertex
of P [rj , d1) such that no BF -pairs for f occur. (In the case that m ≥ 1 and
Backw(rj) > l1 hold, two vertices e and f can be defined analogously.) Note
that two vertices e and f exist; otherwise, a BF -pair for d occurs. Since all
points of P [Succ(e), P red(f)] have BF -pairs, two vertices Succ(e) and Pred(f)
are reflex. For any rk > e, we have Backw(rk) > f ; otherwise, rk and the vertex
of P [Succ(e), P red(f)] (probably Pred(f)) whose backward shot contributes to
the BF -pair for the point Backw(rk) satisfy the condition C4.

Our search schedule for Case 1 is designed according to whether there is a
reflex vertex u such that P [Forw(u), u] is disjoint from P [rh, Backw(rh)] (1 ≤

268 X. Tan

h ≤ j), or P [u, Backw(u)] is disjoint from P [r1, Backw(r1)]. The existence of
the vertex u helps defense the search against the condition C4 or C5.

Case 1.1. There exists a vertex u such that P [Forw(u), u] is disjoint from
some component P [rh, Backw(rh)]. Assume that u is the smallest vertex such
that P [Forw(u), u] is disjoint from P [rh, Backw(rh)]. Clearly, u is contained in
P (d0, rh), i.e., it is not critical; otherwise, the BF -pair for d occurs. Since two
vertices u and rj give the BF -pair for all points of P [u, rj] and f is the minimum
vertex of P [rj , d1) such that no BF -pairs for f occur, all points of P [u, Pred(f)]
have BF -pairs. This property will help defense the search against C4 or C5.

The basic idea for Case 1.1 is to divide the search into the following three step-
sand use a greedy algorithm inside each step. In Step 1, the regionP (r1Backw(r1))
is cleared. In Step 2, we clear the region P (riBackw(ri)) one by one, for i =
2, 3, . . . , j, and terminate the work of clearing P (riBackw(ri)) as soon as the
component P [ri, Backw(ri)] containing f is encountered. In Step 3, we clear the
whole polygon P . The main task for a walk or a counter-walk is to check weak
visibility between two chains. A reflex vertex v of a chain that blocks Pred(v) or
Succ(v) from being visible from the other chain makes C4 or C5 true, or contra-
dicts with the definitions of the points d, f , and critical vertices ri. Particularly,
v is called the blocking vertex.

d

d

r

r
1

r
1

(b)

(d)

d

r

r
1

(e)

d

r
1

(f)

r

(a)

dr

r
1

(c)

d
r

r
1

u

u u

u
u

u

Fig. 4. Illustration for Case 1.1.1.

Case 1.1.1. Clearing the region P (r1Backw(r1)). Two chains P [d0, r1] and
P [Backw(r1), d1] are mutually weakly visible, otherwise, there are other critical
vertices before r1 (Fig. 4(a), the FF -pair for d (Fig. 4(b)) or the BF -pair for
d (Figs. 4(c)-(e)) occurs. Clearly, no d-deadlocks occur, and no deadlocks occur
for r1 and Backw(r1) simultaneously; otherwise, C4 is true (Fig. 4(f)). Hence,
P (r1Backw(r1)) can be cleared using a walk from d to r1Backw(r1).

Case 1.1.2. Clearing the region P (riBackw(ri)), 2 ≤ i ≤ j, provided that
the vertex f is not contained in P [ri, Backw(ri)]. Suppose first that the chain
P [ri−1, ri] is weakly visible from P [Backw(ri−1), Backw(ri)]. In this case, the
chain P [Backw(ri−1), Backw(ri)] is also weakly visible from P [ri−1, ri]; other-
wise, the blocking vertex and ri−1 give the BF -pair for d (if ri < Forw(v) < v
or v < Backw(v), v ∈ P [Backw(ri−1), Backw(ri)], holds), or there is a vertex
v in P [Backw(ri−1), Backw(ri)] such that Backw(v) < ri−1 holds and thus two
vertices ri−1 and v (< f) satisfy the condition C4. See Fig. 5(a) for an example,

Searching a Polygonal Region by Two Guards 269

where we have assumed that u < ri−1. (If the vertex u is contained in P [ri−1, ri],
then P [ri−1, ri] is not weakly visible from P [Backw(ri−1), Backw(ri)], which will
be discussed later.) There are no two disjoint forward components in between
two chains P [ri−1, ri] and P [Backw(ri−1), Backw(ri)]; otherwise, a d-deadlock
occurs. See Fig. 5(b) for an example, where ri−1 and q give the d-deadlock.
Also, there are no two disjoint backward components in between P [ri−1, ri] and
P [Backw(ri−1), Backw(ri)], because one defining vertex is ri, but the other
defining vertex cannot be contained in P [Backw(ri−1), Backw(ri)]. See Fig. 5(c).
Hence, there is a counter-walk for two guards to move from ri−1Backw(ri−1) to
riBackw(ri).

(c)

d

f

p

q=r

r

l1

r

(b)

d

p

i-1

q

f

1l

r

i

i

i-1

u
u

i

i-1r

r

d

f

u

v

(a)

i

i-1r

r

d

f

r=u

(d)

Fig. 5. Illustration for Case 1.1.2.

Consider now the situation in which P [ri−1, ri] is not weakly visible from
P [Backw(ri−1), Backw(ri)]. Let r denote the reflex vertex of P [ri−1, ri] such
that Forw(r) > Backw(ri) holds and Forw(r) is the maximum among these for-
ward shots. Note that u ≤ r holds, i.e., r may be identical to u. Since Forw(r) >
Backw(ri) holds, the segment rForw(r) intersects with ri−1Backw(ri−1), but
does not intersect with riBackw(ri). See Fig. 5(d) for an example. Because
of the maximum of the shot Forw(r), the chain P [ri−1, r] is weakly visible
from P [Backw(ri−1), Forw(r)]. As discussed above, the line segment connect-
ing two guards can then be moved from ri−1Backw(ri−1) to rForw(r). The
chain P [r, ri] is now weakly visible from P [Backw(ri), Forw(r)]. By a similar
argument, we can also show that P [Backw(ri), Forw(r)] is weakly visible from
P [r, ri]. As shown in Case 1.1.1, no deadlocks occur between two chains P [r, ri]
and P [Backw(ri), Forw(r)]. The line segment connecting two guards can then
be moved from rForw(r) to riBackw(ri) using a walk.

Case 1.1.3. Clearing the whole polygon P . Assume that P (rkBackw(rk)) has
now been cleared, for some k ≤ j. The vertex f is visible from rk; otherwise, there
is a vertex v in P [Backw(rk), P red(f)] such that two backward components of
rk and v are disjoint and thus rk and v satisfy C4 (Fig. 6(a)), or there is a vertex
v in P [f, d1) such that rk as well as d is contained in P [Forw(v), v], and thus
two vertices rk and v give the BF -pair for d (Fig. 6(b)).

Let f ′ denote the third intersection point of the polygon boundary with the
line through rk and f (Fig. 6(c)). It is not difficult to show that all points of
P [Backw(rk), f]∪P [rk, f ′] are visible from rk, and thus the segment connecting

270 X. Tan

(a)

d

r
k

P

f

l1
r
j

(c)(b)

d

r
k

P

f

l1
r
j

v

d

rj

r
k

P

f'

r=

f

1l

v

v

u uu

Forw(r)

Fig. 6. Illustration for Case 1.1.3.

two guards can simply be rotated from rkBackw(rk) to f ′f around rk. If there
are no vertices v in P [f ′, f] such that Forw(v) > f or Forw(v) < r1 holds, all
points of P [f ′, f] are then visible from f ; otherwise, there is a vertex v in P [f ′, f]
such that rk < f ′ < Forw(v) < v holds, contradicting Forw(l1) < r1, or the
vertex rk+1 is contained in P [f ′, f] and Backw(rk+1) < f (if v < Backw(v) <
f , v ∈ P [rk, Backw(rk)], ever holds), contradicting the assumption that f is
contained in P [rk+1, Backw(rk+1)]. Hence, P can be cleared by moving the
guard at f ′ into the vertex f , while keeping the other stand still at f .

Suppose that there are some reflex vertices v in P [f ′, f] such that Forw(v) > f
or Forw(v) < r1 holds. Let r be the vertex such that Forw(r) is closest to r1

clockwise among all forward ray shots from P [f ′, f]. See Fig. 6(c) for an example.
(Note that r may be some critical vertex li.) We show below that there is a
counter-walk for two guards to move from f ′f to rForw(r). Since Backw(rk) <
f < Backw(rk+1) < . . . < Backw(rj) (if k+1 ≤ j) holds in this case, there are no
vertices v in P [f ′, r] such that Backw(v) < f . Thus, the chain P [f ′, r] is weakly
visible from P [f, Forw(r)]. Also, the chain P [f, Forw(r)] is weakly visible from
P [f ′, r]; otherwise, the blocking vertex v in P [f, Forw(r)] and rk (resp. r) give
the BF -pair for f (resp. d) if the vertex Succ(v) (resp. Pred(v)) is invisible from
any point of P [f ′, r], or they satisfy the condition C5 if v < Forw(r) < r <
Forw(v) holds. See Fig. 6(c) for an example, where the blocking vertex v and r
satisfy C5. There are no disjoint forward components with the defining vertices
v ∈ P [f, Forw(r)] and v′ ∈ P [f ′, r], which prohibit the required counter-walk;
otherwise, two vertices v and r satisfy C5 (Fig. 6(c)). Also, no disjoint backward
components with the defining vertices v ∈ P [f, Forw(r)] and v′ ∈ P [f ′, r] exist;
otherwise, v and r give the BF -pair for f . Hence, the segment connecting two
guards can be moved from f ′f to rForw(r) using a counter-walk. (Note that if r
is some critical vertex li, the point d is recontaminated during this counter-walk.)

The chain P [r, f] is now weakly visible from P [f, Forw(r)]. Also, P [f, Forw(r)]
is weakly visible from P [r, f]; otherwise, the blocking vertex v and r give a BF -
pair for f if Succ(v) is invisible from any point of P [r, f], or the blocking vertex
v and r satisfy C5 if Pred(v) is invisible from any point of P [r, f]. Since no
deadlocks occur between two chains P [r, f] and P [f, Forw(r)], the polygon P
can finally be cleared by a walk from rForw(r) to f .

Case 1.2. There exists a vertex u such that P [u, Backw(u)] is disjoint from
P [r1, Backw(r1)]. Note that the vertex u is contained in P [rj , d1], i.e., u is not a

Searching a Polygonal Region by Two Guards 271

critical vertex. Let us consider to clear P using the search given in Case 1.1. The
search is either complete, or it encounters a reflex vertex r whose backward com-
ponent is disjoint from that of ri−1, while clearing the region P (riBackw(ri))
in Case 1.1.2 (Fig. 7(a)). In the latter case, the region P (riBackw(ri)) cannot
be cleared, but we can find a new starting point and start a new search at that
point. Observe that all points of P [ri−1, r] cannot have BF -pairs; otherwise, two
vertices ri−1 and r satisfy the condition A4. Without loss of generality, assume
that Succ(ri−1) or ri−1 (i > 1) does not have any BF -pair. Take Succ(ri−1)
as the new starting point, and denote it by d′. No BB-pairs occur for d′; oth-
erwise, the vertex ri−1 is not critical. Also, no FF -pairs occur for d′; other-
wise, there is a vertex u′ such that the forward component of u′ is contained in
P [Backw(ri−1), ri−1], i.e., Case 1.1 occurs.

Let us now consider a search schedule that starts at the point d′. The polygon
P can be cleared using the search given in Case 1.1; otherwise, one finds five
vertices which satisfy the condition C4 (like a situation shown in Fig. 3(a)). See
Fig. 7(a) for an example, where our search schedule ends at the vertex f ′, which
is defined with respect to the starting point d′. (In Fig. 7(a), all points of P [u, v]
do not have BF -pairs; otherwise, C4 is true.)

d

r
1

r
j

(b)

v

f

e

(a)

r
i-1

f'

r

uv

d

d'

i

r

Fig. 7. Illustraions for Case 1.2 and Case 1.3.

Case 1.3. There are no vertices u such that Case 1.1 or Case 1.2 occurs. Note
that there are no vertices v in P [d0, e] such that d is contained in P [Forw(v), v];
otherwise, two vertices v and rj give the BF -pair for all points of P [v, rj], con-
tradicting that e is the maximum vertex of P (d0, rj] such that no BF -pairs for
e occur. Let v denote the vertex such that d is contained in P [v, Backw(v)]
and Backw(v) is the smallest among these backward shots. Then, Backw(v) <
Succ(e) holds, as v precedes or is identical to the vertex whose forward ray shot
contributes to the BF -pair for Succ(e). See Fig. 7(b) for an example. Also, we
can show that there is a walk from Backw(v) to f (Fig. 7(b)) or from e to f (if
the vertex v does not exist).

4.2 The Search Schedule for Case 2

Let d denote a boundary point without any BF -pairs. Let l1, . . ., lm denote
the clockwise sequence of critical vertices, which are defined by non-redundant
forward components not containing d. There are two vertices, say, lk and lk′

272 X. Tan

(1 ≤ k < k′) such that two components P [Forw(lk), lk] and P [Forw(lk′), lk′]
are disjoint and all points of P [Forw(l1), lk] have BF -pairs. See Fig. 8 for an
example, where k = 2 and k′ = 4. Assume belowe that Succ(d) has the BF -pair,
and that the vertex lk is the largest of the critical vertices satisfying the above
condition. Our search schedule is first to clear the regions P −P (liForw(li)), for
i = 1, 2, . . . , k, then P (lk′Forw(lk′)) and finally the whole polygon P .

Case 2.1. Clearing the region P − P (l1Forw(l1)). Let r1, r2, . . ., rj be the
clockwise sequence of critical vertices, which are defined by non-redundant back-
ward components not containing d, such that ri < l1 holds, 1 ≤ i ≤ j. As
in Case 1.1, we first clear the region P (r1Backw(r1)) using a walk from d to
r1Backw(r1), and as in Case 1.1.2, we further clear the region P (rjBackw(rj)).
See Fig. 8(a) for an example.

Let us now show how the segment connecting two guards is moved from
rjBackw(rj) to l1Forw(l1), so as to clear the region P − P (l1Forw(l1)). The
chain P [rj , l1] is weakly visible from P [Backw(rj), Forw(l1)]; otherwise, there
are other critical vertices between rj and l1. Also, P [Backw(rj), Forw(l1)] is
weakly visible from P [rj , l1]; otherwise, the blocking vertex v and rj give the
BF -pair for d if Pred(v) is invisible from any point of P [rj , l1], or the blocking
vertex v, lk and lk′ satisfy the condition C5 if Succ(v) is invisible from any point
of P [rj , l1]. Also, there are no two disjoint forward (resp. backward) components
in between P [rj , l1] and P [Backw(rj), Forw(l1)]; otherwise, a contradiction with
the definition of l1 or rj occurs. Hence, there is a counter-walk for two guards
to move from rjBackw(rj) to l1Forw(l1). See Fig. 8(b).

d

r

3

l

 P

2

(a)

2
1

4

l

l
l

d

3

e

1

 P

2

(b)

r

4

l

l
l

e

1
r

r
l2

r
1

Fig. 8. Illustraion for Case 2

Case 2.2. Clearing the region P − P (lkForw(lk)). Observe that the inclusion
of d in P (riBackw(ri)) is never employed in Case 1.1.2. By a procedure sym-
mentric to Case 1.1.2, the line segment connecting two guards can be moved
from li−1Forw(li−1) to liForw(li) one by one, so as to clear the region P −
P (liForw(li)), 2 ≤ i ≤ k.

Case 2.3. Clearing the whole polygon P . The segment connecting two guards
has now been moved to lkForw(lk), i.e., the region P −P (lkForw(lk)) is cleared.
Recall that lk is the largest vertex such that P [Forw(lk), lk] and P [Forw(lk′), lk′]
(k < k′) are disjoint and all points of P [Forw(lk), lk′] do not have BF -pairs.

Searching a Polygonal Region by Two Guards 273

Furthermore, let lk′ be the largest vertex such that P [Forw(lk), lk] and
P [Forw(lk′), lk′] are disjoint. (See also Fig. 8.) In this case, two chains
P [lk, Forw(lk′)] and P [lk′ , Forw(lk)] are mutually weakly visible; otherwise, the
blocking vertex contradicts with our assumptions on the vertex lk or lk′ , or it to-
gether with lk and lk′ makes C5 true. Since no BF -pair occurs for both endpoints
of lkForw(lk) nor for both endpoints of lk′Forw(lk′), the segment connecting
two guards can further be moved by a walk from lkForw(lk) to lk′Forw(lk′), so
as to clear the region P (lk′Forw(lk′)).

Denote by e the maximum vertex such that lk < e and no BF -pairs for e
occur (Fig. 8). The vertex e exists; otherwise, two vertices lk and lk′ satisfy C5.
By a procedure symmetric to that for clearing the region P − P (lkForw(lk)),
we can also show that the region P − P (lk′Forw(lk′)) can be cleared, starting
at e. The reverse of this procedure then clears the whole polygon P .

The search schedule for Case 3. It can similarly be done as Case 2.

Theorem 5. It takes O(n) time and space to determine the two-guard searcha-
bility of a simple polygon, and O(n log n + m) time and O(n) space to generate
a search schedule of two guards, if it exists, where m (≤ n2) is the number of
search instructions reported.

Proof. Omitted in this extended abstract. �

References

[1] B.K.Bhattacharya, A. Mukhopadhyay and G.Narasimhan, Optimal algorithms for
two-guard walkability of simple polygons, Lect. Notes Comput. Sci. 2125 (2001)
438-449.

[2] A.Efrat, L.J.Guibas, S. Har-Peled, D.C.Lin, J.S.B. Mitchell and T.M.Murali,
Sweeping simple polygons with a chain of guards, In Proc., ACM-SIAM SODA
(2000) 927-936.

[3] P.J.Heffernan, An optimal algorithm for the two-guard problem, Int. J. Comput.
Geom. & Appl. 6 (1996) 15-44.

[4] C. Icking and R. Klein, The two guards problem, Int. J. Comput. Geom. & Appl.
2 (1992) 257-285.

[5] S.M.LaValle, B.Simov and G.Slutzki, An algorithm for searching a polygonal re-
gion with a flashlight, Int. J. Comput. Geom. & Appl. 12 (2002) 87-113.

[6] J.H.Lee, S.M.Park and K.Y.Chwa, Searching a polygonal room with one door by
a 1-searcher, Int. J. Comput. Geom. & Appl. 10 (2000) 201-220.

[7] S.M.Park, J.H.Lee and K.Y.Chwa, Characterization of rooms searchable by two
guards, in Proc. ISAAC 2000, Lect. Notes Comput. Sci. 1969 (2000) 515-526.

[8] I.Suzuki and M.Yamashita, Searching for mobile intruders in a polygonal region,
SIAM J. Comp. 21 (1992) 863-888.

[9] X.Tan, Searching a simple polygon by a k-searcher, in Proc. ISAAC 2000, Lect.
Notes Comput. Sci. 1969 (2000) 503-514.

[10] X.Tan, A characterization of polygonal regions searchable from the boundary, in
Proc. IJCCGGT 2003, Lect. Notes Comput. Sci. 3330 (2004) 200-215.

[11] X.Tan, Sweeping simple polygons with the minimum number of chain guards,
Inform. Process. Lett. 102 (2007) 66-71.

On the Internal Steiner Tree Problem

Sun-Yuan Hsieh�, Huang-Ming Gao, and Shih-Cheng Yang

Department of Computer Science and Information Engineering,
National Cheng Kung University,

No.1, University Road, Tainan 70101, Taiwan
hsiehsy@mail.ncku.edu.tw

Abstract. Given a complete graph G = (V, E) with a cost function
c : E → R+ and a vertex subset R ⊂ V , an internal Steiner tree is a
Steiner tree which contains all vertices in R such that each vertex in R is
restricted to be an internal vertex. The internal Steiner tree problem is
to find an internal Steiner tree T whose total costs

�
(u,v)∈E(T) c(u, v)

is minimum. In this paper, we first show that the internal Steiner tree
problem is MAX SNP-hard. We then present an approximation algorithm
with approximation ratio 2ρ + 1 for the problem, where ρ is the best
known approximation ratio for the Steiner tree problem.

1 Introduction

Given a graph G = (V, E) with a cost (or distance) function c : E → R+, and
a vertex subset R ⊆ V , a Steiner tree is a connected and acyclic subgraph of G
which contains all the vertices of R. The vertices in R are terminals, and the
vertices in V \R are Steiner (or optional) vertices. Note that a Steiner tree may
contain optional vertices. The cost of a Steiner tree equals the sum of the costs
of all edges in this tree. The Steiner tree problem (STP for short) is to find a
Steiner tree with the minimum cost in G [3,5,8]. The decision version of this
problem has been shown to be NP-complete [9], even in the Euclidean metric [6]
or rectilinear metric [7].

There are practical applications in which the terminal vertices are required to
be internal vertices in a Steiner tree [3]. For example, in a network resource al-
location, the specified servers (terminals) are allowed to act only as transmitters
such that in a solution tree, the terminals are restricted to be non-leaf vertices
(i.e., internal vertices). Another example is in a sensor network, some nodes
might be especially cheap devices that can receive but cannot transmit. In this
paper, we study an interesting variant of the Steiner tree problem described as
follows. Given a complete graph G = (V, E) with a cost function c : E → R+

and a subset R ⊂ V , an internal Steiner tree is a Steiner tree which contains all
vertices in R such that each vertex in R is restricted to be an internal vertex.
The internal Steiner tree problem (ISTP for short) is to find an internal Steiner
tree T whose cost

∑
(u,v)∈E(T) c(u, v) is minimum. For convenience, we call such

� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 274–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Internal Steiner Tree Problem 275

an optimal tree as a minimum internal Steiner tree. If |R| = 1 and |V | ≤ 2,
there is no solution for the problem. If |R| = 1 and |V | ≥ 3, there is a trivial
solution by finding the first two smallest cost edges incident to the terminal in
G. Therefore, throughout this paper, we assume that |R| ≥ 2 and |V \ R| ≥ 2.

The currently best-known approximation algorithm for the Steiner tree prob-
lem has the approximation ratio ρ = 1 + ln 3

2 ≈ 1.55 [11]. In this paper, we first
show that ISTP is MAX SNP-hard. We then present an O(n2 log n + f(n, m))-
time algorithm with approximation ratio 2ρ + 1 for ISTP, where f(n, m) is the
time complexity of the best-known approximation algorithm for the Steiner tree
problem on an input graph with n vertices and m edges.

2 Preliminaries

This paper considers finite, simple, and loopless graphs G = (V, E), where V
and E are the vertex and edge sets of G, respectively. We also use the notations
V (G) and E(G) to denote the vertex and edge sets of G, respectively. For an
edge e = (u, v), u and v are end-nodes of e. When u and v are the end-nodes
of an edge, they are adjacent and are neighbors. If vertex v is an end-node of
e, then v and e are incident. The degree of a vertex v in a loopless graph G,
denoted by degG(v), is the number of incident edges. A path of length l from a
vertex u to a vertex u′ in a graph G = (V, E), denoted by PG[u, u′], is a sequence
〈v0, v1, v2, . . . , vl〉 of vertices such that u = v0, u′ = vl, and (vi−1, vi) ∈ E for
i = 1, 2, . . . , l. We also call the above path (u, u′)-path. The cost of the path is
the sum of edge-costs in the path. A path is simple if all vertices in the path
are distinct. Throughout this paper, we sometimes regard a path as a graph for
convenience. A subgraph of G = (V, E) is a graph (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. An induced subgraph is an edge-preserving subgraph, i.e., (V ′, E′) is an
induced subgraph of (V, E) iff V ′ ⊆ V and E′ = {(x, y) ∈ E| x, y ∈ V ′}.

A tree is a connected graph and has no cycles (acyclic). A leaf of a tree is a
vertex of degree 1. A non-leaf vertex is an internal vertex. For a tree T , a subtree
of T is a connected subgraph (V ′, E′) of T , where V ′ ⊆ V and E′ ⊆ E. A vertex
v in a Steiner tree T is said to be a leaf-terminal if v is a terminal and also a
leaf in T . Throughout this paper, we assume that the cost function associated
with the given graph is metric.

Definition 1. Let Π1 and Π2 be two optimization problems, we say that Π1

L-reduces to Π2 if there are polynomial time algorithms, A1 and A2, and positive
constants, δ and ω, such that for any instance I1 of Π1, the following conditions
are satisfied:

(a) Algorithm A1 produces an instance A1(I1) for Π2 such that OPT(A1(I1)) ≤
δ ·OPT(I1), where OPT(I1) and OPT(A1(I1)) represent the costs of optimal
solutions of I1 and A1(I1), respectively.

(b) Given any solution of A1(I1) with cost cost2, Algorithm A2 produces a
solution of I1 with cost cost1 in polynomial time such that |cost1−OPT(I1)|
≤ ω · |cost2 − OPT(A1(I1))|. �

276 S.-Y. Hsieh, H.-M. Gao, and S.-C. Yang

A problem is said to be MAX SNP-hard if every MAX SNP problem L-reduces to
this problem, but the problem itself may not be MAX SNP. On the other hand,
we can show a problem to be MAX SNP-hard by providing an L-reduction from
some MAX SNP-hard problem to it.

3 MAX SNP-Hardness Result

For the Steiner tree problem, if we restrict the co-domain of the cost function
from R+ to {1, 2}, then the restricted Steiner tree problem is called the (1,2)-
Steiner Tree Problem (STP(1,2) for short).

Lemma 1. [2] STP(1,2) is MAX SNP-hard.

We will prove ISTP is MAX SNP-hard by providing an L-reduction from STP
(1,2) to ISTP. We present two polynomial-time algorithms, namely A1 and A2,
shown in Figures 1 and 2, respectively, for the L-reduction. Given a graph G =
(V, E) with a cost function c : E → R+, define c(G) =

∑
e∈E c(e). We can also

define c(G′) for a subgraph G′ of G similarly. For two vertices u and v in G with
a cost function c, let c∗G(u, v) be the minimum cost of a path between u and v
in G, i.e., c∗G(u, v) = min

PG[u,v]
{∑e∈PG[u,v] c(e)}.

Algorithm. A1(I1)

Input: An instance I1 = (G1, R1, c1) of STP(1,2), where G1 = (V1, E1) is a complete
graph, a vertex subset R1 = {r1, r2, . . . , rk} with |R1| = k ≥ 2, and the cost
function c1 : E1 → {1, 2}.

Output: An instance I2 = (G2, R2, c2) of ISTP.

1: For each ri ∈ R1, create one auxiliary vertex ai corresponding to ri. Let AV =
{a1, a2, . . . , ak} be the auxiliary vertex set.

2: Construct a complete graph G2 = (V2, E2) as follows:
(a) Set V2 = V1 ∪ AV .
(b) Let AE = {(ai, aj)| 1 ≤ i, j ≤ k and i �= j} ∪ {(ai, v)| ai ∈ AV and v ∈ V1} be
the auxiliary edge set, and each edge in AE be an auxiliary edge. Set E2 = E1∪AE.

3: Set R2 = R1.
4: Define the cost function c2 : E2 → R+ such that for each e ∈ E2,

c2(e) =

��������
�������

c1(e) if e ∈ E1,
1
2k

if e = (ai, ri), where 1 ≤ i ≤ k,

2c(G1) if e = (aj , ri), where i �= j,

c∗
G1(ri, rj) + 1 if e = (ai, aj), where i �= j,

c∗
G1(ri, v) + 1 if e = (ai, v), where 1 ≤ i ≤ k and v ∈ V1 \ R1.

Fig. 1. An algorithm for the input instance transformation from STP(1,2) to ISTP

On the Internal Steiner Tree Problem 277

Lemma 2. OPT(A1(I1)) ≤ 2OPT(I1).

Proof. Let T ∗
S be a minimum Steiner tree of I1, and let r1, r2, . . . , rq, where

q ≤ k, be the leaf-terminals of T ∗
S . By adding q auxiliary edges to T ∗

S , we ob-
tain an internal Steiner tree of A1(I1)(= I2) because each terminal is now an
internal vertex of the resulting tree. Therefore, OPT(A1(I1)) ≤ OPT(I1) + q

2k ≤
OPT(I1) + k

2k = OPT(I1) + 1
2 < OPT(I1) + 1 ≤ 2OPT(I1). ��

For a acyclic subgraph T in A1(I1)(= I2), let AV (T) = AV ∩ V (T), and let
av(T) = |AV (T)|.

Suppose that T1 and T2 are two connected acyclic subgraphs of a connected
graph G such that V (T1)∩V (T2) = ∅. Let u and u′ be two vertices of T1 and T2,
respectively, and let SG[u, u′] = 〈v0(= u), v1, . . . , vl(= u′)〉 be a shortest path1

between u and u′ in G. A connection of u and u′ using SG[u, u′] is to merge T1

and T2 into one connected acyclic subgraph, which is obtained by adding the
edges of SG[u, u′] to the above two trees and then for each cycle in the resulting
graph, deleting an arbitrary tree-edge if it is in the cycle. Due to the space
limitation, the proof of the following lemma is omitted.

Lemma 3. Suppose that T ∗
I is a minimum internal Steiner tree of I2. If we

delete each auxiliary vertex from T ∗
I , the resulting graph is a minimum Steiner

tree of I1.

We now present our Algorithm A2 shown in Figure 2. The following result can
be obtained from the algorithm.

Lemma 4. The following two statements hold:

1. Given any internal Steiner tree TI (feasible solution) of I2, Algorithm A2

can generate a Steiner tree (feasible solution) TS of I1.
2. If c(TI) = cost2 and c(TS) = cost1, then cost1 ≤ cost2 − 1

2kav(TI).

Proof. It is not difficult to verify that the algorithm can generate a Steiner tree
of I2. Thus we only show that (2) holds. There are the following two possible
scenarios.

Case 1. AV (TI) = ∅. According to lines 1–2 of Algorithm A2, TI will be re-
turned as a feasible solution of I1. Therefore, cost2 = c(TI) = cost1 and the
result holds.

Case 2. AV (TI) �= ∅. We further consider the following two subcases.
Case 2.1. TI contains an auxiliary edge with the cost 2c(G1). According

to lines 3–6 of Algorithm A2, a Steiner tree T ′ of I1 is obtained. Note
that T ′ is obtained from TI by deleting at least one auxiliary edge with
cost 2c(G1) together with av(TI) auxiliary edges in which each has cost
1
2k . By the above observation and the total costs of those l − 1 edges
used to merge T1, T2, . . . , Tl into T ′ is obviously smaller than 2c(G1), we
conclude that cost1 < cost2 − 1

2kav(TI).

1 In this paper, a shortest path between two distinct vertices is a minimum cost path
between them.

278 S.-Y. Hsieh, H.-M. Gao, and S.-C. Yang

Algorithm. A2(T, A1(I1))

Input: An internal Steiner tree T of A1(I1), where I1 = (G1, R1, c1).
Output: A Steiner tree of I1.

1: if T contains no auxiliary vertex, i.e., AV (T) = ∅ then
2: return T
3: else if there exists any auxiliary edge in T with cost 2c(G1) then
4: Delete all auxiliary vertices in AV (T). After deleting those vertices, let

T1, T2, . . . , Tl be the resulting subtrees such that each Ti contains at least one
terminal, i.e.,V (Ti) ∩ R1 �= ∅ for all 1 ≤ i ≤ l.

5: Merge T1, T2, . . . , Tl into one tree T ′ using l − 1 edges in E(G1) \ (
�l

i=1 E(Ti))
in which the total cost of these l − 1 edges is as smallest as possible.

6: return T ′

7: else
8: for every auxiliary vertex ai in T do
9: for every auxiliary edge e in T incident to ai do

10: if e = (ai, ri) then � ai is the auxiliary vertex corresponding to ri

11: Delete e from T
12: else if e = (ai, aj) then � aj is another auxiliary vertex
13: Delete e from T
14: if ri and rj are disconnected after deleting e then
15: Connect ri and rj using a shortest path SG1 [ri, rj]

16: else � e = (ai, v), where v ∈ V (G1) \ R1

17: Delete e from T
18: if ri and v are disconnected after deleting e then
19: Connect ri and v using a shortest path SG1 [ri, v]

20: Delete all auxiliary vertices in AV (T)
21: return the resulting tree

Fig. 2. An algorithm that generates a feasible solution of I1 from a feasible solution
of I2

Case 2.2. TI contains no auxiliary edge with cost 2c(G1). We prove this
case by induction on the number of auxiliary vertices in AV (TI). If TI

contains only one auxiliary vertex, ai, then Algorithm A2 will delete
all auxiliary edges incident to ai and then delete ai. In deleting each
auxiliary edge, if the resulting graph is composed by two subtrees, then
a shortest path between some two terminals, one in each subtree, is
used to merge the two subtrees into one tree. According to lines 7–21
of Algorithm A2, it is not difficult to check that after deleting ai, the
cost of the resulting tree is reduced from the original one by at least 1

2k .
Thus, cost1 ≤ c(TI) − 1

2k = cost2 − 1
2k and the base case holds. Now

consider av(TI) = t > 1. Without loss of generality, assume that a1 is
the first auxiliary vertex selected by Algorithm A2. Again, Algorithm
A2 will delete all auxiliary edges incident to a1 and then delete it. Let
T ′ be the resulting tree after deleting a1. Using an argument similar

On the Internal Steiner Tree Problem 279

to show the base case, we have c(T ′) + 1
2k ≤ c(TI) = cost2. Since the

number of auxiliary vertices in AV (T ′) is now t − 1, by the induction
hypothesis, we have a Steiner tree T ′′ of I1 such that cost1 = c(T ′′) ≤
c(T ′)− 1

2kav(T ′). By the above equations, we have that cost1 = c(T ′′) ≤
c(T ′) − 1

2kav(T ′) ≤ c(TI) − 1
2k − 1

2kav(T ′) = c(TI) − (1
2k + 1

2kav(T ′)) =
cost2− 1

2k (av(T ′)+1) = cost2− 1
2kav(TI). Thus, cost1 ≤ cost2− 1

2kav(TI).

Combining Case 1 and Case 2, the result holds. ��

Theorem 1. ISTP is MAX SNP-hard.

Proof. We prove the theorem by providing an L-reduction from a known SNP-
hard problem STP(1,2) to ISTP. We have presented two polynomial-time al-
gorithms A1 and A2. Next, we need find out two positive constants δ and
ω to satisfies the two conditions of Definition 1. By Lemma 2, we have that
OPT(A1(I1)) ≤ 2OPT(I1). By Lemma 4, given any feasible solution, TI , of
A1(I1) with c(TI) = cost2, we can get a feasible solution, TS, of I1 with c(TS) =
cost1 such that cost1 ≤ cost2 − 1

2kav(TI).
If cost2 = OPT(A1(I1)), i.e., the given feasible solution is a minimum internal

Steiner tree, T ∗
I , of A1(I1), then Algorithm A2 will delete all auxiliary vertices

of T ∗
I and return a Steiner tree of I1. According to Lemma 3, this Steiner tree

is also a minimum Steiner tree, T ∗
S , of I1, i.e., cost1 = OPT(I1). In this special

case, we have |cost1 − OPT(I1)| = 0 = |cost2 − OPT(A1(I1))| and

OPT(I1) = OPT(A1(I1)) − 1
2k

av(T ∗
I) (1)

Therefore, |cost1 − OPT(I1)| ≤ |cost2 − 1
2kav(TI) − OPT(I1)| (by Lemma 4) ≤

|cost2− 1
2kav(TI)−(OPT(A1(I1))− 1

2kav(T ∗
I))|(by Eq.1) = |cost2−OPT(A1(I1))+

1
2kav(T ∗

I) − 1
2kav(TI)| ≤ |cost2 − OPT(A1(I1))| + | 1

2kav(T ∗
I) − 1

2kav(TI)| =
|cost2−OPT(A1(I1))|+| 1

2kav(TI)− 1
2kav(T ∗

I)| ≤ |cost2−OPT(A1(I1))|+|cost2−
cost1 − 1

2kav(T ∗
I)| (by Lemma 4) = |cost2 − OPT(A1(I1))| + |cost2 − cost1 −

(OPT(A1(I1)) − OPT(I1))| (by Eq.1) = |cost2 − OPT(A1(I1))| + |cost2 −
OPT(A1(I1))+(OPT(I1)−cost1)| ≤ |cost2−OPT(A1(I1))|+|cost2−OPT(A1(I1))|
(by OPT(I1) ≤ cost1) = 2|cost2 −OPT(A1(I1))|. Then, both δ and ω can be set
to 2 and thus ISTP is MAX SNP-hard. ��

4 An Approximation Algorithm

In this section, we present an approximation algorithm, namely AISTP , for ISTP.
Let ASTP denote the best-known approximation algorithm for STP with approx-
imation ratio ρ = 1 + ln 3

2 ≈ 1.55 [11], and also let SA = (VA, EA) be the Steiner
tree returned by ASTP . To make sure that the solution of ISTP exists, in what
follows, we assume that |V (G) \R| ≥ 2. The concept of our algorithm is first to
apply ASTP to obtain a Steiner tree SA = (VA, EA), and then transform it to
an internal Steiner tree.

280 S.-Y. Hsieh, H.-M. Gao, and S.-C. Yang

Let T be a Steiner tree of the instance I = (G, R, c) of the problem ISTP. The
following property is useful to our algorithm for transforming T to an internal
Steiner tree. It is not difficult to show the following result.

Lemma 5. Let T be a Steiner tree of the instance I = (G, R, c) of the problem
ISTP such that |V (T) \ R| ≥ 2. If v is a leaf-terminal of T , then there is an
internal vertex αv ∈ V (T) such that one of the following two conditions hold:
(1) degT (αv) = 2 and αv �∈ R; (2) degT (αv) ≥ 3.

We next present our approximation algorithm. We call the two vertices αv and
βv selected by Algorithm AISTP for each leaf-terminal v as the critical vertex
and the target vertex of v, respectively.

Algorithm AISTP (approximation algorithm for the internal Steiner tree problem)
Input: A complete graph G = (V, E) with a metric cost function c : E → R+

and a proper subset R ⊂ V of terminals such that |V \ R| ≥ 2.
Output: An internal Steiner tree TG.

Step 1. � Find a Steiner tree in G = (V, E)
Use the currently best-known approximation algorithm to find a Steiner tree
SA in G.

Step 2. S′
A ← SA

Step 3. � Transform S′
A into an internal Steiner tree

if S′
A is not an internal Steiner tree then

if |V (S′
A) \ R| = 0 then

Find the first two smallest cost edges, (p1, q1) and (p2, q2), between (V \
V (S′

A)) and V (S′
A), where p1 �= p2, p1, p2 ∈ V \ V (S′

A), and q1, q2 ∈
V (S′

A).
Add the two vertices, p1 and p2, to V (S′

A) and add the two edges, (p1, q1)
and (p2, q2), to E(S′

A).
else if |V (S′

A) \ R| = 1 then
Find the smallest cost edge, (p, q), between (V \ V (S′

A)) and V (S′
A),

where p ∈ V \ V (S′
A) and q ∈ V (S′

A). Add the vertex p to V (S′
A) and

add the edge (p, q) to E(S′
A).

for each leaf-terminal v in S′
A do

� Determine the critical vertex αv and the target vertex βv

(a) Select the nearest vertex αv ∈ V (S′
A) satisfying one of the following

condition, based on the depth-first search:
(1) degS′

A
(αv) = 2 and αv �∈ R.

(2) degS′
A
(αv) ≥ 3. � The existence of αv is ensured by Lemma 5

(b) Choose a vertex βv ∈ V (S′
A) which is adjacent to αv, but does not

belong to the path PS′
A
[v, αv].

(c) E(S′
A) ← E(S′

A) ∪ {(v, βv)}
(d) E(S′

A) ← E(S′
A) \ {(αv, βv)}

end for
Return TI ← S′

A

On the Internal Steiner Tree Problem 281

Lemma 6. Assume that v is a leaf-terminal of the current tree T handled by
Algorithm AISTP in an iteration of the for-loop within Step 3. Then, we have
the following observations:

1. degT (αv) will be decreased by 1 in the next iteration.
2. degT (βv) will be unchanged in the next iteration.
3. degT (v) will be increased by 1, and fixed as 2 until the algorithm terminates.

Two paths are said to be edge-disjoint if both paths have no common edge. A set
of paths is said to be pairwise edge-disjoint if any two of them are edge-disjoint.

Lemma 7. Suppose that v0 is a leaf-terminal of SA and vk is the critical vertex
of v0 selected by Algorithm AISTP , i.e., αv0 = vk. Let PSA [v0, vk] = 〈v0, v1,
. . . , vk〉 be a path of SA. Then, during the executing of Algorithm AISTP before
v0 being handled, there always exists a path PT [v0, vk] in the current tree T ,
which is extended from PSA [v0, vk] such that the following three properties hold:

1. The length of PT [v0, vk] is at least k.
2. The path PT [v0, vk] contains all the vertices of PSA [v0, vk], and also retains

the relative order of the vertices of PSA [v0, vk] as v0 � v1 � v2 � · · · � vk

by traversing PT [v0, vk] from v0 to vk.
3. If V (PT [v0, vk]) \ V (PSA [v0, vk]) �= ∅, then the vertices in V (PT [v0, vk]) \

V (PSA [v0, vk]) are all in R, and each vertex in V (PT [v0, vk])\V (PSA [v0, vk])
has a fixed degree of 2 until the algorithm terminates.

Proof. We show the lemma by induction on the number h of leaf-terminals
handled before v0. The basis case of h = 0 holds clearly. Assume that the
result holds after h = l leaf-terminals were handled. Now consider the cur-
rent tree T ′ and the (l + 1)-th leaf-terminal, say w0(�= v0), is handled by
the algorithm. By the induction hypothesis, there is a path connecting v0 and
vk in T ′, denoted by PT ′ [v0, vk] = 〈u0, u1, u2, . . . , uq−1, uq〉, where u0 = v0

and uq = vk, such that the desired three properties hold. By the execution
of the algorithm, the condition for changing PT ′ [v0, vk] is uj for some j in
{1, 2, . . . , q}, is the critical vertex of w0 and one of its neighbor on PT ′ [v0, vk]
is the target vertex of w0. Therefore, if no uj is selected as the critical vertex
of w0, then the result holds trivially. Otherwise, PT ′ [v0, vk] contains the criti-
cal vertex of w0. Assume that ui is the critical vertex of w0. According to the
algorithm, there must be a path PT ′ [w0, ui] = 〈w0, w1, . . . , wt, ui〉 such that
degT ′(w1) = degT ′(w2) = · · · = degT ′(wt) = 2 and w0, w1, . . . , wt ∈ R. More-
over, it is not difficult to verify that PT ′ [w0, ui] and PT ′ [v0, vk] are edge-disjoint
sharing only one common vertex ui. There are the following two cases:

Case 1. ui is the critical vertex and ui−1 is the target vertex of w0. Then,
a new path 〈u0, u1, . . . , ui−1, w0, w1, w2, . . . , wt, ui, ui+1, . . . , uq〉 is obtained
after handling w0.

Case 2. ui is the critical vertex and ui+1 is the target vertex of w0. Then,
a new path 〈u0, u1, . . . , ui, w0, w1, w2, . . . , wt, ui+1, ui+2, . . . , uq〉 is obtained
after handling w0.

282 S.-Y. Hsieh, H.-M. Gao, and S.-C. Yang

According to the above cases, PT ′ [v0, vk] is now extended as the new path.
By Lemma 6, the added vertices w0, w1, w2, . . . , wt are all in R, and each has
a fixed degree of 2 until the algorithm terminates. Clearly, the relative order
v0 � v1 � v2 � · · · � vk is also retained in the new path. Therefore, the three
properties hold. ��

The proofs of the following two lemmas are omitted.

Lemma 8. Suppose that u and v are two different leaf-terminals of SA such
that u is handled before v by the algorithm. Then, the two paths PSA [u, αu] and
PSA [v, αv] are edge-disjoint.

Lemma 9. Let v1, v2, . . . , vl be an order of the leaf-terminals of SA handled by
Algorithm AISTP . Then, the paths PSA [v1, αv1], PSA [v2, αv2], . . . , PSA [vl, αvl

] are
pairwise edge-disjoint.

Lemma 10. Suppose that v is a leaf-terminal of SA. Then, the target vertex βv

does not belong to PSA [v, αv].

Lemma 11. Let P = 〈v1, v2, · · · , vk−1, vk〉 be a path of a graph G = (V, E) with
a metric cost function c : E → R+, and let P ′ = 〈v1, v2, · · · , vk−2, vk−1〉 be a
subpath of P . Then, c(v1, vk)−c(vk−1, vk) ≤ c(P ′), where c(P ′)=

∑k−2
j=1 c(vj , vj+1).

Theorem 2. Algorithm AISTP is a (2ρ + 1)-approximation algorithm for the
internal Steiner tree problem, where ρ is the approximation ratio of the best-
known algorithm for the Steiner tree problem.

Proof. It is easy to see that the algorithm can transform a Steiner tree to an
internal Steiner tree. We next analyze its approximation ratio. Let T ∗

I and T ∗
S be

a minimum internal Steiner tree and a minimum Steiner tree of G, respectively.
Since we use a ρ-approximation algorithm to find a Steiner tree SA and then
transform it to an internal Steiner tree, we have c(SA) ≤ ρc(T ∗

S). Since T ∗
I is

also a Steiner tree for R, c(T ∗
S) ≤ c(T ∗

I). Therefore,

c(SA) ≤ ρc(T ∗
I). (2)

Recall that in Step 3 of Algorithm AISTP , we add the edges into E(S′
A) when

|V (S′
A) \ R| ≤ 1. Let μ denote the total cost of the added edges. If no edge

is added in this case, then μ = 0. Let TI be an internal Steiner tree returned
by Algorithm AISTP , and let c(PSA [v, αv]) be the sum of costs of the edges
in PSA [v, αv]. By the construction of TI , we have the following inequalities:
c(TI) ≤ c(SA) +

∑

v∈R

(c(v, βv) − c(αv, βv)) + μ by the algorithm ≤ c(SA) +

∑

v∈R

(c(PSA [v, αv]))+μ (by Lemmas 10 and 11) ≤ c(SA)+c(SA)+μ (by Lemma 9)

= 2c(SA)+μ ≤ 2ρc(T ∗
I)+μ (by Equation 2). Consequently,

c(TI)
c(T ∗

I)
= 2ρ+

μ

c(T ∗
I)

.

We now bound the value μ
c(T ∗

I) . If |V (S′
A) \ R| ≥ 2, then μ = 0 = μ

c(T ∗
I) .

Otherwise, if |V (S′
A) \ R| ≤ 1, then μ > 0. Obviously, a minimum internal

On the Internal Steiner Tree Problem 283

Steiner tree T ∗
I must contain at least one edge (respectively, two edges) between

V (S′
A) \R and V (S′

A) when |V (S′
A) \R| = 1 (respectively, |V (S′

A) \R| = 0);
otherwise, an internal Steiner tree cannot be constructed. Since μ is the smallest
cost for the added edges, μ ≤ c(T ∗

I). Therefore,
μ

c(T ∗
I)

≤ 1 and the approximation

ratio of the algorithm equals 2ρ + 1. ��
Algorithm AISTP can be implemented to run in O(n2 log n)+f(m, n) time, where
f(n, m) is the time complexity of the best known approximation algorithm for
the Steiner tree problem on an input graph with n vertices and m edges.

5 Concluding Remarks

In this paper, we prove that the internal Steiner tree problem is MAX SNP-hard.
We also present a (2ρ + 1)-approximation algorithm for the problem under the
metric space. It would be interesting to find a better (approximation) algorithm
for the internal Steiner tree problem.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and
the hardness of approximation problems,” Journal of the Association for Comput-
ing Machinery, vol. 45, pp. 501–555, 1998.

2. M. Bern and P. Plassmann, “The Steiner problem with edge lengths 1 and 2,”
Information Processing Letters, vol. 32(4), pp. 171–176, 1989.

3. X. Cheng and D. Z. Du, Steiner Trees in Industry, Kluwer Academic Publishers,
Dordrecht, Netherlands, 2001.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms (Second Edition), MIT Press, Cambridge, 2001.

5. D. Z. Du, J. M. Smith, and J. H. Rubinstein, Advance in Steiner Tree, Kluwer
Academic Publishers, Dordrecht, Netherlands, 2000.

6. M. Garey, R. Graham, and D. Johnson, “The complexity of computing Steiner
minimal trees,” SIAM Journal on Applied Mathematics, vol. 32, pp. 835–859, 1977.

7. M. Garey and D. Johnson, “The rectilinear Steiner problem is NP-complete,” SIAM
Journal on Applied Mathematics, vol. 32, pp. 826–834, 1977.

8. F. K. Hwang, D. S. Richards, and P. Winter, “The Steiner Tree Problem,” Annuals
of Discrete Mathematices 53, Elsevier Science Publishers, Amsterdam, 1992.

9. R. Karp, “Reducibility among combinatorial problems,” in R. E. Miller, J. W.
Thatcher eds.: Complexity of Computer Computations, Plenum Press, New York,
pp. 85–103, 1972.

10. C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and com-
plexity classes,” in Proceedings of the 20th ACM Symposium on Theory of Com-
puting, pp. 229–234, 1988.

11. G. Robins and A. Zelikovsky, “Improved Steiner tree approximation in graphs,”
in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 770–779, 2000.

Approximately Optimal Trees for Group Key

Management with Batch Updates�

Minming Li1, Ze Feng1, Ronald L. Graham2, and Frances F. Yao1

1 Department of Computer Science
City University of Hong Kong

{minmli,fengze}@cs.cityu.edu.hk, csfyao@cityu.edu.hk
2 Department of Computer Science and Engineering

University of California at San Diego
graham@ucsd.edu

Abstract. We investigate the group key management problem for
broadcasting applications. Previous work showed that, in handling key
updates, batch rekeying can be more cost-effective than individual rekey-
ing. One model for batch rekeying is to assume that every user has prob-
ability p of being replaced by a new user during a batch period with
the total number of users unchanged. Under this model, it was recently
shown that an optimal key tree can be constructed in linear time when
p is a constant and in O(n4) time when p → 0. In this paper, we investi-
gate more efficient algorithms for the case p → 0, i.e., when membership
changes are sparse. We design an O(n) heuristic algorithm for the sparse
case and show that it produces a nearly 2-approximation to the optimal
key tree. Simulation results show that its performance is even better in
practice. We further design a refined heuristic algorithm and show that
it achieves an approximation ratio of 1 + ε as p → 0.

1 Introduction

With the increase of subscription-based network services, strategies for achiev-
ing secure multicast in networks are becoming more important. For example,
to limit the service access to the authorized subscribers only, mechanisms such
as content encryption and selective distribution of decryption keys have been
found useful. One can regard the secure multicast problem as a group broadcast
problem, where we have n subscribers and a group controller (GC) that period-
ically broadcasts messages (e.g., a video clip) to all subscribers over an insecure
channel. To guarantee that only the authorized users can decode the contents of
the messages, the GC will dynamically maintain a key structure for the whole
group. Whenever a user leaves or joins, the GC will generate some new keys
� This work was supported in part by the National Basic Research Program of China

Grant 2007CB807900, 2007CB807901, the U.S. National Science Foundation Grant
CCR-0310991, a grant from the Research Grants Council of Hong Kong under
Project Number CityU 1165/04E and a grant from City University of Hong Kong
(Project No. 7200072).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 284–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximately Optimal Trees for Group Key Management 285

as necessary and notify the remaining users of the group in some secure way.
Surveys on the key management for secure group communications can be found
in [1][2].

In this paper, we consider the key tree model [3] for the key management
problem. We describe this model briefly as follows (a precise formulation is given
in Section 2). Every leaf node of the key tree represents a user and stores his
individual key. Every internal node stores a key shared by all leaf descendants
of that internal node. Every user possesses all the keys along the path from the
leaf node (representing the user) to the root. To prevent revoked users from
knowing future message contents and also to prevent new users from knowing
past message contents, the GC updates a subset of keys, whenever a new user
joins or a current user leaves, as follows. As long as there is a user change
among the leaf descendants of an internal node v, the GC will 1) replace the
old key stored at v with a new key, and 2) broadcast (to all users) the new
key encrypted with the key stored at each child node of v. Note that only users
corresponding to the leaf descendants of v can decipher useful information from
the broadcast. Furthermore, this procedure must be done in a bottom-up fashion
(i.e., starting with the lowest v whose key must be updated—see Section 2 for
details) to guarantee that a revoked user will not know the new keys. The cost
of the above procedure counts the number of encryptions used in step 2) above
(or equivalently, the number of broadcasts made by the GC).

When users change frequently, the method for updating the group keys when-
ever a user leaves or joins may be too costly. Thus, a batch rekeying strategy
was proposed by Li et al. in [4] whereby rekeying is done only periodically in-
stead of immediately after each membership change. It was shown by simulation
that among the totally balanced key trees (where all internal nodes of the tree
have branching degree 2i), degree 4 is the best when the number of requests
(leave/join) within a batch is not large. For a large number of requests, a star
(a tree of depth 1) outperforms all such balanced key trees. Further work on the
batch rekeying model was done by Zhu et al. in [5]. They introduced a new model
where the number of joins is assumed to be equal to the number of leaves dur-
ing a batch updating period and every user has probability p of being replaced
by a new user for some p. They studied the optimal tree structure subject to
two restrictions: A) the tree is totally balanced, and B) every node on level i
has 2ki children for some parameter ki depending on i. Under these restrictions,
characterizations of the optimal key tree were given together with a construction
algorithm.

Recently, Graham, Li and Yao [6] studied the structure of the true optimal
key tree when restrictions A) and B) are both removed. They proved that when
p > 1 − 3−1/3 ≈ 0.307, the optimal tree is an n-star. When p ≤ 1 − 3−1/3,
they proved a constant upper bound 4 for the branching degree of any internal
node v other than the root, and also an upper bound of −4/ log q, where q =
1 − p, for the size of the subtree rooted at v. By using these characterizations,
they designed an O(n4) algorithm for computing the optimal key tree for n
users. The running time of their algorithm is in fact linear when p is a fixed

286 M. Li et al.

constant, but becomes O(n4) when p approaches 0. Although polynomial, the
O(n4) complexity is still too costly for large scale applications. Indeed, the case
p → 0 (when user changes are sparse) is a realistic scenario in many applications.
In this paper, we investigate more efficient heuristics for the sparse case. As
shown in [6], degree 3 is quite favored in the optimal tree as p → 0. In fact, their
results implied that for n = 3t, the optimal key tree is a balanced ternary tree,
and for many other values of n, the optimal tree is as close to a balanced ternary
tree with n leaves as possible, subject to some number-theoretical properties
of n.

In this paper, we investigate how closely a “simple” ternary tree can ap-
proximate the optimal tree for arbitrary n. We propose a heuristic LR which
constructs a ternary tree in a left to right manner and prove that it gives a
nearly 2-approximation to the optimal tree. Simulation results show that the
heuristic performs much better than the theoretical bound we obtain. We then
design a refined heuristic LB whose approximation ratio is shown to be 1 + ε as
p → 0 where ε can be made arbitrarily small.

The rest of the paper is organized as follows. In Section 2, we describe the
batch update model in detail. In Section 3, we establish a lower bound for the
optimal tree cost as p → 0. The lower bound is useful for obtaining performance
ratios for our approximation algorithms. In Section 4, We describe the heuristic
LR and analyze its performance against the optimal key tree; some simulation
results are also given. Then we design a refined heuristic LB and analyze its
performance in Section 5. Finally, we summarize our results and mention some
open problems in Section 6.

2 Preliminaries

Before giving a precise formulation of the key tree optimization problem to be
considered, we briefly discuss its motivation and review the basic key tree model
for group key management. This model is referred to in the literature either as
key tree [3] or LKH (logical key hierarchy) [7].

In the key tree model, there are a Group Controller (GC), represented by the
root, and n subscribers (or users) represented by the n leaves of the tree. The
tree structure is used by the GC for key management purposes. Associated with
every node of the tree (whether internal node or leaf) is an encryption key. The
key associated with the root is called the Traffic Encryption Key (TEK), which
is used by the subscribers for accessing encrypted service contents. The key kv

associated with each non-root node v is called a Key Encryption Key (KEK)
which is used for updating the TEK when necessary. Each subscriber possesses
all the keys along the path from the leaf representing the subscriber to the root.

In the batch update model to be considered, only simultaneous join/leave is
allowed, that is, whenever there is a revoked user, a new user will be assigned
to that vacant position. This assumption is justified since, in a steady state, the
number of joins and departures would be roughly equal during a batch processing
period. To guarantee forward and backward security, a new user assigned to

Approximately Optimal Trees for Group Key Management 287

a leaf position will be given a new key by the GC and, furthermore, all the
keys associated with the ancestors of the leaf must be updated by the GC. The
updates are performed from the lowest ancestor upward for security reasons.
We then explain the updating procedure together with the updating cost in the
following.

The GC first communicates with each new subscriber separately to assign a
new key to the corresponding leaf. After that, the GC will broadcast certain
encrypted messages to all subscribers in such a way that each valid subscriber
will know all the new keys associated with its leaf-to-root path while the revoked
subscribers will not know any of the new keys. The GC accomplishes this task
by broadcasting the new keys, in encrypted form, from the lowest level upward
as follows. Let v be an internal node at the lowest level whose key needs to be
(but has not yet been) updated. For each child u of v, the GC broadcasts a
message containing Eknew

u
(knew

v), which means the encryption of knew
v with the

key knew
u . Thus the GC sends out dv broadcast messages for updating kv if v

has dv children. Updating this way ensures that the revoked subscribers will not
know any information about the new keys (as long as they do not know the new
key knew

u in a lower level, they can not get the information of the new key knew
v

in a higher level) while current subscribers can use one of their KEKs to decrypt
the useful Eknew

u
(knew

v) sequentially until they get the new TEK.
We adopt the probabilistic model introduced in [5] that each of the n posi-

tions has the same probability p to independently experience subscriber change
during a batch rekeying period. Under this model, an internal node v with Nv

leaf descendants will have probability 1− qNv that its associated key kv requires
updating, where q = 1 − p. The updating incurs dv · (1 − qNv) expected broad-
cast messages by the procedure described above. We thus define the expected
updating cost C(T) of a key tree T by C(T) =

∑
v dv · (1 − qNv) where the

sum is taken over all the internal nodes v of T . It is more convenient to remove
the factor dv from the formula by associating the weight 1 − qNv with each of
v’s children. This way we express C(T) as a node weight summation: for each
non-root tree node u, its node weight is defined to be 1 − qNv where v is u’s
parent. The optimization problem we are interested in can now be formulated
as follows.

Optimal Key Tree for Batch Updates: We are given two parameters 0 ≤
p ≤ 1 and n > 0. Let q = 1 − p. For a rooted tree T with n leaves and node set
V (including internal nodes and leaves), define a weight function w(u) on V as
follows. Let w(r) = 0 for root r. For every non-root node u, let w(u) = 1 − qNv

where v is u’s parent. Define the cost of T as C(T) =
∑

u∈V w(u). Find a T for
which C(T) is minimized. We say that such a tree is (p, n)-optimal, and denote
its cost by OPT(p, n).

3 Lower Bound for Optimal Tree Cost as p → 0

In a tree T with n leaves, denote the set of leaf nodes as L(T) and for each leaf
u, let the set of ancestor nodes of u (including u itself) be denoted by Anc(u).

288 M. Li et al.

To obtain a lower bound for the optimal tree cost, we first rewrite C(T) as

C(T) =
∑

u∈V

w(u) =
∑

u∈V

Nu · w(u)
Nu

=
∑

u∈L(T)

∑

x∈Anc(u)

w(x)
Nx

=
∑

u∈L(T)

c(u),

where we define c(u) =
∑

x∈Anc(u)
w(x)
Nx

. In other words, we distribute the weight
w(u)associated with every node u ∈ V evenly among its leaf descendants, and
then sum the cost over all the leaves of T .

Let the path from a leaf u to the root r be p0p1 . . . pk−1pk, where p0 = u

and pk = r. Note that c(u) =
∑k−1

i=0
1−q

Npi+1

Npi
is uniquely determined by the

sequence of numbers {Np0 , Np1 , . . . , Npk
}, where Np0 = 1 and Npk

= n. We will
thus extend the definition of c to all such sequences {a0, a1, . . . , ak} and analyze
the minimum value of c.

Definition 1. Let Sn denote any sequence of integers {a0, a1, . . . , ak} satisfying
1 = a1 < a2 < . . . < ak = n. We call Sn an n-progression. Define c(p, Sn) to
be c(p, Sn) =

∑k
i=1

1−qai

ai−1
and let F (p, n) to be the minimum of c(p, Sn) over

all n-progressions Sn. For n = 3t, the special n-progression {1, 3, 9, . . . , 3t−1, 3t}
will be denoted by S∗

n.

Thus, we have C(T) ≥ n · F (p, n) for any tree T with n leaves, and hence

OPT(p, n) ≥ n · F (p, n). (1)

Next we focus on properties of c(p, Sn) and F (p, n). First, we derive the fol-
lowing monotone property for F (p, n).

Lemma 1. F (p, n) < F (p, n + 1).

Proof. Suppose Sn+1 = {1, a1, a2, . . . , ak−1, n+1} is the optimal (n+1)-progre-
ssion that achieves the value F (p, n + 1). Let Sn = {1, a1, a2, . . . , ak−1, n}. Be-
cause 1−qn+1

ak−1
> 1−qn

ak−1
, we know that c(p, Sn+1) > c(p, Sn). By definition, we have

F (p, n) ≤ c(p, Sn). Combining these two facts, we have F (p, n) < F (p, n + 1). �

For a given n-progression Sn = {1, a1, a2, . . . , ak−1, n}, the slope of c(p, Sn) at
p = 0 is denoted by λSn and can be expressed as λSn =

∑k−1
i=0

ai+1
ai

where a0=1
and ak=n. The minimum c(p, Sn) as p → 0 will be achieved by those Sn with
c(p, Sn) having the smallest slope at p = 0. We next prove the following lemma.

Lemma 2. When n = 3t, the n-progression S∗
n = {1, 3, 9, . . . , 3t−1, 3t} satisfies

the following relation: λSn ≥ 0.995 · λS∗
n

for any Sn.

Proof. For positive numbers b1, b2, . . . , bk, we have
∑k

i=1 bi ≥ k(
∏k

i=1 bi)
1
k .

Therefore, λSn ≥ kn
1
k if Sn consists of k numbers. We now estimate a lower

bound for f(k) = kn
1
k when n = 3t. Consider g(k) = log3 f(k) = ln k

ln 3 + t
k .

Notice that g′(k) = 1
k ln 3 − t

k2 . Therefore, we have g′(k) < 0 when k < t ln 3 and

Approximately Optimal Trees for Group Key Management 289

g′(k) > 0 when k > t ln 3. This implies that g(k), and hence f(k), is minimized
when k = t ln 3. Therefore, we have f(k) ≥ f(t ln 3) = t3

1
ln 3 ln 3, which implies

λSn ≥ t3
1

ln 3 ln 3. On the other hand, we know that λS∗
n

= f(t) = 3t. Hence we
have

λSn

λS∗
n

≥ f(t ln 3)
f(t)

= 3
1+ln ln 3

ln 3 −1 ≈ 0.9950250.995. ≥ �

We obtain the following theorem from the above analysis.

Theorem 1. For 3t ≤ n < 3t+1, we have OPT(p, n) ≥ 0.995 · n · c(p, S∗
3t) when

p → 0.

Proof. This is a direct consequence of Lemma 1, Lemma 2 and inequality (1). �

4 Heuristic LR and Its Approximation Ratio

We design the heuristic LR as follows. LR maintains an almost balanced ternary
tree (i.e., the depth of any two leaves differ by at most 1) in which at most one
internal node has degree less than 3. Moreover, LR adds new leaves incrementally
in a left to right order. Figure 1 shows the tree we get by using LR for n =
2, . . . , 9. We can also recursively build a key tree using LR in the following way.
For a tree with n ≥ 3 leaves, the number of leaves in the root’s three subtrees is
decided by the table below; while for a tree with 2 leaves, the tree structure is a
root with two children (a star).

No. of leaves (Left) No. of leaves (Middle) No. of leaves (Right)

3t ≤ n < 5 · 3t−1 n − 2 · 3t−1 3t−1 3t−1

5 · 3t−1 ≤ n < 7 · 3t−1 3t n − 4 · 3t−1 3t−1

7 · 3t−1 ≤ n < 3t+1 3t 3t n − 2 · 3t

We denote the tree with n leaves constructed by LR as Tn. Note that this
heuristic only needs linear time to construct a ternary tree. Furthermore, the
structure of the ternary tree can be decided in log n time because every time we
go down the tree, there is at most one subtree whose number of leaves is not a
power of 3 and needs further calculation.

Let LR(p, n) denote the cost of the ternary tree constructed by LR for given
n and p. To obtain an upper bound for LR(p, n), we first prove the following
lemmas.

Lemma 3. The inequality LR(p, n) <LR(p, n+1) holds for all n>0 and 0<p<1.

Proof. We view C(Tn) as the node weight summation given in Section 2 and
compare the cost of the corresponding nodes w(u) and w(u′) in Tn and Tn+1 re-
spectively. Due to the addition of one leaf node, if w(u)=1−qk, then w(u′)=w(u)
or w(u′)=1 − qk+1. Therefore we have w(u)≤w(u′). There are also additional
weights associated with nodes that appear in Tn+1 but not in Tn. This proves
the lemma. �

290 M. Li et al.

Fig. 1. Trees generated by LR for n = 2 to 9

Lemma 4. For any integer t > 0 and 0 < q < 1, we have 1−q3t

3t−1 > 1−q3t+1

3t .

Proof. Note that 3
∑3t

i=1 qi−1 > (1 + q3t

+ q2·3t

)
∑3t

i=1 qi−1 =
∑3t+1

i=1 qi−1. The
lemma is proved by multiplying 1−q

3t on both sides. �

Lemma 5. For any integer t > 0 and 0 < q < 1, we have

LR(p, 3t+1) < 3(1 +
1
t
)LR(p, 3t).

Proof. By Lemma 4 and the definitions, we have c(p, S∗
3t)/t > c(p, S∗

3t+1)/(t+1).
Therefore, we have

LR(p, 3t+1)=3t+1·c(p, S∗
3t+1) < 3(1+

1
t
)·3t·c(p, S∗

3t)=3(1+
1
t
)LR(p, 3t). �

Now we are ready to prove the first approximation ratio.

Theorem 2. When p → 0, we have LR(p, n) < 3.015(1 + 1
�log3 n�)OPT(p, n).

Proof. Suppose 3t ≤ n < 3t+1. We claim the following
LR(p, n) < LR(p, 3t+1)

< 3(1 +
1
t
)LR(p, 3t)

= 3(1 +
1
t
)3t · c(p, S∗

3t)

≤ 3.015(1 +
1
t
)OPT(p, n).

The first inequality is implied by Lemma 3 and the second one by Lemma 5.
The last inequality holds due to Theorem 1. �
In the above discussion, we use the smallest balanced ternary tree with no less
than n leaves as an upper bound for LR(p, n). By adding a small number of
leaves instead of filling the whole level, we can obtain a better approximation
ratio which is shown below.

We divide the integers in the range (3t, 3t+1] into three consecutive subsets of
equal size H = 3t+1−3t

3 as follows:

P1 = (3t, 3t + H], P2 = (3t + H, 3t + 2H], P3 = (3t + 2H, 3t+1].

Approximately Optimal Trees for Group Key Management 291

For any n ∈ Pi, we can use LR(p, n′) where n′ = max Pi to upper bound the
value of LR(p, n) by Lemma 3. Let Δt = LR(p, 3t) − LR(p, 3t−1) and define
a = 1 − q3t+1

. Notice that

LR(p, 3t+1) = 3a + 3 · LR(p, 3t) = 3a + 3Δt + 3 · LR(p, 3t−1).

It’s not hard to verify the following inequalities based on the definition of the
tree cost:

LR(p, 7 · 3t−1) < LR(p, 3t+1) − Δt,

LR(p, 5 · 3t−1) < LR(p, 3t+1) − 2Δt.

We now derive a lower bound for the value of Δt.

Lemma 6. For 0 < p < 1, we have Δt ≥ 1
6 · LR(p, 3t+1).

Proof. We only need to prove Δt > a + LR(p, 3t−1). By the definition of Δt, we
know that Δt = 2 · LR(p, 3t−1) + 3(1 − q3t

). Then by using Lemma 4, we have
3(1 − q3t

) ≥ (1 − q3t+1
), which implies LR(p, 3t−1) + 3(1 − q3t

) ≥ (1 − q3t+1
).

Therefore, we have Δ = 2 ·LR(p, 3t−1)+ 3(1− q3t

) > LR(p, 3t−1) + a. �

By making use of Lemma 6, we can obtain the following theorem on the perfor-
mance of LR (proof given in the Appendix).

Theorem 3. When p → 0, we have LR(p, n) < 2.01(1 + 1
�log3 n�)OPT(p, n).

Proof. We prove the theorem using Lemma 6 and similar arguments used in
Theorem 2. The discussion below is divided into three cases according to the
value of n.

Case A) 3t < n ≤ 5 · 3t−1.

LR(p, n) < LR(p, 5 · 3t−1)

<
2
3
LR(p, 3t+1)

<
2
3
· 3.015(1 +

1
t
) · 3t

n
· OPT(p, n)

≤ 2.01(1 +
1

�log3 n�) · OPT(p, n).

Case B) 5 · 3t−1 < n ≤ 7 · 3t−1.

LR(p, n) < LR(p, 7 · 3t−1)

<
5
6
LR(p, 3t+1)

<
5
6
· 3.015(1 +

1
t
) · 3t

n
· OPT(p, n)

<
5
6
· 3.015(1 +

1
t
) · 3

5
· OPT(p, n)

< 2.01(1 +
1

�log3 n�) · OPT(p, n).

Case C) 7 · 3t−1 < n ≤ 3t+1.

292 M. Li et al.

LR(p, n) < LR(p, 3t+1)

< 3.015(1 +
1
t
) · 3t

n
· OPT(p, n)

< 3.015(1 +
1
t
) · 3

7
· OPT(p, n)

< 2.01(1 +
1

�log3 n�) · OPT(p, n). �

We run simulations on the performance of LR for various values of p and n. Define
Ratio(p, n) = LR(p, n)/OPT(p, n). Figure 2(a) shows Ratio(p, n) as a function of
n for p = 0.1 and p = 0.01 respectively. Within the simulation range, we see that
for the same n, Ratio(p, n) is larger when p is larger. For p = 0.1 the maximum
ratio within the range is below 1.09. We then simulated the performance of LR
when p → 0 as a function of n. Figure 2(b) shows Ratio(p, n) when we set
p = 0.01/n3. We found the maximum ratio reached within the simulation range
to be less than 1.018. Figure 3 plots Ratio(p, n) as a function of p while n is
chosen to be n = 100 and n = 500 respectively. Notice that each curve has some
dips and is not monotonically increasing with p.

5 Heuristic LB and Its Approximation Ratio

In this section, we consider a more refined heuristic LB (Level Balance) and
show that it has an approximation ratio of 1 + ε as p → 0.

The heuristic LB adopts two different strategies for adding a new leaf to a
tree when n grows from 3t to 3t+1. Let T ′

n denote the ternary tree with n leaves
constructed by LB. When 3t < n ≤ 2 · 3t, the heuristic LB changes the leftmost
leaf on level t in T ′

n−1 into a 2-star (i.e., an internal node with 2 leaf children);
when 2 · 3t < n ≤ 3t+1, the heuristic LB changes the leftmost 2-star on level t
in T ′

n−1 into a 3-star (an internal node with three leaf children).
In the following discussion, we refer to the initial formulation of C(T) as a

node weight summation over all nodes: C(T) =
∑

u∈V w(u). Define the slope of
C(T) at p = 0 as βT and let t = �log3n�. When T ′

3t changes incrementally to T ′
n

where 3t < n ≤ 2 ·3t, every time the size is increased by 1, we change a single leaf
node to a 2-star. Therefore, in all intermediate levels (except for the root and
the bottom level), exact three nodes will undergo a weight change: it changes
from 1 − qNv to 1 − qNv+1. For the two newly added nodes, the weight of each
node is 1−q2. Altogether, these changes contribute an increase of 3t+2 ·2 to the
slope βT ′

n
. When T ′

2·3t is changes incrementally to T ′
n where 2 · 3t < n ≤ 3t+1,

by using a similar argument, we conclude that every time the size is increased
by 1, all weight changes together contribute an increase of 3t + 9 − 4 = 3t + 5
to the slope βT ′

n
, where 9−4 means the slope increase due to 3(1−q3)−2(1−q2)

Approximately Optimal Trees for Group Key Management 293

1
1.01
1.02

1.03
1.04
1.05
1.06

1.07
1.08
1.09

10 110 210 310 410 510 610 710 810 910 1010
n

Ratio

p = 0.01

p = 0.1

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

10 110 210 310 410 510 610 710 810 910 1010
n

Ratio

(a) p = 0.1 and p = 0.01 (b) p = 0.01/n3

Fig. 2. Simulation results on Ratio(p, n) for p = 0.1, p = 0.01 and p = 0.01/n3

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

3.00E-06 1.20E-05 4.80E-05 0.000192 0.000768 0.003072 0.012288 0.049152 0.196608

p

Ratio

n = 100

n = 500

Fig. 3. Simulation results for fixed n

(because we change a 2-star to a 3-star). To summarize, our new heuristic has
the following property.

βT ′
n

=
{

βT ′
n−1

+ 3t + 4 if 3t < n ≤ 2 · 3t,

βT ′
n−1

+ 3t + 5 if 2 · 3t < n ≤ 3t+1.
(2)

Using the base value of βT ′
n

and the recurrence relation (2), we have the
following lemma.

Lemma 7

βT ′
n

=
{

(3t + 4)n − 4 · 3t if 3t < n ≤ 2 · 3t,
(3t + 5)n − 6 · 3t if 2 · 3t < n ≤ 3t+1.

By Lemma 1 and Theorem 1, we can prove the following Theorem. Please refer
to the Appendix for details.

Theorem 4. When p → 0, we have C(T ′
n) < 1.005(1 + 1

�log3 n�)OPT(p, n).

Proof. To compare the cost of two trees as p → 0 is in fact comparing slopes of
the corresponding C(T) at p = 0. Note that for a full ternary tree T with height

294 M. Li et al.

t, the slope of C(T) at p = 0 equals 3t·3t. Always let t = �log3n� in the following.
Using Lemma 1, we can prove the theorem by proving βT ′

n
< (1 + 1

t) · 3t · n as
follows.

Case A) n = 3t + r where 0 < r ≤ 3t. In this case, we have

βT ′
n

= 3t · 3t + r(3t + 4)
< 3t · 3t + r(3t + 3) + 3 · 3t

= (3t + 3)(3t + r)

= (1 +
1
t
) · 3t · n.

Case B) n = 2 · 3t + r where 0 < r ≤ 3t. In this case, we have

βT ′
n

= 3t · 3t + 3t · (3t + 4) + r(3t + 5)
= 2 · 3t · 3t + 4 · 3t + 3t · r + 5r

≤ 2 · 3t · 3t + 6 · 3t + 3t · r + 3r

= (3t + 3)(2 · 3t + r)

= (1 +
1
t
) · 3t · n.

�

The upper bound in Theorem 4 can be further improved to 1 + ε where ε can
be made arbitrarily small when p → 0. To accomplish this, we make use of
the following technical lemma which was originally proved in [6] for a different
purpose.

Lemma 8. For any tree T with n leaves, we have

βT ≥
{

(3t + 4)n − 4 · 3t if 3t < n ≤ 2 · 3t,
(3t + 5)n − 6 · 3t if 2 · 3t < n ≤ 3t+1.

By comparing Lemma 7 and 8 we can deduce that, for the tree T ′
n constructed

by the heuristic LB, the slope of C(T ′
n) is equal to the lower bound of the slope

of the optimal key tree with n leaves. Therefore, as p → 0, the approximation
ratio of LB can be arbitrarily close to 1. This leads to the following theorem.

Theorem 5. For any fixed n, we have C(T ′
n) < (1 + ε)OPT(p, n) when p → 0.

6 Conclusions

In this paper, we consider the group key management problem for broadcasting
applications. In particular, we focus on the case when membership changes are
sparse. Under the assumption that every user has probability p of being replaced
by a new user during a batch rekeying period, previously available algorithm
requires O(n4) time to build the optimal key tree as p → 0. We design a linear-
time heuristic LR to construct an approximately good key tree and analyze its
performance as p → 0. We prove that LR produces a nearly 2-approximation

Approximately Optimal Trees for Group Key Management 295

to the optimal key tree. Simulation results show that LR performs much better
than the theoretical bound we obtain. We also design a refined heuristic LB
whose approximation ratio is shown to be 1 + ε as p → 0.

Some interesting problems remain open. We believe that the heuristics LB and
LR also perform well for p in a more general range, not just when p approaches 0.
In [6], it was shown that a star is the optimal tree when p ∈ (0.307, 1). Do LR and
LB perform well for all p ≤ 0.307? We are so far not able to prove a constant
approximation ratio for this range. To prove a constant bound, one needs to
understand better the mathematical structure of the optimal n-progression Sn

that can achieve the value F (p, n) for arbitrary p and n.

References

1. S. Rafaeli and D. Hutchison, A Survey of Key Management for Secure Group Com-
munication, ACM Computing Surveys, v.35 n.3, p.309-329, 2003.

2. M. T. Goodrich, J. Z. Sun, and R. Tamassia, Efficient Tree-Based Revocation in
Groups of Low-State Devices, Proceedings of CRYPTO, 2004.

3. C. K. Wong and M. G. Gouda, and S. S. Lam, Secure Group Communications Using
Key Graphs, IEEE/ACM Transactions on Networking, v.8 n.1, p.16-30, 2003.

4. X. S. Li, Y. R. Yang, M. G. Gouda, and S .S. Lam, Batch Re-keying for Secure
Group Communications, WWW10, May2-5, 2001, Hong Kong.

5. F. Zhu, A. Chan, and G. Noubir, Optimal Tree Structure for Key Management of
Simultaneous Join/Leave in Secure Multicast, Proceedings of MILCOM, 2003.

6. R. L. Graham, M. Li and F. F. Yao, Optimal Tree Structures for Group Key Man-
agement with Batch Updates, to appear in SIAM Journal on Discrete Mathematics.

7. D. Wallner, E. Harder, and R. C. Agee, Key Management for Multicast: Issues and
Architectures, RFC 2627, June 1999.

On Deciding Deep Holes of Reed-Solomon Codes

Qi Cheng and Elizabeth Murray�

School of Computer Science
The University of Oklahoma
Norman, OK 73019, USA
{qcheng, wumpus}@ou.edu

Abstract. For generalized Reed-Solomon codes, it has been proved [7]
that the problem of determining if a received word is a deep hole is co-
NP-complete. The reduction relies on the fact that the evaluation set of
the code can be exponential in the length of the code – a property that
practical codes do not usually possess. In this paper, we first present a
much simpler proof of the same result. We then consider the problem for
standard Reed-Solomon codes, i.e. the evaluation set consists of all the
nonzero elements in the field. We reduce the problem of identifying deep
holes to deciding whether an absolutely irreducible hypersurface over a fi-
nite field contains a rational point whose coordinates are pairwise distinct
and nonzero. By applying Cafure-Matera estimation of rational points on
algebraic varieties, we prove that the received vector (f(α))

α∈Fp
for the

Reed-Solomon [p − 1, k]p, k < p1/4−ε, cannot be a deep hole, whenever
f(x) is a polynomial of degree k + d for 1 ≤ d < p3/13−ε.

Keywords: Reed-Solomon codes, deep hole, NP-complete, algebraic
surface.

1 Introduction

A signal, when transfered over a long distance, always has a possibility of being
corrupted. Error-detecting and error-correcting codes alleviate the problem and
make the modern communication possible. The Reed-Solomon codes are very
popular in engineering a reliable channel due to their simplicity, burst error-
correction capabilities, and the powerful decoding algorithms they admit.

Let Fq be the finite field with q elements, where q is a prime power. The
encoding process of generalized Reed-Solomon codes can be thought of as a map
from Fk

q → Fn
q , in which a message (a1, a2, · · · , ak) is mapped to a vector

(f(x1), f(x2), · · · , f(xn)),

where f(x) = akxk−1 + ak−1x
k−2 + · · · + a1 ∈ Fq[x] and {x1, x2, · · · , xn} ⊆ Fq

is called the evaluation set. (Note that different encoding schemes are possible.)
It is not difficult to see that the set of codewords formed in this manner is a

linear subspace of Fn
q which has dimension k. Generalized Reed-Solomon codes

� This research is partially supported by NSF Career Award CCR-0237845.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 296–305, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Deciding Deep Holes of Reed-Solomon Codes 297

are therefore linear codes, because they are linear subspaces of Fn
q , where n is

the length of a codeword.
The Hamming distance between two codewords is the number of coordinates

in which they differ – or one can think of this as the number of modifications
required to transform one vector into another. A Hamming ball of radius m is a
set of vectors within Hamming distance m to some vector in Fn

q . The minimum
distance of a code is the smallest distance between any two distinct codewords,
and is a measure of how many errors the code can correct or detect. The covering
radius of a code is the maximum possible distance from any vector in Fn

q to the
closest codeword. A deep hole is a vector which achieves this maximum. The
minimum distance of generalized Reed-Solomon codes is n− k +1. The covering
radius of generalized Reed-Solomon codes is n − k.

A code is useless without a decoding algorithm, which takes some received
word (a vector in Fn

q) and outputs a message. The message should correspond,
ideally, to the codeword which is closest, with respect to Hamming distance,
to the received word. If we assume that each coordinate in a received word is
equally likely to be in error, then the closest codeword is the most likely to be
the intended transmission.

Standard Reed-Solomon codes use F∗
q as their evaluation set. If the evaluation

set is Fq, then the code is called an extended Reed-Solomon code. If the evaluation
set is the set of rational points in a projective line over Fq, then the code is
known as a doubly extended Reed-Solomon code. The difference between standard
Reed-Solomon codes, extended Reed-Solomon codes and doubly extended Reed-
Solomon codes is not significant, but generalized Reed-Solomon codes are quite
unique, as the evaluation set can be exponentially larger than the length of a
codeword.

1.1 Related Work

The pursuit of efficient decoding algorithms for Reed-Solomon codes has yielded
intriguing results. If the radius of a Hamming ball centered at some received
word is less than half the minimum distance, there can be at most one codeword
in the Hamming ball. Finding this codeword is called unambiguous decoding. It
can be efficiently solved, see [1] for a simple algorithm.

If the radius is less than n − √
n(k − 1), the problem can be solved by the

Guruswami-Sudan algorithm [6], which outputs all the codewords inside a Ham-
ming ball. If the radius is stretched further, the number of codewords in a Ham-
ming ball may be exponential. We then study the bounded distance decoding
problem, which outputs just one codeword in any Hamming ball of a certain ra-
dius. More importantly, we can remove the restriction on radius and investigate
the maximum likelihood decoding problem, which is the problem of computing
the closest codeword to any given vector in Fn

q .
The question on decodability of Reed-Solomon codes has attracted attention

recently, due to recent discoveries on the relationship between decoding Reed-
Solomon codes and some number theoretical problems. Allowing exponential
alphabets, Guruswami and Vardy proved that the maximum likelihood decoding

298 Q. Cheng and E. Murray

is NP-complete. They essentially showed that deciding deep holes is co-NP-
complete. When the evaluation set is precisely the whole field or F∗

q , an NP-
completeness result is hard to obtain, Cheng and Wan [3] managed to prove
that the decoding problem of Reed-Solomon codes at certain radius is at least
as hard as the discrete logarithm problem over finite fields. In this paper, we
wish to establish an additional connection between decoding of standard Reed-
Solomon codes and a classical number-theoretic problem – that of determining
the number of rational points on an algebraic hypersurface.

1.2 Our Results

The decoding problem of Reed-Solomon codes can be reformulated into the
problem of curve fitting or noisy polynomial reconstruction. In this problem, we
are given n points

(x1, y1), (x2, y2), · · · , (xn, yn)

in F2
q . The goal is to find polynomials of degree k − 1 that pass as many of the

n points as possible. Note that all the x-coordinates are distinct.
Given the received word w = (y1, y2, · · · , yn), we are particularly interested

in the polynomial obtained by interpolating the n points.

w(x) = y1
(x − x2)(x − x3) · · · (x − xn)

(x1 − x2)(x1 − x3) · · · (x1 − xn)

+ · · · + yi
(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (x1 − xn)

+ · · · + yn
(x − x1)(x − x2) · · · (x − xn−1)

(xn − x1)(xn − x2) · · · (xn − xn−1)
.

In this paper, we say that a polynomial w(x) generates a vector w ∈ Fn
q if

w = (w(x1), w(x2), · · · , w(xn)).

If the polynomial w(x) has degree k− 1 or less, w must be a codeword, and vice
versa (since codewords consist of the encodings of all messages of length k). If
w(x) has degree k, w must be a deep hole (as we will later show). What if it has
degree larger than k? Can it be a deep hole?

In this paper, we try to answer this question. If a received word is a deep
hole, there is no codeword which is at distance n−k−1 or closer to the received
word. Hence if the distance bound is n − k − 1, a decoding algorithm can tell
a received word is deep hole or not by checking whether there is a codeword
in the Hamming ball of radius n − k − 1. This shows that maximum likelihood
decoding of Reed-Solomon codes, as well as the bounded distance decoding at
radius n − k − 1, is at least as hard as deciding deep holes. Observe that the
bounded distance decoding at a distance of n−k or more can be done efficiently.
It is hoped that we can decrease the radius until we reach the domain of hard
problems.

On Deciding Deep Holes of Reed-Solomon Codes 299

We are mainly concerned with the case when the evaluation set consists of
nonzero elements of the field. Notice that for generalized Reed-Solomon code,
the bounded distance decoding at distance n− k − 1 is NP-hard. We reduce the
problem to deciding whether an absolutely irreducible hypersurface contains a
rational point whose coordinates are pairwise distinct and nonzero. From the
reduction, we show that if k and the degree of w(x) are small, w(x) cannot
generate deep holes. More precisely

Theorem 1. Let p be a prime and 1 < k < p1/4−ε be a positive integer. The
vector (w(α))α∈Fp

is not a deep hole in the Reed-Solomon code [p, k]p if the

degree of w(x) is greater than k but less than k + p3/13−ε.

Roughly speaking, the theorem indicates that a vector generated by a low degree
polynomial can not be a deep hole, even though it is very far away from any
codeword.

To prove the theorem, we need to estimate the number of rational points on
an algebraic hypersurface over a finite field. This problem is one of the central
problems in algebraic geometry and finite field theory. Weil, through his proof of
the Riemann Hypothesis for function fields, provided a bound for the number of
points on algebraic curves. This bound was later generalized by Weil and Lang
to algebraic varieties. Schmidt [8] obtained some better bounds for absolutely
irreducible hypersurfaces by elementary means. In this paper, we will use an
improved bound, obtained by Cafure and Matera [2] very recently. But first we
give a new proof that deciding whether or not a received word is a deep hole is
co-NP-complete. Our reduction is straight-forward and much simpler that the
one constructed by Guruswami and Vardy.

2 A Simple Proof That the Maximum Likelihood
Decoding Is NP-Complete

We reduce the following finite field subset sum problem [5, Page 233] to deep
hole problem of generalized Reed-Solomon codes.

Instance: A set of n elements A = {x1, x2, x3, · · · , xn} ⊆ F2m , an element
b ∈ F2m and a positive integer k < n.

Question: Is there a nonempty subset {xi1 , xi2 , · · · , xik+1} ⊆ A of cardinality
k + 1 such that

xi1 + xi2 + · · · + xik+1 = b.

Now consider the generalized Reed-Solomon code [n, k]2m with evaluation set
A. Suppose we have a received word

w = (f(x1), f(x2), · · · , f(xn))

where f(x) = xk+1 − bxk. If the word is not a deep hole, it is at most n− k − 1
away from a codeword. Suppose that the codeword is generated by t(x). Then

300 Q. Cheng and E. Murray

t(x) has degree at most k − 1 and f(x)− t(x) has at least k + 1 distinct roots in
A. Since f(x) − t(x) is a monic polynomial with degree k + 1, we have

f(x) − t(x) = xk+1 − bxk − t(x) = (x − xi1)(x − xi2) · · · (x − xik+1),

for some xi1 , xi2 , · · · , xik+1 in A. Therefore xi1 + xi2 + · · · + xik+1 = b.
On the other hand, if xi1 +xi2 +· · ·+xik+1 = b, f(x)−(x−xi1)(x−xi2) · · · (x−

xik+1) generates a codeword. It shares k + 1 values with w, thus has distance
less than n − k − 1 away from a codeword, so it cannot be a deep hole.

In summary, w is not a deep hole if and only if the answer to the instance
of the finite field subset sum problem is “Yes”. Hence the deep hole problem is
co-NP-complete.

By a similar argument, we know that the polynomials of degree k must gen-
erate deep holes. Hence

Corollary 1. For a generalized Reed-Solomon code [n, k]q, there are at least
(q − 1)qk many deep holes.

We remark that the argument cannot work for small evaluation sets, because
the subset sum is easy in that case. In fact, if the evaluation set is the whole
field and k > 1, then a polynomial of degree k + 1 cannot generate a deep hole.

3 A Hypersurface Related to Deep Holes

The above argument motivates us to consider vectors generated by polynomials
of larger degree. We are given some received word w and we want to know
whether or not it is a deep hole. The received word is generated by w(x) of the
form f(x) + t(x) where f(x) is some polynomial containing no terms of degree
smaller than k, and t(x) is some polynomial containing only terms of degree k−1
or smaller. For purposes of determining whether or not w is a deep hole, we fix
a monic f(x)

f(x) = xk+d + fd−1x
k+d−1 + · · · + f0x

k ∈ Fq[x]

and let t(x) vary and ask whether f(x) + t(x) has k + 1 roots, or perhaps more.
In its essence, the question is one of finding a polynomial whose leading terms

are f(x), and which has as many zeroes as possible over a certain field. (As
stated earlier, for k > 1, if f(x) has degree k, then w is a deep hole. If f(x) has
degree k + 1, then it is not a deep hole.)

The most obvious way to approach this problem is to symbolically divide
f(x) by a polynomial that is the product of k + 1 distinct (but unknown) linear
factors, and determine whether or not it is possible to set the the leading term of
the remainder, i.e., the coefficient of xk, equal to zero. If the leading coefficient
is 0, the remainder has degree k − 1 or less in x, which generates a codeword.
The distance between the codeword and w will be at most n − k − 1.

A polynomial that is the product of k + 1 distinct linear factors will have the
elementary symmetric polynomials as coefficients,

On Deciding Deep Holes of Reed-Solomon Codes 301

Π = (x − x1)(x − x2)...(x − xk+1) = xk+1 + π1x
k + π2x

k−1 + ... + πk+1,

where πi is the i-th symmetric polynomial in x1, x2, · · · , xk+1.
Since Π is monic, the remainder of the division of f(x) by Π will be a poly-

nomial in Fq[x1, x2, · · · , xk+1][x] of degree less than k + 1. Denote the leading
coefficient of the remainder by Lf0,f1,··· ,fd−1(x1, x2, · · · , xk+1). This is a multi-
variate polynomial of degree d.

As an example, imagine the division of the polynomial xk+1 by Π . We can
easily verify that the leading term of the remainder is −π1x

k. Since we can always
find k + 1 distinct values that will satisfy π1 = 0, we know that xk+1 cannot be
a deep hole. But, in most cases w(x) will have larger degree and contain many
terms, and the remainder will be a more complex multivariate polynomial in
k + 1 variables, rather than a linear polynomial in k + 1 variables. If the leading
coefficient itself has a solution where all roots are distinct and invertible, then
f(x) + t(x) cannot generate a deep hole.

We now argue that the leading coefficient of the remainder is absolutely irre-
ducible. We write

Lf0,f1,··· ,fd−1(x1, x2, · · · , xk+1) = Fd + Fd−1 + · · · + F0,

where Fi is a form containing all the terms of degree i in L. The polynomial
Lf0,f1,··· ,fd−1(x1, x2, · · · , xk+1) is absolutely irreducible if Fd is absolutely irre-
ducible. To see this, suppose that L can be factored as L′L′′. Let F ′

d1
be the

form of highest degree in L′ and F ′′
d2

be the form of highest degree in L′′. Then
we have Fd = F ′

d1
F ′′

d2
, a contradiction to the condition that Fd is absolutely

irreducible.
Fortunately Fd does not depend on fi’s.

Lemma 1. The form of the highest degree in Lf0,f1,··· ,fc−1(x1, x2, · · · , xk+1) is
exactly L0,0,··· ,0(x1, x2, · · · , xk+1).

Proof. It can be proved by mathematical induction on c.

In the next section, we argue that the term of highest degree in the leading
coefficient, which we will call χd(x1, x2, ...xk+1), is absolutely irreducible. We will
actually show that χd(x1, x2, 1, 0, 0...0) is absolutely irreducible. This is because
that χd(x1, x2, 1, 0, 0...0) has the same degree as χd(x1, x2, ...xk+1), if the former
is irreducible, so is the latter.

Lemma 2. χd(x1, x2, 1, 0, 0...0) = Σi+j≤dx1
ix2

j.

Proof. We need to compute the leading coefficient of the remainder after dividing
xk+d by (x − x1)(x − x2)(x − 1)xk−2. It is as same as the leading coefficient of
the remainder after dividing xd+2 by (x − x1)(x − x2)(x − 1). The remainder is
a quadratic polynomial in x. When we evaluate it at x1, it takes the value xd+2

1 .
When we evaluate it at x2, it takes the value xd+2

2 . When we evaluate it at 1,
it takes value 1. By interpolating, we obtain the unique polynomial satisfying
these conditions. It is

302 Q. Cheng and E. Murray

xd+2
1

(x − x2)(x − 1)
(x1 − x2)(x1 − 1)

+ xd+2
2

(x − x1)(x − 1)
(x2 − x1)(x2 − 1)

+
(x − x1)(x − x2)
(1 − x1)(1 − x2)

The leading coefficient is

xd+2
1

(x1 − x2)(x1 − 1)
+

xd+2
2

(x2 − x1)(x2 − 1)
+

1
(1 − x1)(1 − x2)

,

which is equal to Σi+j≤dx1
ix2

j .

4 A Smooth Curve

The section is devoted to the proof of the irreducibility of the bivariate polyno-
mial Σi+j≤dxiyj over Fp.

Lemma 3. Let p be a prime and d < p − 2 be a positive integer. The curve
f(x, y) = Σi+j≤dx

iyj = 0 is absolutely irreducible over Fp.

Proof. To show that f(x, y) = Σi+j≤dxiyj is absolutely irreducible, we actually
prove a stronger statement that f(x, y) = 0 is a smooth algebraic curve. It
can be verified by simple calculation that places on the curve at infinity are
nonsingular. Hence it is sufficient to show that all the affine places on the curve
are nonsingular, i.e. that the system of equations

⎧
⎨

⎩

f(x, y)=0
∂f
∂x=0
∂f
∂y =0

has no solution.
First, it is convenient to write f(x, y) as

xd + (y + 1)xd−1 + (y2 + y + 1)xd−2 + · · · + (yd + ... + 1).

We write ∂f
∂x as:

dxd−1 + (d − 1)(y + 1)xd−2 + ... + (yd−1 + · · · + 1)

and ∂f
∂y as

dyd−1 + (d − 1)(x + 1)yd−2 + ... + (xd−1 + · · · + 1)

Assume that there is a solution (X, Y) to the system of equations. Compute
(x − y)∂f

∂x :

x
∂f

∂x
= dxd + (d − 1)(y + 1)xd−1 + ... + x(yd−1 + ...1)

= (d + 1)xd + d(y + 1)xd−1 + · · · + (yd + yd−1 + · · · + 1) − f(x, y)

y
∂f

∂x
= dyxd−1 + (d − 1)(y2 + y)xd−2 + ... + (yd + ...1)

On Deciding Deep Holes of Reed-Solomon Codes 303

Their difference is:

(x − y)
∂f

∂x
= dxd + [d − (y + 1)]xd−1 + ... − (yd + ... + 1)

= (d + 1)xd + dxd−1 + (d − 1)xd−2 + · · · + 1 − f(x, y).

Since f(X, Y) must be zero, we know that:

(d + 1)Xd + dXd−1 + (d − 1)Xd−2 + · · · + 1 = 0

we multiply by the above X , and then subtract the original expression to get:

(d + 1)Xd+1 = Xd + Xd−1 + · · · + 1. (1)

Repeat the process on ∂f
∂y , we get

(d + 1)Y d+1 = Y d + Y d−1 + · · · + 1. (2)

This shows that neither X nor Y can be zero. Now, observe that

(x − y)f(x, y) = xd+1 + xd + · · · + 1 − yd+1 − yd − · · · − 1 = 0.

This means that (d + 2)Xd+1 = (d + 2)Y d+1. We also know that the right hand
sides of (1) and (2) are actually Xd+1−1

X−1 , and Y d+1−1
Y −1 . So multiplying both sides

by X − 1 for 1 and by Y − 1 for 2, we obtain

(d + 1)Xd+2 − (d + 2)Xd+1 = −1

(d + 1)Y d+2 − (d + 2)Y d+1 = −1.

Hence we have (d + 1)Xd+2 = (d + 1)Y d+2.
Since d+2 < p, this means that the characteristic of the field does not divide

either d + 1 or d + 2. We have Xd+2 = Y d+2 and Xd+1 = Y d+1. Therefore
X = Y .

At the point (X, Y), ∂f
∂x and ∂f

∂y have the same form

(d + (d − 1) + · · · + 1)Xd−1 + ((d − 1) + (d − 2) + · · ·)Xd−2 + · · · + 1 = 0.

And f(X, Y) can be written (since X = Y) as

(d + 1)Xd + dXd−1 + (d − 1)Xd−2 + · · · + 1 = 0.

If we subtract f(X, Y) from ∂f
∂x (X, Y), we get

(d + 1)Xd − ((d − 1) + (d − 2) + · · · + 1)Xd−1 − · · · − X = 0.

Divide the result by X , we have

(d + 1)Xd−1 − ((d − 1) + (d − 2) + · · · + 1)Xd−2 − · · · − 1
= (d + 1)Xd−1 + (d + (d − 1) + · · · + 1)Xd−1

= 0.

This means that (d+1)(d+2)
2 Xd−1 = 0, hence X = 0, and this is a contradiction.

304 Q. Cheng and E. Murray

5 Estimation of Number of Rational Points

Cafure and Matera [2, Theorem 5.2] have obtained the following estimation of
number of rational points on an absolutely irreducible hypersurface:

Proposition 1. An absolutely irreducible Fq-hypersurface of degree d in Fn
q

contains at least

qn−1 − (d − 1)(d − 2)qn−3/2 − 5d13/3qn−2

many Fq-rational points.

We also use the following proposition [2, Lemma 2.2].

Proposition 2. Suppose f1(x1, x2, · · · , xn) and f2(x1, x2, · · · , xn) are polyno-
mials of degree not greater than d, and they donot have a common factor. Then
the number of Fq-rational solutions of

f1 = f2 = 0

is at most d2qn−2.

We seek solutions of L(x1, x2, · · · , xk+1) but not of

Π1≤i≤k+1xiΠ1≤i<j≤k+1(xi − xj) = 0.

We count the number of rational solutions of L(x1, x2, · · · , xk+1), minus the
number of rational solutions of

{
L(x1, x2, · · · , xk+1)=0

Π1≤i≤k+1xiΠ1≤i<j≤k+1(xi − xj)=0

The number is greater than

pk − (d − 1)(d − 2)pk−1/2 − 5d13/3pk−1 − [max(d,
k2 + k + 2

2
)]2pk−1,

which is greater than 0 if d < p3/13−ε and k < p1/4−ε. This concludes the proof
of the main theorem.

6 Concluding Remarks

It has been proved that for generalized Reed-Solomon codes, the bounded dis-
tance decoding at radius n−k−1 is NP-hard. In this paper, we try to determine
the complexity of this problem for standard Reed-Solomon codes. We reduce the
problem to a problem of determining whether a hypersurface contains a ratio-
nal point of distinct coordinates. While we didnot solve the problem completely,
we show that for prime fields and small k, this problem is easy if a vector is
generated by a small degree polynomial. In essence, we ask whether there exists

On Deciding Deep Holes of Reed-Solomon Codes 305

a polynomial with many distinct rational roots under the restriction that some
coefficients are prefixed. This problem bears an interesting comparison with the
active research [4] on the construction of irreducible polynomial with some pre-
fixed coefficients.

To solve the problem for every k and every vector, there are two apparent
approaches: 1) Find a better estimation of number of rational points on the
hypersurfaces. 2) Explore the specialty of the hypersurfaces. From an average
argument, it is tempting to conjecture that the vectors generated by polynomials
of degree k are the only possible deep holes. If so, we can completely classify
deep holes. We leave it as a open problem.

References

1. E. Berlekamp and L. Welch. Error correction of algebraic block codes. U.S. Patent
Number 4633470, 1986.

2. A. Cafure and G. Matera. Improved explicit estimates on the number of solutions
of equations over a finite field. http://www.arxiv.org/abs/math.NT/0405302, 2004.

3. Qi Cheng and Daqing Wan. On the list and bounded distance decodibility of the
Reed-Solomon codes (extended abstract) (FOCS). In Proc. 45th IEEE Symp. on
Foundations of Comp. Science, pages 335–341, 2004.

4. Stephen D. Cohen. Explicit theorems on generator polynomials. Finite Fields and
Their Applications, 2005. To appear.

5. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

6. Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon
and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):
1757–1767, 1999.

7. Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood decoding of
Reed-Solomon codes is NP-hard. In Proceeding of SODA, 2005.

8. W. Schmidt. Equations over Finite Fields. An Elementary Approach, volume 536
of Lecture Notes in Mathematics. Springer-Verlag, 1976.

Quantum Multiparty Communication

Complexity and Circuit Lower Bounds

Iordanis Kerenidis1,2,�

1 CNRS
2 LRI-Univ. de Paris-Sud

Abstract. We define a quantum model for multiparty communication
complexity and prove a simulation theorem between the classical and
quantum models. As a result, we show that if the quantum k-party com-
munication complexity of a function f is Ω(n

2k), then its classical k-party
communication is Ω(n

2k/2). Finding such an f would allow us to prove
strong classical lower bounds for k ≥ log n players and make progress
towards solving a main open question about symmetric circuits.

1 Introduction

Communication complexity is a central model of computation with numerous
applications. It has been used for proving lower bounds in many areas including
Boolean circuits, time-space tradeoffs, data structures, automata, formulae size,
etc. Examples of these applications can be found in the textbook of Kushilevitz
and Nisan [12].

The “Number on the Forehead” (NoF) model of multiparty communication
complexity was introduced by Chandra, Furst and Lipton [7]. In this model,
there are k parties that wish to compute a function f : X1 × · · · × Xk → {0, 1}
on the input (x1, . . . , xk) ∈ (X1 × · · · × Xk). We can assume w.l.o.g. that
X1 = . . . = Xk = {0, 1}n. Each player sees only (k − 1) of the inputs (the
other one is on his forehead). The players communicate by writing messages
on a common blackboard. In the general model, in every round, the players
take turns writing one bit on the blackboard that might depend on the previ-
ous messages. In the Simultaneous Messages variant (SMNoF), all players write
simultaneously a single message on the blackboard. At the end of the proto-
col, the blackboard must contain enough information to compute the value of
f(x1, . . . , xk). The communication cost of the protocol is the number of bits
written on the blackboard. The deterministic k-party communication complex-
ity of f , C(f), is the communication cost of the optimal deterministic protocol
for f . In the randomized setting, we allow the players to be probabilistic, share
public coins and the output of the protocol to be correct with probability at
least 1/2 + δ. We define Cδ(f) to be the probabilistic k-party communication
complexity of f with correctness 1/2 + δ.
� Supported by the European Commission under the Integrated Project Qubit

Applications (QAP) funded by the IST directorate as Contract Number 015848.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 306–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quantum Multiparty Communication Complexity 307

In the above definition the number of players was equal to the number of
arguments of f . However, we can easily generalize the model for the case of
� ≤ k players. The model of communication remains the same and each of the �
players still receives (k − 1) arguments of f . We denote with C�

δ(f) the �-party
communication complexity of f(X1, . . . , Xk).

Multiparty communication complexity has been studied extensively and has
proved relevant to important questions in circuit lower bounds. For example,
one of the major open problems in circuit complexity is to prove that an ex-
plicit function f is not in the circuit complexity class ACC0, which is defined in
the next subsection (see [12],Open problem 6.21). By the results of [10,18], this
question reduces to proving a superlogarithmic communication lower bound for
the k-party communication complexity of some explicit function f , where the
number of players is superlogarithmic. However, all known techniques for prov-
ing multiparty communication lower bounds fail when the number of players
becomes k = log n.

In this paper, we propose a new technique for proving multiparty communi-
cation complexity lower bounds and hence, circuit lower bounds. We define a
quantum model for multiparty communication complexity, where both the play-
ers’ inputs and messages are quantum, and prove a simulation theorem between
the classical and quantum models. More specifically, we show how to simulate k
classical players with only k/2 quantum ones. This enables us to reduce questions
about classical communication to potentially easier questions about quantum
communication complexity and shows that quantum information theory could
be a powerful tool for proving classical circuit lower bounds. Similar connections
between classical and quantum computation have been proved to be very fruitful
in the last few years ([11,17,1,2]).

1.1 Multiparty Communication Complexity and Circuit Lower
Bounds

Multiparty communication complexity was introduced as a tool for the study
of boolean circuits, however the known techniques for proving lower bounds are
very limited. Babai et al. [3] have proved a lower bound of Ω(n

22k + log δ) for the
k-party communication complexity of the Generalized Inner Product function.
Raz [14] simplified their proof technique and showed a similar lower bound for
another function, namely Matrix Multiplication, which seems to be hard even for
log n players. Unfortunately, the above techniques are limited and cannot prove
lower bounds better than Ω(n

2k +log δ) for any function. Despite the importance
of the question and its serious consequences on circuit lower bounds, it has not
been possible to find any new lower bound techniques. For the Generalized Inner
Product function, Grolmusz [9] showed an upper bound of O(k n

2k + log δ).
The Number on the Forehead model is related to the circuit complexity class

ACC0. ACC0 consists of languages recognized by a family of constant-depth
polynomial size, unbounded fan-in circuits with NOT, AND, OR and MODm

gates, where m is fixed for the family. It is a major open question to find an
explicit function outside the class ACC0. Yao [18] and Beigel and Tarui [4] have

308 I. Kerenidis

shown that ACC0 circuits can be simulated by symmetric circuits. The circuit
class SY M(d, s) is the class of circuits of depth 2, whose top gate is a symmetric
gate of fan-in s and each of the bottom level gates is an AND gate of fan-in
at most d. Specifically, they showed that ACC0 ⊆ SY M(polylog n, 2polylog n).
The connection to multiparty communication was made by Hastad and Gold-
mann [10], who noticed that when a function f belongs to SY M(d, s), then there
exists a (d+1)-party simultaneous protocol with complexity O(d log s). Hence, if
we want to show that a function f is outside SY M(d, s), then we need to prove
a (d + 1)-party communication lower bound of ω(d log s) in the simultaneous
model. However, as we said, no techniques are known to give communication
lower bounds for k = log n players or more. In the next sections we describe a
technique that can potentially give strong lower bounds for k ≥ log n players
nad hopefully help towards proving that a function is outside ACC0.

2 Quantum Multiparty Communication Complexity

We assume basic familiarity with the formalism of quantum computing and
refer to [13] for further details. One natural way of defining the quantum analog
of simultaneous multiparty communication would be the following: there are k
parties that wish to compute a function f : X1 × · · · ×Xk → {0, 1} on the input
(x1, . . . , xk) ∈ X1 × · · · ×Xk. We assume w.l.o.g. that X1 = . . . = Xk = {0, 1}n.
Each player sees only (k − 1) of the inputs (the other one is on his forehead).
The players communicate by writing simultaneously a quantum message each
on a common blackboard that they can all see. After that, the value of f can
be computed with high probability by performing some measurement on these
quantum messages. The quantum communication cost is the sum of the number
of qubits of each message. In this model, we have kept the inputs to the players
classical but made the communication quantum. Unfortunately, not very much
is known about the power of this model of quantum multiparty communication.
It is an open question to see if this model can be exponentially more powerful
than the classical one and also what is its relation to our model.

Here, we define a different variant of quantum multiparty communication
where, in addition, we allow the inputs to the quantum players to be quantum
as well. Our primary goal is to define a natural model that has consequences to
the study of circuit lower bounds. In order to make the definition of the quantum
model more intuitive, we are going to describe the classical model of the Number
on the Forehead in a different but equivalent way.

In high level, a simultaneous multiparty protocol consists of three rounds:
first, the players receive their inputs; second they each output some answer that
depends on their input and third, the value of f is computed as a function of the
players’ answers. For the rest of the paper, we assume the players are equivalent
and their answers have the same size. We can achieve that by having each player
play the role of each one of the � players and hence increase the communication
by just a factor of �, which won’t be of significance.

Quantum Multiparty Communication Complexity 309

Conceptually, one can think of such a protocol as a circuit for the function
f that consists of three subcircuit blocks, each corresponding to one round of
the communication protocol and satisfies certain properties that are described
below (see Fig. 1).

...

Im

Circuit I

Circuit G

X1

X2

X3

Xk

I1

Circuit P1

Circuit Pm Am

A1

1f(x ,...,x) k

Fig. 1. Classical Number on the Forehead

Classical Simultaneous Number on the Forehead (SNoF)

– The first block I takes as input a string (x1, . . . , xk) ∈ (X1 × · · · × Xk) and
produces the inputs Ij = (x1, . . . , xj−1, xj+1, . . . , xk) for every subcircuit-
player Pj .

– The second block consists of � probabilistic subcircuits-players Pj , such that
each one takes as input Ij and outputs an answer Aj .

– The third block consists of a subcircuit G that takes as input all the answers
(A1, . . . , A�) and outputs g(A1, . . . , A�) as a guess for f(x1, . . . , xk). The
function g is fixed in advance and is independent of the input (x1, . . . , xk).

The correctness of the protocol guarantees that for every input (x1, . . . , xk) ∈
{0, 1}kn, Pr[g(A1, . . . , A�) = f(x1, . . . , xk)] ≥ 1/2 + δ, where the probability is
over the random coins of the subcircuit-players Pj . The “communication cost”
of the circuit-protocol is the sum of the lengths of the outputs of the players or
equivalently the sum of the lengths of the inputs to the final subcircuit G, i.e.∑�

i=1 |Ai|. The communication complexity of f is the cost of the optimal circuit-
protocol. It’s easy to see that the formulation described above is equivalent to
the usual simultaneous Number on the Forehead model.

Intuitively, we define the quantum analog by allowing the circuit to be quan-
tum (see Fig. 2). One has to be careful though with the constraints one needs
to impose on the circuit and the definition of the “cost” of the circuit.

In high level, the first block of the quantum circuit-protocol takes as input
the classical string (x1, . . . , xk) ∈ {0, 1}kn and creates quantum inputs ρj for the
subcircuits-players. We put restrictions on the legal quantum inputs to ensure

310 I. Kerenidis

that each quantum player obtains information for at most (k − 1) of the inputs
xi, exactly like the classical players.

The second block consists of � quantum subcircuits-players Pj that take these
inputs and output some quantum answers.

The third block consists of a general measurement that produces a guess for
the value of the function f . In order to ensure that the measurement is indepen-
dent of the specific input (x1, . . . , xk) we first quantumly “erase” the registers
that contain the inputs Ij and then perform a measurement on the remaining
state. More formally, the quantum model is defined as follows:

...

Circuit I

X1

X2

X3

Xk

Circuit P1

Circuit Pm
0

0

0

j j

j j
m{p , I }

1

j
1

j{p ,I A }j

j
m

j{p , I A }j

{p , I }

 Eraser

W W

jj{p ,A }1

jj{p ,A }m

Measu−
rement kf(x ,...,x)1

Fig. 2. Quantum Simultaneous Number on the Forehead

Quantum Simultaneous Number on the Forehead

– The subcircuit I takes as input a string (x1, . . . , xk) ∈ (X1 × · · · × Xk) and
some ancilla and performs the following operation for i = 1, . . . , �:
It constructs a state

∑k
j=1

√
pi

j |j〉 and performs a mapping T

T : |j〉|0〉 �→ |j〉|j, Ij〉
resulting in the state

|φi〉 =
k∑

j=1

√
pi

j |j〉|j, Ij〉.

The second register of this state contains the input state for the subcircuit-
player Pi (ρi = {pi

j, (j, Ij)}) and the first register contains the purification of
this mixed state. The distribution is fixed by the protocol and is independent
of the input (x1, . . . , xk).

– The second block consists of � subcircuits-players that perform the following
mapping:

|j, Ij〉|0〉 �→ |j, Ij〉|Ai
j〉

where Ai
j is the quantum answer of player i to input Ij .

Quantum Multiparty Communication Complexity 311

– The third round takes as input the quantum states

|ψi〉 =
k∑

j=1

√
pi

j |j〉|j, Ij〉|Ai
j〉.

In order to ensure that the measurement doesn’t take advantage of the fact
that the second registers contain the input of the function , the circuit first
performs the inverse mapping T−1, i.e.

T−1 : |j〉|j, Ij〉 �→ |j〉|0〉,
resulting in the states

|ψi〉 =
k∑

j=1

√
pi

j |j〉|Ai
j〉.

Then, a general measurement M is performed on these states, whose out-
come is the guess for f(x1, . . . , xk). The measurement M is fixed by the
protocol and is independent of the input x.

The correctness of the protocol implies that for all (x1, . . . , xk) ∈ {0, 1}kn,

Pr[outcome of M = f(x1, . . . , xk)] ≥ 1/2 + δ.

The communication cost of the protocol is the sum of the lengths of the inputs
to the final measurement M , i.e.

∑�
i=1 |Ai|, where |Ai| is the size of the answer

register of player i.1 The communication complexity of f is the cost of the
optimal protocol.

The above model is a natural generalization of the classical model, in the
case where we want to allow the players to receive quantum inputs. The inputs
{pi

j, (j, Ij)} ensure that each player gains information for (k − 1) of the inputs
xi. In the special case where the distributions {pi} are delta functions, then
the inputs become equal to the classical inputs. On the other hand, a more
”‘quantum”’ input of the form

∑k
j=1 |Ij〉 would enable the quantum player to

learn (k − 1) arbitrary bits of information about (x1, . . . , xk).
In the case where the inputs were classical, one could immediately ignore

(trace out) the registers that contain the inputs to the players and perform the
final operation just on the players’ answers. On the other hand, when the inputs
are quantum, we need to be more careful. For example, if we just ignore the
input registers, then we just reduce our model to the one with classical inputs.
The quantum “erasure” of the inputs in the third stage of the circuit ensures
that the inputs can be quantum and that the final measurement only depends
on the players’ answers. The “cost” of the circuit is defined as the size of the
state on which we perform the final measurement that yields the value of f .
1 More precisely, the communication should be defined as

��
i=1(|Wi|+|Ai|), where Wi

is the Hilbert space that contains the purification of the input of player i. However
the communication according to this definition is in the worst case an additive factor
of � log k greater than our definition which will not be of any significance.

312 I. Kerenidis

3 Simulating Classical Players

In this section, we prove that we can simulate a k-party classical protocol by a
k/2-party quantum protocol with the same communication, albeit with larger
error probability. In what follows we mostly use the notation of communication
complexity (protocols, players) than the equivalent one of circuits.

Theorem 1. Let P be a SNoF protocol for the function f : X1, . . . , Xk → {0, 1}
with k players, communication C and correctness 1/2 + δ. Then, there exists a
quantum SNoF protocol Q for the same function f with k/2 quantum players,
communication C/2 and correctness 1/2 + δ/2C on an average input.

Proof. First, we prove a lemma similar to Lemma 2 in [11], which shows that
we can assume the players compute the parity of a subset of the answer bits as
their guess for f . We switch from the {0, 1}-notation to the {−1, 1}-notation for
f , we view the answers of the players Ai as C

k -bit strings and Ai[j] the j-th bit
of the string Ai. We denote by Si ⊆ [C

k] the possible subsets of bits of Ai and
ASi =

∏
j∈S1

ASi [j] is the parity of the subset Si of the bits of Ai.

Lemma 1. Let P be a classical protocol with communication C and correctness
probability 1/2+δ and assume that the players compute a function g(A1, . . . , Ak)
as their guess for f(x), where Ai is the answer of player i. Then, there exists
a classical protocol P ′ with communication C that works on average input with
correctness 1/2 + δ/2C/2 and where the players compute a parity of a subset of
bits of the answers Ai, i.e. g(A1, . . . , Ak) = ⊕k

i=1ASi .

Proof. Let f(x) = b. From the correctness of the protocol P we know that
Ex[g(A1, . . . , Ak) · b] ≥ 2δ. We can represent g by its Fourier representation as

g(A1, . . . , Ak) =
∑

S1,...,Sk

ĝS1,...,Sk
AS1 · · ·ASk

and have

2δ ≤ Ex[g(A1, . . . , Ak) · b] =
∑

S1,...,Sk

ĝS1,...,Sk
Ex[AS1 · · ·ASk

· b]

By the fact that
∑

S1,...,Sk
(ĝS1,...,Sk

)2 = 1 we have
∑

S1,...,Sk
ĝS1,...,Sk

≤ 2C/2 and
hence there exist some subsets S1, . . . , Sk for which

Ex[AS1 · · ·ASk
· b] ≥ 2δ/2C/2.

This means that the protocol P ′ which would output the XOR of these subsets
is correct on an average input with probability ≥ 1/2 + δ/2C/2.

Hence, in the classical protocol P ′, in the first round each player j receives input
Ij , in the second round they output the answers Aj and in the third round, the
guess for f is computed by taking the XOR of a subset of the bits of the Aj ’s.
Now we will describe the quantum circuit-protocol with only k/2 players that
simulates the classical k-party one. We denote the k/2 quantum players with
i = 1, 3, . . . , k − 1.

Quantum Multiparty Communication Complexity 313

– In the first round the circuit I creates the following states:

|φi〉 = |i〉|i, Ii〉 + |i + 1〉|i + 1, Ii+1〉,
where the second register is the input of quantum player i and the first one
is the purification of the state in the workspace W . Note that the reduced
density matrix of quantum player i is the same as if he was classical player
i with probability 1/2 and classical player i+1 with probability 1/2. Hence,
this is a legal input.

– In the second round, each subcircuit-player performs the following mapping:

T : |j, Ij〉|0〉 �→ |j, Ij〉|Aj〉,
i.e. on input |j, Ij〉 computes the same function Aj as the classical player
j in P ′. Note that the answer of the classical player j can depend on his
private randomness and we assume that the quantum player uses for each
input (j, Ij) the same randomness used by the classical player j. The total
communication is k

2
C
k = C

2 qubits.
– In the third round, the states are

|φi〉 = |i〉|i, Ii〉|Ai〉 + |i + 1〉|i + 1, Ii+1〉|Ai+1〉
First, the “erasure” circuit erases the input registers resulting in the states

|ψi〉 = |i〉|Ai〉 + |i + 1〉|Ai+1〉.
Last, a measurement is performed on the states (described by Lemma 2)
that computes f with high probability.

We need to show that there exists a quantum procedure M on the states |ψi〉
that is able to compute the function ⊕k

i=1Si. A key observation is that we can
rewrite the function as

⊕k
i=1Si = ⊕i=1,3,...,k−1(Si ⊕ Si+1).

It’s a simple calculation to show that if we can independently predict Si ⊕ Si+1

with probability 1/2 + ε then we can predict the entire ⊕iSi with probability
1/2+2k/2−1εk/2. The following lemma from [16] describes a quantum procedure
M to compute Si ⊕ Si+1 with the optimal ε.

Lemma 2. (Theorem 2,[16]) Suppose f : {0, 1}2t → {0, 1} is a boolean function.
There exists a quantum procedure M to compute f(a0, a1) with success probability
1/2 + 1/2t+1 using only one copy of |0〉|a0〉 + |1〉|a1〉, with a0, a1 ∈ {0, 1}t.

We use this lemma with t = C/k and get ε = 1/2C/k+1. We also note that the
success probability is independent of the a0, a1. Hence, there exists a quantum
procedure that will output the correct ⊕iSi with probability

Pr[M outputs ⊕i Si] =
1
2

+ 2k/2−1 · 1
2(C+k)/2

=
1
2

+
1

2C/2+1
.

314 I. Kerenidis

Finally, the quantum protocol is correct with probability

p = Pr[M outputs ⊕ Si] · Pr[⊕Si = b]
+ Pr[M doesn’t output ⊕ Si] · Pr[⊕Si
= b]

= (
1
2

+
1

2C/2+1
)(

1
2

+
δ

2C/2
) + (

1
2
− 1

2C/2+1
)(

1
2
− δ

2C/2
) =

1
2

+
δ

2C
.

Note that the success probability of the quantum protocol is not guaranteed for
every input but only on average input. In fact, it is easy to see that it works for
any distribution on inputs, since Lemma 1 does not depend on the distribution
of the input. Though proving lower bounds for such protocols can be potentially
harder than proving lower bounds for worst-case protocols, most known lower
bounds work equally for both cases.

4 A Quantum Reduction for Circuit Lower Bounds

The theorem in the previous section shows how to simulate a classical protocol
with k players with a quantum protocol with k/2 players. We are going to use
this theorem in order to get a reduction from a classical circuit lower bound
question to one about quantum communication complexity.

Theorem 2. Suppose f : X1×· · ·×Xk → {0, 1} is a function for which the (k
2)-

party quantum average communication complexity is QC
k/2
δ = Ω(k n

2k/2 + log δ).

Then this function does not belong to the class SY M(k − 1, 2o(n/2k/2)).

Proof. Let the function f have (k
2)-party quantum communication complexity

QC
k/2
δ ≥ γ(k n

2k/2 +log δ), for a positive constant γ. Assume that the classical k-
party communication complexity is Cδ ≤ γ

1+γ (k n
2k/2 +log δ), then by Theorem 1

there exists an (k
2)-party quantum protocol with correctness 1/2 + δ/2Cδ and

quantum communication QC
k/2

δ/2Cδ
= Cδ

2 . This contradicts the lower bound on
QC since

QC
k/2

δ/2Cδ
≥ γ(k

n

2k/2
+ log

δ

2Cδ
) ≥ γ(k

n

2k/2
+ log δ) − γCδ >

Cδ

2

By [10] the function f does not belong to the class SY M(k − 1, 2o(n/2k/2)).

Taking k = log n + 1, the function f is not in the class SY M(log n, 2o(
√

n)).
In other words, we reduced the question of finding a function outside the class
SY M(log n, 2ω(polylogn)) to that of finding an explicit function f : X1 × · · · ×
Xk → {0, 1} with (k

2)-party quantum complexity equal to Ω(n
2k/2 + log δ). Note

that we do know explicit functions for which the classical communication is
exactly of this form, e.g. the function Matrix Multiplication ([3,14]). In fact, the
proofs given in these papers consider only k-party communication, but as we
will see in section 5 they can easily be modified for the case of � ≤ k parties.

Quantum Multiparty Communication Complexity 315

5 The Quantum Communication Complexity of GIP

In this section, we further study the power of our quantum communication model
by looking at the function of Generalized Inner Product (GIP). We look at gen-
eral multiparty protocols, where the player’s answers can depend on each other.
It should be clear how one can define the quantum model for general multiparty
computation, where now each subcircuit-player Pj takes as input Ij and also all
previous answers A1, . . . , Aj−1 and performs a controlled unitary operation. We
refrain from giving a formal definition for the general model, since for the circuit
lower bounds we need only look at the simultaneous version and moreover, for
our separation we only use a very simple non-simultaneous protocol.

The Generalized Inner Product Function GIP (X1, . . . , Xk)

Let Xi ∈ {0, 1}n. We can think of the k inputs as the rows of a k × n matrix.
Then GIP (X1, . . . , Xk) is equal to the number (mod 2) of the columns of the
matrix that have all elements equal to 1. More formally, denote with Xj

i the
(i, j) element of this matrix (which is equal to the j-th bit of Xi), then

GIP (X1, . . . , Xk) =
n∑

j=1

k∏

i=1

Xj
i (mod 2)

The function GIP has been studied extensively in the multiparty commu-
nication model. Babai et al. [3] showed a Ω(n

22k) lower bound in the general
multiparty model where the answers of the players may depend on previous
answers. Chung [8] claimed to improve it to Ω(n

2k), however the proof is flawed.
It is easy to see that the �-party randomized communication complexity of

GIP (X1, . . . , Xk) is at least the �-party randomized communication complexity
of GIP (X1, . . . , X�). If there exists an �-party communication protocol P for
the function GIP (X1, . . . , Xk), then we can construct an �-party protocol for
GIP (X1, . . . , X�) by fixing X�+1, . . . , Xk to be the 1 vectors.

On the other hand, Grolmusz [9] described a k-party communication protocol
for GIP (X1, . . . , Xk) with communication (2k − 1)� n

2k−1−1
�. This is a slightly

non-simultaneous protocol, since first, player 1 outputs a message and then, de-
pending on that message, the other players output their answers simultaneously.

Using our simulation from Theorem 1, we can show that there exists a quan-
tum �k−1

2 �+ 1-party communication protocol for GIP with the same communi-
cation and the same correctness probability (assume without loss of generality
that k is odd.) For k = log(n + 1) + 1 the quantum communication is only
O(log n). The best known classical protocol for k = log(n+1)+1 has communi-
cation O(

√
n). Showing that this bound is optimal, or in other words improving

the lower bound for GIP to Ω(n
2k) would establish an exponential separation

between randomized and quantum multiparty communication complexity.

Theorem 3. Let k = log(n+1)+1, � = �k−1
2 �+1 and a constant δ. Then, the �-

party quantum communication complexity of GIP (X1, . . . , Xk) is QC�
δ(GIP) =

O(log n).

316 I. Kerenidis

Proof. Grolmusz [9] showed a k-party protocol for GIP (X1, . . . , Xk) with com-
munication (2k− 1)� n

2k−1−1
�. Taking k = log(n+1)+1 the communication cost

is (2k − 1) bits. In fact, the first player communicates a (k − 1)-bit string and
a single bit and the other (k − 1) players simultaneously communicate a single
bit each. The final answer is the parity of the single bits. The single bits of the
(k − 1) players depend on the message of the first player and hence this is not a
simultaneous messages protocol. We are going to simulate exactly the protocol
of Grolmusz by using only �k−1

2 � + 1 quantum players.

Quantum Protocol

Let I1, . . . , Ik be the inputs to the k players in Grolmusz’s protocol and A1, . . . , Ak

the messages they output. As we said, A1 ∈ {0, 1}k−1×{0, 1} and for i = 2, . . . , k
Ai is a bit that depends on (Ii, A1). The idea is to use the first quantum player
to simulate exactly the first classical player and for the other players use our sim-
ulation technique from section 3. Our protocol is non-simultaneous since the an-
swers of the quantum players 2, . . . , k depend on the classical answer of player 1.
More specifically,

– In the first round, we create the following states:

|φ1〉 = |1, I1〉, |φi〉 = |i〉|i, Ii〉 + |i + 1〉|i + 1, Ii+1〉, i = 2, 4, . . . , k − 1

– In the second round, first, quantum player 1 outputs the classical string A1.
The other players read the classical string A1 and proceed to perform the
mapping

T : |j, Ij〉|0〉 �→ |j, Ij〉(−1)Aj |0〉
– In the third round, we have the classical string A1 and the states

|χi〉 = |i〉|i, Ii〉(−1)Ai |0〉 + |i + 1〉|i + 1, Ii+1〉(−1)Ai+1 |0〉, i = 2, . . . , k − 1.

The protocol quantumly “erases” the inputs resulting in the states

|ψi〉 = (−1)Ai |i〉 + (−1)Ai+1|i + 1〉.

By measuring in the basis {|i〉± |i + 1〉} it is possible to compute Ai ⊕Ai+1

exactly and hence compute the parity of all the bits like in the classical
protocol.

The correctness of the protocol is 1
2 + δ, same as in the classical case.

References

1. S Aaronson, Quantum Computing, Postselection, and Probabilistic Polynomial-
Time In Proceedings of the Royal Society A, 461(2063):3473-3482, 2005.

2. D Aharonov, O Regev, Lattice problems in NP ∩ coNP In Proc. 45th IEEE FOCS,
2004.

Quantum Multiparty Communication Complexity 317

3. L Babai, N Nisan, M Szegedy, Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs Journal of Computer and System Sciences,
Volume 45 , Issue 2:204 - 232, 1992.

4. R Beigel, J Tarui, On ACC, Computational Complexity, 1994.
5. Z Bar-Yossef, TS Jayram, I Kerenidis, Exponential Separation of Quantum and

Classical One-Way Communication Complexity Proceedings of 36th ACM STOC,
2004.

6. H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting,
Physical Review Letters, 87(16), 2001.

7. AK Chandra, ML Furst, RJ Lipton, Multi-party protocols In Proceedings of the
15th annual ACM STOC,1983.

8. F Chung Quasi-random classes of hypergraphs Random Structures and Algorithms,
1990.

9. V Grolmusz The BNS Lower Bound for Multi-Party Protocols is Nearly Optimal
Information and Computation, 1994.

10. J Hastad, M Goldmann, On the power of small-depth threshold circuits Compu-
tational Complexity 1:113-129, 1991.

11. I. Kerenidis, R. de Wolf, Exponential Lower Bound for 2-Query Locally Decod-
able Codes via a Quantum Argument In Proceedings of the 15th annual ACM
STOC,2003.

12. E. Kushilevitz, N. Nisan, Communication complexity Cambridge University Press,
1997.

13. M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, 2000.

14. R.Raz, The BNS-Chung Criterion for multi-party communication complexity Jour-
nal of Computational Complexity 9(2) (2000), pp. 113-122.

15. R Raz Exponential separation of quantum and classical communication complexity
In Proceedings of 31st ACM STOC, 1999.

16. S. Wehner, R. de Wolf, Improved Lower Bounds for Locally Decodable Codes and
Private Information Retrieval 32nd ICALP 2005), LNCS 3580, 1424-1436.

17. R. de Wolf Lower Bounds on Matrix Rigidity via a Quantum Argument. In 33rd
International Colloquium on Automata, Languages and Programming (ICALP’06),
LNCS 4051, pp.62-71.

18. AC Yao, On ACC and threshold circuits Proc. 31st Ann. IEEE FOCS, 1990.

Efficient Computation of Algebraic Immunity of

Symmetric Boolean Functions�

Feng Liu and Keqin Feng

Department of Mathematical Sciences
Tsinghua University, Beijing 100084, China

fengliu03@gmail.com, kfeng@math.tsinghua.edu.cn

Abstract. The computation on algebraic immunity (AI) of symmet-
ric boolean functions includes: determining the AI of a given symmetric
function and searching all symmetric functions with AI = d or AI ≥ d,
where d ≤

�
n
2

�
. In this paper we firstly showed a necessary and sufficient

condition of AI of symmetric boolean functions and then proposed several
efficient algorithms on computation of algebraic immunity of symmetric
boolean functions. By these algorithms we could assess the vulnerability
of symmetric boolean functions against algebraic/fast algebraic attacks
efficiently, and find all symmetric functions having a given algebraic im-
munity AIn(f) = d, for some 0 ≤ d ≤ n.

Keywords: symmetric boolean function, algebraic immunity,
cryptography.

1 Introduction

In the past few years several successful algebraic attacks on stream ciphers were
proposed ([1,2,6,7,10]). As a response to this situation, Meier et al.[10] and
Breaken [3] introduced the concept of algebraic immunity for a boolean function.
Then how to determine the algebraic immunity d of boolean functions (or even
symmetric boolean functions) has been paid particular attention ([2,4]).

Let Bn be the ring of n-variable boolean functions f = f(x1, . . . , xn) : Fn
2 →

F2 and SBn be the ring of n-variable symmetric boolean functions. For f ∈ Bn,
the algebraic immunity of f , denoted by AIn(f), is defined by

AIn(f) = min {deg g |0 �= g ∈ Bn, fg = 0 or (f + 1)g = 0}
where deg g means the degree of g when g is uniquely expressed as polynomial

g(x1, . . . , xn) =
∑

a=(a1,...,an)∈Fn
2

c(a)xa1
1 . . . xan

n (c(a) ∈ F2).

For g = 0 we assume deg(0) = −∞. From f(f + 1) = f2 + f = f + f = 0 we
know that AIn(f) ≤ deg f . It is proved that AIn(f) ≤ ⌈

n
2

⌉
for all f ∈ Bn (see

[9]).
� Supported by the National Fundamental Science Research Program 973 of China

with No. 2004 CB3180004.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 318–329, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Computation of Algebraic Immunity 319

A symmetric boolean function f ∈ SBn can be either uniquely expressed as

f =
n∑

i=0

λf (i)σ(n)
i (λf (i) ∈ F2).

where σ
(n)
i is the elementary symmetric polynomial of x1, . . . , xn

σ
(n)
i = σ

(n)
i (x1, . . . , xn) =

∑

1≤a1<...<ai≤n

xa1 . . . xai

or characterized by
vf = (vf (0), . . . , vf (n)) ∈ Fn+1

2

where vf (i) is f(a) for vectors a ∈ Fn
2 having Hamming weight wt(a) = i.

The relation between λf = (λf (0), . . . , λf (n)) ∈ Fn+1
2 and vf = (vf (0), . . . ,

vf (n)) ∈ Fn+1
2 can be derived by the Lucas theorem. For integers a, b ≥ 0 and

their 2-adic expressions

a = a0 + a12 + . . . + al2l, b = b0 + b12 + . . . + bl2l (ai, bi ∈ {0, 1} = F2)

we define a � b by ai ≤ bi (0 ≤ i ≤ l). Then the Lucas theorem says that
(

a

b

)

mod 2 = 1 ∈ F2 ⇔ b � a (1)

Therefore for f ∈ Bn and 0 ≤ i ≤ n, we take a vector v ∈ Fn
2 with wH(v) = i,

then

vf (i) = f(v) =
n∑

j=0

λf (j)σj(v) =
n∑

j=0

λf (j)
(

i

j

)

=
n∑

j=0,j�i

λf (j) (2)

and then by inverse transformation,

λf (i) =
n∑

j=0,j�i

vf (j) (3)

Moreover, if f ∈ SBn and f �= 0, then deg f is the largest number i such that
λf (i) �= 0.

The computation on algebraic immunity of symmetric Boolean functions in-
cludes: determining AIn(f) of a given symmetric f ∈ Bn and searching all
symmetric f ∈ Bn with AI = d or AI ≥ d, where d ≤ ⌈

n
2

⌉
. In order to

determine AIn(f) of a given symmetric f ∈ Bn, a general idea is to assume
a g =

∑
0≤wt(a)≤
n

2 � c(a)xa ∈ Bn such that gf = 0, and to solve the linear
systems

{g(α) = 0 |f(α) = b, α ∈ Fn
2 }

of variables {c(a)
∣
∣0 ≤ wt(a) ≤ ⌈

n
2

⌉} for each b ∈ F2. Then one will obtain some
nonzero solutions (annihilators of f) of these systems and determine the AIn(f),

320 F. Liu and K. Feng

which is the minimal degree of these nonzero solutions. Until now the best algo-
rithm known for computing the algebraic immunity d of an n-variable boolean
function, works roughly O(D2), where D ≈ (

n
d

)
, which is derived from the idea by

F. Armknecht in [2]. He also presented an efficient generic algorithm in Section
5 of [2] to assess the vulnerability of arbitrary boolean functions with respect
to fast algebraic attacks, which is particularly efficient for symmetric Boolean
functions to compute their algebraic immunity in O(n3). However, F. Armknecht
also pointed out that his method is based on some sufficient conditions which
implies that they can not deal with all symmetric functions. Another idea to
compute AIn(f) of a given f ∈ SBn was introduced by An Braeken in [4], using
a special set of polynomials σxk

k P xl

l with k + l =
⌈

n
2

⌉ − 1, xk + xl = n and
0 ≤ xl ≤ 2l (see [4] for P xl

l). But we can only obtain an upper bound on AIn(f)
by her method. In this paper, we will present some algorithms based on a general
observation on symmetric boolean functions which introduces a necessary and
sufficient condition of f ∈ SBn with AIn(f) ≥ d. One of these algorithms can
be applied to the question of computing the algebraic immunity of an n-variable
symmetric boolean function in O(n4) time steps (see Algorithm 2 in Section 3).
And there is also one efficient algorithm we will present, which can be used to
determine Mn,d for an integer pair (n, d) (0 ≤ d ≤ ⌈

n
2

⌉
) (see Algorithm 4 in

Section 4). Note that Mn,d is denoted to be the set of all n-variable symmetric
boolean functions having algebraic immunity at least d.

This paper is organized as follows. Firstly we give a general observation on
f ∈ SBn with AIn(f) ≥ d for general case n and 1 ≤ d ≤ ⌈

n
2

⌉
in Section 2.

We introduce a conception on symmetric support of f ∈ SBn and show a result
(Lemma 2.3) which plays an important role in this paper. Then in Section 3 and
4 we will present our algorithms for computing algebraic immunity of a given
symmetric boolean function and for searching all symmetric boolean functions
with a given algebraic immunity d. Finally, we will demonstrate the advantages
of our algorithms in implementation and efficiency, by experiments in Section 5.

2 General Observation for f ∈ SBn with AIn(f) ≥ d

Let n be an arbitrary integer such that n ≥ 2, Ω0 = {0, 1, . . . , n} and Ω1 =
{1, . . . , n}.
Definition 1. For f ∈ Bn, the weight support of f is defined by

WS(f) =
{

i ∈ Ω0

∣
∣
∣
∣
there exists a ∈ Fn

2 with
wt(a) = i such that f(a) = 1

}

where wt(a) = # {l ∈ Ω1 |al = 1} is the Hamming weight of a = (a1, . . . , an) ∈
Fn

2 . It is easy to see that for f ∈ SBn, WS(f) = {i ∈ Ω0 |vf (i) = 1}. And we
also use the notation vf to denote the vector (vf (0), . . . , vf (n)) ∈ Fn

2 , where

vf (i) =
{

1 i ∈ WS(f)
0 i /∈ WS(f) for each i ∈ Ω0.

Efficient Computation of Algebraic Immunity 321

We define a partial order on Bn by, for f, g ∈ Bn, f � g if and only if WS(f) ⊆
WS(g). Then it is easy to see that for f ∈ SBn and g ∈ Bn,

fg = 0 ⇔ For a ∈ Fn
2 , wt(a) = i, g(a) = 1 implies that vf (i) = 0

⇔ WS(g) ⊆ WS(f)

where WS(f) = Ω0\WS(f) is the complementary set of WS(f) in Ω0, and

(f + 1)g = 0 ⇔ WS(g) ⊆ WS(f).

Therefore we have the following result.

Lemma 1. Suppose that n ≥ 2, 1 ≤ d ≤ n. For a function f ∈ SBn, AIn(f) ≥ d
if and only if for each g ∈ Bn such that 0 ≤ deg g ≤ d − 1, we have WS(g) �
WS(f) and WS(g) � WS(f).

Next result is important in this paper. For each l ≥ 1, let

pl = pl(x1, . . . , x2l) = (x1 + x2)(x3 + x4) . . . (x2l−1 + x2l) ∈ B2l (4)

Then WS(pl) = {l}.
Lemma 2. Suppose that n ≥ 2 and f ∈ SBn. If there exists 0 �= g ∈ Bn such
that fg = 0, then there exists l, 0 ≤ l ≤ [

n
2

]
and 0 �= h = h(xx2l+1,...,xn) ∈

SBn−2l, deg h ≤ deg g − l such that fhpl = 0.

Proof. Let Σn be the group of permutation on Ω1. For each permutation σ ∈
Σn, g ∈ Bn, we define gσ ∈ Bn by gσ(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)). For
1 ≤ i < j ≤ n, we denote X(i,j) = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn).
Then g can be expressed as

g = g(x1, . . . , xn) = g0(X(i,j)) + xig1(X(i,j)) + xjg2(X(i,j)) + xixjg3(X(i,j))

If g1(X(i,j)) = g2(X(i,j)) for each integer pair (i, j) (1 ≤ i < j ≤ n), then gσ = g
for each permutation σ = (ij) (1 ≤ i < j ≤ n), and then gσ = g for each
permutation σ ∈ Σn since the group Σn is generated by the set of permutations
(ij) (1 ≤ i < j ≤ n). Since symmetric boolean functions can be defined as
follows:

f ∈ SBn ⇔ fσ = f for all σ ∈ Σn,

we know that g is symmetric and the proof is finished. Otherwise there exists at
least one permutation σ = (ij) (1 ≤ i < j ≤ n) such that g1(X(i,j)) �= g2(X(i,j)).
Then we choose a permutation τ ∈ Σn such that τ(i) = 1 and τ(j) = 2, we have

gτ = g0(x3, . . . , xn) + x1g1(x3, . . . , xn) + x2g2(x3, . . . , xn) + x1x2g3(x3, . . . , xn)

and g1(x3, . . . , xn) �= g2(x3, . . . , xn) so that for σ = (12),

gτ + gτσ = (x1 + x2)(g1(x3, . . . , xn) + g2(x3, . . . , xn)) �= 0

322 F. Liu and K. Feng

deg(g1 + g2) ≤ max{deg g1, deg g2} ≤ deg g − 1

and
f(gτ + gτσ) = f τgτ + f τσgτσ (since f is symmetric)

= (fg)τ + (fg)τσ = 0

If g′ = g1(x3, . . . , xn)+g2(x3, . . . , xn) ∈ Bn−2 is symmetric, the proof is finished.
Otherwise we repeat this procedure to get final conclusion.

Let

Sn,d =
{

fn,b = hn−2bpb

∣
∣
∣
∣
hn−2b(x2b+1, . . . , xn) ∈ SBn−2b

0 ≤ deg hn−2b < d − b, 0 ≤ b ≤ d − 1

}

The following result can be obtained from Lemma 1 and 2 directly.

Lemma 3. Suppose that 1 ≤ d ≤ ⌈
n
2

⌉
and fn ∈ SBn. Then AIn(f) ≥ d if and

only if
WS(g) � WS(f) and WS(g) �WS(f)

for all g ∈ Sn,d.

Furthermore, let Smin(n, d) be the set of minimal elements of the partial order
set (S(n, d),�). Then lemma 3 is also true if S(n, d) is replaced by Smin(n, d).
If the set Smin(n, d) has simple structure, we may get a nice characterization on
all f ∈ SBn having AIn(f) ≥ d.

3 Computing Algebraic Immunity of a Given Symmetric
Boolean Function

Now suppose that 0 �= f ∈ SBn and let us present our algorithms for com-
puting algebraic immunity of an given symmetric f ∈ Bn. For any two vec-
tors u = (u0, . . . , un) and v = (v0, . . . , vn) in Fn+1

2 , we define the &-operation
by (u&v) = (u0v0, . . . , unvn). Then we get the following equivalences: for any
nonzero function g ∈ Bn,

WS(g) � WS(f) ⇔ (vf+1&vg) �= 0

⇔ ((vf ⊕ 1)&vg) �= 0

WS(g) �WS(f) ⇔ (vf&vg) �= 0

where 0 and 1 are the all-zeros and all-ones vectors in Fn+1
2 respectively. Then

Lemma 3 can be rewritten as follows: let 1 ≤ d ≤ ⌈
n
2

⌉
and fn ∈ SBn, and then

AIn(f) ≥ d if and only if (vg&vf) �= 0 and (vg&(vf ⊕ 1)) �= 0 for all g ∈ Sn,d.
From the proof of Lemma 2, we see that for each 0 �= g ∈ Bn with fg = 0 one
can find a h such that fh = 0, h ∈ Sn,d and 0 ≤ deg h ≤ deg g. This is to say
that if there is a nonzero annihilator g of f , then one can find another nonzero
annihilator h of f with 0 ≤ deg h ≤ deg g. So the basic algorithm for determining
algebraic immunity of f can be designed as follows:

Efficient Computation of Algebraic Immunity 323

Algorithm 1. Determining Algebraic Immunity of A Given f ∈ SBn

1. Initialization: vf (the value vector of f), Sn,
n
2 �

2. Searching Step: find the set S of all elements g ∈ Sn,
n
2 � which

satisfy (vf&vg) = 0 or ((vf ⊕ 1)&vg) = 0.
3. Output: AIn(f), where AIn(f) = min {deg g |g ∈ S } for non-

empty S or AIn(f) =
⌈

n
2

⌉
for empty S.

Proposition 1. The complexity of Algorithm 1 is O(2
n
2).

Proof. The number of & operator the main step needs is 2|Sn,
n
2 �|. And for any

d, 0 ≤ d ≤ ⌈
n
2

⌉
,

|Sn,d| =
�n

2 �∑

k=0

∑

0≤deg h≤d−k−1

1 =
d−1∑

k=0

(2d−k − 1) = 2d+1 − d − 2

where h runs over SBn−2k. Then this proposition follows from O(|Sn,d|) =
O(2
n

2 �+1) = O(2
n
2).

We should notice that by Algorithm 1 one can get one annihilator g of f with
deg g=AIn(f). Let Sn,
n

2 �(l)=
{

hpl ∈ Sn,
n
2 �

∣
∣
∣h ∈ SBn−2l, 0 ≤ deg h <

⌈
n
2

⌉−l
}
,

and the function h can be expressed as the nonzero combination of σ
(n−2l)
i

(0 ≤ i <
⌈

n
2

⌉− l). For each a ∈ F2 and 0 ≤ l <
⌈

n
2

⌉
, we define the linear systems

of
{
ci

∣
∣0 ≤ i <

⌈
n
2

⌉ − l
}

by

Sys(l, a) =

⎧
⎪⎨

⎪⎩

n
2 �−l−1
∑

i=0

ciσ
n−2l
i (α) = 0

∣
∣
∣
∣
∣
∣
∣

f(α) = a, α ∈ Fn
2

⎫
⎪⎬

⎪⎭
,

whose complexity is about O((l + 1)3). Then the main step of Algorithm 1 can
be divided into 2

⌈
n
2

⌉
solving procedures of Sys(l, a) (0 ≤ l <

⌈
n
2

⌉
and a ∈ F2).

Therefore Algorithm 1 can be revised as follows and its complexity is about O(n4).

Algorithm 2. Determining Algebraic Immunity of A Given f ∈ SBn

1. Initialization: f , l ← 0
2. while l <

⌈
n
2

⌉
do

3. For each a ∈ F2, solve Sys(l, a) and let degl be the minimal degree
of g =

∑l
i=0 ciσ

n−2l
i where {ci |0 ≤ i ≤ l} is one nonzero root of

Sys(i, a) for some a ∈ F2.
4. l ← l + 1
5. end while
6. Output: AIn(f), the minimal value of {deg0, . . . , deg
n

2 �−1}

324 F. Liu and K. Feng

Proposition 2. The complexity of Algorithm 2 is O(n4).

Proof. Let l be an integer such that 0 ≤ l <
⌈

n
2

⌉
. The step of determining

degl for each l and a ∈ F2 can be divided into two steps: Gauss eliminating of
homogenous linear system Sys(l, a) and finding the lowest degree of gs associated
with nonzero solutions of Sys(l, a). It is well known that the first step (Gauss
elimination) has a complexity of O((l +1)3). Now let us consider the complexity
of the second step above. Suppose that c = (c0, . . . , cl) is one nonzero solution of
Sys(l, a) and g =

∑l
i=0 ciσ

n−2l
i , where σn−2l

i is the i-th elementary symmetric
function. Then deg g = max{i |ci �= 0}. Therefore, to determine the minimum
degree of the gs is to determine the minimum value i0 such that there exist a
nonzero solution c = (c0, . . . , ci0−1, 1, 0, . . . , 0) of Sys(l, a). After the process of
Gauss elimination, one can obtain a system Sys′(l, a) as follows

c0 + a1,0c1 + . . .+ ai0−1,0ci0−1 + ai0,0ci0 + ai0+1,0ci0+1 + . . . = 0
c1 + . . .+ ai0−1,1ci0−1 + ai0,1ci0 + ai0+1,1ci0+1 + . . . = 0

. . .
...

...
...

...
ci0−1,i0−1 + ai0,i0−1ci0 + ai0+1,i0−1ci0+1 + . . . = 0

0 × ci0 + ai0+1,i0ci0+1 + . . . = 0
...

...

Thus we can say that to find i0 is equivalent to find the first zero position on
the diagonal of coefficient matrix of Sys′(l, a), whose complexity is O(l). If the
i0 does not exist, then Sys(l, a) (or Sys′(l, a)) has only one root c = (0, . . . , 0).
So the entire complexity of Algorithm 2 is

2

n

2 �−1
∑

l=0

(
O((l + 1)3) + O(l)

)
= O

⎛

⎜
⎝2

n
2 �−1
∑

l=0

(l + 1)3

⎞

⎟
⎠ = O(n4).

Remark 1. Not only the AI of f , but also an annihilator of f or 1 + f with the
minimal degree AIn(f) we can obtain by Algorithm 1 and 2. However, it is still
a hard work to find all annihilators of f or 1 + f with degree AIn(f). Then it
will be an important direction of our future work to find an efficient method to
do so.

By the following table, we will make a comparison between our algorithms
and some known ones, which are mentioned in Section 1.

n 10 12 14 16 18 20

(
∑
n

2 �−1

i=0

(
n
i

)
)3 (1) 3863 15863 64763 263333 1067623 4319103

D2 (2)
(
10
5

)2 (
12
6

)2 (
14
7

)2 (
16
8

)2 (
18
9

)2 (
20
10

)2

|ANS |3 (3) 833 1773 3673 7493 15153 30493

n3 (4) 103 123 143 163 183 203

2
∑
n

2 �−1

k=0 (k + 1)3 (5) 450 882 1568 2592 4050 6050

Efficient Computation of Algebraic Immunity 325

– The algorithm in case (2), where D ≈ (
n
n
2 �

)
, was presented by F. Armknecht

in [2] to compute the algorithm immunity of a general n-variable boolean
function.

– The algorithm in case (3) was introduced by A. Braeken in [4]. The set ANS

in (3) is a set of n-variable boolean functions with special algebraic normal
forms such as σxk

k P xl

l with k + l =
⌈

n
2

⌉ − 1, xk + xl = n and 0 ≤ xl ≤ 2l.
– The algorithm in case (4) is another algorithm presented by F.Armknecht

in Section 5 of his paper [2], whose complexity is O(n3), and which can not
deal with all symmetric functions although its complexity is slight lower than
ours.

– Algorithms in case (1), (2) and (3) have much larger complexities than our
O(n4) (the complexity of Algorithm 2). And the algorithm in case (4) is
slight lower than O(n4).

4 Searching All Symmetric Boolean Functions with
Algebraic Immunity ≥ d

Let Mn,d be the set of n-variable symmetric boolean functions f with AIn(f) ≥
d. Now let us present our algorithms of obtaining Mn,d for any n and d (0 ≤ d ≤⌈

n
2

⌉
). Most known algorithms are based on the idea: Let f ∈ SBn be a possible

function and suppose thatg =
∑d−1

i=0

∑
wt(a)=i caxa is an annihilator of f . Then

we can determine the algebraic immunity of f as follows.

– Establish linear systems

⎧
⎨

⎩
g(α) =

d−1∑

i=0

∑

wt(a)=i

caαa = 0

∣
∣
∣
∣
∣
∣
α ∈ Fn

2 , f(α) = c

⎫
⎬

⎭
for each c ∈ F2,

since fg = 0 or (f + 1)g = 0.

– Solve these linear systems and let g =
∑d−1

i=0

∑
wt(a)=i caxa be the nonzero

solutions.
– Determine AIn(f), i.e. the minimal algebraic degree of these gs

If AIn(f) ≥ d, then f is a function in Mn,d. If f runs over all possible functions,
then we will obtain the set Mn,d. Employing this idea, we obtain an efficient
algorithm to do this work, since our algorithm 2 is more efficient than those
previous ones. However, we can do better than before. Let Smin(n, d) the set
of minimal elements of the partial order set (S(n, d),�). Then lemma 2.4 is
also true if S(n, d) is replaced by Smin(n, d). Since |Smin(n, d)| is much less than
|Sn,d| for most cases, then the algorithm can be improved more efficient while
Smin(n, d) is known.

326 F. Liu and K. Feng

Now let us present this improved algorithm. For a given integer d (0 ≤ d ≤⌈
n
2

⌉
) suppose that Smin(n, d) is known.

Algorithm 3. Searching all f ∈ SBn with AIn(f) ≥ d.

1. Initialization: vf ← 0 ∈ Z2n+1 , V ← {vg : g ∈ Smin(n, d)},
Mn = ∅

2. while vf < 2n+1 do
3. If (v&vf) �= 0 and (v&(vf ⊕ 1)) �= 0 for any v ∈ V , then Mn,d ←

Mn,d ∪ {f}.
4. vf ← vf + 1
5. end while
6. Output: Mn,d.

Proposition 3. The complexity of Algorithm 3 is

O(2n+2|Sn,d|) = O(2n+2(2d+1 − d − 2)) = O(2n+d).

Proof. It is clear that the main step of Algorithm 3 consists of at most 2n+2|Sn,d|
= 2n+2(2d+1 − d − 2) &-operations. Then the conclusion follows.

Remark 2. In Algorithm 3 the minimal property of Smin(n, d) is not necessary.
Someone having some special reasons can replace Smin(n, d) by another subset
S of Sn,d, which satisfies that: for any f ∈ SBn and for any g ∈ Sn,d, if fg �= 0,
then there exists a h ∈ S such that fh = 0. For example, the special reasons
may be that |Smin(n, d)| ≈ |Sn,d|, or Smin(n, d) is very complex to implement,
or he has a very powerful computer.

Although one needs at most 2n+2|Sn,d| = 2n+2(2d+1 − d− 2) &-operations to
implement Algorithm 3 in standard C, the complexity is still very large. Now let
us discuss how to use the iterative method to improve this algorithm. Suppose
f ∈ SBn, vf = (v0, . . . , vn). Let f ′ ∈ SBn−2 and vf ′ = (v1, . . . , vn−1). Then for
a given d ≤ ⌈

n
2

⌉
,

AIn(f) ≥ d
⇔ fg �= 0 and (1 + f)g �= 0 for all g ∈ Sn,d

⇔ (1) fh �= 0 and (1 + f)h �= 0 for all h ∈ (x1 + x2)Sn−2,d−1, and
(2) fg �= 0, (1 + f)g �= 0 for all g ∈ SBn ∩ Sn,d

⇔ (1) AIn−2(f ′) ≥ d − 1, and
(2) fg �= 0 and (1 + f)g �= 0 for all g ∈ SBn ∩ Sn,d

⇔ (1) AIn−2(f ′) ≥ d − 1, and
(2) (vf&vg) �= 0 and ((vf ⊕ 1)&vg) �= 0 for all g ∈ SBn ∩ Sn,d

Thus, we can rewrite Algorithm 3 as follows:

Efficient Computation of Algebraic Immunity 327

Algorithm 4. Searching all f ∈ SBn with AIn(f) ≥ d for d ≤ ⌈
n
2

⌉
.

1. Initialization: k ← 0, Mn−2d,0 ← Fn−2d
2 , T0 ← SBn−2d+2 ∩

Sn−2d+2,1

2. while k < d do
3. (a) while vk runs over Mn−2(d−k),k do

(b) For every vk ∈ Mn−2(d−k),k, and every a0, a1 ∈ Fn
2 , let v′k =

(a0, vk, a1) and check that (v′k&vg) �= 0 and ((v′k⊕1)&vg) �= 0
for all g ∈ Tk.

(c) Mn−2(d−k−1),k+1 ←
{
v′k = (a0, vk, a1)

∣
∣vk ∈ Mn−2(d−k),k, a0, a1 ∈ F2

}
,

whose elements satisfies (v′k&vg) �= 0 and ((v′k ⊕ 1)&vg) �= 0
for all g ∈ Tk.

(d) end while
4. k ← k + 1, Tk ← SBn−2k+2 ∩ Sn−2k+2,k+1

5. end while
6. Output: Mn,d.

Remark 3. The complexity of this algorithm will depend on these numbers∣
∣Mn−2(d−k),k

∣
∣, 0 ≤ k ≤ d − 1, and can not be efficiently approximated yet.

Moreover, one can improve the step 3-b of this algorithm by the method of
solving linear systems (which left to the reader).

Remark 4. Determining Mn, n
2

for an even integer n. For case n even,
LongJiang Qu et al. in [12] presented many necessary conditions for symmetric
boolean functions f ∈ Bn having maximum AIn(f) = n

2 . And they also conjec-
tured the tightness of their conditions for case n = 2m (m ≥ 2) which can be
stated as follows: Suppose that n = 2m (m ≥ 2) and f ∈ SBn, then AIn(f) = n

2
if and only if the following two conditions satisfied

1) vf (i + n
2 − 2t) = vf (i + n

2) + 1 for all 1 ≤ i ≤ 2t − 1. (1 ≤ t ≤ m − 1)
2)

(
vf (0), vf (n

2), vf (n)
)

/∈ {(0, 0, 0), (1, 1, 1)}.
We will give a proof of this conjecture in another subsequent paper of us. But the
readers can check its truth with our lemma 3 themselves, which has been checked
by us for case m = 2, 3, 4, 5, 6, 7. Then one can easily determine the function set
M2m,2m−1 and replace the initial set Mn−2d,0 to M2m,2m−1 in Algorithm 4 for
case even n, where d = n

2 and 2m ≤ n < 2m+1.

5 Our Experiments and Conclusions

In this section, we will illustrate the efficiency of our algorithms by the exper-
iments of determining Mn,d for given n and d. The usual method in searching
Mn,d is to check all possible functions and determine their algebraic immunity.
For example, we can employ the algorithm in [2] as the method of determining

328 F. Liu and K. Feng

AIn(f) for a given f ∈ SBn. But the complexities of all previous algorithms
based on this method are much larger than ours. And the advantages of our
algorithms can be summarized as follows:

– The main step of Algorithm 3 and 4 consists of &-operations, which is simpler
to implement than those previous ones. And in most cases, |Smin(n, d)| �
|Sn,d| �

∣
∣
∣Sn,
n

2 �
∣
∣
∣, so the practical complexity of Algorithm 3 and 4 is much

less than our theoretic complexities.
– If |Smin(n, d)| is close to |Sn,d|, then Algorithm 3 and 4 will lose their ad-

vantages. And we can employ Algorithm 2 as the method of determining AI
of a given f , whose complexity O(n4) is still much smaller than all previous
algorithms we knew.

– In our algorithms the memory complexity can be neglected.

In her paper [4], A. Braeken combined her special idea with the conventional
methods and found the sets Mn,d for case of n = 6, 8, . . . , 16 and d = n

2 (not
for all possible d). These search results may be very close to the utmost limit of
those previous algorithms if one works with a standard computer (1.0 ghz CPU,
256M ram). For example, it costs us about 14 (or 72) hours for case of n = 18 (or
20) respectively in the experiments of determining Mn, n

2
based on those previous

algorithms in [2] and [4]. And it did not be finished for case of n = 22 because
of its large complexity. However, by our algorithms we have obtained Mn,d for
n = 4, 5, 6, . . . , 26 and for each 0 ≤ d ≤ ⌈

n
2

⌉
, all of which we spent several

hours in.
Until now, we have presented several efficient algorithms on computation of

algebraic immunity of symmetric boolean functions. In comparison with all pre-
vious algorithms, our algorithms are much easier to implement and much faster
to run. But two open problems can be raised as follows:

– Most of the previous algorithms can be applied to the case of general boolean
functions. But our algorithms can not. Thus there is a question naturally:
how to extend our methods in this paper to the cases of general boolean
functions?

– By our algorithms, it is possible to find one annihilator g of f (deg g =
AIn(f)), but it is impossible to find all annihilators g of f (deg g = AIn(f)).
The problem is how to design an efficient algorithm to search all such func-
tions from our knowledge of f .

To solve these open problems will be our next working directions.

References

1. F. Armknecht. Improving Fast Algebraic Attacks. In FSE 2004, LNCS 3017, pages
65-82. Springer Verlag, 2004.

2. F. Armknecht, et al. Efficient Computation of Algebraic Immunity for Algebraic
and Fast Algebraic Attacks. EUROCRYPT 2006, LNCS 4004, pages 147-164, 2006.

Efficient Computation of Algebraic Immunity 329

3. L. M. Breaken. Algebraic Attack over GF (q). In Progress in Cryptology - IN-
DOCRYPT2004, pages 84-91, LNCS 3348, Springer-Verlag.

4. An. Braeken and B. Preneel. On the algebraic immunity of symmetric Boolean
functions. INDOCRYPT 2005, , 2005, pages 35-48, LNCS, Springer-Verlag.

5. C. Carlet, D. K. Dalai, K. C. Gupta and S. Maitra. Algebraic Immunity for Cryp-
tographically Significant Boolean Functions: Analysis and Construction. Preprint
2006.

6. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology - CRYPTO 2003, LNCS 2729, pages 176-194. Springer
Verlag, 2003.

7. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Advances in Cryptology - EUROCRYPT 2003, LNCS 2656, pages 345-359.
Springer Verlag, 2003.

8. D. K. Dalai, K. C. Gupta and S. Maitra. Results on Algebraic Immunity for Cryp-
tographically Significant Boolean Functions. In INDOCRYPT 2004, pages 92-106,
LNCS 3348.

9. D. K. Dalai, S. Maitra and S. Sarkar. Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity. Cryptology ePrint
Archive, http://eprint.iacr.org/, No. 2005/229, 15 July, 2005. To be published in
Designs, Codes and Cryptography.

10. W. Meier, E. Pasalic and C. Carlet. Algebraic attacks and decomposition of
Boolean functions. In Advances in Cryptology - EUROCRYPT 2004, number 3027
in Lecture Notes in Computer Science, pages 474-491. Springer Verlag, 2004.

11. Longjiang Qu, Chao Li and Keqin Feng. A note on symmetric Boolean Functions
with maximum algebraic immunity in odd number of variables. Preprinted.

12. Longjiang Qu, Guozhu Feng, Chao Li and Keqin Feng. On 2m variables symmetric
Boolean functions with maximum algebraic immunity. Preprinted.

Improving the Average Delay of Sorting�

Andreas Jakoby1 , Maciej Liśkiewicz1 , Rüdiger Reischuk1 ,
and Christian Schindelhauer2

1 Inst. für Theoretische Informatik, Universität zu Lübeck, Germany
{jakoby,liskiewi,reischuk}@tcs.mu-luebeck.de

2 Dept. of Computer Science, Universität Freiburg,
schindel@informatik.uni-freiburg.de

Abstract. In previous work we have introduced an average case measure for the
time complexity of Boolean circuits – that is the delay between feeding the input
bits into a circuit and the moment when the results are ready at the output gates
– and analysed this complexity measure for prefix computations. Here we con-
sider the problem to sort large integers that are given in binary notation. Contrary
to a word comparator sorting circuit C where a basic computational element,
a comparator, is charged with a single time step to compare two elements, in a
bit comparator circuit C′ a comparison of two binary numbers has to be imple-
mented by a Boolean subcircuit CM called comparator module that is built from
Boolean gates of bounded fanin. Thus, compared to C, the depth of C′ will be
larger by a factor up to the depth of CM .

Our goal is to minimize the average delay of bit comparator sorting circuits.
The worst-case delay can be estimated by the depth of the circuit. For this worst-
case measure two topologically quite different designs seems to be appropriate
for the comparator modules: a tree-like one if the inputs are long numbers, oth-
erwise a linear array working in a pipelined fashion. Inserting these into a word
comparator circuit we get bit level sorting circuits for binary numbers of length
m for which the depth is either increased by a multiplicative factor of oder log m
or by an additive term of order m .

We show that this obvious solution can be improved significantly by construct-
ing efficient sorting and merging circuits for the bit model that only suffer a con-
stant factor time loss on the average if the inputs are uniformly distributed. This
is done by designing suitable hybrid architectures of tree compaction and pipelin-
ing. These results can also be extended to classes of nonuniform distributions if
we put a bound on the complexity of the distributions themselves.

1 Introduction

For circuits, depth is normally used to measure the time a computation takes. This is
a worst case estimation. In [JRS94] we have defined an average case measure for the
time complexity of circuits called delay. It has been observed that in many cases critical
paths of a given circuit, e.g. paths between input and output gates of maximal length,

� Supported by DFG research grant Re 672/3.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 330–341, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving the Average Delay of Sorting 331

have no influence on the final output. Hence, the output values of the circuit for some
inputs can be obtained much earlier.

The average delay of basic functions like OR,ADDITION,PARITY, and
THRESHOLD has been estimated precisely. These are special instances of the paral-
lel prefix problem that has been investigated in detail in [J98]. In many cases we have
found circuit designs that are exponentially faster on average than the optimal circuits
for the worst-case [JRS94, JRSW94, JRS95]. On the other hand, we could show lower
bounds saying that for certain functions, e.g. PARITY , the average delay remains as-
ymptotically the same as in the worst case. A similar result holds for the problem to sort
n bits that has worst-case complexity Θ(log n) . For the worst case, the lower bound
follows from a simple counting argument, the upper bound has been established by a
nontrivial construction of Ajtai, Komlos and Szemeredi [AKS83].

0

t = 1

t = 2

0

0

1

A

B

C

min{x, y}

max{x, y}

x = 1

y = 0

z = 0

1

0

t = 0

Fig. 1. The flow of inputs in a computation of C3

The delay of a sorting circuit
may be smaller than its depth as
can be seen in Fig. 1 showing a
sorting circuit C3 for 3 elements.
The first picture shows the cir-
cuit consisting of 3 comparators
A, B, C . Its depth is 3 , too, since
the line in the middle marked with
input y goes through each com-
parator. The pictures show the flow
of the inputs through the circuit
starting with time t = 0 when all
inputs are at the left end. However,
for the given input vector (1, 0, 0) ,
on the critical path in the middle
there does not occur a delay of 3.
The reason is as follows: already
in the first time step the lower 0
can be passed through comparator
B to its upper output line although
the second input for B has not ar-
rived yet. No matter, what kind of bit this will be, comparator B can be set to an X that
switches the inputs because we can be sure that a 0 must occur at the upper output. In
the second phase this allows comparator C to do its job since both its inputs are already
there and comparator B to finish its work by passing the input 1 on its upper line to the
lower output line. Still, this saving in the computation time has no asymptotic effect as
we have shown in [JRS94].

Fact 1. The average delay of a sorting circuit over an arbitrary finite basis with gates
of bounded fanin that sorts n uniformly distributed bits is at least Ω(log n) .

Thus, sorting n elements requires logarithmic time - even on the average. The com-
plexity of sorting seems to be settled. But what happens if we do not have to sort single
bits, but long binary numbers. Obviously, the depth has to increase since a binary circuit
of bounded fanin cannot compare two long numbers in constant time.

332 A. Jakoby et al.

Let n denote the number of elements that have to be sorted and let us start with
a word comparator circuit Cn . A comparator has indegree and outdegree 2 , and
takes two elements of the sorting domain and outputs the minimum at the top and the
maximum at the bottom output node. Let depth(Cn) denote the depth of the circuit
where each comparator is assumed to have depth 1 (see Fig. 1).

If the elements to be compared are binary numbers of some length m we call this the
(n, m)-sorting problem. Now let us consider the physical realization of comparators.
A comparator CMm that compares two m-bit numbers has to be built on the bit level.
Such a subcircuit we will call a comparator module. There are two obvious alterna-
tives how to design a comparator module and combine it with the topology of a word
comparator circuit.

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

x

y

z

2
3
4

1

2
3
4

1

2
3
4

1
min{x, y}

max{x, y}

Fig. 2. The sorting circuit C3,4 with comparators of a tree architecture

On the one hand, one can compare two numbers x, y bitwise. Every bit comparison
generates a result <, = oder > and these results can be combined in binary tree-like
fashion to determine the result ρ determining which number is the smaller or whether
the numbers are equal. Each pair of bits of x, y is then routed to the appropriate output
position by a switch that is driven by ρ . Assume that the combination of two bit com-
parison results can be performed by a subcircuit of depth δ . Then such a comparator
CMm can be implemented by a binary circuit of depth δ log m + O(1) . This assumes
no bound on the fanout of a Boolean gate (if one insists on fanout at most 2 the depth
becomes (δ + 1) log m + O(1)). Thus, in total we get a bit level sorting circuit Cn,m

of depth (δ · log m + O(1)) · depth(Cn) (see Fig. 2).
Alternatively, one could compare the bits of two numbers in a linear fashion starting

with the leading bits. This requires depth linear in the number of bits, but has the advan-
tage that after δ steps the leading bits of the two results of that comparator are already
known. This pipelined construction increases the depth of the sorting circuit Cn only
by an additive term δ · m resulting in a bit level sorting circuit C′

n,m of depth at most
δ · (m + depth(Cn) − 1) (see Fig. 3).

A detailed discussion of sorting in the bit model can be found in Section 1.1.2
of [L92]. Several papers have considered worst-case delay of Boolean sorting networks
explicitly. In [AB93] Al-Hajery and Batcher constructed bit serial bitonic sorting net-
works (BBSN) of size O(n log n) that sort n numbers each of length m = O(log n) in
O(log2 n) steps. BBSN is a periodic network of depth O(log n) and size O(n log n)

Improving the Average Delay of Sorting 333

based on pipelining. The model of [AB93] differs, however, from the word comparator
circuit in that BBSN is a network of bit processors which has the same topology as
bitonic sorting network and which processes m-bit input strings in a bit serial fashion.

In [LP90] Leighton using methods due to Thompson [T79] proved an Ω(n + m)
lower time bound for (n, m)-sorting on a (m×n)–array of bit processors. In addition,
several papers have discussed VLSI architectures for sorting (e.g. [T83, LO99, HL00,
LDH03]).

4

1

2
3
4

1

x

y

z

2
3
4

1
2
3
4

1

4
3

2
1

4
3

2
1

4
3

2
1

4
3

2
1

4
3

2
1

4
3

2
1

min{x, y}

max{x, y}

4
3

2
1

4
3

2
1

2
3
4

1

2
3

Fig. 3. The sorting circuit C′
3,4 based on linear arrays. The gray boxes on the links that connect

the comparator modules illustrate that output bits of higher order are available before the output
bits of lower order.

Using the topology of the asymptotically optimal AKS-network [AKS83] and notic-
ing that δ = O(1) , the pipelined construction by linear arrays described above sorts
n numbers of length m ≤ O(log n) in O(log n) depth. For m ≥ log n loglog n ,
tree-like comparator modules seem to be better suited and give depth O(log n log m) .
Because of huge constants, AKS-networks are only advantageous for very large n .

In [LP90] Leighton and Plaxton constructed butterfly-based sorting networks that
sort correctly with probability close to 1 . These networks have depth 7.45 log n . An
implementation of this topology with binary gates yields a randomized sorting circuit
of O(m + log n) , resp. O(log n log m) depth with small constant factors and low
error probability.

In this paper we investigate the (n, m)-sorting problem for m significantly larger
than log n . New comparator modules that are hybrid versions of the two basic topolo-
gies will be constructed that speed up sorting networks on average assuming uniformly
distributed inputs.

Theorem 1. For every m , there are comparator modules CMm with the following prop-
erty: If a Boolean circuit Cn,m for the (n, m)-sorting problem is derived from a word
comparator circuit Cn by implementing its comparators as CMm modules then as-
suming uniformly distributed inputs Cn,m faces a delay of at most O(depth(Cn))
with probability at least 1 − 1/n . Even in the worst case, the delay does not exceed
O(depth(Cn) · log (n + m)) . Thus, the average delay is at most a constant factor
larger than the depth of the word comparator circuit independent of the length of the
binary numbers.

334 A. Jakoby et al.

The proof will be given in Section 4. This construction requires gates of unbounded
fanout to spread information about comparison results fast. If one requires a constant
fanout restriction the delay bound becomes O(depth(Cn) + log m) with probability
1 − 1/n and the average delay stays independent of m as long as m ≤ 2n . Thus even
in case of strictly bounded fanout, for large numbers m we achieve the best combina-
tion of the simple architectures described above concerning the average delay: only a
logarithmic increase log m instead of m , and this only by an additive term rather than
a multiplicative factor.

Small average delay can also be achieved for merging lists of m-bit numbers. In
particular, based on the odd-even merge topology we show that there exists a bit com-
parator circuit that merges two lists of n/2 numbers each in O(log n + log m) steps
on average. As a consequence we obtain

Theorem 2. Let Mn be the odd-even merge sort word comparator circuit for n ele-
ments. Then for every m , there are comparator modules CMm such that the Boolean
circuit derived from Mn by replacing its comparators by CMm modules solves the
(n, m)-sorting problem and with probability at least 1 − 1/n its delay is bounded by
O(log2 n) .

Furthermore, the average delay of these circuits is bounded by O(log2 n) and their
worst-case behaviour is as good as that of worst-case optimal ones. This small average
delay bound can also be obtained for families of nonuniform distributions of low com-
plexity (Theorem 4 below). For this result our circuit design does not use any knowledge
about the actual distribution μ , it works uniformly for all such μ .

The rest of this paper is organized as follows. Section 2 defines asynchronous
Boolean circuits and their timing, in particular the complexity measure delay. The de-
sign of efficient comparator modules is described in Section 3. In Section 4 we construct
specific bit comparator circuits for sorting and merging and analyse their average delay
for the uniform distribution. This is extended to nonuniform distributions in Section 5.

2 Timing of a Boolean Circuit

In the following let log n := �log2 n� denote the binary logarithm rounded up.
If we want to exploit possibilities to speedup the computation of a Boolean circuit it

has to work in an asynchronous fashion. For this mode one has to extend the binary logic
to indicate when a Boolean value is ready of valid. How this can be done efficiently has
been discussed in [JRS94]. To concentrate on the topological aspects of sorting circuits
here we simply assume that each gate knows from its predecessors when their values
are ready.

Let C be a Boolean circuit, and Vin, Vout denote its input, resp., output gates. For
a gate g and input x of C let resg(x) denote the value that is generated by g on x .
If g is the i -th input gate then resg(x) = xi . Otherwise, resg(x) is determined by the
values resgi(x) of its immediate predecessors gi and the type of g .

Circuits that work in an asynchronous mode may not get all their input bits at the
same time. Similar to [JS01] we therefore make the following definitions.

Improving the Average Delay of Sorting 335

Definition 1. A starting-line for C is a function S : Vin → IN. Given a starting-line
S for C , we define a function timeC

S for pairs (g, x) where g is a gate of C and x
an input as follows:

timeC
S (g, x) :=

⎧
⎪⎨

⎪⎩

S(g) if g is an input gate,

0 if g is a constant gate,

1 + tg(x) else,

where tg(x) denotes the smallest time t , such that the values resgi(x) of those imme-
diate predecessors gi of g with timeC

S (gi, x) ≤ t uniquely determine resg(x) .
Thus, timeC

S (g, x) denotes the earliest moment when g knows its value assuming
that the inputs are available according to the starting time S . For the circuit C itself we
define the timing by timeC

S (x) := maxg∈Vout timeC
S (g, x) .

Let timeC(x) denote the timing if the starting-line S is identically 0 .
Given a probability distribution μ on the input space, we define the average delay

of C by Etimeµ(C) :=
∑

x μ(x) · timeC(x) . �

Normally, all input bits are available at the beginning of a computation, that is at time
0 . In the following we will also consider the case when some bits are delayed. For this
purpose, for k ∈ [1..m] let us define the function σk : [1..m] → IN by

σk(j) :=
{

j − 1 if j ≤ k,
k + 1 else.

3 Average Case Efficient Comparator Modules

Definition 2. Let IB = {0, 1} denote the binary alphabet and Σρ := {LE, EQ, GT} an
alphabet to specify the result of a comparison of two elements, numbers or bits: less,
equal, or greater. Σρ will suitably be coded over IB – for example by the 3 vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1) . In the following x, y, u, v will always denote variables
that hold a binary value and ρ, ρ1, ρ

′, ... are variables that take values from Σρ . The
Boolean sorting circuits will be constructed from 2 basic types of gates, S -gates and
R -gates (see Fig 4).

– S -gate: it takes 3 inputs ρ, x, y and generates the 3 outputs u, v, ρ′ . The input-
output relation is defined as follows:

for ρ = EQ and x < y : u = min{x, y} = x , v = max{x, y} = y , ρ′ = LE ,
for ρ = EQ and x > y : u = min{x, y} = y , v = max{x, y} = x , ρ′ = GT ,
for ρ = EQ and x = y : u = min{x, y} , v = max{x, y} , ρ′ = EQ ,
for ρ = LE : u = x , v = y , ρ′ = LE ,
for ρ = GT : u = y , v = x , ρ′ = GT .

– R -gate: the inputs are ρ, ρ1, ρ2 , the only output is ρ′ :
for ρ �= EQ : ρ′ = ρ ,
for ρ = EQ and ρ1 �= EQ : ρ′ = ρ1 ,
else ρ′ = ρ2 . �

336 A. Jakoby et al.

ρ2

ρ′

ρ

S

x y

vu ρ′

R

ρ

ρ1

Fig. 4. S -gate and R -gate

u5v5

x1y1

x2y2

x3y3

ρ0

ρ5

ρ1S1

S2

S3

S4

S5

x4y4

x5y5
u1v1

v2u2

u3v3

u4v4

Fig. 5. A line comparator module

According to the Boolean basis and the coding of Σρ both types of gates can be realized
by small subcircuits of some fixed depth at most δ . For simplicity, through the rest of
the paper we will assume that δ = 1 , otherwise one has to add this as a constant
factor to all the circuit bounds stated below. For an S -gate it is important to note that
depending on its input values, its 3 outputs may be ready at different times. Thus, the
timing information should rather be attached to the output wires of a gate than to the
gate itself. Since this will not be important in the following we stick to the simpler
model.

Our circuit designs will also make use of simplified versions of an S -gate. An L -
gate is an S -gate where the ρ′ -output is not needed. An U -gate in addition does not
need the ρ-input and behaves as if this input were EQ . Furthermore, an U -gate does
not have the outputs u and v . Also some R -gates will have the input ρ be missing.

A comparator module CMm is a subcircuit built from S - and R -gates that takes two
binary numbers x = x1 . . . xm and y = y1 . . . ym and produces two output strings u
and v such that u = min{x, y} and v = max{x, y} . We assume that x1 , resp. y1

are the leading bits of the binary numbers. In addition, CMm outputs the result ρ ∈ Σρ

of the comparison, that is either LE , EQ or GT . In the following, ρ will be called the
compare info of CMm . Let us first describe more formally the line- and tree-comparator
module introduced above.

Definition 3. A line comparator module LCMm (see Fig. 5) is a comparator module
consisting of a linear array of S -gates S1, . . . , Sm where each Si gets the i -th bit of
x and y and the compare result ρi−1 of Si−1 . For S1 we define ρ0 := EQ . Si outputs
the two bits ui and vi and ρi as the result of comparing the prefixes x1, . . . , xi and
y1, . . . , yi . The compare info of CMm is ρm , i.e. the compare result of the last Sm . �

Even though some of the pairs ui, vi may be computed faster (if xi = yi), since the ρi

form a linear chain, gate Si always has to wait for the output ρi−1 of its left neighbour
in order to determine its output ρi . Thus, we get the following timing for a LCM .

Lemma 1. If S is a starting-time for LCMm such that S(xi),S(yi) ≤ i − 1 for all
i ∈ [1..m] then timeLCMm

S (Sj , (x, y)) = j for all j ∈ [1..m] and all input pairs (x, y) .

Definition 4. A tree comparator module TCMm (see Fig. 6) makes all the compar-
isons of input pairs xi, yi in parallel by a sequence of U -gates U1, . . . , Um , and then
combines their results ρ1, . . . , ρm by a binary tree of R -gates to obtain the compare

Improving the Average Delay of Sorting 337

info ρ . The root of this tree will be denoted by R̂ . The compare info ρ at R̂ is then
used to drive m L -gates L1, . . . , Lm . Li either leads the two inputs xi, yi simply
through if ρ equals LE or EQ , or exchanges their order otherwise. Value ρ can either
be forwarded to the Li directly if we allow unbounded fanout or we have to use another
binary tree to duplicate this information if the fanout is bounded. In the following we
will consider the case of unbounded fanout, otherwise in the timing bounds below one
has to add another additive term log m . �

ρ0

x1y1 x2y2 x3y3 x4y4

v4u4u3v3u2v2v1u1

x4y4y3x3x1y1 x2y2

L1 L2 L3 L4

U1 U2 U3 U4

ρ5

R̂

Fig. 6. A tree comparator module

y1x1

x7y7

S2

S1

S3

x4

U1 U2 U3 U4

y7x7y6x6x5y5x4y4

L1 L2 L3 L4

u7v7v6u6v5u5u4v4

ρ0

ρ3

ρ7

y4 x5

v3

y5

u3

v2u2

u1v1

x6y6

x3y3

y2x2

R̂

Fig. 7. A line tree comparator module

Lemma 2. For arbitrary S and all inputs (x, y) it holds for all j ∈ [1..m]

timeTCMm

S (Lj , (x, y)) = 2 + log m + max{S(xi), S(yi) | i ∈ [1..m]} .

To be more efficient in the average case we now define hybrid versions of these two
architectures. They will depend on an additional parameter k ∈ IN . When applying to
the sorting problem of n elements k typically will be of order log n .

Definition 5. A k -line tree comparator module (see Fig. 7), LTCMm,k for short, con-
sists of a line comparator module LCMk for the prefixes x1, . . . , xk and y1, . . . , yk , and
a tree comparator module TCMm−k for the suffixes xk+1, . . . , xm and yk+1, . . . , ym

with the following modification. The root R̂ of the tree comparator additionally gets the
compare info ρk of LCMk and if this result is EQ then it works as previously. Otherwise,
R̂ outputs this value as a result of the comparison between x and y and propagates this
value to the Li . �
A combination of the two timing bounds for LCM and TCM modules gives

Lemma 3. For all starting-lines S with S(xi),S(yi) ≤ σk(i) and all input pairs (x, y)
it holds time

LTCMm,k

S (Sj , (x, y)) ≤ j for j ≤ k and

time
LTCMm,k

S (Lj , (x, y)) ≤
{

k + 2 + log (m − k) for ρk = EQ,
k + 2 for ρk �= EQ.

To achieve small average case delay for nonuniform distributions we need another type
of comparator module that can be found in the full paper.

338 A. Jakoby et al.

4 Average Case Delay for the Uniform Distribution

The previous section has shown that the delay of a comparator module depends on the
length of the prefix up to which its two inputs x and y are identical. Therefore, we
make the following definition.

Definition 6. Let X = X1, . . . , Xn be a sequence of strings with X i = xi
1 . . . xi

m ∈
{0, 1}m , c ∈ IN , and w ∈ {0, 1}c . We call w a conflict prefix of X if X contains two
string X i, Xj (i �= j) with prefix w . Let confc(X) denote the number of different
conflict prefixes in X of length c .

A c -congestion of X is a subsequence of X such that all its members have identical
prefixes of length c . Let conc(X) denote the maximal size (number of elements of the
subsequence) of a c-congestion of X .

Obviously, the values confc(X) are monotonically decreasing with c . If conc(X) =
1 then the strings in X have pairwise different prefixes of length c .

In this section we assume that Xn,m is a uniformly distributed random variable
generating an independent sequence X1, . . . , Xn of binary numbers of length m each.
We can upperbound conflicts and congestion as follows.

Lemma 4. [Conflict Prefix and Congestion Bound] For every c, β, γ ∈ IN it holds:

and

Pr[confc(Xn,m) ≥ β] ≤ 2−β(c−2 log n)

Pr[conc(Xn,m) ≥ γ] ≤ 2−γ(c−log n)+c .

We will use k -line tree comparators with different parameters k . Circuits of such com-
parator modules work efficiently if the k -congestion of the input strings is small. From
the lemma above follows that for c ≥ 3 log n the c-congestion does not exceed 1 with
high probability, in particular Pr[con3 log n(Xn,m) > 1] ≤ 1/n .

On the other hand for c ≤ (1− ε) log n with ε > 0 , the c-congestion may typically
be quite large. Hence, our circuit designs will choose the parameter k in the interval
[2 log n + ε..3 log n] . For the rest of this section we will choose k := 3 log n and
assume that m ≥ k is large enough.

Let X i, Xj be inputs of an LTCMm,k . If the prefixes of length k of X i, Xj are
different then the module can obtain the compare info in O(k) steps. In this case, we
say that it gets the result fast, otherwise it gets the result slowly.

Using the function σk introduced at the end of Section 2, we define a starting line
Sk for a sorting circuit C as follows. For i ∈ [1..n] and j ∈ [1..m] let xi,j denote
the gate that gets the j -th input bit of the i -th number X i , and yi,j the corresponding
output gate. Then Sk(xi,j) = σk(j) . Note that an input sequence X = X1, . . . , Xn

with conk(X) = 1 can be sorted by comparing the prefixes of length k and exchange
the remaining part of the strings according to the compare info of these prefixes.

Lemma 5. Let C be a circuit for the (n, m)-sorting problem that is obtained from an
arbitrary word comparator circuit Cn by implementing its comparators as LTCMm,k .
Then with probability at least 1 − 1/n , for every output gate yi,j of C it holds
timeC

Sk
(yi,j ,Xn,m) ≤ σk(j) + depth(Cn) .

From this lemma we get that all output gates can compute their values by time step
k + depth(Cn) + 1 . This proves Theorem 1.

Improving the Average Delay of Sorting 339

For circuits with fanout at most 2 one obains a slightly worse estimation of the form

timeC
Sk

(yi,j ,Xn,m) ≤
{

σk(j) + depth(Cn) if j ≤ k,
σk(j) + depth(Cn) + log (m − k) else.

In the rest of this section we will concentrate on particular sorting and merging cir-
cuits, namely on odd-even merge and bitonic architectures. We start by considering the
(n, m)-merging problem for binary numbers of length m .

Lemma 6. Let Cn be an odd-even-merge word comparator circuit merging two sorted
m-bit sequences of n/2 elements each. For k ≤ m let C be derived from Cn by
replacing its comparators by LTCMm,k . Then for every integer γ ≥ 1 , every input X
with conk+1(X) = γ and confk+1(X) = β and for every output gate yi,j of C it
holds

timeC
Sk

(yi,j , X) ≤
{

σk(j) + log n if j ≤ k,
σk(j) + log n + log (m − k) · (β + log γ) else.

The proof of the lemma above is based on the following properties of odd-even-merge
circuits:

– Let X be an input of length n for odd-even -merge and X ′ be one of the two
sorted subsequences of length n/2 . Then within the first � steps of the recursive
problem division X ′ is partitioned into 2� subsequences X ′

1, . . . , X
′
2� .

– Let B1, . . . , Br be a partition of X ′ into consecutive strings. After log maxi |Bi|
recursive steps every subsequence X ′

i contains at most one element from each Bj .
– Every pair of input strings X i and Xj of X is compared at most once.

Theorem 3 (Odd-Even Merge). Let Cn be an odd-even-merge word comparator cir-
cuit merging two sorted m-bit sequences of n/2 elements. Let C a Boolean circuit
derived from Cn by implementing its comparators as LTCMm,k modules. Given a se-
quence Xn,m , let Z1, . . . , Zn/2 be a permutation of the subsequence X1, . . . , Xn/2

sorted in nondecreasing order, and similarly Zn/2+1, . . . , Zn for Xn/2+1, . . . , Xn .
Then with probability at least 1 − 1/n : timeC(Z1, . . . , Zn) ≤ 5 · log n .

The proof follows from the Congestion-Bound and the lemma above. This theorem
implies also the result for the sorting problem as stated in Theorem 2 in Section 1. A
similar bound can be obtained for bitonic circuits.

5 Average Case Delay for Nonuniform Distributions

This section will extend the previous results to nonuniform distributions. We have to
bound the complexity of distributions somehow, because otherwise the average case
would equal the worst case. This will be done within the circuit model itself.

Definition 7. A distribution generating circuit is a Boolean circuit D of fanin and
fanout at most 2. If D has r input gates and n output gates it performs a transformation
of a random variable Z uniformly distributed over {0, 1}r into a random variable X
over {0, 1}n . The input vector for D is chosen according to Z, and the distribution of
X is given by the distribution of the values obtained at the output gates. �

340 A. Jakoby et al.

In the following we will identify a distribution over {0, 1}n·m with a corresponding
random vector variable X . Let X = (X1, . . . , Xn) with X i = X i

1 . . .X i
m ∈ {0, 1}m .

Definition 8. Let Dn,m denote the set of all probability distributions μ on {0, 1}n·m .
For μ ∈ Dn,m let Supp(μ) be the set of all vectors X ∈ {0, 1}n·m with nonzero prob-
ability μ(X) . We call a distribution in Dn,m strictly positive if Supp(μ) = {0, 1}n·m

and let D+
n,m denote the set of such distributions. Finally define

Depthn,m(d) := {μ ∈ D+
n,m | ∃ an r-input and (n · m)-output Boolean circuit D

of depth d that transforms a uniformly distributed random
variable Z over {0, 1}r into a random variable X with
distribution μ, where r may be any integer} . �

By definition, Depthn,m(d) contains strictly positive probability distributions only. In
our setting where a single circuit should have good average case behaviour for every
distribution in this class this is obviously necessary to exclude trivial cases. Otherwise
one could concentrate the probability mass on the worst-case inputs and average case
complexity would equal worst-case complexity. The same problem would arise if the
distribution generating circuits may use gates of unbounded fanin or fanout.

To guarantee small average delay the congestion has to be low as seen above. Below
we establish a bound on the congestion of a random variable generated by a circuit of
small depth.

Lemma 7. Let X ∈ Depthn,m(d) and c ≥ 3 · 22d+1+2d+1 log n . Then it holds
Pr[conc(X) ≥ 2] ≤ 1

n and Pr[confc(X) ≥ 1] ≤ 1
n .

For small d , i.e. d = logloglogn , the bound given in Lemma 7 implies Pr[conc(X) ≥
2] ≤ 1

n for c ∈ Θ(log2 n · loglogn) . One should note that even with such a small depth
bound d one can construct highly biased bits x (for example such that Pr[x = 1] =
1/ log n) and also a lot of dependencies among subsets of bits.

Theorem 4. Let Cn,m be a Boolean circuit for the (n, m)-sorting problem derived
from the word comparator odd-even merge sort circuit Cn by replacing its comparators
by a specific family of comparator modules CM . Then for X ∈ Depthn,m(logloglogn) ,

with probability greater than 1−1/n it holds timeCn,m(X) ≤ 5 log2 n logloglogn .

That a tiny depth bound is indeed necessary can be seen as follows. For d = loglogn
one can construct X ∈ Depthn,m(d) such that Pr[conmε/2(X) ≥ nε/2] ≥ 1

2 for
some ε > 0 . In this case a larger delay has to occur even in line tree comparator
modules.

6 Conclusion

We have presented new topologies for bit level comparators. Using these modules to
replace the comparators of a word level sorting circuit yields sorting circuits that are
highly efficient on the average. For odd-even sorting circuits we could show that one
can achieve an average delay on the bit level that is asymptotically the same as on the
word level.

Improving the Average Delay of Sorting 341

The question arises whether simular results can be shown for other computational
problems that can be realized on the word as well as on the bit level.

References

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi, Sorting in c log n parallel steps, Combi-
natorica 3, 1983, 1-19.

[AB93] M. Al-Hajery and K. Batcher, On the bit-level complexity of bitonic sorting net-
works, Proc. 22. Int. Conf. on Parallel Processing, 1993, III.209 – III.213.

[HL00] I. Hatirnaz and Y. Leblebici, Scalable binary sorting architecture based on rank
ordering withlinear area-time complexity, Proc. 13. IEEE ASIC/SOC Conference,
2000, 369-373.

[J98] A. Jakoby, Die Komplexität von Präfixfunktionen bezüglich ihres mittleren Zeitver-
haltens, Dissertation, Universität zu Lübeck, 1998.

[JRS94] A. Jakoby, R. Reischuk, and C. Schindelhauer, Circuit complexity: from the worst
case to the average case, Proc. 26. ACM STOC, 1994, 58-67.

[JRS95] A. Jakoby, R. Reischuk, and C. Schindelhauer, Malign distributions for average
case circuit complexity, Proc. 12. STACS, 1995, Springer LNCS 900, 628-639.

[JRSW94] A. Jakoby, R. Reischuk, C. Schindelhauer, and S. Weis, The average case com-
plexity of the parallel prefix problem, Proc. 21. ICALP, 1994, Springer LNCS 820,
593-604.

[JS01] A. Jakoby, C. Schindelhauer, Efficient Addition on Field Programmable Gate Ar-
rays, Proc. 21. FSTTCS, 2001, 219-231.

[LDH03] Y. Leblebici, T. Demirci, and I. Hatirnaz, Full-Custom CMOS Realization of
a High-Performance Binary Sorting Engine with Linear Area-Time Complexity,
Proc. IEEE Int. Symp. on Circuits and Systems 2003.

[L92] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[LP90] T. Leighton and C. G. Plaxton, A (fairly) simple circuit that (usually) sorts,
Proc. 31. IEEE FOCS, 1990, 264-274.

[LO99] R. Lin and S. Olariu, Efficient VLSI architecture for Columnsort, IEEE Trans. on
VLSI 7, 1999, 135-139.

[T79] C.D. Thompson, Area-Time Complexity for VLSI, Proc. 11. ACM STOC 1979,
81-88.

[T83] C.D. Thompson, The VLSI Complexity of Sorting, IEEE Trans. Comp. 32, 1983,
1171-1184.

Approximating Capacitated Tree-Routings in

Networks

Ehab Morsy and Hiroshi Nagamochi

Department of Applied Mathematics and Physics
Graduate School of Informatics

Kyoto University
Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan

{ehab,nag}@amp.i.kyoto-u.ac.jp

Abstract. The capacitated tree-routing problem (CTR) in a graph G =
(V, E) consists of an edge weight function w : E → R+, a sink s ∈ V ,
a terminal set M ⊆ V with a demand function q : M → R+, a rout-
ing capacity κ > 0, and an integer edge capacity λ ≥ 1. The CTR
asks to find a partition M = {Z1, Z2, . . . , Z�} of M and a set T =
{T1, T2, . . . , T�} of trees of G such that each Ti spans Zi ∪ {s} and sat-
isfies

�
v∈Zi

q(v) ≤ κ. A subset of trees in T can pass through a single
copy of an edge e ∈ E as long as the number of these trees does not
exceed the edge capacity λ; any integer number of copies of e are al-
lowed to be installed, where the cost of installing a copy of e is w(e).
The objective is to find a solution (M, T) that minimizes the installing
cost

�
e∈E�|{T ∈ T | T contains e}|/λ	w(e). In this paper, we propose

a (2 + ρST)-approximation algorithm to the CTR, where ρST is any ap-
proximation ratio achievable for the Steiner tree problem.

Keywords: Approximation Algorithm, Graph Algorithm, Routing
Problems, Network Optimization, Tree Cover.

1 Introduction

We propose an extension model of routing problems in networks which includes a
set of important routing problems as its special cases. This extension generalizes
two different routing protocols in networks. Given an edge-weighted graph, a set
of terminals with demands > 0, a designated vertex s, and a number κ > 0,
the first protocol consists in finding a set T of trees rooted at s each of which
contains terminals whose total demand does not exceed κ. Each terminal must
be assigned to a tree in T . The goal is to minimize the total cost of all trees
in T . Given a network with a designated vertex s and an edge capacity λ, the
second protocol consists in finding a set P of paths Pv from each terminal v to
s. Each terminal v has a demand > 0 which should be routed via Pv to s. A
subset of paths of P can pass through an edge in the underlying network as long
as the total demand of the paths in this subset does not exceed the capacity
λ. For any edge e, any number of copies of e can be installed. The goal is to

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 342–353, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximating Capacitated Tree-Routings in Networks 343

minimize the total weight of all edges installed in the network. These protocols
play an important role in many applications such as communication networks
supporting multimedia and the design of telecommunication and transportation
networks. Our new problem formulation can be applied to possible extensions of
these applications.

In this paper, we consider a capacitated routing problem under a multi-tree
model. Under this model, we are interested in constructing a set T of tree-
routings that connects given terminals to a sink s in a network with a routing
capacity κ > 0 and an edge capacity λ > 0. A network is modeled with an edge-
weighted undirected graph. Each terminal has a demand > 0, and a tree in the
graph can connect a subset of terminals to s if the total demands in the subset
does not exceed the routing capacity κ. The weight of an edge in a network
stands for the cost of installing a copy of the edge. A subset of trees can pass
through a single copy of an edge e as long as the number of these trees does
not exceed the edge capacity λ; any integer number of copies of e are allowed
to be installed. The goal is to find a feasible set of tree-routings that minimizes
the total weight of edges installed in the network. We call this problem the
capacitated tree-routing problem (CTR for short), which can be formally stated
as follows, where we denote the vertex set and edge set of a graph G by V (G)
and E(G), respectively, and R+ denotes the set of nonnegative reals.
Capacitated Tree-Routing Problem (CTR)
Input: A graph G, an edge weight function w : E(G) → R+, a sink s ∈ V (G), a
set M ⊆ V (G) of terminals, a demand function q : M → R+, a routing capacity
κ > 0, and an integer edge capacity λ ≥ 1.
Feasible solution: A partition M = {Z1, Z2, . . . , Z�} of M and a set T =
{T1, T2, . . . , T�} of trees of G such that Zi ∪ {s} ⊆ V (Ti) and

∑
v∈Zi

q(v) ≤ κ
hold for each i.
Goal: Minimize the sum of weights of edges to be installed under the edge
capacity constraint, that is,

∑

e∈E(G)

hT (e)w(e),

where hT (e) = �|{T ∈ T | e ∈ E(T)}|/λ	, e ∈ E.

The CTR is our new problem formulation which includes several important
routing problems as its special cases. First of all, the CTR with λ = 1 and
κ = +∞ is equivalent to the Steiner tree problem. Given an edge-weighted
graph G and a subset Z ⊆ V (G), the Steiner tree problem asks to find a min-
imum weighted tree T of G with Z ⊆ V (T). The Steiner tree problem is NP-
hard, and the current best approximation ratio for the Steiner tree problem is
about 1.55 [6].

Secondly the CTR is closely related to the capacitated network design problem
(CND), which has received a number of attentions in the recent study [2,4,7].
The problem is described as follows.

Capacitated Network Design Problem (CND)
Input: A graph G, an edge weight function w : E(G) → R+, a sink s ∈ V (G), a

344 E. Morsy and H. Nagamochi

set M ⊆ V (G) of sources, a demand function q : M → R+, and an integer edge
capacity λ ≥ 1.
Feasible solution: A set P = {Pv | v ∈ M} of paths of G such that {s, v} ⊆
V (Pv) holds for each v ∈ M .
Goal: Minimize the sum of weights of edges to be installed, that is,

∑

e∈E(G)

hP(e)w(e),

where hP(e) = �∑v:e∈E(Pv) q(v)/λ	, e ∈ E.

Salman et al. [7] designed a 7-approximation algorithm for the CND by using
approximate shortest path trees. Afterwards Hassin et al. [2] gave a (2 + ρ

ST
)-

approximation algorithm, where ρ
ST

is any approximation ratio achievable for
the Steiner tree problem. By using of a slight intricate version of this algorithm,
they improved the approximation ratio to (1 + ρ

ST
) when every source has unit

demand. Note that the CTR and the CND are equivalent in the case where κ = 1
and q(v) = 1 for every v ∈ M .

The third variant of the CTR is the capacitated multicast tree routing problem
(CMTR) which can be formally stated as follows.

Capacitated Multicast Tree Routing Problem (CMTR)
Input: A graph G, an edge weight function w : E(G) → R+, a source s, a set
M ⊆ V (G) of terminals, a demand function q : M → R+, and a routing capacity
κ > 0.
Feasible solution: A partition M = {Z1, Z2, ..., Z�} of M and a set T =
{T1, T2, ..., T�} of trees induced on vertices of G such that Zi ∪ {s} ⊆ V (Ti) and∑

v∈Zi
q(v) ≤ κ hold for each i.

Goal: Minimize ∑

e∈E(G)

hT (e)w(e) =
∑

Ti∈T
w(Ti),

where hT (e) = |{T ∈ T | e ∈ E(T)}|, e ∈ E, and w(Ti) denotes the sum of
weights of all edges in Ti.

Observe that the CMTR is equivalent to the CTR with λ = 1. For the CMTR
with a general demand, a (2 + ρ

ST
)-approximation algorithm is known [3]. If

q(v) = 1 for all v ∈ M , and κ is a positive integer in an instance of the
CMTR, then we call the problem of such instances the unit demand case of the
CMTR. For the unit demand case of the CMTR, Cai et al. [1] gave a (2 + ρ

ST
)-

approximation algorithm, and Morsy and Nagamochi [5] recently proposed a
(3/2 + (4/3)ρ

ST
)-approximation algorithm.

As observed above, the CTR is a considerably general model for routing prob-
lems. In this paper, we prove that the CTR admits a (2 + ρ

ST
)-approximation

algorithm. For this, we derive a new result on tree covers in graphs.
The rest of this paper is organized as follows. Section 2 introduces some nota-

tions and two lower bounds on the optimal value of the CTR. Section 3 describes
some results on tree covers. Section 4 presents our approximation algorithm for
the CTR and analyzes its approximation factor. Section 5 concludes.

Approximating Capacitated Tree-Routings in Networks 345

2 Preliminaries

This section introduces some notations and definitions. Let G be a simple undi-
rected graph. We denote by V (G) and E(G) the sets of vertices and edges in G,
respectively. For two subgraphs G1 and G2 of a graph G, let G1 +G2 denote the
subgraph induced from G by E(G1) ∪ E(G2). An edge-weighted graph is a pair
(G, w) of a graph G and a nonnegative weight function w : E(G) → R+. The
length of a shortest path between two vertices u and v in (G, w) is denoted by
d(G,w)(u, v). Given a vertex weight function q : V (G) → R+ in G, we denote by
q(Z) the sum

∑
v∈Z q(v) of weights of all vertices in a subset Z ⊆ V (G).

Let T be a tree. A subtree of T is a connected subgraph of T . A set of subtrees
in T is called a tree cover of T if each vertex in T is contained in at least one of
the subtrees. For a subset X ⊆ V (T) of vertices, let T 〈X〉 denote the minimal
subtree of T that contains X (note that T 〈X〉 is uniquely determined).

Now let T be a rooted tree. We denote by L(T) the set of leaves in T . For a
vertex v in T , let Ch(v) and D(v) denote the sets of children and descendants
of v, respectively, where D(v) includes v. A subtree Tv rooted at a vertex v is the
subtree induced by D(v), i.e., Tv = T 〈D(v)〉. For an edge e = (u, v) in a rooted
tree T , where u ∈ Ch(v), the subtree induced by {v} ∪ D(u) is denoted by Te,
and is called a branch of Tv. For a rooted tree Tv, the depth of a vertex u in Tv

is the length (the number of edges) of the path from v to u.
The rest of this section introduces two lower bounds on the optimal value to

the CTR. The first lower bound is based on the Steiner tree problem.

Lemma 1. Given a CTR instance I = (G, w, s, M, q, κ, λ), the minimum cost
of a Steiner tree to (G, w, M ∪ {s}) is a lower bound on the optimal value to the
CTR instance I.

Proof. Consider an optimal solution (M∗, T ∗) to the CTR instance I. Let E∗ =
∪T ′∈T ∗E(T ′)(⊆ E(G)), i.e., the set of all edges used in the optimal solution.
Then the edge set E∗ contains a tree T that spans M ∪ {s} in G. We see that
the cost w(T) of T in G is at most that of the CTR solution. Hence the minimum
cost of a Steiner tree to (G, w, M ∪ {s}) is no more than the optimal value to
the CTR instance I. �

The second lower bound is derived from an observation on the distance from
vertices to sink s.

Lemma 2. Let I = (G, w, s, M, q, κ, λ) be an instance of CTR. Then,
∑

v∈M

d(G,w)(s, v)q(v)/(κλ)

is a lower bound on the optimal value to the CTR instance I.

Proof. Consider an optimal solution (M∗ = {Z1, . . . , Zp}, T ∗ = {T1, . . . , Tp})
to the CTR instance I. Let opt(I) =

∑
e∈E(G) hT ∗(e)w(e) be the optimal value

346 E. Morsy and H. Nagamochi

of the CTR instance I. Since |{T ′ ∈ T ∗ | e ∈ E(T ′)}| ≤ λhT ∗(e) holds for all
e ∈ E(G), we see that

∑

Ti∈T ∗

w(Ti) ≤
∑

e∈E(G)

λhT ∗(e)w(e) = λopt(I). (1)

On the other hand, for each tree Ti ∈ T ∗, we have
∑

v∈Zi

d(G,w)(s, v)q(v) ≤ w(Ti)
∑

v∈Zi

q(v) ≤ κw(Ti), (2)

since w(Ti) ≥ d(G,w)(s, v) for all v ∈ V (Ti). Hence by summing (2) overall trees
in T ∗ and using (1), we conclude that

∑
v∈M d(G,w)(s, v)q(v) ≤ κλopt(I), which

completes the proof. �

3 Tree Cover

The purpose of this section is to present some results on the existence of tree
covers, based on which we design our approximation algorithm to the CTR in
the next section.

We first review a basic result on tree covers.

Lemma 3. [3] Given a tree T rooted at r, an edge weight function w : E(T) →
R+, a terminal set M ⊆ V (T), a demand function q : M → R+, and a routing
capacity κ with κ ≥ q(v), v ∈ M , there is a partition Z = Z1 ∪ Z2 of M such
that:

(i) For each Z ∈ Z, there is a child u ∈ Ch(r) such that Z ⊆ V (Tu). Moreover,
|{Z ∈ Z1 | Z ⊆ V (Tu)}| ≤ 1 for all u ∈ Ch(r);

(ii) q(Z) < κ/2 for all Z ∈ Z1;
(iii) κ/2 ≤ q(Z) ≤ κ for all Z ∈ Z2; and
(iv) Let T = {T 〈Z∪{r}〉 | Z ∈ Z1}∪{T 〈Z〉 | Z ∈ Z2}. Then E(T ′)∩E(T ′′) = ∅

for all T ′, T ′′ ∈ T , and hence
∑

T ′∈T w(T ′) ≤ w(T).

Furthermore, such a partition Z can be obtained in polynomial time. �

From the construction of a partition Z in Lemma 3, the following corollary is
straightforward.

Corollary 1. Let Z = Z1 ∪ Z2 be defined as in Lemma 3 to (T, r, w, M, q, κ).
Then:

(i) E(T 〈Z〉) ∩ E(T 〈∪Z∈Z1Z〉) = ∅ for all Z ∈ Z2.
(ii) Let Z0 ∈ Z1 be a subset such that Z0 ⊆ V (Tu) for some u ∈ Ch(r). If

Z ′ = {Z ∈ Z2 | Z ⊆ V (Tu)} �= ∅, then Z ′ contains a subset Z ′ such that
E(T 〈Z0 ∪ Z ′〉) ∩ E(T 〈Z〉) = ∅ for all Z ∈ Z − {Z0, Z

′}. �

Approximating Capacitated Tree-Routings in Networks 347

We now describe a new result on tree covers. For an edge weighted tree T rooted
at s, a set M ⊆ V (T) of terminals, and a vertex weight function d : M → R+,
we want to find a partition M of M and to construct a set of induced trees
T 〈Z ∪ {tZ}〉, Z ∈ M by choosing a vertex tZ ∈ V (T) for each subset Z ∈ M,
where we call such a vertex tZ the hub vertex of Z. To find a “good” hub
vertex tZ for each Z ∈ M, the following lemma classifies a partition M of M
into disjoint collections C1, C2, . . . , Cf and then computes tZ , Z ∈ M, such that
tZ = argmin{d(t) | t ∈ ∪Z∈Cj Z} for each Z ∈ Cj , j ≤ f − 1, and tZ = s for each
Z ∈ Cf .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

Fig. 1. Illustration of the case of |Z2| = g + g̃ ≥ λ in an iteration of algorithm
TreeCover; (a) Line 3.4 identifies a terminal tj ∈ V (Tv) with the minimum ver-
tex weight d, where tj ∈ V (Tu) in this figure; (b) Line 3.6.3 or 3.6.4 constructs Cj

that contains all subsets in {Z0, Z1, . . . , Zg} and some subsets in { �Z1, . . . , �Zg̃} so that
|Cj | = λ, where the gray subtrees indicate the subsets in Cj . Line 5 then removes all
the terminals in ∪Z∈Cj Z from the terminal set M , and hence no vertices of V (Tu) will
be chosen as hub vertices in the subsequent iterations.

Lemma 4. Given a tree T rooted at s, an edge weight function w : E(T) → R+,
a terminal set M ⊆ V (T), a demand function q : M → R+, a vertex weight
function d : M → R+, a real κ with κ ≥ q(v), v ∈ M , and a positive integer λ,
there exist a partition M = ∪1≤j≤fCj of M , and a set B = {tj = argmin{d(t) |
t ∈ ∪Z∈Cj Z} | j ≤ f − 1} ∪ {tf = s} of hub vertices such that:

(i) |Cj| ≤ λ for all j = 1, 2, . . . , f ;
(ii) q(Z) ≤ κ for all Z ∈ Cj, j = 1, 2, . . . , f ;
(iii)

∑
Z∈Cj

q(Z) ≥ κλ/2 for all j = 1, 2, . . . , f − 1;
(iv) E(T 〈Z〉) ∩ E(T 〈Z ′〉) = ∅ for all distinct Z, Z ′ ∈ M; and
(v) Let T ′ = {T 〈Z ∪ {tj}〉 | Z ∈ Cj, 1 ≤ j ≤ f}, and let all edges of each

T 〈Z ∪ {tj}〉 ∈ T ′, Z ∈ Cj, 1 ≤ j ≤ f be directed toward tj. Then for each
edge e ∈ E(T), the number of trees in T ′ passing through e in each direction
is at most λ.

Furthermore, a tuple (M,B, T ′) can be computed in polynomial time. �

348 E. Morsy and H. Nagamochi

To prove Lemma 4, we can assume without loss of generality that in a given
tree T , (i) all terminals are leaves, i.e., M =L(T), and (ii) |Ch(v)| = 2 holds for
every non-leaf v ∈ V (T), i.e., T is a binary tree rooted at s, by splitting vertices
of degree more than 3 with new edges of weight zero [5]. We prove Lemma 4
by showing that the next algorithm actually delivers a desired tuple (M,B, T ′).
The algorithm constructs collections C1, C2, . . . , by repeating a procedure that
first chooses a certain vertex v in the current tree, computes a partition Z of the
set of terminals in the subtree rooted at v by Lemma 3, and then selects several
subsets in Z to form the next new collection Cj.

Algorithm. TreeCover

Input: A binary tree T̂ rooted at s, an edge weight function w : E(T̂)→R+, a
terminal set M =L(T̂) with q(v) ≥ 0, v ∈ M , a vertex weight function d : M →
R+, a routing capacity κ with κ ≥ q(v), v ∈ M , and a positive integer λ.
Output: A tuple (M,B, T ′) that satisfies Conditions (i)-(v) in Lemma 4.
Initialize: T := T̂ , T ′ := ∅, and j := 0.
1. Choose a maximum depth vertex v ∈ V (T) with q(V (Tv) ∩ M) ≥ κλ/2, and

let j := j + 1.
2. If v is a leaf of T , then let Z := {v}, Cj := {Z}, and tj := v.
3. If v is not a leaf of T , then
3.1. Denote Ch(v) = {u, ũ} and Zv = V (Tv) ∩ M .
3.2. Find a partitionZ1∪Z2 of Zv by applying Lemma 3 with (Tv, w, v, Zv, q, κ).
3.3. Denote Z1 = {Z0, Z̃0} and Z2 = {Z1, . . . , Zg} ∪ {Z̃1, . . . , Z̃g̃}, where Z0∪

Z1 ∪ · · · ∪ Zg ⊆ V (Tu) and Z̃0 ∪ Z̃1 ∪ · · · ∪ Z̃g̃ ⊆ V (Tũ) (see Fig. 1).
3.4. Let tj ∈ Zv be such that d(tj) is minimum, where tj ∈ V (Tu) w.o.l.g.
3.5. If the number of subsets in Z2, i.e., g + g̃, is less than λ, then let

Cj := {Z0 ∪ Z̃0, Z1, . . . , Zg, Z̃1, . . . , Z̃g̃}.
3.6. If the number of subsets in Z2 is at least λ, then

3.6.1. Find Zb ∈ {Z1, . . . , Zg} such that E(T 〈Z〉) ∩ E(T 〈Z0 ∪ Zb〉) = ∅ for
all Z ∈ Z1 ∪ Z2 − {Z0, Zb}, by using Corollary 1(ii).

3.6.2. Let x̃i ∈ V (T 〈Z̃i〉), i = 1, 2, . . . , g̃ be the vertex closest to v in T ,
where the distance from x̃i+1 to v in T is not larger than that from
x̃i to v, 1 ≤ i ≤ g̃ − 1, w.o.l.g.

3.6.3. If q(Z0 ∪ Zb) ≤ κ, then let
Cj := {Z1, . . . , Zb−1, Z0 ∪ Zb, Zb+1, . . . , Zg} ∪ {Z̃1, . . . , Z̃λ−g}.

3.6.4. If q(Z0 ∪ Zb) > κ, then let
Cj := {Z0, Z1, Z2, . . . , Zg} ∪ {Z̃1, . . . , Z̃λ−g−1}.

4. For each Z ∈ Cj , let tZ := tj and T ′ := T ′ ∪ {T 〈Z ∪ {tZ}〉}.
5. Remove the set of terminals in Cj from M and let T := T 〈M ∪ {s}〉.
6. Repeat steps in lines 1-5 with the current tree T as long as q(M) ≥ κλ/2.
7. Let f := j + 1, tf := s, and Cf := ∅.
8. If M is not empty, then
8.1.Find a partition Z1 ∪ Z2 of M by applying Lemma 3 with (T, w, s, M, q, κ).

Approximating Capacitated Tree-Routings in Networks 349

8.2. Let Cf := {Z0 ∪ Z̃0} ∪ Z2, where Z1 = {Z0, Z̃0}.
9. Let M := ∪1≤j≤fCj , B := {tj | 1 ≤ j ≤ f}, and

T ′ := T ′ ∪ {T 〈Z ∪ {s}〉 | Z ∈ Cf}.
10. Output (M,B, T ′).

Now we prove that the tuple (M,B, T ′) output from algorithm TreeCover

satisfies Conditions (i)-(v) in Lemma 4.
(i) Clearly, |Cj | = 1 ≤ λ for any collection Cj computed in line 2. Consider a

collection Cj computed in line 3.5. We have |Cj | = g + g̃ + 1 ≤ λ since g + g̃ < λ.
For any collection Cj computed in line 3.6.3 or 3.6.4, it is easy to see that |Cj | = λ
holds. Note that |Z2| < λ in a partition Z1 ∪ Z2 of the current M computed in
line 8.1 since q(Z) ≥ κ/2, Z ∈ Z2 and q(M) < κλ/2. Hence |Cf | = |Z2| + 1 ≤ λ
for a collection Cf computed in line 8.2. This proves (i).

(ii) For a collection Cj computed in line 2, q(Z) ≤ κ, Z ∈ Cj, by the assumption
that q(v) ≤ κ for all v ∈ M . Consider a partition Z1 ∪ Z2 computed in line 3.2
by applying Lemma 3 to (Tv, w, v, Zv, q, κ). Lemma 3(ii)-(iii) implies that q(Z0∪
Z̃0) < κ and q(Z) ≤ κ for all Z ∈ Z2. Furthermore, for a collection Cj computed
in line 3.6.3, we have q(Z0∪Zb) ≤ κ. Hence each subset Z added to Cj in line 3.5,
3.6.3, or 3.6.4 has demand at most κ. Lemma 3(ii)-(iii) implies also that each
subset of Cf computed in line 8.2 has demand at most κ. This proves (ii).

(iii) This condition holds for a collection Cj computed in line 2 since q(v) =
q(V (Tv) ∩ M) ≥ κλ/2. Consider a collection Cj computed in line 3.5. We have∑

Z∈Cj
q(Z) =

∑
Z∈Z1∪Z2

q(Z) = q(Zv) ≥ κλ/2 since Z1 ∪ Z2 computed in
line 3.2 is a partition of Zv and q(Zv) ≥ κλ/2 by using the condition in
line 1. For a collection Cj computed in line 3.6.3, Lemma 3(iii) implies that∑

Z∈Cj
q(Z) ≥ λ(κ/2) since q(Z) ≥ κ/2, Z ∈ Cj . For a collection Cj computed in

line 3.6.4, we have
∑

Z∈Cj
q(Z) =

∑
1≤i≤b−1 q(Zi)+q(Z0∪Zb)+

∑
b+1≤i≤g q(Zi)+

∑
1≤i≤λ−g−1 q(Z̃i) > (b − 1)κ/2 + κ + ((g − b) + (λ − g − 1))κ/2 = κλ/2 since

q(Z0 ∪ Zb) > κ. This completes the proof of property (iii).
(iv) Consider the execution of the jth iteration of the algorithm. By the

construction of Cj and Lemma 3(iv), we have E(T 〈Z1〉) ∩ E(T 〈Z2〉) = ∅ for all
distinct Z1, Z2 ∈ Cj . Moreover, since any collection computed in line 2, 3.5, or
8.2 contains all subsets in a partition Z1 ∪ Z2 of Zv computed in line 3.2 and
by the assumption in line 3.6.2 used in constructing Cj in line 3.6.3 or 3.6.4, we
conclude that E(T 〈Z ′〉)∩E(T 〈M −∪Z∈Cj Z〉)) = ∅ for all Z ′ ∈ Cj. Hence for any
distinct subsets Z1, Z2 ∈ M, we have E(T̂ 〈Z1〉)∩E(T̂ 〈Z2〉) = ∅ since a partition
M of M output from the algorithm is a union of collections Cj , j = 1, 2, . . . , f .
This proves (iv).

Before proving the property (v), we can show the following lemma (the proof
is omitted due to space limitation).

Lemma 5. Let (M,B, T ′) be a tuple obtained from a binary tree T̂ by algorithm
TreeCover. Then for each edge e = (x, y) ∈ E(T̂), where y ∈ Ch

�T (x), we have

(i) For T ′
1 = {T̂ 〈Z∪{tZ}〉 ∈ T ′ | Z ∈ M, Z∩V (T̂y) �= ∅ �= Z∩(V (T̂)−V (T̂y))},

it holds |T ′
1 | ≤ 1;

350 E. Morsy and H. Nagamochi

(ii) |{T̂ 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, Z ⊆ V (T̂) − V (T̂y), tZ ∈ V (T̂y)}| ≤ λ − 1;
and

(iii) |{T̂ 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, Z ⊆ V (T̂y), tZ ∈ V (T̂) − V (T̂y)}| ≤ λ − |T ′
1 |.
�

We are ready to prove property (v) in Lemma 4. Let e = (x, y) be an arbitrary
edge of T̂ , where y ∈ Ch

�T (x). Let all edges of T̂ 〈Z ∪ tZ〉 ∈ T ′, Z ∈ M, be
directed toward tZ , and let T ′

1 be as defined in Lemma 5. The number of trees
in T ′ passing through e toward y is at most the sum of the number of trees in
T ′

1 and trees in {T̂ 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, Z ⊆ V (T̂) − V (T̂y), tZ ∈ V (T̂y)}.
Similarly, the number of trees in T ′ passing through e toward x is at most the
sum of the number of subsets in T ′

1 and trees in {T̂ 〈Z∪{tZ}〉 ∈ T ′ | Z ∈ M, Z ⊆
V (T̂y), tZ ∈ V (T̂) − V (T̂y)}. Hence Lemma 5(i)-(iii) completes the proof of (v).

�

4 Approximation Algorithm to CTR

This section presents an approximation algorithm for an instance I = (G, w, s,
M, q, κ, λ) of the CTR problem based on results on tree covers in the pre-
vious section. The basic idea of the algorithm is to compute an approximate
Steiner tree T in (G, w, M ∪ {s}), find a tree cover T ′ of the tree T such that
|{T ′ ∈ T ′ | e ∈ E(T ′)}| ≤ λ for each e ∈ E(T), and finally connect each tree in
T ′ to s in order to get a tree-routings T in the instance I.

Algorithm. ApproxCTR

Input: An instance I = (G, w, s, M, q, κ, λ) of the CTR.
Output: A solution (M, T) to I.

Step 1. Compute a ρ
ST

-approximate solution T to the Steiner tree problem in
G that spans M ∪ {s} and then regard T as a tree rooted at s.
Define a function d : M → R+ by setting

d(t) := d(G,w)(s, t), t ∈ M.

Step 2. Apply Lemma 4 to (T, w, s, M, q, d, κ, λ) to get a partition M =
∪1≤j≤fCj of M , a set B = {t1, t2, . . . , tf} of hub vertices, where tZ = tj
for each Z ∈ Cj, j = 1, 2, . . . , f , and a set T ′ = {T 〈Z ∪ {tZ}〉 | Z ∈ M} of
subtrees of T that satisfy Conditions (i)-(v) of the lemma.

Step 3. For each edge e = (u, v) of T , v ∈ ChT (u), with |{T ′ ∈ T ′ | e ∈
E(T ′)}| > λ,

Define Cin(e) := {Z ∈ M | Z ⊆ V (T) − V (Tv), tZ ∈ V (Tv)} and
Cout(e) := {Z ∈ M | Z ⊆ V (Tv), tZ ∈ V (T) − V (Tv)}.
while |{T ′ ∈ T ′ | e ∈ E(T ′)}| > λ do

Choose two arbitrary subsets Z ∈ Cin(e) and Z ′ ∈ Cout(e),
where Z ∈ Cj and Z ′ ∈ Cj′ , 1 ≤ j, j′ ≤ f .
Let Cj := (Cj − {Z}) ∪ {Z ′}, Cj′ := (Cj′ − {Z ′}) ∪ {Z},

Approximating Capacitated Tree-Routings in Networks 351

Fig. 2. Illustration of a swapping process in Step 3 of ApproxCTR with λ = 5;
(a) Ci = {Z

(i)
1 , . . . , Z

(i)
5 }, Cj = {Z

(j)
1 , . . . , Z

(j)
5 }, Ck = {Z

(k)
1 , . . . , Z

(k)
5 }, Cin(e) =

{Z
(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 }, Cout(e) = {Z

(j)
5 , Z

(k)
4 , Z

(k)
5 }, and ti, tj , and tk are the hub

vertices of Ci, Cj , and Ck, respectively. Note that |{T 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈
M, e ∈ E(T 〈Z ∪ {tZ}〉)}| = 7 > λ; (b) Ci := Ci − {Z

(i)
1 } ∪ {Z

(k)
4 }, Ck := Ck −

{Z
(k)
4 } ∪ {Z

(i)
1 }, Cin(e) := Cin(e) − {Z

(i)
1 }, and Cout(e) := Cout(e) − {Z

(k)
4 }. Moreover,

T ′ := T ′ −{T 〈Z(i)
1 ∪{ti}〉, T 〈Z(k)

4 ∪{tk}〉}∪{T 〈Z(k)
4 ∪{ti}〉, T 〈Z(i)

1 ∪{tk}〉}. Therefore,
|{T 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, e ∈ E(T 〈Z ∪ {tZ}〉)}| = 5 = λ for the current T ′.

tZ := tj′ , and tZ′ := tj .
Let Cin(e) := Cin(e) − {Z} and Cout(e) := Cout(e) − {Z ′}.
Let T ′ := (T ′ − {T 〈Z ∪ {tj}〉, T 〈Z ′ ∪ {tj′}〉}) ∪ {T 〈Z ∪
{tZ}〉, T 〈Z ′ ∪ {tZ′}〉}.

(See Fig. 2 for an example that illustrates this process).
Step 4. For each j = 1, 2, . . . , f −1, choose a shortest path SP (s, tj) between s

and tj in (G, w) and join tj to s by installing a copy of each edge in SP (s, tj).
Let T := {T 〈Z ∪ {tZ}〉 + SP (s, tZ) | Z ∈ M} and output (M, T).

The idea of Step 3 in ApproxCTR is originated from a procedure of swapping
paths in the algorithm for the CND due to Hassin et al. [2].

Consider applying algorithm ApproxCTR to an instance I = (G, w, s, M, q,
κ, λ) of the CTR problem, and let T ′ be the set of subtrees of the Steiner tree T
computed in Step 2 of the algorithm. For any edge e = (u, v) ∈ E(T), v ∈ Ch(u),
let Cin(e) and Cout(e) be as defined in the algorithm. Note that Lemma 5 implies
that

|Cin(e)|, |Cout(e)| ≤ λ − |T ′
1 |,

where T ′
1 is defined as in the lemma. On the other hand, the number of trees

in T ′ passing through e in both directions equals |Cin(e)| + |Cout(e)| + |T ′
1 |.

Therefore, Cin(e) �= ∅ and Cout(e) �= ∅ in the case where the total number of
trees in T ′ passing through e exceeds λ. In this case, we swap an arbitrary
subset Z ∈ Cin(e) with another subset Z ′ ∈ Cout(e), where we assume that
Z and Z ′ belong to collections Cj and Cj′ , respectively, and then reassign the

352 E. Morsy and H. Nagamochi

hub vertices of Z and Z ′ such that tZ = tj′ and tZ′ = tj . As a result, Cin(e),
Cout(e), Cj , Cj′ , and T ′ are updated as described in the algorithm. This swapping
operation decreases the number of trees in T ′ passing through each edge in
E(T 〈Z ∪ {tj}〉)∩E(T 〈Z ′ ∪ {tj′}〉) (which includes e), where tj and tj′ were the
previous hub vertices of Z and Z ′, respectively, and hence |Cin(e)|, |Cout(e)| ≤
λ − |T ′

1 | still holds. Note that, the number of trees in T ′ passing through each
of the remaining edges of T never increases. This swapping process is repeated
as long as the number of trees in the current T ′ passing through e exceeds λ.
Hence we proved the following lemma.

Lemma 6. Let T ′ be output by algorithm ApproxCTR applied to an instance
I = (G, w, s, M, q, κ, λ) of the CTR problem. Then for any edge e of the Steiner
tree T , we have |{T 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, e ∈ E(T 〈Z ∪ {tZ}〉)}| ≤ λ. �
Next we show the feasibility and compute the approximation factor of the ap-
proximate solution (M, T) output from algorithm ApproxCTR.

Theorem 1. For an instance I = (G, w, s, M, q, κ, λ) of the CTR, algorithm
ApproxCTR delivers a (2+ρ

ST
)-approximate solution (M, T), where ρ

ST
is the

approximation ratio of solution T to the Steiner tree problem.

Proof. Since M = ∪1≤j≤fCj , Lemma 4(ii) implies that q(Z) ≤ κ for all Z ∈ M.
That is, (M, T) satisfies the routing capacity constraint on each tree. Now we
show that T satisfies the edge capacity constraint, that is, |{T ′ ∈ T | e ∈
E(T ′)}| ≤ λhT (e) for any e ∈ E(G). Note that each tree in T is a tree T 〈Z ∪
{tZ}〉 ∈ T ′, Z ∈ M, plus the shortest path SP (s, tZ) between s and tZ in (G, w).
By Lemma 6, installing one copy on each edge of the Steiner tree T implies that
|{T 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, e ∈ E(T 〈Z ∪ {tZ}〉)}| ≤ λ for any e ∈ E(T). On
the other hand, each collection Cj, j ≤ f , contains at most λ subsets of M, all
of which are assigned to a common hub vertex tj . Hence it is enough to install
one copy of each edge in a shortest path SP (s, tj) between s and tj in (G, w),
j ≤ f − 1 (tf = s), in order to get a feasible set T of tree-routings. This implies
that the number of trees in T passing through a copy of each installed edge on
the network is at most λ. Thereby (M, T) is feasible to I and the total weight
of the installed edges on the network is bounded by

w(T) +
∑

1≤j≤f−1

d(tj).

For a minimum Steiner tree T ∗ that spans M ∪ {s}, we have w(T) ≤ ρ
ST
·w(T ∗)

and w(T ∗) ≤ opt(I) by Lemma 1, where opt(I) denotes the weight of an optimal
solution to the CTR. Hence w(T) ≤ ρ

ST
· opt(I) holds. To prove the theorem, it

suffices to show that ∑

1≤j≤f−1

d(tj) ≤ 2opt(I). (3)

Consider a collection Cj , j ≤ f − 1 obtained by applying Lemma 4 to (T, w, s,
M, q, d, κ, λ) in Step 2. Note that even if some subsets of Cj are applied by

Approximating Capacitated Tree-Routings in Networks 353

swapping in Step 3, the hub vertex of the updated collection remains unchanged.
That is, the set B of hub vertices computed in Step 2 does not change throughout
the algorithm. Hence Lemma 4(iii) implies that

∑

t∈Z∈Cj

q(t)d(t) ≥ d(tj)
∑

t∈Z∈Cj

q(t) ≥ (κλ/2)d(tj). (4)

By summing inequality (4) overall Cj ’s (computed in Step 2), j ≤ f −1, we have

(1/2)
∑

1≤j≤f−1

d(tj) ≤
∑

1≤j≤f−1

∑

t∈Z∈Cj

(q(t)/(κλ))d(t) ≤
∑

t∈M

(q(t)/(κλ))d(t).

Hence Lemma 2 completes the proof of (3). �

5 Conclusion

In this paper, we have studied the capacitated tree-routing problem (CTR), a
new routing problem formulation under a multi-tree model which unifies several
important routing problems such as the capacitated network design problem
(CND) and the capacitated multicast tree routing problem (CMTR). We have
proved that the CTR is (2 + ρ

ST
)-approximable based on some new results on

tree covers, where ρ
ST

is any approximation factor achievable for the Steiner
tree problem. Future work may include design of approximation algorithms for
further extensions of our tree-routing model.

References

1. Z. Cai, G.-H Lin, and G. Xue. Improved approximation algorithms for the capaci-
tated multicast routing problem. LNCS 3595, (2005) 136-145.

2. R. Hassin, R. Ravi, and F. S. Salman. Approximation algorithms for a capacitated
network design problem. Algorithmica, 38, (2004) 417-431.

3. R. Jothi and B. Raghavachari. Approximation algorithms for the capacitated min-
imum spanning tree problem and its variants in network design. In proceedings of
ICALP 2004, LNCS 3142, (2004) 805-818.

4. Y. Mansour and D. Peleg. An approximation algorithm for minimum-cost net-
work design. Tech. Report Cs94-22, The Weizman Institute of Science, Rehovot,
(1994); also presented at the DIMACS Workshop on Robust Communication Net-
work, (1998).

5. E. Morsy and H. Nagamochi. An improved approximation algorithm for capaci-
tated multicast routings in networks. In Proceedings of International Symposium
on Scheduling 2006, Tokyo, Japan, (2006) 12-17.

6. G. Robins and A. Z. Zelikovsky. Improved Steiner tree approximation in graphs. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms-
SODA’2000, (2000) 770-779.

7. F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Approximating the
single-sink link-installation problem in network design. SIAM J. Optim., 11, (2000)
595-610.

Feedback Arc Set Problem in Bipartite

Tournaments

Sushmita Gupta

Department of Computer Science,
Simon Fraser University, Canada

gupta@cs.sfu.ca

Abstract. In this paper we give ratio 4 deterministic and randomized
approximation algorithms for Feedback Arc Set problem in bipartite
tournaments. We also generalize these results to give a factor 4 deter-
ministic approximation algorithm for Feedback Arc Set problem in
multipartite tournaments.

Keywords: Approximation algorithms, feedback arc set, bipartite
tournaments.

1 Introduction

This paper deals with approximating feedback arc set problem in multipartite
tournaments. A directed graph, D = (V, A), is a multipartite tournament if D
is a directed orientation of a complete k-partite graph. When k = 1, it is an
orientation of complete undirected graphs and is known as tournaments. For
k = 2 it is called bipartite tournaments. In feedback set problems the task is,
given a graph G and a collection C of cycles in G, to find a minimum size set of
vertices or arcs that meets all cycle in C. More precisely the decision version of
the problem is defined as follows.

Feedback Vertex/Arc Set: Given a directed graph D = (V, A), and a
positive integer k, is there a subset of at most k vertices (or arcs) whose
removal results in an acyclic graph?

Feedback Vertex/Arc Set (FVS/FAS) problem is one of the well known
NP-complete problem in general directed graphs and is known to be complete
even in special graph class like directed graphs with in-degree and out-degree at
most 3. While the FVS problem was known to be NP-complete in tournaments
[10], a NP-completeness proof for FAS problem in tournaments eluded us until
recently. In 2005, three different groups independently showed FAS to be NP-
complete in tournaments [2,3,4]. All the NP-completeness proofs for FAS in
tournaments are very different from the usual NP-completeness proofs and use
pseudorandom gadgets. The FAS problem has recently been shown to be NP-
complete even in bipartite tournaments [7].

There is a long history of approximation algorithms for feedback arc set prob-
lem in general directed graphs. Leighton and Rao [8] designed an O(log2 n)-factor

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 354–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Feedback Arc Set Problem in Bipartite Tournaments 355

approximation algorithms for feedback vertex set. Later, Seymour [9] gave an
O(log τ∗ log log τ∗) approximation algorithm for feedback arc set where τ∗ is the
size of a minimum feedback vertex set. In 2005, a factor 2.5 randomized approxi-
mation algorithm was developed for FAS in tournaments [1]. Later deterministic
approximation algorithms with factor 5 and 3 was developed in [5] and [11]
respectively.

Here we generalize the approximability results developed for FAS problem
in tournaments to bipartite and multipartite tournaments by developing fac-
tor 4 deterministic and randomized approximation algorithms. Our results are
inspired by the results presented in [1,11].

FAS problem in directed graphs, D = (V, A) can also be phrased as, finding
an ordering of vertices (V) such that the arcs from higher indexes to lower
indexes, called backward arcs, are minimized. Arcs from lower indexes to higher
indexes are called forward arcs. To see this note that a directed graph D has
a topological ordering if and only if D is a directed acyclic graph. We will use
this equivalent formulation of FAS problem in our algorithms and will always
give an ordering of vertices as our solution. The FAS, F , of D can be formed by
taking all backward arcs of this ordering. In proving the upper bounds on the
approximation factor of our algorithms, we use as lower bound solutions obtained
from linear programming (LP) formulation of some equivalent problems.

The paper is organized as follows. In Section 2 we give randomized factor 4
approximation algorithm for FAS problem in bipartite tournaments. Our deter-
ministic approximation algorithm for FAS in bipartite tournaments is presented
in Section 3. In this section we also suggest a simple modification to determinis-
tic approximation algorithm for FAS in bipartite tournaments such that it can
be made to work for any multipartite tournaments. Finally we conclude with
some remarks in Section 4.

Given a graph D = (V, A) or T = (V, A), n represents the number of vertices,
and m represents the number of arcs. For a subset V ′ ⊆ V , by D[V ′] (or T [V ′])
we mean the subgraph of D (T) induced on V ′.

2 Randomized Algorithm for FAS

In this section we give a factor 4 randomized approximation algorithm for FAS
in bipartite tournaments. Our algorithm crucially uses the fact that a bipar-
tite tournament has directed cycles if and only if it has a directed 4-cycle. Our
randomized algorithm randomly selects an arc and partition the bipartite tour-
nament into two smaller ones around this arc and then solves the problem on
these two smaller bipartite tournaments recursively.

In any directed graph, the size of minimum feedback arc set (MFAS) is at
least the number of maximum arc disjoint directed cycles in the directed graph
(MADC). Since maximum number of arc disjoint 4-cycles (MAD4C) is upper
bounded by the size of MADC, we have the following:

|MAD4C| ≤ |MADC| ≤ |MFAS|.

356 S. Gupta

Rand-MFASBT(T = (V = (V1, V2), A))

Step 0: If T is a directed acyclic graph then do topological sorting on T and let
X be the order of V returned by the topological sorting. return(X).

Step 1: Randomly select an arc (i, j) ∈ A, where i ∈ V1, j ∈ V2.
Step 2: Form the 2 sets VL and VR as follows.

VL = {u|(u, i) ∈ A or (u, j) ∈ A} & VR = {v|(i, v) ∈ A or (j, v) ∈ A}

(It is clear that T [VL] and T [VR] are bipartite sub-tournaments of T .)
Step 3: return(Rand-MFASBT(T [VL]),i,j, Rand-MFASBT(T [VR])).

Fig. 1. Randomized Algorithm for Feedback Arc Set Problem in Bipartite Tournaments

We use the bound on MAD4C as a lower bound on MFAS in our algorithm and
will show that the feedback arc set outputted by the algorithm is at most 4
times the size of MAD4C. This will prove the desired upper bound on the size
of solution returned by the algorithm. The detailed description of our algorithm
is presented in Figure 1.

Now we show that the algorithm Rand-MFASBT is a randomized factor 4 ap-
proximation algorithm for feedback arc set in bipartite tournaments.

Theorem 1. Let T = (V = (V1, V2), A) be a bipartite tournament. Then the
expected size of the feedback arc set (or the number of backward arcs in the
ordering) returned by the algorithm Rand-MFASBT(T) is at most 4 times the size
of a minimum feedback arc set of T .

Proof. Let OPT denote the optimal solution of feedback arc set problem for
T = (V1 ∪ V2, A) and CPIV denote the size of backward arcs or feedback arc set
returned by Rand-MFASBT on T . To prove the theorem we show that:

E[CPIV] ≤ 4OPT.

Observe that an arc (u, v) ∈ A becomes a backward arc if and only if ∃(i, j) ∈ A
such that (i, j, u, v) forms a directed 4-cycle in T and (i, j) was chosen as the
pivot when all 4 were part of the same recursive call. Pivoting on (i, j) will then
put v in VL and u in VR. Thus making (u, v) a backward arc.

Let R denote the set of directed 4 cycles in T . For a directed 4 cycle r, denote
by Ar as the event that one of the arcs of r is chosen as a pivot when all four are
part of the same recursive call. Let probability of happening of the event Ar be
Pr[Ar] = pr. Define a random variable Xr = 1 when Ar occurs and 0 otherwise.
Then we get

E[CPIV] =
∑

r∈R

E[Xr] =
∑

r∈R

pr.

As observed earlier the size of the set of arc disjoint 4-cycles is a lower bound
on OPT . This is also true ‘fractionally’. More formally we formulate it in the
following claim.

Feedback Arc Set Problem in Bipartite Tournaments 357

Claim. If {βr} is a system of non negative weights on 4-cycles in R such that

∀a ∈ A,
∑

{r | r∈R, a∈r}
βr ≤ 1,

then OPT ≥ ∑
r∈R βr.

Proof. Consider the following Covering LP :

min
∑

a∈A xa∑
a∈r xa ≥ 1 for r ∈ R and

xa ≥ 0, ∀a ∈ A

This is a LP formulation of hitting all directed 4-cycles of T and hence a solution
to it forms a lower bound for OPT which considers hitting all cycles. If we take
dual of this linear programming formulation then we get following Packing LP:

max
∑

r∈R yr∑
{r | r∈R, a∈r} yr ≤ 1, ∀a ∈ A and

yr ≥ 0, ∀r ∈ R

{βr} is a feasible solution to this dual LP and hence a lower bound for Covering
LP and so a lower bound on the OPT . 	

We find such a packing using the probabilities pr. Let r = (i, j, k, l) be a directed
4, cycle then

Pr[a = (i, j) is a pivot of r | Ar] = 1/4,

because we choose every edge as a pivot with equal probability. Let a′ = (k, l)
and Ba′ be the event that a′ becomes the backward arc. If Ar has occurred
then a′ becomes the backward arc if and only if (i, j) was chosen pivot among
(i, j), (j, k), (k, l), (l, i). So this gives us

Pr[Ba′ | Ar] = 1/4.

So, ∀r ∈ R and a ∈ r we have

Pr[Ba ∧ Ar] = Pr[Ba|Ar] · Pr[Ar] =
1
4

Pr[Ar] =
1
4
pr.

For 2 different 4 cycles r1 and r2, the events Ba∧Ar1 and Ba∧Ar2 are disjoint.
Since the moment a becomes a backward arc for r1 the endpoints of a become
part of different recursive sets, so the next event Ba∧Ar1 can never occur. Hence
for any a ∈ A,

∑

{r | a∈r}
Pr[Ba ∧ Ar] ≤ max

{r | a∈r}

(
1
4
· pr

)

≤ 1,

since only one of the events in the summation can occur.
So { 1

4pr}r∈R is a fractional packing of R and hence a lower bound on OPT .
So finally we get,

OPT ≥
∑

r∈R

1
4
pr =

1
4
E[CPIV].

So E[CPIV] ≤ 4 · OPT is proved as desired. 	

358 S. Gupta

3 Deterministic Algorithm for FAS

We now give a deterministic factor 4 approximation algorithm for feedback arc
set problem in bipartite tournaments. Our new algorithm is basically a deran-
domized version of the algorithm presented in the previous section. Here we
replace the randomized step of Rand-MFASBT by a deterministic step based on a
solution of a linear programming formulation of an auxiliary problem associated
with feedback arc set problem in bipartite tournaments.

Given a bipartite tournament T , we call the problem of hitting all directed
four cycles of T as 4-Cycle Hitting (4CH) problem. Notice that any feedback
arc set of a bipartite tournament is also a solution to the 4CH problem. Given
a bipartite tournament T (V, A), we associate the following simple integer linear
programming formulation to the 4CH problem. Let xa be a variable for an arc
a ∈ A, then

min
∑

a∈A xa

(subject to)
∑

a∈r xa ≥ 1 for all directed four cycles r in T ,
xa ∈ {0, 1} ∀a ∈ A.

For the relaxation of the above LP formulation for 4CH problem we allow xa ≥ 0
for all a ∈ A. Let x∗ be an optimal solution of this relaxed LP. We will use x∗ as
a lower bound for minimum feedback arc set in the approximation factor analysis
of the algorithm. Notice that when we select an arc (i, j) as pivot for partitioning
in our algorithm then all the arcs going from VR to VL become backward and
these remain the same until the end of the algorithm. Given an arc q = (i, j)
and a bipartite tournament T , let

Rq = {(k, l) | (i, j, k, l) is a directed 4 cycle in T }.

We choose an arc q as pivot such that the size of Rq is ‘minimized’ and to do so
we choose an arc such that:

|Rq|∑
a∈Rq

x∗
a

is minimized. We present our deterministic algorithm with the above mentioned
change in Figure 2.

We will show that the algorithm Det-MFASBT is a deterministic factor 4 ap-
proximation algorithm for feedback arc set in bipartite tournaments.

Theorem 2. Let T = (V = (V1, V2), A) be a bipartite tournament. Then the size
of the feedback arc set (or the number of backward arcs in the ordering) returned
by the algorithm Det-MFASBT(T) is at most 4 times the size of a minimum
feedback arc set of T .

Proof. Let X be the ordering returned by the algorithm Det-MFASBT(T) and
let x∗ be the optimal solution of the relaxed LP of 4CH problem. Also let B
be the set of backward arcs with respect to the ordering X and OPT be the

Feedback Arc Set Problem in Bipartite Tournaments 359

Det-MFASBT(T = (V = (V1, V2), A))

Step 0: If T is a directed acyclic graph then do topological sorting on T and let
X be the order of V returned by the topological sorting. return(X).

Step 1: Select an arc (i, j) ∈ A, such that

|Rq |�
a∈Rq

x∗
a

is minimized.
Step 2: Form the 2 sets VL and VR as follows.

VL = {u|(u, i) ∈ A or (u, j) ∈ A} & VR = {v|(i, v) ∈ A or (j, v) ∈ A}

Step 3: return(Det-MFASBT(T [VL]),i,j, Det-MFASBT(T [VR])).

Fig. 2. Deterministic Algorithm for Feedback Arc Set Problem in Bipartite Tourna-
ments

number of backward arcs in the ordering of T minimizing the backward arcs
(size of minimum feedback arc set). Notice that

∑

a∈A

x∗
a ≤ OPT.

Let ya = 1 if a ∈ B and ya = 0 otherwise. Hence
∑

a∈A ya =
∑

a∈B ya = |B|.
Now we show that

|B| =
∑

a∈B

ya ≤ 4
∑

a∈B

x∗
a ≤ 4

∑

a∈A

x∗
a ≤ 4OPT.

If we take any V ′ ⊆ V and consider the relaxed LP formulation of 4CH problem
for T [V ′] then x∗ restricted to the arcs in V [T ′] is a feasible solution to this LP.
Notice that an arc (x, y) becomes a backward for the ordering X when we choose
an arc (i, j) as pivot and y ∈ VL and x ∈ VR of the partition based on (i, j) and
then remains backward after this as we recurse on the subproblems associated
with VL and VR. In order to bound the size of backward arcs we show that there
always exists a pivot q = (i, j) such that

|Rq| ≤ 4
∑

a∈Rq

x∗
a. (1)

Notice that once we show this we are done as follows: we partition the arcs
in B based on the pivot which has made it backward, let these partition be
Bq1, Bq2 · · ·Bql where qt, 1 ≤ t ≤ l, are the arcs chosen as pivot in the algorithm.
Then

|B| =
l∑

t=1

|Bt| ≤
l∑

t=1

4

⎛

⎝
∑

a∈Rqt=Bqt

x∗
a

⎞

⎠ = 4
∑

a∈B

x∗
a ≤ 4OPT.

360 S. Gupta

So now it all boils down to showing that we can choose a pivot q such that
|Rq| ≤ 4

∑
a∈Rq

x∗
a. Let R be the set of all directed four cycles in T , that is

R = {((i, j), (j, k), (k, l), (l, i)) a directed 4 cycle in T}.
Define x∗(r) =

∑
a∈r xa for any r ∈ R. So we get the following :

∑

a∈A

∑

a′∈Ra

1 =
∑

r∈R

∑

a′′∈r

1 =
∑

r∈R

4, and

∑

a∈A

∑

a′∈Ra

x∗
a′ =

∑

r∈R

∑

a′′∈r

x∗
a′′ =

∑

r∈R

x∗(r).

Notice that for every r ∈ R, we have a constraint in LP formulation of 4CH

problem that
∑

a∈r xa ≥ 1 and hence x∗(r) ≥ 1 for all r ∈ R. So we have

∑

r∈R

4 ≤ 4

(
∑

r∈R

x∗(r)

)

.

This implies the existence of a pivot satisfying the Equation 1. If not then

∑

r∈R

4 =
∑

a∈A

∑

a′∈Ra

1 >
∑

a∈A

4

(
∑

a′∈Ra

x∗
a′

)

= 4

(
∑

r∈R

x∗(r)

)

,

which is a contradiction. This completes the proof of the theorem and shows
that Det-MFASBT(T) is indeed a deterministic factor 4 approximation algorithm
for FAS problem in bipartite tournaments. 	

The algorithm Det-MFASBT(T) can be generalized to multipartite tournaments
by doing a simple modification. When we pick an arc q = (i, j) as pivot then we
treat the partition containing i as one partition and union of all other parts as an-
other one, making it ‘similar’ to a bipartite tournament. With this modification
we create two smaller instances of multipartite tournaments in our algorithm
and then recurse separately. All the analysis done for bipartite tournaments can
be now carried over for multipartite tournaments. Without going into the details
we state the following theorem.

Theorem 3. Let T (V, A) be a multipartite tournament. Then the modified
Det-MFASBT(T) is a factor 4 approximation algorithm for FAS in T .

4 Conclusion

In this paper we generalized the known approximation algorithms for FAS prob-
lem in tournaments to bipartite and multipartite tournaments. We gave factor
4 randomized and deterministic approximation algorithms for FAS problem in
bipartite tournaments. There are only a few directed graph classes for which
constant factor approximation algorithms for FAS problem are known. Here we

Feedback Arc Set Problem in Bipartite Tournaments 361

add multipartite tournaments to graph classes for which there exists a constant
factor approximation algorithm.

Acknowledgment. I thank Dr Ramesh Krishnamurti for the course he taught
on approximation algorithms. Couple of papers I read for that course led to this
work.

References

1. N. Ailon, M. Charikar and A. Newman. Aggregating Inconsistent Information:
Ranking and Clustering. In the Proceedings of 37th Annual ACM Symposium on
Theory of Computing (STOC), (2005) 684-693.

2. N. Alon. Ranking Tournaments. Siam Journal on Discrete Mathematics, 20(1),
(2006) 137-142.

3. P. Charbit, S.Thomassé and A.Yeo. The minimum feedback arc set prob-
lem is NP-hard for Tournaments. To appear in Combinatorics, Probability and
Computing.

4. V. Contizer. Computing Slater rankings using similarities among candidates.
Technical Report RC23748, IBM Thomas J Watson Research Centre, NY 2005.

5. D. Coppersmith, L. Fleischer and A. Rudra. Ordering by weighted number
of wins gives a good ranking for weighted tournaments. In the Proceedings of 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), (2006) 776-782.

6. G. Even, J. Noar, B. Schieber and M. Sudan. Approximating minimum feed-
back sets and multicuts in directed graphs. Algorithmica, 20, (1998) 151-174.

7. J. Guo, F. Hüffner, H. Moser . Feedback Arc Set in Bipartite tournaments is
NP-Complete. To appear in Information Processing Letters (IPL).

8. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of ACM, 46(6), (1999)
787-832.

9. P. D. Seymour. Packing directed circuits fractionally. Combinatorica, 15, (1995)
281-288.

10. E. Speckenmeyer. On Feedback Problems in Digraphs. In the Proceedings of the
15th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’89), Lecture Notes in Computer Science, 411, (1989) 218-231.

11. A. van Zuylen. Deterministic approximation algorithm for clustering problems.
Technical Report 1431, School of Operation Research and Industrial Engineering,
Cornell University.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 362–373, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Studying on Economic-Inspired Mechanisms for Routing
and Forwarding in Wireless Ad Hoc Network**

Yufeng Wang1, Yoshiaki Hori2, and Kouichi Sakurai2

1 College of Telecommunications and Information Engineering, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China

2 Department of Computer Science and Communication Engineering, Kyushu University,
Fukuoka 812-0053, Japan

Abstract. Considering the fact that there exist information asymmetry (hidden
information) in routing phase, and moral hazard (hidden action) in forwarding
phase in autonomous Ad hoc network, this paper argues that economic-based
mechanisms play both a signaling and a sanctioning role, which reveal the
node’s true forwarding cost in routing phase while provide incentives to nodes
to exert reasonable effort in forwarding phase, that is, the role of economic-
inspired mechanisms in information asymmetry is to induce learning whereas
the role of such mechanisms in moral hazard settings is to constrain behavior.
Specifically, this paper conducts the following works: considering the mutually
dependent link cost, we demonstrate that, for each participant, truth-telling is
the risk dominant strategy in VCG-like routing mechanism based on analysis of
extensive game form. Then, Individual rationality (IR) and Incentive
Compatibility (IC) constraints are formally offered, which should be satisfied
by any game theoretical routing and forwarding scheme. And different solution
concepts are investigated to characterize the economic meanings of two kind
forwarding approaches, that is, Nash equilibrium with no per-hop monitoring
and dominant strategy equilibrium with per-hop monitoring.

1 Introduction

Traditional system design assumes that participants behave according to the intentions
of the system architects. But wireless ad hoc network is composed by autonomous
nodes determining their behaviors independently and shared by rational (selfish) users
with different and competing interest. Obviously, Incentive mechanisms are needed to
encourage nodes to participate in the responsibility of network infrastructure, like
routing and forwarding packet. Ref. [1] illustrates the notion of elementary
cooperation, and introduces the incentive pattern as tool to construct incentive
schemes for specific application environment. According to remuneration type,
incentive mechanisms can be classified into the following types: 1) Reputation-based
schemes [2-4]. In such schemes, by keeping monitoring packet forwarding activities,

* Research supported by the NSFC Grants 60472067, JiangSu education bureau (5KJB510091)

and State Key Laboratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications (BUPT).

 Studying on Economic-Inspired Mechanisms for Routing and Forwarding 363

the misbehaving nodes may be detected and isolated from the rest of the network. The
advantage of these schemes is that they do not require central management points,
while the disadvantage is that these schemes usually cannot handle well the
dynamically changing topology and asymmetric packet forwarding request demands,
for example, a node with few packets to send has no incentive to forward all the
packets for another node with a lot of packets to send; 2) credit-based schemes
[5-7,11,16,17]. In those approaches, principal entity explicitly compensates agent
entity for its offered services (In a service oriented perspective, the agent entity is the
provider of a service like message forwarding etc, and the principal entity is
the consumer). Compared with those reputation-based schemes, the advantage of the
payment-based schemes lies in that they can work under various situations, such as
the network with dynamically changing topology or asymmetric request demands,
while the disadvantage is that they may require some management points to handle
billing information. Another idea to model cooperative routing in ad hoc networks is to
use the concept of repeated game [8-9]. The intuition in repeated game-based routing is
that cooperative behavior emerges as a result of symmetric node interaction patterns
(the threat to interact in future will drive nodes cooperate in current period), which is
not always true for ad-hoc networks. Ref. [13-14] also discussed the usage of repeated
game in network field, but their models are not suitable for multi-hop Ad hoc network.

In this paper, we focus on the economic-based mechanisms. There are several
papers similar to our work. Ref. [10] adopts Mechanism Design (MD) to design Ad
hoc-VCG routing scheme. But this paper ignores the unique challenge in wireless ad
hoc networks that link cost is determined by two neighboring nodes together, namely
mutually dependent link cost. Ref. [12] investigates incentive-compatible routing and
forwarding protocols, Corsac, in wireless ad hoc network, which integrates VCG with
a novel cryptographic technique to address the challenge of mutual-dependent link
cost in wireless ad-hoc networks. But this paper provides several wrong arguments
which will be discussed in this paper.

Generally, cooperation is compromised by information asymmetries (hidden
information in routing phase) and moral hazard (in forwarding phase) in Ad hoc
network. Hidden information means that nodes possess private information (e.g.,
costs for forwarding packet) which is not known to all of the parties involved. For
example, in traditional routing protocol which selects low-cost routing path, there is
no guarantee that any wireless node will reveal its cost truthfully unless it is
convinced that is cannot do better by declaring a different cost. Economic-based
mechanisms alleviate the issue of hidden information by acting as signaling devices,
which will help the system designer learn the true forwarding cost of each node. In ad
hoc network, moral hazard represents what made attractive by a lack of observation.
For example, in the forwarding phase, without proper incentive mechanism, each
participant in the low-cost path has inventive to drop packet. In brief, selfish wireless
nodes may hinder the functioning of the network completely, thus an incentive
mechanism is required to encourage the users to provide service to other nodes.
Economic-based mechanisms can deter moral hazard by acting as sanctioning
devices, which punishes dishonest nodes through specific way. If the present value of
punishment exceeds the gains from cheating, then rational nodes have sufficient
incentives to cooperate. The most important distinction between (pure) moral hazard

364 Y. Wang, Y. Hori, and K. Sakurai

and (pure) adverse selection settings is that, in the former, all sellers are capable of the
same type of behavior (e.g. cooperate, cheat), whereas in the latter case seller
behavior is completely constrained by its innate “type.” The role of economic-
inspired mechanisms in pure moral hazard settings is to constrain behavior whereas
the role of such mechanisms in pure adverse selection settings is to induce learning. In
ac hoc network, economic-based mechanisms play both a sanctioning and a signaling
role, which reveal the node’s true forwarding cost in routing phase while provide
incentives to nodes to exert reasonable effort.

The paper’s contributions lie in the following aspects: Firstly, for mutually
dependent link cost, based on analysis of extensive game form, we argue that truth-
telling is nodes’ risk dominant strategy, and repeated game can be used to achieve this
equilibrium; Then, this paper formally describes the constraints of individual
rationality (IR) and incentive compatibility (IC) in ad hoc routing and forwarding
game. Finally, based on those two basic constraints, different solution concepts are
used to characterize the features of ad hoc network game with per-hop monitoring and
without per-hop monitoring.

The paper is organized as follows. In section 2, system models used in this paper
are described, including the cost model of ad hoc nodes, and related constraints and
equilibrium solutions in game theory and mechanism. In section 3, based on extensive
game analysis, we argue that truth-telling is the risk dominant strategy of each
participant in VCG-like routing mechanisms even facing the problem of mutual-
dependent link cost. In section 4, the formal definitions of IR and IC in the loss link
were offered, and different solution concepts are used to characterize the economic
meanings of forwarding games with per-hop monitoring and without per-hop
monitoring, that is, Nash equilibrium in no per-hop monitoring and dominant strategy
equilibrium in per-hop monitoring. Finally, we briefly conclude the paper in section 5.

2 System Models

2.1 Cost Model

We assume ad hoc network to be an arbitrary, connected graph, G={V,E,ω}, of selfish
ad hoc nodes V={1,…,N} that represents mobile devices, a set VVE *⊆ of
directed edges (i,j) that connect two nodes, and a weight function REc →:
for each edge (i,j) that indicates the cost of transmitting a data packet from node i to
node j. Each node i has an individual parameter αi indicating its cost-of-energy. If
node i send a message using emission power Pemit, then it must receive at least
remuneration amount αi*Pemit to compensate for its energy cost.

An energy-efficient routing protocol ensures that a packet from a source to a
destination gets routed along the most cost-efficient path possible via intermediate
nodes. The total cost of a routing path is the sum on the energy cost incurred at the
source and at each intermediate node. If a sender appends its emission power into the
packet header, then the receiver can infer the required minimal power, and forward
the value to the sender. That is:

 Studying on Economic-Inspired Mechanisms for Routing and Forwarding 365

 rec
rec
ji

emit
i

ji P
P

P
P min

,

min
, = (1)

emit
iP denotes peer i’s emission power; rec

jiP, is the received power level by peer j;

rec
minP is the required power level to guarantee certain QoS level. Thus, the cost of

transmitting packet from i to j is given as follows:

 min
,),(jiiPjic α= (2)

For the given path, we omit subscript j, let c(i,j)=ci. (3)

It is easily seen that a node alone cannot determine transmission power level
because it needs feedbacks from its neighbors, which is the unique challenge of
mutually dependent link cost in Ad hoc network. The problem above may allow one
node to cheat its neighbors in order to raise its own welfare. In next section, based on
analysis of extensive game, we argue that truth-telling is the expected dominant
strategy for each node in Ad hoc network.

2.2 Concepts in Mechanism Design

The goal of MD (also called “inverse game”) is to define the strategic situation, or
“rules of the game”, so that the system as a whole exhibits good behavior in
equilibrium when self-interested nodes pursue self-interested strategies (A more
detailed introduction to mechanism design is provided in [15]). The standard setting
of mechanism design is described as follows:

 There exist a set of agents Ii ∈ (with N agents altogether), and each agent i has

private type ii Θ∈θ ; A mechanism m=(o,p) is composed two elements,

outcome specification Oo ∈ which maps the set of private type to an allowed

outcome based on the optimization of social selection function)ˆ(θf , which

defines the system outcomes for each possible set of agent types. For example,
the mechanism designer goal is to select the cost-effective path in wireless ad

hoc network.)(ˆ
N1 Θ××Θ=Θ∈θ is vector of reported types by agents.

We write θ̂ to emphasize that agents can misreport their true types. Mechanism

also calculates N-tuple of payment),,(N1 ppp = by (or to) each agent.

 Each agent i has utility);(ii ou θ , agent i’s utility for report iθ̂ , given others’

reports }ˆ,ˆ,ˆ,,ˆ{ˆ
N1i1i1i θθθθθ +−− = , is));ˆ,ˆ((i-iii ou θθθ . Generally, utility is

quasi-linear in value and payments, defined as);()(iiiii ocpo;u θθ −= .

Note that, the equation (2) is the specific representation of the second term in the
above equation; in routing phase, each node’s private type can represent its

366 Y. Wang, Y. Hori, and K. Sakurai

transmission cost (hidden information); in forwarding phase, each node’s private type
can represent the hidden action conducted by peer (like forwarding packet or not).

There are two types of constraints on the designer in building ad hoc routing and
forwarding mechanism: individual rationality and incentive compatibility.

Individual Rationality (IR) Constraints
The first type of constraint is the following: the utility of each agent has to be at least
as great as the agent's fallback utility, that is, the utility that the agent would receive if
it did not participate in the mechanism. Otherwise that agent would not participate in
the mechanism. This type of constraint is called an IR (also called participation
constraint). There are three different possible IR constraints: ex ante, ex interim, and
ex post, depending on what the agent knows about its own type and the others' types
when deciding whether to participate in the mechanism [19]. Ex ante IR means that
the agent would participate if it knew nothing at all (not even its own type). We will
not study this concept in this paper. Ex interim IR means that the agent would always
participate if it knew only its own type, but not those of the others. Ex post IR means
that the agent would always participate even if it knew everybody's type. We will
define Ex interim IR formally. First, we need to formalize the concept of the fallback
outcome. We assume that each agent's fallback utility is zero for each one of its types.
This is without loss of generality because we can add a constant term to an agent's
utility function (for a given type), without affecting the decision-making behavior of
that expected utility maximizing agent.

Definition 1. A mechanism is ex interim IR if for any agent i and any type of

ii Θ∈θ , we have () 0oc-pE N1iiN1iiN1i1i1
≥

+−
)),,(,(),,(),,,,,(θθθθθθθθθθ ………… .

which states that the utility to an agent, given prior beliefs about the preferences of
other agents, is at least the utility gained from not participating to the mechanism.

Incentive Compatibility (IC) Constraints
The second type of constraint states that the agents should never have an incentive to
misreport their type. For this type of constraint, two most common variants (or
solution concepts) are implementation in Nash equilibrium, and implementation in
dominant strategies,.

Definition 2. A mechanism is said to implement its outcome and payment function in
Nash equilibrium, If, given the truth-telling strategy in equilibrium,

),,,,(***

Ni1
θθθ …… , no agent has an incentive to deviate unilaterally from the

strategy profile. Formally, for any agent i, any type
Ni1Ni1 Θ××Θ××Θ∈……)ˆ,,ˆ,,ˆ(θθθ , any

alternative type report ii Θ∈θ̂ we have

)),,ˆ,,(,(),,ˆ,,()),,,,(,(),,,,(**********
NiiiNiiNiiiNii 1111

oupoup θθθθθθθθθθθθθθ …………………… −≥−

Definition 3. A mechanism is said to implement its outcome and payment function in
dominant strategies if truth-telling is always optimal even when the types reported by
the other agent are already known. Formally, we have

))ˆ,,ˆ,,ˆ(,()ˆ,,ˆ,,ˆ())ˆ,,,,ˆ(,()ˆ,,,,ˆ(**
Ni1iiNi1iNi1iiNi1i ocpocp θθθθθθθθθθθθθθ …………………… −≥− .

The terms involving payments are left out if payment is not possible.

 Studying on Economic-Inspired Mechanisms for Routing and Forwarding 367

3 Hidden Information and Routing Mechanisms

Ad hoc-VCG mechanism works as follows [10]: based on each node’s declaration of
forwarding cost, assume Dji1S ,,,,,, …… denote the chosen cost-effective path.

According to VCG mechanism, the remuneration amount received by node i is:

),(),(\: jicSPSPjiSPSPp ii
i +−=−= −− (4)

where iSP− represents the minimal path cost without node i;),(\ jiSP

represents the minimal path cost, when the cost of link (i, j) equals zero.
Although the VCG mechanism has been applied to many networking problems in

general and to routing protocols in particular, wireless ad-hoc networks poses unique
challenges, that is, mutually dependent link cost. Ref. [12] adopts cryptography to
solve the mutual-dependent link cost. We argue that, based on analysis of extensive
game, it needs not to use considerable cryptography-based effort to guarantee the
truth-telling property in VCG routing mechanism, even though there exist the
mutually dependent link cost problem. We consider an extensive game model of ad
hoc routing game. The basic component of the extensive form is the game tree which is
a directed graph. The variable T is used to denote the game tree and the variables V and
E are used to denote the collections of vertices and edges of the graph, i.e. T = (V, E),
the set of players is denoted by N and individual players are indexed using the variable
i. The vertices are further divided into sets of terminal and non-terminal vertices.
Terminal vertices have no successors, i.e. child vertices, and they define an outcome
for the game, which can be associated with a payoff. Thus the path fully defines the
outcome of the game. Each non-terminal vertex Vv ∈ is labeled using one of the
players of the game and Vi is defined to be the collection of vertices that are labeled

with i. At each non-terminal vertex iVv ∈ , player i needs to perform an action.

The sequential game played between neighboring node A and B (Assume node B is
the successor of node A in the selected path) can be illustrated in Fig.1, each node has
two choices: truthful revelation of related information and cheating. Furthermore,
cheating behaviors include two types: make the related information larger or smaller.

Fig. 1. Mutually dependent link cost decision illustrated in extensive game form

368 Y. Wang, Y. Hori, and K. Sakurai

The detail analysis process to prove the truth-telling property in challenge of
mutually dependent link cost is given as follows: if based on the truthful link cost,
link AB is on the lowest cost path for source to destination, then,

 Scenario S1 (Both node A and B make the cost higher) can not appear, for after
this joint cheating action, if peer A and peer B still in the lowest cost path, then

the payment that peer A obtains,),(\ BASPSP i −− , is unchanged; peer B’s

payment:)1,(\ +−− BBSPSP i is smaller, for SP becomes larger, where

(B+1) denotes the successor of node B in shortest-cost path; if this joint cheating
make the link AB leaves the lowest cost path, then node A and B can not get
remuneration. For the similar reasons, Scenario S3, S7 can not appear;

 Scenario S5, S6 and S8 can not appear, for the simple reason that those cheating
actions make node B can not receive the packet forwarded by node A. then, in
this situation node A and B can not get any remuneration;

 In S2, S4 and S9, we can find that the best choice of each peer (A or B) is Tit for
Tat. In our case, Tit for Tat means if node B believes that node A lie about the
private information (making larger or smaller), then peer B also lies about the
private information (make it smaller or larger correspondingly). If node A tells
truth, then node B also tells truth. The same principle is also suitable for node A,
which is so-called mutual-dependent strategy. So, we need investigate deeply
whether the node A and B have the incentive to lie. Assume that, after the joint
cheating actions, link AB still on the shortest path (otherwise, the joint cheating
action is meaningless), Furthermore, we assume that if only one node cheats,
then utility of A (or B) is zero respectively, for we already illustrated unilateral
cheating brings no extra benefit for the cheating node. So, the payoff matrix of
node A and B is given in Table 1.

Table 1. Payoff matrix of node A and B (in scenarios of S2, S4 and S9)

 Node B
Node A

Truthful Defect (Smaller or larger)

Truthful)),(\(cBASPSP i −−− ,
))1,(\(cBBSPSP i −+−−

0,0

Defect (larger
or smaller)

0,0)),(\(cBASPSP i −−− ,
))1,(\(cBBSPSP i −−+−− ε

Note, the best result of joint actions is to obtain the truth cost of link AB. Unfortunately,
in most situations, the joint cheating actions make the cost of LCP is SP+ε , higher than
the shortest cost SP. So, under joint cheating actions, node B’s utility is:

))1,(\(cBBSPSPu icheating
B −−+−= − ε . And without losing generality, we

assume truthful forwarding cost of node A and B is c.

Table 1 shows there are two equilibriums in this game. For the following
reasons, we can infer that the strategy of (truthful, truthful) is the risk
dominant strategy of participators (node A and B in our illustration).

 Studying on Economic-Inspired Mechanisms for Routing and Forwarding 369

 From the viewpoint of system designer, recall that the goal of
designing mechanism is to select the shortest-cost forward path, this
joint cheating action doesn’t affect the selection outcome at all (for the
best result of joint actions is to obtain the truth cost of link AB).
Furthermore, if this joint cheating action still makes link AB in the
shortest-cost path, then, with high probability, the total payment by the
source (or system designer) decrease.

 The joint cheating actions need collusion of neighboring peers, but
truthful revelation can be unilaterally determined by each participant to
enforce. So, based on the assumption of rational nodes in Ad hoc
network, truthful revelation is the risk dominant strategy for each node.

 Note, that even though, some nodes unintentionally offer the false
feedback about the related information (with small probability), the
Tit for Tat strategy will drive nodes to the dominant equilibrium
strategy, truth-telling, which have been deeply discussed in [8][9].

 We also prove that, based on the uniformly probability of peer
behaviors, the expected utility for peer to truthfully reveal private
information is larger [18].

In brief, for the mutually dependent link cost in ad hoc network, truthful revelation
of private information is the risk dominant strategy of each participant (that is,
node A and B in Fig. 1).

If, based on the truthful link cost, link AB is not on the lowest cost path for source
to destination, then, the unilateral cheating action either has not effect on routing
selection (make the link cost higher), or make the node B can not receive packet
which lead to obtaining no remuneration; just as described above, the best result of
joint cheating actions is to make the truthful link cost emerge, which have also not
effect on routing selection.

Then based on backward induction principle in extensive game, we can infer that
truth-telling is the risk dominant choice of each participant.

Our result is interesting because the cryptographic approach taken in [12]
represents considerable engineering effort to align the incentives. In fact, it is not
necessary and worthwhile to spend the considerable cryptography-based effort at
aligning the incentives in ad hoc routing game. Generally, the cost of cooperation
inducing mechanism must be low and commensurate with its benefits. So, we think
the cost to do so would vastly outweighs the benefit the protocol it enabled.

4 Hidden Actions in Message Forwarding

Mechanism in the above section for the ad hoc routing game assumes that once the
transit cost have been obtained, and the shortest cost path has been determined, the
nodes on the shortest cost path obediently forward all packets, and that there is no lost
in the network, i.e, k=0, k is the per-hop loss rate. In fact, the wireless link faces
relatively high loss rate. So, intuitively, each intermediate node should get higher
remuneration to bear the threat of loss link than in lossless environment. Furthermore,
actually, nodes’ actions may be unobservable by entities that buy the routing and
forwarding service from Ad hoc network, so-called principal. Principal may be the

370 Y. Wang, Y. Hori, and K. Sakurai

source node, destination node or the authorized third party. In this section, we
investigate the equilibrium properties of forwarding game in ad hoc network, under
the condition of per-hop monitoring and no per-hop monitoring.

The simplified model is given as follows: multiple agents perform sequential
hidden action, that is, each agent can choose to drop or forward packet; Principal can
observe: the final outcome only (without per-hop monitoring); the per-hop outcome

(with per-hop monitoring). Action },{ 10ai ∈ , 0ai = means that node i drops

packet, otherwise, 1ai = ; Outcomes: },{)(BG rrraR ∈= , Gr means that packet

reaches destination; Br means that packet doesn’t reaches destination; Utility of node
i: iiiiiii camacmu −=),,(. Note that, in order to persuade node i to face the threat

of loss link, obviously, mi should large than pi obtained in equation (4).
Given a per-hop loss rate of k, we can express the probability that a packet is

successfully delivered from node i to its successor i+1 as:
ii

G
1ii ak1arPr)()(−=+→ ,

where G
1iir +→ denotes a successful transmission from node i to j.

Ref. [12] uses the scenario of no per-hop monitoring scheme to illustrate the
Theorem 1 proposed in their paper, “There does not exist a forwarding-dominant
protocol for ad hoc games”. But, their proof procedure violates the basic constraint,
IR, that is, in their situation, no node will join the game (Refer to [18] for detailed
description).

Base on different solution concepts, this paper attempts to characterize the
economic meanings of forwarding game with per-hop monitoring and without per-
hop monitoring.

Theorem 1. In ad hoc forwarding game, let the payment scheme be:

}{min jj
SPj

B
i cpm0 −<≤

∈
;

1in
iG

i k-1

p
m +−=

)(

where G
im and B

im denote the payment to node i under the outcome of Gr and Br .

Then, forwarding game without per-hop monitoring can achieve Nash equilibrium.
Let the payment scheme be

}{min jj
SPj

B
i cpm0 −<≤

∈
;

)(k-1

p
m iG

i =

That is, payment to node i is G
im , if the packet has reached node i+1, and B

im

otherwise. Then, per-hop monitoring mechanism provides the dominant strategy
equilibrium.

Proof: ① Nash equilibrium in no per-hop monitoring
The IR and IC in Nash equilibrium can be formally described as follows:
IR:

() 0m)1ar(Prcm)1ar(Prm)1ar(Pr)1ar(Pr B
iij

B
iSi

B
iij

BG
iij

G
ij

G
iS ≥=+−=+== <→≥≥<→

This constraint says that the expected utility from participating is greater than or equal
to zero (reservation utility), if all other nodes forward.

 Studying on Economic-Inspired Mechanisms for Routing and Forwarding 371

IC:
()

() B
iij

B
iS

B
iiji

BG
iiji

G
ij

G
iS

B
iij

B
iSi

B
iij

BG
iij

G
ij

G
iS

m1arPrm1a0arPrm1a0arPr1arPr

m1arPrcm1arPrm1arPr1arPr

)(),(),()(

)()()()(

=+==+===≥

=+−=+==

<→>><→

<→≥≥<→

The constraint says that the expected utility from forwarding is greater than or equals
to its expected utility from dropping, if all nodes forward as well.

Based on the loss link model, the above general equations can be represented as:
IC:

()() () 0mk11cmk11mk1k1 B
i

i
i

B
i

1inG
i

1ini ≥−−+−−−+−− +−+−)()()()(

IR:
()() ()

() B
i

iB
i

i

B
i

i
i

B
i

1inG
i

1ini

mk11mk1

mk11cmk11mk1k1

)()(

)()()()(

−−+−

≥−−+−−−+−− +−+−

Base on the proposed payment scheme, it is easy to verify that IR and IC conditions
can be satisfied, which implies that there exist Nash equilibrium.

② Dominant strategy equilibrium in per-hop monitoring
In this approach, the principal make the payment schedule contingent on whether the
packet has reached the next hop or not. Under monitoring mechanism, the principal
has to satisfy the following constraints:

IR: () 0)1()1()(≥−=+== +→+→<→ i
B
ii

B
1ii

G
ii

G
1iiij

G
iS cmarPrmarPr1arPr

IC:
()
()B

ii
B

1ii
G
ii

G
1iiij

G
iS

i
B
ii

B
1ii

G
ii

G
1iiij

G
iS

m0arPrm0arPr1arPr

cmarPrmarPr1arPr

)()()(

)1()1()(

=+==

≥−=+==

+→+→<→

+→+→<→

The above two conditions can also be represented as:

IR: () 0ckmmk1k1 i
B
i

G
i

i ≥−+−−)()(

IC: () B
i

i
i

B
i

G
i

i mk1ckmmk1k1)()()(−≥−+−−

So, obviously, IR and IC conditions can be satisfied.
It is also easy to verify that the expected payment is identical in those two

approaches, per-hop monitoring and no per hop monitoring. But the fundamental
difference between two scenarios is the solution concepts used. If no per-hop
monitoring is used, the strategy profile is Nash equilibrium, which means that no agent
has an incentive to deviate unilaterally from the strategy profile. In contrast, per-hop
monitoring implies that the best action chosen by each node is always to forward packet,
irrespective of other nodes’ behaviors. Therefore, per-hop monitoring provides us with
dominant strategy equilibrium, so an argument for designing mechanism with dominant
strategies is that it makes the game much easier for the agent to play (that is, participants
need not worry about doing any research into how the agents are likely to play). Ref. [7]
designs payment schemes, Sprite, to prevent several types of selfish behaviors, in which
receipt is used as per-hop monitoring mechanism. But unfortunately, the procedure has
weak points. That is, decision that peer i whether forward packet will depend on not
only the actual forwarding behavior of peer i, but the behavior of the next-hop peer
i+1 to report receipt, which is another kind of mutual decision scenarios. For this

372 Y. Wang, Y. Hori, and K. Sakurai

receipt-based per-hop monitoring, we also investigate peers’ incentive to provide receipt
[18], for limited space in this paper, we omit this part.

5 Conclusion and Future Works

Recently, cross-disciplinary efforts involving economics and computer network have
proliferated. One main reason is that open network architecture already made
computing infrastructure possess characteristics of an economy-society entity as well
as those of computer system. Specifically, wireless ad-hoc networks are often formed
by rational and autonomous nodes determining their behaviors independently.
Intuitively, those nodes do not cooperate unless they have incentive to do so. Thus,
both routing and packet forwarding become games. This paper argues that economic-
based mechanisms play both a sanctioning and a signaling role, that is, the role of
economic-inspired mechanisms in pure information asymmetry (in routing phase) is
to induce learning (signaling role) whereas the role of such mechanisms in pure moral
hazard (forwarding phase) settings is to constrain behavior (sanctioning role). In this
paper, based on economic models, we re-examine several proposals in related paper,
and firstly demonstrate that, based on analysis of extensive game, the VCG-like
routing mechanism is risk dominant strategy in the mutually dependent link cost
environment, which means that the link cost is determined by two neighboring nodes
together. Then, we formally describe the Individual Rationality (IR) and Incentive
Compatibility (IC) constraints which should be satisfied by any routing and
forwarding game in Ad hoc network, and investigate the economic implications of
per-hop monitoring scheme and no per-hop monitoring scheme using different
solution concepts. That is, with proper payment structure, no per-hop monitoring
scheme provides Nash equilibrium, and per-hop monitoring scheme provides
dominant strategy equilibrium.

As the most famous general technique for designing truthful mechanisms, there
exist four major problems in VCG mechanism, First, the traditional VCG mechanism
can be used only if we want to maximize the overall social welfare, e.g., minimize the
cost to the agents; Second, the VCG mechanism may be computationally intractable
because the underlying optimization problem is NP-hard. Third, the amount the
mechanism must pay to the agents can be significantly higher. Fourth, VCG
mechanism is significantly vulnerable to coalitions of agents. In this paper, we
preliminarily investigate some problems in VCG-like routing and forwarding
mechanism in Ad hoc network. In future work, we should further investigate how to
address or alleviate the above problems, when VCG-like mechanisms are properly
adapted to solve problems in open networks.

References

[1] P. Obreiter and J. Nimis, A taxonomy of incentive patterns - the design space of
incentives for cooperation, In Proc. of the Second International Workshop on Agents and
Peer-to-Peer Computing (AP2PC'03), LNCS 2872, Melbourne, Australia, 2003.

[2] P. Michiardi and R. Molva, Core: a COllaborative REputation mechanism to enforce
node cooperation in mobile ad hoc networks, In Proc. of the IFIP - Communications and
Multimedia Security Conference, 2002.

 Studying on Economic-Inspired Mechanisms for Routing and Forwarding 373

[3] S. Buchegger and J.Y.L. Boudec, Performance analysis of the CONFIDANT protocol:
cooperation of nodes-fairness in distributed Ad-hoc networks, In proc. of IEEE/ACM
Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC), 2002.

[4] W. Yu and K. J. R. Liu, Attack-resistant cooperation stimulation in autonomous Ad Hoc
networks, IEEE Journal on Selected Areas in Communications: Autonomic
Communication Systems, 2005.

[5] J. Hubaux, T. Gross, J. Boudec and M. Vetterli, Toward self-organized mobile Ad hoc
networks: the Terminodes project, IEEE Communication Magazine, Jan. 2001.

[6] L. Buttyan and J. Hubaux, Stimulating cooperation in self-organizing mobile ad hoc
network, ACM/Kluwer Mobile Networks and Applications (MONET), Vol. 8, 2003.

[7] Sheng Zhong, Jiang Chen and Yang Richard Yang, Sprite: A simple, cheat-proof, credit-
based system for mobile Ad-Hoc Networks, In Proc. of IEEE INFOCOM 2003.

[8] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, Cooperation in wireless
ad hoc networks, in Proc. of IEEE INFOCOM, 2003.

[9] M´ark F´elegyh´azi, Jean-Pierre Hubaux and Levente Butty´an, Nash equilibria of packet
Forwarding Strategies in Wireless Ad Hoc Networks, To appear in IEEE
TRANSACTIONS ON MOBILE COMPUTING, 2006.

[10] L. Anderegg, S. Eidenbenz, Ad hoc-VCG: a truthful and cost-efficient routing protocol
for mobile Ad hoc networks with selfish agents, In Proc. of ACM MobiCom’03, pp.
245-259.

[11] S.Eidenbenz, G.Resta P.Santi, COMMIT: A Sender-Centric Truthful and Energy-efficient
routing protocol for Ad Hoc networks with selfish nodes, in Proc. IEEE Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), 2005.

[12] Sheng Zhong, Li (Erran) Li, Yanbin Grace Liu and Yang Richard Yang, On Designing
Incentive-Compatible Routing and Forwarding Protocols in Wireless Ad-Hoc Networks— An
Integrated Approach Using Game Theoretical and Cryptographic Techniques, In Proc. of
MobiCom, 2005.

[13] Steven J. Bauer, Peyman Faratin and Robert Beverly, Assessing the assumptions
underlying mechanism design for the Internet, In Proc. of the First Workshop on the
Economics of Networked Systems (NetEcon), 2006.

[14] M. Afergan, Using repeated games to design incentive-based routing systems, In Proc. of
IEEE INFOCOM, 2006.

[15] N. Nisan and A. Ronen, Algorithmic mechanism design, Games and Economic Behavior,
Vol. 11, No. 2, 2001.

[16] WANG Yu-feng, WANG Wen-dong, YUAN gang and CHENG Shi-duan, Study on
cooperation incentive mechanism based on Vickrey auction in Ad hoc networks, Journal
of Beijing University of Posts and Telecommunications (BUPT), Vol. 28, No. 4, 2005.

[17] M. Feldman, J. Chuang, I. Stoica, and S. Shenker, Hidden-action in multi-hop routing, In
Proc. of the 6th ACM Conference on Electronic Commerce (EC), 2005.

[18] Yufeng Wang, Yoshiaki Hori and Kouichi SAKURAI, On incentive-compatible
mechanisms in open networks, Technical Report, Kyushu University, 2006.

[19] Michiardi Pietro, A survey of computational economics applied to computer networks,
Research Report - Institut Eurecom, August 2006 RR-06-173.

Enhancing Simulation for Checking Language

Containment�

Jin Yi1,2 and Wenhui Zhang1

1 Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 Graduate University of the Chinese Academy of Sciences, Beijing, China
{yijin,zwh}@ios.ac.cn

Abstract. Many verification approaches based on automata theory are
related to the language containment problem, which is PSPACE-
complete for nondeterministic automata. To avoid such a complexity,
one may use simulation as an approximation to language containment,
since simulation implies language containment and computing simulation
is a polynomial time problem. As it is an approximation, there exists a
gap between simulation and language containment, therefore there has
been an effort to develop methods to narrow the gap while keeping the
computation in polynomial time. In this paper, we present such an ap-
proach by building a Büchi automaton based on partial marked subset
construction to be used in the computation of simulation relation, such
that the automaton preserves the original language and has a structure
that helps identify more pairs of automata that are in language contain-
ment relation. This approach is an improvement to the fair-k-simulation
method [3].

1 Introduction

Many verification approaches based on automata theory are related to the lan-
guage containment problem, which is PSPACE-complete for nondeterministic
automata [2]. Although we can compute this relationship by transforming the
problem L(A1) ⊆ L(A2) into checking the emptiness of L(A1) ∩L(A2), it is not
easy to implement the complementation process [12,18,13,8] efficiently. Simula-
tion relation is a pre-order relation of states, which captures branching behavior
containment. Computing simulation is sufficient for checking trace behavior con-
tainment (language containment). From the practical perspective, checking lan-
guage containment by computing simulation has its advantages, since computing
simulation is of polynomial complexity.

There are a few simulation notions for automata which can be used to identify
language containment. In [15,2], direct simulation has been investigated. Direct

� Supported by the National Natural Science Foundation of China under Grant No.
60573012 and 60421001, and the National Grand Fundamental Research 973 Pro-
gram of China under Grant No. 2002cb312200.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 374–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enhancing Simulation for Checking Language Containment 375

simulation requires that every accepting state must be simulated by an accepting
state in addition to the standard simulation definition. In [9,12], the authors
proposed a new view of simulation for finite-state systems with weak or strong
fairness and gave an algorithm for computing fair simulation by tree automata
emptiness testing. In [5], the authors did research on simulation using a game-
theoretic framework, and developed an efficient algorithm to compute fair and
delayed simulation by parity game [10] in O(mn3) where n and m are the number
of states and transitions,respectively. Among other related work, [1] compare
the above notions of simulation, and [6] computes the simulation relation for
alternating Büchi automata.

The methods for computing language containment of automata based on the
above notions are incomplete. (i.e., Two states which are not connected via sim-
ulation can nevertheless be in language-containment relation.) There has been
some research to narrow the gap between simulation and language-containment.
[3] proposes k-simulation which allows the duplicator to use k pebbles instead of
1 (the normal definition) in response to the spoiler’s move of a single pebble. We
can regard this process as performing partial improved subset construction, i.e.,
restrict the size of subset by a given number k. Note that when k increases to
n (the number of states), k-simulation of Büchi automata is still not equivalent
to language containment. [11] consider trace inclusion (language containment)
between two finite-state fair discrete systems (two nondeterministic Street au-
tomata), and showed that this problem can be solved by fair simulation if an
appropriate non-constraining automaton is provided.

In our paper, we construct a Büchi automaton based on partial marked subset
construction. This automaton preserves the original language and has a struc-
ture that helps to identify more pairs of the original automaton with language
containment relation. We prove that this approach is an improvement to the
fair-k-simulation method [3]. The organization of this paper is as follows: In
Section 2, we present the background knowledge. In Section 3, we describe our
approach with three steps, and we make a comparison between our approach
and the fair-k-simulation method. In Section 4, we give conclusion remarks.

2 Preliminaries

Definition 1 (Büchi automata). A Büchi automaton is a tuple A = 〈Q, Σ, q0,
Δ, F 〉 where Q is a finite set of states, Σ is the input alphabet, q0 ∈ Q is the
initial state, F ⊆ Q is the set of accepting states, Δ ⊆ Q×Σ×Q is the transition
relation.

Let δ : Q × Σ → 2Q denote the transition function defined by: q ∈ δ(q′, a) if
(q, a, q′) ∈ Δ. A run of A on an infinite word α = α(0)α(1) · · · is a sequence
r = r(0)r(1) · · · such that r(0) = q0, and for every i ≥ 0, r(i + 1) ∈ δ(r(i), α(i)).
Let inf(r) be the set of states that r visits infinitely often. If inf(r) ∩ F 	= ∅,
then the run r is an accepting run and α is in the language of A. The language
of A is denoted by L(A).

376 J. Yi and W. Zhang

For convenience, we write q ∈ A for q being a reachable state of A. We write
QA, ΔA, FA for respectively the set of states of A, the set of transition relation
of A, and the set of accepting states of A.

The usual subset construction [17] builds a new automaton with exponential
number of states, each state is the subset of states of the original automaton. The
states in the same subset can be reached on the same string. Breakpoint con-
struction [14] is a simple variant of usual subset construction used to transform
an alternating Büchi automaton to a nondeterministic Büchi automaton. [18]
regards this method as an improved subset construction. While doing improved
subset construction, we mark every accepting state and every state that has a
marked processor. After reading the prefix of some infinite word, if all the states
that can be reached from the initial state are marked, we identify a breakpoint
and clear the markings from these states. In the following, we formally describe
this method and call it marked subset construction as in [16]. Let δsub(X, a)
denote the set ∪x∈Xδ(x, a).

Definition 2 (marked subset construction). Let A = 〈Q, Σ, q0, Δ, F 〉 be a
Büchi automaton. Then sub(A) = 〈Q′, Σ, q′0, Δ

′, F ′〉 is the marked subset au-
tomaton of A with

– Q′ = {(X, f) | X ⊆ Q, f ⊆ X}
– q′0 = ({q0}, {q0})
– ((X, f), a, (Y, g)) ∈ Δ′ if

• (X, f), (Y, g) ∈ Q′, Y = δsub(X, a)
• Let X = {x1, x2 · · ·xn}, Y = {y1, y2 · · · ym}

yi ∈ g if it satisfies one of following conditions:
1. yi ∈ F
2. X 	= f and ∃xj ∈ f such that (xj , a, yi) ∈ Δ

– F ′ = {(X, f) ∈ Q′ | X = f}
Each state q = (X, f) ∈ sub(A) is a pair of subsets X and f . f records the
marked states. If s ∈ X is in f , then s is marked in q, otherwise, s is unmarked.
For convenience, we use q.X to denote the set X of q.

Let A be a Büchi automaton and w ∈ Σ∗. We use s1
A,w−→ s2 to represent that

there is a path in A from s1 to s2 consistent with the input w. The symbol A in
A,w−→ is usually omitted, if it is clear from the context.

We define simulation game-theoretically [5]. The simulation game on A and A′

is played by two players: Spoiler and Duplicator in rounds. At round 0, a red and
a blue pebble are placed on q0 and q′0, respectively. In each round, Spoiler may
choose any transition (qi, a, qi+1) and move the red pebble to the position qi+1.
Then Duplicator must have a corresponding transition (q′i, a, q′i+1) such that he
can move the blue pebble to q′i+1. If Duplicator does not have such a transition,
game halts and the spoiler wins. Otherwise the game produces two infinite runs:
π = q0a0q1a1q2 · · · and π′ = q′0a0q

′
1a1q

′
2 · · ·. The pair (π, π′) is called an outcome

of the game. The duplicator wins the game according to the following rules:

Enhancing Simulation for Checking Language Containment 377

1. Direct simulation game Gfair
A,A′(q0, q

′
0): the outcome (π, π′) is winning for Du-

plicator iff, for all i, if qi ∈ FA, then q′i ∈ FA′

2. Fair simulation game Gdirect
A,A′ (q0, q

′
0): the outcome (π, π′) is winning for Du-

plicator iff, if there are infinitely many j such that qj ∈ FA′
or there are

only finite many i such that qi ∈ FA

A strategy for Duplicator is a partial function f : Q(Q′ΣQ)∗ → Q′. It deter-
mines the next move of Duplicator according to the history of the play. That
is, f(q0) = q′0 and q′j = f(q0q

′
0a0q1q

′
1a1 · · · aj−1qj) where (qi, ai, qi+1) ∈ ΔA and

(q′i, ai, q
′
i+1) ∈ ΔA′

for i < j. A strategy for Duplicator is a winning strategy if
whenever π = q0a0q1 · · · is a run of A and π′ = q′0a0q

′
1 · · · is a run defined by

q′i+1 = f(q0q
′
0a0q1q

′
1 · · · aiqi+1), then (π, π′) is winning for Duplicator.

Definition 3. Let A and A′ be Büchi automata, state q′ ∈ A′ directly or fairly
simulates a state q ∈ A, denoted by q ≤∗ q′, if there is a winning strategy for the
duplicator in direct or fair simulation game G∗

A,A′(q, q′), where ∗ = direct, fair.

If A = 〈Q, Σ, q0, Δ, F 〉 is an automaton and q ∈ Q, then A[q] denotes the
modified automaton 〈Q, Σ, q, Δ, F 〉.
Proposition 1. [5] Let A and A′ be Büchi automata,

1. ≤∗ is a reflexive, transitive relation;
2. ≤direct⊆≤fair;
3. if q ≤∗ q′, then L(A[q]) ⊆ L(A′[q′]).

[5] propose an efficient algorithm to compute fair simulation game, which is based
on the lifting algorithm of [10]. The following proposition shows the complexity
of this algorithm.

Proposition 2. The lifting algorithm of [5] computes the fair simulation game
in time O(m′(n1 + 1)) and space O(m′), where m′ is the number of edges in
Gfair

A,A′(q0, q
′
0) and n1 < |A||A′|.

Given a Büchi automaton A (let A = A′), the k-simulation game [3] is defined for
a state q0 ∈ Q and a k-vector q′

0 = (q′0,1, · · · , q′0,k) ∈ Qk. In each round, when the
spoiler chooses a transition (qi, a, qi+1) ∈ Δ and the red pebble is placed in qi+1,
the duplicator must choose a transition that belongs to his transition relation
ΓA and move k pebbles. Given q0 = (q0,1, · · · , q0,k) and q′

0 = (q′0,1, · · · , q′0,k),
(q0, a,q′

0) ∈ ΓA if for each i ∈ [k] there is some j ∈ [k] such that (q0,j , a, q′0,i) ∈ Δ.
Note that i and j need not be the same. We say that q′

m is good since round
m′ ≤ m if at round m, for all qm,i ∈ q′

m, there exists a path from q′m′,j to
q′m,i in A, which goes through an accepting state and m is the first round with
this property. The meaning of a vector of states q′

m being good since some
prior round, is analogous to a single state q being an accepting state. For fair-k-
simulation game, let π = q0a0q1a1q2 · · · and π′ = q′

0a0q′
1a1q′

2 · · ·, the duplicator
wins if the following is true: if there are infinitely many i such that qi ∈ F , then
for each such i, there exists j ≥ i such that q′

j is good since round i.
In the rest of this paper, A ≤∗ B also means q0 ≤∗ q′0 , where q0, q′0 is the

initial state of A, B, respectively.

378 J. Yi and W. Zhang

3 Search Pairs of States for Language Containment

To understand the motivation of this work, we consider two Büchi automata A
(left) and B (right) in Fig.1. It is obvious that L(B) ⊆ L(A). However, we cannot
prove this language containment relation by the fair-k-simulation method.

Consider playing the fair-k-simulation game between A and B. When the
spoiler put the red pebble in q1, the duplicator can put two blue pebbles in s1

and s2 respectively, for s0 can reach s1 and s2 by two transitions with the same
label ”a”. The transitions of the vector (s1, s2) can match all transitions of q1,
therefore, the duplicator can simulate the spoiler in q1 by the vector (s1, s2).
However, when the spoiler has an infinite play π = q0aq1bq1 · · · on abω, the
duplicator has a corresponding play π′ = (s0)a(s1, s2)b(s1, s2) · · ·, since q1 is an
accepting state and appears infinitely, but the vector (s1, s2) does not become
an ”accepting” state in any round. By the rule of fair-k-simulation game, the
duplicator loses the game. This shows that the fair-k-simulation method is not
sufficient for proving L(B) ⊆ L(A).

Fig. 1. A Motivating Example

We present an approach to prove L(B) ⊆ L(A) by constructing a new Büchi
automaton A∗ such that B ≤fair A∗. A∗ preserves the language of A and has a
structure that is more amenable to fair simulation.

The process to build the new Büchi automaton consists of three steps. (1)
Build Büchi automaton A1 whose state comprises an index and a state of A.
The states in A1 reached over the same string contain the same index. (2) Build
Büchi automaton A2 by adding accepting states into A1. (3) Build Büchi automa-
ton A∗ by adding transitions into A2. This construction of the Büchi automaton
does not change the language of A, i.e. L(A1) = L(A2) = L(A∗) = L(A). The
details are explained in the following subsection.

3.1 Construct New Büchi Automaton

For constructing A1, we want to know for each given string, the set of states
in A that can be reached over that string. For this purpose, we may do subset
construction on A. Since the sub(A) has 2n states (|A| = n), from the complexity
aspect, we need restrict the number of states in subset (up to a k ≥ 2), thus we

Enhancing Simulation for Checking Language Containment 379

can have a polynomial number of states. This restriction is a trade-off, because
it results in decreasing the opportunities to add transitions into A2 at step 3.

Based on the idea of the paper [3], we introduce the marked k-subset con-
struction. Let Setk(X) = {Y | Y ⊆ X, 1 ≤ |Y | ≤ k}.
Definition 4 (marked k-subset construction). Let A = 〈Q, Σ, q0, Δ, F 〉
be a Büchi automaton. The marked k-subset automaton subk(A) = 〈Qk, Σ, qk

0 ,
Δk, F k〉 is given as follows.

– Qk = {(X, f) | X ⊆ Q, |X | ≤ k, f ⊆ X}
– qk

0 = ({q0}, {q0})
– ((X, f), a, (Y, g)) ∈ Δk if

• (X, f), (Y, g) ∈ Qk, Y ∈ Setk(δsub(X, a))
• Let X = {x1, x2 · · ·xn}, Y = {y1, y2 · · · ym}, m, n ≤ k

yi ∈ g if it satisfies one of following conditions:
1. yi ∈ F
2. X 	= f and ∃xj ∈ f such that (xj , a, yi) ∈ Δ

– F k = {(X, f) ∈ Qk | X = f}
Note that while sub(A) a deterministic automaton, subk(A) may be
non-deterministic. The following properties of subk(A) are similar to those of
sub(A).

Proposition 3. Given A and subk(A), Let (X, f), (Y, g) ∈ subk(A). If (X, f) w−→
(Y, g) in subk(A), then for each y ∈ Y , there exists x ∈ X such that x

w−→ y
in A.

Proposition 4. L(subk(A)) ⊆ L(A).

An example of marked k-subset construction sub2(A) is shown in Fig.2, where
the state labelled by ṡ means that s ∈ A is marked and s is a part of the state (an
element of the subset of the states of A). Similarly, s means that s is unmarked
and is a part of the state. For convenience, we assign each state of sub2(A) an
identifying number.

In the following, we give the definition of A1 which is constructed similar to
the product subk(A) × A with accepting states according to A.

Definition 5 (A1). Let A = 〈Q, Σ, q0, Δ, F 〉 and subk(A) = 〈Qk, Σ, qk
0 ,

Δk, F k〉. A1 = 〈Q1, Σ, q1
0 , Δ

1, F 1〉 is the Büchi automaton with

– Q1 = {(q, s) | q = (X, f) ∈ Qk, s ∈ X ⊆ Q}
– q1

0 = (qk
0 , q0)

– F 1 = {(q, s) ∈ Q1 | s ∈ F}
– Δ1 = {((q, s), a, (q′, s′)) ∈ Q1 × Σ × Q1 | (q, a, q′) ∈ Δk ∧ (s, a, s′) ∈ Δ}

We call q the index of (q, s). The index q contains information related to the
path from the initial state to (q, s). For the first, if two states u, u′ ∈ A1 have
the same index, then one can be reached over a string from the initial state iff
the other can be reached over the same string. For example, the corresponding

380 J. Yi and W. Zhang

A1 of A and sub2(A) is shown in Fig.3 where the states (3, s1) and (3, s2) are
both with index 3 (which represents the state ṡ1s2 in Fig.2). Then the states
(3, s1) and (3, s2) can be reached over the same strings ab∗. Note that in Fig.3,
A1 has been simplified by deleting the state (6, s2)(it is redundant according to
the state (3, s2)). For the second, the index contains information on accepting
states that the path has passed. Since whether (q, s) belongs to FA1

is decided
by s ∈ FA, thus whether the path from some accepting state of A1 to (q, s) has
passed an accepting state can be checked by whether s is marked or unmarked
in q. This mark information decides whether we can add transitions into A1 (at
step 3). Therefore we choose marked subset construction, not the usual subset
construction for this purpose.

Fig. 2. sub2(A) Fig. 3. A1 Fig. 4. A∗

Theorem 1. L(A1) = L(A).

Proof. We first prove L(A) ⊆ L(A1). Let α = α0α1 · · · ∈ L(A) and r = s0s1s2 · · ·
be an accepting run of A on α. By the definition of marked k-subset construction,
∃rsub = q0q1q2 · · · on α in subk(A). Based on r and rsub, we can construct a
path r1 = (q0, s0)(q1, s1)(q2, s2) · · · which is a run of A1 on α, according to the
construction of A1. Since there is some si ∈ inf(r) ∩ FA, then there is some
(qi, si) ∈ inf(r1) ∩ FA1

. Therefore r1 is an accepting run and α ∈ L(A1).
We then prove L(A1) ⊆ L(A). Let α = α0α1 · · · ∈ L(A1) and r1 = (q0, s0)

(q1, s1)(q2, s2) · · · be an accepting run of A1 on α. We can make a projection of
r1 onto A, and obtain a path r = s0s1s2 · · · of A on α. Since there exists some
(qi, si) ∈ inf(r1) ∩ FA1

, there also exists si ∈ inf(r) ∩ FA according to the
definition of FA1

. Therefore r is an accepting run of A and α ∈ L(A). ��
Then we define A2 which is the same as A1 except that the set of accepting
states is enlarged.

Definition 6 (A2). Given A1 = 〈Q1, Σ, q1
0 , Δ

1, F 1〉 and subk(A). Then A2 =
〈Q1, Σ, q1

0 , Δ
1, F 2〉 is a Büchi automaton where F 2 = F 1∪{(q, s)|q ∈ F subk(A)}.

Theorem 2. L(A2) = L(A1).

Enhancing Simulation for Checking Language Containment 381

Proof. L(A1) ⊆ L(A2) is obvious by the definition of A2.
Now we prove L(A2) ⊆ L(A1). Let r = (q0, s0)(q1, s1) · · · be an accepting run

of A2 on α. If inf(r) ∩F 1 	= ∅, then α ∈ L(A1). Otherwise, Let (qi, si) ∈ inf(r)
and (qi, si) ∈ F 2\F 1, since r is also a run of A1 and a run of A1 can be projected
into a run of A and a run of subk(A), there exists a run r′ = q0q1 · · · of subk(A) on
α. For (qi, si) ∈ F 2\F 1, by the definition of F 2, we know qi ∈ F subk(A), therefore
r′ is an accepting run of subk(A) and α ∈ L(subk(A)) ⊆ L(A) = L(A1). ��
The fact that two states u1, u2 ∈ A2 with the same index can be reached over
exactly the same set of strings, implies that if u1 has some transitions that u2

does not have, then adding corresponding transitions into u2 does not affect the
words of A2 (including words do not satisfy the acceptance criteria). Such added
transitions help the duplicator having more choices to correspond to the move
of the spoiler, and increase the possibility to win the simulation game.

However, adding such transitions may change the language of A2. So we need
to define a kind of transition that can be added into A2 safely. Since each ac-
cepting run of Büchi automata contains an SCC (strongly connected component
of the graph), which has at least one accepting state. Therefore, we need to
check whether adding transition forms an SCC in A2. Moreover according to the
definition of A1, we do not need to checking the SCC in A2 directly, but the
corresponding SCC of subk(A).

Now we give the conditions to add one transition and analysis that each of
them guarantees the language of A2 unchanged.

Let u1 = (q, s1), u2 = (q, s2), u3 = (q′, s′1) ∈ A2. Given (u1, a, u3) ∈ Δ2 and
(u2, a, u3) 	∈ Δ2. The tuple (u2, a, u3) is called admissible-transition if one of
the following conditions holds:

1. (q, a, q′) is not a part of any SCC of subk(A).
2. every SCC of subk(A) of which (q, a, q′) is a part satisfies one of the following

conditions:
(a) the SCC has accepting states.
(b) the SCC has no accepting states and s2 is unmarked in q.

For convenience, we use sccA2 to denote an SCC of A2 formed by adding
(u2, a, u3) and sccsub(A) to denote the SCC of subk(A) which is the projection
of sccA2 onto subk(A).

For the first, we consider the case when (q, a, q′) is not a part of any SCC of
subk(A). In this case adding the admissible-transition (u2, a, u3) into A2 does not
change the language of A2, because (u2, a, u3) cannot be a part of any sccA2 . The
reason is as follows. Suppose that (q, a, q′) is not a part of any SCC of subk(A),
then there is no path from q′ to q in subk(A), thus there is no state s′ ∈ q′.X
that can reach a state s ∈ q.X . By the definition of A1 and A2, there is no state
of A2 with index q′ that can reach a state with index q, Therefore (u2, a, u3) is
not a part of any sccA2 .

For the second, we consider the case (condition (2a)) where (q, a, q′) is a part
of some sccsub(A) and the sccsub(A) has an accepting state. In this case, even
adding (u2, a, u3) forms an sccA2 and this sccA2 has an accepting state, it still

382 J. Yi and W. Zhang

does not change the language of A2. The reason is as follows. Since sccsub(A)

has an accepting state, by the definition of subk(A) and A2, there exists another
SCC of A2 with an accepting state, and the projection of this SCC onto subk(A)
is sccsub(A). Therefore, adding (u2, a, u3) does not change L(A2).

For the third, condition (2b) is based on the intuition that even adding a
transition may form an sccA2 , but if there is no accepting state in such sccA2 ,
then adding such a transition does not affect L(A2). We explain this formally
by the following lemma. We omit the proof due to space limitation.

Lemma 1. Let (u2, a, u3) be an admissible-transition such that adding this tran-
sition forms an sccA2 . Suppose that there is no accepting state in the correspond-
ing sccsub(A). If s2 is unmarked in q, then there is no accepting state in this
sccA2 .

We define A∗ by adding the transition relation of A2 with the set of admissible-
transitions.

Definition 7 (A∗). Given A2 = 〈Q1, Σ, q1
0, Δ

1, F 2〉 and subk(A). Let Θ be the
set of admissible-transitions. A∗ is defined to be the Büchi automaton 〈Q1, Σ, q1

0 ,
Δ1 ∪ Θ, F 2〉.
Fig.4 shows A∗ where there are three admissible-transitions which are denoted
by the dashed arrows. ((3, s1), d2, (4, s4)) and ((3, s2), d1, (5, s3)) satisfy condi-
tion (1), because (3, d2, 4) and (3, d1, 5) are not part of any SCC of sub2(A).
((3, s2), b, (3, s1)) satisfies condition (2b), because s2 is unmarked in 3. It is easy
to see that B ≤fair A∗.

Proposition 5. Let r = (q0, s0)(q1, s1)(q2, s2) · · · be a path of A∗ running on α.
Then there exists a corresponding path r′ = q0q1q2 · · · of subk(A) running on α.

Note that for all i, if r′(i) = qi, then qi is the index of r(i).

Theorem 3. L(A∗) = L(A2).

Proof. It is easy to prove that L(A2) ⊆ L(A∗). Now we prove L(A∗) ⊆ L(A2).
Let r running on α be an accepting path of A∗. If it does not include any
admissible-transition, then α ∈ L(A2) is obvious. Otherwise, we consider the
following cases:

1. Every admissible-transition of r only appears finitely.
Let ui = (qi, si), ui+1 = (qi+1, si+1). Suppose (ui, a, ui+1) is the last admis
sible-transition appearing in r. We divide r into two parts r0 and r1, and α
into α0 and α1 accordingly.

Let r0 = (q0, s0) · · · (qi, si)(qi+1, si+1), r1 be the rest of r with all the tran-
sitions belong to ΔA2

. By Proposition 5, there exists a path r′0 = q0 · · · qiqi+1

on α0 in subk(A).
By the definition of admissible-transition, there exists u′

i = (qi, s
′
i) such

that (u′
i, a, ui+1) ∈ ΔA2

. Since s′i and si are both in qi, moreover, q0 can

Enhancing Simulation for Checking Language Containment 383

reach qi according to r′0. By Proposition 3 and the definition of A1, we can
get a path t = (q0, s0) · · · (qi, s

′
i) of A1, which is also a path of A2.

Since (u′
i, a, ui+1) ∈ ΔA2

, then we append state ui+1 = (qi+1, si+1) to t
and get the path t′ = (q0, s0) · · · (qi, s

′
i)(qi+1, si+1) of A2 on α0. Since r1 is

the last part of r, it must be an accepting run. It is easy to see that r′′ = t′r1

is an accepting path of A2 on α. Therefore α ∈ L(A2).
2. Some admissible-transition of r appears infinitely.

According to the proof of item 1, we know that admissible-transitions of
r appearing finitely do not affect α ∈ L(A2). So in the following, we only
consider admissible-transitions which appear infinitely.

Let ui = (qi, si), ui+1 = (qi+1, si+1), (ui, a, ui+1) be an admissible-
transition. Let r′ be the run of subk(A) corresponding to r (cf. Proposi-
tion 5).

Suppose that (ui, a, ui+1) appears infinitely in r. Then it must be a part
of some sccA2 . Accordingly (qi, a, qi+1) is in sccsub(A). Therefore, by the defi-
nition of admissible-transition, condition (2) (in the definition of admissible-
transition) must be satisfied. We first show that condition (2b) cannot be
satisfied in this case, and then show that if it satisfies condition (2a), then
α ∈ L(A2).

– Suppose that the admissible-transition satisfies condition (2b), then si is
unmarked in qi and there is no accepting state in sccsub(A). Since inf(r)∩
FA2 	= ∅, then exists (qj , sj) ∈ FA2

. Because there is no accepting state
in sccsub(A), we have (qj , sj) ∈ FA1

. By the definition of FA1
, sj ∈ FA

and sj is marked in qj .
Let tr = ((qj , sj), aj , (qj+1, sj+1)) be a transition in the sccA2 , since

sj is marked, then tr cannot be an admissible-transition, i.e. tr ∈ ΔA2
.

Furthermore, since ΔA1
= ΔA2

, by the definition of ΔA1
, we know

that (sj , aj , sj+1) ∈ ΔA. Because sj is marked in qj and qj+1 	∈ F subk(A),
then sj+1 must be marked in qj+1.

By the same method, we can prove that all transitions of the path
uj · · ·uiui+1 cannot be admissible-transitions.

This contradict with that (ui, a, ui+1) is an admissible-transition.
Therefore condition (2b) cannot be satisfied.

– Suppose that the admissible-transition satisfies condition (2a), i.e., there
exists an accepting state in the sccsub(A). Then r′ is an accepting run
of subk(A), and α ∈ L(subk(A)). By Proposition 4, Theorem 1 and
Theorem 2, we have L(subk(A)) ⊆ L(A) = L(A1) = L(A2). Therefore
α ∈ L(A2).

From above analysis, we know that if some admissible-transition of r appears
infinitely, then it must satisfy condition (2a), and we have proved that α ∈
L(A2) based on this condition. ��

Now we analysis the complexity to compute the fair simulation relation between
B and A∗. Given a Büchi automaton A with n states and m transitions, there
are at most n(2n)k states and n(2n)km transitions in A∗. For simplifying the

384 J. Yi and W. Zhang

problem, we suppose B has the same number of states and transitions as that
of A. Therefore, we can compute the game on B and A∗ in time O(n4(2n)2km)
and space O(n2(2n)km) (cf. Proposition 2). Thus, for each fixed k, checking
B ≤fair A∗ requires polynomial time nO(k).

3.2 Comparison

The following proposition shows that our approach may find more pairs of states
with language containment than that of the fair-k-simulation method which can
be regarded as doing marked k-subset construction.

Proposition 6. subk(A) ≤direct A∗.

We omit the proof due to space limitation. Since the condition of direct sim-
ulation is stronger than fair simulation (cf. Proposition 1), so by the above
proposition, we see subk(A) ≤fair A∗. Therefore, if we prove L(B) ⊆ L(A) by
showing B ≤fair subk(A), we can also prove it by showing B ≤fair A∗. On the
other hand, it is possible that we have B ≤fair A∗ but B 	≤fair subk(A) (see the
example in Fig.1).

The intuition of our method is to either preserve the original language or add
more branches for each state. So we construct A1 by product A and subk(A),
then A1 preserves the original language of A, at the same time, it contains the
marked information from subk(A), using the information, we can add transitions
into A1 to increase its opportunities to fairly simulate B. So, there may exist
some state (q, s) in A∗ such that s can directly simulates q and L(q) ⊂ L(s).
For this kind of states, A∗ fairly simulates B but subk(A) does not. Therefore
in a sense our method makes L(subk(A)) be more close to L(A) than that of
the fair-k-simulation method. However, like the fair-k-simulation method, even
k = n(n is the number of states), our method can not make the fair simulation
relation reach language containment.

4 Conclusion

We have presented an approach for computing pairs of states that are in lan-
guage containment relationship based on fair simulation. The principle of this
method is to build a new Büchi automaton A∗ without changing the original
language. In the construction process, we construct the automaton A1 based
on the marked k-subset construction, each state of A1 contains an index. Then
we add accepting states and transitions into A1 according to the marking infor-
mation in subk(A). Adding transitions increases the choices for the duplicator
in the fair simulation game on A∗, therefore we may find more pairs of states
with language containment. In addition, we have compared our approach with
fair-k-simulation method and showed the advantage.

Since [11] provide the method to compute fair simulation for generalized
Büchi automata, we may also do fair simulation for this kind of automata.

Enhancing Simulation for Checking Language Containment 385

Although our approach enhances the possibility to find pairs of states with lan-
guage containment relation, our approach is still not complete. The direction of
our future work is to continue research on how to efficiently make simulation
relation even closer to language containment.

References

1. D. Bustan, O. Grumberg: Applicability of fair simulation. Information and com-
putation, Vol. 194(1), pp. 1-18, 2004.

2. D. L. Dill, A. J. Hu, and H.Wong-Toi. Checking for language inclusion using sim-
ulation preorders. CAV’91, vol. 575 of LNCS, pp. 255-265, 1991.

3. K. Etessami. A Hierarchy of Polynomial-Time Computable Simulations for Au-
tomata. CONCUR’02, vol. 2421 of LNCS, pp. 131-144, 2002.

4. K. Etessami and G. Holzmann. Optimizing Büchi automata. CONCUR’00, vol.
1877 of LNCS, pp. 153-167, 2000.

5. K. Etessami, Th. Wilke, and R. Schuller. Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM Journal of Computing, 34(5):
1159–1175, 2005.

6. C. Fritz. Constructing Büchi Automata from Linear Temporal Logic Using Sim-
ulation Relations for Alternating Büchi Automata. CIAA’03, vol. 2759 of LNCS,
pp. 35-48, 2003.

7. S. Gurumurthy, R. Bloem, F. Somenzi. Fair Simulation Minimization. CAV’02, vol.
2404 of LNCS, pp. 610-624, 2002.

8. S. Gurumurthy, O. Kupferman, F. Somenzi, M. Y. Vardi. On Complementing Non-
deterministic Büchi Automata. CHARME’03:96-110.

9. T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. CON-
CUR’97, vol. 1243 of LNCS, pp. 273-287, 1997.

10. M. Jurdzinski. Small progress measures for solving parity games. STACS’00, vol.
1770 of LNCS, pp. 290-301, 2000.

11. Y. Kesten, N. Piterman and A. Pnueli. Bridging the Gap Between Fair Simulation
and Trace Inclusion. Information and Computation, 200(1):35-61, 2005.

12. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
STOC’98:408-429.

13. A. Lindahl. Complementation of Büchi automata: A survey and implementation.
master thesis, Linköpings university Department of computer and information sci-
ence, 2004.

14. S. Miyano and T. Hayashi. Alternating Finite Automata on ω-Words, Theoretical
Computer Science vol.32: 321-330, 1984.

15. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
16. M. Mukund. Finite-state Automata on Infinte Inputs, Sixth National Seminar on

Theoretical Computer Science, Banasthali Vidyapith, Banasthali, Rajasthan, 1996.
17. M. O. Rabin and D. Scott. Finite automata and their decision problems IBM

Journal of Research 3(2):115-125,1959.
18. S. Safra. Complexity of automata on infinite object. PhD thesis, 1989.
19. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. CAV’00,

vol. 1855 of LNCS, pp. 248-263, 2000.

QBF-Based Symbolic Model Checking for

Knowledge and Time

Conghua Zhou1, Zhenyu Chen2, and Zhihong Tao3

1 School of Computer Science and Telecommunication Engineering,
Jiangsu University, Zhenjiang 212013, Jiangsu, China

chzhou@mail.edu.cn
2 School of Computer Science and Engineering,

Southeast University, Nanjing 210096, Jiangsu, China
zychen@mail.edu.cn

3 School of Software and Microelectronics, Peking University, Beijing 100871, China
tzh21001@ss.pku.edu.cn

Abstract. For temporal and epistemic property CTLK we propose a
new symbolic model checking technique based on Quantified Boolean
Formula(QBF). The verification approach is based on an adaption of the
technique of bounded model checking. We decide the validity of a CTLK
formula ψ in the finite reachable state space of a system, and reduce the
validity to a QBF which is satisfiable if and only if ψ is validated. The
new technique avoids the space blow up of BDDs, and sometimes speeds
up the verification.

1 Introduction

Model checking[1] is an automatic verification technique which focussed predom-
inantly on system specification expressed in temporal logic-linear temporal logic
in the case of SPIN[2,3] and FORSPEC[4], branching temporal logic in the case
of SMV[5] and its relatives. In 1991, Halpern and Vardi proposed the use of
model checking as an alternative to the deduction for logics of knowledge. Since
then many researchers focused on the model checking problem of multi-agent
systems(MAS)[6,7,8]. In the model checking of MAS, properties are expressed
with temporal logics of knowledge, and interpreted systems are used to describe
behaviors of MAS. The state explosion problem is still main problem in the
model checking of MAS.

Recently bounded model checking based on SAT[9] has been introduced as
a complementary technique to BDD-based symbolic model checking[5]. Since
bounded model checking was introduced researchers pay much attention to the
bounded model checking technique for temporal logics of knowledge[10,11,12,13].
They proposed many new temporal logics of knowledge such as CTLK[10],
CTL*K. Their researches showed that bounded model checking based on SAT
can overcome the state explosion problem efficiently in the model checking of
MAS. However, their verification properties are only universal fragments of tem-
poral logics of knowledge. We proposed a new bounded model checking technique
based on QBF[14,15] for the whole CTLK.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 386–397, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

QBF-Based Symbolic Model Checking for Knowledge and Time 387

Our basic idea is to decide the validation of a CTLK formula ψ in the finite
step reachable state space of a system, and reduce the validation to a QBF which
is satisfiable if and only if ψ is validated. Like SAT evaluation, QBF evaluation
can be search based and does not suffer from the potential space explosion
problem of BDDs. Modern QBF solvers can handle QBF satisfiability problems
with thousands of variables or more. Therefore our new symbolic technique is
feasible.

The paper is organized as follows. In Section 2 we recall some basic concepts
about QBF. In Section 3, we introduce Interpreted System Semantics. In Sec-
tion 4, we define the bounded semantics of CTLK. In Section 5, the translation
algorithm is presented. Section 6 concludes the paper.

2 Quantified Boolean Formula

The set of quantified boolean formulas(QBF) is defined inductively as follows:

Definition 1. (Quantified Boolean Formula)

(1) Every propositional formula is a quantified boolean formula.
(2) Let φ be a quantified boolean formula and let x(respectively y) be a proposi-

tional variable. Then both ∀xφ and ∃yφ are quantified boolean formulas.
(3) Only the formulas given by (1) and (2) above are quantified boolean formulas.

According to Definition 1, quantified boolean formulas are always in prenex
form, i.e. they consist of a sequence of quantifiers, the prefix, followed by a
quantifier free propositional formula, the so-called matrix of the formula: Φ =
Q1x1 . . . Qnxnφ with Qi ∈ {∃, ∀} and xi a propositional variable for 1 ≤ i ≤ n.
The semantics of a QBF Φ can be defined recursively as follows. If the prefix
is empty, then the satisfiability of Φ is defined according to the truth tables
of propositional logic. If Φ is ∃xφ (resp. ∀xφ), Φ is satisfiable if and only if
Φx or (resp. and) Φ−x are satisfiable. Here Φx is the QBF obtained from by
substituting x with True, Φ−x is the QBF obtained from by substituting x with
False.

3 Interpreted System Semantics

Interpreted systems are mainstream semantics for temporal logics of knowledge.
We assume that the modelling system composed of multiple agents, each of
which is an independently operating process. Let Ag = {1, . . . , n} denote the
set of agents. We assume that each agent i ∈ Ag can be any of a set Li of local
states. An agent’s local state contains all the information required to completely
characterize the state of the agent: the value of each of its local variables, together
with the value of its program counter. In particular, the information available to
an agents is determined by its local state. The state of a system at any moment
can be characterized by a tuple (l1, . . . , ln), where li ∈ Li is the local state of
agent i at this moment. We let G ⊆ L1 × · · · × Ln denote the global states

388 C. Zhou, Z. Chen, and Z. Tao

of the system. Notice that we have not explicitly introduced environments. For
simplicity we assume that an environment can be modelled as an agent in the
system.

Definition 2. (Models) Given a set of atomic propositions AP and a set of
agents Ag = {1, . . . , n}, a temporal knowledge model(simply a model) over AP
and Ag is a pair M = (K, L) with K = (G, S, R, s0,∼1, . . . ,∼n), where G is
the finite set of the global states for the system(simply states); R ⊆ G × G is
a total binary relation on G; S is a set of reachable global states from s0, i.e.,
S = {s ∈ G|(s0, s) ∈ R∗}(R∗ denotes the transitive closure of R); s0 ∈ S is the
initial state; ∼i⊆ G × G(i ∈ Ag) is a knowledge accessibility relation for each
agent i ∈ Ag defined s ∼i s′ iff li(s′) = li(s), where the function li : G → Li

returns the local state of agent i from a global state s; L : G → 2AP is a function
which labels each state with a subset of the atomic propositions set AP .

Knowledge relations. It is obvious that in the system model M , the relation ∼i

is an equivalence relation. Let Γ ⊆ Ag. Given the knowledge relations for the
agents in Γ , the union of Γ ′s accessibility relations defines the knowledge re-
lation corresponding to the modality of everybody knows: ∼E

Γ =
⋃

i∈Γ ∼i. ∼C
Γ

denotes the transitive closure of ∼E
Γ , and corresponds to the relation used to

interpret the modality of common knowledge. The intersection of Γ ′s accessi-
bility relations defines the knowledge relation corresponding to the modality of
distributed knowledge: ∼D

Γ =
⋂

i∈Γ ∼i.
A path in system model M is an infinite sequence of states π = s0, s1, . . .

such that (si, si+1) ∈ R for each i ≥ 0. A k-path is an finite sequence of states
π = s0, s1, . . . , sk such that (si, si+1) ∈ R for each 0 ≤ i ≤ k − 1. Pathk is a
set of all k-paths. For a path π = s0, s1, . . . or a k-path π = s0, s1, . . . , sk, let
π(k) = sk and πk denote the suffix of π starting from the kth state.

3.1 Computation Tree Logic of Knowledge-CTLK

Definition 3. (Syntax of CTLK) Let AP be a set of propositional variables
containing the symbol true. The set of CTLK formulas is defined inductively as
follows:

– if p ∈ AP , then p is a CTLK formula.
– if α and β are CTLK formulas, then so are ¬α, α ∧ β and α ∨ β.
– if α and β are CTLK formulas, then so are EXα, EGα, EαUβ, and EαRβ

are CTLK formulas.
– if α is a CTLK formula, then so are KΓ α, for i ∈ Ag.
– if α is a CTLK formula, then so are DΓ α, CΓ α, EΓ α, for Γ ⊆ Ag.

The basic modalities are defined by derivation as follows: Fα := trueUα, AXα :=
¬EX¬α, AGα := ¬EF¬α, AαRβ := ¬E(¬αU¬β), AαUβ := ¬E(¬αR¬β),
DΓ α := ¬DΓ¬α, CΓ α := ¬CΓ¬α, EΓ α := ¬EΓ¬α, Kiα := ¬Ki¬α.

Definition 4. (Semantics of CTLK) Let M be a model, s be a state, π be path,
and α, β be formulas of CTLK. M, s |= α denotes that α is true at the state s

QBF-Based Symbolic Model Checking for Knowledge and Time 389

in the model M . M is omitted, if it is implicitly understood. The relation |= is
defined inductively as follows:

– s |= p iff p ∈ L(s),
– s |= ¬α iff s �|= α,
– s |= α ∨ β iff s |= α or s |= β,
– s |= α ∧ β iff s |= α and s |= β,
– s |= EXα iff there exists a path π starting from s such that π(1) |= α.
– s |= EGα iff there exists a path π starting from s such that for all i ≥ 0,

π(i) |= α.
– s |= EαUβ iff there exists a path π starting from s such that for some

i ≥ 0,[π(i) |= β and for all j < i, π(i) |= α].
– s |= Kiα iff ∃s′ ∈ S(s ∼i s′ and s′ |= α).
– s |= DΓ α iff ∃s′ ∈ S(s ∼D

Γ s′ and s′ |= α).
– s |= EΓ α iff ∃s′ ∈ S(s ∼E

Γ s′ and s′ |= α).
– s |= CΓ α iff ∃s′ ∈ S(s ∼C

Γ s′ and s′ |= α).

Definition 5. (Validity) A CTLK formula φ is valid on a model M , denoted
M |= φ, iff M, s0 |= φ, i.e., φ is true at the initial state of the model M .

4 Bounded Semantics of CTLK

The basic idea of bounded model checking for CTLK is to consider only a finite
reachable state space of a system that may be a solution to the model checking
problem. We restrict the length of the prefix by a certain bound k. In practice we
progressively increase the bound, looking for longer and longer possible witness.
In the following we give a bounded semantics of CTLK that is an approximation
to the unbounded semantics of CTLK . It allows us to define the bounded model
checking problem.

Definition 6. Let M be an interpreted system, π be a k-path. A function loop :
Pathk → 2N is defined as :

loop(π) = {l|l ≤ k and (π(k), π(l)) ∈ R}
Definition 7. (Reachable in k-Step) We call a state s′ reachable in k-step from
state s if there is a finite path between s and s′ whose length is no more than k.

Without loss of expressibility we assume that all CTLK formulas are negation
normal formulas.

Definition 8. (Bounded Semantics for CTLK) Let M be an interpreted system,
f, g be CTLK formulas. M, s |=k f denotes that f is true at the state s in bounded
semantics. M is omitted if it is implicitly understood. The relation |=k is defined
inductively as follows:

– s |=k p iff p ∈ L(s), s |=k f ∨ g iff s |=k f or s |=k g,
– s |=k ¬p iff p �∈ L(s), s |=k f ∧ g iff s |=k f and s |=k g.

390 C. Zhou, Z. Chen, and Z. Tao

– s |=kEXf iff there is a k-path π such that π(0) = s and π(1) |=k f .
– s |=kAXf for each k-path π if π(0) = s then π(1) |=k f .

– s |=kEFf there is a k-path π such that π(0) = s and
k∨

i=0

π(i) |=k f.

– s |=kAFf iff for each k-path π if π(0) = s then
k∨

i=0

π(i) |=k f.

– s |=kEGf iff there is a k-path such that π(0) = s,
k∧

j=0

π(j) |=k f , and

loop(π) �= ∅.
– s |=kAGf iff for each k-path π if π(0) = s then

k∧

j=0

π(j) |=k f , and for each

state s′ if s′ satisfies R(π(k), s′) then s′ is reachable from s in k-step.
– s |=kEfUg iff there is a k-path π such that π(0) = s and ∃0 ≤ j ≤ k(π(j) |=k

g and
j−1∧

i=0

π(i) |=k f).

– s |=kAfUg iff for each k-path π if π(0) = s then∃0 ≤ j ≤ k(π(j) |=k g and
j−1∧

i=0

π(i) |=k f))

– s |=kEfRg iff there is a k-path π such that π(0) = s and one of the following

conditions holds: (1)loop(π) �= ∅ ∧
k∧

j=0

π(j) |=k g.(2) ∃0 ≤ j ≤ k(π(j) |=k

f ∧
j∧

i=0

π(i) |=k g).

– s |=kAfRg iff for each k-path π if π(0) = s then one of the following con-

ditions holds:(1)
k∧

j=0

π(j) |=k g and for each state s′ if R(π(k), s′) holds then

s′ is reachable from s in k-step.(2) ∃0 ≤ j ≤ k(π(j) |=k f ∧
j∧

i=0

π(i) |=k g).

– s |=k Kif iff there is a k-path π starting from the initial state s0 such that
for some 0 ≤ j ≤ k,s ∼i π(j) and π(j) |=k f .

– s |=k Kif iff for each k-path π starting from the initial state s0, the following
two conditions hold: (1) for all 0 ≤ j ≤ k, if s ∼i π(j) then π(j) |=k f ; (2)
for each state s′, if s′ satisfies R(π(k), s′) then s′ is reachable from s0 in
k-step.

– s |=k EΓ f iff there is a k-path π starting from the initial state s0 such that
for some 0 ≤ j ≤ k,s ∼E

Γ π(j) and π(j) |=k f .
– s |=k EΓ f iff for each k-path π starting from the initial state s0, for all 0 ≤

j ≤ k, the following two conditions hold: (1) if s ∼E
Γ π(j) then π(j) |=k f ;

(2) for each state s′ if s′ satisfies R(π(k), s′) then s′ is reachable from s0 in
k-step.

– s |=k DΓ f iff there is a k-path π starting from the initial state s0 such that
for some 0 ≤ j ≤ k,s ∼D

Γ π(j) and π(j) |=k f .
– s |=k DΓ f iff for each k-path π starting from the initial state s0, for all 0 ≤

j ≤ k, the following two conditions hold: (1) if s ∼D
Γ π(j) then π(j) |=k f ;

QBF-Based Symbolic Model Checking for Knowledge and Time 391

(2) for each state s′ if s′ satisfies R(π(k), s′) then s′ is reachable from s0 in
k-step.

– s |=k CΓ f iff there is a k-path π starting from the initial state s0 such that
for some 0 ≤ j ≤ k,(s, π(j)) ∈ EΓ

k and π(j) |=k f .
– s |=k CΓ f iff for each k-path π starting from the initial state s0, the following

two conditions hold: (1) for all 0 ≤ j ≤ k, if (s, π(j)) ∈ EΓ
k then π(j) |=k f ;

(2) for each state s′ if s′ satisfies R(π(k), s′) then s′ is reachable from s0 in
k-step.

Now we describe the model checking problem (M, s |= f) can be reduced to the
bounded model checking problem (M, s |=k f).

Theorem 1. (Soundness) Let M be an interpreted system structure, k be a
positive integer, s be a state of M , and f be a CTLK formula. Then M, s |=k f
implies M, s |= f .

Proof. By induction on f . The theorem follows directly for the propositional
variables and their negations. Next assume that the hypothesis holds for all the
proper subformulas of f . If f is equal to either α∨ β or α∧ β, then it is easy to
check that the theorem holds. Consider f to be of the following forms:

– Let f = EXα. By the definition of bounded semantics, there is a k-path π
such that π(0) = s and M, π(1) |=k α. By the induction M, π(1) |= α. By
the definition of the unbounded semantics M, s |= f .

– Let f = AXα. By the definition of bounded semantics, for any k-path π if
π(0) = s then M, π(1) |=k α. By the induction for any k-path π if π(0) = s
then M, π(1) |= α. By the definition of the unbounded semantics M, s |= f .

– Let f = EGα. By the definition of bounded semantics, there exists a k-pathπ,

such that loop(π) �= ∅ and
k∧

j=0

M, π(j) |=k α. By the induction
k∧

j=0

M, π(j) |=
α. Without loss of generality we assume that l ∈ loop(π), then for the infinite
path π′ = π(0), . . . , π(l − 1), (π(l), . . . , π(k))ω , for each i ≥ 0, M, π′(i) |= α.
By the definition of the unbounded semantics M, s |= f .

– Let f = AGα. We assume that M, s �|= AGα, that is M, s |= EF¬α. By
the definition of the unbounded semantics there is a state s′ such that s′ is
reachable from s and M, s′ |= ¬α. Let d be the shortest distance between
s and s′. If d ≤ k, then by the definition of M, s |=k AGα, M, s′ |=k α. by
the induction M, s′ |= α. Therefore d > k. Assume that the shortest path
between s and s′ is π′. By the bounded semantics of M, s |=k AGα, π′(k+1)
is reachable from s in k-step. Therefore there is a path connecting s and s′

which’s length is d − 1. So our assume M, s �|= AGα is infeasible. That is
M, s |= AGα.

– Let f = EαUβ. By the definition of bounded semantics, there exists a k-path

π, an integer j with 0 ≤ j ≤ k, such that M, π(j) |=k β and
j−1∧

i=0

M, π(i) |=k α.

By the induction M, π(j) |= β and
j−1∧

i=0

M, π(i) |= α. By the definition of the

unbounded semantics M, s |= f .

392 C. Zhou, Z. Chen, and Z. Tao

– Let f = AαUβ. By the definition of bounded semantics, for each k-path π
with π(0) = s, there is an integer j with 0 ≤ j ≤ k, such that M, π(j) |=k β

and
j−1∧

i=0

M, π(i) |=k α. By the induction M, π(j) |=k β and
j−1∧

i=0

M, π(i) |=k α.

By the definition of the unbounded semantics M, s |= f .
– Let f = EαRβ. By the definition of bounded semantics, there exists a k-path

π starting from s satisfying one of the following conditions: (1)there is an

integer j with 0 ≤ j ≤ k, such that M, π(j) |=k α and
j∧

i=0

M, π(i) |=k β. (2)

for each i ≥ 0, loop(π) �= ∅ and M, s |=k β. For the case 1, the proof is the
same with f = EαUβ. For the case 2, the proof is the same with f = EGα.

– Let f = AαRβ. By the definition of bounded semantics, M, s |=k f iff for
each k-path starting from s one of the following condition holds:

1.
k∧

j=0

π(j) |=k g and for each state s′ if R(π(k), s′) holds then s′ is reachable

from s in k-step.

2. ∃0 ≤ j ≤ k(π(j) |=k f ∧
j∧

i=0

π(i) |=k g).

For the case 1, the proof is the same with f = AGα. For the case 2, the
proof is the same with f = AαUβ.

– Let f = Kiα. By the definition of bounded semantics, there is a state s′

reachable from s0 in k-step with s ∼i s′ and s′ |=k α. By the induction,
s′ |= α. By the definition of the unbounded semantics M, s |= Kiα.

– Let f = Kiα. By the definition of bounded semantics, if a state s′ reachable
from s0, then s′ reachable from s0 in k-step. By the induction s′ |=k α implies
s′ |= α. Therefore for each state s′ reachable from s0, if s ∼i s′ then s′ |= α.
By the definition of the unbounded semantics M, s |= Kiα.

– Let f = EΓ α. By the definition of bounded semantics, there is a state s′

reachable from s0 in k-step with s ∼E
Γ s′ and s′ |=k α. By the induction,

s′ |= α. By the definition of the unbounded semantics M, s |= EΓ α.
– Let f = EΓ α. By the definition of bounded semantics, if a state s′ reachable

from s0, then s′ reachable from s0 in k-step. By the induction s′ |=k α implies
s′ |= α. Therefore for each state s′ reachable from s0, if s ∼E

Γ s′ then s′ |= α.
By the definition of the unbounded semantics M, s |= EΓ α.

– Let f = DΓ α. By the definition of bounded semantics, there is a state s′

reachable from s0 in k-step with s ∼D
Γ s′ and s′ |=k α. By the induction,

s′ |= α. By the definition of the unbounded semantics M, s |= DΓ α.
– Let f = DΓ α. By the definition of bounded semantics, if a state s′ reachable

from s0, then s′ reachable from s0 in k-step. By the induction s′ |=k α implies
s′ |= α. Therefore for each state s′ reachable from s0, if s ∼D

Γ s′ then s′ |= α.
By the definition of the unbounded semantics M, s |= DΓ α.

– Let f = CΓ α. By the definition of bounded semantics, there is a state s′

reachable from s0 in k-step with (s, s′) ∈ EΓ
k and s′ |=k α. (s, s′) ∈ EΓ

k

implies s ∼C
Γ s′. And by the induction, s′ |= α. By the definition of the

unbounded semantics M, s |= CΓ α.

QBF-Based Symbolic Model Checking for Knowledge and Time 393

– Let f = CΓ α. By the definition of bounded semantics, if a state s′ reachable
from s, then s′ reachable from s0 in k-step. By the induction s′ |=k α implies
s′ |= α, and (s, s′) ∈ EΓ

k implies s ∼C
Γ s′. Therefore for each state s′

reachable from s0, if s ∼C
Γ s′ then s′ |= α. By the definition of the unbounded

semantics M, s |= CΓ α.

We recall what is the recurrence diameter of a system. Given a system model M ,
its recurrence diameter, denoted as rd(M), is the minimal number d ∈ N with
the following property. For every sequence of states s0,sd+1 with (si, si+1) ∈
R for i ≤ d, there exists j ≤ d such that sd+1 = sj .

Theorem 2. (Completeness) Let M be a system model, s be a state of M , f be
a CTLK formula without knowledge operators CΓ , CΓ , and k = rd(M) + 1. If
M, s |= f then M, s |=k f .

Theorem 2 can be directly proved by induction on f . Limited by space we omit
the proof’s details.

Theorem 3. Let M be a system model, s be a state of M , f be a CTLK formula
and k = |M |. If M, s |= f then M, s |=k f .

Proof. We only need to consider f = CΓ α. It is clear that s ∼C
Γ s′ if and only if

there is an integer k with k ≤ |M | such that (s, s′) ∈ EΓ
k. By the unbounded

semantics, s |= CΓ α iff for each state s′ reachable from s0, if s ∼C
Γ s′ then s′ |= α.

By the induction s′ |=k α. It is clear that s′ is reachable from s0 in |M |−step.
Therefore by the definition of bounded semantics M, s |=k CΓ α.

5 The BMC Algorithm for CTLK

In the previous subsection, we defined the semantics for bounded model checking.
We now reduce bounded model checking for CTLK to QBF problem. First we
assume that each state can be represented by a vector of state variables s =
(s[1], s[2], . . . , s[n]), where s[i] for i = 1, . . . , n are propositional variables. In
the following we use the notation s[m][n] to represent a state, where [m] is used
distinguish the different paths , [n] used to represent the current position. For
notational convenience we give the following definitions:

– p(s[m][n]) := p ∈ L(s[m][n]); I(s[m][n]) := (s[m][n] ↔ s0).
– ∃S

[m]
k := ∃s[m][0] . . . ∃s[m][k]. ∀S[m] := ∀s[m][0] . . . ∀s[m][k], where k represents

the length of a finite path.

– Path
[m]
k := ∀w, v(

k-1∨

i=0

(w ↔ s[m][i] ∧ v ↔ s[m][i+1]) → R(w, v), where k rep-

resents the length of a finite path. (The satisfiability of Path
[m]
k means that

the state sequence s[m][0], ..., s[m][k] is k-path.)

– Loop
[m]
k := ∃w(

k∨

i=0

(w ↔ s[m][i]) → R(s[m][k], w)), where k represents the

length of a finite path. (The satisfiability of Loop
[m]
k means that loop(s[m][0],

. . . , s[m][k]) �= ∅).

394 C. Zhou, Z. Chen, and Z. Tao

– Ki(s[m][n], s[h][l]) := (li(s[m][n]) ↔ li(s[h][l]))
– EΓ (s[m][n], s[h][l]) :=

∨

i∈Γ

Ki(s[m][n], s[h][l]).

– DΓ (s[m][n], s[h][l]) :=
∧

i∈Γ

Ki(s[m][n], s[h][l]).

– Ek
Γ (s[m][n], s[h][l]) := ∃S

[m+1]
k (

k-1∧

i=0

EΓ (s[m+1][i], s[m+1][i+1]) ∧
k−1∨

i=0

(s[m+1][i] ↔
s[m][n] ∧ s[m+1][i] ↔ s[h][l])).

– δ
[m][n]
k :=∀s[m+1][k+1](R(s[m+1][k], s[m+1][k+1])→∃S

[m+2]
k (s[m+2][0]↔s[m][n] ∧

Path
[m+2]
k ∧

k∨

i=0

(s[m+2][i] ↔ s[m+1][k+1]))). (The satisfiability of δ
[m][n]
k means

that for the k-path s[m][0], ..., s[m][k], any successor of s[m][k] is reachable from
s[m][0] in k steps).

– Δ
[m][n]
k := ∀s[m+1][k+1](R(s[m+1][k], s[m+1][k+1]) → ∃S

[m+2]
k (I(s[m+2][0]) ∧

Path
[m+2]
k ∧

k∨

i=0

(s[m+2][i] ↔ s[m+1][k+1]))). (The satisfiability of Δ
[m][n]
k means

that for the k-path s[m][0], ..., s[m][k], any successor of s[m][k] is reachable from
the initial state in k steps).

Algorithm 1. (Translating Bounded Model Checking for CTLK into QBF)

– [M, p][m][n]
k := p(s[m][n]). [M,¬p][m][n]

k := ¬p(s[m][n])
– [M, α∨β][m][n]

k := [M, α][m][n]
k ∨ [M, β][m][n]

k . [M, α∧β][m][n]
k := [M, α][m][n]

k ∧
[M, β][m][n]

k .
– [M, EXα][m][n]

k := ∃s[m+1][1](R(s[m][n], s[m+1][1]) ∧ [M, α][m+1][1]).
– [M, AXα][m][n]

k := ∀s[m+1][1](R(s[m][n], s[m+1][1]) → [M, α][m+1][1]
k).

– [M, EFα][m][n]
k :=∃S

[m+1]
k ((s[m+1][0]↔s[m][n])∧Path

[m+1]
k ∧

k∨

i=0

[M, α][m+1][i]
k).

– [M, AFα][m][n]
k := ∀S

[m+1]
k (((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k) →

k∨

i=0

[M, α][m+1][i]
k).

– [M, EGα][m][n]
k := ∃S

[m+1]
k ((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k ∧ Loop

[m+1]
k ∧

k∧

i=0

[M, α][m+1][i]
k)

– [M, AGα][m][n]
k := ∀S

[m+1]
k (((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k)

→ (
k∧

i=0

[M, α][m+1][i]
k ∧ δ

[m][n]
k))

– [M, EαUβ][m][n]
k := ∃S

[m+1]
k ((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k ∧

k∨

i=0

([M, β][m+1][i]
k ∧

i−1∧

j=0

[M, α][m+1][j]
k))

– [M, AαUβ][m][n]
k := ∀S

[m+1]
k (((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k) →

(
k∨

i=0

([M, β][m+1][i]
k ∧

i−1∧

j=0

[M, α][m+1][j]
k)))

QBF-Based Symbolic Model Checking for Knowledge and Time 395

– [M, EαRβ][m][n]
k := ∃S

[m+1]
k ((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k ∧

((
k∨

i=0

([M, α][m+1][i]
k ∧

i−1∧

j=0

[M, β][m+1][j]
k)) ∨ (Loop

[m+1]
k ∧

k∧

i=0

[M, α][m+1][i]
k)))

– [M, AαRβ][m][n]
k := ∀S

[m+1]
k (((s[m+1][0] ↔ s[m][n]) ∧ Path

[m+1]
k) →

((
k∨

i=0

([M, α][m+1][i]
k ∧

i−1∧

j=0

[M, β][m+1][j]
k)) ∨ (

k∧

i=0

[M, α][m+1][i]
k ∧ δ

[m][n]
k))

– [M, Kiα][m][n]
k :=∃S

[m+1]
k (I(s[m+1][0]

k)∧Path
[m+1]
k ∧

k∨

j=0

(Ki(s[m][n], s[m+1][j])∧

[α][m+1][j]
k)).

– [M, Kiα][m][n]
k := ∀S

[m+1]
k (((I(s[m+1][0]

k) ∧ Path
[m+1]
k) →

k∧

j=0

(Ki(s[m][n], s[m+1][j]) → [α][m+1][j]
k)) ∧ Δ

[m][n]
k).

– [M, EΓ α][m][n]
k :=∃S

[m+1]
k (I(s[m+1][0]

k)∧Path
[m+1]
k ∧

k∨

j=0

(EΓ (s[m][n], s[m+1][j])∧

[α][m+1][j]
k)).

– [M, EΓ α][m][n]
k := ∀S

[m+1]
k (((I(s[m+1][0]

k) ∧ Path
[m+1]
k) →

k∧

j=0

(EΓ (s[m][n], s[m+1][j]) → [α][m+1][j]
k)) ∧ Δ

[m][n]
k).

– [M, DΓ α][m][n]
k :=∃S

[m+1]
k (I(s[m+1][0]

k)∧Path
[m+1]
k ∧

k∨

j=0

(DΓ (s[m][n], s[m+1][j])∧

[α][m+1][j]
k)).

– [M, DΓ α][m][n]
k := ∀S

[m+1]
k (((I(s[m+1][0]

k) ∧ Path
[m+1]
k) →

k∧

j=0

(DΓ (s[m][n], s[m+1][j]) → [α][m+1][j]
k)) ∧ Δ

[m][n]
k).

– [M, CΓ α][m][n]
k :=∃S

[m+1]
k (I(s[m+1][0]

k)∧Path
[m+1]
k ∧

k∨

j=0

(Ek
Γ (s[m][n], s[m+1][j])∧

[α][m+1][j]
k)).

– [M, CΓ α][m][n]
k := ∀S

[m+1]
k (((I(s[m+1][0]

k) ∧ Path
[m+1]
k) →

k∧

j=0

(Ek
Γ (s[m][n], s[m+1][j]) → [α][m+1][j]

k)) ∧ Δ
[m][n]
k).

Definition 9. (General Translation) [Mf,s]k := ((s ↔ s[0][0]) ∧ [M, f][0][0]k).

5.1 The Correctness of the Translation

For the convenience of the proof note that (s ↔ s[0][0] ∧ [M, f][0][0]k) is satisfiable
if and only if for any positive integers i, j, (s ↔ s[i][j] ∧ [M, f][i][j]k) is satisfiable.

Theorem 4. [Mf,s]k is satisfiable if and only if M, s |=k f .

Theorem 4 can be directly proved by induction on f . Limited by space we omit
the proof’s details.

396 C. Zhou, Z. Chen, and Z. Tao

Corollary 1. Let M be a system model, s be a state of M , and f be a CTLK
formula, k ∈ N be a natural number. If [Mf,s]k is satisfiable then M, s |= f .

Corollary 2. Let M be a system model, s be a state of M , f be a CTLK formula
without knowledge operators CΓ , CΓ , and k = rd(M) + 1. M, s |= f if and only
if [Mf,s]k is satisfiable.

Corollary 3. Let M be a system model, s be a state of M , f be a CTLK for-
mula, and k = |M |. M, s |= f if and only if [Mf,s]k is satisfiable.

6 Summary

Model checking has had a great impact as an efficient method for algorithmic
verification of finite state systems. A limiting factor in its application is the
state space explosion problem. In this paper we presented that how to apply
QBF procedures to model checking CTLK. We believe that our technique not
only in theory is feasible, but also has the potential to handle much larger designs
than what is currently possible. In the future we need to show that our theory
works in practice. And optimization techniques in generating quantified Boolean
formulas need to be further investigated. In addition we would like to investigate
how to use domain knowledge to guide the search in QBF procedures.

References

1. E. M. Clarke, O. Grumberg, and D. Peled, Model checking (MIT Press, 2000).
2. G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Inter-

national: Hemel Hempstead England, 1991.
3. G. Holzmann. The Spin model checker. IEEE Transaction on Software Engineering,

23(5):279-295, May 1997.
4. M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria and W. Yi,

editors, Proceedings of the Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS 2001 pages 1-22. Springer-Verlag: Berlin,
Germany, April 2001.

5. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers: Boston,
MA, 1993.

6. J. Y. Halpern, M. Y. Vardi. Model checking vs. theorem proving: a manifesto. In V.
Lifschitz, editor. Artificial Intelligence and Mathematical Theory of Computation,
pages 151-176. Academic Press, San Diego Calif 1991.433.

7. R. Fagin J. Y. Halpern, Y. Moses, M. Y. Vardi. Resaoning about Knowledge. MIT
Press, 1995.

8. M. Y. Vardi. Implementing knowledge-based programs. In Proc. of the Conf. on
Theoretical Aspects of Rationality and Knowledge pages 15-30, 1996.

9. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, Symbolic model checking without
BDDs. in Proceedings of Tools and Algorithms for the Analysis and Construction
of Systems (TACAS99). LNCS,1579,193-207 (Springer-Verlag,1999).

10. W. Penczek, A. Lomuscio, Verifying Epistemic Properties of Multi-agent Systems
via Bounded Model Checking. Fundamenta Informaticae, 55(2):167-185, 2003

QBF-Based Symbolic Model Checking for Knowledge and Time 397

11. Xiangyu Luo, Kaile Su, Abdul Sattar, Qingliang Chen, Guanfeng Lv, Bounded
Model Checking Knowledge and Branching Time in Synchronous Multi-agent Sys-
tems. AAMAS’05.

12. B. Wozna, A. Lomuscio, W. Penczek, Bounded Model Checking for Knowledge and
Real Time. AAMAS’05.

13. B. Wozna, A. Lomuscio, W. Penczek, Bounded model checking for deontic inter-
preted systems. In Proc. of LCMAS’04, volume 126 of ENTCS, 93-114. Elsevier,
2004.

14. H. Kleine Buning, Xishun Zhao, On Models for Quantified Boolean Formulas, In
Lecture Notes in Computer Science 3075, 18-32, Springer-Verlag, 2004.

15. H. Kleine Buning, K. Subramani, Xishun Zhao, On Boolean Models for Quanti-
fied Boolean Horn Formulas, In Lecture Notes in Computer Scence 2919, 93-104,
Springer-Verlag, 2004.

A Characterization of the Language Classes

Learnable with Correction Queries�

Cristina Tı̂rnăucă1 and Satoshi Kobayashi2

1 Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tàrraco 1, Tarragona 43005, Spain

cristina.bibire@estudiants.urv.cat
2 Department of Computer Science, University of Electro-Communications

Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
satoshi@cs.uec.ac.jp

Abstract. Formal language learning models have been widely investi-
gated in the last four decades. But it was not until recently that the
model of learning from corrections was introduced. The aim of this pa-
per is to make a further step towards the understanding of the classes of
languages learnable with correction queries. We characterize these classes
in terms of triples of definite finite tell-tales. This result allowed us to
show that learning with correction queries is strictly more powerful than
learning with membership queries, but weaker than the model of learning
in the limit from positive data.

Keywords: correction query, query learning, Gold-style learning.

1 Introduction

The field of learning formal languages was practically introduced by E.M. Gold
[1] in 1967, in an attempt to construct a precise model for the notion of “being
able to speak a language”. Gold imagined language learning as an infinite process
in which the learner has access to a growing sequence of examples (learning from
text), or both positive and negative information (learning from informant), and
is supposed to make guesses. At some point his conjecture should be the target
language and he should never change his mind afterwards.

In the same paper Gold also introduces the notion of finite identification
(from text and informant). The main difference between this model and learning
in the limit model is that the learner has to stop the presentation of information
at some finite time when he “feels” that he has received enough, and state the
identity of the target language.

In [2] D. Angluin gives several necessary and sufficient conditions for a class
of languages to be learnable in the limit from positive data. Twelve years later,
Y. Mukouchi [3] describes the class of languages finitely identifiable from text

� This work was possible thanks to the FPU Fellowship AP2004-6968 from the Spanish
Ministry of Education and Science.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 398–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Characterization of the Language Classes Learnable 399

(informant) in terms of definite finite tell-tales (pairs of definite finite tell-tales,
respectively).

All the models mentioned so far are also known in the literature as Gold-
style learning. A totally different language learning model is the query learning
model, introduced by Angluin in 1987 [4]. In this setting the learner has access
to a truthfully oracle which is allowed to answer specific kind of queries. In [4]
a polynomial time query learning algorithm for the class of minimal complete
deterministic finite automata (DFAs) is given, in which the learner can ask mem-
bership queries (MQs) and equivalence queries (EQs). There are though other
types of possible queries: subset queries, superset queries, etc.

Although these two learning models seem to be quite different at a first glance,
S. Lange and S. Zilles showed that in fact there is a strong correlation between
them [5]. They proved that the class of languages learnable from MQs only
coincides with the class of languages finitely identifiable from an informant, and
that learning from EQs is equally powerful as learning in the limit from an
informant.

As previously mentioned, the study of formal languages learning has its origins
in the desire of a better understanding of how children learn so effortlessly their
native language. Still, none of these models accurately describes the process of
human language learning. Moreover, even the presence of negative information
in the process of children language acquisition is subject to a long and still
unsolved debate. Clearly, children are not explicitly provided negative examples
(words that are not in the language or ungrammatical sentences). Yet, they are
corrected when they make a mistake, and this can be thought of as negative
information. Actually, these ideas can be found in Gold’s paper [1]. Although he
points out that “those working in the field generally agree that most children are
rarely informed when they make grammatical errors, and those that are informed
take little heed”, he suggests that maybe “the child receives negative instances
by being corrected in a way we do not recognize”.

Motivated by these aspects of human language acquisition, L. Becerra-Bona-
che, A.H. Dediu and C. Tı̂rnăucă introduced in [6] a new type of query, namely
correction query (CQ). A CQ is a slightly modified type of MQ: instead of a
‘yes’/‘no’ answer, the learner receives a correcting string (given s in Σ∗, the
correcting string of s with respect to the language L is the smallest strings s′

such that ss′ belongs to L, if such string exists, and a special symbol otherwise).
The same article presents a polynomial time algorithm which infers minimal
complete DFAs using CQs and EQs.

In this paper we characterize the language classes learnable with CQs for
which the teacher can be effectively implemented (the answers to CQs are com-
putable) by means of triples of definite finite tell-tales (Section 3). We consider
only classes of recursive languages, and neglect time complexity issues. Prelim-
inary notions and results are presented in Section 2. In Section 4, using this
characterization, we show some relations between our learning model (learning
with CQs) and other well-known learning models (like the model of learning

400 C. T̂ırnăucă and S. Kobayashi

with MQs, or the model of learning in the limit from positive data). Concluding
remarks and future work ideas are presented in Section 5.

2 Preliminaries

We assume that the reader is familiar with basic notions from formal language
theory. A wealth of further information about this area can be found in [7].

Let Σ be a finite alphabet of symbols. By Σ∗ we denote the set of all finite
strings of symbols from Σ. A language is any set of strings over Σ. The length
of a string w is denoted by |w|, and the concatenation of two strings u and v by
uv or u · v. The empty string (i.e., the unique string of length 0) is denoted by
λ. If w = uv for some u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix
of w. By Pref (L) we denote the set {w ∈ Σ∗ | ∃w′ ∈ Σ∗ such that ww′ ∈ L}.

Assume that Σ is a totally ordered set and let ≺L be the lexicographical order
on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either |u| < |v|,
or else |u| = |v| and u ≺L v. In other words, strings are compared first according
to length and then lexicographically.

Let C be a class of recursive languages over Σ∗. We say that C is an indexable
class if there is an effective enumeration (Li)i≥1 of all and only the languages
in C such that membership is uniformly decidable, i.e., there is a computable
function that, for any w ∈ Σ∗ and i ≥ 1, returns 1 if w ∈ Li, and 0 otherwise.
Such an enumeration will subsequently be called an indexing of C.

In the sequel we might say that C = (Li)i≥1 is an indexable class and under-
stand that C is an indexable class and (Li)i≥1 is an indexing of C.

2.1 Query Learning

In the query learning model a learner has access to an oracle that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply on the previous queries, either computes a new
query, or returns a hypothesis and halts.

More formally, let C = (Li)i≥1 be an indexable class, let L ∈ C and let M be a
query learner. We say that M learns L using some type of queries if it eventually
halts and its only hypothesis, say i, correctly describes L, i.e., Li = L. So, M
returns its unique and correct guess i after only finitely many queries. Moreover,
M learns C using some type of queries if it learns every L ∈ C using queries of
the specified type. Below we consider:

Membership queries. The input is a string w and the answer is ‘yes’ or ‘no’,
depending on whether or not w belongs to the target language L.

Correction queries. The input is a string w and the answer is the smallest
string (in lex-length order) w′ such that ww′ belongs to the target language L if
w ∈ Pref (L), and the special symbol θ �∈ Σ otherwise. We denote the correction
of a string w with respect to the language L by CL(w).

Equivalence queries. The input is an index j of some language Lj ∈ C. If
L = Lj , the answer is ‘yes’. Otherwise together with the answer ‘no’, a coun-
terexample from (Lj\L) ∪ (L\Lj) is supplied.

A Characterization of the Language Classes Learnable 401

The collections of all indexable classes C for which there is a query learner M
such that M learns C using membership, correction, and equivalence queries are
denoted by MemQ , CorQ and EquQ , respectively.

In this paper we focus on classes of languages for which Pref (Li) is recursive
for all i ≥ 1. More precisely, we consider indexable classes C which have the
following property (A): there exists a recursive function f : IN+×Σ∗ → Σ∗∪{θ}
such that f(i, w) = v if and only if CLi(w) = v for any w in Σ∗ and Li in C.

For this purpose, we denote by CorQ (A) the collection of classes of languages
in CorQ for which condition (A) is satisfied. Similarly, MemQ (A) is defined.
Clearly, for the language classes in CorQ (A) the answers to the correction queries
can be effectively computed. That is why in this case we speak about a teacher
instead of an oracle.

2.2 Gold-Style Learning

In order to present the Gold-style learning models we need some further notions,
briefly explained below (for details, see [1,2,8]).

Let L be a non-empty language. A text for L is an infinite sequence σ =
w1, w1, w3, . . . such that {wi | i ≥ 1} = L. An informant for L is an infinite
sequence σ = (w1, b1), (w2, b2), (w3, b3), . . . with bi ∈ {0, 1}, {wi | i ≥ 1 and bi =
1} = L, and {wi | i ≥ 1 and bi = 0} = Σ∗\L.

Let C = (Li)i≥1 be an indexable class. An inductive inference machine (IIM)
is an algorithmic device that reads longer and longer initial segments σ of a text
(informant) and outputs numbers as its hypotheses. An IIM returning some i is
construed to hypothesize the language Li. Given a text (an informant) σ for a
language L ∈ C, M identifies L from σ if the sequence of hypotheses output by
M , when fed σ, stabilizes on a number i (i.e., past some point M always outputs
the hypothesis i) with Li = L. We say that M identifies C from text (informant)
if it identifies every L ∈ C from every corresponding text (informant).

A slightly modified version is the so called model of conservative learning (see
[9,10] for more details). A conservative IIM is only allowed to change its mind
in case its actual guess contradicts the data seen so far.

As above, LimTxt (LimInf) denotes the collection of all indexable classes C
for which there is an IIM M such that M identifies C from text (informant). One
can similarly define ConsvTxt and ConsvInf , for which the inference machines
should be conservative IIMs.

Although an IIM is allowed to change its mind finitely many times before
returning its final and correct hypothesis, in general it is not decidable whether
or not it has already output its final hypothesis. In case that for a given indexable
class C, there exists an IIM M such that given any language L ∈ C and any text
(or informant) for L, the first hypothesis i output by M is already correct (i.e.,
Li = L), we say that M finitely identifies C (see [1]). The corresponding models
FinTxt and FinInf are defined as above.

In the sequel we present some characterizations for the classes FinInf and
ConsvTxt in terms of pairs of definite finite tell-tales and finite tell-tales, respec-
tively. Let C = (Li)i≥1 be an indexable class.

402 C. T̂ırnăucă and S. Kobayashi

Definition 1 (Angluin, [2]). A set Ti is a finite tell-tale of Li if
(1) Ti is a finite subset of Li, and
(2) for all j ≥ 1, if Ti ⊆ Lj then Lj is not a proper subset of Li.

Theorem 1 (Lange and Zeugmann, [11]). An indexable class C = (Li)i≥1

belongs to ConsvTxt if and only if a finite tell-tale of Li is uniformly computable
for any index i, that is, there exists an effective procedure which on any input
i ≥ 1 enumerates a finite tell-tale of Li and halts.

Definition 2 (Mukouchi, [3]). A language L is consistent with a pair of sets
〈T, F 〉 if T ⊆ L and F ⊆ Σ∗\L. The pair 〈T, F 〉 is said to be a pair of definite
finite tell-tales of Li if:
(1) Ti is a finite subset of Li, Fi is a finite subset of Σ∗\Li, and
(2) for all j ≥ 1, if Lj is consistent with the pair 〈T, F 〉, then Lj = Li.

Theorem 2 (Mukouchi, [3]). An indexable class C=(Li)i≥1 belongs to FinInf
if and only if a pair of definite finite tell-tales of Li is uniformly computable for
any index i.

Moreover, there is a strong relation between query learning models and Gold-
style learning models. The following strict hierarchy can be found in [5]: FinTxt ⊂
FinInf = MemQ ⊂ ConsvTxt ⊂ LimTxt ⊂ LimInf = EquQ .

3 Characterization of the Class CorQ(A)

In this section we show that an indexable class with property (A) is learnable
from CQs if and only if each language of that class is uniquely characterized by
a triple of finite sets. For this, we need some further definitions and notations.

We say that a language L is consistent with a triple of sets 〈T, F, U〉 if T ⊆ L,
F ⊆ Σ∗\L and U ⊆ Σ∗\Pref (L).

The triple 〈Ti, Fi, Ui〉 is a triple of definite finite tell-tales of Li w.r.t. C =
(Li)i≥1 if :
(1) Ti, Fi and Ui are finite,
(2) Li is consistent with 〈Ti, Fi, Ui〉, and
(3) for all j ≥ 1, if Lj is consistent with 〈Ti, Fi, Ui〉, then Li = Lj .

Theorem 3. Let C = (Li)1≥1 be an indexable class with property (A). Then
C belongs to CorQ if and only if a triple of definite finite tell-tales of Li is
uniformly computable for any index i.

The theorem is a direct consequence of the following two propositions.

Proposition 1 (Sufficient condition). Let C = (Li)1≥1 be an indexable class.
If a triple of definite finite tell-tales of Li is uniformly computable for any index
i, then C is in CorQ.

Proof. Let C = (Li)i≥1 be an indexable class for which a triple of definite finite
tell-tales 〈Ti, Fi, Ui〉 is uniformly computable for any index i, and let w1, w2, . . .
be the lex-length enumeration of all words in Σ∗. If L is the target language,
then the following query learning algorithm identifies L using CQs.

A Characterization of the Language Classes Learnable 403

Algorithm 1. A correction query algorithm for the language L in C
1: T := ∅, F := ∅, U := ∅, j := 1
2: while TRUE do
3: get from the oracle the answer to CL(wj)
4: if (CL(wj) = θ) then
5: U := U ∪ {wj}
6: F := F ∪ {wj}
7: else
8: T := T ∪ {wj · CL(wj)}
9: if CL(wj) �= λ then

10: F := F ∪ {wj}
11: end if
12: end if
13: for i := 1 to j do
14: if (Ti ⊆ T , Fi ⊆ F and Ui ⊆ U) then
15: output i and halt
16: end if
17: end for
18: j := j + 1
19: end while

It is not very difficult to see that if our algorithm outputs an hypothesis, then it
is the correct one. Since we constructed T, F and U such that T ⊆ L, F ⊆ Σ∗\L
and U ⊆ Σ∗\Pref (L), it is clear that as soon as we have Ti ⊆ T , Fi ⊆ F and
Ui ⊆ U , the target language L will be consistent with the triple 〈Ti, Fi, Ui〉, and
hence the algorithm outputs i such that Li = L.

Now, let us prove that after asking a finite number of queries, the sets T ,
F and U will be large enough to include Ti, Fi and Ui, respectively, where
i is the smallest index such that Li = L. Let k1, k2, k3 and k be such that
k1 = max{j | wj ∈ Ti}, k2 = max{j | wj ∈ Fi}, k3 = max{j | wj ∈ Ui} and
k = max{k1, k2, k3, i}.

Consider the sets T, F, U constructed after receiving the corrections for the
strings w1, s2, . . . , sk.
1. If w ∈ Ti, then w wk and CL(w) = λ. Hence, w ∈ T .
2. If w ∈ Ui, then w wk and CL(w) = θ. Hence, w ∈ U .
3. If w ∈ Fi, then w wk and CL(w) �= λ. We distinguish two cases. Either
CL(w) ∈ Σ+ and then w is added to F at line 10 of the algorithm, or CL(w) = θ
and w is added to F at line 6 of the algorithm. In both of the cases, w ∈ F .

We have seen that after reading corrections of at most k strings, Ti ⊆ T ,
Fi ⊆ F and Ui ⊆ U , and since i is smaller than or equal to k, the algorithm
outputs the (correct) hypothesis i. ��
Proposition 2 (Necessary condition). If C = (Li)1≥1 is in CorQ (A) then a
triple of definite finite tell-tales of Li is uniformly computable for any index i.

Proof. Let C = (Li)i≥1 be an indexable class in CorQ (A), and take M to be
a query learning algorithm which learns C using CQs. The following procedure
computes a triple of definite finite tell-tales of Li for any i ≥ 1.

404 C. T̂ırnăucă and S. Kobayashi

Algorithm 2. Computing a triple of definite finite tell-tales
1: Input: the target language Li

2: run M on Li, and collect the sequence of queries and answers in QAi

3: Ti := {wv | (w, v) ∈ QAi, v �= θ}
4: Fi := {wv′ | (w, v) ∈ QAi, v �= θ, v′ ≺ v}
5: Ui := {w | (w, θ) ∈ QAi}
6: output 〈Ti, Fi, Ui〉 and halt.

Clearly, Ti, Fi and Ui are all finite. We show that Ti ⊆ Li, Fi ⊆ Σ∗\Li and
Ui ⊆ Σ∗\Pref (Li). If u ∈ Ti, then there exist w, v in Σ∗ such that u = wv and
v = CLi(w). Hence, u = wv ∈ Li. If u ∈ Fi, then there exist w, v, v′ in Σ∗ such
that v′ ≺ v, u = wv′ and v = CLi(w). Hence, u = wv′ �∈ Li. If u ∈ Ui, then
CLi(u) = θ, and hence u ∈ Σ∗\Pref (Li).

Let us now take j such that Lj is consistent with the triple 〈Ti, Fi, Ui〉. We
compute CLj (w) for each pair (w, v) in QAi. If v = θ, then w ∈ Ui. But Ui ⊆
Σ∗\Pref (Lj) implies w /∈ Pref (Lj), and hence CLj (w) = θ. If v ∈ Σ∗\{θ}, then
wv ∈ Ti and wv′ ∈ Fi for all v′ ≺ v. But Ti ⊆ Lj and Fi ⊆ Σ∗\Lj implies
wv ∈ Lj and wv′ �∈ Lj for all v′ ≺ v. Hence, CLj (w) = v.

We have shown that for all (w, v) ∈ QAi, CLj (w) = v = CLi(w). Since the
algorithm M is assumed to identify a unique language from the class C, we obtain
Li = Lj. This makes 〈Ti, Fi, Ui〉 a triple of definite finite tell-tales of Li. ��

4 Relations to Other Learning Models

Using the results presented in the previous section, we show the relations between
correction query learning models and other learning models.

4.1 A Model Included in CorQ

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 4. If C is in FinInf , then C is in CorQ.

Proof. Assume that C is in FinInf . Then cf. Theorem 2, a pair of definite fi-
nite tell-tales 〈Ti, Fi〉 of Li is uniformly computable for any index i. We show
that 〈Ti, Fi, ∅〉 is a triple of definite finite tell-tales for Li. Clearly, Ti is a finite
subset of Li, Fi is a finite subset of Σ∗\Li and the empty set is a finite sub-
set of Σ∗\Pref (Li). Let us now take j such that Lj is consistent with the triple
〈Ti, Fi, ∅〉. Because 〈Ti, Fi〉 is a pair of definite finite tell-tales for Li, Ti ⊆ Lj and
Fi ⊆ Σ∗\Lj, we obtain Lj = Li, and hence 〈Ti, Fi, ∅〉 is a triple of definite finite
tell-tales for Li. Using Proposition 1, we immediately get that C is in CorQ . ��
Let us now show that the inclusion is strict. Take K1, K2, K3, . . . to be the
collection of all finite non-empty sets of positive integers (indexable somehow).
Take Σ = {a}, and define Li = {an | n ∈ Ki} for all i ≥ 1. Clearly, CCorQ

FinInf =
(Li)i≥1 is an indexable class.

A Characterization of the Language Classes Learnable 405

Lemma 1. CCorQ
FinInf is in CorQ.

Proof. We show that 〈Ti, Fi, Ui〉 is a triple of definite finite tell-tales of Li for any
index i, where Ti = Li, l = max{n | n ∈ Ki}, Fi = {an | n ∈ {1, . . . , l}\Ki} and
Ui = {al+1}. Indeed, it is easy to see that Ti, Fi, Ui are finite, and that Ti ⊆ Li,
Fi ⊆ Σ∗\Li and Ui ⊆ Σ∗\Pref (Li). Let us take j such that Lj is consistent
with the triple 〈Ti, Fi, Ui〉. Then, Fi ⊆ Σ∗\Lj implies ({1, . . . , l}\Ki) ∩ Kj = ∅,
and Ui ⊆ Σ∗\Pref (Lj) implies Kj ⊆ {1, . . . , l}. Putting together these last two
results we obtain Kj ⊆ Ki, and hence Lj ⊆ Li. But Ti ⊆ Lj implies Li ⊆ Lj .
So, Lj = Li which concludes the proof. ��
Lemma 2. CCorQ

FinInf is not in FinInf .

Proof. Now, assume that CCorQ
FinInf is in FinInf . Cf. Theorem 2, this implies that

a pair of definite finite tell-tales 〈Ti, Fi〉 of Li is uniformly computable for any
index i. Let us fix i, take l = max{i | ai ∈ Fi}, and set j to be the index for
which Kj = Ki ∪ {l + 1}. Then, Lj is also consistent with the pair 〈Ti, Fi〉 since
Ti ⊆ Li ⊂ Lj and Fi ⊆ Σ∗\Lj (Fi ⊆ Σ∗\Li and al+1 /∈ Fi), and hence Lj = Li.
We reach a contradiction since al+1 ∈ Lj\Li. ��
This result can be extended to any alphabet Σ = {a1, a2, . . . , an} if we set Li to
be {a1a2 . . . an−1a

j
n | j ∈ Ki} for any index i.

As a direct consequence, we obtain that the class MemQ is strictly included
in CorQ . So, CQs are strictly more powerful than MQs, and they cannot be
simulated by a finite number of MQs.

4.2 A Model Which Includes CorQ(A)

Let C = (Li)i≥1 be an indexable class. We have the following theorem.

Theorem 5. If C is in CorQ (A), then C is in ConsvTxt.

Proof. If C = (Li)i≥1 is in CorQ (A) then, cf. Proposition 2, a triple of definite
finite tell-tales 〈Ti, Fi, Ui〉 of Li is uniformly computable for any index i.

We show that Ti is a finite tell-tale for Li. Clearly, Ti is a finite subset of
Li. Let us now take j such that Ti ⊆ Lj . We need to prove that Lj is not
a proper subset of Li. Assume by contrary that it is. Then, Lj ⊂ Li implies
Pref (Lj) ⊆ Pref (Li), and hence Σ∗\Pref (Lj) ⊇ Σ∗\Pref (Li). Keeping in mind
that Ui ⊆ Σ∗\Pref (Li) we obtain that Ui ⊆ Σ∗\Pref (Lj). Moreover, Fi ⊆
Σ∗\Li and Σ∗\Lj ⊇ Σ∗\Li imply Fi ⊆ Σ∗\Lj. Since Lj is consistent with the
triple 〈Ti, Fi, Ui〉, we have Li = Lj which contradicts our assumption. So given
any index i, a finite tell-tale of Li is uniformly computable. ��
Let us now show that the inclusion is strict. For this, we denote by I(n) the set
of all positive integral multiples of n. Let the collection of all finite non-empty
sets of prime positive integers be P1, P2, P3, . . . indexable, for example, in order
of increasing

∏
p∈Pi

p. Then, take Σ = {a}, Ri = ∪p∈PiI(p) and Li = {an | n ∈
Ri}. Clearly, CConsvTxt

CorQ = (Li)i≥1 is an indexable class.

406 C. T̂ırnăucă and S. Kobayashi

Lemma 3. CConsvTxt
CorQ is in ConsvTxt .

Proof. Let us first notice that Ti = {ap | p ∈ Pi} is a finite tell-tale for Li.
Clearly, Ti is a finite subset of Li. If we take j such that Lj ⊇ Ti, we have
Rj ⊇ Pi, and furthermore Rj ⊇ Ri and Lj ⊇ Li. Hence, Lj is not a proper
subset of Li. Moreover, Pi is uniformly computable for any index i, and so
is Ti. ��
Lemma 4. CConsvTxt

CorQ is not in CorQ (A).

Proof. Assume by contrary that CConsvTxt
CorQ is in CorQ (A). Cf. Proposition 2, a

triple of definite finite tell-tales 〈Ti, Fi, Ui〉 of Li is uniformly computable, for
any index i.

We introduce the following notation: Num(S) = {|w| | w ∈ S} for any set
S ⊆ Σ∗. Then Ti ⊆ Li is equivalent to Num(Ti) ⊆ Ri, and Fi ⊆ Σ∗\Li is
equivalent to Num(Fi) ∩ Ri = ∅. Finally, Ui ⊆ Σ∗\Pref (Li) implies Ui = ∅.

Let us now choose a prime number p such that I(p) ∩ Num(Fi) = ∅ and
p �∈ Pi, and take j such that Pj = Pi ∪ {p}. Clearly, Li ⊂ Lj. We show that Lj

is consistent with 〈Ti, Fi, Ui〉.
Indeed, Ti ⊆ Lj because Ti ⊆ Li and Li ⊂ Lj. Also, Num(Fi) ∩ Rj = ∅

because Num(Fi) ∩ Ri = ∅, Num(Fi) ∩ I(p) = ∅ and Rj = Ri ∪ I(p). Hence,
Fi ⊆ Σ∗\Lj. The empty set is trivially included in any set, and hence Ui ⊆
Σ∗\Pref (Lj).

We found an index j such that Lj is consistent with 〈Ti, Fi, Ui〉 and Lj �= Li

which is a contradiction. ��

5 Concluding Remarks

Learning formal languages has been a preoccupation of many researchers during
time. With every new learning model introduced, many research possibilities
were created. Since very recently a new model in the query learning theory
has been proposed, namely learning with CQs, we considered that it is worth
investigating the particularities of the classes of languages learnable within this
setting.

We showed that there exists a method of characterizing these classes using
some finite triples, called triples of definite finite tell-tales. With the help of
this characterization, we managed to position the class CorQ in the hierarchy
formed by other well-known learning models (both Gold-style learning and query
learning models).

As we already mentioned, our work was focused on the type of correction
introduced in [6]. In the future we would like to consider other types of correc-
tions and to answer to the following question: how is CorQ influenced by the
type of correction used? What about combining CQs and a limited number of
EQs, or CQs and positive examples? What happens if we restrict to polynomial
time learning? Can we construct a language class which is in CorQ and not
in CorQ (A)? We believe that these are several question which deserve further
investigation.

A Characterization of the Language Classes Learnable 407

References

1. Gold, E.M.: Language identification in the limit. Information and Control 10
(1967) 447–474

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45 (1980) 117–135

3. Mukouchi, Y.: Characterization of finite identification. In Jantke, K.P., ed.: Proc.
3rd International Workshop on Analogical and Inductive Inference (AII ’92). Vol-
ume 642 of Lecture Notes in Computer Science., London, UK, Springer-Verlag
(1992) 260–267

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75 (1987) 87–106

5. Lange, S., Zilles, S.: Formal language identification: query learning vs. Gold-style
learning. Information Processing Letters 91 (2004) 285–292

6. Beccera-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from correction and
equivalence queries. In Sakaibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita,
E., eds.: Grammatical Inference: Algorithms and Applications, Proceedings of ICGI
’06. Volume 4201 of Lecture Notes in Artificial Intelligence., Berlin, Heidelberg,
Springer-Verlag (2006) 281–292

7. Mart́ın-Vide, C., Mitrana, V., Păun, G., eds.: Formal Languages and Applications.
Studies in Fuzzyness and Soft Computing 148. Springer-Verlag, Berlin, Heidelberg
(2004)

8. Zeugmann, T., Lange, S.: A guided tour across the boundaries of learning recursive
languages. In Jantke, K.P., Lange, S., eds.: Algorithmic Learning for Knowledge-
Based Systems, GOSLER Final Report. Volume 961 of Lecture Notes in Computer
Science., London, UK, Springer-Verlag (1995) 190–258

9. Zeugmann, T., Lange, S., Kapur, S.: Characterizations of monotonic and dual
monotonic language learning. Information and Computation 120 (1995) 155–173

10. Zeugmann, T.: Inductive inference and language learning. In Cai, J., Cooper,
S.B., Li, A., eds.: Proc. 3rd International Conference on Theory and Applications
of Models of Computation (TAMC ’06). Volume 3959 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer-Verlag (2006) 464–473

11. Lange, S., Zeugmann, T.: Types of monotonic language learning and their char-
acterization. In: Proc. 5th Annual Workshop on Computational Learning Theory
(COLT ’92), New York, ACM Press (1992) 377–390

Learnable Algorithm on the Continuum

Zhimin Li1,2 and Xiang Li1

1 Institute of Computer Science, Guizhou University, Guiyang550025, China
2 School of Mathematics and Computer Science, Guizhou University for Nationalities,

Guiyang550025, China

Abstract. Based on limiting recursive function proposed by Gold [2], learnable
algorithm on the continuum are defined. We discuss the class of learnable real
numbers and learnable real sequence in various ways. In this paper we summa-
rize some attempts to classify the learnably approximable real numbers by the
convergence rates of the corresponding computable(or learnable) sequences of
rational numbers.

1 Introduction

The theory of limiting recursion has enjoyed a recent resurgence of interest. This stems
partly from a wider program of exploring alternative approaches to computation, such
as learning theory and proof animation [3]; partly as an idealization of numerical al-
gorithms where functions can be discontinuous [5]; and partly from a desire to use the
tools of computation theory to better classify the variety of real recursive functions [7].

In most recent work on the hierarchy of Δ0
2 real numbers, e.g. [6], is learnable in the

sense of computational learning theory since the characteristic function of Δ0
2-sets are

limiting recursive functions. Nevertheless, many authors do not introduce the notion of
learnability. Just as in standard computable analysis, a real number is computable if it
is an effective limit of computable sequence of rational numbers. Analogy to this, we
define learnable real numbers as a limit of a computable sequence of rational numbers
{rk}, the modulus of convergence is limiting recursive functions. In this paper, we will
compare the class of learnable real number with the hierarchy of real numbers pro-
posed by Weihrauch and Zheng[6]. Also, we research learnable real sequences in the
framework of computable analysis.

The term ”learnable” in this paper means only that there is some limit-recursive
bound on the speed of convergence.

2 Limiting Recursion

Let ψ be a partial function on natural numbers. Then limn→∞ ψ(n) is define and equals
x if and only if ∃m∀n ≥ m(ψ(n) � x). A partial function ϕ : N → N is called lim-
iting recursive if there is a total recursive function F : N2 → N such that ϕ(x) �
limn→∞ F(x, n). Obviously, the class of partial recursive functions is included in the
class of limiting recursive functions. As Gold [2] shows, the limiting recursive func-
tions are precisely the functions whose graph is Δ0

2 in the arithmetical hierarchy, or,

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 408–415, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learnable Algorithm on the Continuum 409

equivalently, the functions recursive in ∅′. Clearly, the limiting recursive functions are
closed under composition. If a function ϕ defined by ϕ(x) � limn→∞ ψ(x, n) is total,
then ϕ is limiting recursive whenever ψ is partial recursive. When there is a total lim-
iting recursive function ϕ such that yi = ϕ(i), we say that yi is computable in the limit
from i.

Lemma 1 (Waiting Lemma). Let a : N → N be a one to one recursive function
generating a recursively enumerable nonrecursive set A. let ω(n) = max{m : a(m) ≤ n}
denote the ”waiting time”, then function ω(n) is (partial) limiting recursive and not
recursive.

Proof. Due to [4], there is no recursive function c such that ω(n) ≤ c(n). To show ω(n)
be a limiting recursive function, we construct a guess function F as following.

F(0, n) = 0;
F(m + 1, n) = F(m, n), if a(m + 1) > n ;
F(m + 1, n) = m + 1, if a(m + 1) ≤ n .

ω(n) = limm→∞ F(m, n). This means we firstly guess ω(n) = 0. Afterwards, if we
find m = 1 such that a(1) > n, we do not change mind. Otherwise, put ω(n) = 1, and so
on. If we change mind infinite times, then ω(n) is undefined.

Definition 1. [Computable real numbers and real functions]

– A sequence {rk} of rational numbers is recursive if there exist three recursive func-
tions α,β,γ from N to N such that γ(k) � 0 for all k and rk = (−1)α(k) β(k)

γ(k) .
– A sequence {xk} of real numbers effectively converges to x if there exists a recursive

functions δ such that for all m:

k > δ(m)⇒ |xk − x| < 2−m.

δ is called modulus of convergence.
– A sequence of real number {xn} is computable if there is a computable double se-

quence of rationals {rnk} such that rnk → xn as k → ∞, effectively in k and n, e.g.
there is a recursive function e : N × N → N such that for all n,N:

k ≥ e(n,N) implies |rnk − xn| ≤ 2−N .

– A real number x ∈ R is computable if there is a recursive sequence of rational
numbers which effectively converges to x.
Denote this class EC.

– f : [a, b]→ R is computable if
(i) f is sequentially computable, i.e, if {xn} is a computable sequence of real num-
bers, then { f (xn)} is a computable sequence of reals;
(ii) f is effectively uniformly continuous, i.e, there is a recursive functions δ such
that, for all x, y ∈ [a, b] and all k ∈ N,

|x − y| ≤ 1
δ(k) ⇒ | f (x) − f (y)| ≤ 1

2k .

Denote this class CT F.

410 Z. Li and X. Li

In effective analysis[4], it is well known that there is general no effective test for decid-
ing computable real number x = 0. The below proposition indicate that we can do this
by means of a learnable procedure.

Proposition 1. Let x be a computable real number. The ordered relation of x and 0 can
be decided by learnable algorithm.

Proof. Since x is a computable real number, x is the limit of a computable sequence
{rn}, with a modulus of convergence δ. Define function

σ(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 x ∈ (0,∞);
0 x = 0;
−1 x ∈ (−∞, 0).

Put {MP}, where

Mp =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, rδ(p) > 1/2p;
0, |rδ(p)| ≤ 1/2p;
−1, rδ(p) < −1/2p.

Mp is a recursive sequence. σ(x) = limp Mp will be stability at −1, 0 or 1.

3 Learnable Real Numbers

Let us first recall some hierarchies of real numbers proposed by Zheng et al[6]. xA

denotes a real number with a binary expansion A, i.e. there is a set A ⊆ N such that
x = xA =

∑

i∈A 2−i.

Definition 2. [Zheng’s hierarchy of real numbers[6]]

– A real number xA is called strongly r.e.(sre for short), if A is a r.e. set. Denote this
class S RE.

– A real number x is called r.e.(re for short), if it is a computable increasing sequence
of rational numbers converging to x. Denote LC.

– A real number x is called weakly computable iff it is a computable sequence of
rational numbers converging to x weakly effectively(i.e. there is a constant c such
that
∑

s∈N |xs − xs+1| ≤ c. Denote WC.
– A real number x is called divergence bounded computable if there is a recursive

function h and a computable sequence {xs} converging to x, the n-convergence of
the sequence {xs} bounded by h(n) for any n. The n-convergence of the sequence
{xs} is the maximal natural number m such that |xis − x js | ≥ 2−n for any s ≤ m. The
class of all divergence bounded computable real numbers is denoted by DBC.

– A real number x ∈ R is recursively approximable if it is the limit of computable
sequence of rational numbers. Denote this class RA.

Proposition 2. [6] EC � S RE � LC � WC � DBC.

Proposition 3. [6] DBC = CT F(LC) = { f (x) : x ∈ LC, f ∈ CT F}, where CT F is a
class of computable total functions.

Learnable Algorithm on the Continuum 411

Next, we propose the definition of Learnable real numbers based on computable infor-
mation(recursive sequence of rational numbers and computable sequence of real num-
bers).

Definition 3. [Learnable real numbers]

– A sequence {xk} of real numbers is learnable convergence if there exists a limiting
recursive functions δ such that for all m:

k > δ(m)⇒ |xk − x| < 2−m.

– A real number x ∈ R is q-learnable if there is computable sequence of rational
numbers which converges learnably.
Denote this class Cqle.

– A real number x ∈ R is r-learnable if there is a computable sequence of real numbers
which converges learnably. .
Denote this class Crle.

Proposition 4. The class of Computable real numbers EC � Cqle.

Proof (sketch). Let a : N → N be a one to one recursive function generating a re-
cursively enumerable nonrecursive set A. Consider sk =

∑k
m=0 2−a(m). And let x =

limk→∞ sk. In [4], we know that {sk} is computable and converges noneffectively, take
limiting recursive function ω(n) as modulus of convergence. Thus x is learnable but not
computable.

Proposition 5. The Cqle forms a field.

Proof (sketch). For any x, y ∈ Cqle, there are recursive sequences {xs} and {ys} which
converge to x and y respectively, and there limiting recursive functions d1 and d2 which
are modulus functions of {xs} and {ys} respectively.
{xs + ys} is recursive sequences which converge to x + y, and max(d1, d2) which is

modulus functions. Similar we can show that x − y, xy ∈ Cqle.
Suppose now that y � 0 and assume that ∀s ∈ N(ys � 0). Choose a k ∈ N such that,

for all s ∈ N, |ys| ≥ 2−k and max{|ys|, |ys|} ≤ 2k. Then |xs/ys − x/y| ≤ 2−(n−1−3k). We take
max(dn+1+3k, dn+1+3k) as modulus of convergence.

Corollary 1. The WC ⊆ Cqle.

Proposition 6. LC � Cqle.

Proof (sketch). Let x ∈ LC, there is a increasing sequence of rational numbers {xi} ,
i ∈ N, such that ∀ε > 0, ∃M ∈ N, such that (n,m > M)⇒ |xn − xm| < ε.

For given 2−p , we can choose a limiting recursive function δ(p) = min{m : ∀n >
m ∈ N, |xn − xm| < 2−p} as modulus of converging. That is, We first guess δ(p) = 1, if
x2 − x1 < 1/2−p, we do not change mind; else if x2 − x1 ≥ 1/2, we change the previous
guess and put δ(p) = 2(since {xi} is increasing, for all n, xn − x1 ≥ 1/2). we do similar
to this step by step. Obviously, this is an effective procedure. Due to the definition of
x ∈ LC, δ(p) must be stability from one points. Therefore, we have ∀n > m > δ(p),
|xn − xm | < 2−p). So LC ⊆ Cqle.

412 Z. Li and X. Li

Let A, B ⊆ N be r.e.sets such that A �T B and B �T A, then the real number xA
⊕

B̄

is not in LC [1]. Put A = B \ C of two r.e.sets B and C. The real number xA can also be
represented as a difference xB∪C − xC = xA ∈ Cqle of two SRE real numbers. Thus, xA

is a witness to this proposition LC � Cqle.

Proposition 7. DBC = CT F(LC) ⊆ Cqle.

Proof. Let y ∈ LC, by proposition 8, we can choose {ys} be an increasing computable
sequence of rational numbers from the interval [0, 1] which converges to y and the
limiting recursive modulus function δ(N) such that

s > δ(m)⇒ |ys − y| < 2−m.

Let f : [0, 1]→ [0, 1] be a computable real function with modulus function e : N → N,
e.g.for all x, y ∈ [0, 1] and all k ∈ N,

|x − y| ≤ 1/e(k)⇒ | f (x) − f (y)| ≤ 2−k.

By definition 1, the sequence {xs} defined by xs = f (ys), is a computable sequence of
real numbers.Then there is a computable double sequence {rst} of rational number such
that (∀s, t ∈ N)(|xs−rst| ≤ 2−t). Let rs := rs(s+1). Then lim rs = lim xs = lim f (ys) = f (y).
Therefore, there is a recursive sequence of rational number {rs}, and a limiting recursive
function δ(e(s + 1)) such that

k > δ(e(s + 1))⇒ |rk − f (y)| < 2−s.

Proposition 8. DBC � Cqle.

Proof. We can construct a recursive sequence {xs} of rational numbers which converg-
ing learnable to x . The limit x satisfies further, for all e :=< i, j >∈ N, the following
requirements Re:

(1)dom(ϕi) = N and dom(α j) = N, lims→∞ ϕi(s) = yi exits, and
(2)∀n(d(n, {ϕi(s)}s∈N) ≤ α j(3n + 1)).

Then x � yi.

Here (ϕi) and (α j) are effective enumeration of all computable functions ϕi :⊆ N → Q
and α j :⊆ N → N, respectively and d(n, ϕi(s))s∈N) is the n-divergence of the sequence
{ϕi(s)}s∈N) Therefore, all requirements Re together guarantee that x is not in DBC.

The construct is similar to [6]. In fact, we obtain a recursive sequence {xs} of rational
numbers which converging h-monotonically to x, e.g. (∀s, t ∈ N)(t > s⇒ h(s)|x− xs| ≥
|x − xt|). Define limiting recursive function δ(n) = max{s : |x − xs| ≥ 1/(2nh(s))}.
Therefore, {xs} converges learnably to x. Thus, x ∈ Cqle.

Summarizing above propositions , we have the following theorem:

Theorem 1. EC � LC � WC � DBC � Cqle.

Learnable Algorithm on the Continuum 413

4 Learnable Sequences of Real Numbers

The idea of sequential computability plays a key role in computable analysis.
M.Yasugi, Y.Tsujii, T.Mori investigated some functions which map a computable

sequence of real numbers to a non-computable one which is learnable sequence in the
sense of this paper [5].

With this section, we turn to study learnable sequences of real numbers.

Definition 4. Let {xnk} be a double sequence of reals and {xn} a sequence of reals such
that, as k → ∞, xnk → xn for each n. We say that xnk → xn learnably in k and n if there
is a limiting recursive function e : N × N → N such that for all n,N:

k ≥ e(n,N)⇒ |xnk − xn| ≤ 2−N.

Definition 5. A sequence of real numbers {xn} is learnable(as a sequence) if there is a
computable double sequence of rationals {rnk} such that rnk → xn as k → ∞, learnably
in k and n.

Denote the set of all computable sequence of rational numbers QCS (Definition 1), real
computable sequence RCS (Definition 1), learnable sequence LCS (Definition 5).

Proposition 9. QCS � RCS � LCS .

Proof. Let a : N → N be a one to one recursive function generating a recursively
enumerable nonrecursive set A. Consider the computable double sequence {xnk} defined
by xnk = 2−m, if n = a(m) for some m ≤ k; and 0, otherwise. Then as k → ∞, xnk → xn

where xn = 2−m, if n = a(m) for some m; and 0, otherwise. {xn} is in RCS but not in
QCS [4].

Let us take up the integer part function [x], {xn} ∈ RCS as above. Then {yn} =
{1 − xn} ∈ RCS . We have [yn] = 0, if n = a(m) for some m; and 1, otherwise. In [5],
{[yn]} acts an example for RCS � LCS .

Definition 6. A sequence {rk} of rational numbers is learnable if there exist three limit-
ing recursive functions α, β, γ from N to N such that γ(k) � 0 for all k and (−1)α(k) β(k)

γ(k) .
Denote this class LQC.

Proposition 10. [6] For any n ≥ 1 and any real number x ∈ R.

– x ∈ Δn+1 ⇔ (∃ f ∈ Γ∅(n)

Q)(x = limi→∞ f (i) effectively).

– x ∈ Δn+2 ⇔ (∃ f ∈ Γ∅(n)

Q)(x = limi→∞ f (i)).

Where Γ∅
(n)

Q means the set of all total ∅(n)-computable functions from Nn(for some n ∈
N)to Q(the set of all rational numbers).

Corollary 2. RA = {x = limi→∞ f (i)effectively : f (i) ∈ LQC}.

Corollary 3. Define Cwle = {x = limi→∞ f (i)learnably : f (i) ∈ LQC}. Then RA � Cwle.

Corollary 4. Δ0
3 = {x = limi→∞ f (i) : f (i) ∈ LQC}.

414 Z. Li and X. Li

Problem 1. Dose the formula Cwle = Δ
0
3 hold? This means that for a sequence in LQC

whether or not the learnable converging is equivalent to unlimited converging.

However, regarding to a computable real sequence {xn}, the next proposition shows
that unlimited convergence of a sequence is equivalent to learnable convergence.

Proposition 11. Cqle = Crle = RA.

Proof. Indeed, it is trivial that Cqle is a subset of Crle because any computable sequence
of rational numbers is also a computable sequence of real numbers. And it is also trivial
that Cqle is a subset of RA. That RA is a subset of Cqle is a consequence of the following
Lemma A.

Lemma A: If a computable sequence of rational numbers converges, then it has a
modulus of convergence which is limiting recursive.

Proof of the lemma A: Let {xn} be a computable sequence of rational numbers that
converges to a real number x. We define a computable function F: N × N → N by:

F(n, 0) := 0 for all n, and
F(n, k + 1) := F(n, k) if |xF(n,k) − xk+1| ≤ 2−(n+1),

F(n, k + 1) := k + 1 otherwise.

Then the limit limk→∞ F(n, k) exists for every n, and the function δ defined by δ(n) :=
limk→∞ F(n, k) is limiting recursive and a modulus of convergence of the sequence {xn}.
This is the end of proof of lemma A.

Finally, we show that Crle is a subset of RA and hence of Cqle. The following fact is
well known and very easy to see.

Lemma B: If {xn} is a computable sequence of real numbers, then there is a com-
putable sequence {qn} of rational numbers with |xn − qn| ≤ 2−n for all n.

Proof sketch of lemma: Such a sequence {qn} can easily be obtained from a com-
putable double sequence of rational numbers converging effectively to {xn}. This s end
of proof.

Now we show that Crle is a subset of RA and hence of Cqle. Let x be an element of
Crle and {xn} be a computable sequence of real numbers converging to x. By Lemma B
there is a computable sequence {qn} of rational numbers with |xn − qn| ≤ 2−n for all n.
This sequence converges to x as well. Hence, x is in RA.

Lemma A can be strengthened easily using Lemma B to the following:

Corollary 5. If a computable sequence of real numbers converges, then it has a modu-
lus of convergence which is limiting recursive.

Corollary 6. Crle = CT F(Crle) .

The learnable sequence of real numbers would play a important role in computability of
discontinuous functions[5]. However, many questions are left open. Next we list parts
of them.

Problem 2. – In proposition 9, we can see that Gauss function [x] map compu-
table sequence of real numbers to a learnable one(we call all functions with this
property—L-computability of function). How can we characterize L-computability
of function [5], [7].

Learnable Algorithm on the Continuum 415

– Can we give hierarchies of (weakly) learnable real numbers?
– Let { fn} on [0, 1] be any computable sequence of functions such that fn(0) < 0

and fn(1) > 0 for all n. Is there a (learnable) sequence of points cn in [0,1] with
fn(cn) = 0 for all n? We know that there exists sequence of functions { fn}, there is
no such computable sequence {cn} [4].

– Let f ∈ C1 on [0, 1] be any computable functions, {xn} be computable sequence. Is
sequence of points f (xn) (weakly) learnable? We know that there exists functions
f , { f (xn)} may not be computable [4].

– Let f ∈ C∞ on [0, 1] be any computable functions.
Is all sequence { f (n)(x)} (weakly)learnable? We know that there exists functions
f ∈ C∞, there is an noncomputable sequence { f (n)(0)} [4].

Acknowledgment. The authors would like to express their gratitude to anonymous ref-
erees for useful comments which helped improving the paper.

References

1. K.Ambos-Spies, K.Weihrauch and X.Zheng. Weakly computable real numbers. Journal of
complexity. 16(2000),676-690.

2. E.M.Gold Limiting recursive. Journal of symolic logic vol30,(1965),28-48.
3. S.Hayashi, K.Nakata. Towards limit computable mathematics, LNCS 2277(2002)125-144.
4. M.B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer, 1989.
5. M.Yasugi et.al.Computability aspects of some discont inuous functions, SCMJ, vol 5(2001).
6. X. Zheng, Recursive approximability of real numbers. Math. Log. Quart. (2002)473-485.
7. Z. Li, M.Yasugi. Computability of continuous and discontinuous real recursive functions. Lec-

ture Series on Computer and Computational Sciences(Ieccs2006)(To appear).

Online Deadline Scheduling with Bounded

Energy Efficiency

Joseph Wun-Tat Chan1, Tak-Wah Lam�,2, Kin-Sum Mak2,
and Prudence W.H. Wong��,3

1 Department of Computer Science, King’s College London, UK
joseph.chan@kcl.ac.uk

2 Department of Computer Science, The University of Hong Kong, Hong Kong
{twlam, ksmak}@cs.hku.hk

3 Department of Computer Science, University of Liverpool, UK
pwong@csc.liv.ac.uk

Abstract. Existing work on scheduling with energy concern has focused
on minimizing the energy for completing all jobs or achieving maximum
throughput [19,2,7,13,14]. That is, energy usage is a secondary concern
when compared to throughput and the schedules targeted may be very
poor in energy efficiency. In this paper, we attempt to put energy effi-
ciency as the primary concern and study how to maximize throughput
subject to a user-defined threshold of energy efficiency. We first show that
all deterministic online algorithms have a competitive ratio at least Δ,
where Δ is the max-min ratio of job size. Nevertheless, allowing the on-
line algorithm to have a slightly poorer energy efficiency leads to constant
(i.e., independent of Δ) competitive online algorithm. On the other hand,
using randomization, we can reduce the competitive ratio to O(log Δ)
without relaxing the efficiency threshold. Finally we consider a special
case where no jobs are “demanding” and give a deterministic online al-
gorithm with constant competitive ratio for this case.

1 Introduction

Processor scheduling is a classical optimization problem. As the proliferation of
mobile computing devices, energy usage has become an important performance
measure for processor scheduling. Dynamic voltage scaling [9,15,18] is a technol-
ogy that enables the reduction in energy usage. It allows a processor to run in
variable speed; the rate of energy consumption of a processor running at speed s
is believed to be sα where α ≥ 2 [5]. Note that a processor running at speed s can
do s units of work in one unit of time. To process a job with w units of work at
speed s, a processor consumes sαw/s = sα−1w units of energy. In other words,
it is more energy efficient to schedule a job at a low speed whenever possible.

In the literature, the study of energy-efficient scheduling was mainly in the
context of deadline scheduling [19,2,7,13,14]. Given a processor where jobs arrive
� The research is supported partly by RGC Grant HKU-7140/06E.

�� The research is supported partly by EPSRC Grant EP/E028276/1.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 416–427, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Online Deadline Scheduling with Bounded Energy Efficiency 417

at unpredictable times with arbitrary work and deadline requirement, the aim
is to design an (online) schedule that maximizes the throughput, which is the
total work of the jobs completed by their deadlines. An algorithm A is said to
be c-competitive, where c ≥ 1, if for any job sequence, A produces a schedule
with a throughput at least 1/c of the best offline schedule.

Existing work on scheduling with energy concern has focused on minimizing
the energy for completing all jobs or achieving maximum throughput [19,2,7,13,
14]. That is, energy usage is a secondary concern when compared to throughput
and the schedules targeted may be very poor in energy efficiency. In this paper,
we attempt to put energy efficiency as the primary concern and study how to
maximize throughput subject to a user-defined threshold of energy efficiency.
We define the energy efficiency of a schedule to be the total amount of work
completed in time divided by the total energy usage. The range of efficiency is
[0,∞). For example, assuming the processor completes every job (on time) it
works on, using unit-speed gives an efficiency of 1; 0.5-speed gives an efficiency
of 4 (assuming α = 3); 2-speed gives an efficiency of 0.25; running the processor
at high speed would give an efficiency approaching zero. We refer to an effi-
ciency of 1 the “ideal” efficiency. We assume that the user has a preference on
energy efficiency and would not accept schedules with energy efficiency below a
certain threshold E. Given a job sequence and an efficiency threshold E, we aim
at finding an energy-efficient schedule (i.e., with energy efficiency at least E)
that maximizes the throughput. In this paper we investigate online algorithms
that produce energy-efficient schedules with throughput competitive to the opti-
mal schedule which has the maximum throughput while maintaining an energy
efficiency at least E.

Previous work. There has been a number of work when throughput is the
primary concern and energy usage the secondary. Yao et al. [19] considered
the case where a processor can run at any speed s ≥ 0. They gave two online
algorithms AVR and OA, and showed that AVR is 2ααα-competitive on energy
usage (against the optimal offline schedule that uses the minimum amount of
energy to complete all jobs). OA was later proved, by Bansal et al. [2], to be αα-
competitive. Bansal et al. [2] further improved the result with a new algorithm
that is 2(α/(α − 1))αeα-competitive. Chan et al. [7] considered the case where
the speed of a processor is upper bounded by a constant T , i.e., the processor
can run at any speed s ∈ [0, T]. The optimal schedule is the one that maximizes
the throughput and minimizes the energy usage among all schedules with the
maximum throughput. They proposed an online algorithm FSA(OAT) that is
14-competitive on throughput and (αα + α24α)-competitive on energy with the
optimal schedule. On the other hand, Li et al. [13] have considered structured
jobs and shown that AVR has a better performance. Very recently, scheduling
on a processor with a fixed number of discrete speed levels has also attracted
some attention [12, 14, 7].

Our contributions. Assume that a processor can run at any speed s ≥ 0, we
study how to maximize throughput subject to a user defined threshold of energy

418 J.W.-T. Chan et al.

efficiency. We first show that no deterministic online algorithm can achieve a
constant competitive ratio on throughput while guarantee an energy efficiency
at least E. Precisely, let Δ be the max-min ratio of work of the jobs. All deter-
ministic online algorithms have a competitive ratio at least Δ. Then, we study
the problem in three different directions.

1. Relaxed energy efficiency threshold: Assume that the energy efficiency
threshold of the online algorithm is relaxed to E/(1 + ε) for some constant
ε > 0, while that for the optimal offline algorithm remains E. We give a
deterministic online algorithm with competitive ratio 2 + 3

(1+ε)
1

α−1 −1
. For

example if α = 2, the algorithm is 2 + 3/ε-competitive. Note that we have a
lower bound that no deterministic online algorithm can achieve a competitive
ratio of 1 even with relaxed energy efficiency threshold. However with limited
pages, the details are omitted.

2. Randomized algorithm: We devise a randomized online algorithm with a
competitive ratio of O(log Δ). Our algorithm is adapted from the random-
ized algorithm of Goldman et al. [8]. They showed that their algorithm is
6(log Δ+1)-competitive for a fixed-speed processor. The adapted algorithm
works for a variable speed processor, which produces schedules with energy
efficiency at least E and is still O(log Δ)-competitive.

3. No demanding jobs: We consider a special case that no job is demanding.
A job is demanding if it could not be completed (by its deadline) by a
processor running at unit speed. For this special case and with E < 1, we
give a deterministic online algorithm with competitive ratio 2+ 3

1−E
1

α−1
. We

can see that a smaller E would give a smaller competitive ratio. For E ≥ 1,
the lower bound of Δ for the general input also applies to this case.

Remarks. The literature also contains results on other interesting aspects of
scheduling with energy concern [11]. Irani et al. [10] extended the result on
AVR [19] to a setting where the processor has a sleep state, and showed that the
extension increases the competitive ratio on energy by only a constant factor.
On the other hand, Pruhs et al. [16] have studied the offline problem of min-
imizing total flow time subject to a fixed amount of energy, while Albers and
Fujiwara [1] and Bansal et al. [4] have studied the online problem of minimizing
a cost consisting of the energy usage and the total flow time. Furthermore, the
offline problem of minimizing the makespan subject to a fixed amount of energy
has been studied in [6, 17]. Another practical concern is the maximum temper-
ature of the processor as the temperature is related to energy usage. Several
interesting results have been reported in [2, 3].

Organization of paper. The rest of the paper is organized as follows. In Sec-
tion 2, we give the problem definition and a general lower bound. In Section 3,
we show that allowing the online algorithm to have a slightly poorer energy effi-
ciency leads to a constant competitive online algorithm. In Section 4, we present
the randomized algorithm and analyze its performance. Finally, in Section 5, we
study the special case with no demanding jobs.

Online Deadline Scheduling with Bounded Energy Efficiency 419

2 Preliminaries

For any job J , we denote the release time, work and deadline of J as r(J), w(J),
and d(J), respectively. We assume that all jobs satisfy the property w(J) ≤
(d(J) − r(J))/E

1
α−1 , otherwise no algorithm can complete this individual job

with energy efficiency at least E. The span of J , denoted as ρ(J), is the time
interval [r(J), d(J)]. For any set of jobs L, let w(L) denote the total work of all
jobs in L. To ease our discussion, we assume that an algorithm will never process
a job after missing its deadline, and whenever we say that a job is completed,
it is always meant to be completed by the deadline. We assume preemption is
allowed, and a preempted job can be resumed at the point of preemption. Given
an efficiency threshold E, the optimal schedule is one whose energy efficiency
is at least E and the throughput is the maximum among these schedules. An
online algorithm is said to be c-competitive if for any job sequence, the schedule
produced has an energy efficiency at least E and throughput at least 1/c of the
optimal schedule.

Next we give a lower bound on the competitive ratio on throughput.

Theorem 1. To maintain a user defined energy efficiency E, any deterministic
online algorithm is at least Δ-competitive on throughput, where Δ is the max-
min ratio of the work of jobs.

Proof. Consider an example with two jobs. The first job J1 is released at time 0
with d(J1) = 2 and w(J1) = 2/E

1
α−1 . Any online algorithm must schedule this

job immediately at its arrival with speed 1/E
1

α−1 in order to complete the job
in time and satisfy the efficiency constraint. Otherwise, the adversary would
stop releasing jobs. Then, at time 1, J2 is released, with d(J2) = 2Δ + 1 and
w(J2) = 2Δ/E

1
α−1 . The online algorithm cannot further schedule J2 due to the

efficiency constraint. However, the optimal schedule only schedules J2, and hence
the competitive ratio is Δ. ��

3 Relaxed Energy Efficiency Threshold

In this section we study the case where the energy efficiency threshold of the
online algorithm is relaxed to E/(1 + ε) for some constant ε > 0, while that for
the optimal offline algorithm remains E. We first present an algorithm named
Efficiency, and show some properties of the optimal offline algorithm. Then
we analyze the performance of this online algorithm.

3.1 The Online Algorithm

EfficiencyE takes a parameter E and schedules jobs with speed 1/E
1

α−1 . The
selection of jobs to run depends on a notion called wait(·) defined as follows. For
any job J , we denote by lst(J) the latest start time of J such that J can still
be finished by EfficiencyE , i.e., lst(J) = d(J)−w(J)E

1
α−1 . At any time t, we

define the allowed waiting time of the job J , wait(J, t) = lst(J) − t.

420 J.W.-T. Chan et al.

EfficiencyE works as follows: Whenever the processor is idle,
EfficiencyE schedules the job with the smallest wait(J, t) ≥ 0 with
speed 1/E

1
α−1 .

Lemma 1. The energy efficiency of the schedule given by EfficiencyE is E.

Proof. EfficiencyE always runs at speed 1/E
1

α−1 and it completes a job when-
ever the job is scheduled. Let T be the total time EfficiencyE works on I. Then

the resulting efficiency is T/E
1

α−1

T/E
α

α−1
= E. ��

We analyze the relation between the throughput of EfficiencyE and the opti-
mal offline algorithm OPT. Consider any job sequence I. Let A ⊆ I be the set of
jobs scheduled by EfficiencyE and let N = I −A. Consider the union of spans
of all jobs in N , i.e.,

⋃
X∈N ρ(X). Let � = |⋃X∈N ρ(X)|. We show below that

the competitive ratio of EfficiencyE depends on the ratio �/w(A). Consider
the optimal schedule for I. We denote by S, M , F the amount of work finished
by OPT using slow, medium and fast speed, respectively. Precisely, S, M , F

denote the amount of work OPT finishes with speed ≤ 1/E
1

α−1 , ≤ 2/E
1

α−1 , and
> 2/E

1
α−1 , respectively. Note that the total work finished by OPT equals M +F .

The following lemma gives the relation between S, M , F and w(A).

Lemma 2. (i) F ≤ S; (ii) M ≤ w(A) + 2�/E
1

α−1 ; (iii) S ≤ w(A) + �/E
1

α−1 .

Proof. (i) Suppose the periods OPT running with speed > 2/E
1

α−1 have dura-
tions t1, t2, . . . , tn and speed 2k1/E

1
α−1 , 2k2/E

1
α−1 , . . . , 2kn/E

1
α−1 , respectively,

for some ki > 1. Since the efficiency of the resulting schedule of OPT must be
at least E, we have

S +
∑

1≤i≤n 2kiti/E
1

α−1

∑
1≤i≤n 2αkα

i ti/E
α

α−1
≥ Energy efficiency of OPT ≥ E .

Thus, we have
∑

1≤i≤n(2α−1kα−1
i −1)(2kiti/E

1
α−1) ≤ S . Since (2α−1kα−1

i −1) ≥
1, we have F =

∑
1≤i≤n(2kiti/E

1
α−1) ≤ S.

(ii) Using speed at most 2/E
1

α−1 , OPT can at most complete all jobs in A

and a work of 2�/E
1

α−1 during the period of length �. Therefore, M ≤ w(A) +
2�/E

1
α−1 .

(iii) Similarly, using speed at most 1/E
1

α−1 , OPT can at most complete all
jobs in A and a work of �/E

1
α−1 during the period of length �. Therefore, S ≤

w(A) + �/E
1

α−1 . ��
Lemma 3. OPT

w(A) ≤ 2 + 3�
w(A) · 1

E
1

α−1
.

Proof. OPT = M +F ≤ M + S, the inequality is due to Lemma 2 (i). Together
with Lemma 2 (ii) and (iii), the lemma follows. ��

Online Deadline Scheduling with Bounded Energy Efficiency 421

3.2 Performance of EfficiencyE/(1+ε)

We consider the algorithm EfficiencyE/(1+ε) and bound the ratio �
w(A) , thereby,

show that EfficiencyE/(1+ε) is constant competitive.
For any X ∈ N , X is not scheduled by Efficiency, implying that Efficiency

has scheduled some other jobs during the span ρ(X). The following lemma gives
a lower bound on w(r(X), b), which denotes the amount of work finished by
Efficiency during the interval [r(X), b] ⊆ ρ(X).

Lemma 4. For any X ∈ N , w(r(X), t) > ((1 + ε)
1

α−1 − 1)(t− r(X))/E
1

α−1 , for
any r(X) < t ≤ d(X).

Proof. From r(X) to lst(X), Efficiency must not be idle. Since the processor
runs at a speed ((1+ ε)/E)

1
α−1 , at any time r(X) < t ≤ lst(X), it has completed

a work of ((1 + ε)/E)
1

α−1 (t − r(X)) > ((1 + ε)
1

α−1 − 1)(t − r(X))/E
1

α−1 .
Furthermore, we have

w(r(X), lst(X)) = ((1 + ε)/E)
1

α−1 (lst(X) − r(X))

= ((1 + ε)
1

α−1 − 1)|ρ(X)|/E
1

α−1 + |ρ(X)|/E
1

α−1

−(d(X) − lst(X))((1 + ε)/E)
1

α−1

= ((1 + ε)
1

α−1 − 1)|ρ(X)|/E
1

α−1 + |ρ(X)|/E
1

α−1 − w(X).

By the assumption of the work of a job, we have w(X) ≤ |ρ(X)|/E
1

α−1 . Hence,
w(r(X), lst(X)) ≥ ((1+ε)

1
α−1−1)|ρ(X)|/E

1
α−1 ≥ ((1+ε)

1
α−1−1)(t−r(X))/E

1
α−1

for r(X) < t ≤ d(X). Since X is not scheduled by Efficiency, another job must
be scheduled at lst(X) and last until a time after lst(X) and by Efficiency it
must complete, and thus w(r(X), t) > w(r(X), lst(X)) for any t > lst(X). Thus,
we have w(r(X), t) > ((1 + ε)

1
α−1 − 1)(t − r(X))/E

1
α−1 for lst(X) < t ≤ d(X).

This completes the proof of the lemma. ��
Based on Lemma 4, we can bound w(A)/� as follows.

Lemma 5. w(A) > ((1 + ε)
1

α−1 − 1)�/E
1

α−1 .

Proof. Let M be a minimal subset of N such that
⋃

X∈M ρ(X) =
⋃

X∈N ρ(X),
i.e., M induces the same union of spans as N does. Note that no job in M has
its span being a sub-interval of any job in M and no three jobs in M have their
spans overlapping at a common time. A consequence is that we can arrange the
jobs in M such that the arrival times, as well as the deadlines, of the jobs are
strictly increasing. Furthermore, the span of the jobs may form several disjoint
continuous intervals ρ1, ρ2, · · · , ρk, for some k. To prove the lemma, it suffices to
show that w(ρi) > ((1 + ε)

1
α−1 − 1)|ρi|/E

1
α−1 for all 1 ≤ i ≤ k.

Suppose the subset of jobs in M with span in ρi is {X1, X2, · · · , Xm} such
that r(Xj) < r(Xj+1) < d(Xj) < d(Xj+1) for all 1 ≤ j ≤ m − 1. We are
going to show by induction on j that, for any r(X1) < t ≤ d(Xj), w(r(X1), t) >

422 J.W.-T. Chan et al.

((1 + ε)
1

α−1 − 1)(t − r(X1))/E
1

α−1 . By Lemma 4, the base case is true. Assume
it is true up to some j. Consider Xj+1. By induction and r(Xj+1) ≤ d(Xj), we
have w(r(X1), t) > ((1 + ε)

1
α−1 − 1)(t − r(X1))/E

1
α−1 for r(X1) < t ≤ r(Xj+1).

Using Lemma 4 for Xj+1 and r(Xj+1) < t ≤ d(Xj+1), we have, for r(X1) <

t ≤ d(Xj+1), w(r(X1), t) > ((1 + ε)
1

α−1 − 1)(t − r(X1))/E
1

α−1 . Therefore, the
hypothesis is true for j + 1 and the lemma follows. ��
With Lemmas 3 and 5 , we have a constant competitive ratio for
EfficiencyE/(1+ε).

Theorem 2. EfficiencyE/(1+ε) is 2 + 3

(1+ε)
1

α−1 −1
-competitive on throughput

when the energy efficiency threshold is relaxed to E/(1 + ε).

4 Randomized Algorithm

As we have seen in Theorem 1, any deterministic online algorithm is at least Δ-
competitive on throughput, where Δ is the max-min ratio of the work of jobs. In
this section we show that randomization helps to overcome this barrier. By adapt-
ing the randomized algorithm of Goldman et al. [8], we can yield a competitive
ratio of O(log Δ
) on throughput while maintaining an energy efficiency of E.

This section proceeds as follows. We first present the adapted randomized
algorithm called Ran and state the results of Goldman et al. which also apply
to Ran when the processor speed is fixed. Then, in Section 4.1, we analyze the
competitive ratio of Ran when the processor speed can vary. More interestingly,
we compare Ran with both the optimal non-preemptive and preemptive energy-
efficient schedules (i.e., with energy efficiency at least E). A crucial lemma we
used in the analysis would be proved in Section 4.2.

The algorithm of Goldman et al. schedules jobs in a processor with fixed unit
speed. Each job is either (1) scheduled, (2) virtually scheduled, or (3) rejected.
The job only runs if it is scheduled. A virtually scheduled job J does not run
itself, but prevents any job of work less than 2w(J) from running. Thus, virtually
scheduling a job J holds the processor for a longer job with a short wait time
that may arrive during the interval when J is virtually scheduled. Assume the
work of jobs is in [1, Δ]. A number of queues are maintained each for jobs with
different work. The queue for jobs of work in (2�, 2�+1] is denoted by Q�. The
adapted randomized algorithm Ran is given as follows. We assume that the
processor runs at speed 1/E

1
α−1 .

When a job J arrives
Suppose the work of J , i.e., w(J), is in (2�−1, 2�].
If the system is idle, or if another job J ′ is virtually scheduled
where w(J ′) ≤ 2�−1,

With probability 1
�log Δ�+1−� we schedule J ,

otherwise virtually schedule J .
Else place J in Q�.

Online Deadline Scheduling with Bounded Energy Efficiency 423

When a scheduled or virtually scheduled job finishes at time t
Let Q� be the non-empty queue with the largest � possible.

Let J be the job having the smallest wait(J, t)1 ≥ 0 in Q�.
Remove J from Q�.
With probability 1

�log Δ�+1−� we schedule J ,
otherwise virtually schedule J .

In the followings, we state a property of Ran and the performance of Ran

against the optimal non-preemptive schedules at fixed speeds. Since Ran always
schedules jobs at speed 1/E

1
α−1 and it completes each job it ever schedules, it

always gives schedules with energy efficiency exactly E.

Fact 1. Ran always gives schedules with energy efficiency exactly E.

Let RANs be the expected throughput of Ran and OPT n
s (resp. OPT p

s) the
throughput of the optimal non-preemptive (resp. preemptive) schedule for a
processor with a fixed speed s. Goldman et al. [8] proved that OPT n

s is at most
6(log Δ
 + 1) times of Rans.

Theorem 3 ([8]). 6(log Δ
 + 1)RANs ≥ OPT n
s .

By slightly amending the analysis of Goldman et al., we can prove that the
throughput of the optimal non-preemptive schedule with a fixed speed twice
that of Ran, i.e., OPT n

2s, is at most 8(log Δ
 + 1) times of RANs.

Theorem 4. 8(log Δ
 + 1)RANs ≥ OPT n
2s.

4.1 Performance of the Randomized Algorithm

Although Ran always gives non-preemptive schedules, we analyze Ran in both
non-preemptive and preemptive models, i.e., against the optimal non-preemptive
and the optimal preemptive schedules with energy efficiency at least E.

Non-preemptive model. For a processor with variable speed, we show that the
throughput of the optimal non-preemptive energy-efficient schedule is at most
14(logΔ
 + 1) times the expected throughput of the schedules produced by
Ran. Recall from Section 3.1 that, in the optimal non-preemptive energy-efficient
schedule, S and M denote the amount of work finished with speed ≤ 1/E

1
α−1

and ≤ 2/E
1

α−1 , respectively. (Note that the results in Section 3.1 applies to both
non-preemptive and preemptive models.) Moreover, by Lemma 2, the throughput
of the optimal non-preemptive energy-efficient schedule is at most S +M . Obvi-
ously, S and M are no more than the maximum throughput using fixed speeds
1/E

1
α−1 and 2/E

1
α−1 , respectively, with no energy concern. Thus, S ≤ OPT n

s

and M ≤ OPT n
2s where s = 1/E

1
α−1 . Therefore, by Theorems 3 and 4, we

have S ≤ 6(log Δ
 + 1)RANs and M ≤ 8(log Δ
 + 1)RANs, and hence the
throughput of the optimal non-preemptive energy-efficient schedule is at most
14(logΔ
 + 1)RANs. We have the following theorem.
1 Recall that wait(J, t) is defined in Section 3.1 to be lst(J) − t where lst(J) is the

latest start time of the job J such that J can still be completed on time.

424 J.W.-T. Chan et al.

Theorem 5. Ran is 14(logΔ
 + 1)-competitive in the non-preemptive model.

Preemptive model. For a processor with variable speed, we show that the through-
put of the optimal preemptive energy-efficient schedule is at most 70(logΔ
+1)
times the expected throughput of the schedules produced by Ran. Similar to
the non-preemptive case, in the optimal preemptive energy-efficient schedule, M

and S denote the amount of work finished with speed ≤ 1/E
1

α−1 and ≤ 2/E
1

α−1 ,
respectively. We can establish the relations S ≤ OPT p

s and M ≤ OPT p
2s where

s = 1/E
1

α−1 (recall that the superscript p refers to the optimal preemptive
schedule).

The key to obtain the claimed competitive ratio of Ran in the preemptive
model is to relate OPT p

s and OPT n
s , i.e., the throughput of the optimal preemp-

tive and non-preemptive schedules of a processor at fixed speed s. We can show
that 5OPT n

s ≥ OPT p
s and we give the analysis in next section. We continue

to derive the competitive ratio of Ran as follows. By Lemma 2, the through-
put of the optimal preemptive energy-efficient schedule is at most S + M . To-
gether with the relations S ≤ OPT p

s and M ≤ OPT p
2s where s = 1/E

1
α−1 ,

and 5OPT n
s′ ≥ OPT p

s′ for any fixed speed s′, we have the throughput of the
optimal preemptive energy-efficient schedule at most 5OPT n

s + 5OPT n
2s. Fur-

ther applying Theorems 3 and 4, we can bound this optimal throughput by
70(logΔ
 + 1)RANs. Hence, we have the following theorem.

Theorem 6. Ran is 70(logΔ
 + 1)-competitive in the preemptive model.

4.2 Comparing Non-preemptive and Preemptive Optimal Schedules
at Fixed Speed

We prove the claim 5OPT n
s ≥ OPT p

s we used in the previous section, i.e., we
show that, for any job sequence, with a processor at a fixed speed the throughput
of the optimal preemptive schedule is at most 5 times that of the optimal non-
preemptive schedule. In fact, we achieve this ratio by comparing the optimal
preemptive schedule with a non-preemptive schedule S (not necessarily optimal)
we constructed below.

Without loss of generality, we assume that the processor is at unit speed, i.e.,
s = 1. An (offline) non-preemptive schedule is constructed as follows. The idea
is to mark a potential job that could be run in S. At any time, at most one job
is marked. A marked job may be unmarked, and further be marked again later.
When a job has been marked continuously for a time period equal its work, we
put the job in the non-preemptive schedule. The details of construction are given
below.

When a job J arrives
If there is no marked job, or if another job J ′ is marked
with w(J ′) ≤ w(J)/2 , unmark J ′ and mark J .

When a job J is marked continuously for w(J) units of time
Unmark J and put J in the non-preemptive schedule.

Online Deadline Scheduling with Bounded Energy Efficiency 425

Mark the job J ′ with the largest w(J ′) and lst(J ′) not passed yet,
if one exists.

The starting and finishing times of a job J in the schedule are the starting and
ending times that the job is marked continuously for w(J) units of time. It is
clear that the schedule obtained above is non-preemptive since every job J in
the schedule runs continuously for w(J) units of time.

Before we compare the throughput of the non-preemptive schedule and the
optimal preemptive schedule, we give some definitions and identify some prop-
erties of the non-preemptive schedule. Recall that S denotes the set of jobs in
the non-preemptive schedule. For each job J ∈ S, let J1, J2, . . . , Jk (= J) be
the sequence of jobs such that Ji is marked continuously for less than w(Ji)
time units and then unmarked because of the arrival and marking of Ji+1 where
w(Ji) ≤ w(Ji+1)/2, and finally Jk is marked continuously for w(Jk) time units.
Define an interval I(J) = [a, b + 2w(J)] where a is the time that J1 is initially
marked in this sequence and b is the time that Jk (= J) has been marked for
w(Jk) time units. We give some properties of the intervals as follows.

Fact 2. For any time t if there is a job being marked at t, then t ∈ I(J) for
some job J ∈ S.

Lemma 6. For any job J ∈ S, the length of the interval I(J) is at most 4w(J).

Proof. Consider the sequence of jobs J1, J2, . . . , Jk (= J) defined by J . We have
I(J) = [a, b + 2w(J)] where J1 is initially marked at time a in this sequence and
b is the time that Jk (= J) has been marked for w(Jk) (= w(J)) time units. By
the definition, b− a ≤ w(J) + w(J)/2 + w(J)/22 + . . . ≤ 2w(J). Hence, we have
I(J) = b + 2w(J) − a ≤ 4w(J). ��

In the following lemma, we prove that the total work of all jobs in the optimal
preemptive schedule but not in S is at most the sum of lengths of I(J) for all
jobs J ∈ S. By this and the previous lemma, we can easily bound the throughput
of the optimal preemptive schedule, as shown in Theorem 7.

Lemma 7. The total work of all jobs in the optimal preemptive schedule but not
in S is at most the sum of length of I(J) for all jobs J ∈ S.

Proof. We prove the lemma by showing for all J ′ /∈ S and for all r(J ′) ≤ t ≤
d(J ′) that, t ∈ I(J) for some job J ∈ S. In other words, all the time that J ′ can
be scheduled falls in the union of interval I(J) for all J ∈ S. Therefore, the total
work of all jobs J ′ in the optimal preemptive schedule but not in S is bounded
by the total length of the interval I(J) for all J ∈ S.

Let J ′ be a job in the optimal preemptive schedule but not in S. First, we show
for any time r(J ′) ≤ t ≤ lst(J ′) that, t ∈ I(J) for some J ∈ S. Since J ′ /∈ S,
there must be some job being marked during [r(J ′), lst(J ′)], as otherwise J ′ can
be marked. Thus, by Fact 2, for any r(J ′) ≤ t ≤ lst(J ′), we have t ∈ I(J) for
some job J ∈ S.

426 J.W.-T. Chan et al.

Then, we also show for any time lst(J ′) < t ≤ d(J ′) that, t ∈ I(J) for some
J ∈ S. Suppose lst(J ′) ∈ I(X) = [a, b + 2w(X)] for the job X ∈ S where
I(X) has the maximum value of a. We claim that (i) 2w(X) > w(J ′) and (ii)
a ≤ lst(J ′) ≤ b. Hence, for lst(J ′) < t ≤ d(J ′), we have t ∈ [a, b + 2w(X)] as
d(J ′) − lst(J ′) = w(J ′) < 2w(X). Claim (i) is true because otherwise J ′ will be
marked instead of X . Claim (ii) is true because if b < lst(J ′) ≤ b + 2w(X), J ′

or other jobs can be marked at lst(J ′) and hence there exists another interval
I(Z) = [a′, b′+2w(Z)] that includes lst(J ′) and a′ > a, which is a contradiction.
In conclusion, we have for any time r(J ′) ≤ t ≤ d(J ′) that, t ∈ I(J) for some
J ∈ S, and the lemma follows. ��
Theorem 7. The throughput of the optimal preemptive schedule is at most 5
times that of the optimal non-preemptive schedule, i.e., 5OPT n

s ≥ OPT p
s , for a

processor at a fixed speed s where s can be any constant greater than 0.

Proof. By Lemma 7, the total work of jobs in the optimal preemptive schedule
but not in S is at most the sum of length of I(J) for all jobs J ∈ S, which
is at most 4 times the throughput of the non-preemptive schedule according to
Lemma 6. Therefore, the throughput of the optimal preemptive schedule is at
most 5 times the throughput of the non-preemptive schedule. As the through-
put of the non-preemptive schedule must be at most that of the optimal non-
preemptive schedule, the theorem follows. ��

5 Without Demanding Jobs

We study the special case in which there are no demanding jobs that cannot be
finished before deadline using unit speed. In other words, for every job J , w(J) ≤
d(J)− r(J). Because of the limited pages, we only the state the lemmas and the-
orems in this section without proofs. First we give a lower bound for this special
case with no demanding jobs. The proof of which is similar to that of Theorem 1.

Theorem 8. Without demanding jobs, if E ≥ 1, any deterministic online algo-
rithm is at least Δ-competitive on throughput, where Δ is the max-min ratio of
the work of the jobs.

Therefore, we only consider the case where E < 1 in the rest of this section.
Without demanding jobs, we use the algorithm EfficiencyE (as defined in
Section 3), which by Lemma 1, gives schedules with energy efficiency at least E.
By Lemma 3, we only need to bound the ratio �/w(A) to obtain the competitive
ratio of EfficiencyE . Recall the definition of I, A, N in Section 3. Similar to
Lemma 4 and since jobs are not demanding, we can derive the following lemma.

Lemma 8. For any X ∈ N , w(r(X), t) > (1/E
1

α−1 − 1)(t − r(X)), for any
r(X) < t ≤ d(X).

By repeating the argument for proving Lemma 5 and replacing the use of
Lemma 4 by Lemma 8, we have the following lemma.

Online Deadline Scheduling with Bounded Energy Efficiency 427

Lemma 9. w(A) > (1/E
1

α−1 − 1)�.

By Lemmas 3 and 9, we have a constant competitive ratio for EfficiencyE .

Theorem 9. Without demanding jobs, EfficiencyE is 2+ 3

1−E
1

α−1
-competitive

on throughput, for any efficiency threshold E < 1.

References

1. S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization.
In Proc. STACS, pages 621–633, 2006.

2. N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy
and temperature. In Proc. FOCS, pages 520–529, 2004.

3. N. Bansal and K. Pruhs. Speed scaling to manage temperature. In Proc. STACS,
pages 460–471, 2005.

4. N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. In Proc.
SODA, pages 805–813, 2007.

5. D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyukto-
sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: Design and modeling challenges for next-generation micro-
processors. IEEE Micro, 20(6):26–44, 2000.

6. D. P. Bunde. Power-aware scheduling for makespan and flow. In Proc. SPAA,
pages 190–196, 2006.

7. H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong.
Energy efficient online deadline scheduling. In Proc. SODA, pages 795–804, 2007.

8. S. A. Goldman, J. Parwatikar, and S. Suri. Online scheduling with hard deadlines.
J. Algorithms, 34(2):370–389, 2000.

9. D. Grunwald, P. Levis, K. I. Farkas, C. B. M. III, and M. Neufeld. Policies for
dynamic clock scheduling. In OSDI, pages 73–86, 2000.

10. S. Irani, R. K. Gupta, and S. Shukla. Algorithms for power savings. In Proc.
SODA, pages 37–46, 2003.

11. S. Irani and K. Pruhs. Algorithmic problems in power managment. SIGACT News,
32(2):63–76, 2005.

12. W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically
variable voltage processors. ACM Transactions on Embedded Computing Systems,
4(1):211–230, Feb. 2005.

13. M. Li, B. J. Liu, and F. F. Yao. Min-energy voltage allocations for tree-structured
tasks. In Proc. COCOON, pages 283–296, 2005.

14. M. Li and F. F. Yao. An efficient algorithm for computing optimal discrete voltage
schedules. SIAM J. Comput., 35(3):658–671, 2005.

15. P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In SOSP, pages 89–102, 2001.

16. K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best resonse for your
erg. In Proc. SWAT04, pages 15–25, 2004.

17. K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence
constraints. In Proc. WAOA, pages 307–319, 2005.

18. M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling for reduced CPU
energy. In OSDI, pages 13–23, 1994.

19. F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. In Proc. FOCS, pages 374–382, 1995.

Efficient Algorithms for Airline Problem

Shin-ichi Nakano1, Ryuhei Uehara2, and Takeaki Uno3

1 Department of Computer Science, Faculty of Engineering, Gunma University, Gunma
376-8515, Japan

nakano@cs.gunma-u.ac.jp
2 School of Information Science, Japan Advanced Institute of Science and Technology,

Ishikawa 923-1292, Japan
uehara@jaist.ac.jp

3 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan
uno@nii.jp

Abstract. The airlines in the real world form small-world network. This implies
that they are constructed with an ad hoc strategy. The small-world network is not
so bad from the viewpoints of customers and managers. The customers can fly
to any destination through a few airline hubs, and the number of airlines is not
so many comparing to the number of airports. However, clearly, it is not the best
solution in either viewpoint since there is a trade off. In this paper, one of the
extreme cases, which is the standpoint of the manager, is considered; we assume
that customers are silent and they never complain even if they are required to
transit many times. This assumption is appropriate for some transportation ser-
vice and packet communication. Under this assumption, the airline problem is to
construct the least cost connected network for given distribution of the popula-
tions of cities with no a priori connection. First, we show an efficient algorithm
that produces a good network which is minimized the number of vacant seats.
The resultant network contains at most n connections (or edges), where n is the
number of cities. Next we aim to minimize not only the number of vacant seats,
but also the number of airline connections. The connected network with the least
number of edges is a tree which has exactly n−1 connections. However, the prob-
lem to construct a tree airline network with the minimum number of vacant seats
isNP-complete. We also propose efficient approximation algorithms to construct
a tree airline network with the minimum number of vacant seats.

Keywords: Airline problem, approximation algorithm, efficient algorithm,
NP-completeness.

1 Introduction

Small-world networks are the focus of recent interest because of their potential as mod-
els for the interaction networks of complex systems in real world [2,8]. In a small-world
network, the node connectivities follow a scale-free power-law distribution. As a result,
a very few nodes are far more connected than other nodes, and they are called hubs.
Through those hubs, any two nodes are connected by a short path (see, e.g., [5]). There
are many well known small-world networks including the Internet and World Wide
Web. Among them, airlines in the real world form small-world networks [1]. In fact,

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 428–439, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Algorithms for Airline Problem 429

some airports are known as airline “hubs.” The fact implies that they can be constructed
in the same manner as the Internet and World Wide Web; in other words, there were
few global strategies for designing efficient airlines. The main reason is that there are
so many considerable parameters to be optimized, and some objective functions con-
flict according to viewpoints; for example, passengers hate to transit, but only complete
graph satisfies their demands, which is an impossible solution for airline companies. In
fact, it is intractable to design the least cost airline network in general. Even if we fix
three hubs, and aim to connect each non-hub to one of the hubs, to design the least cost
airline network is NP-hard problem [6,7].

In this paper, we simplify the design problem of an airline network to a simpler
graph theoretical problem. We consider the design problem of an airline network as an
optimization problem; we aim to give a reasonable strategy to design a network with
minimum loss, which corresponds to the number of vacant seats. Let Z denote the set
of positive integers. Then we define airline problem over weighted nodes as follows:

Input: A set V of nodes, and a positive integer weight function w : V → Z.
Output: A set E of edges {u, v} in V2, and a positive integer weight function w : V ×

V → Z such that for each v ∈ V , we have w(v) ≤
∑

{v,u}∈E w(v, u), and the graph
G = (V, E) is connected1.

Intuitively, each node v corresponds to a city, and the weight w(v) gives the number of
(potential) passengers in the city. If there are already airports, we can count the number
of users; otherwise, the weights can be estimated from the populations of the cities.
Each edge {u, v} corresponds to an airline. An airplane can transport w(u, v) passengers
at one flight. Airplanes make regular flights along the edges, both ways, and simul-
taneously. Hence the number of passengers, w(v), does not fluctuate in a long term.
We consider that the condition w(v) ≤

∑

{v,u}∈E w(v, u) for each v in V is appropriate
condition as an airline network, if all cities are connected by the airline network. The
condition is enough to supply the least service. In other words, we assume that passen-
gers are silent; they never complain even if they have to transit many times. Therefore
the airline problem can be an idealized model for planning some real network problem
like transportation service, peer to peer file transfer network, and data network flow in
the sense that producing a reasonable (or cheapest) network that can satisfy given de-
mands. After designing the network, we will face the assignment problems. However,
the assignment problems are separated in this context; we only mention that each cheap
network dealt in this paper has at least one reasonable solution obtained by a random
walk approach, which is omitted here.

To evaluate the “goodness” of a solution for the airline problem, we define the loss
L(v) at v by (

∑

{v,u}∈E w(v, u)) − w(v). If the solution is feasible, we have L(v) ≥ 0 for all
v ∈ V . Intuitively, the loss L(v) gives the total number of vacant seats of departure flights
from the city v. We denote by L(G) :=

∑

v∈V L(v) the total loss of the graph (or solution)
G = (V, E). We here observe that L(G) is given by

∑

v∈V L(v) =
∑

v∈V ((
∑

{v,u}∈E w(v, u))−
w(v)) =

∑

v∈V
∑

{v,u}∈E w(v, u) −
∑

v∈V w(v) = 2
∑

e∈E w(e) −
∑

v∈V w(v).
We first consider the airline problem to generate a connected network with the min-

imum loss L(G). We show an efficient algorithm that minimizes the total loss of the
1 The weight of an edge e = {u, v} should be denoted by w(e) = w({u, v}) = w({v, u}). However,

we denote them by w(e) = w(u, v)(= w(v, u)) for short.

430 S. Nakano, R. Uehara, and T. Uno

flights on the network. The algorithm generates a connected network of at most |V |
edges in O(|V |) time and O(|V |) space. Since the minimum number of the edges of a
connected graph with |V | vertices is |V | − 1, our algorithm produces the least cost con-
nected network with |V | − 1 or |V | airlines. Hence it is natural to ask that if we can
restrict ourselves to construct a weighted tree with the minimum loss. It is worth men-
tioning that tree network has an advantage that a shortest route between two vertices
are uniquely determined. However, interestingly, the problem is intractable; the airline
problem to construct a tree airline network (of |V | − 1 edges) with the minimum weight
(or the minimum loss) isNP-complete. For theNP-complete problem, we give two ef-
ficient approximation algorithms. First one always finds a tree airline network T of V of
approximation ratio 2 in O(|V |) time and space. More precisely, the algorithm constructs
a weighted tree T that has additional weight wmax than the optimal weight among all
weighted connected networks that is not necessarily a tree, where wmax = maxv∈V w(v).
The second one is based on an FPTAS for the weighted set partition. Assume we obtain
a partition X and Y of V with

∣
∣
∣
∑

x∈X w(x) −
∑

y∈Y w(y)
∣
∣
∣ ≤ δ for some δ ≥ 0 by an FPTAS.

Then, from X and Y, we can construct a weighted tree T with L(T) ≤ max{δ, 2} in O(|V |)
time and space.

2 Minimum Cost Network

In this section, we show efficient algorithms for constructing a connected network of
minimum loss for given weighted nodes V . Hereafter, we denote |V | by n and

∑

v∈V w(v)
by W. Since the case n = 1 is trivial, we assume that n > 1. The main theorem in this
section is the following:

Theorem 1. Let V be a set of n nodes, and w be a positive integer weight function
w : V → Z. Then a connected network E over V of the minimum loss L(G) with |E| ≤ n
can be found in O(n) time and O(n) space.

Procedure: Span(u, v,w)
Input : Two vertices u and v, and weight w with w(u),w(v) ≥ w.
Output: An edge {u, v} of weight w.
w(u, v) := w;1

w(u) := w(u) − w; w(v) := w(v) − w;2

if w(u)=0 then remove u;3

if w(v)=0 then remove v;4

return ({u, v});5

Throughout the paper, we will use procedure Span as a basic operation. Mainly, given
two vertices u and v, we span an edge {u, v} of weight min{w(u),w(v)} and remove one
of them. We first have the following lemma:

Lemma 1. If L(G) = 1, the solution is optimal.

Efficient Algorithms for Airline Problem 431

Proof. We remind that L(G) is given by
∑

v∈V L(v) =
∑

v∈V ((
∑

{v,u}∈E w(v, u)) − w(v)) =
∑

v∈V
∑

{v,u}∈E w(v, u) −
∑

v∈V w(v) = 2(
∑

e∈E w(e)) −W. Thus when L(G) = 1, W is odd,
which is the input, and hence we cannot improve it. ��
We start with the following three special cases:

Star condition: Let vmax be a heaviest vertex, i.e., w(vmax) ≥ w(v) for all v ∈ V . We say
star condition if we have w(vmax) −

∑

v∈V\{vmax} w(v) ≥ 0.

Uniform condition: When w(v) = w > 0 for all v ∈ V , we call it uniform condition.

Many-ones condition: If V contains at least two vertices of weight 1, we call that
many-ones condition. To distinguish it from the uniform condition, we assume that V
also contains at least one vertex of weight greater than 1.

We have either the star or uniform condition if |V | ≤ 2. Hence, hereafter, we assume
that |V | > 2. Under the star condition, Algorithm Star computes the solution with
minimum loss L(G) = w(vmax) −

∑

v∈V\{vmax} w(v) in O(n) time and space. It is also easy
to see that |E| contains n − 1 edges.

Algorithm 2: Star
Input : A set V of n nodes, a positive integer weight function w : V → Z.
Output: A set E of m = n − 1 edges {u, v} such that (V, E) is connected, and a positive

integer weight function w : E → Z.
let vmax be a vertex such that w(vmax) ≥ w(v) for all v ∈ V ;1

foreach v ∈ V \ {vmax} do Span(v,vmax,w(v));2

pickup any e = (v′, vmax) with w(e) > 0;3

w(e) := w(e) + w(vmax);4

return (E := {e | w(e) > 0});5

Algorithm 3: Uniform
Input : A set V of n nodes, a positive integer weight function w : V → Z.
Output: A set E of m (m = n or m = n − 1) edges {u, v} such that (V, E) is connected, and a

positive integer weight function w : E → Z.
let w be a positive integer such that w = w(v) for all v ∈ V ;1

if w = 1 then make any spanning tree T over V , and w(e) := 1 for each edge e ∈ T ;2

else3

foreach odd i = 1, 3, 5, . . . do Span(vi,vi+1,
w/2�);4

foreach even i = 2, 4, 6, . . . do Span(vi,vi+1,�w/2);5

Span(vn,v1,�w/2);6

return (E := {e | w(e) > 0});7

Lemma 2. In the uniform condition, Algorithm Uniform produces a connected net-
work E over V of the minimum loss L(G) in O(n) time and O(n) space, where |V | = n.
Moreover, |E| ≤ n.

Proof. Omitted. ��

432 S. Nakano, R. Uehara, and T. Uno

Algorithm 4: Many-ones
Input : A set V of n nodes, a positive integer weight function w : V → Z.
Output: V ′ of n′ nodes and E of n − n′ edges s. t. V ′ has at most one vertex of weight 1.
let vmax be a vertex such that w(vmax) ≥ w(v) for all v ∈ V ;1

let V1 := {v | w(v) = 1} and V2 := {v | w(v) ≥ 2} \ {vmax};2

while |V1| > 1 and |V2| > 0 do3

if V satisfies the star condition then call Star as a subroutine and halt;4

for any vertices v ∈ V1 and v′ ∈ V2, Span(v,v′,1);5

if w(v′) = 1 then move v′ from V2 to V1;6

if |V2| = 0 then7

if V satisfies the star condition then call Star as a subroutine and halt;8

call Span(vmax,v,1) for any w(vmax) − 1 vertices v ∈ V1; // to make w(vmax) = 19

call Uniform as a subroutine and halt;10

return (V and E := {e | w(e) > 0});11

We next turn to the many-ones condition. We first partition V into two disjoint subsets
V1 := {v | w(v) = 1} and V2 := {v | w(v) ≥ 2}. Then we have many-ones condition iff
|V1| > 1 and |V2| > 0. We also pick up a vertex vmax of the maximum weight as a
special vertex to check if the vertex set satisfies the star condition. The purpose here is
to reduce the number of vertices of weight 1 to one. Hence we join the vertices in V1 to
the other vertices and output the remaining vertices, which contains at most one vertex
of weight 1. This is the preprocess of the main algorithm.

The vertex vmax can be found in O(n) time, and
∑

v∈V\{vmax} w(v) can be maintained
decrementally. Hence Algorithm Many-ones runs in O(n) time and space by maintain-
ing V1 and V2 by two queues. Many-ones terminates if the vertex set satisfies the star
condition, the uniform condition, or the set contains at most one vertex of weight 1. In
the former two cases, we already have a solution.

Now, we can assume that the input V satisfies neither the star, uniform, nor many-
ones conditions. Then, we have the following lemmas:

Lemma 3. Algorithm Network outputs a connected network (V, E) with |E| ≤ n.

Proof. In the while-loop, the algorithm either (0) calls Star or Uniform and halts, or
(1) sets w(v, v′) for some v, v′ and removes one of v and v′. The algorithm also joints
all vertices in some vertex set V̂ with

∣
∣
∣V̂
∣
∣
∣ edges. Hence we have an invariant that the

total number of removed vertices is greater than or equal to the total number of added
edges. Hence |E| contains at most n edges. It is easy to see that the resultant network is
connected. ��

Lemma 4. Algorithm Network always outputs a network with the minimum loss L(G).

Proof. Let V1 be the set of vertices of weight 1. Then we have an invariant |V1| ≤ 1
throughout the execution of the algorithm. Let vmax be the heaviest vertex chosen in
step 2. We have two cases; (I) all vertices in V \ {vmax} have the same weight w, and (II)
there are two vertices vi and v j in V \ {vmax} with w(vi) < w(v j).

(I) This case is handled in steps 8 to 18. We first note that V is in neither the uniform
nor star cases. Thus, we have w(vmax) > w and w(vmax) < (n − 1)w. Mainly, in the case,

Efficient Algorithms for Airline Problem 433

Algorithm 5: Network
Input : A set V of n nodes, and a positive integer weight function w : V → Z.
Output: A set E of m (m = n or m = n − 1) edges {u, v} such that (V, E) is connected, and

positive integer weight function w : E → Z.
n := |V |, and W :=

∑

v∈V w(v);1

find vmax such that w(vmax) ≥ w(v) for any other v ∈ V ;2

let V1 := {v | w(v) = 1} (we have |V1| < 2);3

while true do4

if V satisfies the star condition then call Star as a procedure and halt;5

if V satisfies the uniform condition then call Uniform as a procedure and halt;6

if V satisfies the uniform condition then7

if (n − 2)w < w(vmax) then // we also have w(vmax) < (n − 1)w8

let vi and vj be any two vertices in V \ {vmax};9

Span(vi,vj,�((n − 1)w − w(vmax))/2) ; // to have star condition10

else11

r := w(vmax) mod w;12

if r = 0 then13

let S consist of any (w(vmax)/w) − 1 vertices from V \ {vmax};14

else15

let S consist of any
w(vmax)/w� vertices from V \ {vmax};16

foreach v ∈ S do Span(v,vmax,w); ; // we have S = ∅17

if w(vmax) = 1 then put vmax into V1;18

else19

if V1 � ∅ then20

let vi be the vertex in V1, and vj be any vertex in V \ {vmax};21

else22

let vi and vj be any vertices in V \ {vmax} with w(vi) < w(vj);23

if W − 2w(vi) > 2w(vmax) then24

Span(vi,vj,w(vi));25

if w(vj) = 1 then put vj into V1;26

else27

Span(vi,vj,�(W − 2w(vmax))/2) ; // to have star condition28

update V , n, W, vmax if necessary;29

the algorithm takes the vertices of weight w by matching with vmax as follows. Let q be

w(vmax)/w� and r be w(vmax) mod w.

If r = 0, the last vertex of weight w cannot be matched to vmax since all vertices
spanned by the edges have weight 0, and we will have a loss. Hence, in the case, the
algorithm matches q − 1 vertices of weight w to vmax, and then w(vmax) becomes w.
That is, we will have the uniform case in the next iteration. Through the process, the
algorithm generates no loss, which is handled in steps 14, 17, 18. Hence if the uniform
case will be handled properly, the algorithm generates no loss, which will be discussed
later.

If r � 0, we can match q vertices of weight w to vmax by edges of weight w. After the
matching, we remove q vertices from V \{vmax}, and w(vmax) is updated by w(vmax)−qw.

434 S. Nakano, R. Uehara, and T. Uno

If w(vmax) − qw is enough large comparing to the total weight of the remaining vertices
of weight w, the process is done properly in steps 16, 17, 18. However, the process
fails when w(vmax) − qw is too light; for example, when V = {v1, v2, v3} with w(v1) =
8,w(v2) = w(v3) = 5, we cannot make an edge {v1, v2} of weight 5. The resultant ver-
tex v3 will generate loss 2. In the case, we have to make E = {{v1, v2}, {v2, v3}, {v1, v3}}
with w(v1, v2) = w(v1, v3) = 4 and w(v2, v3) = 1. To consider the case, we partition
V \ {vmax} into Va of q vertices and Vb of n − q − 1 vertices. The loss will be gener-
ated, after removing all vertices in Va which are matched with vmax, if (1) {vmax} ∪ Vb

satisfies the star condition, and (2) w(vmax) < w. They occur only if |Vb| = 1, which is
equivalent to (n − 2)w < w(vmax) < (n − 1)w. This case is handled in steps 9 and 10. In
the case, we can have the optimal solution with the following assignments of weights;
pick up any two vertices vi and v j from V \ {vmax}, and add the edge {vi, v j} of weight
�((n − 1)w − w(vmax))/2. Then we have the star condition, and we have L(G) ≤ 1,
which is the optimal.

(II) This case is handled in steps 20 to 28. Let vi and v j be any two vertices of different
weights with w(vi) < w(v j). If |V1| = 1, the algorithm takes the unique vertex of weight 1
as vi. When w(v j) is not so heavy, we add an edge {vi, v j} with w(vi, v j) = w(vi) and
remove vi in step 25. The exception is that removing w(vi) results in the star condition
with loss, which is equivalent to

∑

v∈V\{vmax} w(v) = W − w(vmax) − 2w(vi) < w(vmax).
Hence the case occurs when W −2w(vi) < 2w(vmax). On the other hand, we did not have
the star condition before removing 2w(vi) from w(vi) and w(v j). Thus, before removing,
we had

∑

v∈V\{vmax} w(v) = W − w(vmax) > w(vmax), or consequently, W > 2w(vmax). In
the case, we can have the star condition without loss by the edge {vi, v j} with w(vi, v j) =
⌈∑

v∈V\{vmax } w(v)−w(vmax)
2

⌉

=
⌈

W−2w(vmax)
2

⌉

, and then we have the optimal in step 28.
Hence, in most cases, the algorithm achieves the optimal network. The last case is in

the following case: The algorithm does not call Uniform at first, and it calls Uniform,
which outputs a spanning tree since all vertices have the weight 1. However, this case
is impossible since we have an invariant |V1| ≤ 1.

Thus, Algorithm Network always outputs a network with L(G) ≤ 1, which is optimal
by Lemma 1, if V does not satisfy one of three special conditions. ��

Lemma 5. Algorithm Network runs in O(n) time and space.

Proof. If we admit to sort the vertices, it is easy to implement the algorithm to run
in O(n log n) time and O(n) space. To improve the time complexity to O(n), we show
how to maintain vmax and determine if all vertices in a vertex set V \ {vmax} have the
same weight efficiently. In step 2, the algorithm first finds vmax in O(n) time. Then we
can check if V satisfies the star condition or the uniform condition in O(n) time. In the
while-loop, two special vertices vmax and the unique vertex, say v1, in V1 (if exist) are
maintained directly, and all other vertices in V ′ = V \ {vmax, v1} are maintained in a
doubly linked list. The number n of vertices are also maintained.

We first assume that all vertices in V ′ have the same weight w. If (n− 2)w < w(vmax),
the algorithm halts in O(n) time. Hence we assume that w(vmax) ≤ (n − 2)w. (Note that
(n − 1)w ≤ w(vmax) implies the star condition.) In the case, the algorithm computes r =
w(vmax) mod w in O(1) time. If r = 0, the algorithm removes (w(vmax)/w) − 1 vertices
from V ′. After that, w(vmax) becomes w(vmax) = w, and we have the uniform case. Thus

Efficient Algorithms for Airline Problem 435

the algorithm can call Uniform without checking the condition. The time complexity
can be bounded above by O(|V ′|). If r � 0, the algorithm removes
w(vmax)/w� vertices
from V ′. After that, w(vmax) becomes w(vmax) < w, and the other vertices have the same
weight w. We update vmax by any vertex in V ′ \ {vmax}. Through the step, the running
time is proportional to the number of the vertex removed.

Next, we assume that there are some different weight vertices in V ′. The pair vi and
v j of different weights can be found by traversing the doubly linked list. Let v2, v3, . . .
be the consecutive vertices in the list. If V1 � ∅, the pair vi = v1 and v j = v2 can be
found in O(1) time. Otherwise, the algorithm checks if w(v1) = w(v2), w(v2) = w(v3),
or w(v3) = w(v4), . . . until it finds w(vk) � w(vk+1). Then set vi := min{vk, vk+1} and
v j := max{vk, vk+1}. Moreover, in the case, the algorithm knows that w(v1) = w(v2) =
· · · = w(vk). When W − 2w(vk) ≤ 2w(vmax), the algorithm connects all vertices and
halts in time O(|V ′|). Hence we assume that W −2w(vk) > 2w(vmax). Then the algorithm
removes vi or v j in O(1) time from the linked list. After updating n and W, the algorithm
has to check if all vertices in V ′ have the same weight. Since the algorithm knows that
w(v1) = w(v2) = · · · = w(vi−1), it is enough to check from vi−1. Thus the total time to
check if V ′ contains at least two vertices of different weights is bounded above by O(n).

Hence, the algorithm runs in O(n) time and space. ��

By Lemmas 2, 3, 4, and 5, we immediately have Theorem 1.

3 Minimum Cost Spanning Tree

In this section, we first prove that the problem for finding a minimum loss tree airline
network is NP-complete. Next, we show approximation algorithms for the problem.

3.1 NP-Hardness for Finding a Spanning Tree of Minimum Loss

We first modify the optimization problem to the decision problem as follows; the input
of the algorithm consists of a set V of nodes, a positive integer weight function w(v) for
each v ∈ V , and an integer k. Then the decision problem is to determine if there is the
set E of edges and a positive integer weight function w(u, v) such that they provide a
feasible solution of the airline problem with L(G) ≤ k and (V, E) induces a (connected)
tree.

Theorem 2. The decision problem for finding a tree airline network is NP-complete.

Proof. The problem is clearly in NP. We reduce it to the following well known NP-
complete problem [4, [SP12]]:

Problem: Weighted Set Partition
Input: Finite set A and weight function w′(a) ∈ Z+ for each a ∈ A;
Output: Determine if there is a subset A′ ⊂ A s. t.

∑

a∈A′ w′(a) =
∑

a∈A\A′ w′(a).

Let W :=
∑

a∈A w′(a). Without loss of generality, we assume that W is even. For given
A = {a1, a2, . . . , an} and the weight function w′, we construct the input V and w of the
airline problem as follows; V = A ∪ {u, v}, and w(a) = w′(a) for each vertex a in A. We

436 S. Nakano, R. Uehara, and T. Uno

define w(u) = w(v) = W
2 + 1. The reduction can be done in polynomial time and space.

We show that A can be partitioned into two subsets of the same weight if and only if
V has a tree airline network with no loss. Let E be the set of weighted edges of the
minimum loss. We first observe that if G = (V, E) achieves L(G) = 0, E has to contain
the positive edge {v, u}. Otherwise, the edges incident to u or v have to have total weight
W + 2 > W, and then we have L(G) > 0.

First we assume that A has a partition A1 and A2 such that A1 ∪ A2 = A, A1 ∩ A2 = ∅,
and
∑

a∈A1
w(a) =

∑

a∈A2
w(a) = W/2. We show that V has a tree airline network with

no loss. We define the weight function w as follows; w{u, v} = 1, w{a, u} = w(a) for all
a ∈ A1, and w{a, v} = w(a) for all a ∈ A2. By assumption and construction, the set E of
positive weighted edges is a tree airline network with no loss.

Next we assume that V has a tree airline network with no loss, and show that A
can be partitioned into A1 and A2 of the same weight. By the observation, the edge
{u, v} has a positive weight, say w′. We then partition the set A into A1 and A2 as fol-
lows; A1 consists of vertices a ∈ A of odd distance from u, and A2 consists of vertices
a ∈ A of even distance from u. Since T is a tree, A1 and A2 satisfy A1 ∩ A2 = ∅,
A1 ∪ A2 = A, and two sets A1 and A2 are independent sets. Moreover, since T has no
loss,

∑

e∈(A1\{v})×{u} w(e) =
∑

e∈(A2\{u})×{v} w(e) = W
2 +1−w′, and

∑

e∈(A1\{v})×(A2\{u}) = w′−1.
Hence we have

∑

a∈A1\{v} w(a) =
∑

a∈A2\{u} w(a) = W
2 . Thus A1 and A2 gives a solution of

the weighted set partition problem.
Therefore, the weighted set partition problem can be polynomial time reducible to

the problem for finding a tree airline network of minimum loss, which completes the
proof. ��

3.2 Approximation Algorithms for a Tree Airline Network

In this section, we show two approximation algorithms that aim at different goals. First
one gives us a simple and efficient algorithm with approximation ratio 2. Second one
is based on an FPTAS for the set partition problem, which gives us a polynomial time
algorithm with arbitrary small approximation ratio.

Simple 2-approximation algorithm. The simple algorithm is based on the algorithm
stated in Section 2. The algorithm in Section 2 outputs a connected network with at
most n edges. The algorithm outputs the nth edge when (1) it is in the uniform case,
or (2) the edge {vi, v j} is produced in step 10 or step 31 by Algorithm Network. We
modify each case as follows and obtain a simple approximation algorithm.

(1) In the uniform case with w > 1, pick up any pair of vertices {vi, vi+1} such that
w(vi, vi+1) =
w/2�. Then, cut the edge, and add their weight to adjacent edges;
w(vi−1, vi) := w(vi−1, vi) +
w/2�, and w(vi+1, vi+2) := w(vi+1, vi+2) +
w/2�. In the case,
L(G) increases by 2
w/2� ≤ w.

(2) In both cases, the vertices vi and v j will be joined to vmax in the next iteration since V
satisfies the star condition. Hence we add the weight of the edge {vi, v j} to {vi, vmax} and
{v j, vmax}. In the former case, L(G) increases by 2 �(w(vmax) − (n − 2)w)/2 ≤ w(vmax)−
(n − 2)w + 1 < w(vmax). In the latter case, L(G) increases by 2 �(W − 2w(vmax))/2 <
w(vmax).

Efficient Algorithms for Airline Problem 437

From above analysis, we immediately have the following theorem:

Theorem 3. The modified algorithm always outputs a connected tree T = (V, E) with
L(T) ≤ w(vmax) in O(n) time and space.

Let E′ be any feasible solution (which does not necessarily induce a tree) of the airline
problem. Then, clearly,

∑

e∈E′ w(e) ≥ w(vmax). Thus we have the following corollary.

Corollary 1. Let E be the set produced by the modified algorithm, and Eopt be an
optimal solution (with the minimum loss) of the airline problem. Let T := (V, E) and
G := (V, Eopt). Then,

∑

e∈Eopt
w(e) ≤

∑

e∈E w(e) < 2
∑

e∈Eopt
w(e).

Approximation algorithm based on FPTAS. A weighted set partition problem
has an FPTAS based on a pseudo-polynomial time algorithm. The idea is standard
and can be found in a standard text book, for example, [3, Chapter 35.5]. Hence,
using the FPTAS algorithm, we can compute a partition X and Y of V with
|∑v∈X w(v)−

∑

v∈Y w(v)|−|∑v∈X∗ w(v)−
∑

v∈Y∗ w(v)|
∑

v∈V w(v) < ε for any positive constant ε in polynomial time
of |V | and ε, where X∗ and Y∗ are an optimal partition of V .

In this section, we show a polynomial time algorithm that constructs a tree airline
network from the output of the the FPTAS for the weighted set partition problem for
the same input V and w.

By the results in Section 2, if V satisfies either the star condition or the uniform
condition, we can obtain a tree airline network that is an optimal solution. On the
other hand, if V contains many vertices of weight 1, we can reduce them by Algo-
rithm Many-ones. Hence, without loss of generality, we assume that V is neither in
the star condition nor in the uniform condition, and V contains at most one vertex of
weight 1.

We first regard V and w as an input to the weighted set partition problem. Then we run
the FPTAS algorithm for the weighted set partition problem. Let X and Y be the output
of the algorithm. That is, δ :=

∣
∣
∣
∑

v∈X w(v) −
∑

v∈Y w(v)
∣
∣
∣ is minimized by the FPTAS algo-

rithm. We note that an optimal partition X∗ and Y∗ of V gives the lower bound of the op-
timal solution for the airline problem; we cannot have L(T) <

∣
∣
∣
∑

v∈X∗ w(v) −
∑

v∈Y∗ w(v)
∣
∣
∣

for any weighted tree T that spans V . We can make a tree airline network that achieves
the same performance by the FPTAS.

Theorem 4. Let X and Y be the partition of V produced by an FPTAS for the weighted
set partition problem, and δ :=

∣
∣
∣
∑

v∈X w(v) −
∑

v∈Y w(v)
∣
∣
∣. Then, from X and Y, we can

construct a connected network E such that T = (V, E) is a tree with L(T) ≤ max{δ, 2}.
The tree T can be constructed in O(|V |) time and space.

Proof. The algorithm consists of two phases.
Let v0 be the vertex in V of the minimum weight, i.e., w(v0) ≤ w(v) for any v ∈ V . If

v0 is uniquely determined (or w(v0) � w(v) for each v ∈ V \{v0}), the algorithm performs
the first phase, and otherwise, the algorithm runs from the second phase.

We first show the first phase, which runs if v0 is uniquely determined. Without loss
of generality, we assume that v0 ∈ X. We let X = {x0 = v0, x1, x2, . . . , } and Y =
{y1, y2, . . . , }. (We note that x1, x2, . . . and y1, y2, . . . are ordered in arbitrary way.) The

438 S. Nakano, R. Uehara, and T. Uno

first phase is given in Algorithm Caterpillar; it starts from a path {x0, y1}, and extend
it as possible as it can until the next vertex pair becomes the same weight. (The resultant
graph makes a graph that is known as a caterpillar which consists of path where each
vertex on the path has some pendant vertices.) After the first phase, if X = ∅ or Y = ∅,
we complete the tree by joining all vertices in the non-empty set (if it exists) to the last
vertex touched in the empty set. In the case, the tree T admits L(T) = δ. Hence we
assume that X � ∅ and Y � ∅, and w(xi) = w(y j) = w for some i, j, and w. By the
algorithm and initial condition, we have i > 0 and one of w(xi) and w(y j) is updated,
and the other one is not updated. Hence w > w(v0).

Algorithm 6: Caterpillar
i := 0; j := 1;
while w(xi) � w(yj) and X � ∅ and Y � ∅ do

if w(xi) < w(yj) then
Span(xi,yj,w(xi));
i := i + 1;

else
Span(xi,yj,w(yj));
j := j + 1;

Now, we turn to the second phase. We now renumber the vertices as X={x0, x1, x2, . . .}
and Y = {y0, y1, y2, . . .} such that w(x0) ≤ w(xi) and w(y0) ≤ w(yi) for each i > 0. By
assumption, the input V contains at most one vertex of weight 1. Hence now we have
w(x0) = w(y0) > 1 by the first phase.

If the algorithm runs the first phase, one of x0 and y0 is an endpoint of the caterpillar.
Without loss of generality, we assume that x0 is the endpoint. (We regard that x0 is
the endpoint of the graph of size 1 if the algorithm runs from the second phase.) The
algorithm extends the tree from xi as follows. It searches y j with w(x0) � w(y j) from
{y1, y2, . . .}.

If the algorithm finds w(y j) with w(x0)�w(y j), it calls Span(x0,y j,min{w(x0),w(y j)}=
w(x0)). Then the algorithm repeats the first phase with the vertex pair x1 and y j; we
remark that the algorithm knows that w(y0) = w(y1) = · · · = w(y j−1) = w, which will be
preferred than the other vertices in the next phase, and the algorithm can omit to check
if they have the same weight.

When the algorithm do not find w(y j) with w(x0) � w(y j), we have w(x0) = w(y) for
all y ∈ Y. In the case, the algorithm searches xi with w(xi) � w(x0). If the algorithm
finds w(xi) with w(xi) � w(x0), it calls Span(xi,y0,min{w(xi),w(y0)} = w(y0)). Then the
algorithm repeats to join the vertices in Y to xi until xi is removed. If xi is removed
while Y � ∅, the last touched vertex y j in Y satisfies w(y j) < w(y) for each y ∈ Y
and w(y j) < w(x0) since all vertices in Y had the same weight equal to x0. Thus the
algorithm repeats the first phase for the pair {x0, y j}. If we have Y = ∅ and w(xi) > 0,
the algorithm picks up the last vertex y in Y and connect all vertices in X to y with their
weights. In the case, the algorithm achieves the loss δ.

Now, we have the last case: w(x) = w(y) = w for all x ∈ X and y ∈ Y. We
renumber X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk′ }. By the process above, every

Efficient Algorithms for Airline Problem 439

connected subtree has exactly one node in X ∪ Y. Thus we have a weighted tree T
spanning V by joining those vertices. Moreover, since the vertices are preferred if they
are touched, both of X and Y contain at least one vertex whose weight was not up-
dated by the algorithm, respectively. If |k − k′| > 1, we can improve δ by moving
the untouched vertex. Hence we have k = k′ or |k − k′| = 1. First, we assume that
|k − k′| = 0. If k = k′ = 1, the algorithm completes the tree by joining {x1, y1} with
w(x1, y1) = w. When k = k′ > 1, the algorithm completes a spanning tree T by the path
(x1, y1, . . . , xk, yk) with w(x1, y1) = w(xk, yk) = w, w(xi, yi) = w − 1 and w(yi, xi+1) = 1
for 1 < i < k. Then we have L(T) = 2. If k = k′ + 1, the path (x1, y1, . . . , xk−1, yk−1, xk)
with w(x1, y1) = w, w(yk−1, xk) = w, w(xi, yi) = w−1 and w(yi, xi+1) = 1 for 1 < i < k−1
gives us the tree T with L(T) = δ. The case k = k′ − 1 is symmetric.

Thus, the algorithm outputs a tree airline network T with L(T) ≤ max{2, δ}. By
similar implementation using queue of the vertices of the same weight in the proof of
Lemma 5, the algorithm runs in O(n) time and O(n) space. ��

4 Concluding Remarks and Acknowledgment

In this paper, we do not deal with the assignment problem over the constructed network.
When each vertex has its destination, the assignment problem is further challenging
problem.

The authors are partially supported by the Ministry, Grant-in-Aid for Scientific
Research (C).

References

1. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of small-world net-
works. Applied Physical Science, 97(21):11149–11152, October 2000.

2. A.L. Barabasi. Linked: The New Science of Networks. Perseus Books Group, 2002.
3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill,

1990.
4. M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the Theory of

NP-Completeness. Freeman, 1979.
5. M. Newman. The structure and function of complex networks. SIAM Review, 45:167–256,

2003.
6. M. O’Kelly. A quadratic integer program for the location of interacting hub facilities. Euro-

pean Journal of Operational Research, 32:393–404, 1987.
7. J. Sohn and S. Park. The Single Allocation Problem in the Interacting Three-Hub Network.

Networks, 35:17–25, 2000.
8. D. J. Watts. Small Worlds: The Dynamics of Networks Between Order and Randomness.

Princeton University Press, 2004.

Efficient Exact Arithmetic over Constructive

Reals

Yong Li and Jun-Hai Yong

School of Software, Tsinghua University, Beijing 100084, P.R. China
exactreal@yahoo.com.cn

Abstract. We describe a computing method of the computable (or con-
structive) real numbers based on analysis of expressions. This method
take precision estimate into account in order to get a better algorithm
than Ménissier-Morain’s method, which is also based on the representa-
tion of constructive reals. We solve two problems which appear in exact
real arithmetic based on the representation of constructive reals. First, by
balancing every item’s precision in the expression, we can avoid unneces-
sary precision growth. Second, by distributing different weights to differ-
ent operations, we can make sure that complex operations do not waste
much time when to compute the whole expression. In these ways, we fi-
nally get a more efficient and proper method than prior implementations.

1 Introduction

The goal of exact arithmetic is to generate correct answers to numeric problems,
within some user-specified error. Generally speaking, floating-point numbers are
widely used to represent real numbers in computer systems, although the limita-
tions are quit obvious. For instance, the real numbers cannot be arbitrarily large
or small, and the rounding errors can lead to inaccurate or completely wrong
results. Some examples can be found in [1,2]. In order to solve these limitations,
many methods have been proposed, one of which is exact arithmetic that has
attracted more and more attentions in recent years.

Several methods have been developed for exact arithmetic which can supply
an approximation of the exact result that meets the user’s any requirement of
precise. V. Ménissier-Morain in [3] gives a brief introduction of these methods.
However, only two of them are practical and proved completely correct. One
is linear fractional transformation (LFT) which is mostly based on continued
fractions. In 1976, Gosper first introduced this mthod to calculate the opera-
tions of real numbers [4]. In 1989, Vuillemin implemented the arithmetic using
Lisp and improved this arithmetic in many ways [5]. In 2002, Edalat and Heck-
mann developed this arithmetic to LFT Framework [1] and they also supply an
implementation in Haskell and C, which is named IC-Reals. The other one , con-
structive reals, is based on Cauchy Sequences, a theory that is well established
by Bishop[6]. It can also be considered as a foundation of computable analysis.
Boehm and Lee first made use of this theory for the purpose of exact arithmetic
[7,8] and Boehm finished this algorithm using java [9]. Gowland and Lester in

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 440–449, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Exact Arithmetic over Constructive Reals 441

[10,11] showed us the correctness of an implementation based on fast binary
Cauchy sequence, which makes the base equal to 2. And they have described a
Haskell implementation in [10]. In addition, V. Ménissier-Morain in [3] proved a
similar algorithm whose base can be 2 or other integers which is bigger than 2.
Briggs implemented this paper’s algorithm using Python, C++, C respectively
[12]. Of course, there are also many other implementations and you can get more
information about exact real arithmetic in this survey [13]. But most of them
are deficient in the proof or integrality of algorithms.

Actually, all these methods can be converted into interval representations. But
different methods have different algorithms to calculate the operation concerning
real numbers. In that case their performances are also different. In terms of basic
operations, like addition, minus, multiplication and division, the second method
may be more efficient, which can be found in this competence result in 2000
[14]. However, LFT approach also has some merits that it can easily handle
irrational numbers [15,16], that Edalat argues its transcendental functions may
more efficient, and that under special circumstances continued fractions can solve
many problems which common representations is hard to handle. In this paper,
our interest focus on the amelioration of the second methods, that is constructive
reals. And we give new algorithms that solve two problems which can affect the
implementation’s performance. First, by balancing every item’s precision, we can
avoid unnecessary precision growth which is the first problem that has attracted
many attentions in [17,18]. Second, by distributing different weights to different
operations, we can make sure that complex operations do not waste most time
when to compute the whole expression which is the second problem that we
proposed.

The remaining part of the paper is arranged as follows. Related definitions and
algorithms about Cauchy sequences are briefly introduced in section 2. Problems
of present implementations based on Cauchy sequences are shown in section 3.
A new simple algorithm about addition, which considers balancing every item’s
precision, is proved in section 4. And a new algorithm about calculating the
expression that takes every operation’s complexity into consideration will be
given in section5. The experimental result and discussion are set in section 6.

2 Basic Definitions and Algorithms

We present some basic definitions and algorithms of computable real numbers,
which derived from Boehm, V. Ménissier-Morain, and Gowland’s work in [3,9,10].
First, we will show two definitions about the representation of real numbers.
Second, we will give two simple algorithms about addition and multiplication
that will help us understand the problem.

Definition 1. (Effective Cauchy sequences). A computable real number x is rep-
resented as an Effective Cauchy sequence, if there is an infinite computable se-
quence of rational numbers

{
n0
d0

, n1
d1

, . . . ,
np

dp
, . . . ,

}
, with di > 0, and a modulus

442 Y. Li and J.-H. Yong

of convergence function e : N → N which is recursive , such that ∀p ∈ N : k ≥
e(p)implies

∣
∣
∣x − nk

dk

∣
∣
∣ < 2−p.

In this definition, we use a sequence of rational numbers to represent the real
number. When we need to get a number which meets the precision requirement,
we can take a proper rational number from the sequence. In fact, we can get
an interval which is small enough to meet the error range and includes the true
value of the real number that is x ∈

(
nk

dk
− 2−p, nk

dk
+ 2−p

)
. But if we only want

to use integer arithmetic to finish this kind of exact real arithmetic, we should
do some changes.

Definition 2. (Fast Binary Cauchy Sequence) A computable real number x is
represented as a Fast Binary Cauchy Sequence if there is an infinite computable
sequence of integers{n0, n1, . . . , np, . . .}, such that |x − 2−pnp| < 2−p.

This definition makes a little change with respect to Definition 1. We can use a
sequence of integers to represent real number, which makes implementation only
use integer arithmetic and is not confined by floating-point numbers’ defects.
Some implementations using floating point, such as IRRAM [19], which is based
on real-RAMs, have faster speed. Although some real-RAMs can be realized ap-
proximately by floating point computations, real-RAMs cannot be realized by
physical machines, they are unrealistic [20]. But the way of construct reals is
completely accepted in that it only uses integer arithmetic. So in section 5 we do
not compare time with IRRAM which use floating-point arithmetic in implemen-
tation. In this definition, if the error range is 2−p, we can use np to represent the
real number x, which meets the requirement of x ∈ (2−pnp − 2−p, 2−pnp + 2−p).
In the rest of the article, we use x[p] to represent np.

Also, there are other similar definitions, in[3], they use the qualification of∣
∣
∣x − nk

dk

∣
∣
∣ < B−p where B ≥ 2 is some fixed integer, instead of

∣
∣
∣x − nk

dk

∣
∣
∣ < 2−p in

Definition 1. Obviously, modulating B can control the interval’s and the error
range. For example, if B is 10, we can get a sequence of error range:10−1, 10−2,
. . . , 10−p,If B is 2, we can get a sequence of error range:2−1, 2−2, . . . ,
2−p, . . . which is more flexible than B is 10 and can easily meet more error
requirements. In this paper, we only discuss our implementation based on B = 2
and these circumstances that B > 2 can be handled in the same thought.

Now we simply give some algorithms concerning addition and multiplication
which is widely used in [3,9,10] and is showed in [10]. These algorithms can help
us to illustrate our algorithms. Their proofs can be found in [10]. We suppose
that x,x1,x2 are real numbers and the required error range of x is 2−p which
means we need to get x[p].

Algorithm 1. (Addition of real numbers) Computing x = x1 + x2, we have
x[p]=round((x1[p + 2] + x2[p + 2])/4).

Algorithm 2. (Multiplication of real numbers) Computing x = x1 ∗ x2, we
have x[p]=round(2−(p+s1+s2)(n1n2)) where s1 = �log2(|x1[0]| + 2)� + 3 and
s2 = �log2(|x2[0]| + 2)� + 3.

Efficient Exact Arithmetic over Constructive Reals 443

3 Problems

Several authors have implemented the algorithms that are based on constructive
reals. We can divide them into two kinds. One is to use Functional language which
is easy and natural to implement exact real arithmetic in that we can regard a
real number as a function and the expression can be evaluated automatically.
However, this way is very slow and impractical in many applications. The other is
to use DAG (directed acyclic graph) to represent the expression about operations
between exact real numbers. For example, Figure 1 shows an expression based
on DAG. This way can be finished by using C language, which can get much
better performance and also is easier to use in other software. But both of them
suffer from several flaws.

In the first problem, with the increase of operations’ number, the original
algorithms fail to use proper precise of every real number. For example, we
want to compute x = x1 + x2 + x3 + x4 according to Algorithm 1. Its DAG
is figure 1, and when we want to get x[p], we need get x4[p + 2], x3[p + 4],
x2[p + 6], x1[p + 8] respectively. Obviously, when the items’ number is very
large we may need some items that have extremely small precision. However,
by scrutinizing this case carefully, we find it is not reasonable. If we consider
it from a prospect of expression we find if we want to get an approximation of
x up to the precision ε, we only need every item’ approximation up to ε/4. In
this case, we should balance every item’s precision to get a more proper means
to compute the expression. This problem has been proposed in [17,18], which
occurs in all exact real arithmetic based on Type2 theory [20]. In [18], the author
proposed that each item’s precision should be balanced to solve this problem.
But in special representation how to solve it is also a question. In this paper we
give the methods about constructive reals and give a proof in the follow section.

Fig. 1. A DAG for the expression x1 + x2 + x3 + x4

In the second problem, the original algorithm fails to take the complexity of
each operation into consideration. Obviously, computing one multiplication takes
more time than computing an addition when we need them to get the same preci-
sion which can be found in Algorithm 1 and Algorithm 2. The original algorithms

444 Y. Li and J.-H. Yong

are not concerned about making the precision of operation of multiplication as
large as possible. For instance, when we compute x = x1 + x2 ∗ x3, in order to
get x[p], a choice is to get x1[p + 2] and (x2 ∗ x3)[p + 2] which is an original
algorithm’s way. However, in terms of expression, we have many other ways.
For example, when we want to get an approximation of x up to the precision ε,
we also need x1’s approximation up to ε/4 and (x2 ∗ x3)’s approximation up to
3ε/4. In this case, the operation of addition will cost more time than the former
and the operation of multiplication will cost little time than the former. But we
think it is totally worthy because the multiplication is more complex.

In conclusion, original implementations do not consider the difference between
exact real arithmetic and traditional computation. Traditional computation can
use a common way to compute because they are not affected by error require-
ment. However, in exact arithmetic, distributing a proper precision to every item
is very important which can make computation more effective.

4 Addition Algorithm with Balanced Precision

Addition and subtraction are very important in exact arithmetic in that sum-
mation plays an important role in science computing. And addition and sub-
traction’s error analysis are also very easy to process. In this part we give an
algorithm to compute an expression only including addition. Subtraction can be
processed in a similar way in that it can be taken as a special addition.

Algorithm 3. Computing x = x1 + x2 + . . . + xn, where x, x1, x2,. . ., xn

are real numbers and the required of error range of x is 2−p which means we
need to get x[p], we have x[p]=round((x1[m]+x2[m]+ . . .+xn[m])2p−m). where
m = 	log2n + p + 1
.

Proof. We will prove that |x − 2−px[p]| = |x1 + x2 + . . . + xn − 2−px[p]| < 2−p

i.e.
2−p(x[p] − 1) < x1 + x2 + . . . + xn < 2−p(x[p] + 1) (1)

According to definition 2, we have

|x − (x1[m] + x2[m] + . . . + xn[m])2−m|, n2−m (2)

We make m = 	log2n + p + 1
 such that

1
2m

≤ 1
n2p+1

<
1

2m−1
(3)

According to (2) and (3), we get
|x − (x1[m] + x2[m] + . . . + xn[m])2−m| < n2−m ≤ 2−(p+1) and

|x − (x1[m] + x2[m] + . . . + xn[m])2p−m2−p| < 2−(p+1) (4)

Efficient Exact Arithmetic over Constructive Reals 445

Then according to round’s property, we have

|(x1[m] + x2[m] + . . . + xn[m])2p−m − round((x1[m] + x2[m] + . . . + xn[m])

2p−m)| ≤ 1
2

(5)

By multiplying 2−p, Formula (5) can be changed into:

|(x1[m] + x2[m] + . . . + xn[m])2−m − round((x1[m] + x2[m] + . . . + xn[m])

2p−m)2−p)| ≤ 2−(p+1)

(6)

Then we can use round((x1[m] + x2[m] + . . . + xn[m])2p−m) to replace (x1[m] +
x2[m] + . . . + xn[m])2p−m in Formula (4), we can get

|x − round((x1[m] + x2[m] + . . . + xn[m])2p−m)2−p| < 2−(p+1) + 2−(p+1) = 2−p

(7)
i.e.

|x − 2−px[p]| = |x1 + x2 + . . . + xn − 2−px[p]| < 2−p (8)

In this addition algorithm, we distribute the same precision to every item. For
example, if we want to get x[p] whose expression is shown in Figure 1, we only
need get x1[p + 3], x2[p + 3], x3[p + 3] and x4[p + 3] respectively. When n is a
very large number this way can evidently reduce many items’ precision required.
Compared with the original algorithm, this way is more proper in terms of
expression.

5 Algorithm with Precision Control

In section 4, we have solved the first problem that exits in constructive reals’
computation. In this section we will consider solving the second problem. From
what have been discussed, we can see that different operations have different
complexity. A sin’s operation is more complex than addition operation when is
computed to up to the same precision. Our solution is to distribute different
weight to single computation cell. The weight can control the precision that
operation needs. First, we introduce a definition of single computation cell.

Definition 3. (Single Computation Cell) A single computation cell is one of
these cases: 1. A real number that interacts with other items only with addition or
subtraction. 2. A result number that we get from operations except addition and
subtraction and it interacts with other SCCs only with addition or subtraction.

For example, when we want to deal with x1 + x2 ∗ x3 + sin x4 + x5 ∗ x6/x7, the
number x1, the result of x2 ∗ x3, the result of sin x4 and the result of x5 ∗ x6/x7

are SCCs. We can simply put x1’s weight is 1, x2 ∗ x3 is 4, sin x4 is 16 and

446 Y. Li and J.-H. Yong

x5 ∗ x6/x7 is 8. The value of weight is based on the compute complexity of the
SCC and is regulated to be the form of 2k, k ∈ N , which make our computation
convenient. We can compute single SCC use its original algorithm, but compute
the whole expression use our algorithm. Now we will show an algorithm that can
used to compute these expressions.

Algorithm 4. If we want to compute x = x1+x2+. . .+xnin order to meet some
error range 2−p, where xi’s weight is wi and every xi is a SCC, i = 1, 2, . . . , n.
We have x[p] = round(x1[m− log2w1]w12p−m + x2[m − log2w2]w22p−m + . . . +
xn[m − log2wn]wn2p−m) with m = 	−log2(2−(p+1)

w1+w2+...+wn
)
.

Proof. We will prove

|x − 2−px[p]| = |x1 + x2 + . . . + xn − 2−px[p]| < 2−p (1)

We make m = 	−log2(2−(p+1)

w1+w2+...+wn
)
 such that

(w1 + w2 + . . . + wn)2−m ≤ 2−(p+1) (2)

According to definition 2, we have

|x − (x1[m − log2w1]2log2w1−m + x2[m − log2w2]2log2w2−m + . . . + xn[m−
log2wn]2log2wn−m)| = |x − (x1[m − log2w1]w12−m + x2[m − log2w2]w22−m

+ . . . + xn[m − log2wn]wn2−m)| < (w1 + w2 + . . . + wn)2−m ≤ 2−(p+1)

(3)

It is similar to the addition’s proof above, we can get

|(x1[m − log2w1]w12−m + x2[m − log2w2]w22−m + . . . + xn[m − log2wn]

wn2−m) − round(x1[m − log2w1]w12p−m + x2[m − log2w2]w22p−m + . . . +

xn[m − log2wn]wn2p−m) < 2−(p+1)

(4)

According to (3) and (4), we can get |x−round(x1[m− log2w1]w12p−m +x2[m−
log2w2]w22p−m + . . .+xn[m− log2wn]wn2p−m)| < 2−(p+1) +2−(p+1) = 2−p that
is to say |x − x[p]| < 2−p.

For example, when we want to compute x = x1 + y1 ∗ y2 + x3 + x4 + x5 that is
x = x1 +x2 +x3 +x4 +x5, where x2 = y1 ∗ y2 and x1, x2, x3, x4, x5are SCCs. We
can appoint x1, x3, x4, x5’s weight to be 1 and x2’s weight to be 4. Then when
we need to get x[p], we should compute x1[p + 4], x2[p + 2], x3[p + 4], x4[p + 4],
x5[p + 4] which is more efficient than compute x1[p + 4], x2[p + 4], x3[p + 4],
x4[p+4], x5[p+4] that only use algorithm 3 to balance the precision. According
to Algorithm 2 we can get x2[p + 2], and then we use Algorithm 4 to compute
the whole expression.

Efficient Exact Arithmetic over Constructive Reals 447

6 Conclusions and Discussions

One of our aim is to avoid the unnecessary precision growth which has been
talked in [17,18], in this paper we supply Algorithm 3 to balance every item
in an expression including addition and subtraction. This way indeed improves
exact arithmetic’s speed. For example, we will do a computation that gets the
sum of the harmonics series

∑n
i=1

1
i . The Table 1 below shows Algorithm 3’s

performance is much better than xrc1.1 which is an implementation based on
V.Mnissier-Morain’s Algorithm [3]. The software xrc1.1 can be gotten from [21].

Table 1. Computing
�n

i=1
1
i

n result’sprecision xrc1.1(ms) Algorithm 3 (ms)

1000 100 9.641 4.92
1000 1000 77.377 10.948
1000 10000 168.708 161.989
5000 100 141.016 58.564
5000 1000 187.183 106.209
5000 10000 455.335 364.182
10000 100 373.373 81.788
10000 1000 446.627 150.112
10000 10000 956.082 619.227

Table 2. Computing
�n

i=1(
1

i∗(i+1) + 1
i
)

n result’sprecision xrc1.1(ms) Algorithm 3 (ms) Algorithm 4 (ms)

100 100 3.358 4.909 2.901
100 1000 11.811 10.911 10.256
1000 100 162.803 81.511 65.246
1000 1000 220.861 150.396 133.057
10000 100 19166.903 324.03 288.016
10000 1000 21070.736 900.51 894.279

But our way can only solve some of this problem. For example, x1 ∗ x2 ∗ x3

also should have a way to make sure that every item has the similar precision,
but because the result of multiplication’s interval is too complex we failed to get
an easy means just like we compute addition or subtraction. In the future, we
may find a way to completely solve this problem.

Another aim is to take into account the operation’s complexity which is first
introduced by us. We control every item’s precision according to its complexity.
In this way, we can improve the performance of the exact arithmetic furthermore.
For example, we will do a computation that gets the value of

∑n
i=1(

1
i∗(i+1) + 1

i).
The Table 2 shows that Algorithm 4 has a better performance than xrc1.1 and
Algorithm 3.

448 Y. Li and J.-H. Yong

There is also a question in this algorithm that how large the weight should
be. In our implementation, we can easily appoint it by ourselves according to
test many times basic operations and we also can adjust it according to need.

Acknowledgements. The research was supported by Chinese 973 Program
(2004CB719400), and the National Science Foundation of China (60403047,
60533070). The second author was supported by the project sponsored by a
Foundation for the Author of National Excellent Doctoral Dissertation of PR
China (200342), and a Program for New Century Excellent Talents in University
(NCET-04-0088).

References

1. A. Edalat, R. Heckmann, Computing with real numbers: (i) LFT approach to
real computation, (ii) Domain-theoretic model of computational geometry, Lecture
Notes in Computer Science, vol.2395, Springer, 2002, pp.193-267.

2. J. Blanck, Efficient exact computation of iterated maps, The Journal of Logic and
Algebraic Programming, vol.64, 2005, pp. 41-59.

3. V. Mnissier-Morain, Arbitrary precision real arithmetic: design and algorithms.
The Journal of Logic and Algebraic Programming, Vol.64, 2005, pp. 13-19.

4. W. Gosper, Continued fraction arithmetics, Technical Report HAKMEM Item
101B, Artificial Intelligence Memo 239, MIT, 1972.

5. Jen Vuillemin, Exact real computer arithmetic with continued fractions, IEEE
Transactions on Computers, Vol. 39, 1990, pp. 1087-1105.

6. E.Bishop, D.Bridges, Constructive Analysis, Springer-Verlag, 1985.
7. Hans-J. Boehm, Robert Cartwright, Mark riggle, and Michael J.O’Donnell, Exact

real arithmetic:A case study in higher order programming, In Proceedings of the
1986 Lisp and Functional Programming Conference, 1986, pp. 162-173.

8. V. Lee, Optimizing Programs over the Constructive Reals, PhD thesis, Rice Uni-
versity, 1991.

9. Hans-J. Boehm The constructive reals as a Java library, The Journal of Logic and
Algebraic Programming, vol.64, 2005, pp. 3-11.

10. P. Gowland, D. Lester, The correctness of an implementation of exact arithmetic,
in: Proceedings of the Fourth Conference on Real Numbers and Computers, 2000.

11. D. Lester, P. Gowland, Using PVS to validate the algorithms of an exact arithmetic,
Theoretical Computer Science, Vol. 291, 2003, pp. 203-218.

12. K. Briggs, Implementing exact real arithmetic in python, C++ and C, Theoretical
Computer Science, vol.351, 2006, pp. 74-81.

13. P. Gowland, D. Lester A survey of exact arithmetic implementations, Lecture Notes
in Computer Science, vol.2064, Springer, 2001, pp. 30-47.

14. J. Blanck, Exact real arithmetic systems:Results of competition, Lecture Notes in
Computer Science, vol.2064, Springer, 2001, pp.389.

15. A. Edalat, P. J. Potts, A new representation for exact real numbers, Electronic
Notes in Theoretical Computer Science, Vol.6, 1997, pp. 119-132.

16. P.J. Potts, Exact real arithmetic using M?bius transformations, PhD thesis, Impe-
rial College, 1999.

17. Branimir Lambov, RealLib:An Efficient Implementation of Exact Real Arithmetic,
http://www.bric.dk/ barnie/RealLib/, 2006.

Efficient Exact Arithmetic over Constructive Reals 449

18. Joris van der Hoeven, Computations with effective real numbers, Theoretical Com-
puter Science, vol.351, 2006, pp. 52-60.

19. Norbert Th. Mller, The iRRAM: Exact Arithmetic in C++. Lecture Notes in
Computer Science, vol.2064, Springer, 2001, pp. 222-252.

20. K. Weihrauch, An Introduction to Computable Analysis, Springer, 2000.
21. K. Briggs, xrc homepage, http://keithbriggs.info/xrc.html, 2005.

Bounding Run-Times of Local Adiabatic

Algorithms

M.V. Panduranga Rao

Department of Computer Science and Automation
Indian Institute of Science

Bangalore
India

pandurang@csa.iisc.ernet.in

Abstract. A common trick for designing faster quantum adiabatic al-
gorithms is to apply the adiabaticity condition locally at every instant.
However it is often difficult to determine the instantaneous gap between
the lowest two eigenvalues, which is an essential ingredient in the adi-
abaticity condition. In this paper we present a simple linear algebraic
technique for obtaining a lower bound on the instantaneous gap even
in such a situation. As an illustration, we investigate the adiabatic un-
ordered search of van Dam et al. [17] and Roland and Cerf [15] when
the non-zero entries of the diagonal final Hamiltonian are perturbed by
a polynomial (in log N , where N is the length of the unordered list)
amount. We use our technique to derive a bound on the running time
of a local adiabatic schedule in terms of the minimum gap between the
lowest two eigenvalues.

1 Introduction

Adiabatic Quantum Computation (AQC) has attracted a lot of interest in recent
times. First introduced by Farhi et al. [11], this paradigm of computing makes
use of the adiabatic theorem of quantum mechanics. Informally, the adiabatic
theorem says that if a physical system is in the ground state of an initial Hamil-
tonian that evolves “slowly enough” to a final Hamiltonian, with a non-zero gap
between the ground state and the first excited state of the Hamiltonian at all
times, then the probability that the system ends up in the ground state of the fi-
nal Hamiltonian approaches unity as the total time of evolution tends to infinity.
This fact is used for solving computational problems as follows. To begin with,
the system is in the ground state of a suitable Hamiltonian. This initial Hamil-
tonian is slowly evolved to a final Hamiltonian whose ground state represents
the solution to the problem. If the running time required for a high probability
of reaching the ground state of the final Hamiltonian is at most polynomial in
the size of the input, we have an efficient AQC algorithm for the problem. The
maximum rate at which the Hamiltonian can evolve at any instant without vio-
lating the adiabaticity condition depends inversely on square of the gap between

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 450–461, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounding Run-Times of Local Adiabatic Algorithms 451

the two instantaneous lowest eigenvalues. In many cases, it is difficult to esti-
mate the gap at every instant of the evolution. Then, we strike a compromise
by imposing a constant global delay schedule determined conservatively by the
minimum gap over the entire interval. However, if we do have an estimate of this
gap for the entire duration, we can apply the adiabaticity condition locally and
speed up the rate of evolution wherever possible.

In the early days of AQC, efforts were largely focused on adiabatic optimiza-
tion algorithms. Given a function φ : {0, 1}n → R, the problem is to find an
x ∈ {0, 1}n that minimizes φ.

van Dam et al. [17] and Roland and Cerf [15] demonstrated the quantum
nature of AQC by showing a quadratic speed-up for unordered search, matching
Grover’s discrete algorithm [12].

However, any adiabatic quantum computer can be efficiently simulated by a
standard quantum computer [17]. Applications of AQC techniques to small sized
random instances of several NP complete problems like EXACT-COVER [8,9],
CLIQUES [6] and SAT [8,9,11] have been explored with some success. Aharonov
et al. [1] generalized this model by considering local1 final Hamiltonians instead
of only diagonal ones and showed that this generalized model can efficiently
simulate any discrete quantum computation. Thus, in this general sense, AQC
is equivalent to discrete quantum computation.

Adiabatic quantum computation is particularly interesting because of indi-
cations that it is more resilient to decoherence and implementation errors than
the discrete model. While most schemes for implementing AQC oracles involve
approximating them by a sequence of discrete unitary gates [3,17], robustness
of potential implementations of the time-dependent Hamiltonians has also been
studied. For example, Childs et al. [7] considered errors due to environmental
decoherence and imperfect implementation in the latter approach. If the time
dependent algorithm Hamiltonian is H(t), they considered the actual Hamil-
tonian to be H(t) + K(t), where K(t) is an error Hamiltonian. In particular,
K(t) can be a perturbation in the final Hamiltonian. Through numerical simula-
tions, they demonstrated robustness of AQC for small instances of combinatorial
search problems against such errors. Åberg et al. [4,5] investigated robustness
to decoherence in the instantaneous eigenvectors for local [5] and global adia-
batic quantum search [4]. They showed that as long as Hamiltonian dynamics is
present, asymptotic time complexity is preserved in both local and global cases.
However, in case of pure decoherence, the time complexity of local search climbs
to that of classical. For global evolution, it becomes costlier than classical: N

3
2 ,

where N is the size of the list.
In this paper, we show how to use simple results from linear algebra to obtain

bounds on the running time of algorithms that obey the adiabaticity condition
locally. The technique is useful when the gap between the two lowest eigenvalues
is not known at every instant of the evolution. As an illustration and running
example, we investigate the behaviour of the eigenvalue spectrum when the final

1 A Hamiltonian is said to be local if it involves interactions between only a constant
number of particles.

452 M.V.P. Rao

oracle Hamiltonian for the unordered search problem is perturbed in all non-zero
elements by an amount at most polynomial in log N .

In the unperturbed case, the gap between the lowest two eigenvalues is speci-
fied at every instant by a nice closed form expression [15,17]. This makes it rather
easy to apply local adiabaticity. Perturbation deprives us of this facility. We show
a work-around by lower-bounding the gap between the two lowest eigenvalue
curves with straight lines whose slopes are obtained using the Wielandt-Hoffman
theorem from the eigenvalue perturbation theory of symmetric matrices. The
schedule can then be adjusted to satisfy the adiabaticity condition locally. The
bound obtained by our method is commensurate with existing results–we ob-
tain only a polynomial speed-up over the global algorithm [10,16,18,19]. Tighter
bounds on eigenvalue perturbations will possibly yield Grover speed-up, indi-
cating the resilience of the adiabatic algorithm to perturbations in the final
Hamiltonian. However, we believe that the techniques that we introduce in this
paper can be applied in other AQC settings as well.

The paper is arranged as follows. The next section gives a brief discussion of
the adiabatic quantum computing paradigm. Section 3 discusses the adiabatic
search problem and its perturbed version. In section 4.1 we show that for the
Hamiltonian in question, there exists a non-zero gap between the two lowest
eigenvalues at all times. The proof largely follows that of Rao [14], simplified for
the present case. However the minimum gap turns out to be exponentially small,
and therefore a global schedule is of limited value. In section 4.2 we show our
method to obtain a local schedule that provides a polynomial speed-up. Section 5
concludes the paper.

2 Preliminaries

In this section we give a brief overview of the adiabatic gap theorem and its
application to quantum computing. For details the reader is referred to the
text by Messiah [13]. Let H(s), (0 ≤ s ≤ 1), be a time dependent single-
parameter Hamiltonian for a system having an N dimensional Hilbert space.
Let the eigenstates of H(s) be given by |l; s〉 and the eigenvalues by λl(s), with
λ0(s) ≤ λ1(s) ≤ . . . ≤ λN−1(s) for 0 ≤ s ≤ 1. Suppose we start with the initial
state of the system |ψ(0)〉 as |0; 0〉 (the ground state of H(0)) and apply the
Hamiltonian H(s), 0 ≤ s ≤ 1, to evolve it to |ψ(1)〉 at s = 1. Then the quan-
tum adiabatic theorem states that for a “large enough” delay, the final state
of the system |ψ(1)〉 will be arbitrarily close to the ground state |0; 1〉 of H(1).
Specifically, |〈0; 1|ψ(1)〉|2 → 1 if the delay schedule τ(s) satisfies the adiabaticity
condition at every s:

τ(s) � || d
dsH(s)||2
g(s)2

, (1)

where g(s) is the gap between the two lowest eigenvalues at s. In case g(s) is
difficult to determine for every s, which is the case with most Hamiltonians, we
impose a more conservative global delay schedule for the entire duration T of
the evolution:

Bounding Run-Times of Local Adiabatic Algorithms 453

T � max0≤s≤1 || d
dsH(s)||2

g2
min

, (2)

where gmin = min0≤s≤1(λ1(s) − λ0(s)). However, if we do have an estimate of
g(s) for every s, we can use a varying delay schedule that satisfies the adiabaticity
condition locally at every instant 0 ≤ s ≤ 1. Then we can reduce the running
time to ∫ 1

s=0

|| d
dsH(s)||2ds

g(s)2
. (3)

If H(s) is a polynomial-sized linear interpolation, || d
dsH(s)||2 is a polynomial-

sized quantity independent of s and the running time is of the order
∫ 1

s=0
ds

g(s)2 .

3 Perturbed Unordered Search

Consider a list of N = 2n elements, say bit-strings from {0, 1}n. The unordered
search problem may be stated as follows. Given a function g : {0, 1}n → {0, 1}
such that g(u) = 0 for a special element u and 1 for all others, find u. While any
classical algorithm requires O(N) queries to g, Grover’s celebrated “discrete”
quantum algorithm accomplishes the search in O(

√
N) queries only [12]. A simi-

lar speed-up was demonstrated by van Dam et al. [17] and Roland and Cerf [15]
for this problem with AQC, which we discuss now. To begin with, note that the
initial Hamiltonian H(0) should be independent of the solution, with the restric-
tion that it should not be diagonal in the computational basis [17]. Moreover,
the ground state of the initial Hamiltonian should be a uniform superposition of
all candidate solutions and easy to prepare. The following Hamiltonian satisfies
the above conditions for searching an unordered list [17,15]:

H(0) =
∑

z∈{0,1}n\0n

|ẑ〉〈ẑ|, (4)

where each |ẑ〉 is a basis vector in the ‘Hadamard’ basis given by

|ẑ〉 =
1√
2n

(
1 1
1 −1

)⊗n

|z〉

and the ground state is 1√
2n

∑
z∈{0,1}n |z〉, which is easy to construct. The final

Hamiltonian, then, is
∑

z∈{0,1}n\u |z〉〈z|.
In this paper, we consider the case when the final Hamiltonian is perturbed

in the non-zero entries. In other words, the final Hamiltonian is given by

H(1) =
∑

z∈{0,1}n

f(z)|z〉〈z|,

where {|z〉} form the “computational basis” of the Hilbert space of the system
and f : {0, 1}n → Rpoly(n) is a function that behaves as follows. f(u) = 0 for a

454 M.V.P. Rao

special element u ∈ {0, 1}n. For all other elements z, f(z) > 0. The problem is
to minimize f , that is, to find u.

Given the initial and final Hamiltonians, define the interpolating Hamiltonian
as

H(s) = (1 − s)H(0) + sH(1). (5)

We start in the ground state of H(0) and evolve to H(1) slowly enough and
end up in its ground state. Since f(z) is bounded by a polynomial in n for all
z ∈ {0, 1}n, so is || d

dsH(s)||2. The factor deciding the running time is therefore
the denominator g2

min.

4 The Bounds

In what follows, we will assume f(z) 	= f(z′) for z 	= z′. The motivation for this
assumption is two-fold: first, it makes for a neater presentation of our technique;
secondly, given the random nature of noise and implementational error, it is
reasonable to assume that no two non-zero elements of the diagonal will be
perturbed by the same amount. For the case when there do exist z 	= z′ such
that f(z) = f(z′), the subsequent discussion requires only minor modification.

4.1 Global Evolution

By the nature of H(s), the characteristic equation is independent of the permuta-
tions of the diagonal elements of the final Hamiltonian. Therefore, without loss of
generality, we will follow the convention that f(u) = 0 < f(z1) < . . . < f(zN−1).
First, we make sure that the gap between the two lowest eigenvalues is non-zero
at all times. For that, we evaluate the characteristic equation of H(s), in much
the same way as in lemma 1 of [14], and [19].

Lemma 1. The characteristic equation of H(s) is

c(λ) = (1−s−λ)

[
∏N−1

k=1 (1−s+sf(zk)−λ
)− 1−s

N

∑N−1
j=1

�N−1
k=1

(
1−s+sf(zk)−λ

)

1−s+sf(zj)−λ

]

−
1−s
N

∏N−1
k=1

(
1 − s + sf(zk) − λ

)
= 0.

Proof. To evaluate the eigenvalue curves, we evaluate |H(s)−λI| = 0. Subtract-
ing the last column of this determinant from all other columns and using x0 for
1−s−λ, x1 for 1−s+sf(z1)−λ and so on, up to xN−1 for 1−s+sf(zN−1)−λ,
we have ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

x0 0 0 − (1−s)
N

0 x1 0 − (1−s)
N

... 0
. . .

... xN
2 −1

...
−xN−1 −xN−1 . . . −xN−1 (xN−1 − (1−s)

N)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
N×N

= 0.
Expanding this determinant gives the required characteristic equation. �

Bounding Run-Times of Local Adiabatic Algorithms 455

The following lemma is reminiscent of lemma 2 of [14], and [19]. We provide a
somewhat simpler proof for the present case.

Lemma 2. There exists exactly one root (i.e. an eigenvalue curve) of the char-
acteristic equation in the intervals (0, 1− s), (1− s, 1− s + sf(z1)), . . ., (1− s +
sf(zN−2), 1 − s + sf(zN−1)); for 0 < s < 1.

Proof. For any interval, let the cl(λ) and cu(λ) denote the value of the charac-
teristic polynomial at the lower and upper boundary respectively.

We analyze the problem as three cases:

(1) The interval (0, 1 − s):

In this case, cl(λ)=(1−s)

[
∏N−1

k=1 (1−s+sf(zk))−1−s
N

∑N−1
j=1

�N−1
k=1

(
1−s+sf(zk)

)

1−s+sf(zj)

]

−
1−s
N

∏N−1
k=1

(
1−s+sf(zk)

)
. This is a positive quantity for s ∈ (0, 1), as can easily

be verified. Moreover, cu(λ) = − 1−s
N

∏N−1
k=1 sf(zk) is negative. Therefore, there

exists a root in the interval (0, 1 − s) for 0 < s < 1.
(2) The interval (1 − s, 1 − s + sf(z1)):
Clearly, cl(λ) for this interval is same as cu(λ) of the previous case, which is

negative. But cu(λ) = −sf(z1)

[

− 1−s
N

∏N−1
k=2 s(f(zk)−f(z1))

]

is positive. Thus,

there exists at least one root in this interval also.
(3) The intervals (1 − s + sf(zi), 1 − s + sf(zi+1)), 1 ≤ i ≤ N − 2:
The values of the characteristic polynomial at the boundaries are respectively

cl(λ) = −sf(zi)

[

− 1−s
N

∏i−1
k=1 s(f(zk) − f(zi))

∏N−1
k=i+1 s(f(zk) − f(zi))

]

and

cu(λ) = −sf(zi+1)

[

− 1−s
N

∏i
k=1 s(f(zk)−f(zi+1))

∏N−1
k=i+2 s(f(zk)−f(zi+1))

]

.

Notice that in either case, every element in the first product is negative and
that in the second is positive. This is because f(zk) < f(zi) for 1 ≤ k ≤ i − 1
and f(zk) > f(zi) for i + 1 ≤ k ≤ N − 1. Therefore, the over-all sign is decided
by the number of elements in the first product only. But the number of such
elements in cl(λ) and cl(λ) differ by one. Thus cl(λ) and cu(λ) differ in sign.
Therefore, there exists a root in each of these intervals.

Hence, there is a root in each interval. Given that (i) there are N open intervals
bounded by N straight line eigenvalue curves, (ii) there is at least one root in
each interval and (iii) there are N roots in all, the lemma follows. �

By virtue of the above lemma, we can speak of one curve being “above” another.
We label the curves as λ0(s), λ1(s), . . . , λN−1(s), starting from below. Thus,
λ0(s) lies between the lines λ(s) = 0 and λ1(s). See figure 1 for example.

As a consequence of the above lemma, we are guaranteed a non-zero gap
between λ0(s) and λ1(s) for all s ∈ [0, 1].

456 M.V.P. Rao

0.2 0.4 0.6 0.8 1

2

4

6

8

Fig. 1. Example Eigenvalue Curves

What about the minimum gap between λ0(s) and λ1(s)? It turns out that
this gap is exponentially small [19]. Making use of the properties of the present
problem, we arrive at this conclusion in a different manner.

We first discuss the case when f(z1) is large, say greater than 1. Consider

the characteristic polynomial c(λ) = (1 − s − λ)

[
∏N−1

k=1 (1 − s + sf(zk) − λ
) −

1−s
N

∑N−1
j=1

�N−1
k=1

(
1−s+sf(zk)−λ

)

1−s+sf(zj)−λ

]

− 1−s
N

∏N−1
k=1

(
1 − s + sf(zk) − λ

)
.

By lemma 2, the line λ(s) = 1 − s separates λ0 and λ1. Thus, if

(i) there exists an s0 where the above polynomial is divisible by two “(1−s0−λ)
factors” and

(ii) all other curves (λ2(s) through λN−1(s)) are at least an inverse polynomial
distance above the point (s0, 1 − s0),

it would imply that λ0(s0) and λ1(s0) are exponentially close to the line
λ(s) = 1 − s, and in turn, to each other.

Clearly, points very close to s = 0 are not candidates, as there are too many
curves in the vicinity. Points close to s = 1 are also ruled out, as there is only
one (1 − s − λ) factor, corresponding to the curve λ0(s): λ1(s) is f(z1) units
above.

Consider a candidate point s0 = 1
p(n) where p(n) is a polynomial in n such that

p(n) > maxk(f(zk)). At s0 = 1
p(n) , λ2 > 1+ f(z1)−1

p(n) . Thus, by lemma 2, all curves
above λ2(s) are at least an inverse polynomial distance above 1− s0 = 1− 1

p(n) .
Notice that the polynomial can be divided by one (1 − s − λ) factor at an s

such that 1−s
N

∏N−1
k=1

(
1 − s + sf(zk) − λ

) → 0. Let us test the candidate point
s0. Substituting 1 − s for λ and 1

p(n) for s, we get p(n)−1
Np(n)

∏N−1
k=1

(f(zk)
p(n)

)
, which

indeed tends to zero. Therefore, the existence of one (1 − s − λ) factor at s0

Bounding Run-Times of Local Adiabatic Algorithms 457

has been established. Let us now see if there exists another. On dividing the

polynomial by (1 − s0 − λ) at s0 = 1
p(n) , we obtain c(λ) =

[
∏N−1

k=1
f(zk)
p(n) −

p(n)−1
Np(n)

∑N−1
j=1

�N−1
k=1

f(zk)
p(n)

f(zj)
p(n)

]

, which tends to zero.

Suppose now that f(z1) is “small”. If f(z1) is a constant independent of n
or even O(1

poly(n)), the argument given above holds exactly. However, if f(z1) is
greater than zero by only an exponentially small quantity, the two (1 − s − λ)
factors that we obtained in the above discussion could correspond to λ2(s), thus
leaving the possibility of λ0(s) being at a larger distance below λ(s) = 1 − s.
But this is not the case. Since by assumption λ2(s) is exponentially close to the
line λ(s) = 1−s, it can be factored out from the polynomial, leaving two factors
that correspond to λ0(s) and λ1(s).

Thus, it turns out that the minimum gap is too small to yield any significant
speed-up for a constant rate global adiabatic algorithm.

4.2 Local Evolution

We will now obtain an upper bound on
∫ 1

s=0
d(s)
g(s)2 where g(s) = λ1(s)−λ0(s), for

local evolution. To that end, the following result from the perturbation theory
of real symmetric matrices will be useful.

Theorem 1. Wielandt-Hoffman Theorem (WHT): Let A and E be real symmet-
ric matrices and let Â = A+E. Let the eigenvalues of A be λ0 ≤ λ1 ≤ . . . ≤ λN−1

and those of Â be λ̂0 ≤ λ̂1 ≤ . . . ≤ λ̂N−1.
Then

N−1∑

j=0

(λj − λ̂j)2 ≤
N−1∑

i=0

N−1∑

j=0

|Eij |2. (6)

�

Let E of WHT be the ‘perturbation matrix’ H(s + ds)−H(s). This provides us
with the r.h.s. of (6):

(N − 1
N

)2

(ds)2 +
N − 1

N
(ds)2 +

N−1∑

k=1

(
f(zk) − N − 1

N

)2

(ds)2.

For the l.h.s., note that λ1(s) . . . λN−1(s) are N − 1 non-crossing curves packed
inside a polynomially bounded gap and each curve is bounded by two straight
lines by lemma 2.

Thus, there are at most a polynomial q(n) number of the gaps f(zi)−f(zi−1)
that are at least inverse polynomially wide. All other curves are packed between
the straight lines λ = (f(zi)− 1)s + 1 and λ = (f(zi−1)− 1)s + 1 where f(zi)−
f(zi−1) = O(nc

N) for a constant c. Therefore the slopes of these curves can be
approximated by the slopes of one of the enclosing lines. Hence, the l.h.s. is

458 M.V.P. Rao

dλ2
0 + dλ2

i1 + . . . + dλ2
iq(n)

+
∑

k∈{1,...,N−1}\{i1,...,iq(n)}
(f(zk) − 1)2(ds)2.

Substituting in 6, we get an upper bound on dλ2
0 + dλ2

i1 + . . . + dλ2
iq(n)

. In
particular, this is also an upper bound on dλ0

ds and dλ1
ds .2 This can be used to

obtain an upper bound on the total time required, as we will see soon.
We illustrate the technique for the case when q(n) = 1 and f(z1) ≥ 1.

Lemma 3. If q(n) = 1 and f(z1) ≥ 1,

(
dλ0(s)

ds

)2

+
(

dλ1(s)
ds

)2

≤ (f(zN−1) − 1)2 + 2n +
2
N

N−2∑

k=1

f(zk). (7)

Proof. By the preceding argument, the l.h.s. of 6 is given by
∑N−2

k=1 (f(zk) − 1)2(ds)2 + (dλ0(s))2 + (dλ1(s))2. Substituting in equation 6,
we get
∑N−2

k=1 (f(zk) − 1)2(ds)2 + (dλ0(s))2 + (dλ1(s))2

≤ (N−1
N)2(ds)2 + N−1

N (ds)2 +
∑N−1

k=1 (f(zk) − N−1
N)2(ds)2.

Rearranging some terms we get,
(dλ0

ds)2 + (dλ1
ds)2 ≤ (N−1

N)2 + N−1
N + (f(zN−1) − N−1

N)2

+
∑N−2

k=1

(
(f(zk) − N−1

N)2 − (f(zk)s − N−1
N)2

)2.
Or,
(dλ0

ds)2 +(dλ1
ds)2 ≤ (N−1

N)2 + N−1
N +(f(zN−1)s− N−1

N)2 + 1
N

∑N−2
k=1 (2n+2f(zk)−

2N−1
N).
Simplifying and ignoring small terms, we get

(dλ0

ds

)2

+
(dλ1

ds

)2

≤ (f(zN−1) − 1)2 + 2n +
2
N

N−2∑

k=1

f(zk). �

The lemma implies that |dλ0
ds |, |dλ1

ds | ≤
√

(f(zN−1) − 1)2 + 2n + 2
N

∑N−2
k=1 f(zk).

Using this, we will estimate g(s) = λ1(s) − λ0(s). We conservatively ap-
proximate λ0(s) and λ1(s) by straight lines to get a lower bound on g(s) =
λ1(s) − λ0(s).

We divide the interval [0, 1] into three parts [0, a], [a, b] and [b, 1], correspond-
ing to the parts when λ0 approaches λ = 1 − s, when both λ0 and λ1 are close
to λ = 1 − s, and when λ1(s) rises away from λ = 1 − s respectively.

Consider the first interval. Suppose l10(s) and l11(s) are lines such that l10(s) ≥
λ0(s) and l11(s) ≤ λ1(s). Then the gap between these lines is a lower bound on
λ1(s) − λ0(s) in the interval (0, a).
2 A similar bound can be obtained using a general result of Ambainis and Regev ([2],

Lemma 4.1). Nevertheless, we presented a different way to demonstrate the possibil-
ity of problem specific approaches which can yield tighter bounds than the general
one.

Bounding Run-Times of Local Adiabatic Algorithms 459

b

1
f(z)

1

a

Fig. 2. Bold lines show actual eigenvalue curves and the dashed lines show lines that
are assumed to bound the gap

Denote
√

(f(zN−1) − 1)2 + 2n + 2
N

∑N−2
k=1 f(zk) − 1 by m. We take l10(s) =

ms and l11(s) = 1 − s. Thus, the gap in the first interval is given by g1(s) ≥
1− s−ms. Similarly, for the third interval, we choose l30(s) = 1− s and l31(s) =
ms − m + f(z1). Therefore, the gap g3(s) in this interval is greater than ms −
m + f(z1) − (1 − s). We will conservatively take the gap in the entire second
interval to be gmin. See figure 2 for a rough sketch.

Let a be specified by a point on l10(s) = ms that lies vertically below the line
λ = 1 − s by a distance gmin. Thus, a = 1−gmin

m+1 . Similarly, b is specified by a
point on the line l31(s) = ms−m + f(z1) that is above λ = 1− s by gmin. Then,
b = m+1−f(z1)+gmin

m+1 .
For the gap g2(s), recall that one of λ0 and λ1 is away from the line 1− s by

a margin of gmin. Since this gives the deviation of only one of λ0 and λ1 from
1 − s, this is a conservative estimate of g2(s).

Therefore the total delay factor is given by

T �
∫ a

0

ds

g1(s)2
+

∫ b

a

ds

g2(s)2
+

∫ 1

b

ds

g3(s)2

≤
∫ a

0

ds
(
1 − s(1 + m)

)2 +
1

g2
min

∫ b

a

ds +
∫ 1

b

ds
(
(m + 1)(s − 1) + f(z1)

)2

=
1

m + 1

(1
gmin

− 1
)

+
m + 2gmin − f(z1)

g2
min(m + 1)

+
1

m + 1

(1
gmin

− 1
f(z1)

)

≈ m − f(z1)
(m + 1)g2

min

.

Let us summarize:

460 M.V.P. Rao

Theorem 2. Let the non-zero elements of the final Hamiltonian of the local adi-
abatic search algorithm be f(z1) 	= f(z2) 	= f(zN−1), where each f(zi) is of size
at most O(log N). Then, the time taken to evolve to the solution state of the final

Hamiltonian is O(D m−f(z1)
(m+1)g2

min
), where m=

√
(f(zN−1)−1)2+2n+ 2

N

∑N−2
k=1 f(zk)−1,

gmin = min0≤s≤1(λ1(s) − λ0(s)), and D = || d
dsH(s)||2. �

To obtain tighter upper bounds on the running time, we would require the
interval b − a to be shorter: short enough to balance the denominator g2

min in
the second term. This in turn requires tighter bounds on dλ0

ds and dλ1
ds .

5 Conclusions

We introduced a technique for obtaining upper bounds on the running time
of adiabatic quantum algorithms if the eigenvalue spectrum behaves in certain
ways. We used this technique to investigate the robustness of the adiabatic quan-
tum algorithm for unordered search when the final Hamiltonian is perturbed in
the non-zero entries. Interesting open problems include tightening of the bounds,
and application of our technique to other quantum adiabatic algorithms.

References

1. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev. Adi-
abatic quantum computation is equivalent to standard quantum computation. In
Annual IEEE Symposium on Foundations of Computer Science, pages 42–51, 2004.

2. A. Ambainis and O. Regev. An elementary proof of the quantum adiabatic theorem,
2004.

3. M. Andrecut and M. K. Ali. Adiabatic quantum oracles. Journal of Physics A:
Mathematical and General, 37:L421–L427, 2004.

4. J. Åberg, D. Kult, and E. Sjöqvist. Quantum adiabatic search with decoherence
in the instantaneous energy eigenbasis. Physical Review A, 72(042317), 2005.

5. J. Åberg, D. Kult, and E. Sjöqvist. Robustness of the adiabatic quantum search.
Physical Review A, 71(060312(R)), 2005.

6. A. M. Childs, E. Farhi, J. Goldstone, and S. Gutmann. Finding cliques by quantum
adiabatic evolution. Quantum Information and Computation, 2(3):181–191, 2002.

7. A. M. Childs, E. Farhi, and J. Preskill. Robustness of adiabatic quantum compu-
tation. Physical Review A, 65(012322), 2002.

8. E. Farhi, J. Goldstone, and S. Gutmann. A numerical study of the performance
of a quantum adiabatic evolution algorithm for satisfiability. quant-ph/0007071,
2000.

9. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A
quantum adiabatic evolution algorithm applied to random instances of an NP-
complete problem. Science, 292(5516):472–476, 2001.

10. E. Farhi, J. Goldstone, S. Gutmann, and D. Nagaj. How to make the quantum
adiabatic algorithm fail. quant-ph/0512159, 2005.

11. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by
adiabatic evolution. arXiv:quant-ph/0001106, 2002.

Bounding Run-Times of Local Adiabatic Algorithms 461

12. L. Grover. Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters, 79(2):325–328, 1997.

13. A. Messiah. Quantum Mechanics. John Wiley and Sons, New York, 1958.
14. M. V. Panduranga Rao. Solving a hidden subgroup problem using the adiabatic

quantum computing paradigm. Physical Review A, 67:052306, 2003.
15. J. Roland and N. Cerf. Quantum search by local adiabatic evolution. Physical

Review A, 65(042308), 2002.
16. G. Schaller, S. Mostame, and Ralf Schutzhold. General error estimate for adiabatic

quantum computing. Physical Review A, 73:062307, 2006.
17. W. van Dam, M. Mosca, and U. V. Vazirani. How powerful is adiabatic quantum

computation?. In Annual IEEE Symposium on Foundations of Computer Science,
pages 279–287, 2001.

18. Z. Wei and M. Ying. Quantum adiabatic evolutions that can’t be used to design
efficient algorithms. arXiv:quant-ph/0604077, 2006.

19. M. Znidaric and M. Horvat. Exponential complexity of an adiabatic algorithm for
an NP-complete problem. Physical Review A, 73:022329, 2006.

A Note on Universal Composable Zero

Knowledge in Common Reference String Model�

Andrew C.C. Yao1, Frances F. Yao2, and Yunlei Zhao3,��

1 Center of Advanced Study, Tsinghua University, Beijing, China
andrewcyao@tsinghua.eud.cn

2 Department of Computer Science, City University of Hong Kong, Hong Kong, China
csfyao@cityu.edu.hk

3 Software School, Fudan University, Shanghai 200433, China
ylzhao@fudan.edu.cn

Abstract. Pass observed that universal composable zero-knowledge
(UCZK) protocols in the common reference string (CRS) model, where
a common reference string is selected trustily by a trusted third party
and is known to all players, lose deniability that is a natural property of
any ZK protocol in the plain model [33]. An open problem (or, natural
query) raised in the literature is: are there any other essential security
properties, other than the well-known deniability property, that could
be lost by universal composable zero-knowledge in the common refer-
ence string model, in comparison with UC security in the plain model?
In this work, we answer this open question (or, natural query), by show-
ing that UCZK protocols in the CRS model could lose concurrent general
composability (CGC) and proof of knowledge (POK) properties that are
very important and essential security implications of UCZK in the plain
model. This is demonstrated by concrete attacks.

1 Introduction

Universal composability (UC) is a powerful notion proposed by Canetti [6] to
describe cryptographic protocols that behave like ideal functionality, and can be
composed in arbitrary way. The salient feature of UC secure protocol is that
its security preserves even when it is composed with any arbitrary protocols
(unpredictable environment) concurrently in asynchronous networks. In such
settings, a protocol execution may run concurrently with an unknown number
of other protocols. These arbitrary protocols may be executed by the same parties
or other parties, they may have potentially related inputs and the scheduling of
message delivery may be adversarily coordinated. Furthermore, the local outputs
of a protocol execution may be used by other protocols in an unpredictable way.
� The work described in this paper was supported in part by a grant from the Research

Grants Council of the Hong Kong Special Administrative Region, China (Project
Number CityU 122105) and CityU Research Grant (9380039) and 973 project of
China (No. 2007CB807901).

�� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 462–473, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Note on Universal Composable Zero Knowledge 463

In the framework of UC security, a generic definition is given for what it means
for a protocol to “securely realize a given ideal functionality”. Here, an “ideal
functionality” is a set of instructions for a “trusted party” that obtains the inputs
of the participants and provides them with the desired outputs. Informally, a
protocol securely carries out a given ideal functionality if no adversary can gain
more advantages from an attack on a real execution of the protocol, than from
an attack on an ideal process where the parties merely hand their inputs to a
trusted party with the appropriate functionality and obtain their outputs from
it (without any other interaction). In other words, it is required that a real
execution can be emulated in the ideal process.

Traditionally, emulation means that for any probabilistic polynomial-time
(PPT) adversary A attacking a real protocol execution, in which A controls
the communication channels and potentially corrupts parties, there should exist
an “ideal process adversary” or simulator S that causes the outputs of the par-
ties in the ideal process to be essentially the same as the outputs of the parties
in a real execution. In the UC framework, an additional adversarial entity Z,
called the environment, is introduced. As is hinted by its name, Z represents the
external environment that consists of arbitrary protocol executions that may
be running concurrently with the given protocol. This environment generates
the inputs to all parties, read all outputs, and in addition interacts with the
adversary in an arbitrary way throughout the computation. Then, a protocol is
said to UC realize a given ideal functionality F if for any “real-life” adversary
A there exists an “ideal-process adversary” S, such that no environment Z can
tell whether it is interacting with A and parties running the protocol, or with
S and parties interacting with F in the ideal process. (In a sense, here Z serves
as an “interactive distinguisher” between a run of the protocol and the ideal
process with access to F). One salient and advantageous feature of UC security
is the implication of concurrent general composability (CGC), i.e., composability
concurrently with arbitrary protocols or unpredictable environment.

Zero-knowledge (ZK) protocols allow a prover to validate theorems to a ver-
ifier without giving away any other knowledge other than the theorems being
true (i.e., existing witnesses). This notion was introduced by Goldwasser, Micali
and Rackoff [23] and its generality was demonstrated by Goldreich, Micali and
Wigderson [22]. Since its introduction ZK has found numerous and extremely
useful applications, and by now has been playing the central role in modern
cryptography.

The concept of “proof of knowledge (POK)” was informally introduced in [23],
and was formally treated in [4,19,5]. POK systems, especially zero-knowledge
POK (ZKPOK) systems, play a fundamental role in the designing of crypto-
graphic schemes and protocols, and enable a formal complexity theoretic treat-
ment of what does it mean for a machine to “know” something. Very roughly,
by “proof of knowledge” we mean that a possibly malicious prover can convince
that an NP statement is true if and only if it, in fact, “knows” (i.e., possesses) a
witness to the statement (rather than only convincing the language membership
of the statement, i.e., the fact that a corresponding witness exists).

464 A.C.C. Yao, F.F. Yao, and Y. Zhao

Clearly, achieving US secure protocols, in particular UCZK protocols, would
be highly desirable in modern cryptography, especially for cryptographic proto-
cols running over Internet. We note that UCZK implies POK besides the above
general CGC security implication in the plain model. In general, it has been
shown that any ideal functionality can be UC realized, as long as a majority
of players are assumed to be honest [6]. But, for the more general case where
a majority of players may be corrupted (in particular, for the important case
of two-party protocols where each player wishes to maintain its security even
if the other player is corrupted), it is shown that large classes of functionali-
ties, in particular most two-party protocols, cannot be UC realized in the plain
model where no trusted setup is assumed [6,9,10,29,31]. The impossibility results
of [6,9,10] is further shown to be hold for any definition that implies security
under the composition operation considered by the UC framework. Therefore,
in the natural setting of no trusted setup and no honest majority (including
the important two-party case), it is impossible to obtain security in a setting
where protocols are run concurrently with arbitrary other protocols. Therefore,
whenever this level of security is desired, some setup assumptions are necessary.

The typical setup assumption (in particular, considered in this work) is the
common reference string (CRS) model (we note that our observations also apply
to the public-key model). In the CRS model all parties are given a common, pub-
lic reference string that is ideally and trustily chosen from a given distribution.
A large number of round-efficient UC-secure protocols have been developed in
the CRS model. In this work, we focus on UC security for (round-efficient) ZK
protocols in the CRS model.

Pass observed that universal composable zero-knowledge protocols in the com-
mon reference string model lose deniability that is a natural property of any ZK
protocol in the plain model [33]. An open problem (or, natural query) raised
in the literature is: are there any other essential security properties, other than
the well-known deniability property, that could be lost by universal composable
zero-knowledge in the common reference string model, in comparison with UC
security in the plain model? In this work, we answer this open question (or,
natural query), by showing that UCZK protocols in the CRS model could lose
concurrent general composability (CGC) and proof of knowledge (POK) prop-
erties that are very important and essential security implications of UCZK in
the plain model. This is demonstrated by concrete attacks.

1.1 Related Works

Very recently, we noted the related independent work of [8]. The work of [8]
clarifies the potential weakness of UC security in the common reference string
model in general, with deniability loss as an illustrative example for ZK. In
a sense, our work could also be viewed to exemplify, in another essential way
(other than the well-known deniability loss), the general theme observed in the
independent work of [8] on UC with global setup. More detailed discussions are
presented in Section 4.

A Note on Universal Composable Zero Knowledge 465

2 Preliminaries

We briefly recall preliminaries in this section. We assume the reader is famil-
iar with some basic definitions: witness indistinguishability, argument/proof of
knowledge, commitments, public-key encryption and signatures, etc. We also as-
sume the reader is familiar with the UC framework (cf. [18,6,12,7]). Detailed
presentation is deferred to the full version, due to space limitation.

Definition 1 (Σ-protocol [13]). A 3-round public-coin protocol 〈P, V 〉 is said
to be a Σ-protocol for a relation R if the following hold:

– Completeness. If P , V follow the protocol, the verifier always accepts.
– Special soundness. From any common input x of length n and any pair of

accepting conversations on input x, (a, e, z) and (a, e′, z′) where e �= e′, one
can efficiently compute w such that (x, w) ∈ R. Here a, e, z stand for the
first, the second and the third message respectively and e is assumed to be
a string of length k (that is polynomially related to n) selected uniformly at
random in {0, 1}k.

– Special honest verifier zero-knowledge (SHVZK). There exists a PPT simu-
lator S, which on input x (where there exists a w such that (x, w) ∈ R) and
a random challenge string ê, outputs an accepting conversation of the form
(â, ê, ẑ), with the probability distribution that is indistinguishable from that of
the real conversation (a, e, z) between the honest P (w) and V on input x. A
Σ-protocol is called perfect/statistical Σ-protocol, if it is perfect/statistical
SHVZK.

Σ-protocols are very useful cryptographic tools. A very large number of Σ-
protocols have been developed in the literature. In particular, (the parallel rep-
etition of) Blum’s protocol for DHC [3] is a computational Σ-protocol for NP ,
and most practical Σ-protocols for number-theoretical languages (e.g., DLP and
RSA [34,25], etc) are of perfect SHVZK property. More details about Σ-protocols
and their applications can be found in [16].

The OR-proof of Σ-protocols [14]. One basic construction with Σ-protocols
allows a prover to show that given two inputs x0, x1, it knows a w such that
either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case (i.e.,
witness indistinguishable). Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb,
b ∈ {0, 1}, with random challenges of, without loss of generality, the same length
k, consider the following protocol 〈P, V 〉, which we call ΣOR. The common input
of 〈P, V 〉 is (x0, x1) and P has a private input w such that (xb, w) ∈ Rb.

– P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P
chooses e1−b at random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input
(x1−b, e1−b), and lets (a1−b, e1−b, z1−b) be the output. P finally sends a0, a1

to V .
– V chooses a random k-bit string e and sends it to P .

466 A.C.C. Yao, F.F. Yao, and Y. Zhao

– P sets eb = e ⊕ e1−b and computes the answer zb to challenge eb using
(xb, ab, eb, w) as input. He sends ((e0, z0), (e1, z1)) to V .

– V checks that e = e0 ⊕ e1 and that conversations (a0, e0, zo), (a1, e1, z1) are
accepting conversations with respect to inputs x0, x1, respectively.

Theorem 1. [14] The protocol ΣOR above is a Σ-protocol for ROR, where
ROR = {((x0, x1), w)|(x0, w) ∈ R0 or (x1, w) ∈ R1}. Moreover, ΣOR-protocols
are witness indistinguishable (WI) proof of knowledge systems.

Ω-protocols [18]. An Ω-protocol is a Σ-protocol in the common reference
string (CRS) model, with a special straight-line simulation/extraction property.
Specifically, an Ω-protocol 〈P, V 〉[σ] for an NP-relation R and common reference
string σ, is a Σ-protocol for relation R with the following additional properties:

– For a given distribution ensemble D, on security parameter 1n a common
reference string σ is drawn from Dn. The players take σ as an additional
input (to generate messages from them). Naturally, the simulator S in the
definition of Σ-protocol may also take σ as an additional input.

– There exists a polynomial-time extractor E = (E1, E2) such that the first
element of the output of E1(1n) is statistically indistinguishable from Dn.
Furthermore, given (σ, τ) ← E1(1n), if there exist two accepting conversa-
tions (a, e, z) and (a, e′, z′) with e �= e′ on common input x and CRS σ, then
E2(x, τ, (a, e, z)) outputs w such that (x, w) ∈ R.

Notice that the above second property is similar to the special soundness of
Σ-protocols. For a Σ-protocol, there could exist an accepting conversation even
for an invalid proof, but two accepting conversations (with the same first-round
message but different second-round challenges) guarantee that the proof is valid.
Here, for a Ω-protocol, the extractor E can always extract something from any
conversation, but it might not be the witness if there is only one accepting
conversation. However, having two different accepting conversations guarantees
the extracted value is indeed a witness.

A natural way to construct Ω-protocols is as follows: the common reference
string will consist of a random public-key pk for a semantically-secure encryption
scheme. Then for a given (x, w) ∈ R, we will construct an encryption c of w under
public-key pk, and then construct a Σ-protocol to prove that the value encrypted
in c is indeed a witness w such that (x, w) ∈ R.

As with Σ-protocol, we can construct the OR-proof combining a Ω-protocol
and a Σ-protocol.

The zero-knowledge functionality [6,12]. The ZK functionality FR
ZK, para-

meterized by a relation R, is presented in Figure 1 (page 467). In the function-
ality, the prover sends to the functionality the input x together with a witness
w. If R(x, w) holds, then the functionality forwards x to the verifier. As pointed
in [6], this is actually a proof of knowledge in that the verifier is assured that the
prover actually knows w.

A Note on Universal Composable Zero Knowledge 467

Functionality FR
ZK

FR
ZK proceeds as follows, running with security parameter 1n, a prover Pi, a verifier

Pj , and an adversary S :

– Upon receiving (zk-prover, sid, Pi, Pj , x, w) from Pi: If R(x,w) then send
(ZK-PROOF, sid, Pi, Pj , x) to Pj and S and halts. Otherwise, ignore.

Fig. 1. The zero-knowledge functionality (for relation R)

Functionality F̂R
ZK

F̂R
ZK proceeds as follows, running with security parameter 1n, parties P1, · · · , Pn, and

an adversary S :

– Upon receiving (zk-prover, sid, ssid, Pi, Pj , x, w) from Pi: If R(x,w) then send
(ZK-PROOF, sid, ssid, Pi, Pj , x) to Pj and S and halts. Otherwise, ignore.

Fig. 2. The multi-session ZK functionality (for relation R)

One shortcoming of the above formulation is that we will be designing and
analyzing protocols in the common reference string model, and so they will be
operating in the FD

CRS-hybrid model, where FD
CRS is the CRS generation func-

tionality that, for a given security parameter 1n, chooses a string from distrib-
ution Dn and hands it to all parties and the adversary (but not directly to the
environment). However, directly realizing FR

ZK in the FD
CRS-hybrid model and

using the universal composition theorem would result in a composed protocol
where a new instance of the reference string is needed for each proof. This is
extremely inefficient and does not reflect the notion of the CRS model, where an
unbounded number of protocol instances would use the same copy of the string.
Canetti and Rabin [12] suggested the following notion to cope with this problem:

– Universal composition with joint state: Let F and G be ideal func-
tionalities, and let F̂ denote the “multi-session extension of F”, in which
F̂ will run multiple copies of F , where each copy is identified by a special
sub-session identifier (ssid). Now, let π be a protocol in the F -hybrid model,
and let ρ̂ be a protocol that securely realizes F̂ in the G-hybrid model. Then,
construct the composed protocol π[ρ̂] by replacing all the copies of F in π
by a single copy of ρ̂. The universal composition with joint state theorem of
[12] states that π[ρ̂], running in the G-hybrid model, correctly emulates π in
the F -hybrid model.

The definition F̂R
ZK, the multi-session extension of FR

ZK, is presented in
Figure 2 (page 467). Note that there are two types of indices: the sid differ-
entiates messages to F̂R

ZK from messages sent to other functionalities; and the
sub-session ID ssid is unique per input message (or proof).

468 A.C.C. Yao, F.F. Yao, and Y. Zhao

3 Concurrent General Composition Attack on UCZK in
the Common Reference String Model

In this section, we present a concurrent general composition attack to the pro-
tocol of [18] that is UCZK in the common reference string model.

3.1 The Protocol Structure of UCZK of [18]

We first recall the protocol structure of the UCZK protocol of [18].

Common reference string: (verk, σ′), where verk is a random verification
key of a signature scheme secure against chosen message attacks, σ′ is the
public reference string for the underlying Ω-protocol (typically, σ′ is a ran-
dom public-key of semantically-secure PKE).

Common input: x ∈ L, where L is an NP-language with NP-relation RL.
Auxiliary date: An auxiliary data aux that may contain any arbitrary public

values.
Prover’s private input: w s.t. (x, w) ∈ RL.
Main-proof stage: consists of three phases (in real implementation, phases are

combined):
Phase-1: Prover P generates a key-pair (vk, sk) for a one-time strong sig-

nature, sends vk to the verifier V .
Phase-2: Give a OR-proof: one Ω-proof for showing the knowledge of w

(typically, send a encryption c of w using σ′, and prove by Σ-protocol
that the encrypted value is indeed a witness for x ∈ L); one Σ-protocol
for showing the knowledge of a signature on vk under verk. We de-
note by a = (aL, avk), e, and z = ((eL, zL), (evk, zvk)) the first-round,
second-round and the third-round message of the OR-proof respectively,
where (aL, eL, zL) constitute the (partial) conversation of the Ω-protocol
(specifically, the conversation of the Σ-protocol in the Ω-protocol for
showing the knowledge of the value encrypted in c is indeed a valid wit-
ness for x ∈ L), and (avk, evk, zvk) constitutes the conversation of the
Σ-protocol for showing the knowledge of the signature on vk under verk,
and e = eL ⊕ evk.

Phase-3: Applying sk on the whole transcript to get a one-time strong
signature s, send s to V .

Notes: The above protocol is shown to be UCZK in the common reference string
model, assuming static corruptions [18]. For UCZK with adaptive corruptions,
the above protocol is augmented as follows: In Phase-2, the prover does not send
a = (aL, avk) directly. Rather, it first commits to a and the auxiliary information
aux by using a special trapdoor commitment scheme, called simulation-sound
trapdoor commitments (SSTC), following the paradigm of [15]. Then, in the
third-round of the OR-proof of Phase-2, the prover decommits accordingly and
reveals a. The following CGC attack is described against the above UCZK with
static corruption, but it can be trivially extended to work on the augmented
adaptive-corruption version as well.

A Note on Universal Composable Zero Knowledge 469

3.2 The CGC Attack

To present a CGC attack, we need to first design a (different) protocol, and
then show that when composed with the designed protocol the UCZK protocol
of [18] is not secure. We present a natural and also very useful protocol, and
show that when composed with this natural and practical protocol, a malicious
adversary can convince the honest verifier of any statement in the original UCZK
protocol of [18] but without knowing any witness for the statement being proved.
This shows that UCZK protocol in the common reference string model could
lose concurrent general composability property and also the POK property. We
suggest that such security losses might be more harmful, in comparison with the
loss of deniability observed in [33].

The encrypt/commit-then-proof protocol. The protocol to be composed
with the UCZK of [18] is the natural and very useful encrypt/commit-then-proof
protocol 〈P ′, V ′〉, described as follows.

Common input: x ∈ L.
Prover’s private input: w s.t. (x, w) ∈ RL.
Main-proof stage: consists of two phases:

Phase-1: The verifier V ′ generates and sends to the prover P ′ a random
public-key σ′ for a semantically-secure PKE scheme. Here, σ′ can also
be viewed as the first-round message of a commitment scheme.

Phase-2: The prover P ′ encrypts (i.e., commits) w to c using the public-key
σ′. Then, P ′ proves to V ′ that the value committed is indeed a witness for
x ∈ L, by executing a Σ-protocol with V ′. We denote by aL, eL, zL the
first-round, second-round and third-round message of the Σ-protocol.

We remark that the above encrypt/commit-then-proof protocol is a natural
and very useful protocol in practice. The encrypt/commit-then-proof paradigm
has been employed in a number of works for various cryptographic tasks and
settings (e.g., [28,30,11,1], etc). When the protocol works in the public-key model
with σ′ as the verifier’s public-key, such protocol is also a common paradigm
for achieving plaintext-aware (interactive and verifiable) encryption (e.g., [27]),
which is also used in group signature and group encryption systems.

Message schedule of the CGC attack. We now describe the message sched-
ule of the CGC attack, that enables an adversary to convinces any statement
in the original UCZK protocol of [18] but without knowing any corresponding
NP-witness.

The adversary A runs the UCZK protocol of [18] and the above commit-then-
proof protocol concurrently, by playing the role of prover in the UCZK protocol
of [18] and playing the role of verifier in the commit-then-proof protocol. In
other words, the adversary A corrupts and controls the prover P of UCZK of
[18] and the verifier V ′ of the commit-then-proof protocol at the onset of the
computation. A schedules the messages as follows.

470 A.C.C. Yao, F.F. Yao, and Y. Zhao

1. A first executes the UCZK with V on common input x and the common
reference string (verk, σ′). For presentation simplicity, we call such execution
the first session. Specifically, it generates a key-pair (vk, sk) for a one-time
strong signature, sends vk to the verifier V , just as the honest prover does.
When it moves into Phase-2 of the UCZK, A suspends the first session.

2. A executes the commit-then-prove protocol with P ′ on common input x
(x could be set by A via the environment). For presentation simplicity, we
call the execution of the commit-then-prove protocol the second session.
Specifically, A sends σ′ (got from the CRS of the first session) to P ′ as the
Phase-1 message of the second session. After receiving from P ′ the first-
round message of Phase-2 of the second session, A suspends the second
session. Note that the first-round message of Phase-2 of the second session
from P ′ consists of c (that encrypts w) and the first-round message aL of
the underlying Σ-protocol executed in Phase-2 of the second session.

3. Now, A continues the first session, and works as follows. On (vk, verk),
it generates a simulated conversation (avk, evk, zvk) for the Σ-protocol of
Phase-2 of the first session (that is used to prove the knowledge of a signature
of vk under verk), by running the underlying SHVZK simulator. Then, A
sends (c, aL, avk) to V as the first-round message of Phase-2 of the first
session. After receiving from V the random challenge e (i.e., the second-round
message of the OR-proof of Phase-2 of the first session), A sets eL = e⊕ evk

and suspends the first session again. Note that (c, aL) are got from the second
session.

4. A continues the second session again, sends eL = e⊕evk to P ′ as the second-
round message of Phase-2 of the second session. After receiving from P ′ the
last-round message eL of the second session, A stops the second session.

5. A continues the first-session again, sends z = ((eL, zL), (evk, zvk)) to V as
the last-round message of the OR-proof of Phase-2 of the first session.

6. Finally, A applies the one-time strong signing key sk on the whole transcript
of the first session to get a valid signature s, and sends s to V . Note that A
can do this, as the one-time strong key pair (vk, sk) are generated by itself.

Note that (c, aL, eL, zL) is an accepting conversation of the Ω-protocol for
showing x ∈ L, (avk, evk, zvk is an accepting conversation for showing the knowl-
edge of the signature of vk under verk, and also e = eL ⊕ evk. Furthermore, the
one-time strong signature s is also valid. This means that, from the viewpoint
of V , A has successfully convinced V of the statement “x ∈ L” in the first ses-
sion with the UCZK protocol, but A actually does not know any corresponding
NP-witness ! It is also easy to see that the above CGC attack schedule can be
trivially extended to the augmented adaptive corruption version of the UCZK
of [18].

Notes: The adversary A does not use the same CRS in the second session, but a
part of the CRS. Also, the commit-then-proof protocol is run in the plain model.
We remark that A can potentially use a completely different (but maliciously
related to CRS) message in Phase-1 of the second session. In general, A can

A Note on Universal Composable Zero Knowledge 471

potentially malleate the CRS of one session into some message of another con-
current session that is completely different with the CRS but maliciously related.
We also note that it is impossible to prevent transparent adversaries. Specifi-
cally, an adversary runs the same protocol twice in two session (in one session,
the same CRS could be sent by a player) and forwards the messages from one
session to another session (i.e., the transcripts in the two sessions are identi-
cal). Such transparent adversary is impossible to prevent, and is not viewed as
a harmful adversarial activity by definition, analogue to the definition of non-
malleability [17].

4 Comments

We comment that the above CGC attack contradicts our intuition for the secu-
rity guaranteed by universal composable security. We remark that it is true that
UC security in the plain model does guarantee the composability security with
arbitrary protocols (environment), and the POK property for ZK in particular.
The implicit reason, as discussed in the independent work of [8], is that in the
traditional UC formulation in the common reference string model the common
reference string is not given to the environment. In general, in the UC formu-
lation of [6], the environment is not allowed to directly invoke (interact) with
subroutines. That is, the environment is not allowed to interact directly with the
ideal functionality F (in particular, the CRS generation functionality FD

CRS in
our case) in the F -hybrid model [6,12]. This fact allows the CRS simulation by
the ideal-process adversary in security analysis. The work of [8] pointed out the
potential security losses for UC in the common reference string model in gen-
eral, with deniability loss as an illustrative example for UCZK in the common
reference string model. Our attack shows that UCZK in the common reference
string model could lose more essential and important security guarantees, i.e.,
concurrent general composability and POK that are very essential security impli-
cations of UCZK in the plain model. In this sense our work could also be viewed
to exemplify, in another essential way (other than the well-known deniability
loss [33]), the general theme observed in [8] on UC with global setup.

Acknowledgements. We thank Ran Canetti for kind clarifications about UC
in the CRS model, and referring us to [8].

References

1. B. Barak, M. Prabhakaran, and A. Sahai. Concurrent Non-Malleable Zero-
Knowledge. Cryptology ePrint Archive, Report No. 2006/355. Extended abstract
appears in FOCS 2006.

2. M. Blum. Coin Flipping by Telephone. In proc. IEEE Spring COMPCOM, pages
133-137, 1982.

3. M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings
of the International Congress of Mathematicians, Berkeley, California, USA, 1986,
pp. 1444-1451.

472 A.C.C. Yao, F.F. Yao, and Y. Zhao

4. M. Bellare and O. Goldreich. On Defining Proofs of Knowledge In E. F. Brickell
(Ed.): Advances in Cryptology-Proceedings of CRYPTO 1992, LNCS 740, pages
390-420, Springer-Verlag, 1992.

5. M. Bellare and O. Goldreich. On Probabilistic versus Deterministic Provers in
the Definition of Proofs Of Knowledge. Electronic Colloquium on Computational
Complexity, 13(136), 2006. Available also from Cryptology ePrint Archive, Report
No. 2006/359.

6. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In IEEE Symposium on Foundations of Computer Science, pages
136-145, 2001.

7. R. Canetti. Security and Composition of Cryptographic Protocols: A Tutorial.
Distributed Computing column of SIGACT News, Vol. 37, Nos. 3 and 4, 2006.
Available also from Cryptology ePrint Archive, Report 2006/465.

8. R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universal Composable Security with
Global Setup. TCC 2007, to appear. Available from: Cryptology ePrint Archive,
Report No. 2006/432.

9. R. Canetti and M. Fischlin. Universal Composable Commitments. In Advances
in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 19-40. Springer-
Verlag, 2001.

10. R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Compo-
sition Without Set-Up Assumptions. In E. Biham (Ed.): Advances in Cryptology-
Proceedings of EUROCRYPT 2003, LNCS 2656, pages 68-86. Springer-Verlag,
2003.

11. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In ACM Symposium on Theory of
Computing, pages 494-503, 2002.

12. R. Canetti and T. Rabin. Universal Composition with Joint State. In Advances in
Cryptology-Proceedings of CRYPTO 2002, LNCS 2729, pages 265-281, Springer-
Verlag, 2003.

13. R. Cramer. Modular Design of Secure, yet Practical Cryptographic Protocols, PhD
Thesis, University of Amsterdam, 1996.

14. R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances
in Cryptology-Proceedings of CRYPTO 1994, LNCS 893, pages 174-187. Springer-
Verlag, 1994.

15. I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In B. Preneel (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2000,
LNCS 1807, pages 418-430. Springer-Verlag, 2000.

16. I. Damgard. Lecture Notes on Cryptographic Protocol Theory, BRICS, Aarhus
University, 2003.

17. D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2): 391-437, 2000. Preliminary version in ACM Symposium on
Theory of Computing, pages 542-552, 1991.

18. J. A. Garay, P. MacKenzie and K. Yang. Strengthening Zero-Knowledge Protocols
Using Signatures. Journal of Cryptology, to appear. Preliminary version appears
in E. Biham (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003,
LNCS 2656 , pages 177-194. Springer-Verlag, 2003.

19. O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University
Press, 2001.

A Note on Universal Composable Zero Knowledge 473

20. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but Their Va-
lidity and a Methodology of Cryptographic Protocol Design. In IEEE Symposium
on Foundations of Computer Science, pages 174-187, 1986.

21. O. Goldreich, S. Micali and A. Wigderson. How to Prove all NP-Statements in
Zero-Knowledge, and a Methodology of Cryptographic Protocol Design. In A. M.
Odlyzko (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1986, LNCS 263,
pages 104-110, Springer-Verlag, 1986.

22. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their
Validity or All language in NP Have Zero-Knowledge Proof Systems. Journal
of the Association for Computing Machinery, 38(1): 691-729, 1991. Preliminary
version appears in [20,21].

23. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems In ACM Symposium on Theory of Computing, pages 291-304, 1985.

24. S. Goldwasser, S. Micali and R. L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen Message Attacks. SIAM Journal on Computing, 17(2):
281-308, 1988.

25. L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Gnther (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 1988, LNCS
330 , pages 123-128, Springer-Verlag, 1988.

26. J. Hastad, R. Impagliazzo, L. A. Levin and M. Luby. Construction of a Pseudoran-
dom Generator from Any One-Way Function SIAM Journal on Computing, 28(4):
1364-1396, 1999.

27. J. Katz. Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applica-
tions. In E. Biham (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT
2003, LNCS 2656 , pages 211-228. Springer-Verlag, 2003.

28. J. Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press, Cam-
bridge, MA, 1990.

29. Y. Lindell. General Composition and Universal Composability in Secure Multi-
Party Computation. In IEEE Symposium on Foundations of Computer Science,
pages 394-403, 2003.

30. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. Journal of Cryptology, 16(3): 143-184, 2003. Preliminary version appears
in Crypto 2001, LNCS 2139, pages 171-189, Springer-Verlag, 2001.

31. Y. Lindell. Lower Bounds for Concurrent Self Composition. In M. Naor (Ed.):
Theory of Cryptography (TCC) 2004, LNCS 2951, pages 203-222, Springer-Verlag,
2004.

32. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2):
151-158, 1991.

33. R. Pass. On Deniabililty in the Common Reference String and Random Oracle
Models. InD. Boneh (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2003,
LNCS 2729, pages 316-337, Springer-Verlag 2003.

34. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3): 24, 1991.

A Note on the Feasibility of

Generalized Universal Composability�

(Extended Abstract)

Andrew C.C. Yao1, Frances F. Yao2, and Yunlei Zhao3,��

1 Center of Advanced Study, Tsinghua University, Beijing, China
andrewcyao@tsinghua.eud.cn

2 Department of Computer Science, City University of Hong Kong, Hong Kong, China
csfyao@cityu.edu.hk

3 Software School, Fudan University, Shanghai 200433, China
ylzhao@fudan.edu.cn

Abstract. We clarify the potential limitation of the general feasibil-
ity for generalized universal composability (GUC) proposed in the re-
cent work [8], and discuss a general principle for fully realizing universal
composability. This in particular demonstrates the hardness of achieving
generalized universal composability, and prevents potential misinterpre-
tation in applications. We also propose some fixing approaches, which in-
volve a source/session-authentic ID-based trapdoor commitment scheme
via the hash-then-commit paradigm that could possibly be of indepen-
dent interest.

1 Introduction

The intuitive security goal aimed by the universal composability (UC) notion
of [6] is to provide cryptographic systems a robust composability with arbitrary
protocols (unpredictable environment). That is, a UC-secure protocol (hence-
forth referred to as the “challenge protocol”) should preserve its security even
when it is composed concurrently with any arbitrary protocols in any arbitrary
malicious (unpredictable) way in asynchronous networks like the Internet. These
arbitrary protocols may be executed by the same parties or other parties, they
may have potentially related inputs and the scheduling of message delivery may
be adversarially coordinated. Furthermore, the local outputs of a protocol execu-
tion may be used by other protocols in an unpredictable way. Clearly, achieving
UC-secure protocols is highly desirable in modern cryptography.

But, the recent works of [8,23] show that traditional UC formulations in [6,12]
do not capture the intuitive security goal of concurrent general composabililty
� The work described in this paper was supported in part by a grant from the Research

Grants Council of the Hong Kong Special Administrative Region, China (Project
Number CityU 122105) and CityU Research Grant (9380039) and 973 project of
China (No. 2007CB807901).

�� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 474–485, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Note on the Feasibility of Generalized Universal Composability 475

described above, i.e., composability concurrently with arbitrary protocols or
unpredictable environment. Roughly speaking, traditional UC-secure protocols
only guarantee composability with “independent (stateless)” other different pro-
tocols that do not share state information with it [8].1 This requirement is unre-
alistic to reflect adversarial activities in asynchronous networks like the Internet
(that is the original motivation for introducing UC), and limits the applicability
of UC theory. For example, most developed UC-secure protocols are with trusted
global setups, e.g., a common reference string (CRS) or public-keys (PKs) that
are drawn randomly and trustily from some predefined distributions and are
known to all parties, thus protocols trivially share common state information2.
The necessity of trusted setups for UC security is from the fact that large classes
of functionalities cannot be UC realized in the plain model without assuming
a majority of honest players, in particular, for the important case of two-party
protocols, most of them cannot be UC realized [6,9,10,19,20].

To redeem the situation, the work of [8] reformulates UC security by explicitly
allowing the external arbitrary protocols can share any maliciously-related state
information with the challenge protocol. Such augmented UC notion is named
generalized UC (GUC) [8] (in the rest of this work, we also write generalized
UC just as UC for presentation simplicity as it captures the original intuition
and motivation of UC, distinguished from traditional UC). The work of [8] also
proposes an approach for reestablishing UC feasibility in the more complex GUC
setting with some trusted setups (specifically, the key registration with knowl-
edge (KRK) model and the augmented common reference string (ACRS) model).
In this work, we consider the general feasibility of GUC in the ACRS model. The
key difference between ACRS model and the traditional CRS model is that: the
ACRS model additionally allows corrupted parties to ask the trusted CRS gen-
erator to obtain “personalized” secret-keys that are derived from the common
reference string, their public identities, and some “global secret” that is related
to the common reference string and remains secret to all parties.

The general UC feasibility proposed in [8] relies on the following assumption:
the arbitrary different protocols (environment) can share state information with
the challenge protocol only via a trusted functionality, e.g., the CRS generation
functionality. That is, any state information that will be (potentially maliciously)
shared by the challenge protocol with the external environment, no matter what
adversarial strategies can be employed by the adversary, can be derived from
queries to the trusted functionality, e.g., from the common reference string (in
a way, the adversary is essentially restricted to only malleate the common ref-
erence string with external environment). We note that such limitation on state
information sharing is still unrealistic to reflect adversarial activities happen-
ing in asynchronous networks like the Internet. Typically, any message received

1 We note that the intuitive goal of composability with arbitrary protocols (or, unpre-
dictable environment) was informally claimed in most existing works, which could
potentially cause misinterpretation partially due to the high system complexity.

2 As noted in [8], the approach proposed in [12] for handling universal composition
with joint state (JUC) also does not fully work in this case.

476 A.C.C. Yao, F.F. Yao, and Y. Zhao

by an honest player in the challenge protocol could be maliciously dependent
on not only the transcript of the challenge protocol, but also, more harmfully,
the whole transcript of the external arbitrary protocols running concurrently
with the challenge protocol. That is, it is a natural adversarial strategy of the
adversary that it manages to make the challenge protocol maliciously related
to the external environment by concurrent interleaving and malleating attacks,
thus sharing some maliciously-related state-information amongst them. The key
point here is, the external environment (i.e., the arbitrary protocols running con-
currently with the challenge protocol) and adversarial strategies employed by the
adversary are unpredictable. In a sense, the general UC feasibility proposed in [8]
is w.r.t. “predictable” environment and adversarial strategies. Though the gen-
eral UC feasibility proposed in [8] provides much better composability guarantee
than traditional UC, where for traditional UC the environment is required to
be “independent” (stateless) with the challenge protocol, it seems to be still not
satisfactory enough and contradicts the intuition and motivation for universal
composability.

To illustrate the potential weakness of assuming “predictable” environment
and adversarial strategies, we demonstrate a concrete (simple) attack on the
UCZK protocol implied by the general UC feasibility of [8], showing that it
could lose concurrent general composability and proof of knowledge properties.
This is helpful for a precise understanding of the general UC feasibility of [8], and
prevents potential misinterpretation in applications. We then discuss a generic
principle for fully achieving universal composability, which in turn demonstrates
the hardness of achieving generalized universal composability (even with trusted
setups and/or a majority of honest players). Finally, we propose some fixing
approaches, which involve a source/session-authentic ID-based trapdoor com-
mitment scheme via the hash-then-commit paradigm that could possibly be of
independent interest.

2 Preliminaries

We briefly recall preliminaries in this section. To save space, we do not represent
the UC framework in this work. The reader is referred to [6,12,7,8] (or, to the
related work [23]) for details.

We use standard notations and conventions below for writing probabilistic
algorithms, experiments and interactive protocols. If A is a probabilistic algo-
rithm, then A(x1, x2, · · · ; r) is the result of running A on inputs x1, x2, · · · and
coins r. We let y ← A(x1, x2, · · ·) denote the experiment of picking r at ran-
dom and letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the
operation of picking an element uniformly from S. If α is neither an algorithm
nor a set then x ← α is a simple assignment statement. By [R1; · · · ; Rn : v]
we denote the set of values of v that a random variable can assume, due to the
distribution determined by the sequence of random processes R1, R2, · · · , Rn.
By Pr[R1; · · · ; Rn : E] we denote the probability of event E, after the ordered
execution of random processes R1, · · · , Rn.

A Note on the Feasibility of Generalized Universal Composability 477

Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ←
〈P (x1), V (x2)〉(x) denotes the random process of running interactive protocol
〈P, V 〉 on common input x, where P has private input x1, V has private input
x2, y1 is P ’s output and y2 is V ’s output. We assume w.l.o.g. that the output of
both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains
a transcript of the communication exchanged between P and V during such
execution.

Definition 1 ((public-coin) interactive argument/proof system). A pair
of interactive machines, 〈P, V 〉, is called an interactive argument system for a
language L if both are probabilistic polynomial-time (PPT) machines and the
following conditions hold:

– Completeness. For every x ∈ L, there exists a string w such that for every
string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

– Soundness. For every polynomial-time interactive machine P ∗, and for all
sufficiently large n’s and every x /∈ L of length n and every w and z,
Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds
against any (even power-unbounded) P ∗ (rather than only PPT P ∗). An interac-
tive system is called a public-coin system if at each round the prescribed verifier
can only toss coins and send their outcome to the prover.

Definition 2 (statistically/perfectly binding bit commitment scheme).
A pair of PPT interactive machines, 〈P, V 〉, is called a perfectly binding bit
commitment scheme, if it satisfies the following:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds
that
Pr[(α, β) ← 〈P (b), V 〉(1n); (t, (t, v)) ← 〈P (α), V (β)〉(1n) : v = b] = 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary
V ∗, the following two probability distributions are computationally indistin-
guishable: [(α, β) ← 〈P (0), V ∗〉(1n) : β] and [(α′, β′) ← 〈P (1), V ∗〉(1n) : β′].

Perfectly Binding. For all sufficiently large n’s, and any adversary P ∗, the fol-
lowing probability is negligible (or equals 0 for perfectly-binding commitments):
Pr[(α, β) ← 〈P ∗, V 〉(1n); (t, (t, v)) ← 〈P ∗(α), V (β)〉(1n); (t′, (t′, v′)) ←
〈P ∗(α), V (β)〉(1n) : v, v′ ∈ {0, 1}∧

v �= v′].
That is, no (even computational power unbounded) adversary P ∗ can

decommit the same transcript of the commitment stage both to 0 and 1.

One-round perfectly-binding (computationally-hiding) commitments can be
based on any one-way permutation OWP [2,17]. Loosely speaking, given a OWP
f with a hard-core predict b (cf. [14]), on a security parameter n one commits
a bit σ by uniformly selecting x ∈ {0, 1}n and sending (f(x), b(x) ⊕ σ) as a

478 A.C.C. Yao, F.F. Yao, and Y. Zhao

commitment, while keeping x as the decommitment information. Statistically-
binding commitments can also be based on any one-way function (OWF) but
run in two rounds [21,18].

Definition 3 (system for argument/proof of knowledge [4,14,5]). Let R
be a binary relation and κ : N → [0, 1]. We say that a probabilistic polynomial-
time (PPT) interactive machine V is a knowledge verifier for the relation R with
knowledge error κ if the following two conditions hold:

– Non-triviality: There exists an interactive machine P such that for every
(x, w) ∈ R all possible interactions of V with P on common input x and
auxiliary input w are accepting.

– Validity (with error κ): There exists a polynomial q(·) and a probabilistic
oracle machine K such that for every interactive machine P ∗, every x ∈ LR,
and every w, r ∈ {0, 1}∗, machine K satisfies the following condition:
Denote by p(x, w, r) the probability that the interactive machine V accepts, on
input x, when interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r de-

notes the strategy of P ∗ on common input x, auxiliary input w and random-
tape r). If p(x, w, r) > κ(|x|), then, on input x and with oracle access to
P ∗

x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected number
of steps bounded by

q(|x|)
p(x, w, r) − κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive argument/proof system 〈P, V 〉 such that V is a knowledge veri-
fier for a relation R and P is a machine satisfying the non-triviality condition
(with respect to V and R) is called a system for argument/proof of knowledge
(AOK/POK) for the relation R.

We mention that Blum’s protocol for directed Hamiltonian Cycle DHC [3]
is just a 3-round public-coin (witness-indistinguishable) POK system for NP ,
which is recalled below.

Blum’s protocol for DHC [3]. The n-parallel repetitions of Blum’s basic
protocol for proving the knowledge of Hamiltonian cycle on a given directed
graph G [3] is just a 3-round public-coin (witness-indistinguishable) POK system
for NP (with knowledge error 2−n) under any one-way permutation (as the
first round of it involves one-round perfectly-binding commitments of a random
permutation of G). The following is the description of Blum’s basic protocol for
DHC:

Common input. A directed graph G = (V, E) with q = |V | nodes.
Prover’s private input. A directed Hamiltonian cycle CG in G.
Round-1. The prover selects a random permutation, π, of the vertices V , and

commits (using a perfectly-binding commitment scheme) the entries of the
adjacency matrix of the resulting permutated graph. That is, it sends a q-by-
q matrix of commitments so that the (π(i), π(j))th entry is a commitment
to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.

A Note on the Feasibility of Generalized Universal Composability 479

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the
prover.

Round-3. If b = 0 then the prover sends π to the verifier along with the re-
vealing of all commitments (and the verifier checks that the revealed graph
is indeed isomorphic to G via π); If b = 1, the prover reveals to the verifier
only the commitments to entries (π(i), π(j)) with (i, j) ∈ CG (and the veri-
fier checks that all revealed values are 1 and the corresponding entries form
a simple q-cycle).

Definition 4 (collision-resistant hash function). Let H be a family of hash
functions: K × D → R, where D is the domain of H and R is the range of H
and K denotes the key space of H. For a particular key K ∈ K, HK : D → R is
defined as H(K, ·). We say that H is collision-resistant, if for a randomly chosen
key K ← K and for any (even non-uniform) polynomial-time algorithm A the
probability that A, given the randomly chosen key K as its input, outputs two
distinct points x1 and x2 in D such that HK(x1) = HK(x2) is negligible. The
probability is taken over the choice of K and the randomness of A.

Identity-based trapdoor commitments (IBTC). In the setting of IBTC, a
single “master-key” is made public. Additionally, all parties can obtain a private-
key that is associated to their party identifier. Intuitively, an IBTC scheme
is a commitment scheme with the additional property that a committer who
knows the receiver’s secret-key can equivocate commitments (i.e., it can open
up commitments to any value) at its wish. Furthermore, it should hold that an
adversary that obtains the secret-keys of multiple parties, still should not be
able to violate the binding property of commitments sent to parties for which
it has not obtained the secret-key. We refer to [8] for the formal definition of
IBTC. IBTC constructions are presented in [1] in the random oracle model, and
in [8] under any one-way function in the standard model.

3 On the Hardness of Achieving Generalized UC

In this section, we first briefly recall the UCZK protocol implied by the works of
[8,9,11]. Then, we demonstrate, by a simple attack, the hardness (subtleties) of
achieving generalized UC security, even with trusted setups and/or a majority
of honest parties. Finally, we discuss the underlying reasons.

3.1 The UCZK Protocol Implied by [8,9,11]

The work of [8] reestablishes the general feasibility of UC in the ACRS model
as follows: Firstly, it implements a UC-secure commitment scheme in the ACRS
model (reminiscent of the traditional UC-secure commitments of [11] in the tra-
ditional CRS model). Then using the UC-secure commitments as building tool,
UCZK can be implemented by following the construction of traditional UCZK in
the traditional CRS model of [9]. Finally, with UCZK as a key tool, general feasi-
bility of UC for any cryptographic functionality can be finally reestablished with

480 A.C.C. Yao, F.F. Yao, and Y. Zhao

some other techniques. The UCZK protocol implied by [8,9] is a modification of
Blum’s protocol for DHC (recalled in Section 2), with the statistically-binding
commitments used in its first-round are replaced by the UC-secure commitments
of [8] in the ACRS model. The following is the brief structure of the UCZK pro-
tocol implied by [8,9] in the ACRS model (in which we omit the augmented CRS
for presentation simplicity).

Common input: x ∈ L, where L is an NP-language with NP-relation RL.
Prover’s private input: w s.t. (x, w) ∈ RL.
Main-proof stage: consists of two phases:

Phase-1: Phase-1 is a coin-tossing protocol, in which the verifier V commits
to a random string using the IBTC scheme and the prover P responds
with a public random string. Denote by K the output of the coin-tossing.

Phase-2: Phase-2 is a modified Blum’s protocol for DHC. Specifically, the
statistically-binding bit commitment in the first-round of Blum’s proto-
col for DHC is replaced as follows: For a bit b ∈ {0, 1}, the prover P
commits to b as follows. It first forms (c, d) = IBTC(b) (i.e., commits b
by running the IBTC scheme, where c is the commitment and d is the
decommitment information); then if b = 0 it forms e = PKEK(d) (i.e.,
it encrypts the decommitment information d by a public-key encryption
scheme with the coin-tossing output K as the public-key), otherwise (i.e.,
b = 1) e is set to be a random value.

The above protocol is shown to be GUC secure in the ACRS model, assuming
that the arbitrary protocols (environment) can share state information with it
only via the trusted ACRS generation functionality. That is, any state infor-
mation that will be (potentially maliciously) shared by the challenge protocol
with the environment can be derived from the common reference string (in a
way, the adversary is essentially restricted to only malleate the common ref-
erence string). In a sense, the general UC feasibility proposed in [8] is w.r.t.
“predictable” environment and adversarial strategies. To illustrate the potential
weakness of assuming predictable environment and adversarial strategies, we de-
scribe a simple state-information-sharing attack that violates the POK property
of the above UCZK protocol.

3.2 A Simple State-Information-Sharing Attack

The idea is simple, the protocol designed to be composed with the UCZK of [8] is
essentially its Phase-2 subprotocol. Specifically, consider the following protocol
〈P ′, V ′〉:

Common input: x ∈ L.
Prover’s private input: w s.t. (x, w) ∈ RL.
Main-proof stage: consists of two phases:

Phase-1: The verifier V ′ sends a string K to the prover P ′, where K is a
random encryption public-key.

A Note on the Feasibility of Generalized Universal Composability 481

Phase-2: Phase-2 is the modified Blum’s protocol for DHC. Specifically,
the statistically-binding bit commitment in the first-round of Blum’s
protocol for DHC is replaced as follows: For a bit b ∈ {0, 1}, the prover
P ′ commits to b as follows. It first forms (c, d) = IBTC(b) (i.e., commits
b by running the IBTC scheme, where c is the commitment and d is the
decommitment information); then if b = 0 it forms e = PKEK(d) (i.e., it
encrypts the decommitment information d by the encryption public-key
K received in Phase-1), otherwise (i.e., b = 1) e is set to be a random
value.

Then, the state-information-sharing attack proceeds as follows:

– Static corruption: the adversary A corrupts P (the prover of the UCZK pro-
tocol) and V ′ (the verifier of the above protocol) at the onset of computation.

– In the execution of the UCZK protocol, referred as the first session for pre-
sentation simplicity, A works just as the honest prover does until Phase-1
(i.e., the coin-tossing) finishes. Denote by K the output of the coin-tossing
in the first session. A suspends the first session.

– Now, A runs the above protocol, referred as the second session, and sends
to the prover P ′ the value K as the Phase-1 message of the second session,
where K is the output of the coin-tossing of the first session.

– Then, A just copies messages received from P ′ in the second session to the
verifier V of the first session.

Clearly, A can successfully finish the execution of the first session, but without
knowing any corresponding NP witness to the statement being proved in the
first session.

3.3 Comments and Discussion

We remark that the above state information sharing attack is very simple and
even unnatural, which just copies messages from one session to another session.
But, in general it is possible that messages sent in one session by the adversary
are not directly copied from another session, but messages in the concurrent in-
terleaving sessions are malicious related. And, also the protocol to be composed
with the UCZK of [8] could be potentially a naturally existing and widely used
protocol (as demonstrated in [23]). The simple attack is also helpful for a precise
understanding of the GUC feasibility established in [8] (i.e., it is conditioned on
certain limitation on the environment and adversarial strategies), and for realiz-
ing potential weakness of such limitation to prevent potential misinterpretation
in applications due to high system complexity.

Typically, any message received by an honest player in the challenge proto-
col could be maliciously dependent on not only the transcript of the challenge
protocol, but also, more harmfully, the whole transcript of the external arbi-
trary protocols running concurrently with the challenge protocol. That is, it is
a natural adversarial strategy of the adversary that it manages to make the

482 A.C.C. Yao, F.F. Yao, and Y. Zhao

challenge protocol maliciously related to the external environment by concur-
rent interleaving and malleating attacks, thus sharing some maliciously-related
state-information amongst them. The key point here is, the external environment
(i.e., the arbitrary protocols running concurrently with the challenge protocol)
and adversarial strategies employed by the adversary are unpredictable. Even if
a given challenge protocol is proved to satisfy certain level of composability, like
the UCZK implied by [8,9,11], but it does not imply that the subprotocols or
building tools used by the challenge protocol guarantee the same level of com-
posability. An adversary could maliciously relate the (weaker) subprotocols or
building tools to the external environment in an unpredictable way, so that some
(not necessarily global but possibly local and session-specific) state information
is maliciously shared amongst them. The key observation here is, for a protocol
to be GUC secure, any subprotocol used by the protocol, and even each message
sent in the protocol, should also to be GUC-secure. This shows the hardness
of achieving generalized universal composability, i.e., composability with arbi-
trary protocols (unpredictable environment) that is the original intuition and
motivation for UC, even with trusted setups and a majority of honest players.

4 Fixing Suggestion with Source/Session-Authentic
Commitments

According to above discussion, to achieve a GUC-secure protocol we may re-
quire any subprotocol used by the protocol, and even each message sent in the
protocol, are also to be GUC-secure, i.e., composable with arbitrary protocols
(unrestricted and unpredictable environment). In other words, we need the sub-
protocols used by the protocol, and even each message sent in the protocol, to
be source/session-authentic, that is, they should not be maliciously generated
(malleated) by the adversary from the unpredictable environment. We note this
is a very strong requirement. With respect to the specific UCZK implied by [8],
we propose some fixing suggestion, which provides very useful session-authentic
non-malleability in many applied scenarios (though it may still not fully provide
GUC security).

The idea is to augment the underlying IDBC scheme used in the UCZK of
[8] as follows. For any message m to be committed, we do not commit to m
directly by running IBTC(m) as did in the UCZK of [8]. Rather, we mask
the message m, together with some (public) source/session-specific auxiliary
information aux (in particular, aux could include the session ID, the committer
ID, the receiver ID, and some partial transcript), by a collision-resistant hash
function H, and commits to the hashed value. Specifically, in this case, the
commitment is IBTC(H(m, aux)). We call such commitments source/session-
authentic ID-based commitments.

We note that for any commitment scheme Com, any message m and
any (public) auxiliary information aux, source/session-authentic commitments
Com(H(m, aux)) does not lose the hiding and binding properties, in compari-
son with Com(m). We roughly argue about this fact, with the formal analysis

A Note on the Feasibility of Generalized Universal Composability 483

deferred to the full version of this work. Firstly, the hiding property of source/
session-authentic commitments is directly from that of the original commit-
ment scheme Com. For the binding property, we note that the ability to equiv-
ocate source/session-authentic commitments implies the ability to break the
collision-resistance of the underlying hash function H. This in particular means
that the augmented version of the UCZK of [8], with the IBTC replaced by
source/session-authentic IBTC, remains the same UC security in accordance
with the UC formulation of [8]. But, the augmented version provides some
additional non-malleability/composability guarantee, in particular, the attack
demonstrated in Section 3 fails in this case.

On the usefulness of source/session-authentic commitments. The use-
fulness of the source/session-authentic commitments lies in the following obser-
vation: even if the original commitment scheme Com is very weak to against
man-in-the-middle attacks, i.e., not non-malleable, the source/session-authentic
commitments via the hash-then-commit paradigm still provide very reasonable
and practical non-malleability guarantee. This is from the fact that: given a
source/session-authentic commitment c (seen from one session), it could be pos-
sible for the adversary to maliciously malleate c into a commitment c′ (possibly
in another concurrent session). But, it is intuitively hard for the adversary to
successfully open c′ to satisfy the additional source/session-specific restriction
via the collision-resistant hashing. Thus, we suggest source/session-authentic
commitments could be very useful, in particular in many applied scenarios
involving commitments, to provide practical and reasonable non-malleability/
composability guarantee against man-in-the-middle attacks.

Acknowledgements. We thank Ran Canetti for kind clarifications about UC
in the CRS model, and referring us to [8].

References

1. G. Atenise and B. De Medeiros. Identity-Based Chameleon Hash and Applications.
Cryptology ePrint Archive, Report No. 2003/167.

2. M. Blum. Coin Flipping by Telephone. In proc. IEEE Spring COMPCOM, pages
133-137, 1982.

3. M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings
of the International Congress of Mathematicians, Berkeley, California, USA, 1986,
pp. 1444-1451.

4. M. Bellare and O. Goldreich. On Defining Proofs of Knowledge In E. F. Brickell
(Ed.): Advances in Cryptology-Proceedings of CRYPTO 1992, LNCS 740, pages
390-420, Springer-Verlag, 1992.

5. M. Bellare and O. Goldreich. On Probabilistic versus Deterministic Provers in
the Definition of Proofs Of Knowledge. Electronic Colloquium on Computational
Complexity, 13(136), 2006. Available also from Cryptology ePrint Archive, Report
No. 2006/359.

484 A.C.C. Yao, F.F. Yao, and Y. Zhao

6. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In IEEE Symposium on Foundations of Computer Science, pages
136-145, 2001.

7. R. Canetti. Security and Composition of Cryptographic Protocols: A Tutorial.
Distributed Computing column of SIGACT News, Vol. 37, Nos. 3 and 4, 2006.
Available also from Cryptology ePrint Archive, Report 2006/465.

8. R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universal Composable Security with
Global Setup. TCC 2007, to appear. Available from: Cryptology ePrint Archive,
Report No. 2006/432.

9. R. Canetti and M. Fischlin. Universal Composable Commitments. In Advances
in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 19-40. Springer-
Verlag, 2001.

10. R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Compo-
sition Without Set-Up Assumptions. In E. Biham (Ed.): Advances in Cryptology-
Proceedings of EUROCRYPT 2003, LNCS 2656, pages 68-86. Springer-Verlag,
2003.

11. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In ACM Symposium on Theory of
Computing, pages 494-503, 2002.

12. R. Canetti and T. Rabin. Universal Composition with Joint State. In Advances in
Cryptology-Proceedings of CRYPTO 2002, LNCS 2729, pages 265-281, Springer-
Verlag, 2003.

13. J. A. Garay, P. MacKenzie and K. Yang. Strengthening Zero-Knowledge Protocols
Using Signatures. Journal of Cryptology, to appear. Preliminary version appears
in E. Biham (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003,
LNCS 2656 , pages 177-194. Springer-Verlag, 2003.

14. O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University
Press, 2001.

15. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but Their Va-
lidity and a Methodology of Cryptographic Protocol Design. In IEEE Symposium
on Foundations of Computer Science, pages 174-187, 1986.

16. O. Goldreich, S. Micali and A. Wigderson. How to Prove all NP-Statements in
Zero-Knowledge, and a Methodology of Cryptographic Protocol Design. In A. M.
Odlyzko (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1986, LNCS 263,
pages 104-110, Springer-Verlag, 1986.

17. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their
Validity or All language in NP Have Zero-Knowledge Proof Systems. Journal
of the Association for Computing Machinery, 38(1): 691-729, 1991. Preliminary
version appears in [15,16].

18. J. Hastad, R. Impagliazzo, L. A. Levin and M. Luby. Construction of a Pseudoran-
dom Generator from Any One-Way Function SIAM Journal on Computing, 28(4):
1364-1396, 1999.

19. Y. Lindell. General Composition and Universal Composability in Secure Multi-
Party Computation. In IEEE Symposium on Foundations of Computer Science,
pages 394-403, 2003.

20. Y. Lindell. Lower Bounds for Concurrent Self Composition. In M. Naor (Ed.):
Theory of Cryptography (TCC) 2004, LNCS 2951, pages 203-222, Springer-Verlag,
2004.

A Note on the Feasibility of Generalized Universal Composability 485

21. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2):
151-158, 1991.

22. R. Pass. On Deniabililty in the Common Reference String and Random Oracle
Models. InD. Boneh (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2003,
LNCS 2729, pages 316-337, Springer-Verlag 2003.

23. A. C. C. Yao, F. F. Yao and Y. Zhao. A Note on Universal Composable
Zero-Knowledge in the Common Reference String Model. Appears in the same
proceedings.

t-Private and Secure Auctions

Markus Hinkelmann1, Andreas Jakoby1, and Peer Stechert2

1 Institut für Theoretische Informatik, Universität zu Lübeck, Germany
{hinkelma,jakoby}@tcs.uni-luebeck.de

2 Fachgruppe Didaktik der Informatik und E-Learning, Universität Siegen, Germany
stechert@die.informatik.uni-siegen.de

Abstract. In most of the used auction systems the values of bids are known to the
auctioneer. This allows him to manipulate the outcome of the auction. Hence, one
is interested in hiding these values. Some cryptographically secure protocols for
electronic auctions have been presented in the last decade. Our work extends these
protocols in several ways. Based on garbled circuits, i.e. encrypted circuits, we
present protocols for sealed-bid auctions that fulfill the following requirements:

1. Protocols are information-theoretically t-private for honest but curious
parties.

2. The number of bits that can be learned by active adversaries is bounded by
the output length of the auction. Hence, if the result of the auction has to re-
main unchanged, then we present protocols that are secure against malicious
attacks.

3. The computational requirements for participating parties are very low:
only random bit choices and bitwise computation of the XOR-function are
necessary.

4. The protocols are perfectly correct, i.e. they have a zero probability of
failure.

Note that one can distinguish between the protocol that generates a garbled
circuit for an auction and the protocol to evaluate the bids in an auction based
on the garbled circuit. Usually previous papers are focused on the problem of
evaluating the bids of an auction. In this paper we address both problems. In
addition to the generalization of the concept of garbled circuit we will present a
t-private protocol for the construction of a garbled circuit that reaches the lower
bound of 2t + 1 parties and a more randomness efficient protocol for (t + 1)2

parties.
Finally we will present a strategy that allows new bidders to join a running

auction or to change their bids dynamically. Our goal is that all bidders who do
not change their bids are allowed to stay inactive in the process of bid changing.

1 Introduction

Traditional auctions involve an auctioneer and numerous bidders who want to sell or
buy an item, respectively. In a secure electronic auction system, secure EAS for short,
a bid has to remain hidden for all other bidders and for the auctioneer if it is not a part
of the output. In particular, the auctioneer has to be prevented from learning the bids.

There exist numerous different auction types and models: The English or ascending
auction is the most common auction type. Here, in each round a bidder can increase

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 486–498, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

t-Private and Secure Auctions 487

his previous bid. At the end, the highest bidder takes the item and pays the price he
has bid. Hence, the auctioneer learns the bids of all bidders. In a Dutch or descending
auction, the potential price decreases over time. The first person who places a bid takes
the item and has to pay the current price. Note that the privacy of other bidders’ bids
are preserved. In a sealed-bid auction, every player turns in a secret bid. The auctioneer
opens all bids and computes the winner. Again, the auctioneer learns the bids of all
bidders. Dealing with sealed-bid we distinguish between first-price and second-price
auctions. In a first-price auction, the highest bidder takes the item and pays the price
of his bid, i.e. the highest bid. In a second-price auction also called Vickrey auction the
highest bidder takes the item and pays the second highest bid (see e.g. [10]).

In this paper we present protocols for sealed-bid auctions which keep the privacy of
the bidders’ bids even if a collusion of parties tries to attack the protocol. Our work re-
lies on two concepts. First, it relies on the cryptographically privacy preserving auction
scheme of Naor et al. [24], using the garbled circuit (GC) construction, i.e. encrypted
Boolean circuits. Second, it relies on the concept of perfect privacy, i.e. on the concept
of privacy in the information-theoretic sense [2,7]. In [17] Ishai and Kushilevitz showed
how to use the model of GCs to compute a function in a perfect private way. We will
generalize both concepts:

1. We present protocols to construct GCs t-privately: The construction does not leak
more information to any collusion of up to t parties than the GC itself.
2. We generalize the concept of garbled circuits such that the garbled circuits will be
t-private according to the inputs of the circuit. This implies that any collusion of up to
t parties does not get more information about the inputs of the circuit than the collusion
can deduce from result of the circuit.

Related work concerning Electronic-Auction-Systems: In 1996, Franklin and Reiter
[12] proposed the first auction scheme that has a privacy contribution with regard to
the bidders whereas the auctioneer is allowed to learn all bids. They also demand for a
deposit of digital cash for each player to ensure non-repudiation in their cryptographic
auction scheme. Sadeghi, Schunter, and Steinbrecher [27] presented a combinatorial
auction that sells multiple interdependent items by proceeding multiple rounds. They
consider the German UMTS auction as an example, where every winner had to win at
least two licenses. In this model, public key cryptography is used to obtain verifiable
and private bidding, and the possibility to repudiate a bid is mentioned whereby the
involved bidder has to pay a fine.

Kikuchi, Harkavy, and Tygar [20] introduced a model based on Shamir’s secret shar-
ing scheme [26]. In each round, a bid-vector of k prices is distributed to the players who
can mark all prices they want to bid. Kikuchi et al. [15] also described sealed-bid auc-
tions via a verifiable secret sharing scheme [8,2]. Their approach deals with n bidders
and m auctioneers and uses an error correcting code to share the secrets. Accountability
is reached with public key encryption.

Kurosawa and Ogata [22] dealt with a bit-slice auction circuit. Traditional techniques
to evaluate an auction compare the incoming bids one-by-one, but their approach alter-
natively compares the bids bit-by-bit, beginning with the most significant one. Addi-
tionally, they combine this approach with the mix and match method of Jakobsson and

488 M. Hinkelmann, A. Jakoby, and P. Stechert

Juels [18] that uses a homomorphic encryption scheme. Omote and Miyaji [25] pro-
posed a second-price sealed-bid auction that satisfies public verifiability of the auction
without revealing the highest bid. To achieve this, they use a cryptographic primitive
and two auction managers. Brandt [4,5] introduced a cryptographic auction protocol
without a special trusted party. Full privacy is achieved by distributing shares of every
bid via Shamir’s secret sharing scheme. Cachin [6] presented a scheme based on ho-
momorphic encryption, where an auctioneer wants to receive at least a certain price A
for his item and a bidder who wants to pay at most B. To answer the question, whether
the deal takes place, an oblivious third party is introduced, that neither learns anything
about both values nor about the result, i.e. whether A > B.

Naor et al. [24] presented an EAS based on GCs. Using pseudo-random generators
these circuits allow to define a cryptographical secure and verifiable EAS. To construct
the GCs the authors introduce a new party called auction issuer. They assume that the
auction issuer does not collude with the auctioneer or a bidder. Juels and Szydlo [19]
relied directly on the GC construction of Naor et al. [24]. The proxy oblivious transfer
of Naor et al. has the disadvantage that the correct input of a bidder is not verifiable by
other parties. Juels and Szydlo introduce a verifiable proxy oblivious transfer resulting
in less computation for the bidders.

Related work concerning Private Computation: Private computation was introduced
by Yao [29]. He considered the problem under cryptographic assumptions. Private Com-
putation with unconditional, i.e. information-theoretical, security has been introduced
by Ben-Or et al. [2] and Chaum et al. [7]. Kushilevitz et al. [23] proved that the class of
Boolean functions that have linear size circuit is exactly the class of functions that can
privately be computed using a constant number of random bits.

Franklin and Yung [13] investigated the role of the connectivity of the underlying
network in private computations. Bläser et al. [3] completely characterized the class
of privately computable Boolean functions, if the underlying network is connected but
not 2-connected. In particular, no non-degenerate function can privately be computed
if the network consists of three or more blocks. On networks with two blocks only a
small class of functions can privately be computed. This result has been generalized for
non-Boolean functions by Beimel [1]. He has shown that only functions with a restricted
type of communication matrix can be computed on a non-2-connected network. One can
easily verify that most types of auctions do not fulfill these restrictions of the function.
Hence, the underlying network has to be 2-connected.

Chaum et al. [7] proved that any Boolean function can privately be computed, if
at most one third of the participating parties are dishonest. For this model, Ben-Or et
al. [2] proved that any n-ary Boolean function can be computed

⌊
n−1

2

⌋
-private, i.e. at

most
⌊

n−1
2

⌋
players collude. Chor and Kushilevitz [9] showed that if a function can be

computed at least n
2 -privately, then it can be computed n-privately as well.

Randomizing polynomials are introduced in [16] by Ishai and Kushilevitz as a new
algorithmic approach for round-efficient private computations with low error probabil-
ity. In [17] they have shown that all functions can privately be computed in a constant
number of rounds and 0 error probability. Damgård and Ishai presented a constant-
round protocol for general multiparty computation that uses randomized polynomi-
als, black-box pseudorandom generators, and Shamir shares [11]. The protocol uses

t-Private and Secure Auctions 489

multiplications and additions over a finite field F = GF(2k) with security parameter
k for construction and evaluation of the polynomials. Damgård and Ishai distinguish
between input players, output players, and servers, i.e. parties which construct the ran-
domized polynomials. Hence, this protocol can be used to implement auctions. It is
cryptographically secure against an active adversary corrupting t < n/2 servers.

Our Contributions: For private electronic auction systems one has to find a concept
and protocols for evaluating auctions preserving the privacy of the bidders and the bids.

Our Concept: We generalize the concept of GCs in order to evaluate a circuit t-privately,
i.e. no collusion of up to t parties can deduce any knowledge about the inputs of the cir-
cuit that cannot be deduced from the result of the circuit and the input of the colluding
parties. Focusing on EASs fulfills the following requirements:

– In contrast to previous EASs our system is information-theoretically t-private.
– Some protocols presented in the literature may fail with small probability. GCs allow

to evaluate an auction in a perfectly correct way.

In most papers cited above verification is only investigated regarding the bidders and
their secret inputs. In our EAS it is possible that all parties t-privately verify the cor-
rectness of the auction evaluation. Furthermore, our auction scheme guarantees that the
total number of bits of information revealed by a collusion of up to t malicious parties
that try to stay undetected is bounded by the number of output-bits of the auction.

The Protocols: (1) We present information-theoretically t-private protocols to construct
a GC Γ (C) for a given circuit C. The first protocol requires (t + 1)2 parties and uses a
number of random bits that is polynomial in |Γ (C)| and t. The second protocol is based
on the first protocol and reaches the lower bound of 2t + 1 parties. In return the second
protocol uses an exponential number of additional random bits in t. (2) We present two
information-theoretically t-private protocols for the bidding process.

In our protocols there are four kinds of parties: (i) auctioneer who evaluates the
auction, (ii) bidders, (iii) auction issuers who determine the encryption of the auction,
and (iv) slaves who perform the encryption. If the parties have access to a source of
random bits, the computation performed by auction issuers, bidders and slaves can be
implemented by circuits of depth O(log t) that consists of binary XOR-gates and one
level of gates to multiplex one bit out of two. Thus, the computational requirements are
very low.

Introducing some minor changes to these protocols one can use them to translate in-
termediate data of an evaluation process of a GC into intermediate data of the evaluation
process of another GC of the same circuit. Based on this observation our protocols al-
low dynamic sealed-bid auction, i.e. a bidder can change his bid at will or they can enter
an auction that has already started and no further bidder is involved in this procedure.

All protocols presented in this paper are information-theoretically t-private. In re-
turn the GC requires a large number of random bits in the encryption of the underlying
circuit. But, the protocols for generating the GCs might be useful for generating GCs
that are cryptographically t-private. As one can see in [24,11] these encryptions are of-
ten more efficient than information-theoretically private encryptions. Hence, this paper

490 M. Hinkelmann, A. Jakoby, and P. Stechert

will be a first step towards an efficient implementation of t-private EASs with very low
requirements for hardware. Our approach is based on [28].

This work is organized as follows: In Section 2 we present some basic definitions and
notations of private computation. We will redraw the privacy preserving cryptographic
auction of Naor et al. Furthermore, we discuss randomizing polynomials that can be
used as an evaluation technique for GCs. Section 3 presents information-theoretically
t-private, static auction protocols. In Section 4 we analyze the security of our protocol
against active attacks. Section 5 deals with dynamic aspects of the EAS. The concluding
Section 6 summarizes the results.

2 Notation and Preliminaries

Throughout this work, we will use ⊕ to denote the (bit-wise) XOR-operation on Boolean
values and binary strings, as well as on vectors and matrices of binary strings.

Let x = x[1]x[2] . . . x[n] ∈ {0, 1}n be a binary string of length n. For a set J =
{j1, . . . , jk} where 1 ≤ j1 < j2 < . . . < jk ≤ n let x[J] = x[j1] . . . x[jk]. We
extend this notation to arbitrary sequences. Let C = (c1, . . . , cn). Then C[J] denotes
the subsequence (cj1 , . . . , cjk

). The operator ◦ denotes the concatenation of strings. For
i, j ∈ N, let [i, j] := {i, . . . , j}. All logarithms in this paper are to the base 2.

An n-input l-output circuit Cl
n is described by a DAG G = (V, E). V contains

2n nodes of in-degree 0, the inputs x1, x̄1, . . . , xn, x̄n. The remaining nodes have in-
degree 2 and are called gates. The gates g1, . . . , gm are labeled by either AND or OR. G
has l nodes with out-degree 0 called output-gates. For convenience we write C instead
of C1

n and we use the variables xi synonymously to the corresponding input values. If
the input of a circuit is fixed by the context we denote the value of a gate g by bg. The
value be of a wire e is determined by the value of the gate g the wire comes from resp.
by the input xi if e is an input wire.

Privacy and Security: In this work we consider the model of honest but curious and
the model of malicious parties. We do not want any party to learn more about the inputs
of other parties than it can deduce from the result of the function and its own input. We
assume that every party has access to a random tape. Parties can send messages to other
parties via point-to-point communication using secure channels. Computing a function
f on the input x = (x1, . . . , xn) we assume that xi is the private input of party Pi.

Definition 1 (t-Privacy). For a subset of parties U ⊆ V let CU resp. RU denote the
random variables of the communication string resp. of the random string seen by par-
ties of U and let cU be a particular communication string. An n-party protocol P for
computing a function f : Σn → Σ is private with respect to the parties of U , if for
every pair of input vectors x, y with f(x) = f(y) and x[U] = y[U], for every sequence
of random strings rU provided to the parties of U , Pr[CU = cU |RU = rU , x] =
Pr[CU = cU |RU = rU , y] where all parties follow protocol P . A protocol is t-private
if it is private with respect to any subset U of at most t parties. A protocol is called
private if it is 1-private.

In other words, a protocol is called t-private, 1 ≤ t ≤ n − 1, if no collusion of t parties
learns anything about the distributed secret that cannot be deduced from the result and

t-Private and Secure Auctions 491

the input of the members of the collusion while honestly participating in the protocol.
From [3,1] we can conclude that most auction protocols cannot be run privately on non-
2-connected networks. Therefore, we demand a communication network to be at least
2-connected.

Alternatively, one can define t-privacy by using conditional entropy. Here the inputs
of parties are represented as a discrete random variable X . Let U be a subset of parties.
We define the leakage of information of a protocol with respect to U as the minimum
value τ such that for any x, cU and rU it holds that

H[X |f(X), X [U] = x[U], rU] − H[X |f(X), X [U] = x[U], rU , cU] ≤ τ .

The definition above corresponds to the conditional mutual information between X and
CU . A protocol is t-private if its leakage is 0 with respect to every subset U of at most t
parties. We call a protocol P (t, τ)-secure if for every subset U of at most t parties and
for every protocol P ′ where the parties of U follow P ′ and the honest parties in V \ U
follow the protocol P the leakage is bounded by τ . Note that malicious parties may run
an arbitrary attack.

The NPS Protocol: In this section, we discuss the cryptographic EAS of Naor et al.
[24], that is based on Yao’s garbled circuits and pseudo-random generators [30,14].
GCs are encrypted versions of standard Boolean circuits where the Boolean values are
replaced by encrypted values. Knowing the encrypted input one can evaluate the circuit
gate-by-gate and produce the garbled output without learning anything about the orig-
inal input and intermediary results. To achieve privacy of an auction Naor et al. [24]
introduce a third party: the auction issuer AI. This party generates the GC and they
assume that AI does not conspire with any other party. To send the encrypted bids to
the auctioneer the bidders use a protocol realizing the proxy oblivious transfer. For one
bit bids the proxy oblivious transfer is defined as follows: Each bidder has his private
value xi ∈ {0, 1} and AI provides two encryptions W 0, W 1 for the bit. The goal is
to send W xi to the auctioneer such that neither the bidder learns W 0 or W 1 nor the
AI learns xi. Furthermore, the auctioneer does not learn anything about xi or W 1−xi .
Using the GC, the auctioneer can evaluate the auction. We will refer to this protocol as
the NPS-protocol.

The NPS-protocol provides 1-privacy, only. I.e. a party cannot break the secrets of
the other parties. But if the AI and the auctioneer collude, both will gain knowledge
about all bids.

Garbled Circuits: In this section, we shortly discuss GCs. A GC consists of a circuit of
encrypted gates. To encrypt a gate g we XOR the truth table of g by a randomly generated
table Wg and permute their entries. To compute the result of the encrypted gate we add
to the result of predecessor gates the corresponding rows resp. columns of some random
tables such that XOR-ing these random values allows us to compute exactly one entry
of Wg . To keep track of the permutation of the truth table of g, we XOR the results of
the predecessor gates by a random bit. Note that this allows us to encrypt the result of
the predecessor gates and simultaneously to permute the truth table of g.

Let us now continue with a more formal description of GCs. We use random values
of two types: For every wire e of a circuit C there exists a vector of random strings
We = (W 0

e , W 1
e) and for every gate g and every input bit xi there exists a random bit

492 M. Hinkelmann, A. Jakoby, and P. Stechert

rg resp. ri. The length of the strings W b
e is defined recursively from top to bottom: For

every b ∈ {0, 1}, every wire e and every gate g let |W b
e | = 0 if e is an output wire and

|W b
e | = 2(1 +

∑
output wire e′ of g |W 0

e′ |) if e is an input wire of gate g.

Each string W b
e = W b,0

e ◦ W b,1
e consists of two equally sized halves. In order to

encrypt a Boolean value xi ∈ {0, 1} on an input wire e, we use a random bit ri and
compute the polynomial W xi

e ◦ (xi ⊕ ri). Note that W xi
e can be written as (xi ·W 1

e)⊕
((1 − xi) · W 0

e).
Let g be a gate with input wires e1, e2, output wires o1, . . . , ok and gate function

g(b1, b2) where b1, b2 ∈ {0, 1}. We encrypt the values bgi by cgi = bgi ⊕ rgi where gi

denotes the predecessor of g with output wire ei. Hence, we use one additional random
bit rg for every gate g. Each random bit rgi induces a permutation of the rows (resp.
columns) of the garbled table in the succeeding gates. For each of the four possible
values cg1 , cg2 ∈ {0, 1} of the preceding gates of g, we define a corresponding polyno-
mial on strings of length 1 +

∑
1≤l≤k |W 0

ol
|. This polynomial defines the entry of the

garbled table indexed by (cg1 , cg2). Informally, these expressions encrypt the values of
the (permuted) truth table of g. The garbled table is given by

Qg =
(

Q0,0
g Q0,1

g

Q1,0
g Q1,1

g

)

with Qa,b
g = W

a⊕rg1 ,b
e1 ⊕ W

b⊕rg2 ,a
e2 ⊕ (W g(a⊕rg1 ,b⊕rg2)

g ◦ (rg ⊕ g(a ⊕ rg1 , b ⊕ rg2)))
and W b

g = W b
o1

◦ . . . ◦W b
ok

where g1 denotes the left and g2 the right predecessor of g.

In every entry of the table, we store a string W
g(a⊕rg1 ,b⊕rg2)
g that is used as a key

in the table for the succeeding gate. To decrypt a table we use only one half of Wg1 ,
resp. Wg2 . Thus, the length of these strings grows exponentially in the depth of the
corresponding circuit. But if the circuit has logarithmic depth the total length of the
strings in the GCs is only polynomial in these size of the circuit.

Knowing the encryption W
bg1
e1 , W

bg2
e2 and cg1 , cg2 of the input of an gate g, one can

XOR each of the suitable halves of W
bg1
e1 , W

bg2
e2 with the garbled table entry Q

cg1 ,cg2
g and

gets the encryption of bg and boi for all output wires oi of g without learning anything
about the hidden Boolean value. That is,

Q
cg1 ,cg2
g ⊕W

bg1 ,cg2
e1 ⊕W

bg2 ,cg1
e2 = W

g(cg1⊕rg1 ,cg2⊕rg2)
g ◦(g(cg1⊕rg1 , cg2⊕rg2)⊕rg).

Each expression Wh
oi

for a Boolean variable h ∈ {0, 1} can be represented by (h ·
W 1

oi
) ⊕ ((1 − h) · W 0

oi
). The output gates g of the circuit have the values rg ⊕ bg.

This construction is closely related to the construction of Ishai and Kushilevitz [17].
In [17] the authors presented a construction of GCs based on Boolean formulas. Our
construction above is an extension of this approach to Boolean circuits. The proof of
correctness and privacy follows analogously to the case of Boolean formulas.

We will now present an alternative way to generate these garbled tables. This strategy
will be used in our protocol to generate garbled tables t-privately. For every gate g and
every wire e we define Ŵe = (W 0

e , W 1
e) and

Q̂g =

(
Q̂0,0

g Q̂0,1
g

Q̂1,0
g Q̂1,1

g

)

with Q̂a,b
g = W g(a,b)

g ◦ (rg ⊕ g(a, b)) .

t-Private and Secure Auctions 493

Let (W 0
e1

, W 1
e1

) ⊗ (W 0
e2

, W 1
e2

) =
(

W 0,0
e1

⊕ W 0,0
e2

W 0,1
e1

⊕ W 1,0
e2

W 1,0
e1

⊕ W 0,1
e2

W 1,1
e1

⊕ W 1,1
e2

)

,

Πr1,r2

(
A0,0 A0,1

A1,0 A1,1

)

=
(

Ar1,r2 Ar1,r̄2

Ar̄1,r2 Ar̄1,r̄2

)

,

and Πr(W 0
e , W 1

e) = (W 0
e , W 1

e) for r = 0 and Πr(W 0
e , W 1

e) = (W 1
e , W 0

e) for r = 1 .
Then, we have Qg = (Πr1(Ŵe1) ⊗ Πr2(Ŵe2)) ⊕ Πr1,r2(Q̂g). For a given circuit C a
GC is denoted by ΓC . If C is known from the context we will omit the index.

3 t-Private Garbled Circuit Construction

In this section we will present two protocols for generating a garbled auction circuit Γ
t-privately. We say that a protocol generates a GC t-privately if it generates a GC Γ
and while constructing Γ no collusion U of up to t parties can deduce any information
about the chosen random values of Γ that cannot be deduced from Γ directly.

Basically our protocol works as follows: For each gate of a circuit we independently
generate t+1 collections of the random bits used in the construction of the correspond-
ing garbled table — each random collection is generated by a separate auction issuer.
Instead of computing the garbled auction circuit by the auction issuers we proceed as
follows: we introduce a field of (t + 1)2 slaves that is divided into t + 1 columns where
the i-th column is used to permute all truth tables according to the random permuta-
tion chosen by the i-th auction issuer. The truth tables and the corresponding W -strings
of each auction issuer and of each gate move through all columns of the field. At the
end the tables of all auction issuers are permuted by the same permutation. XOR-ing all
corresponding tables gives us the desired t-private GC.

Our protocols are designed such that every party can simultaneously take part in the
construction of the GC, bidding and evaluation. Hence, every party can simultaneously
be the auctioneer, one auction issuer, one slave, as well as an arbitrary number of bidders
without gaining additional knowledge about the bids of the other bidders. Hence, if it is
not necessary to distinguish between the different entities we call them just parties.

In the following, we use the term a party P generates a �-share w1, . . . , w� of w to
denote that party P generates � random strings w1, . . . , w� such that w = w1⊕ . . .⊕w�.

Constructing Garbled Circuits: In the first strategy we will use a set of t + 1 auction
issuers AI k with k ∈ [1, t + 1] and a set of (t + 1)2 sub-workers Si,j with i, j ∈ [1, t +
1] called slaves. Every auction issuer generates an independent GC Γk for a globally
given auction circuit C. The slaves are used to combine these GCs. More precisely, AI k

generates two random strings W 0
k,e, W

1
k,e for every wire e, a random bit rk,g for every

gate g, and a random bit rk,i for every input variable xi. For easier notion we associate to
every wire e the random bit rk,g of the gate g resp. rk,i of the input variable xi where the
wire is coming from. Let rk,e denote this random bit. After generating the random values,

AI k generates the tables Q̂k,g of every gate g and the vectors Ŵk,e of every wire e of C.
For technical reasons we assume that the tables Q̂k,g with k > 1 do not contain the result

of the gate, i.e. Q̂a,b
k,g = W

g(a,b)
k,g ◦rk,g for k > 1 and Q̂a,b

1,g = W
g(a,b)
1,g ◦(r1,g⊕g(a, b)).

494 M. Hinkelmann, A. Jakoby, and P. Stechert

Our goal is to construct Γ and thus all tables

Qg =
(
Πre1

(⊕t+1
k=1Ŵk,e1) ⊗ Πre2

(⊕t+1
k=1Ŵk,e2)

)
⊕ Πre1 ,re2

(⊕t+1
k=1Q̂k,g)

t-privately where re1 = ⊕t+1
k=1rk,e1 and re2 = ⊕t+1

k=1rk,e2 . The protocol performs the
following steps for every wire e and every gate g:

1. Every AI k generates a t + 1-share rk,1,e, . . . , rk,t+1,e of every random bit rk,e and
sends rk,i,e to all slaves Sh,i with h ∈ [1, t+1]. All Sh,i compute si,e = ⊕t+1

k=1rk,i,e.

2. Every AI k generates the t +1-shares Ŵ 1
k,0,e, . . . , Ŵ

t+1
k,0,e and Q̂1

k,0,g, . . . , Q̂
t+1
k,0,g of

the random values Ŵk,e and Q̂k,g . Afterwards, he sends Ŵ i
k,0,e and Q̂i

k,0,g to Si,1.

3. After receiving the values Q̂k
i,j−1,g and Q̂k

i,j−1,g for every i ∈ [1, t + 1] slave Sk,j

computes Ŵk,j,e = Πsj,e(⊕t+1
i=1Ŵ

k
i,j−1,e) and Q̂k,j,g = Πsj,e1 ,sj,e2

(⊕t+1
i=1Q̂

k
i,j−1,g)

where e1, e2 are the input wires of g. If j < t + 1, Sk,j generates t + 1-shares
Ŵ 1

k,j,e, . . . , Ŵ
t+1
k,j,e and Q̂1

k,j,g, . . . , Q̂
t+1
k,j,g of Ŵk,j,e and Q̂k,j,g and sends Ŵ i

k,j,e and

Q̂i
k,j,g to Si,j+1.

4. The slaves Sk,t+1 in the last column compute Qk,g = (Ŵk,t+1,e1 ⊗ Ŵk,t+1,e2) ⊕
Q̂k,t+1,g where e1, e2 are the input wires of g and send Qk,g to the auctioneer A.

5. Finally, A computes Qg = ⊕t+1
k=1Qk,g .

We call this protocol the field-protocol. The field-protocol can be simulated on a com-
plete network of 2t + 1 parties.

Theorem 1. The GC Γ of an auction circuit can be constructed t-privately by using
t + 1 auction issuers, (t + 1)2 slaves, and O(|Γ |t3) random bits where |Γ | denotes the
length of the binary representation of Γ . Moreover, there is a t-private protocol to build
Γ for 2t + 1 parties using O((t + 1)t+3|Γ |) random bits.

t-Private Bidding: Let xi,j denote the jth bit of the bid xi of bidder Bi and let e be a
wire of the circuit C connected to xi,j . Our protocol should give the auctioneer A access
to W

xi,j
e ◦ (re ⊕ xi,j) in a t-private way. To simplify our analysis we assume that A

publishes Γ and W
xi,j
e ◦ (re ⊕ xi,j). For the field-protocol we proceed as follows:

1. Bi computes a t + 1-share x1
i,j , . . . , x

t+1
i,j of xi,j and sends xk

i,j to AI k.

2. AI k computes a t + 1-share c1
k,e, . . . , c

t+1
k,e of xk

i,j ⊕ rk,e and sends ci
k,e to S1,i.

3. S1,i sends ci
e = ⊕t+1

k=1c
i
k,e to all slaves in the last row Sj,t+1.

4. All Sj,t+1 compute ce = ⊕t+1
i=1c

i
e and send Ŵ ce

k,t+1,e ◦ ce to A.

5. Finally, A computes W
xi,j
e ◦ ce = (⊕t+1

k=1Ŵ
ce

k,t+1,e) ◦ ce.

Theorem 2. There exists a t-private protocol for an EAS with (t + 1)2 auction issuers
using O(t3|Γ |) random bits and for an EAS with 2t + 1 auction issuers using O((t +
1)t+3|Γ |) random bits.

Since the evaluation of the GC on the encrypted inputs gives an encrypted output the
result of the auction remain hidden. To decrypted the output all auction issuers AI i have
to publish their random bits ri,g for every output gate g.

t-Private and Secure Auctions 495

4 Security Against Active Attacks

If a node is malicious (Byzantine), then it does not need to follow the instructions of the
protocol. It can arbitrarily drop, add or change messages. We define an active collusion
as a collusion of t malicious nodes that are under control of a single active adversary.
Thus, the active adversary knows all information gathered by the colluding nodes and
he can arbitrarily instruct these nodes.

One can think of different aims the adversary tries to achieve when attacking our
field protocol: (1) The adversary may try to change the outcome of the auction. (2) The
adversary is destructive, i.e. he tries to sabotage the execution or change the result of
the computation by random. To make our field protocol resistant against these types of
attacks we can construct the GC redundantly. The aim of the third kind of adversary is to
collect as much of information about the inputs as possible by manipulating messages.
In the following we present an upper bound for the leakage for the field-protocol.

Since the field protocol uses t + 1 auction issuers and t + 1 columns of slaves one
can show that for every collusion U of at most t parties there exists at least one honest
AI i 	∈ U such that no slave of the column S·,i is in the collusion U . Furthermore, one
of the rows Sj,· does not include a party of U . Note that the slaves in the same column
perform identical operations. Hence, if j 	= i we can permute the rows such that the slaves
in Si,· do not belong to the collusion without effecting the protocol. In the following we
call the set that consists of AI i, S·,i, Si,·, and all bidders not in U the trusted skeleton (TS)
and the set of all remaining parties the extended collusion (EC). Even if the adversary
controls all parties in EC it holds that

Theorem 3. Let l be the number of output bits of C. Then, an active adversary does not
get more than l bits of information of the inputs of TS, i.e. the protocol is (t, l)-secure.
Moreover, an active adversary that controls at most t parties and does not change the
output of an auction does not get any information about the bids of the honest bidders
that cannot be deduced by a passive adversary controlling the same parties.

5 Dynamic t-Private Auctions

We call an EAS dynamic if it allows a bidder to change his bid and if bidders can join
a running auction. Introducing dynamism into a EAS may lead to two scenarios: (1) A
bidder gets feedback whether his bid changes the result of the auction. Hence, he gets
additional information about the bids of the other bidders. (2) A bidder does not get any
feedback. Then, dynamism can be reduced to the static case where only the last bid of
each bidder is used.

Talking about a dynamic secure EAS we assume that the system works as follows: (1)
The system generates an algorithm that allows to evaluate the auction without revealing
any information about the bids. Our system will compute an encrypted result. (2) The
bidders can deposit their bids in such a way that no party gets any information about the
values of the bids (at this moment). (3) If a bidder changes his bid all other bidders can
stay inactive. (4) If a bidder is paying some fee, he will get the information whether he
is the winner of the auction at the moment. (5) A bidder can withdraw or change his bid
such that no party gets any information about the value of his bid (at this moment). Note

496 M. Hinkelmann, A. Jakoby, and P. Stechert

that combining the last two requirements results in some leakage (one bit) of information
about the bids of the remaining bidders. But, one can assume that the fee makes this bit
of information very expensive.

Let us first investigate whether we can recycle a garbled table of a gate for evaluating
a circuit on two different inputs. In general, we have to give a negative answer. For a
Boolean circuit C and two binary inputs x, x′ ∈ {0, 1}n of C with C(x) = C(x′) let
Δ(x, x′) be the set of input variables with different values in x and x′. Furthermore, for
a subset of input variables X let ΛC(x, X) be the set of gates g such that for some x, x′

with C(x) = C(x′) and Δ(x, x′) ⊆ X the value of g is different on x and x′.

Observation 1. Let Γ and Γ ′ be two GCs and X be a subset of input variables that
may change their values. For every input pair x, x′ ∈ {0, 1}n with C(x) = C(x′) and
Δ(x, x′) ⊆ X the random strings W 0

g , W 1
g , rg of all g ∈ ΛC(x, X) have to be chosen

independently in Γ and Γ ′ to preserve privacy when evaluating Γ on x and Γ ′ on x′.

If the random strings W 0
g , W 1

g , rg are not chosen independently in Γ and in Γ ′ for all
gates g ∈ ΛC(x, X), then one can observe whether the value of g changes from x to x′.
Let Bi be a bidder that has announced to change his bid, i.e. X = {xi,1, xi,2, . . .}. Our
goal is to find a protocol that allows all bidders Bj 	= Bi to stay inactive. Let Γ be the
GCs used on the old bids and let Γ ′ be the GCs used on the changed bids. From our
observation above one can conclude that all random values W 0

g , W 1
g , rg in Γ and in Γ ′

with g ∈ ⋃
x∈{0,1}n ΛC(x, X) have to be chosen independently. Hence, we can run our

protocols for all gates g ∈ ΛC(X) =
⋃

x∈{0,1}n ΛC(x, X) and all wires leaving these
gates. Since the values of the gates g′ 	∈ ΛC(X) do not change their values for every
input x and x′ with Δ(x, x′) ∈ X we can recycle the random values W 0

g′ , W 1
g′ , rg′ from

Γ in Γ ′. Note that for these GCs Γ and Γ ′ the intermediary strings W be
e ◦ (be ⊕ re) on

the wires that are leaving gates g′ 	∈ ΛC(X) are the same for every pair of input x and
x′ with Δ(x, x′) ∈ X . Hence, we have only to reevaluate the gates in ΛC(X). This can
be done by running a new bidding process for Bi and running a new evaluation process
of Γ ′ by A. We can use a similar protocol to extend a GC from n to n + 1 bidders.

Theorem 4. There exists a t-private protocol for a dynamic EAS for (t + 1)2 or more
parties using O(dt3|Γ |) random bits and a t-private protocol for 2t+1 or more parties
using O(d(t + 1)t+3|Γ |) random bits where d denotes the number of bid-changes.

6 Conclusions

In this paper we present a t-private protocol for 2t + 1 parties and a more randomness
efficient t-private protocol for O(t2) parties for sealed bid auctions. Our protocols are
based on GCs for evaluating the auction and on strategies for constructing such a circuit
in a distributed way. Usually, the bidder-to-auctioneer connection is the bottleneck of an
EASs, e.g. the bidder has a limited bandwidth or he is not always available. Thus, we
postulate that bidders have to be involved as infrequently as possible. In our system a
bidder must only be online to bid and can stay passive during the remaining time. This
feature also holds for dynamic auctions where bids are changed or bidders join a running
auction. Finally, we analyze the information gain of Byzantine attackers on our EAS and
present a strategy for introducing dynamism into an EAS.

t-Private and Secure Auctions 497

References

1. A. Beimel, On Private Computation in Incomplete Networks, 12th SIROCCO, pp. 18–33,
2005.

2. M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic
fault-tolerant distributed computation, 20th STOC, pp. 1–10, 1988.

3. M. Bläser, A. Jakoby, M. Liśkiewicz, B. Siebert, Private Computation – k-Connected versus
1-Connected Networks, 22nd CRYPTO, pp. 194–209, 2002.

4. F. Brandt, Secure and Private Auctions without Auctioneers, Technical Report FKI-245-02,
Institut für Informatik, Technische Universität München, 2002.

5. F. Brandt, Fully Private Auctions in a Constant Number of Rounds, 7th Annual Conference
on Financial Cryptography (FC), pp. 223–238, 2003.

6. C. Cachin, Efficient Private Bidding and Auctions with an Oblivious Third Party, 6th ACM
Conference on Computer and Communications Security, pp. 120–127, 1999.

7. D. Chaum, C. Crépeau, I. Damgård, Multiparty unconditionally secure protocols, 20th STOC,
pp. 11–19, 1988.

8. B. Chor, S. Goldwasser, S. Micali, B. Awerbuch, Verifiable secret sharing and achieving
simultaneity in the presence of faults, 26th FOCS, pp. 383–395, 1985.

9. B. Chor, E. Kushilevitz, A zero-one law for boolean privacy, SIAM J. Disc. Math., 4(1):36–
47, 1991.

10. K. Chui, R. Zwick, Auction on the Internet - A Preliminary Study, Manuscript, Technical
report, Hong Kong University of Science and Technology, Department of Marketing, 1999.

11. I. Damgård, Y. Ishai, Constant-Round Multiparty Computation Using a Black-Box Pseudo-
random Generator, 25th CRYPTO, pp. 378–394, 2005.

12. M. Franklin, M. Reiter, The Design and Implementation of a Secure Auction Service, IEEE
Transactions on Software Engineering 22(5), pp. 302–312, 1996.

13. M. Franklin, M. Yung, Secure hypergraphs: Privacy from partial broadcast, 27th STOC, pp.
36–44, 1995.

14. O. Goldreich, S. Micali, A. Widgerson, How to play any mental game or a completeness
theorem for protocols with honest majority, 19th STOC, pp. 218–229, 1987.

15. M. Harkavy, H. Kikuchi, J. Tygar, Electronic Auctions with Private Bids, 3rd USENIX Work-
shop on Electronic Commerce, pp. 61–74, 1998.

16. Y. Ishai, E. Kushilevitz, Randomizing Polynomials: A New Representation with Application
to Round-Efficient Secure Computation, 41st FOCS, pp. 294–304, 2000.

17. Y. Ishai, E. Kushilevitz, Perfect Constant-Round Secure Computation via Perfect Randomiz-
ing Polynomials, 29th ICALP, pp. 244–256, 2002.

18. M. Jakobsson, A. Juels, Mix and Match: Secure Function evaluation via Ciphertexts, 6th
ASIACRYPT, pp. 162–177, 2000.

19. A. Juels, M. Szydlo, A Two-Server, Sealed-Bid Auction Protocol, 6th Annual Conference on
Financial Cryptography (FC), pp. 72–86, 2002.

20. H. Kikuchi, M. Harkavy, J. Tygar, Multi-round Anonymous Auction Protocols, 1st IEEE
Workshop on Dependable and Real-Time E-Commerce Systems, pp. 62–69, 1998.

21. E. Kushilevitz, S. Micali, R. Ostrovsky, Reducibility and Completeness In Multi-Party Private
Computations, 35th FOCS, pp. 478–489, 1994.

22. K. Kurosawa, W. Ogata, Bit-Slice Auction Circuit, 7th ESORICS, pp. 24–38, 2002.
23. E. Kushilevitz, R. Ostrovsky, A. Rosén, Characterizing linear size circuits in terms of privacy,

JCSS, 58(1):129–136, 1999.
24. M. Naor, B. Pinkas, R. Sumner, Privacy Preserving Auctions and Mechanism Design, 1st

ACM Conference on Electronic Commerce, pp. 129–139, 1999.

498 M. Hinkelmann, A. Jakoby, and P. Stechert

25. K. Omote, A. Miyaji, A Second-price Sealed-bid Auction with Verifiable Discriminant of
p0-th Root, 6th Financial Cryptography Conference (FC), pp. 57–71, 2002.

26. A. Shamir, How to Share a Secret, Communic. of the ACM 22(11), pp. 612–613, 1979.
27. A. Sadeghi, M. Schunter, S. Steinbrecher, Private Auctions with Multiple Rounds and Mul-

tiple Items, 13th IEEE DEXA, pp. 423–427, 2002.
28. P. Stechert, Dynamic Private Auctions, Diplomarbeit, Institut für Theoretische Infomatik,

Universität zu Lübeck, Germany, January 2005.
29. A. C. Yao, Protocols for secure computations, 23rd FOCS, pp. 160–164, 1982.
30. A. C. Yao, How to generate and exchange secrets, 27th FOCS, pp. 162–167, 1986.

Secure Multiparty Computations

Using a Dial Lock

(Extended Abstract)

Takaaki Mizuki1, Yoshinori Kugimoto2, and Hideaki Sone1

1 Information Synergy Center, Tohoku University,
Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan

tm-paper@rd.isc.tohoku.ac.jp
2 Sone Lab., Graduate School of Information Sciences, Tohoku University,

Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan

Abstract. This paper first explores the power of the dial locks (also
called the combination locks), which are physical handy devices, in de-
signing cryptographic protocols. Specifically, we design protocols for
secure multiparty computations using the dial locks, and give some con-
ditions for a Boolean function to be or not to be securely computable
by a dial lock, i.e., to be or not to be “dial-computable.” In particular,
we exhibit simple necessary and sufficient conditions for a symmetric
function to be dial-computable.

1 Introduction

It has been known that some cryptographic tasks can be implemented by sev-
eral physical handy devices such as envelopes [6,12], cups [6], a deck of cards
[1,3,5,7,10,13,17], a PEZ dispenser [2] and scratch-off cards [11,12]. For example,
a deck of cards can be used for secure computations [3,5,13,17], zero-knowledge
proofs [13,17] and secret key exchange (e.g. [1,7,10]). For another example,
Balogh et al. [2] constructed a protocol which securely computes any function
using a PEZ dispenser without any use of randomization. Recently, Moran and
Naor [11] showed that bit-commitment and coin flipping can be implemented
by scratch-off cards, but oblivious transfer cannot be. The research area above
is often called recreational cryptography [2], human-centric cryptography [12] or
cryptography without computers [13,14,15].

This paper also addresses designing a cryptographic protocol using such a
physical handy device. Specifically, we consider the use of dial locks (also called
combination locks) as illustrated in Fig. 1, and give protocols for secure multi-
party computations using the dial locks.

1.1 Dial Locks

Any dial lock considered in this paper is like the following. (See again Fig. 1.)
A dial lock has k dials, each of which has m numbers for some positive integers

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 499–510, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

500 T. Mizuki, Y. Kugimoto, and H. Sone

9

Fig. 1. Examples of dial locks

k, m ∈ IN. Thus, there are exactly mk combinations. To open the dial lock, one
has to set the k dials to the (unique) predetermined combination, which is called
the opening combination. We assume that one can arbitrarily change the opening
combination (provided that she knows the current opening combination). Such
an “m-valued k-digit opening-combination-changeable” dial lock is called an
(m, k)-dial lock. For example, the left dial lock in Fig. 1 is a (10, 3)-dial lock,
and the right one in Fig. 1 is a (10, 4)-dial lock.

1.2 Secure Multiparty Computations

As mentioned before, the goal of this paper is to apply the physical prop-
erty of the dial locks to achieving secure multiparty computations. (A com-
prehensive survey of the problems of secure multiparty computations appears
in [8].) This paper considers the following simple scenario. Assume that there
are n honest-but-curious players P1, P2, . . . , Pn, who hold one-bit private inputs
x1, x2, . . . , xn ∈ {0, 1}, respectively, where n ≥ 2. All the n players want to learn
the output f(x1, x2, . . . , xn) of a predetermined (Boolean) function f : {0, 1}n →
{0, 1} without revealing more information about their inputs than necessary.
(Hereafter, we use simply the term ‘function’ to refer to a Boolean function.)
This paper deals with this simple type of secure multiparty computations (cf. [9]).
Example 1. Assume that three players P1, P2 and P3 holding one-bit private
inputs x1, x2 and x3, respectively, want to securely compute the 3-variable AND
function AND3(x1, x2, x3) = x1 ∧ x2 ∧ x3. After a secure multiparty compu-
tation (through some protocol), each of the three players learns the value of
x1 ∧ x2 ∧ x3. Furthermore, the secure computation asks the following for each
player, say P1: when x1 = 0 (and hence x1 ∧ x2 ∧ x3 = 0), P1 must not gain any
information about the inputs x2, x3 ∈ {0, 1} of the other players; when x1 = 1
and x1 ∧ x2 ∧ x3 = 0, P1 never gains any information other than the fact that
x2 ∧ x3 = 0. Note that when x1 ∧ x2 ∧ x3 = 1, all the players get to know the
fact that x1 = x2 = x3 = 1, of course.

1.3 Our Results

In this paper, we will first design dial-lock-based cryptographic protocols: we will
give a class of protocols, each of which achieves a secure multiparty computation

Secure Multiparty Computations Using a Dial Lock 501

(described in Section 1.2) using a dial lock (described in Section 1.1). Although
there are numerous functions securely computable by a dial lock such as the
AND function and the XOR function (as seen later), every function is not neces-
sarily “dial-computable.” For example, the OR function is not dial-computable
as seen later. Therefore, we will give a necessary condition for a function to be
dial-computable (as in Lemma 1). Furthermore, by restricting the considered
functions to symmetric ones, we will obtain simple necessary and sufficient con-
ditions for a symmetric function to be dial-computable (as in Theorem 1). The
restriction to the symmetric functions is quite reasonable, because, when a de-
mand for a secure multiparty computation arises, it is a natural setting that all
players are “symmetric,” i.e., all the players have the same circumstances.

The remainder of the paper is organized as follows. In Section 2, we construct
protocols for secure multiparty computations using the dial locks, and provide a
mathematical definition of “dial-computability,” which abstracts away the con-
crete dial locks. In Section 3, we give a necessary condition for dial-computable
functions. In Section 4, we completely characterize symmetric dial-computable
functions. This paper concludes in Section 5 with some discussions and open
problems.

2 Secure Computations Using Dial Locks

In this section, we design a class of protocols, each of which achieves a se-
cure multiparty computation using a dial lock. Before giving the complete de-
scription of our protocols, we first present an example in Section 2.1. We then
give the description of our protocols in Section 2.2. We finally formalize “dial-
computability” in Section 2.3, which abstracts away the concrete dial locks.

2.1 An Example

We now show an example of the execution of our protocols. Consider the case
where three players P1, P2 and P3 want to securely compute the 3-variable AND
function AND3(x1, x2, x3) = x1 ∧ x2 ∧ x3 using a (10, 4)-dial lock.

The main idea behind our protocols is simple, as follows. Assume that the
current opening combination for the (10, 4)-dial lock is ‘0-0-0-0’:

0 0 0 0 .

Rotate the first dial (namely, the leftmost digit) so that the number on its face
decreases by exactly 3 (modulo 10):

3� 0 0 0 0 � 7 0 0 0 .

Let the three players P1, P2 and P3 take turns, where each player Pi in her
turn rotates the first dial (or does not rotate it) depending on her private input
xi ∈ {0, 1} without being seen by any other player: Pi rotates the first dial so that

502 T. Mizuki, Y. Kugimoto, and H. Sone

the number on its face increases by exactly xi. For instance, if x1 = x2 = x3 = 1,
i.e., AND3(x1, x2, x3) = 1, then the the number on the first dial’s face varies as

7 � 1� 7
x1 = 1

� 8 � 1� 8
x2 = 1

� 9 � 1� 9
x3 = 1

� 0

and hence the dial lock is opened. On the other hand, if AND3(x1, x2, x3) = 0,
say x1 = x2 = 1 and x3 = 0, then the the number on the first dial’s face varies
as

7 � 1� 7
x1 = 1

� 8 � 1� 8
x2 = 1

� 9 � 0� 9
x3 = 0

� 9

and hence the dial lock is not opened (note that P3 never rotates the dial in
this case). Thus, AND3(x1, x2, x3) = 1 if and only if the dial lock is opened.
Therefore, the function AND3 can be computed by the (10, 4)-dial lock. However,
this method is not secure; one of the simplest reasons is that player P2 gets to
know the input x1 of player P1 just by looking at the number on the first dial’s
face in her turn.

Slightly modifying the method above, we can obtain the following secure pro-
tocol, where N denotes the current number on the first dial’s face during the
execution of the protocol, and each player is assumed to operate the dial lock
without being seen by any other player.

1. Player P1 holds the (10, 4)-dial lock (whose opening combination is public).
She randomly changes the opening combination, and sets the four dials to it.
(Hence, we now have N = r for a random number r ∈ ZZ10 = {0, 1, . . . , 9},
which is private only to P1.)

2. Player P1 rotates the first dial so that the number on its face decreases by
exactly 3. (We now have N = r − 3 mod 10.)

3. Player P1 rotates the first dial so that the number on its face increases by
exactly x1. (We now have N = r − 3 + x1 mod 10.) She then hands the dial
lock to player P2.

4. Player P2 rotates the first dial so that the number on its face increases by
exactly x2. (We now have N = r − 3 + x1 + x2 mod 10.) She then hands the
dial lock to player P3.

5. Player P3 rotates the first dial so that the number on its face increases by
exactly x3. (We now have N = r − 3 + x1 + x2 + x3 mod 10.)

6. Player P3 announces whether the dial lock is opened or not. (The former case
implies AND3(x1, x2, x3) = 1, and the latter case implies AND3(x1, x2, x3) =
0.)

7. Player P3 randomly rotates the first dial, and then hands the dial lock back
to player P1.

8. Player P1 sets the opening combination to the initial one (so that the current
opening combination becomes public).

Note that the dial lock is opened in step 6 if and only if

r − 3 + x1 + x2 + x3 ≡ r (mod 10),

Secure Multiparty Computations Using a Dial Lock 503

which is equivalent to x1 ∧ x2 ∧ x3 = 1. Furthermore, since r is random and is
known only to player P1, each of players P2 and P3 cannot gain any information
about the input of any other player when she looks at the number on the first
dial’s face in her turn. In addition, since player P3 randomly rotates the first dial
in step 7, the dial lock handed back to player P1 gives player P1 no information
about the input of any other player. Thus, this protocol securely computes the
function AND3(x1, x2, x3) = x1 ∧ x2 ∧ x3 using a (10, 4)-dial lock. (Remember
that all the players have been assumed to be honest-but-curious.)

The protocol above can be represented by the following four vectors:

c1 = (1, 0, 0, 0), c2 = (1, 0, 0, 0), c3 = (1, 0, 0, 0) and d = (3, 0, 0, 0),

where ci = (c1
i , c

2
i , c

3
i , c

4
i), 1 ≤ i ≤ 3, means that player Pi rotates the j-th dial

for each j, 1 ≤ j ≤ 4, so that the number on its face increases by exactly cj
ixi,

and d = (d1, d2, d3, d4) means that player P1 rotates the j-th dial for each j,
1 ≤ j ≤ 4, in step 2 so that the number on its face decreases by exactly dj .
(Remember that the protocol above uses only the first dial, and hence c2

i = c3
i =

c4
i = d2 = d3 = d4 = 0 for every i, 1 ≤ i ≤ 3.) Note that, for the four vectors

above,

AND3(x1, x2, x3) = 1 ⇐⇒ c1x1 + c2x2 + c3x3 ≡ d (mod 10). (1)

Considering various sequences of four vectors c1, c2, c3 and d, one can obtain
a class of protocols, each of which securely computes a certain (corresponding)
function using a (10, 4)-dial lock. For example, one can easily observe that the
following sequence of four vectors also achieves a secure multiparty computation
of AND3:

c1 = (1, 0, 0, 0), c2 = (0, 1, 0, 0), c3 = (0, 0, 1, 0) and d = (1, 1, 1, 0);

note that such a protocol uses the first three dials, and that this sequence of the
four vectors also satisfies Eq. (1). For another example, one can easily notice that
the 3-variable XOR function XOR3(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 can be securely
computed by the following sequence of four vectors:

c1 = (5, 0, 0, 0), c2 = (5, 0, 0, 0), c3 = (5, 0, 0, 0) and d = (5, 0, 0, 0),

because

x1 ⊕ x2 ⊕ x3 = 1 ⇐⇒ 5x1 + 5x2 + 5x3 ≡ 5 (mod 10).

It should be noted that the (10, 4)-dial lock might be “automatically” and
“unnecessarily” opened during the execution of the “XOR protocol” above de-
pending on the features of the dial lock used in the protocol. For example, in the
case of x1 = x2 = 1, the dial lock might be unnecessarily opened immediately
after player P2 rotates the first dial. When one owns a dial lock like this, in order
to avoid unnecessarily opening the dial lock, one can utilize an unused dial, say
the fourth dial, as a “stopper” by predeterminedly rotating such an unused dial.

504 T. Mizuki, Y. Kugimoto, and H. Sone

2.2 Our Protocols

We are now ready to generalize a class of our dial-lock-based protocols.
Assume that there are n players and an (m, k)-dial lock whose opening com-

bination is public. Then, a sequence of n+1 vectors c1, c2, . . . , cn, d ∈ (ZZm)k =
{0, 1, . . . , m − 1}k determines a unique protocol as follows, where

c1 = (c1
1, c

2
1, . . . , c

k
1)

c2 = (c1
2, c

2
2, . . . , c

k
2)

...
cn = (c1

n, c2
n, . . . , ck

n)
d = (d1, d2, . . . , dk),

and each player is assumed to operate the dial lock without being seen by any
other player.

1. Player P1 randomly changes the opening combination of the dial lock, and
sets the k dials to it.

2. For each j, 1 ≤ j ≤ k, player P1 rotates the j-th dial so that the number on
its face decreases by exactly dj .

3. Set i := 1.
4. For each j, 1 ≤ j ≤ k, player Pi rotates the j-th dial so that the number on

its face increases by exactly cj
ixi.

5. Set i := i + 1. If i ≤ n, then return to step 4.
6. Player Pn announces whether the dial lock is opened or not.
7. Player Pn randomly rotates all the dials, and then hands the dial lock back

to player P1.
8. Player P1 sets the opening combination to the initial one.

Thus, the protocol above securely computes an n-variable function f such
that

f(x1, x2, . . . , xn) = 1 ⇐⇒ the dial lock is opened in step 6.

In other words, it securely computes an n-variable function f such that

f(x1, x2, . . . , xn) = 1 ⇐⇒ c1x1 + c2x2 + · · · + cnxn ≡ d (mod m).

Therefore, given an (m, k)-dial lock, a sequence of n + 1 vectors

c1, c2, . . . , cn, d ∈ (ZZm)k

determines a unique function securely computable by the corresponding protocol.
Hence, we can abstract away the concrete dial locks as in the next subsection.

2.3 Abstraction

From the discussion above, we immediately have the following Definition 1.

Secure Multiparty Computations Using a Dial Lock 505

Definition 1. We say that an (m, k)-dial lock securely computes an n-variable
function f if there exist n + 1 vectors c1, c2, . . . , cn, d ∈ (ZZm)k such that

f(x1, x2, . . . , xn) = 1 ⇐⇒ c1x1 + c2x2 + · · · + cnxn ≡ d (mod m).

For example, as seen in Section 2.1, a (10, 4)-dial lock securely computes the
functions AND3 and XOR3. More generally, one can easily notice that an (m, k)-
dial lock securely computes an n-variable AND function ANDn with n ≤ (m −
1)k, and that a (2, 1)-dial lock securely computes any n-variable XOR (parity)
function XORn.

On the other hand, unfortunately, not every function can be securely com-
puted by a dial lock. For example, as shown later, there is no (m, k)-dial lock
which securely computes the OR function

ORn(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn.

Therefore, in the next two sections, we will investigate conditions for a function
to be or not to be “dial-computable,” the formal definition of which is below.

Definition 2. We say that a function f is dial-computable if there exists an
(m, k)-dial lock which securely computes f .

3 A Necessary Condition for Dial-Computable Functions

In this section, we give a necessary condition for a function to be dial-computable.
We first describe some notations. Given a function f , any vector x such that

f(x) = 1 is called a true vector of f . For a function f , define the set T (f) of all
the true vectors as

T (f) def= {x | f(x) = 1}.
As mentioned before, unfortunately, every function is not necessarily dial-

computable. For example, the function ORn (with n ≥ 2) is not dial-computable,
as follows. Suppose for a contradiction that ORn is dial-computable. Then, by
Definitions 1 and 2, there exist k, m ∈ IN and c1, c2, . . . , cn, d ∈ (ZZm)k such
that

ORn(x1, x2, . . . , xn) = 1 ⇐⇒ c1x1 + c2x2 + · · · + cnxn ≡ d (mod m).

Now, consider the following three true vectors x+
1 , x+

2 , x−
1 ∈ T (ORn):

x+
1 = (1, 0, 0, . . . , 0), x+

2 = (0, 1, 1, . . . , 1) and x−
1 = (1, 1, . . . , 1).

Since ORn(x+
1) = 1, we have

c1 ≡ d (mod m).

Similarly, since ORn(x+
2) = ORn(x−

1) = 1, we have

c2 + c3 + · · · + cn ≡ d (mod m)

506 T. Mizuki, Y. Kugimoto, and H. Sone

and
c1 + c2 + · · · + cn ≡ d (mod m).

Therefore,
c1 ≡ d (mod m)

+) c2 + c3 + · · · + cn ≡ d (mod m)
−) c1 + c2 + c3 + · · · + cn ≡ d (mod m)

0 ≡ d (mod m)

and hence the last equation implies ORn(0, 0, . . . , 0) = 1, a contradiction. Thus,
the function ORn is not dial-computable. Note that the three true vectors x+

1 ,
x+

2 and x−
1 satisfy

(x+
1 + x+

2) − x−
1 = (0, 0, . . . , 0).

As in this example, given an n-variable dial-computable function f , if we can
find two sets {x+

1 , x+
2 } and {x−

1 } of true vectors of f such that (x+
1 +x+

2)−x−
1

is a binary vector, namely it is in {0, 1}n, then Definitions 1 and 2 imply that
(x+

1 + x+
2) − x−

1 must be also a true vector of f , i.e., it must be also in T (f).
More generally, given a dial-computable function f , if we find a pair

({x+
1 , x+

2 , . . . , x+
� , x+

�+1}, {x−
1 , x−

2 , . . . , x−
� }

) ∈ 2T (f) × 2T (f)

such that

(x+
1 + x+

2 + · · · + x+
� + x+

�+1) − (x−
1 + x−

2 + · · · + x−
�)

is a binary vector, then the binary vector must be in T (f), as will be shown in
Lemma 1.

Before presenting Lemma 1, we formally define some terms as in the following
Definitions 3 and 4.

Definition 3. Let f be a function. We say that a pair (X+, X−) ∈ 2T (f)×2T (f)

such that X+ ∩ X− = ∅ and |X+| = |X−| + 1 ≥ 2 is a successive-size-pair of f
if

∑
x∈X+ x − ∑

x∈X− x is a binary vector.

Definition 4. A successive-size-pair (X+, X−) of a function f is said to be false
if

∑
x∈X+ x − ∑

x∈X− x is not a true vector of f , i.e., it is not in T (f).

We now have the following Lemma 1, which gives a necessary condition for a
function to be dial-computable.

Lemma 1. If a function f is dial-computable, then f has no false successive-
size-pair.

Proof. Let f be a dial-computable function. Suppose for a contradiction that
f has a false successive-size-pair (X+, X−). Since f is dial-computable, Defin-
itions 1 and 2 imply that there exist k, m ∈ IN and c1, c2, . . . , cn, d ∈ (ZZm)k

such that
x ∈ T (f) ⇐⇒ (c1, c2, . . . , cn) tx ≡ d (mod m)

Secure Multiparty Computations Using a Dial Lock 507

where tx is the transposed vector of x. Since X+ ∪ X− ⊆ T (f) and |X+| =
|X−| + 1, we have

(c1, c2, . . . , cn) t
(∑

x∈X+

x −
∑

x∈X−

x
) ≡ d (mod m),

contradicting the assumption that the successive-size-pair (X+, X−) is false. ��

One can use Lemma 1 to show the non-dial-computability of some function. For
example, consider the following 9-variable function g:

g(x1, x2, . . . , x9) = x1x2x3x4x5x6x7x8x9 ∨ x1x2x3x4x5x6x7x8x9

∨ x1x2x3x4x5x6x7x8x9 ∨ x1x2x3x4x5x6x7x8x9 ∨ x1x2x3x4x5x6x7x8x9,

where the conjunction symbol ∧ is omitted. Let

X+ = {(1, 0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1, 1, 0, 0)},

and let
X− = {(0, 0, 0, 1, 0, 1, 0, 1, 0), (0, 0, 0, 0, 1, 0, 1, 0, 1)}.

Then, (X+, X−) is a false successive-size-pair of g, because

∑

x∈X+

x −
∑

x∈X−

x = (1, 1, 1, 0, 0, 0, 0, 0, 0)

is not in T (g). Therefore, by Lemma 1, the function g is not dial-computable.
Although we have been unable to extend Lemma 1 to give a necessary and

sufficient condition for dial-computable functions, we are able to show that,
when we address only symmetric functions, the necessary condition in Lemma 1
becomes a sufficient one, as will be seen in Theorem 1.

4 Characterizing Symmetric Dial-Computable Functions

In this section, we restrict our attention to symmetric functions, and then com-
pletely characterize symmetric dial-computable functions. As mentioned before,
when a demand for a secure multiparty computation arises, it is natural to
assume that all players are “symmetric,” i.e., all the players have the same cir-
cumstances.

We first review some terms. We say that an n-variable function f is symmetric
if it is unchanged by any permutation of its variables, that is,

f(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn)

for any variables xi and xj . It is well-known (e.g., refer to [16]) that any n-
variable symmetric function f(x1, x2, . . . , xn) can be represented by using the

508 T. Mizuki, Y. Kugimoto, and H. Sone

n+1 elementary symmetric functions Sn
0 , Sn

1 , . . . , Sn
n , that is, for any n-variable

symmetric function f , there exists a set A ⊆ {0, 1, . . . , n} such that

f =
∨

i∈A

Sn
i ,

where

Sn
� (x1, x2, . . . , xn) def=

{
1 if

∑n
i=1 xi = �;

0 otherwise

for each �, 0 ≤ � ≤ n.
As will be seen below in Theorem 1, all the n-variable symmetric dial-

computable functions can be characterized by the set MODn of the following
“modular” functions. For integers s and p with 0 ≤ s < p, define

MODn
s,p(x1, x2, . . . , xn) def=

{
1 if

∑n
i=1 xi ≡ s (mod p);

0 otherwise.

We then define
MODn def= {MODn

s,p | 0 ≤ s < p}.
It should be noted that the functions MODn

s,p often appear in (logical or circuit)
complexity theory (e.g. [4,18]).

We are now ready to present Theorem 1, which exhibits exact characteriza-
tions of symmetric dial-computable functions.

Theorem 1. Let f be an n-variable symmetric function. Then, the following
three assertions (a), (b) and (c) are equivalent:

(a) f is dial-computable;
(b) f has no false successive-size-pair;
(c) f ∈ MODn.

Note that, by Lemma 1, the condition (a) in Theorem 1 immediately implies
the condition (b). Furthermore, ‘(c) implies (a)’ is easily verified as follows: let
f = MODn

s,p for some s and p, then a (p, 1)-dial lock securely computes f by
setting c1

1 = c1
2 = · · · = c1

n = 1 and d1 = s. Therefore, in order to complete the
proof of Theorem 1, it suffices to show ‘(b) implies (c).’

Before proving ‘(b) implies (c),’ we have the following Lemma 2.

Lemma 2. Let 0 ≤ a−δ < a < a+δ ≤ n, and let f be an n-variable symmetric
function having no false successive-size-pair such that f contains Sn

a . Then, the
following (a) and (b) hold.

(a) If f contains Sn
a+δ, then f contains Sn

a−δ.
(b) If f contains Sn

a−δ, then f contains Sn
a+δ.

Proof. omitted in this extended abstract. ��
Using Lemma 2, we can prove the following Lemma 3, which mentions that the
condition (b) in Theorem 1 implies the condition (c).

Secure Multiparty Computations Using a Dial Lock 509

Lemma 3. If an n-variable symmetric function f has no false successive-size-
pair, then f ∈ MODn.

Proof. omitted in this extended abstract. ��

Thus, Lemma 3 has completed the proof of Theorem 1.

5 Conclusions

In this paper, we first proposed dial-lock-based cryptographic protocols: we de-
signed a class of protocols, each of which achieves a secure multiparty compu-
tation using a dial lock, and hence we showed that the physical property of the
dial locks can be applied to designing cryptographic protocols. We then gave a
necessary condition for a function to be dial-computable. Finally, we obtained
simple necessary and sufficient conditions for a symmetric function to be dial-
computable.

A natural open problem is to find a simple necessary and sufficient condition
for any (not necessarily symmetric) function to be dial-computable. Further-
more, characterizing “(m, k)-dial-computable” functions for some fixed positive
integers m and k is a further task. For example, it is an interesting open problem
to find the smallest m and/or k such that all dial-computable functions are also
(m, k)-dial-computable.

This paper is the first attempt at constructing dial-lock-based cryptographic
protocols, and our construction is somewhat straightforward. Therefore, one
might be able to extend the class of protocols so that the set of “modified-dial-
computable” functions would be interestingly larger. For a trivial example, if we
slightly change the class of our protocols so that all the players recognize f = 0
(instead of f = 1) in the case where the dial lock is opened, then the negation
f̄ of a dial-computable function f becomes “modified dial-computable.”

Acknowledgements

We thank the anonymous referees whose comments and suggestions helped us
to improve the presentation of the paper. This research was partially supported
by the Grant-in-Aid for Exploratory Research No. 17650002 from the Ministry
of Education, Culture, Sports, Science and Technology, Japan.

References

1. M. H. Albert, R. E. L. Aldred, M. D. Atkinson, H. P. van Ditmarsch, and C. C.
Handley, “Safe communication for card players by combinatorial designs for two-
step protocols,” Australasian Journal of Combinatorics, vol. 33, pp. 33–46, 2005.

2. J. Balogh, J. A. Csirik, Y. Ishai, and E. Kushilevitz, “Private computation using
a PEZ dispenser,” Theoretical Computer Science, vol. 306, pp. 69–84, 2003.

510 T. Mizuki, Y. Kugimoto, and H. Sone

3. B. den Boer, “More efficient match-making and satisfiability: the five card trick,”
Proc. EUROCRYPT ’89, Lecture Notes in Computer Science, vol. 434, pp.
208–217, Springer-Verlag, 1990.

4. P. Clote and E. Kranakis, “Boolean Functions and Computation Models,” Springer-
Verlag, Berlin, Heidelberg, New York, 2002.

5. C. Crépeau and J. Kilian, “Discreet solitary games,” Proc. CRYPTO ’93, Lecture
Notes in Computer Science, vol. 773, pp. 319–330, Springer-Verlag, 1994.

6. R. Fagin, M. Naor, and P. Winkler, “Comparing information without leaking it,”
Communications of the ACM, vol. 39, no. 5, pp. 77–85, 1996.

7. M. J. Fischer and R. N. Wright, “Bounds on secret key exchange using a random
deal of cards,” Journal of Cryptology, vol. 9, pp. 71–99, 1996.

8. O. Goldreich, “Foundations of Cryptography II: Basic Applications,” Cambridge
University Press, Cambridge, 2004.

9. T. Mizuki, T. Otagiri, and H. Sone, “Secure computations in a minimal model
using multiple-valued ESOP expressions,” Proc. TAMC 2006, Lecture Notes in
Computer Science, vol. 3959, pp. 547–554, Springer-Verlag, 2006.

10. T. Mizuki, H. Shizuya, and T. Nishizeki, “Characterization of optimal key set
protocols,” Discrete Applied Mathematics, vol. 131, no. 1, pp. 213–236, 2003.

11. T. Moran and M. Naor, “Basing cryptographic protocols on tamper-evident seals,”
Proc. ICALP 2005, Lecture Notes in Computer Science, vol. 3580, pp. 285–297,
Springer-Verlag, 2005.

12. T. Moran and M. Naor, “Polling with physical envelopes: a rigorous analysis of a
human-centric protocol,” Proc. EUROCRYPT 2006, Lecture Notes in Computer
Science, vol. 4004, pp. 88–108, Springer-Verlag, 2006.

13. V. Niemi and A. Renvall, “Secure multiparty computations without computers,”
Theoretical Computer Science, vol. 191, pp. 173–183, 1998.

14. A. Salomaa, “Caesar and DNA. Views on cryptology,” Proc. the 12th International
Symposium on Fundamentals of Computation Theory (FCT ’99), Lecture Notes
in Computer Science, vol. 1684, pp. 39–53, Springer-Verlag, 1999.

15. A. Salomaa, “Public-Key Cryptography (Second, Enlarged Edition),” Springer-
Verlag, Berlin, Heidelberg, New York, 1996.

16. T. Sasao, “Switching Theory for Logic Synthesis,” Kluwer Academic Publishers,
Boston, MA, 1999.

17. A. Stiglic, “Computations with a deck of cards,” Theoretical Computer Science,
vol. 259, pp. 671–678, 2001.

18. H. Vollmer, “Introduction to Circuit Complexity,” Springer-Verlag, Berlin, Heidel-
berg, New York, 1999.

A Time Hierarchy Theorem for

Nondeterministic Cellular Automata

Chuzo Iwamoto�, Harumasa Yoneda, Kenichi Morita, and Katsunobu Imai

Hiroshima University, Graduate School of Engineering
Higashi-Hiroshima, 739-8527 Japan

chuzo@hiroshima-u.ac.jp

Abstract. We present a tight time-hierarchy theorem for nondetermin-
istic cellular automata by using a recursive padding argument. It is shown
that, if t2(n) is a time-constructible function and t2(n) grows faster than
t1(n+1), then there exists a language which can be accepted by a t2(n)-
time nondeterministic cellular automaton but not by any t1(n)-time non-
deterministic cellular automaton.

1 Introduction

One of the basic problems in complexity theory is to find the slightest enlarging
of the complexity bound which allows new languages to be accepted. There
is a huge amount of literature on time hierarchy theorems for various models
of computation, such as Turing machines (TMs) [3,4,6,8,14,16], random access
machines (RAMs) [2], parallel RAMs [7,13], and uniform circuit families [10].

In this paper, we investigate time-hierarchies of cellular automata (CA). The
first result on CA-based hierarchies was given in [11]; it was shown that there
is a language which can be accepted by a one-dimensional deterministic CA (1-
DCA) in t2(n) time but not by any 1-DCA in t1(n) time. Here, t1(n) and t2(n)
are arbitrary time-constructible functions such that t2(n) is not bounded by
O(t1(n)). (Time constructible functions on 1-DCA were also discussed in [11].)

Another result on CA-hierarchies is in the hyperbolic space [9]; it was shown
that there is a language which can be accepted by two-dimensional hyperbolic CA
(2-HCA) in (t2(n))3 time but not by any 2-HCA in t1(n) time. When t1(n) = nr,
this hierarchy result can be improved as follows: For any rational constants r ≥ 1
and ε > 0, there is a language which can be accepted by an nr+ε-time 2-HCA
but not by any nr-time 2-HCA [12]. Interestingly, these time-hierarchy results
in the hyperbolic space hold for both deterministic and nondeterministic cases.

On the other hand, no attempt has been made to present time-hierarchy
results on one-dimensional nondeterministic CA (1-NCA). In this paper, it is
shown that, if t2(n) is a time-constructible function and t2(n) grows faster than
t1(n + 1), then there exists a language which can be accepted by a t2(n)-time
1-NCA but not by any t1(n)-time 1-NCA.
� Corresponding author. This research was supported in part by Scientific Research

Grant, Ministry of Japan.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 511–520, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

512 C. Iwamoto et al.

A lot of techniques have been known for separating complexity classes. For
example, (i) the crossing-sequence argument for one-tape TMs [5], (ii) diagonal
arguments for deterministic TMs [3,4,8], 1-DCA [11], PRAMs and DLOGTIME-
uniform circuits [7], and (non)deterministic HCA [9], and (iii) padding argu-
ments for nondeterministic TMs [6], alternating TMs and PRAMs [13], and
(non)deterministic HCA [12]. In this paper, we will show a hierarchy theorem
for one-dimensional NCA by using a recursive padding argument, which was
firstly used in [1,19,20] for multi-tape nondeterministic TMs.

In Section 2, we give the definition of 1-NCA. The main result is also given
in that section. The proof is given in Section 3.

2 Nondeterministic Cellular Automata

A cellular automaton (CA) is a synchronous parallel string acceptor, consisting
of a semi-infinite one-dimensional array of identical finite-state automata, called
cells, which are uniformly interconnected (see Fig. 1). Every cell operates syn-
chronously at discrete time steps and changes its state depending on the previous
states of itself and its neighbours.

a2 ana1 q q
c2 cnc1c0 cn+1 cn+2

Fig. 1. Cellular automaton

A nondeterministic CA is a 7-tuple M = (Q, Σ, #, δ, q, QA, QR), where

1. Q is the finite nonempty set of states,
2. Σ ⊆ Q is the finite input alphabet,
3. # is the special boundary symbol not in Q,
4. δ : (Q ∪ {#}) × Q × Q → 2Q is the local transition function,
5. q ∈ Q is the quiescent state such that δ(q, q, q) = {q}, and if δ(p1, p2, p3) � q

then (p1, p2, p3) ∈ Q×{q}×{q} (i.e., any non-quiescent state does not become
the quiescent state),

6. QA ⊆ Q is the set of accepting states such that if (p1, p2, p3) ∈ {#}×QA×Q
then δ(p1, p2, p3) ⊆ QA,

7. QR ⊆ Q is the set of rejecting states such that if (p1, p2, p3) ∈ {#}×QR ×Q
then δ(p1, p2, p3) ⊆ QR.

The cell assigned to the integer i ≥ 1 is denoted by ci. The input string
a1a2 · · · an is applied to the array in parallel at step 0 by setting the states of cells
c1, c2, . . . , cn to a1, a2, . . . , an, respectively. The remaining cells cn+1, cn+2, . . . are
in the quiescent state. (Our CA is the so-called parallel-input model; however,
the same hierarchy result holds for the sequential-input model, in which the
input is fed serially to the leftmost cell.)

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 513

A configuration of a CA is represented by a string in {#}(Q − {q})∗. A par-
ticular configuration is said to be accepting (resp. rejecting) if the first cell c1

is in an accepting (resp. rejecting) state. The definition of a computation tree
is mostly from [17]. For an input, computations of a nondeterministic CA are
described as a tree T : All nodes are configurations, the root is the initial con-
figuration of the CA for the given input, and the children of a configuration C
are exactly those configurations reachable from C in one step allowed by the
transition function. Leaves of T are final configurations, which may be accepting
or rejecting. Certain paths in T may be infinite.

An interior node is defined to be accepting if at least one of its children is
accepting. The CA accepts the input iff the root is accepting. A nondeterministic
CA M is defined to be t(n)-time bounded if, for every accepted input w of
length n, the computation tree T of M started with w stays accepting if it is
pruned at depth t(n). A CA is said to be deterministic if its transition function
satisfies |δ(p1, p2, p3)| = 1 for every (p1, p2, p3) ∈ (Q ∪ {#}) × Q × Q.

Let M1, M2, . . . , Mr be CA with state sets Q1, Q2, . . . , Qr, respectively. Con-
sider a CA M such that the state set Q is a Cartesian product Q = Q1 × Q2 ×
· · ·×Qr and each cell is partitioned into r sub-cells. The array of specific sub-cells
in all cells is called a track. Then M can simulate M1, M2, . . . , Mr in r tracks
simultaneously.

The language accepted by a CA M is denoted by L(M). A function t(n) is said
to be time-constructible if, for each n, there is a deterministic CA such that the
first cell c1 enters an accepting state at step t(n) for the first time on all inputs
of length n. It is known that if a function t(n) is computable by an O(t(n)−n)-
time TM (to which value n is given as a binary string of length �log2 n	 + 1),
then t(n) is also time-constructible by a CA [11]. If two functions are time-
constructible by CA, then the sum, product, and exponential functions of them
are also time-constructible by CA. If t(n) is time-constructible, then t(n) is
also space-constructible, i.e., there is a one-dimensional deterministic CA which
places a “marker” at the t(n)th cell in O(t(n)) time (by emitting 1/2-speed and
unit-speed pulses at steps 0 and t(n), respectively).

Now we are ready to present our main theorem.

Theorem 1. Suppose that t2(n) is an arbitrary time-constructible function and
limn→∞

t1(n+1)
t2(n) = 0. There exists a language which can be accepted by a t2(n)-

time nondeterministic CA but not by any t1(n)-time nondeterministic CA.

Since t1(n+1) = O(t1(n)) when t1(n) is a polynomial in n, we can say, for exam-
ple, nr-time nondeterministic CA are stronger than (nr/ log log n)-time nonde-
terministic CA, where r ≥ 1 is an arbitrary rational constant. However, it is not
known whether (t(n))2-time nondeterministic CA are stronger than t(n)-time
nondeterministic CA when t(n) = 22n

.

3 Time Hierarchy for Nondeterministic CA

In this section, we will prove Theorem 1. In the rest of this paper, all CA
are nondeterministic CA unless stated otherwise. We use the recursive padding

514 C. Iwamoto et al.

method [20]. The outline of the proof is as follows: We first define a universal
CA in Section 3.1. In Section 3.2, we construct a recursively padding CA which
lengthens the input string as many times as we want. In Section 3.3, we observe
the relationship between our recursively padding CA and its language. In Sec-
tion 3.4, we assume for contradiction that any t2(n)-time computation is sped-up
to t1(n) time. Under this assumption, we will show that any recursive language
can be accepted by t1(n)-time CA (i.e., any computation for recursive languages
(with no time restriction) can be sped-up to t1(n) time), a contradiction.

3.1 Universal CA

All languages in this section are over {0, 1}. We first define the encoding rule of
CA, which is essentially from [11]. We denote the states of CA by q1, q2, . . . , qm,
where q1 is the special boundary state #, and q2 is the quiescent state q. For
simplicity, we assume that q3 (resp. q4) is the unique accepting (resp. rejecting)
state. State qi is encoded into string 10i of length i+1. We encode each transition
rule δ(qi, qj , qk) = {ql1 , ql2 , . . . , qlr} into string 1110i10j10k110l110l2 · · · 10lr for
every (qi, qj , qk) ∈ (Q ∪ {#}) × Q × Q. The encoding sequence e of a CA is
the concatenation of all transition rules in the lexicographical order, called the
encoding part, followed by 1111 · · ·10 of length 2l − l, called the padding part,
where l is the length of the encoding part. Let Me denote the CA whose encoding
sequence is e.

Let LU = {ex ∈ {0, 1}∗| e is the encoding sequence of some CA Me, and Me

accepts x }. We construct a universal CA U accepting LU such that U accepts ex
in cet(|x|) time if Me accepts x in t(|x|) time, where ce is a constant depending
only on e.

It is not difficult to verify whether the syntax of the encoding sequence e
is proper in time proportional to |e|. Note that any polynomial in l is much
smaller than |e| because |e| = 2l. In order to verify whether Me accepts x, U
simulates Me on input x as follows. We denote the ith cell of Me by si. Each
cell si of Me is simulated by |e| cells of U . Namely, the cellular space of U
is divided into blocks, B1, B2, . . ., of the same length |e|, and the ith block Bi

corresponds to Me’s cell si. Each block is divided into two tracks in order to
store e and the state of si. Therefore, every block has all transition rules of Me.

We can generate blocks of the same length as follows (see Fig. 2). The first
and |e|th cells emit unit-speed and 1/2-speed pulses p0, p1 at step 0 to the right,
respectively. Then the |e|th cell emits a 1/2-speed pulse p2 at step |e|. Sim-
ilarly, at steps 3|e|, 5|e|, 7|e|, · · ·, cells at positions 2|e|, 3|e|, 4|e|, · · · emit unit-
speed pulses p0. Markers are placed at positions where a pulse p0 catches up
with p1. The encoding sequence e in a block can be copied into the next block
in time proportional to |e| (by using the firing squad synchronization (FSS) al-
gorithm [15]). The ith symbol xi of Me’s input x is moved to the ith block in
2|e| · |x| time (the detail of this procedure is left to the reader).

After the above procedures, U starts to simulate Me on input x. In order that
every cell starts the simulation simultaneously, we use the FSS algorithm. Since
each block has length |e|, a single step of Me’s cell si can be simulated by U ’s

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 515

e

p
1

p
0

p
2

p
0

p
0

cellular space

tim
e

Fig. 2. Time-space diagram of CA. Markers are placed at regular intervals of length |e|.

block Bi in c′e steps, where c′e is a constant depending only on e. Therefore, there
is a constant ce such that U accepts ex in cet(|x|) time if Me accepts x in t(|x|)
time.

3.2 Recursive Padding

For a fixed encoding e, let f(e) be the encoding of a CA Mf(e) such that (i) Mf(e)

with the input string x changes x into ex and then (ii) Mf(e) makes the com-
putation of Me on the input ex. (This definition is based on recursive function
theory [18,21].)

For a fixed function h and a fixed CA M1, let g(h, M1) be the encoding of
a CA Mg(h,M1) which changes its input wx into h(w)x and then makes the
computation of M1 on input h(w)x, where w is a valid encoding of some CA.

Now, consider CA Mf(g(f,M1)) on input x. According to the definitions of f
and g, (i) Mf(g(f,M1)) on input x changes x into g(f, M1)x, then (ii) Mf(g(f,M1))

makes the computation of Mg(f,M1) on the input g(f, M1)x (i.e., Mg(f,M1)

changes g(f, M1)x into f(g(f, M1))x, and makes the computation of M1 on input
f(g(f, M1))x). Therefore, Mf(g(f,M1)) accepts x iff M1 accepts f(g(f, M1))x.

We analyse the relationship between the time complexities of Mf(g(f,M1))

and M1 as follows: We can convert the input x into g(f, M1)x and then
into f(g(f, M1))x in time proportional to |f(g(f, M1))x|. In order to start the
computation of M1 in every cell simultaneously, Mf(g(f,M1)) performs the FSS al-
gorithm, which can also be done in linear time. Hence, if M1 accepts f(g(f, M1))x
in t(|f(g(f, M1))x|) time, then Mf(g(f,M1)) accepts x in ct(|f(g(f, M1))x|) time
for some constant c.

516 C. Iwamoto et al.

Let L ⊆ {1}∗ be any recursive language, and let M be the deterministic CA
which accepts L in t(n) time. Now, we define (nondeterministic) CA M ′ which
recursively pads the input string until the length becomes larger than t(|x|).

The CA M ′ first verifies whether the input string is of the form ex0k, where
x ∈ {1}∗ and e is the encoding sequence of some CA Me. So, M ′ verifies whether
the input is an encoding sequence of a CA followed by an arbitrary number
of 1’s, which are further followed by an arbitrary number of 0’s. Then, CA M ′

compares the values of t(|x|) and |x0k| by (i) emitting a unit-speed pulse to the
left from the rightmost 0 in ex0k and (ii) making the deterministic t(|x|)-step
computation of M on x (see Fig. 3). If the computation of M halts before the
pulse reaches the position of the first symbol of x0k (i.e., t(|x|) < |x0k|), then
M ′ halts with an accepting state iff M accepts x. If t(|x|) ≥ |x0k|, then M ′

pads ex0k to ex0k′
, where k′ > k is a nondeterministically chosen integer; M ′

performs the FSS algorithm in order to start the computation of the universal
CA U on input ex0k′

.

e x 0k

M

tim
e t(|x|)

Fig. 3. M ′ makes the computation of M on x, and emits a unit-speed pulse

In the following, we analyse the properties of the above padding procedure.
Consider the computation of M ′ on input f(g(f, M ′))x. According to the de-
finition, M ′ pads f(g(f, M ′))x to f(g(f, M ′))x0k for nondeterministically cho-
sen k > 0, and starts the computation of U on f(g(f, M ′))x0k. Since U is a
universal CA, the computation of U on f(g(f, M ′))x0k implies the computation
of Mf(g(f,M ′)) on input x0k. According to the definition, Mf(g(f,M ′)) first changes
the input x0k to g(f, M ′)x0k. The next task is to change g(f, M ′)x0k into
f(g(f, M ′))x0k and then to make the computation of M ′ on input f(g(f, M ′))x0k.
According to the definition, M ′ compares the values of t(|x|) and |x0k|. If
t(|x|) < |x0k|, then M ′ halts with an accepting state iff M accepts x. If |x0k|
has not yet been larger than t(|x|), M ′ pads x0k to x0k′

for nondeterministi-
cally chosen k′ > k, and restarts the computation of U on f(g(f, M ′))x0k′

. The
CA M ′ recursively performs this procedure until the padding sequence becomes
so long that t(|x|) < |x0k′ |.

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 517

3.3 Recursively Padding CA and Their Languages

Recall that L ⊆ {1}∗ is any recursive language, and M is the deterministic CA
recognizing L in t(n) time. We will prove

L(Mf(g(f,M ′))) = {x0k |x ∈ L(M), k ≥ 0} (1)

by induction on k running down from a sufficiently large k′ to 0.
Let k′ be a sufficiently large integer such that t(|x|) < |x0k′ |. As we mentioned

in the last paragraph of Section 3.2, a computation of Mf(g(f,M ′)) on x0k′
implies

a computation of M ′ on f(g(f, M ′))x0k′
, and M ′ accepts it iff M accepts x.

Therefore,

L(Mf(g(f,M ′))) = {x0k′ | f(g(f, M ′))x0k′ ∈ L(M ′)}
= {x0k′ |x ∈ L(M)}. (2)

From equation (2), one can see that Mf(g(f,M ′)) accepts x0k′
iff M accepts x,

for any such large k′.
Consider an integer k such that t(|x|) ≥ |x0k|. Assume for induction that, for

every k′ > k, equation (2) holds. We observe the computation of Mf(g(f,M ′))

on x0k (which implies the computation of M ′ on f(g(f, M ′))x0k.) Recall that
the first task for M ′ was to pad f(g(f, M ′))x0k to f(g(f, M ′))x0k′

for nonde-
terministically chosen k′ > k, and the second task was to make the computation
of U on f(g(f, M ′))x0k′

. Thus,

L(Mf(g(f,M ′))) = {x0k | f(g(f, M ′))x0k′ ∈ L(U) for some k′ > k}. (3)

Since U is a universal CA, the computation of U on input f(g(f, M ′))x0k′
implies

the computation of Mf(g(f,M ′)) on input x0k′
. Therefore, the right-hand side

of (3) can be rewritten as

L(Mf(g(f,M ′))) = {x0k |x0k′ ∈ L(Mf(g(f,M ′))) for some k′ > k}. (4)

From the induction hypothesis (see equation (2)), Mf(g(f,M ′)) accepts x0k′
iff M

accepts x. Hence, the right-hand side of (4) is further rewritten as

L(Mf(g(f,M ′))) = {x0k |x ∈ L(M)}.

Thus, if equation (2) holds for every k′ > k, then the same equation holds also
for k. Hence, equation (1) holds for every k ≥ 0.

3.4 Proof of Theorem 1

Let t2(n) be an arbitrary time-constructible function which is not bounded by
O(t1(n + 1)). Assume for contradiction that there does not exist any language
which can be accepted by t2(n)-time CA but not by any t1(n)-time CA. This

518 C. Iwamoto et al.

assumption implies that any t2(n)-time computation in CA can be sped-up to
t1(n) time.

Recall that L ⊆ {1}∗ is any recursive language, and M is the deterministic
CA recognizing L in t(n) time. Note that t(n) can be taken as rapidly as we
want by choice of L. In the following paragraphs, we will prove by induction on
n that, for each sufficiently long x accepted by M , U accepts f(g(f, M ′))x0k of
length n in t1(n) time for every n ≥ |f(g(f, M ′))x|. Here, the computation of U
on f(g(f, M ′))x0k in t1(n) time implies the computation of Mf(g(f,M ′)) on x0k

in O(t1(n)) time, since U is a universal CA. It is not difficult to show that there
is an O(t1(n))-time CA, say, M ′

f(g(f,M ′)), such that

L(M ′
f(g(f,M ′))) = {x |x0k ∈ L(Mf(g(f,M ′)))}

= {x |x ∈ L(M)} = L(M) = L. (5)

The second equation holds because of equation (1). Equation (5) implies that
any language L (recognized by the deterministic CA M with no time restriction)
can be accepted by an O(t1(n))-time CA M ′

f(g(f,M ′)), a contradiction.
It remains to show that U accepts f(g(f, M ′))x0k of length n in t1(n) time.

Consider a sufficiently large n such that n > |f(g(f, M ′))x|+ t(|x|). In this case,
since the padding sequence is sufficiently long, the computation of Mf(g(f,M ′))

on x0k can be done in linear time (which is less than t2(n)). From the assumption,
any t2(n)-time computation (of Mf(g(f,M ′)) on x0k) can be sped-up to t1(n) time.
Therefore, U can accept f(g(f, M ′))x0k in t1(n) time.

Consider an integer n such that |f(g(f, M ′))x| ≤ n ≤ |f(g(f, M ′))x| + t(|x|).
Assume for induction that, for each sufficiently long x accepted by M , U accepts
f(g(f, M ′))x0k+1 of length n′ = n+1 in t1(n′) time. Under this assumption, we
will show that U accepts f(g(f, M ′))x0k of length n in t1(n) time as follows.

Consider the nondeterministic computation tree of U on input f(g(f, M ′))x0k.
The computation of U on f(g(f, M ′))x0k implies the computation of Mf(g(f,M ′))

on x0k, which further implies the computation of M ′ on f(g(f, M ′))x0k

(see the last paragraph of Section 3.2). According to the definition, M ′ pads
f(g(f, M ′))x0k to f(g(f, M ′))x0k′

for nondeterministically chosen k′ > k.
Consider the nondeterministic choice which pads f(g(f, M ′))x0k to

f(g(f, M ′))x0k+1. (We will analyse the height of the subtree rooted at
f(g(f, M ′))x0k+1.) The time complexity for lengthening the padding sequence
is O(n). After lengthening the padding sequence, M ′ makes the computation
of U on the padded input f(g(f, M ′))x0k+1. The computation of U on
f(g(f, M ′))x0k+1 of length n + 1 can be done in t1(n + 1) time (because of
the induction hypothesis). The total complexity is t1(n + 1) + O(n). From the
assumption of the theorem, t2(n) is not bounded by O(t1(n + 1)). Thus, U can
accepts f(g(f, M ′))x0k of length n in t2(n) time. From the assumption (of this
section), any t2(n)-time computation can be sped-up to t1(n) time. Therefore,
U accepts f(g(f, M ′))x0k of length n in t1(n) time. This completes the proof of
Theorem 1.

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 519

4 Conclusion and Final Observations

In this paper, we presented a tight time-hierarchy theorem for nondetermin-
istic cellular automata (NCA). It was shown that, for any time-constructible
function t2(n) not bounded by O(t1(n + 1)), t2(n)-time NCA are stronger than
t1(n)-time NCA.

Finally, we intuitively observe a recursive padding for the separation be-
tween nondeterministic classes of t1(N) = N2/ log log N and t2(N) = N2. Let
L be any recursive language recognized by a deterministic CA (DCA) M in
time t(n) = 22n

. Assume for contradiction that any t2(N)-time (nondeterminis-
tic) computation is sped-up to t1(N) time.

We recursively pad the input x of length n until the length of x00 · · · 0 be-
comes N = 22n

. Let LN = {x0N−n |x ∈ L}. Then, there is a CA accepting LN

in t2(N) time, since t2(N) = 22n+1
is larger than t(n) = 22n

. From the as-
sumption, the t2(N)-time computation for LN is sped-up to t1(N) time. If such
a t1(N)-time computation exists, then there is a t2(N − 1)-time computation
for LN−1 (see Section 3.4). Again, the t2(N −1)-time computation is sped-up to
t1(N − 1) time, and thus there is a t2(N − 2)-time computation for LN−2. By
continuing this observation, one can see that there is a t2(n)-time computation
for Ln = L. Therefore, any recursive language L, which can be accepted by a
22n

-time DCA, can also be accepted by an n2-time NCA. This contradicts the
following simulation and separation results: (i) every n2-time NCA can be sim-
ulated by a 22n−1

-time DCA, and (ii) there is a language which can be accepted
by a 22n

-time DCA but not by any 22n−1
-time DCA [11].

References

1. S.A. Cook, A hierarchy for nondeterministic time complexity, J. Comput. System
Sci. 7 (1973) 343–353.

2. S.A. Cook and R.A. Reckhow, Time bounded random access machines, J. Comput.
System Sci. 7 (1973) 354–375.

3. M. Fürer, The tight deterministic time hierarchy, Proc. ACM Symp. on Theory of
Computing, 8–16, 1982.

4. J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms,
Trans. Amer. Math. Soc. 117 (1965) 285–306.

5. F.C. Hennie, One-tape off-line Turing machine computations, Inform. Contr. 8
(1965) 553–578.

6. O.H. Ibarra, A note concerning nondeterministic tape complexity, J. Assoc. Com-
put. Mach., 19 (1972) 608–612.

7. K. Iwama and C. Iwamoto, Parallel complexity hierarchies based on PRAMs and
DLOGTIME-uniform circuits, Proc. 11th IEEE Conf. on Computational Complex-
ity, 1996, 24–32.

8. K. Iwama and C. Iwamoto, Improved time and space hierarchies of one-tape off-line
TMs, Proc. 23rd Int’l Symp. on Mathematical Foundations of Computer Science,
LNCS 1450, Springer, 1998, 580–588.

9. C. Iwamoto, T. Andou, K. Morita, and K. Imai, Computational complexity in the
hyperbolic plane, Proc. 27th Int’l Symp. on Mathematical Foundations of Com-
puter Science, LNCS 2420, Springer, 2002, 365–374.

520 C. Iwamoto et al.

10. C. Iwamoto, N. Hatayama, K. Morita, K. Imai, and D. Wakamatsu, Hierarchies
of DLOGTIME-uniform circuits, in M. Margenstern (ed.): Machines, Computa-
tions and Universality (Proc. MCU 2004, Saint-Petersburg, Sep. 21–26, 2004),
LNCS 3354, Springer, 2005, 211–222.

11. C. Iwamoto, T. Hatsuyama, K. Morita, and K. Imai, Constructible functions in
cellular automata and their applications to hierarchy results, Theoret. Comput.
Sci. 270 (2002) 797–809.

12. C. Iwamoto and M. Margenstern, Time and space complexity classes of hyperbolic
cellular automata, IEICE Trans. on Information and Systems, E87-D 3 (2004)
700–707.

13. C. Iwamoto, Y. Nakashiba, K. Morita, and K. Imai, Translational lemmas for alter-
nating TMs and PRAMs, Proc. 15th Int’l Symp. on Fundamentals of Computation
Theory, LNCS 3623, Springer, 2005, 126–137.

14. K. Loryś, New time hierarchy results for deterministic TMs, Proc. 9th Symp. on
Theoretical Aspects of Computer Science, LNCS 577, Springer, 1992, 329–336.

15. J. Mazoyer, A 6-state minimal time solution to the firing squad synchronization
problem, Theoret. Comput. Sci., 50 (1987) 183–238.

16. W.J. Paul, On time hierarchies, J. Comput. System Sci. 19 (1979) 197–202.
17. W.J. Paul, E.J. Prauß, and R. Reischuk, On alternation, Acta Inform. 14 (1980)

243–255.
18. H. Rogers Jr., Theory of recursive functions and effective computability, McGraw-

Hill, New York, 1967.
19. J.I. Seiferas, Nondeterministic time and space complexity classes, MIT-LCS-TR-

137, Proj. MAC, MIT, Cambridge, Mass., Sept. 1974.
20. J.I. Seiferas, M.J. Fischer, and A.R. Meyer, Separating nondeterministic time com-

plexity classes, J. Assoc. Comput. Mach., 25 1 (1978) 146–167.
21. M. Sipser, Introduction to the theory of computation, PWS Publishing, Boston,

Mass., 1997.

Decidability of Propositional Projection

Temporal Logic with Infinite Models�

Zhenhua Duan and Cong Tian

Institute of Computing Theory and Technology
Xidian University, Xi’an, 710071, P.R. China

{zhhduan, ctian}@xidian.edu.cn

Abstract. This paper investigates the satisfiability of Propositional
Projection Temporal Logic (PPTL) with infinite models. A decision pro-
cedure for PPTL formulas is formalized. To this end, Normal Form (NF)
and Normal Form Graph (NFG) for PPTL formulas are defined and an
algorithm constructing NFG for PPTL formulas is presented. Further,
examples are also given to illustrate how the decision algorithm works.

Keywords: interval temporal logic; satisfiability; decidability; infinite
model; model checking.

1 Introduction

Interval Temporal Logic (ITL) [3,4] is a useful formalism for the specification and
verification of concurrent systems. In the past two decades, a number of axiom
systems have been proposed [2, 4, 5, 13, 14, 18] to verify properties of concurrent
systems. Although verification of programs can be managed by complete deduc-
tive systems of ITL, Model Checking approach which is an automatic method
based on model checking algorithms has not extensively been studied in ITL.

Satisfiability and validity of formulas are fundamental issues in the model the-
ory of a logic. Moreover, satisfiability plays an important role in the model check-
ing approach. Within ITL community, several researchers have looked at decision
procedures. Halpern and Moszkowski [3] proved the decidability of Quantifier
Propositional ITL (QPITL) over finite time. Kono presented a tableaux-based
decision procedure for QPITL with projection [12]. Bowman and Thompson [13]
presented the first tableaux-based decision procedure for quantifier-free propo-
sitional ITL (PITL) over finite intervals with projection. To the best of our
knowledge, all the existing decision procedures for ITL are confined in finite
intervals. However, many reactive systems are designed not to terminate. So,
to verify those systems using model checking, a decision procedure with infinite
models is required.

Projection Temporal Logic (PTL) [6,8,11,19] is an extension of ITL. It extends
ITL to include infinite models and a new projection construct, (P1, ..., Pm) prj Q.
The new projection construction can be treated as a combination of the parallel
� This research is supported by the NSFC Grant No. 60373103 and 60433010.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 521–532, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

522 Z. Duan and C. Tian

(P || Q) and original projection construct, (P proj Q) [3]. Formulas P1, ..., Pm

and Q are autonomous; each formula has the right to specify its own interval
over which it is interpreted. Although formula Q is interpreted in a parallel way
with formula (P1 ; ... ; Pm) (; denotes the chop operator, see Section 2), the
communication between them is only at rendezvous states, and the formulas
may terminate at different time points.

Compared with the proj construct (P proj Q) defined in [3], prj is more pow-
erful. Firstly, (P1, ...,Pm) prj Q is able to handle terminal formulas (see Section 2)
while (P proj Q) construct cannot. Within (P proj Q), the formula P is inter-
preted repeatedly over a series of consecutive subintervals whose endpoints form
the interval over which Q is interpreted. This may result in repeating the same
global state in the interpretation of Q several times if P is interpreted over
a subinterval of zero length. In [13], Bowman and Thompson changed this by
confining P not to be a terminal formula. However, this restriction causes the
loss of flexibility since the formula P is necessary to be interpreted in a point
state in some circumstances. Secondly, in (P proj Q), the series of P s and Q
terminate at the same time. In practice, the formulas P s and Q are not so regu-
larly interpreted. In our definition, formulas P1, ..., Pm and Q are autonomous;
they are interpreted independently and may terminate at different time points.
Thirdly, (P proj Q) is only defined over finite intervals and hard to be extended
to infinite intervals. In contrast, our projection construct is defined over both
finite and infinite intervals. Finally, prj can subsume the central operator chop
in ITL, P ; Q ≡ (P, Q) prj ε, but proj cannot.

ITL has also been extended into infinite time by Moszkowski [4]. However, the
chop construct is yet different from the one in PTL in the case of infinite models.
Within ITL, (P ; Q) holds over an interval if and only if either the interval can
be split into two parts and P holds on the first part and Q holds on the second
part (the interval can be finite or infinite), or P holds over the whole interval
and the interval is infinite; whereas within PTL, (P ; Q) is true only for the first
case. That is, in PTL, P is only interpreted over a finite interval, while in ITL,
P can be interpreted over an infinite interval. (P ; Q) is not satisfiable in PTL if
P has only infinite models. However, the two constructs can express each other
directly. Let ;m and ;d denote the chop operators in ITL and PTL respectively.
Then we have,

P ;m Q ≡ (P ;d Q) ∨ P ∧ �
−
ε

P ;d Q ≡ (P ∧ �ε) ;m Q

where � (always) and � (sometimes) are modal operators and
−
ε means the

current interval is not over. In the sense of Until construct in Linear Temporal
Logic (LTL) [15], P ;d Q can be viewed as the strong version while P ;m Q can be
thought of as the weak version of the chop construction.

Within PTL, plenty of logic laws have been formalized and proved [6, 11],
and a decision procedure for checking satisfiability of Propositional Projection
Temporal Logic (PPTL) formulas with finite models has been given in [9]. Nev-
ertheless, to check the satisfiability of the underlying logic with infinite models,
a decision procedure is also required.

Decidability of PPTL with Infinite Models 523

Therefore, we are motivated to investigate the decidability of PPTL formulas
with infinite models. To this end, Normal Form (NF) and Normal Form Graph
(NFG) for PPTL formulas are defined. Further, an algorithm constructing NFGs
for PPTL formulas is also formalized. Basically, the normal form is the same
as we gave in [6, 8] for Tempura programs. An NFG is a useful formalism for
constructing models of a PPTL formula.

Accordingly, a decision procedure based on NFGs for checking the satisfiability
of PPTL formulas with infinite models is formalized in the paper. With this
method, for a given formula, an NFG can be constructed by means of its normal
form. A finite path from the root node to the ε node (i.e., terminating node, see
Section 2) in the NFG of the formula corresponds to a finite model of the formula
while an infinite path emanating from the root corresponds to an infinite model
of the formula. It is clear that a formula is satisfiable if and only if there exists
a finite or infinite path in its NFG. This decision procedure can also be used to
check the satisfiability of PITL with minor changes [10].

The paper is organized as follows. The next section briefly presents the syn-
tax, semantics and some logic laws of the underlying logic. Section 3 gives the
definition of the normal form of PPTL formulas. In Section 4, the normal form
graph is defined; further, an algorithm constructing NFGs is formalized, and the
finiteness of NFGs is proved. A decision algorithm for checking the satisfiability
of PPTL formulas with infinite models is demonstrated in Section 5. Conclusions
are drawn in Section 6.

2 Propositional Projection Temporal Logic

Our underlying logic is Propositional Projection Temporal Logic (PPTL) [6,11,
7, 19]. It is an extension of Propositional Interval Temporal Logic (PITL) [3].

Syntax. Let Prop be a countable set of atomic propositions. The formula P of
PPTL is given by the following grammar:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, ..., Pm) prj P

where p ∈ Prop, P1 , ..., Pm and P are all well-formed PPTL formulas. A formula
is called a state formula if it contains no temporal operators. The abbreviations
true, false, ∧, → and ↔ are defined as usual. In particular, true

def= P ∨ ¬P

and false
def= P ∧ ¬P . Also we have the following derived formulas:

A1 ε
def= ¬© true A2

−
ε

def= ¬ε

A3 ©0 P
def= P A4 ©n P

def= ©(©n−1P)
A5 len n

def= ©n ε A6 skip
def= len 1

A7

⊙
P

def= ε ∨©P A8 ♦P
def= true ; P

A9 �P
def= ¬♦¬P A10 P ; Q

def= (P, Q) prj ε

Semantics. Following the definition of Kripke’s structure [1], we define a state
s over Prop to be a mapping from Prop to B = {true, false}, s : Prop −→ B.
We will use s[p] to denote the valuation of p at the state s.

524 Z. Duan and C. Tian

An interval σ is a non-empty sequence of states, which can be finite or infinite.
The length, |σ|, of σ is ω if σ is infinite, and the number of states minus 1 if σ is
finite. To have a uniform notation for both finite and infinite intervals, we will
use extended integers as indices. That is, we consider the set N0 of non-negative
integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <,≤,
to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define
� as ≤ −{(ω, ω)}. To simplify definitions, we will denote σ as < s0, ..., s|σ| >,
where s|σ| is undefined if σ is infinite. With such a notation, σ(i..j) (0 ≤ i �
j ≤ |σ|) denotes the sub-interval < si, ..., sj > and σ(k) (0 ≤ k � |σ|) denotes
< sk, ..., s|σ| >. The concatenation of a finite σ with another interval (or empty
string) σ′ is denoted by σ · σ′.

Let σ =< s0, s1, . . . , s|σ| > be an interval and r1, . . . , rh be integers (h ≥ 1)
such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is
the interval (namely projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl
>

where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is,
t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >
An interpretation is a quadruple I = (σ, i, k, j)1 , where σ is an interval, i, k

are integers, and j an integer or ω such that i≤k�j ≤ |σ|. We use the notation
(σ, i, k, j) |= P to denote that formula P is interpreted and satisfied over the
subinterval < si, ..., sj > of σ with the current state being sk. The satisfaction
relation (|=) is inductively defined as follows:

I − prop I |= p iff sk[p] = true, for any given atomic proposition p
I − not I |= ¬P iff I � |=P

I − or I |= P∨Q iff I|=P or I|=Q
I − next I |= ©P iff k < j and (σ, i, k + 1, j)|=P
I − prj I |= (P1, ..., Pm) prj Q if there exist integers k = r0 ≤ r1 ≤ ...

≤ rm ≤ j such that (σ, 0, r0, r1) |= P1, (σ, rl−1, rl−1, rl) |= Pl

1 < l ≤ m, and (σ′, 0, 0, |σ′|) |= Q for one of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1..j) or
(b) rm = j and σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

Satisfaction and Validity. A formula P is satisfied by an interval σ, denoted
by σ|=P , if (σ, 0, 0, |σ|)|=P . A formula P is called satisfiable if σ|=P for some σ.
A formula P is valid, denoted by |=P , if σ|=P for all σ.

Two formulas, P and Q, are equivalent, denoted by P ≡ Q, if |= �(P ↔ Q).
A formula P is called a terminal formula if P ≡ P ∧ ε, a non-local formula if
P ≡ P ∧ −

ε , and a local formula if P is a state or terminal formula.

Precedence Rules. In order to avoid an excessive number of parentheses, the
following precedence rules are used:

1 Parameter i is used to handle past operators and redundant with the current version
of the underlying logic. However, to keep the consistency with our previous research,
it is kept in the interpretation.

Decidability of PPTL with Infinite Models 525

1 ¬ 2 ©,
⊙

, �, � 3 ∧,∨ 4 →,↔ 5 prj , ;
where 1=highest and 5=lowest.

3 Normal Form of PPTL

Let Q be a PPTL formula and Qp denote the set of atomic propositions appearing
in Q. The normal form of Q can be defined as follows.

Q ≡
n0∨

j=1

(Qej ∧ ε) ∨
n∨

i=1

(Qci ∧©Q′
i) (1)

where Qej ≡
m0∧

k=1

q̇jk, Qci ≡
m∧

h=1

q̇ih, l = |Qp|, 1 ≤ n (also n0) ≤ 3l, 1 ≤
m (also m0) ≤ l; qjk, qih ∈ Qp, for any r ∈ Qp, ṙ denotes r or ¬r; Q′

i is a
general PPTL formula2. In some circumstances, for convenience, we write Qe∧ε

instead of
n0∨

j=1

(Qej ∧ ε) and
r∨

i=1

(Qi ∧©Q′
i) instead of

n∨

i=1

(Qci ∧©Q′
i). Thus,

Q ≡ (Qe ∧ ε) ∨
r∨

i=1

(Qi ∧©Q′
i) (2)

where Qe and Qi are state formulas or true. Further, in a normal form, if
∨

i

Qi ≡
true and

∨

i�=j

(Qi∧Qj) ≡ false, then this normal form is called a complete normal

form. The complete normal form plays an important role in transforming the
negation of a PPTL formula into its normal form. For example, if P has been
written to its complete normal form:

P ≡ Pe ∧ ε ∨
r∨

i=1

(Pi ∧©P ′
i) (3)

then we have,

¬P ≡ ¬Pe ∧ ε ∨
r∨

i=1

(Pi ∧©¬P ′
i)

For any PPTL formula P , P can be rewritten to its normal form and complete
normal form. The details of the proofs and the algorithms transforming PPTL
formulas into normal forms and complete normal forms can be found in [9].

Obviously, the normal form of a formula enables us to rewrite the formula
into two parts: the present and future ones. The present part is a state formula
while the future part is either ε or a next formula. This normal form inspires us
to construct a graph for describing the models of the formula.

4 Normal Form Graph

Our decision algorithm is based on a so called Normal Form Graph (NFG). It is
constructed according to the normal form.

4.1 Definition of NFG

For a PPTL formula P , the NFG of P is a directed graph, G = (CL(P), EL(P)),
where CL(P) denotes the set of nodes and EL(P) denotes the set of edges in
2 It is an exercise to prove n, n0 ≤ 3l.

526 Z. Duan and C. Tian

the graph. In CL(P), each node is specified by a formula in PPTL, while in
EL(P), each edge is identified by a triple (Q, Qe, R). Where Q and R are nodes
and Qe is labeling of the directed arc from Q to R. CL(P) and EL(P) of G can
be inductively defined as in Definition 1. Note that the normal form employed
in this definition is normal form (1).

Definition 1. For a PPTL formula P , set of nodes, CL(P), and set of of edges,
EL(P), connecting nodes in CL(P) are inductively defined as follows:

1. P ∈ CL(P);

2. For all Q ∈ CL(P) \ {ε, false}, if Q ≡
h∨

j=1

(Qej ∧ ε) ∨
k∨

i=1

(Qci ∧©Q′
i),

then ε ∈ CL(P), (Q, Qej , ε) ∈ EL(P) for each j, 1 ≤ j ≤ h; Q′
i ∈ CL(P),

(Q, Qci, Q
′
i) ∈ EL(P) for all i, 1 ≤ i ≤ k;

3. CL(P) and EL(P) are only generated by 1 and 2; thus, the NFG of P can be
defined as a directed graph G given by

4. G = (CL(P), EL(P)).

In the NFG of P , the root node P is denoted by a double circle, ε node by a
small black dot, and each of other nodes by a single circle. If the main operator
of a node (formula) is chop (;), a letter F is placed in the circle or double circle.
Each of the edges is denoted by a directed arc connecting two nodes. Examples
of NFGs are depicted in Fig.1.

� © p ∨ p ∧©q∧ len 2

True

p ∧ � © p

p

p

q∧ len 1

ε

� © p

True
p ∧ � © p

p

(b) (c)

p ∧©q∧ len 2

p

q∧ len 1
q

ε

(a)

p ; � © q

q ∧ � © q true ; � © q

pp

q
true

F

F

true

(d)

Fig. 1. Examples of NFGs

Intuitively, the NFG of formula P describes models of formula P since it
is constructed according to the normal form. However, the NFG of formula P
generated by Definition 1 might wrongly describe models of P with the chop
construct, Q1; Q2, when Q1 has infinite models.

To solve the problem, two cases need to be considered for chop construct
Q1; Q2. 1) Q1 has only infinite models. In this case, Q1; Q2 has no models, so
edges might not depart from it. 2) Q1 has both finite and infinite models. In this
case, we need to eliminate all infinite models of Q1. Based on the above analysis,
we have formalized two algorithms, NFG and Simplify to generate a subgraph
of the NFG for a given formula so that models of the formula can correctly be
generated. In algorithm NFG, a label F is employed to indicate that a node in a
cycle can only be repeated for finitely many times. Therefore, whenever the chop
operator is the main operator of a formula, F is placed in the node as a mark.

Decidability of PPTL with Infinite Models 527

4.2 Algorithm for Constructing NFG

In the following, algorithm NFG for constructing the NFG of a PPTL formula
is presented. It is merely a sketch of the implementation of Definition 1. The
algorithm uses mark [] to indicate whether or not a formula needs to be decom-
posed. If mark [P] = 0 (unmarked), then P needs further to be decomposed,
otherwise mark [P] = 1 (marked), thus P has been decomposed or needs not to
be done. Note that algorithm NFG employs algorithm NF [9] to transform a
formula into its normal form. In the algorithm, we consider the chop construct
in the form of R ≡ Q1; Q2 carefully since Q1 may only have infinite models and
cause R to be false. Therefore, if Q1 has no finite models it needs not further to
be decomposed and marked with 1 (mark [R] = 1) otherwise it needs further
to be dealt with and marked with 0 (mark [R] = 0). Also label F is employed
to denote the chop formula cannot be repeated infinitely many times. Further,
in the algorithm, two global boolean variables AddE and AddN are employed
to indicate whether or not ε and the next formulas in the normal form are en-
countered respectively. Note also that the algorithm only deals with formulas in
a pre-prepared form in which only ∨,∧ and ¬, as well as temporal operators ©,
;, � and prj are contained. Others such as →, ↔, �, ¬¬ etc. can be eliminated
since they can be expressed by the basic operators.

function NFG(P)
/* precondition: P is a PPTL formula in pre-prepared form*/
/* postcondition: NFG(P) computes NFG of P , G = (CL(P),EL(P))*/
begin function

/*initialization*/
CL(P) = {P}; EL(P) = φ; mark [P] = 0; AddE = AddN = 0;
while there exists R ∈ CL(P) \ {ε, false}, and mark [R] ==0

do mark [R] =1; /*marking R is decomposed*/
if R is Q1 ; Q2 /*computing NFG of Q1*/
then add label F in node R; G ′ = (CL(Q1),EL(Q1)) = NFG(Q1);

if ε �∈ CL(Q1) then continue;
/*R needs not decomposed, jump to while*/

Q = NF (R);
case

Q is
h∨

j=1

Qej ∧ ε: AddE=1; /*first part of NF needs added*/

Q is
k∨

i=1

Qi ∧©Q′
i : AddN=1; /*second part of NF needs added*/

Q is
h∨

j=1

Qej ∧ ε ∨
k∨

i=1

Qi ∧©Q′
i: AddE=AddN=1;

/*both parts of NF needs added*/
end case
if AddE == 1 then /*add first part of NF*/

CL(P) = CL(P) ∪ {ε};

528 Z. Duan and C. Tian

EL(P) = EL(P) ∪
h⋃

j=1

{(R, Qej , ε)};
AddE=0;

if AddN == 1 then /*add second part of NF*/
for i = 1 to k do if Q′

i is false
then mark [Q ′

i]=1;
/*Q′

i needs not decomposed*/
else if Q′

i �∈ CL(P)
then mark [Q ′

i]=0;
/*Q′

i needs decomposed*/

CL(P) = CL(P) ∪
k⋃

i=1

{Q′
i};

EL(P) = EL(P) ∪
k⋃

i=1

{(R, Qi, Q
′
i)};

AddN=0;
end while
return G;

end function

4.3 Finiteness of NFG

In the NFG of PPTL formula P generated by algorithm NFG, the set CL(P)
of nodes and the set EL(P) of edges are inductively produced by repeatedly
rewriting the unmarked nodes into their normal form. So one question we have
to answer is whether or not the rewriting process terminates. Fortunately, we
can prove that, for any PPTL formula P , the number of nodes in CL(P) are
finite, that is, |CL(P)| = k ∈ N0. To prove this, Lemma 1 ∼ 6 are needed. The
proofs of these lemmas and theorems can be found in [10].

Lemma 1. For any PPTL formula P , |CL(©P)| ≤ |CL(P)| + 1.

The lemma tells us that the number of nodes in the NFG of ©P is at most the
number of nodes in the NFG of P plus one.

Lemma 2. If Q is a PPTL formula and Pe is a state formula, then |CL(Pe ∧
Q)| ≤ |CL(Q)| + 1.

The lemma indicates that the number of nodes in the NFG of a formula being
conjunctive with a state formula is no more than the number of nodes in its own
NFG plus one.

Lemma 3. For PPTL formulas P and Q, |CL(P ∨Q)| ≤ |CL(P)|+|CL(Q)|+1.

This lemma shows us that the number of nodes in the NFG of formula P ∨Q is
no more than the sum of numbers of nodes in NFGs of formulas P and Q plus
one.

Lemma 4. For a PPTL formula P , |CL(¬P)| ≤ |CL(P)| + 1.

Decidability of PPTL with Infinite Models 529

This lemma indicates the relationship between NFGs of P and ¬P .

Lemma 5. If P and Q are PPTL formulas, then |CL(P ; Q)| ≤ |CL(P)| +
|CL(Q)| + 1.

Similar to Lemma 3, this lemma shows us that the number of nodes in NFG of
P ; Q is no more than the sum of numbers of nodes in NFGs of P and Q plus
one.

Lemma 6. If |CL(Pi)| = ki ∈ N0 (1 ≤ i ≤ m) and |CL(Q)| = k0 ∈ N0, then
|CL((P1, ..., Pm) prj Q)| = k ∈ N0.

This lemma predicates only that if the numbers of nodes in the NFGs of P1, ..., Pm

and Q are finite then the number of nodes in the NFG of (P1, ..., Pm) prj
Q is also finite.

Theorem 1. For any PPTL formula P , |CL(P)| = k ∈ N0.

The theorem can be proved by Lemma 1 ∼ Lemma 6. It convinces us that for
any PPTL formula P , the number of nodes in the NFG of P is finite. This is
critical since it guarantees that algorithm NFG terminates. Furthermore, this
enables us to develop a decision procedure for checking the satisfiability of PPTL
formulas based on algorithm NFG. In addition, the NFG of a formula P contains
all models of P , including both finite and infinite ones. Hence, our decision
procedure not only gives an algorithm for checking the satisfiability of a formula
P but also constructs all models of formula P .

5 Decision Procedure for PPTL Formulas

5.1 Path and Satisfiability

In the NFG of formula Q, a finite path, Π = 〈Q, Qe, Q1, Q1e, ..., ε〉, is an alter-
nating sequence of nodes and edges from the root to ε node, while an infinite
path, Π = 〈Q, Qe, Q1, Q1e, ...〉, is an infinite alternating sequence of nodes and
edges emanating from the root. In fact, a path (finite or infinite) in the NFG of
a formula Q corresponds to a model of Q. The fact is concluded in Theorem 2
and 3.

Theorem 2. A formula Q can be satisfied by finite models if and only if there
exist finite paths in the NFG of Q.

Theorem 3. A formula Q can be satisfied by infinite models if and only if there
exist infinite paths in the NFG of Q.

The proof of the Theorem 2 can be found in [9]. To prove Theorem 3, Lemma 7
and Lemma 8 are needed. The two lemmas are useful since they tell us the
relationship between the models and paths in the NFG of a PPTL formula.

Lemma 7. Given a PPTL formula Q, if there exists an infinite path in NFG of
Q, a corresponding infinite model of Q can be constructed.

530 Z. Duan and C. Tian

Lemma 8. Given a PPTL formula Q, if there exists an infinite model of Q, a
corresponding infinite path in NFG of Q can be found.

The proofs of Lemma 7 and Lemma 8 can be found in [10]. Theorem 2 and 3
confirm that a PPTL formula is satisfiable if and only if there exist finite or
infinite paths in its NFG.

5.2 Decision Procedure

In an NFG, some nodes might have no successors (e.g. � © p ; q). These nodes
are redundant and can be removed. Algorithm Simplify is useful for eliminating
redundant nodes of an NFG.

function Simplify(G)
/* precondition: G = (CL(P), EL(P)) is an NFG of PPTL formula P*/
/* postcondition: Simplify(G) computes an NFG of P , G ′ = (CL′(P),EL′(P)),
which contains no redundant nodes*/
begin function

CL′(P) = CL(P); EL′(P) = EL(P);
while ∃ R ∈ CL′(P) and R is not ε and has no edges departing from

do CL′(P) = CL′(P) \ R; EL′(P) = EL′(P) \ ⋃
i(Ri, Re, R);

/*
⋃

i(Ri, Re, R) denotes the set of edges connecting to node R*/
end while
return G′;

end function

The algorithm is terminable since the nodes of an NFG is finite. In the sim-
plified NFG of P , a finite or infinite path can readily be constructed. Obviously,
P is satisfiable if and only if there exist finite or infinite paths in the NFG of P .
Consequently, a decision procedure for checking the satisfiability of a PPTL for-
mula P can be constructed based on the NFG of P . In the following, a skeleton
of the procedure, algorithm Check in pseudo code, is given.

function Check(P)
/* precondition: P is a PPTL formula*/
/* postcondition: Check(P) checks whether formula P is satisfiable or not.*/
begin function

G = NFG(P);
G′ = Simplify(G);
if G′ is empty, return unsatisfiable;
else return satisfiable;

end function

Example. Check the satisfiability of formula Q ≡ (skip, p∧�©p, ε) prj ©2 q.
To check the satisfiability of formula Q ≡ (skip, p∧�©p, ε) prj ©2q, NFG of

formula Q can be constructed according to function NFG, and then simplified
by function Simplify . The details of the procedure are shown as follows.

Decidability of PPTL with Infinite Models 531

Step 1. Build NFG of formula Q (see Fig.2);

p

(1)

Q

true ⇒

(2)

(p ∧ � © p, ε) prj © q

(p ∧ � © p)

(4)

Q

Q true

(p ∧ � © p, ε) prj © q

Q ≡ ©((p ∧ � © p, ε) prj © q)

(p ∧ � © p, ε) prj © q

≡ p ∧©(p ∧ � © p ; q)

p

(p ∧ � © p) ; q
(3)

Q

true

(p ∧ � © p, ε) prj © q

F

p ∧ � © p, ε �∈ CL(p ∧ � © p)Construct NFG of

⇒⇒

(p ∧ � © p) ; q

A:
B:

C:

A B C

Fig. 2. Constructing the NFG of Q

Step 2. Obtain simplified NFG of formula Q (see Fig.3);

p

(1)

(p ∧ � © p, ε) prj © q

Q

true ⇒

(2)

F

(p ∧ � © p) ; q

(3)

Q

Q

φ

(4)

true

(p ∧ � © p, ε) prj © q

⇒ ⇒

Fig. 3. Simplifying the NFG of Q

Step 3. The simplified NFG of Q is empty, so formula Q is unsatisfiable.

6 Conclusion

In this paper, we have given a decision procedure for PPTL formulas with infinite
models. A modified version of the decision algorithm can also be applied to
PITL with infinite models [10]. This enables us to verify properties of concurrent
systems with PPTL and PITL by means of model checking. However, the existing
model checkers such as SPIN [16] and SMV [17] cannot directly be used to check
PPTL or PITL formulas since PPTL and PITL are involved both finite and
infinite models due to the chop operator while SPIN and SMV are only dealt
with infinite models for PLTL and CTL formulas. Therefore, to check PPTL and
PITL formulas, a model checker for PPTL and PITL is required. We believe that
the decision procedures we give in this paper are useful in this respect. At the
present, we have developed a model checker based on SPIN for PPTL. Further,
we are also motivated to develop a practical verification environment with a set
of supporting tools in the near future.

532 Z. Duan and C. Tian

References

1. S.A. Kripke. Semantical analysis of modal logic I: normal propositional calculi. Z.
Math. Logik Grund. Math. 9, 67-96, 1963.

2. R. Rosner and A. Pnueli. A choppy logic. First Annual IEEE Symposium on Logic
In Computer Science, LICS, 306-314, 1986.

3. B.C. Moszkowski. Reasoning about digital circuits. Ph.D Thesis, Department of
Computer Science, Stanford University. TRSTAN-CS-83-970,1983.

4. B. Moszkowski. A Complete Axiomatization of Interval Temporal Logic with In-
finite Time. lics, p. 241, 15 th Annual IEEE Symposium on Logic in Computer
Science (LICS’00), 2000.

5. Zhou Chaochen , C.A.R. Hoare and A.P. Ravn. A calculus of duration. Information
Processing Letters 40(5): 269-275, 1991.

6. Z. Duan. Temporal Logic and Temporal Logic Programming. Science Press of
China, 2006.

7. Z. Duan and M. Koutny. A Framed Temporal Logic Programming Language. Jour-
nal of Computer Science and Technology, Vol,19, No.3, pp.341-351, May, 2004.

8. Z. Duan, X. Yang and M. Koutny. Semantics of Framed Temporal Logic Programs.
Proceedings of ICLP 2005, Barcelona, Spain, LNCS 3668, pp256-270, Oct. 2005.

9. Z. Duan and L. Zhang. A Decision Procedure for Propositional Projection Tempo-
ral Logic. Technical Report No.1, Institute of computing Theory and Technology,
Xidian University, Xi’an P.R.China, 2005.
http://www.paper.edu.cn/process/download.jsp?file=200611-427

10. Z. Duan and C. Tian. Decison Prodedure for Propositional Projection Temporal
Logic with Infinite Models. Technical Report No.1, Institute of computing Theory
and Technology, Xidian University, Xi’an P.R.China, 2006.
http://www.paper.edu.cn/process/download.jsp?file=200611-444

11. Z. Duan, M. Koutny and C. Holt. Projection in temporal logic programming. In
F. Pfenning (ed.), Proceedings of Logic Programming and Automatic Reasoning,
LNAI, Springer-Verlag, vol 822, 333-344, 1994.

12. S. Kono. A combination of clausal and non-clausal temporal logic programs. In
Lecture Notes in Artificial Intelligence, vol. 897, pages 40-57. SpringerVerlag, 1993.

13. H. Bowman and S. Thompson. A decision procedure and complete axiomatiza-
tion of interval temporal logic with projection. Journal of logic and Computation
13(2),195-239, 2003.

14. Dutertre B. Complete proof systems for first order interval temporal logic. In Pro-
ceedings of LICS’95, (1995)36-43.

15. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag, 1992.

16. Gerard J. Holzmann. The Model Checker Spin, IEEE Trans. on Software Engi-
neering, Vol. 23, No. 5, May 1997, pp. 279-295.

17. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
18. Hanpin Wang and Qiwen Xu, Completeness of Temporal Logics over Infinite Mod-

els, Discrete Applied Mathematics 136 (2004) 87-103, Elsevier B.V.
19. X. Yang Z. Duan, Operational Semantics of Framed Temporal Logic Programs,

Proceedings of SOFSEM 2007, Harrachov, Czech, LNCS 4362,pp.566-578,Jan.
2007.

Separation of Data Via Concurrently

Determined Discriminant Functions�

Hong Seo Ryoo�� and Kwangsoo Kim

Division of Information Management Engineering, Korea University
1, 5-Ka, Anam-Dong, Seongbuk-Ku, Seoul, 136-713, Korea

Phone: +82-2-3290-3394; Fax: +82-2-929-5888
{hsryoo,kksoo}@korea.ac.kr

Abstract. This paper presents a mixed 0 − 1 integer and linear pro-
gramming (MILP) model for separation of data via a finite number of
nonlinear and nonconvex discriminant functions. The MILP model con-
currently optimizes the parameters of the user-provided individual dis-
criminant functions and implements a decision boundary for an optimal
separation of data under analysis.

The MILP model is extensively tested on six well-studied datasets
in data mining research. The comparison of numerical results by the
MILP-based classification of data with those produced by the multisur-
face method and the support vector machine in these experiments and
the best from the literature illustrates the efficacy and the usefulness of
the new MILP-based classification of data for supervised learning.

Keywords: data classification, machine learning, mixed integer and
linear programming.

1 Introduction

Separation/classification of data deals with discrimination of different types of
data and has wide applications in cancer diagnosis and prognosis [1,2], the scor-
ing of credit card applications [3], the prediction of defects during the assembly
of disk drives [4], face detection [5] and the scouting of professional athletes [6],
to name a few.

Let us consider optimal separation of two types of data A and B, without
loss of generality (e.g., [7]), by a finite number of discriminant functions. When
the l1−norm distance based error metric is used, the optimal separation of data
by a single discriminant function can be accomplished via linear programming
(LP) techniques. The optimal separation of data via two or more concurrently
determined discriminant functions, however, is a difficult problem from the op-
timization point of view (e.g., [8,9,10]). For example, [11] addressed separation

� This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (MOEHRD) (KRF-2005-003-D00445).

�� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 533–541, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

534 H.S. Ryoo and K. Kim

of data by two concurrently determined hyperplanes as solving three different
bilinear programs to global optimality in succession, and the global optimization
of bilinear programs is well-known to be NP−hard (e.g., [12]).

The difficulty associated with the optimal separation of data by more than a
single discriminant function has invited the development of greedy, local opti-
mization, or successive LP-based techniques in the literature (e.g., [2,13,14,15]).
In brief, these heuristic approaches make a non-optimal use of the individual dis-
criminant functions and, as a result, train decision rules that are more complex
than necessary or implement decision rules that perform differently in training
and testing.

In this paper, we present a general-purpose mixed integer and linear program-
ming (MILP) model for concurrent optimization of the unknown parameters of
the user-provided discriminant functions for optimal separation of data under
analysis. Any function can be used with the proposed MILP model as long as it
is linear in the parameters, and the proposed model implements a highly non-
linear, nonconvex and/or disjoint decision function (refer to Figure 1) for the
data at hand by exploiting advances in solution techniques for MILP and pow-
erful commercial MILP solvers available nowadays (e.g., [16].) Furthermore, in
terms of performance, the new MILP-based learning compares favorably with
well-established learning methodologies for supervised learning.

The organization of this paper is as follows. In Section 2, we develop a new
l1−norm based error metric and use it to develop the MILP classification model.
In Section 3, we apply the MILP-based classification methodology to analyze six
well-studied datasets in machine learning research from [17] and compare clas-
sification results with those produced by the multisurface method [18] and the
support vector machines [19] in the identical experimental setting and also with
the best results from the literature to the best of our knowledge. In summary,
the proposed MILP-based learning produced the best results on four of the six
datasets, and the comparative study in this section illustrates well the efficacy
and the usefulness of the new MILP-based classification methodology in super-
vised learning. Concluding remarks are provided in Section 4.

2 Model Development

Denote by •i an observation/data of type •, where • ∈ {A,B}. Let • denote
the complement of type • with respect to set {A,B}. Suppose that there are
m• observations of type • data for • ∈ {A,B}. Let K denote the index set of k
user-provided discriminant functions fk, k ∈ K, whose parameters ωk are to be
determined via training.

To aid in understanding, refer to Figure 2, where two types of data A and B,
indicated by dots and crosses, respectively, are separated by a decision surface
composed of a quadratic surface f1 (recall that quadratic functions are linear in
parameters.) and a linear function f2. With regard to the goal of placing class
B data in the region above the surface indicated by the arrows, the data Ai is
misclassified if it is placed above both of the two discriminant functions while

Separation of Data Via Concurrently Determined Discriminant Functions 535

A

B

A

B
B B

A

B

AB

B

B

B

A

A

A
BB

A A A

B

B

Fig. 1. Example of k piecewise nonlinear, nonconvex decision surfaces for k = 1, 2, 3

1y

y2

z2

A

B f =

f = xTQ c1 1
Tx +x + d1

cTx + d222

1 = 0

= 0

Fig. 2. Illustration of data separation via 2 discriminant functions

the data Bj is misclassified if it is placed below any of the two discriminant
functions. Using the l1−norm distance metric, the amount of misclassification
associated with Ai and Bj is measured by yik = max{fk(Ai, ωk), 0} and zjk =
max{−fk(Bj , ωk), 0}, respectively. Based on this, we develop an optimization
model

min
ω,y,z

m•∑

i=1

∏

k∈K

yik +
m•∑

j=1

∑

k∈K

zjk

s.t. − f(•i, ωk) + yik ≥ 0, i = 1, . . . , m•, k ∈ K (1)
f(•j , ωk) + zjk ≥ 0, j = 1, . . . , m•, k ∈ K (2)

y ∈ IR
m•×|K|
+ , z ∈ IR

m•×|K|
+ , (3)

for • ∈ {A,B} for the optimal separation of data with • type data placed below
the decision surface made up of k discriminant functions fk, k ∈ K.

Refer back to Figure 2 and note that Ai is misclassified if the minimum of
yik’s is greater than 0, hence that ri := mink∈K{yik} is a valid estimator of
the misclassification error associated with Ai, i = 1, . . . , mA. This allows us to
develop an alternative classification model for • ∈ {A,B} as follows:

536 H.S. Ryoo and K. Kim

(PNC)

∣
∣
∣
∣
∣
∣
∣
∣
∣

min
ω,y,z,r

m•∑

i=1

ri +
m•∑

j=1

∑

k∈K

zjk

s.t. (1), (2), (3)
r ∈ IRm•

+ ,

where ri = mink∈K{yik}.
The objective function of (PNC) above is nonlinear and nonconvex, and we

linearize this function as follows. First, let uik = yikxik, i = 1, . . . , m•, k ∈
K, and let

∑
k∈K xik = 1, where xik ∈ {0, 1}, i = 1, . . . , m•, k ∈ K. Next,

underestimate uik(= yikxik) by its piecewise linear and convex envelope (e.g.,
[12,20])

uik ≥ max{yik + Mxik − M, 0}, ∀k,

where M is an upper bound on yik (that can be normalized to 1.) This yields
the following MILP model that concurrently determines the parameters of k
discriminant functions for the best separation of data under analysis:

(PNC01)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

min
ω,y,z,u,x

m•∑

i=1

∑

k∈K

uik +
m•∑

j=1

∑

k∈K

zjk

s.t. (1), (2), (3)∑

k∈K

xik = 1, i = 1, . . . , m•

uik − yik − xik ≥ −1, i = 1, . . . , m•, k ∈ K

u ∈ IR
m•×|K|
+ ,x ∈ {0, 1}m•×|K|, y ≤ 1

for • ∈ {A,B}.
Theorem 1. (PNC) and (PNC01) are equivalent.

Proof. We establish the equivalence by showing that an optimal feasible solution
of any one of the two programs can be used for constructing an optimal and
feasible solution of the other.

Suppose that (ω∗,y∗, z∗,u∗,x∗) is an optimal feasible solution of (PNC01).
First, note that constraints (1), (2) and (3) in (PNC) are trivially satisfied by
ω∗,y∗, and z∗. Next, note for each i (i = 1, . . . , m•) that u∗

ik > 0 and xik = 1
implies that y∗

il ≥ y∗
ik for every l ∈ K \ {k}. This owes to the optimality of the

solution at hand: the nature of minimization selects the minimum uik by letting
x∗

ik = 1 and x∗
il = 0 for all l ∈ K \ {k}. Let ri = uik for i = 1, . . . , m• and use it

along with ω∗,y∗ and z∗ to obtain an optimal feasible solution of (PNC).
For the reverse direction, suppose that (ω∗,y∗, z∗, r∗) is an optimal feasible

solution of (PNC). For each i ∈ {1, . . . , m•}, let xik = 1 for k ∈ K corresponding
to the minimum of y∗

ik’s and let uik = y∗
ik for all k ∈ K. Now, x and u along

with ω∗,y∗ and z∗ form an optimal and feasible solution of (PNC01).

Note in the above that the convexification of the objective function of (PNC)
introduced additional m•|K| 0 − 1 and m•|K| real variables and m•(|K| + 1)

Separation of Data Via Concurrently Determined Discriminant Functions 537

constraints in the formulation of (PNC01). Although larger in size than (PNC)
and the first classification model we developed in this section, (PNC01) can
exploit for its solution rich advances in theory, techniques and algorithms for
MILP and powerful commercial MILP solvers like ILOG CPLEX [16], hence can
readily be used for nonlinear and nonconvex separation of data.

3 Experiments with Six Well-Studied Datasets

For testing the usefulness of the new MILP-based classification of data, hence-
forth referred to as PNC, we used six databases that are commonly used in
machine learning research from [17]. The six datasets contain incomplete data,
and we used only those data with complete information in these experiments.
We summarize information on the six datasets as tested in Table 1 and refer
interested readers to [17] for additional information.

Table 1. Datasets studied

Database (abbreviation)
Number of Observations
Total (Class A, Class B)∗

Australian credit card (credit) 653 (296 approvals, 357 denials)
Boston housing (housing) 506 (260 with income ≥ $21,000, 246 else)

Cleveland heart disease (chd) 297 (137 disease, 160 no disease)
congressional voting (voting) 232 (108 democrats, 124 republicans)
Pima Indian diabetes (pid) 768 (268 diabetes, 500 no disease)

Wisconsin breast cancer (wbc) 683 (239 malignant, 444 benign)
∗Class assignments are arbitrarily made.

For validation, 30 hold-out experiments were performed independently for
each of the six datasets in Table 1. In each of the 30 experiments, we used
randomly selected P% (with P = 50 and P = 80) of the dataset for training a
decision rule by PNC and then used the remaining (100−P)% of the dataset for
the testing. In experimenting with PNC, we used up to 4 linear and quadratic
discriminant functions with the number and the complexity of the individual
functions varied from 1 and linear to 4 and all quadratic or until the 100% correct
separation of the training data was achieved in all 30 independent experiments.
We used ILOG CPLEX 9.0 [16] for solving the MILP’s, and used the optimal or
the best solution found in 10,000 branch-and-bound nodes to implement the PNC
classifiers. To compare PNC with other well-established learning methods, we
implemented the multisurface method (MSM) (e.g., [18]) and the support vector
machine (SVM) (e.g., [19,21]) according to their presentations from [18] and
[21,22], respectively, and used them to analyze the six datasets in the identical
30 independent hold-out experimental setting. In experimenting with SVM, we
used the 60 combinations of SVM kernels and parameters summarized in Table 2
for each dataset and selected the combination yielding the best testing result.

538 H.S. Ryoo and K. Kim

Table 2. SVM kernels & parameters tested

Kernel ν λ ρ μ Degree

Polynomial 1 × 10a with

a ∈ {0, 1, 2, 3} 1 0 1 2, 3
a ∈ {0, 1, 2, 3} 1 0 −1 2, 3

a ∈ {4, 5} 2 0 −1 2, 4, 6
a ∈ {4, 5} 1 1 −1 2, 4, 5
a ∈ {4, 5} 2 1 −1 2, 4, 5

Neural 1 × 10a with a ∈ {4, 5}
2 0 −1 1
1 1 −1 1
2 1 −1 1

Sinusoidal 1 × 10a with a ∈ {1, 2, 3, 4, 5} 50
π

2π 1 2, 3, 4

Gaussian radial 1 × 10a with a ∈ {1, 2, 3, 4, 5} n/a n/a 1 n/a

n/a: Not applicable.

Table 3. Comparison of testing results by PNC, MSM, SVM and other approaches
from the literature

Database P ∗ Testing Performance† by Best from Literature

MSM SVM Parameter§ PNC Form‡ P ∗ Accuracy† Ref.

credit
50 77.8±3.8 81.3±2.5 s(2, 1) 86.0±1.7 1 71 85.5±? [3]
80 77.6±4.5 84.5±3.2 s(2, 1) 85.8±2.5 1 80 85.5±2.6 [23]

housing
50 83.0±2.9 81.9±2.0 s(2, 1) 86.1±2.0 2, a 80 85.2±3.0 [23]
80 83.1±3.7 84.2±3.3 s(2, 2) 87.7±2.6 3, a 80 83.2±3.1 [24]

chd
50 76.1±2.7 76.7±3.0 s(2, 1) 81.8±2.2 1 80 83.8±5.2 [23]
80 77.0±5.2 78.7±4.6 s(2, 2) 83.4±3.4 1 ? 80.6±3.1 [25]

voting
50 92.0±2.2 94.3±1.7 p(2, 1) 94.5±1.8 1 80 96.6±1.8 [23]
80 93.2±3.7 96.1±3.1 s(4, 1) 93.9±3.7 1 67 95.6±? [26]

pid
50 68.2±2.7 64.0±1.3 s(2, 1) 76.5±1.6 1 75 76±? [27]
80 67.5±3.6 65.5±2.8 s(2, 1) 77.4±3.3 2, b 80 72.3±2.4 [23]

wbc
50 94.9±1.1 97.0±0.8 s(4, 1) 96.3±0.8 1 80 97.2±1.3 [23]
80 94.2±2.1 96.7±1.3 s(3, 1) 96.0±1.5 2, c 80 96.2±0.3 [24]

MSM, SVM & PNC results are obtained in identical experimental setting.
∗: %-age of dataset used for training.
†: Correct classification %-age (in average ± 1 standard deviation)
§: SVM kernel & parameter yielding best testing results (refer to Table 2):

– s(d, n): sinusoidal, degree d, ν = 1 × 10n, λ = 50
π

, ρ = 2π & μ = 1
– p(l, r): polynomial, degree 2, ν = 1 × 104, λ = l, ρ = r & μ = −1

‡: PNC complexity & parameter yielding best testing results:
– 1: composed of a single hyperplane
– 2: composed of two hyperplanes
– 3: composed of four hyperplanes
– a: trained with ‘income < $21K’ as • class
– b: trained with ‘disease’ as • class
– c: trained with ‘malignant’ as • class

?: Not reported.

Separation of Data Via Concurrently Determined Discriminant Functions 539

An enormous amount of results were produced from these experiments and
we summarized the testing performances by MSM, SVM and PNC in Table 3
in the format the ‘average ± 1 standard deviation’ of the 30 correct prediction
rates. To aid in comparison, we highlighted the best of the prediction rates by
the three learning methodologies in this table. For reference, we also provided,
to the best of our knowledge, the two best predictions rates for the datasets from
the literature.

Recall that MSM, SVM and PNC are all tested in the identical hold-out exper-
imental setting. Therefore, the comparison of classification results by the three
learning methodologies in Table 3 clearly demonstrates that PNC, the proposed
MILP-based classification of data, is an effective supervised learning method-
ology that compares favorably with the two popular methods for supervised
learning.

Experimental results in the literature are often produced in different exper-
imental settings or reported without specifying important parameters of the
experiments. In some experiments, furthermore, heuristic tools are used for han-
dling noisy data to avoid overfitting and improve testing results (e.g., [23].)
Although the difference in experiments like the aforementioned does not allow
a rigorous comparative statement to be made, the comparison of PNC results
with the previous best in Table 3 illustrates that the MILP-based classification
methodology is competitive with well-established learning methods.

4 Conclusion

This paper presented a general-purpose MILP classification model for separa-
tion of data via multiple nonlinear and nonconvex discriminant functions. The
MILP model is meritorious in that it can exploit powerful MILP solvers available
nowadays to concurrently optimize the parameters of discriminant functions to
implement a highly nonlinear and nonconvex decision boundary for an optimal
separation of data under analysis. Extensive experiments with benchmark ma-
chine learning datasets demonstrated the efficacy and the usefulness of the new
MILP-based classification of data.

References

1. Lee, Y.J., Mangasarian, O., Wolberg, W.: Breast cancer survival and chemother-
apy: A support vector machine analysis. In Du, D., Pardalos, P., Wang, J., eds.:
Discrete Mathematical Problems with Medical Applications. Volume 55 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science. Amer-
ican Mathematics Society (2000) 1–20

2. Mangasarian, O., Wolberg, W.: Cancer diagnosis via linear programming. SIAM
Review 23(5) (1990) 1–18

3. Carter, C., Catlett, S.: Assessing credit card applications using machine learning.
IEEE Expert (1987) 71–79

4. Apté, C., Weiss, S., Grout, G.: Predicting defects in disk drive manufacturing: A
case study in high-dimensional classification. In: Proceedings of the 9th Conference
on Artificial Intelligence for Applications, Orlando, Florida (1993) 212–218

540 H.S. Ryoo and K. Kim

5. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an appli-
cation to face detection. In: IEEE Conference on Computer Vision and Pattern
Recognition, Puerto Rico (1997) 130–136

6. Bhandari, I., Colet, E., Parker, J., Pines, Z., Pratap, R., Ramanujam, K.: Advanced
scout: Data mining and knowledge discovery in nba. Data Mining and Knowledge
Discovery 1 (1997) 121–125

7. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20 (1995)
273–297

8. Megiddo, N.: On the complexity of polyhedral separability. Discrete and Compu-
tational Geometry 3 (1988) 325–337

9. Bennett, K., Mangasarian, O.: Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software 1 (1992) 23–34

10. Falk, J., Lopez-Cardona, E.: The surgical separation of sets. Journal of Global
Optimization 11 (1997) 433–462

11. Bennett, K., Mangasarian, O.: Bilinear separation of two sets in n−space. Com-
putational Optimization and Applications 2 (1994) 207–227

12. Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Mathematics
of Operations Research 8(2) (1983) 273–286

13. Bennett, K.: Global tree optimization: A non-greedy decision tree algorithm. Com-
puting Sciences and Statistics 26 (1994) 156–160

14. Duda, R., Fossum, H.: Pattern classification by iteratively determined linear and
piecewise linear discriminant functions. IEEE Transactions on Electronic Comput-
ers EC-15 (1966) 220–232

15. Wolberg, W., Mangasarian, O.: Multisurface method of pattern separation for
medical diagnosis applied to breast cytology. Proceedings of the National Academy
of Sciences 87 (1990) 9193–9196

16. ILOG CPLEX Division: CPLEX 9.0 User’s Manual, Incline, Nevada. (2003)
17. Murphy, P., Aha, D.: Uci repository of machine learning databases:

Readable data repository. Department of Computer Science, University
of California at Irvine, CA (1994) Available from World Wide Web:
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

18. Mangasarian, O.: Multisurface method of pattern separation. IEEE Transactions
on Information Theory 14(6) (1968) 801–807

19. Vapnik, V.: The Nature of Statistical Learning Theory. 2nd edn. Springer-Verlag
(2000)

20. Ryoo, H., Sahinidis, N.: Analysis of bounds for multilinear functions. Journal of
Global Optimization 19(4) (2001) 403–424

21. Mangasarian, O.: Generalized support vector machines. In Smola, A., Bartlet,
P., Schölkopf, B., eds.: Advances in Large Margin Classifiers. MIT Press (2000)
135–146

22. Mangasarian, O., Musicant, D.: Data discrimination via nonlinear generalized sup-
port machines. In Ferris, M., Mangasarian, O., Pang, J.S., eds.: Complementarity:
Applications, Algorithms and Extensions. Kluwer Academic Publishers (2000)

23. Boros, E., Hammer, P., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An
implementation of logical analysis of data. IEEE Transactions on Knowledge and
Data Engineering 12 (2000) 292–306

24. Murthy, S., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees.
Journal of Artificial Intelligence Research 2 (1994) 1–32

25. Shavlik, J., Mooney, R., Towell, G.: Symbolic and neural learning algorithms: an
experimental comparison. Machine Learning 6 (1991) 111–143

Separation of Data Via Concurrently Determined Discriminant Functions 541

26. Holte, R.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11 (1993) 63–91

27. Smith, J., Evelhart, J., Dickinson, W., Knowler, W., Johannes, R.: Using the
ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings
of the Twelfth Symposium on Computer Applications and Medical Care (1988)
261–265

The Undecidability of the Generalized Collatz

Problem

Stuart A. Kurtz and Janos Simon

Department of Computer Science
The University of Chicago

Abstract. The Collatz problem, widely known as the 3x + 1 problem,
asks whether or not a certain simple iterative process halts on all inputs.
In this paper, we build on work of J. H. Conway to show that a natural
generalization of the Collatz problem is Π0

2 complete.

1 Introduction

Let ω denote the set {0, 1, . . .} of natural numbers. Let ω+ denote the set
{1, 2, 3, . . .} of positive natural numbers. Define the function k : ω → ω as:

k(x) =
{

x/2, if x is even;
3x + 1, if x is odd.

Let k(i) denote the i-th iterate of k, i.e.,

k(0)(x) = x

k(i+1)(x) = k(k(i)(x)).

Problem 1 (The Collatz Problem). For all x ∈ ω+, does there exist an i ∈ ω such
that k(i)(x) = 1?

Because of its tantalizingly elementary form, and our inability to settle it, the
Collatz problem has received substantial attention. Collatz started working on
the problem in 1928, but, since he felt he made little progress, only published a
history of its origin in 1986 [1]. There is a very extensive literature on the many
attempts to settle the conjecture, as well as related questions, using an arsenal of
technologies from Number Theory, to Dynamical Systems, and Markov Chains,
including a 47-page annotated bibliography [2], excellent surveys [3], even a
monograph dedicated to the Dynamical Systems generalization [4]. Erdös offered
$500.00 for a solution. As of this writing, the Collatz problem remains open, and
mathematicians continue their attacks to try to settle it, and the diverse related
questions inspired by it [5].

We provide a heuristic explanation for the apparent difficulty of the problem.
We consider a generalization, defined by Conway [6], [7].

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 542–553, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Undecidability of the Generalized Collatz Problem 543

Definition 1 (Generalized Collatz Functions). A function g is called a
Collatz function if there is an integer m together with non-negative rational
numbers {ai, bi : i < m}, such that whenever x ≡ i mod m, then g(x) = aix+ bi

is integral. Let ke be a Gödel numbering of the Collatz functions.

This is a natural generalization: the function k(x) of the Collatz Problem has
this form for m = 2, a0 = 1

2 , b0 = 0, a1 = 3, and b1 = 1. The corresponding
problem is:

Problem 2 (GCP: The Generalized Collatz Problem). Given a representation of
a Collatz function g, can it can be decided whether for all x ∈ ω+ there exists
an i ∈ ω such that g(i)(x) = 1?

To simplify our presentation, we will choose a specific acceptable numbering of
the computable partial functions—counter machines—so the e-th computable
partial function ϕe is identified with the e-th counter machine Me subsequently.
Counter machines are discussed in detail in Sec. 2.

We build on beautiful results of Conway, who proved

Theorem 1 ([7]). From the index of a computable partial function Me, one can
compute a representation of a Collatz function ge, such that Me(x) converges iff
there exists an i such that g

(i)
e (2x+1) = 1.

Conway’s result already implies an undecidability result for specific Collatz func-
tions, if not the GCP itself: There exists a Collatz function g (e.g., the function
that arises from transforming a counter machine that computes the halting prob-
lem) for which the problem, given x to determine whether there exists an i such
that g(i)(x) = 1, is undecidable. Conway’s result also implies the Π0

2 complete-
ness of the problem, given e, of whether for all x > 0 there exists an i such that
k

(i)
e (2x+1) = 1.
We improve Conway’s result by eliminating the technical restriction on the

relevant part of the domain of ke.

Theorem 2. From the index of computable partial function Me, one can com-
pute a representation of a Collatz function ge such Me is total iff for every x

there exists an i such that g
(i)
e (x) = 1.

In the previous definition, and in the sequel, we use standard concepts and
notations from Computability Theory–see for example [8]. Our reduction of
TOT = {e : Me is total} to GCP classifies precisely the complexity of GCP:

Theorem 3. GCP is Π0
2 -complete.

The strengthening of Conway’s results that we needed to do is substantial. Sec-
tion 3 has a detailed discussion of the difficulties to overcome, and our strategies
for doing so. In short, Conway simulates computation steps of Me via the applica-
tion of ge to an integer that encodes a configuration Me. The initial configuration
of Me on input x is encoded as 2x+1.

544 S.A. Kurtz and J. Simon

The problem is that the action of Conway’s ge on integers not of the form 2x+1

has nothing to do with the totality of Me. Arbitrary integers may not encode
valid configurations of Me, and even if they do, those configurations may not be
reachable from a valid starting configuration.

We use two different strategies to overcome these difficulties: first, we devise
a transformation that maps a counting machine M into a machine U(M), where
U(M) computes the same partial function as M , but has the additional property
that if M is total, then U(M) halts from any configuration. We call these univer-
sally total machines. An elegant coding trick is our second technique. It allows
us to ensure termination on invalid codewords. These techniques are detailed in
Sec. 3.

The next section, Sec. 2, presents Conway’s technique. Section 3 contains our
contribution.

2 Conway’s Reduction

In this section, we provide our presentation of Conway’s reduction from counter
machines to GCP.

Conway defines two separate reductions, the first from counter machines to
FracTran (a novel and amusing model of computation), and the second from
FracTran to GCP.

A counter machine is a simple mathematical model of a digital computer
introduced by Minsky [9]. Counter machines are equipped with finitely many
counters, each of which can contain any natural number. Control is handled by
a finite sequence of instructions. There are three kinds of instructions: increment
a counter, decrement a counter, and halt.

An increment instruction indicates which counter is to be incremented, and
the index of the index of next instruction to be executed. A decrement instruction
indicates which counter is to be decremented, and two indices, one which will
be the next instruction to be executed if the decrement succeeded, i.e., if the
counter to be decremented was originally nonzero, and the other which specifies
the next instruction if the decrement failed, i.e., if the counter was originally
zero.

Each counter machine M defines a partial function ψM , where ψM (i) = j
if and only if when i is placed in counter 0, and the machine is started at
instruction 0, it eventually halts with j in counter 0. No confusion should arise
from identifying M with the partial function it computes (ψM), and we will
do so.

Minsky proved the following two theorems:

Theorem 4. (The Acceptability of Counter Machines) Let TMe denote the e-th
Turing machine. There exists a recursive function r such that for all natural
numbers e, TMe = Mr(e).

The Undecidability of the Generalized Collatz Problem 545

Theorem 5. (Two Counters Suffice) It suffices to consider counter machines
having only two counters, i.e., every counter machine can be effectively converted
into a counter machine computing the same partial function which has only two
counters.

We will not use Theorem 5 in this paper, although it would slightly simply our
presentation of Conway’s reduction.

A FracTran program is a finite sequence of non-negative rational numbers f =
{q0, q1, ..., qn−1}. The transition function Ff defined by the FracTran program f
maps a natural number s to qis, where i is minimal such that qis is integral. If no
such i exists, then s is a halting state for f , and we will establish the convention
that Ff (s) = s.

The FracTran program f computes a partial function Ff (x) by starting with
state s0 = 2x+1, and halting in state 3Ff (x)+1. Note that if f halts in a state
that is not a power of 3, by definition, Ff is not in a halting state, and is deemed
to have diverged. [Note that the partial function Ff is quite different from the
(total) function f , and this prevents us from identifying f and Ff in the same
way we identified M and ψM earlier.]

2.1 Reducing a Counter Machine to a FracTran Program

We begin by making a few technical modifications to Minsky’s definition of a
counter machine. They do not affect the power of the underlying machine, or
the acceptability of its enumeration.

– We assume that counter machines take their input in counter 0, but produce
output in counter 1.

– We assume that no instruction can branch to itself.
– We assume that the last instruction of M is a halting instruction, and more-

over it is the only halting instruction of M .
– We assume that just before M enters its halting state, it zeros all its counters,

except for the output counter 1.

It is easy to ensure these assumptions via a reduction from Minsky’s counter
machines to our restricted counter machines.1

Note also that in this paper all sequences start with the 0-th element.
The key to the reduction is a simple process for encoding the state of a counter

machine M as a natural number. Assume that M uses k counters, and it has
1 Here is a quick sketch of how to do this. First, add no-op and unrestricted go-to

statements to the instruction set of M. For every instruction that is the target of a
branch, add a preceding no-op, and point the branch to the no-op. Add a “clean-up
routine” to the end of M’s instructions, which zeros all counters except for counter
0, then moves the contents of counter 0 to counter 1, and halts. Replace all of the
original halt instructions by a go-to instruction that targets the clean-up routine.
Finally, we get rid of the new instructions, first by replacing no-op’s with “go-to
the next instruction,” and then replacing go-to’s with an increment followed by a
decrement, adjusting branch labels as needed.

546 S.A. Kurtz and J. Simon

n instructions. Let pi denote the i-th prime. We will use the first k primes to
encode the contents of the k counters. (This explains why we want our machines
to take input in counter 0, which corresponds to p0 = 2, and to produce output
in counter 1, which corresponds to p1 = 3.) For each instruction i of M , we
assign the prime pk+i.

For example, let’s suppose we have a three counter machine, with counters 0,
1 and 2 containing the values of 2, 0, and 1 respectively, and that it is currently
about to execute its fourth instruction. This would be represented by the natural
number 22305170110130170191 = 380, where 19 = p7 = p3+4.

We can describe the state transitions of M in by multiplying the integer encod-
ing the state by an appropriate fraction. For example, assume that instruction 4
of the machine is to increment counter 1, and branch to instruction 3. We can
encode this action via the fraction p1p3+3

p3+4
= 3·17

19 = 51
19 .

Encoding a decrement instruction is a bit trickier. For example, let us assume
that instruction 3 is “decrement counter 0, branching to instruction 1 on success,
and instruction 2 on failure”. We encode this instruction by two fractions, the
first p3+1

p3+3p0
= 11

17·2 = 11
34 representing a successful decrement, and the second

p3+2
p3+3

= 13
17 representing failure. Note that the ordering of the FracTran fractions

ensure that the failure step will be taken only if the success step can’t be taken,
i.e., only if counter 0 contains zero, and cannot be decremented.

The restriction that no instruction can branch to itself has the effect of pre-
venting unintended cancellations in the fractions used in encoding the instruc-
tions of M .

Note how this approach essentially encodes finite tuples of natural numbers
into a single integer, and it uses multiplication by fractions to effect multiple
simultaneous increment/decrement actions on those tuples.

It should be clear now that, given a counter machine M with k counters and
n instructions, we can effectively construct a FracTran program f , such that if
M(x) converges, and f started in state 2xpk+0, it will halt in state 3M(x)pk+n−1

where instruction n − 1 is the (necessarily unique) halting instruction of M
(recall that all indexing starts with 0). Note that our final assumption is used
here ensure that we don’t have “spurious” powers of primes corresponding to
non-output counters. If M(x) does not converge, then the FracTran program f
will not halt.

This is (modulo the occurences of pk+0 and pk+n−1) the claimed reduction
from counter machines to FracTran. To deal with these, we append two addi-
tional fractions to the FracTran program f . The first fraction is pk+0/2. This
will be used by the FracTran program only in an initial step, and it has the
effect of discarding the “excess” power of 2, while introducing the encoding
of the start state. The second is p1

pk+n−1
= 3

pk+n−1
, which has the effect of

“stripping off” the encoding of the halting state and introducing the required
“excess” power of 3. This completes the reduction from counter machines to
FracTran.

The Undecidability of the Generalized Collatz Problem 547

2.2 Reducing FracTran to GCP

Let f = {q0, q1, · · · , qn−1} be a FracTran program. It turns out that the transition
function of f is a Collatz function kf .

Let m be the least common multiple of the denominators of the qi’s. We will
use m as the modulus for the Collatz function that we construct. We start by
letting all of the ai’s be undefined, and defining all of the bi’s to be zero.

Consider each fraction qi in order of increasing i. Let di be the denominator of
qi. For each residue r mod m, if r is congruent to 0 mod di, and ar is undefined,
define ar = qi. Finally, define ar = 1 for any ar that remain undefined after all
of the qi’s have been considered.

We claim kf has the same action on ω as f . To that end, let x be given, and
let qi be the first fraction in f such that qix is integral. Clearly x is congruent
to zero mod di, because the numerator ni of qi must be relatively prime to
di. Also, it is clear that x cannot be congruent to zero mod dj for any j < i
without contradicting the choice of j. Let x′ be the congruence class of x mod
m. By the foregoing, we must have defined ax′ = qi, and bx′ = 0. Therefore
kf (x) = qx′x = f(x) as required.

Alternatively, qix is not integral for any i. In this case, we must not have set ax′

during the stages in the construction of kf that corresponded to consideration of
the qi’s, and therefore ax′ = 1, bx′ = 0, and we have kf (x) = 1 ·x+0 = x = f(x)
as required.

Unfortunately this does not yet do what we want.
The resulting Collatz function has the following property: Ff (x) is defined

iff there exists an i such that k
(i)
f (2x+1) = 3z+1 for some z. What we want is

a Collatz function k such that Ff (x) is defined iff there exists an i such that
k

(i)
f (2x+1) = 1. To achieve this, we modify kf so that ar = 1/3 for r = 3k mod m

for all k > 0, in effect throwing out our output and remembering only that we
have converged.

A separate concern is that we will have an “inadvertent accept,” i.e., that for
some x and i, our Collatz function k will have the property that k(i)(x) = 1, even
though there is no i′ such that k(i′)(x) = 3z+1 for any z ∈ ω. This is a legitimate
issue, even though it is easily seen that this cannot happen for FracTran programs
that arise via reduction from counter machines. In this case, the repair is quite
simple. Let p be a prime that does not divide m. Let m′ = mp. Construct a Col-
latz function so that it works modulo m′, but start the construction by defining
ar = p for all r which are not divisible by p, except for r = 1. Finally, add rules
such that ar = 1/r if r = 3z+1p for some z. In effect, we are using p as a “safety
prime.” This safety prime will be applied to all input states 2x+1, and will only
be stripped from inputs that correspond to output states of the form 3z+1p.

This concludes the reduction of FracTran to GCP.

3 Improvements to Conway’s Reduction

In the previous section we showed how to obtain, for every counter machine M
a GCP kM that for inputs 2x+1 reaches 1 iff M(x) halts. However, we want to

548 S.A. Kurtz and J. Simon

have the much stronger property that kM reaches 1 for every input y. As we
pointed out in the Introduction, this is difficult for two reasons:

Unreachable Configurations. Some y may represent configurations of the counter
machine M , but these configurations do not arise with any computation of M
starting with any input y. Such configurations have arbitrary values (“garbage”)
in the counters. There is no reason to believe that there is any relationship
between the halting of M when started from a legal configuration and its halting
when started in one of these states.

Invalid Representations. Some y may not be a valid representation of any M .
The behavior of kM on such y is not related to the reductions of the previous
section.

We solve each of these problems separately. The first is taken care of by
manipulating the counter machines, the second by appropriate manipulation of
the GCP.

In Sec. 3.1 we define the property of universal totality for counter machines,
as the property that started in any configuration they eventually halt. We then
show how to obtain for each total counter machine M , a new machine U(M)
that computes the same partial function, and if M is total, U(M) is universally
total.

The second difficulty can be overcome with a different technique. A careful
look at the Conway encoding shows that incorrect encodings are essentially in-
tegers with factors that are prime powers of “illegal” primes—primes not used
in the encoding of the counter machine. Slick modular arithmetic can eliminate
these: details can be found in Sec. 3.2.

3.1 Universal Totality

Definition 2. A counter machine M is universally total if M halts from all of
its configurations.

The key result of this section is that universal totality is, in a uniform sense, an
achievable consequence of totality.

Definition 3. There exists a computable reduction U from counter machines to
counter machines such that for all M , M and U(M) compute the same partial
functions. Moreover, if M is total, then U(M) is universally total.

Our approach is to simulate M in a way that involves considerable introspection.
It is useful to think of the machine U(M) that we will construct somewhat

more abstractly. We will think of configurations of U(M) as consisting of 7-tuples
of the form (a, b, c, A, B, C, x) where a, b, and c represent step counts; A, B, and
C represent configurations of independent copies of M , including, for each copy,
both the contents of the counters and an instruction counter which holds the
index of the pending instruction; x represents an input. Note that these 7-tuples
actually map to 3k + 7 counters, assuming that M had k counters.

The Undecidability of the Generalized Collatz Problem 549

It is also useful to think of U(M) as starting in a particular state (described
in terms of a 7-tuple), and as making “big steps” which are also described in
terms of the 7-tuples above. These big steps correspond to comparisons and
single steps of its three copies of M . The big steps are implemented by runtime
subroutines, which consist of many low-level counter machine instructions, a.k.a.
“small steps.” Thus, our analysis of universal totality works at two levels—we
must show that U(M) makes only finitely many big steps, and that each of
the runtime subroutines that implement a big step of U(M) is guaranteed to
take only finitely many small steps (from any configuration). These runtime
subroutines may make use of a finite number of additional “scratch” counters.
We will ensure that U(M)’s big steps are oblivious to the state of the scratch
counters, and that our runtime subroutines zero out the scratch counters they
use on entry.

We simplify our simulation by stipulating that we use counter 0 to hold x,
and counter 1 to hold the output register of C.

We start U(M) in configuration (0, 0, 0, SM(x), SM (x), SM (x), x), where
SM (x) is the starting configuration of M on input x. Note that the runtime
code required to get to this configuration amounts to moving the contents of x
to a scratch counter, and then moving the scratch counter back (simultaneously)
to x and the start counters of A, B, and C. This runtime code is guaranteed to
exit, because counter-to-counter moves are limited by the initial contents of the
source counter.

This is a guiding principle in the runtime subroutines—they can be thought
of as consisting of a few (non-nested) loops, where each loop is controlled by
decrementing a counter (which is not incremented in the body of that loop). We
can easily see that such a routine must terminate—the loop bodies are straight-
line code, and each loop will execute a number of times that is bounded by the
(necessarily finite) contents of its control counter on entry.

To define the big steps of U(M), let TM denote the single step transition func-
tion of the underlying machine M . Assume U(M) is in configuration (a, b, c, A, B,

C, x). Our intention is that A = T
(a)
M (SM (x)), i.e., that A is the configuration of

M after a steps, starting from input x, and likewise for B and b, and C and c.
Similarly, each of the three copes of M in U(M) (which we will refer to as the
A, B, and C copies) has an intended role. Copy C is our “main copy.” Copy A
is intended to be a checkpointed copy of C—it should hold the configuration of
C at an earlier time step. Copy B represents a restart of M , which is used to
verify the checkpoint.

We define various types of “big steps” of U(M) as follows. Assume U(M) is
in configuration (a, b, c, A, B, C, x).

– If C is in a halting configuration, we halt.
– Our intentions regarding the various elements of the configuration of U(M)

imply b ≤ a ≤ c if we are in a reachable configuration. If this is not the case,
we know that we are not in a reachable configuration, and we halt.

550 S.A. Kurtz and J. Simon

– If b < a, we make a basic big step to (a, b + 1, c + 1, A, TM (B), TM (C), x).
– If b = a, we verify that B = A. If verification fails, we know that we are not

in a reachable configuration, and halt. If the verification succeeds, we make
a reflection big step to (c, 0, c + 1, C, SM (x), TM (C), x).

There is some trickiness in writing the runtime subroutines that implement the
big steps of U(M). The equality and inequality checks are relatively straightfor-
ward—we decrement two counters together, while incrementing a scratch counter
that we can use to restore the original states of the counters that are being
compared. Dispatching instructions to an individual copy of M is a bit trickier.
Basically, we decrement our way through that copy’s instruction counter, using
our state to hold the (bounded) number of decrements. When we hit zero, we
branch to a copy of the instruction we are simulating, followed by a sequence of
increment statements that properly set the value of the instruction counter for
the next step. While the dispatch code is cumbersome, its termination analysis
is trivial because it is forward-branching.

Because our small step runtime subroutines are guaranteed to terminate, our
analysis of U(M) can focus on its big step behavior.

If we start U(M) with input x, we set up the big step start configuration
(0, 0, 0, SM(x), SM (x), SM (x), x). It is easily seen that big step start configura-
tion established the invariants that

– A is the configuration M on input x after a steps (respectively, B and b, and
C and c), and

– b ≤ a ≤ c.

and that these invariants are preserved by basic and reflection big steps. Each
basic or reflection big step incorporates making a step with copy C. If M(x)
terminates in c steps, then U(M)(x) will terminate after c basic + reflection
steps. Because the C copy of M uses counter 1 as its output counter, if U(M)(x)
will terminate with the same output as M(x), and therefore the two machines
have the same I/O behavior, i.e., they implement the same partial functions.

The crucial additional property we intend for U(M) is that it is universally
total if M is total. To this end, let’s assume that we start U(M) in an unreachable
state. If we start in a small step subroutine, we know by our prior analysis
that it must exist, resulting in a big step configuration (a, b, c, A, B, C, x). If M
eventually halts in configuration C, then U(M) must also halt by our earlier
analysis. Therefore, assume that M does not halt from configuration C. We
must show that U(M) halts anyway.

We can assume that b ≤ a ≤ c, otherwise U(M) halts immediately. After
a − b basic steps, U(M) will be ready to execute a reflection big step. At this
point, we might detect an inconsistency in the form A �= B, in which case
we would halt. Therefore, we can assume that no inconsistency is detected.
The reflection step will take us from a state of the form (a, a, c, A, A, C, x) to
(c, 0, c + 1, C, SM (x), TM (C), x). At this point, we’ve established the invariant
that B = SM (x) holds the configuration of M on input x after b = 0 steps, which
we preserve through subsequent basic and reflection steps. On our assumption

The Undecidability of the Generalized Collatz Problem 551

that the original state was unreachable, we know that A = C does not hold the
state of M after a = c steps. After a = c additional basic steps, we will encounter
a second reflection step. At this point we will discover A �= B, and halt.

3.2 Unintended Factors

The final issue involved in giving a completely satisfactory reduction of TOT
to GCP is that not all integers encode valid states of M ′. What is required is
something like a universal totality result for GCP. This is not so easy to obtain!

Instead, it suffices to focus on the particular Collatz functions that are pro-
duced by the reductions from (possibly universally total) counter machines.
These Collatz functions all work mod m, where m is a product of distinct primes,
and were intended to manipulate integers that took one of following forms:
– Integers of the form 2x+1, i.e., initial input states.
– Integers representing a state of M . These integers would have prime factor-

izations that consisted of powers of a few small primes (corresponding to
the contents of counters), and exactly one other prime (corresponding to the
state of M).

– Integers of the form 3k+1, i.e., final output states, in the process of being
reduced to 1.

If we have integers of these forms, the Collatz functions produced by modifying
Conway’s transformation works. The problem comes from integers that have
other forms.

Now the Collatz function k is working modulo m. Some of the congruence
classes correspond to numbers of the preceding form, other do not. Suppose r
is a congruence class that does not contain an integer of one of the three forms
above. Then we set ar = 1

m , and br = m−r
m . This rule has the effect of mapping

an “impossible” residue to the next largest multiple of m, and then casting out
the factor of m. Suppose x = r mod m. The result of this rule is that k(x) < x,
unless x = 1, in which case k(1) = 1.

Another possible problem is that we are working with a number that has the
form xz, where x takes one of the three forms above, and z �= 1, but z = 1 mod m.
In this case, if our original machine was total, our Collatz function arose from
reduction from a universally total machine. In this case, after finitely many
simulation steps, the Collatz function will reduce xz to z. In this case, our rule
for dealing with the residue of 1 from the preceeding paragraph applies. The
result of this step either an impossible number, or a number of the form x′z′,
where x′ and z′ as as x and z were before, but z′ < z.

As in the preceeding section, a “big step,” “little step” analysis demonstrates
totality (assuming the original machine M was total). Our “big steps” will be
impossible residue steps, and the steps from xz to x′z′ as above. We see that
each big step may involve a number of little steps (corresponding to individual
iterations of the Collatz function), but this number must be finite (because we
are simulating a universally total counter machine). As we work through the big
steps, the state number we are dealing with is strictly decreasing, and therefore
there can be only finitely many big steps.

552 S.A. Kurtz and J. Simon

3.3 Our Main Result

Our main theorem, that GCP is Π0
2 -complete follows from putting all previ-

ous techniques together. More precisely, we show that TOT reduces to GCP as
follows:

– start with a counter machine Me,
– transform it into a counter machine M ′

e of the special form indicated in
Section 2

– apply the transformation described in Section 3.1 to get U(M ′
e), which will

be universally total if M ′
e is total

– use the Conway transformations of Section 2 to obtain a GCP kU(M ′
e)

– modify this GCP using the techniques of Section 3.2, obtaining the final
GCP k′

U(M ′
e)

After these transformations, the GCP k′
U(M ′

e) has the property that for all y,
k′

U(M ′
e)(y) reaches 1 iff Me is total. This establishes the Π0

2 hardness of GCP.

On the other hand, the statement “∀y ∃i. k′
U(M ′

e)
(i)(y) = 1” is manifestly Π0

2 ,
which establishes that GCP is Π0

2 . Thus, GCP is Π0
2 complete, concluding the

proof of the main theorem.
As suggested above, the strong undecidability of the generalized problem is a

good heuristic explanation for the initially unexpected hardness of the Collatz
problem. We believe that it is interesting in its own right.

Acknowledgements

The authors gratefully acknowledge Carl Jockusch, Jr., whose elegant presenta-
tion of J. H. Conway’s work interested us in this question, and who sustained
us with encouragement and many thoughtful comments, and Warren Goldfarb,
whose timely questions encouraged us that there was more general interest in
this question.

References

1. Collatz, L.: On the origin of the (3n+1) problem. Journal of Qufu Normal University,
Natural Science Edition 12(3) (1986) 9–11

2. Lagarias, J.C.: The 3x+1 problem: An annotated bibliography (1963–2000). ArXiv
math (NT0608208) (2006)

3. Lagarias, J.C.: The 3x+1 problem and its generalizations. American Mathematics
Monthly 92(1) (1985) 3–23

4. Wirsching, G.J.: The Dynamical System Generated by the 3n+1 Function. Volume
1681 of Lecture Notes in Mathematics. Springer Verlag, Berlin (1981)

5. Matthews, K.R.: The generalized 3x + 1 mapping (2006)
6. Conway, J.H.: Unpredictable iterations. In: 1972 Number Theory Conference, Uni-

versity of Colorado, Boulder (1972) 49–52

The Undecidability of the Generalized Collatz Problem 553

7. Conway, J.H.: Fractran, a simple universal computing language for arithmetic. In
Clover, T.M., Gopinath, B., eds.: Open Problems in Communication and Compu-
tation. Springer Verlag (1987) 3–27

8. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA (1987)

9. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics
in the theory of Turing machines. Annals of Mathematics 74(3) (November 1961)
437–455

Combinatorial and Spectral Aspects of Nearest

Neighbor Graphs in Doubling Dimensional and
Nearly-Euclidean Spaces

Yingchao Zhao1,� and Shang-Hua Teng2,��

1 Department of Computer Science
Tsinghua University

yczhao@mails.tsinghua.edu.cn
2 Department of Computer Science

Boston University
steng@cs.bu.edu

Abstract. Miller, Teng, Thurston, and Vavasis proved that every k-
nearest neighbor graph (k-NNG) in Rd has a balanced vertex separator
of size O(n1−1/dk1/d). Later, Spielman and Teng proved that the Fiedler
value — the second smallest eigenvalue of the graph — of the Laplacian
matrix of a k-NNG in Rd is at O(1

n2/d). In this paper, we extend these
two results to nearest neighbor graphs in a metric space with doubling
dimension γ and in nearly-Euclidean spaces. We prove that for every
l > 0, each k-NNG in a metric space with doubling dimension γ has
a vertex separator of size O(k2l(32l + 8)2γ log2 L

S
log n + n

l
), where L

and S are respectively the maximum and minimum distances between
any two points in P , and P is the point set that constitutes the metric
space. We show how to use the singular value decomposition method
to approximate a k-NNG in a nearly-Euclidean space by an Euclidean
k-NNG. This approximation enables us to obtain an upper bound on the
Fiedler value of the k-NNG in a nearly-Euclidean space.

Keywords: Doubling dimension, shallow minor, neighborhood system,
metric embedding, Fiedler value.

1 Introduction

Graph partitioning is an important combinatorial optimization problem that is
widely used in applications that include parallel processing, VLSI design, and
data mining. There are several versions of this problem. Perhaps the simplest
� Part of this work was done while visiting Computer Science Department at Boston

University. In part supported by the National Grand Fundamental Research 973
Program of China under Grant (2004CB318108, 2004CB318110, 2003CB317007), the
National Natural Science Foundation of China Grant (60553001, 60321002) and the
National Basic Research Program of China Grant (2007CB807900, 2007CB807901).

�� Part of this work was done while visiting Tsinghua University and Microsoft Research
Asia Lab.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 554–565, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 555

version is to divide a graph into two equal-sized clusters and minimize the number
of edges between these two clusters. In general, we may want to divide a graph
into multiple clusters and minimize some objective functions such as the total
number of inter-cluster edges or the maximum among the ratios defined by the
number of edges leaving a cluster to the number of vertices in that cluster [9,10].
Graph partitioning is usually a hard problem if an optimal solution is desired [5].
But, because of its importance in practice, various partitioning heuristics and
approximation algorithms are designed and implemented. The spectral method,
which uses the eigenvectors of a graph matrix, has been among the most popular
ones used in practice [1,12].

In this paper, we study combinatorial and spectral aspects relating with par-
titioning nearest neighbor graphs defined in Euclidean-like metric spaces. Our
study is inspired by two early work on Euclidean nearest neighbor graphs. The
first one is by Miller et al [11] who shows that every k nearest neighbor graph
(k-NNG) of n points in Rd has a vertex separator of size O(n1−1/dk1/d) that
1/(d + 2) splits the graph. Here, for a parameter f : 0 < f < 1, a vertex sepa-
rator that f -splits a graph is a subset of its vertices whose removal divides the
rest of the graph into at least two disconnected components such that the sizes
of all components are no more than f · n. If f is a constant, independent of n,
then we refer to the vertex separator that f -splits as a balanced separator. The
second one is by Spielman and Teng [17]. It shows that the Fiedler value — the
second smallest eigenvalue of the graph — of the Laplacian matrix of a k-NNG
in Rd is at O(1

n2/d).
We first consider the k-NNG for points in a metric space of a finite doubling

dimension. This family of metric spaces (see Section 2 for a formal definition)
is introduced by Karger and Ruhl [8] with the motivation to extend efficient
nearest-neighbor-search data structures from Euclidean spaces to other growth-
constrained metric spaces arising in internet applications.

As one of the main results of this paper, we prove that for every l > 0, each
k-NNG in a metric space with doubling dimension γ has a balanced vertex sepa-
rator of size O(k2l(32l +24)2γ log2 L

S · log n+ n
l), where L and S are respectively

the maximum and minimum distances between any two points in P . By choosing
l = n1/(2γ+2)(k2 log2 L

S · log n)−1/(2γ+2), we prove that every k-nearest neighbor
graph of n points in a metric space with doubling dimension γ has a balanced
vertex separator of size

O
(
n1−1/(2γ+2)k1/(γ+1) log1/(γ+1)(L/S) · log1/(2γ+2) n

)

We can also show that the maximum degree of these k-NNG is at most
O(k log(L/S)). Thus, this separator bound also implies that the Fiedler value of
a k-nearest neighbor graph of n points in a metric space with doubling dimension
γ is at most

O

(
n

−1
2γ+2 k1+ 1

γ+1 log
1

2γ+2 (L/S)log
1

2γ+2 n

1 − 2n
−1

2γ+2 k
1

γ+1 log
1

γ+1 (L/S)log
2

γ+1 n + n
−1

γ+1 k
2

γ+1 log
2

γ+1 (L/S)log
1

γ+1 n

)

556 Y. Zhao and S.-H. Teng

Key to our proof, we characterize the family of minors excluded by these
nearest neighbor graphs: For any given depth t, we show that these graphs can
not contain a minor of size O(ktγ log(L/S)). With this graph-theoretic property,
we can use the separator theorem of Plotkin, Rao, and Smith [13] to prove our
separator bound.

For each k-NNG in nearly Euclidean spaces (see Section 4 for formal defi-
nition), we can apply the singular value decomposition method to find an ap-
proximate Euclidean k-NNG. This approximation enables us to obtain a better
separator and Fiedler value bound than those that can be derived from doubling-
dimensional framework.

We organize our paper as following. In Section 2, we introduce the notation
and definitions which will be used in the paper. In particular, we will introduce
doubling dimensional spaces, nearest neighbor graphs, the Fiedler value of a
graph, and Singular Value Decomposition. We will prove the separator theorem
for k-NNG in a finite doubling dimensional space in Section 3. For the k-nearest
neighbor graphs in nearly-Euclidean space, we discuss their spectra in section 4.
Finally, we conclude our work in Section 5.

2 Graphs and Geometry

In this paper, we consider graphs that are geometric defined. We first introduce
some notation and definitions that will be used later. Given a graph G = (V, E),
we assume V is the point set from a metric space.

2.1 Metric Spaces and Doubling Dimension

Given a set X of points and a distance function d which is defined as d: X×X −→
[0,∞), we call the pair (X, d) a metric space if it satisfies the following axioms.

– ∀x, y ∈ X , d(x, y) = 0 iff x = y.
– ∀x, y ∈ X , d(x, y) = d(y, x).
– ∀x, y, z ∈ X , d(x, y) + d(y, z) ≥ d(x, z).

If (X, d) only satisfies the last two axioms and d(x, x) = 0 for all x ∈ X instead
of the first item, we call it a semimetric (or pseudometric).

There are various metric spaces with different dimensions, for example, the
Euclidean space and the Hamming space. Not all the problems in practice can be
modeled as graphs in an Euclidean space or a Hamming space. Although these
metric spaces are simple and more familiar to us, practical problems may not
satisfy all those geometric terms. The doubling dimensional space, which has less
constraints, is introduced by Karger and Ruhl [8] and becomes useful in several
research areas, such as graph partitioning and network routing. One objective
of this paper is to design efficient algorithms for graphs in a metric space with
finite doubling dimension.

Denote the space within a distance r to a point v ∈ X as a ball Br(v) where
r is the radius and v is the center. The metric (X, d) has a doubling dimension
γ if any ball of radius r could be covered by 2γ balls of radius r

2 . Euclidean

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 557

space could be considered as a special doubling dimension space. Different from
general Euclidean spaces, doubling dimensional space has no such definitions as
volume and parallelization. However, for those continuous doubling dimensional
spaces, they could also have some useful properties, such as segment property
as follows.

Definition 1. A metric doubling dimension space (X, d) has segment property
if for each pair of points x, y ∈ X, there exists a continuous curve γ = γ(t)
connecting x and y such that d(γ(t), γ(s)) = |t − s| for all t and s.

Segment property appears naturally in many applications and in this paper, we
will mainly focus on those instances where segment property holds. For more
details about segment property, please refer to [14]. We will give more properties
in Section 3.

2.2 Nearest Neighbor Graphs

Let P = {p1, . . . , pn} be a set of n points in a metric space. For each pi ∈ P ,
let Nk(pi) be the set of k points closest to pi in P (if there are ties, break them
arbitrarily). Let R(pi) be the distance between pi and its k-th closest neighbor,
hence ∀pi, pj , if pi ∈ Nk(pj) then ‖pipj‖ ≤ R(pj). Let BR(pi) be the ball centered
at pi with radius R, and we denote αBR(pi) to be the ball centered at pi with
radius αR. With BR(pi), we can define k-ply systems, k-nearest neighbor graphs
and intersection graphs in general metric spaces.

Definition 2. Let P = {p1, . . . , pn} be points in a metric space, then a k-ply
neighborhood system for P is a set of closed balls, B = {B1, . . . , Bn}, such that
Bi centers at pi and no point p in this metric space is contained in the interior
of more than k balls from B.

Definition 3. A k-Nearest Neighbor Graph (k-NNG) of a set of n vertices is a
graph with vertex set P = {p1, . . . , pn} and edge set E = {(pi, pj): pi ∈ Nk(pj)
or pj ∈ Nk(pi)}, where Nk(pi) represents the set of k points closest to pi in V .
We denote the k-Nearest neighbor Graph of P as Nk(P).

Definition 4. Given a set S, and a family of nonempty subsets of S, the corre-
sponding intersection graph has a vertex for each subset, and a connecting edge
whenever two subsets intersect.

Definition 5. Given a k-ply neighborhood system Γ = {B1, B2, . . . , Bn}. The
intersection graph of Γ is the undirected graph with vertices V = {1, . . . , n} and
edges E = {(Bi, Bj) : (Bi ∩ Bj
= ∅)}.
Definition 6. Given a k-ply neighborhood system Γ = {B1, B2, . . . , Bn} and
α ≥ 1. The α-overlap graph of Γ is the undirected graph with vertices V =
{1, . . . , n} and edges E = {(Bi, Bj) : (Bi ∩ α · Bj
= ∅) and (Bj ∩ α · Bi
= ∅)}.
In this paper, the subsets are balls in some metric space. Therefore, we can let
the vertex for each subset be the corresponding center of the ball. In this way, we
can bound the degree of the intersection graph with the help of the ply bound
in the original ball system.

558 Y. Zhao and S.-H. Teng

2.3 Graph Partitioning and Vertex Separators

A partition of a graph G = (V, E) is a division of its vertices into several specified
number of subsets. Generally we focus on two objectives when we use graph
partitioning : one objective is to minimize the number of the edges cut by the
partition; the other one is to balance the computational load, i.e, to limit the size
of each subset to within a tolerance. We call Es, a subset of E, the edge separator
of G, if removing Es from E leaves two or more disconnected components of V .
We call Vs, a subset of V , the vertex separator of G, if removing Vs and all
incident edges leaves two or more disconnected components of V .

2.4 Laplacian and the Fiedler Value

Suppose G = (V, E) is an undirected, connected graph, then its adjacent matrix
A(G) = (aij)n×n, where

aij =
{

1 if (i, j) ∈ E
0 otherwise

Let D(G) = (dij)n×n be a diagonal matrix where dii is the degree of the vertex vi

in the graph G. The Laplacian matrix of G is denoted as L(G) = D(G)−A(G) =
(lij)n×n. Hence

lij =

⎧
⎨

⎩

−1 if i
= j and (i, j) ∈ E
0 if i
= j and (i, j) /∈ E
degree(vi) if i=j

Because L(G) is real and symmetric, its eigenvalues are all non-negative and its
smallest eigenvalue is zero, with (1, . . . , 1)T being its corresponding eigenvector.
Fiedler [6] associated the second smallest eigenvalue of the Laplacian matrix of
the graph with its connectivity. Thus, we call the second smallest eigenvalue of
L(G) the Fiedler value and call the corresponding eigenvector the Fiedler vector.
Because G is connected, we know that the Fiedler value is non-zero and can be
expressed as following.

λ2 = min
x⊥(1,...,1)T

xT L(G)x
xT x

= min
x⊥(1,...,1)T

∑
(i,j)∈E (xi − xj)2

∑n
i=1 x2

i

From the definition, we can get the following property.

Corollary 1. The Fiedler value of the edge subgraph is no more than the Fiedler
value of the original graph.

2.5 Singular Value Decomposition

To learn more about Laplacian matrix and its Fiedler value, we review a useful
technique called singular value decomposition (SVD). We give its formal defini-
tion below.

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 559

Definition 7. A singular value decomposition of an m×n matrix A with m ≥ n
is any factorization of the form

A = UDV T =
[
u1, u2, . . . , un

]

⎛

⎜
⎜
⎜
⎝

σ1

σ2

. . .
σn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

vT
1

vT
2
...

vT
n

⎞

⎟
⎟
⎟
⎠

(1)

where U is an m × n orthogonal matrix, V is an n × n orthogonal matrix, and
D is an n × n diagonal matrix with sij = 0 if i
= j and sii = σi ≥ 0.

In SVD, the quantity σi is a singular value of A. Without loss of generality, we
assume that σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 in this paper. We usually use two norms
to describe the matrix. Given a matrix A = (aij)m×n, the Frobenius norm (F
norm) of A is defined as

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

aij
2 =

√
√
√
√

n∑

i=1

σ2
i

while the Euclidean norm (2-norm) of A is defined as

‖A‖2 = sup
x �=0

‖Ax‖2

‖x‖2
= max

‖x‖2=1
‖Ax‖2

where x is an n dimensional vector and ‖x‖2 = (xT x)
1
2 =

√
x2

1 + x2
2 + . . . + x2

n.
In 1907, Erhard Schmidt [15] introduced the infinite dimensional analogue

of the singular value decomposition. Eckart and Young [3,4] showed that if we
replace the smallest m − s singular values with zeros in D, then the new mul-
tiplication of UDV T is the least square approximation in s dimensions of the
original matrix A.

Theorem 1 (Eckart-Young). Let the SVD of A given by (1) with rank r =
rank(A) ≤ p = min {m, n} and define

Ak = UkDkV T
k =

k∑

i=1

σiuiv
T
i

then Ak is the optimal approximation of A in the view of

min
rank(B)=k

‖A − B‖F = ‖A − Ak‖F =

√
√
√
√

p∑

i=k+1

σ2
i

min
rank(B)=k

‖A − B‖2 = ‖A − Ak‖2 = σk+1

Hence we can find a proper low-rank matrix Ak to approximate the original
graph and Eckart-Young Theorem guarantees that this approximation will not
cause much difference. For more properties of SVD, please refer to [2] and [7].

560 Y. Zhao and S.-H. Teng

3 A Separator Theorem for Doubling Dimensional Spaces

In this section we prove a separator theorem for k-NNG in a metric space with
finite doubling dimension.

Theorem 2. For every l > 0, each k-NNG in a metric space with doubling
dimension γ, we can find a separator of size O(k2l(32l + 8)2γ log2 L

S log n + n
l),

where L and S are respectively the maximum and minimum distances between
any two points in P .

We start with the following lemma that will be useful to obtain a degree bound
for k-NNG in a doubling dimensional metric space.

Lemma 1. For any ball of radius r in metric space with doubling dimension γ,
it contains at most 2γ disjoint balls of radius r

2 .

Similarly, we can get the following corollary.

Corollary 2. For any ball of radius r in a metric space with doubling dimension
γ, it contains at most 2tγ disjoint balls of radius r

2t .

In this section, we will show an extended version of separator theorem in doubling
dimensional spaces.

3.1 Shallow Minors

Key to our analysis is to show that k-NNG in finite doubling dimensional metric
space excludes certain type of minors.

Definition 8. A minor of a graph G is a graph obtained from G by a series of
edge contractions and edge deletions.

Teng [18] showed that for those balls in k-ply neighborhood system in Euclidean
space, there could not be too many balls of large radius intersecting the same
ball. We can get a similar result for graphs in doubling dimensional space, i.e,
for any ball of radius r, there could not exist many balls of radius at least βr
which intersect it.

Lemma 2. Suppose {B1, . . . , Bn} is a k-ply neighborhood system in a metric
space with doubling dimension γ. For each ball B with radius r, for all constant
β > 0, we have

|{i : Bi ∩ B
= φ and ri ≥ βr}| ≤ k

(
2(1 + 2β)

β

)γ

where ri is the radius of Bi.

Although there is no such definition as volume in Euclidean space, the doubling
dimensional space does have similar shallow minor properties. We’ll show that
the intersection graph of a k-ply neighborhood system in doubling dimensional
space does exclude shallow minors of a certain size.

Because there are not many intersecting balls, the intersection graph of k-ply
neighborhood system does not have a large minor either.

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 561

Theorem 3. Suppose Γ is a k-ply neighborhood system in a metric space with
doubling dimension γ and G is the intersection graph of Γ . Then ∀l, G excludes
Kh as a depth1 l minor for h ≥ k(8l + 2)γ .

Proof. Suppose G has a Kh minor of depth l. We claim that there must exist h
sets of balls, Γ1, . . . , Γh ⊂ Γ , such that:

– The intersection graph of each Γi is connected with diameter at most l.
– For each pair i, j ∈ {1, . . . , h}, there’s a ball in Γi that intersects a ball in

Γj .

Let Bi be the ball of the largest radius in Γi. Without loss of generality, as-
suming that B1 is the ball of the smallest radius among {B1, . . . , Bh} and its
radius is r. Hence, all the balls in Γ1 are contained in a ball B′ = (2l + 1)B1,
because the intersection graph of Γ1 is connected. According to the second con-
dition, ∀i > 1, there is a ball from Γi that intersects B′.

We claim that for each i > 1, there is a ball in Γi of radius at least r that
intersects the ball (4l − 1)B1.

As we know, the diameter of the intersection graph of Γi is at most l and there
is a ball from Γi that intersects B′. If that intersecting ball has radius at least
r, then we are done with Γi. If not, we can enlarge the radius of B′ by 2r, at
that time, the enlarged B′ will completely contain the intersecting ball in Γi and
meet other balls in Γi because of the connectivity of Γi. Then we judge whether
one of the intersecting balls has radius at least r. If not, we repeat the augment
process above. Because B1 is the ball of the smallest radius among {B1, . . . , Bh},
the process will surely terminate. This process is like a breadth-first-search. The
number of iterations is less than l − 1, since we will surely meet either Bi (the
maximum-radius ball in Γi, whose radius is at least r) or some other balls in Γi

that has radius at least r.
Namely, the ball B∗ of radius R = (4l − 1)r intersects h balls of radius at

least βR where β = 1/(4l − 1). Applying Lemma 2, we have h ≤ k(8l + 2)γ . �

Theorem 4. Suppose Γ is a k-ply neighborhood system in a metric space with
doubling dimension γ and G is the α-overlap graph of Γ . Then ∀l, G excludes
Kh as a depth l minor for h ≥ k(8αl + 2)γ .

3.2 Proof of Theorem 2

In this subsection, we give the proof of Theorem 2. First, let’s bound the max
degree of nearest neighbor graphs and the ply of neighborhood system in metric
spaces with doubling dimension γ.

Lemma 3. Let P = {p1, . . . , pn} be a point set in a metric space with doubling
dimension γ. Then the ply of Nk(P) is bounded by k4γ log 3

2

2L
S , where L is the

maximum distance between any two points in P , and S is the smallest one.

1 The maximum number of edges in each simple path.

562 Y. Zhao and S.-H. Teng

The k-nearest neighbor graph has no more ply than Nk(P), therefore we can
bound the ply of k-NNG in doubling dimension space.

Corollary 3. The ply for any k nearest neighbor graph in a metric space with
doubling dimension γ is at most k4γ log3/2

2L
S , where L is the longest distance

in the graph and S is the shortest.

Plotkin, Rao and Smith [13] gave the following theorem and showed that we can
find a small size separator for the graph which excludes shallow minors.

Theorem 5. For any graph that excludes Kh as a depth l minor, we can find
a separator of size O(lh2 log n + n/l), where n is the number of vertices of the
graph.

Because every k-NNG in a metric space with doubling dimension γ has ply
bound of k4γ log3/2

2L
S and it excludes Kh minor with depth l, where h >

k4γ log3/2
2L
S (8l + 2)γ = k(32l + 8)γ log 3

2
(2L

S). Applying Theorem 5 gives the
separator bound of k-NNG in a metric space with doubling dimension γ. There-
fore, Theorem 2 holds.

To minimize the separator size, we choose l=n1/(2γ+2)(k2 log2 L
S ·log n)−1/(2γ+2)

such that the two terms are equal and get that every k-nearest neighbor graph
of n points in a metric space with doubling dimension γ has a balanced vertex
separator of size

O(n1−1/(2γ+2)k1/(γ+1) log1/(γ+1)(L/S) · log1/(2γ+2) n)

Since we have showed that the maximum degree of these k-NNG is at most
O(k log(L/S)), the above separator bound could also give an upper bound of
the Fiedler value of a k-nearest neighbor graph of n points in a metric space
with doubling dimension γ. Assign 1 to each vertex in the vertex separator
and |separator|/(|separator| − n) to the remaining vertices, then we have the
following inequality.

λ2 ≤
∑

cut edge(i,j)(xi − xj)2
∑

∀i x2
i

≤
(n
|separator|−n)2 × |separator| × |max degree|

n

=O(
n

−1
2γ+2 k1+ 1

γ+1 log
1

2γ+2 (L/S)log
1

2γ+2 n

1 − 2n
−1

2γ+2 k
1

γ+1 log
1

γ+1 (L/S)log
2

γ+1 n + n
−1

γ+1 k
2

γ+1 log
2

γ+1 (L/S)log
1

γ+1 n
)

4 A Spectral Theorem for Nearly-Euclidean Spaces

Since Fiedler [6] discovered that the second smallest eigenvalue is closely related
to the connectivity of the graph, a large amount of work has been done on
spectra analysis of graphs. In 1996, Spielman and Teng [17] proved that the
Fiedler value of a k-nearest neighbor graph with n vertices in Rd is bounded by
O(k1+2/d/n2/d).

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 563

In this session, we consider a point set P of n vertices in Rm space. P =
{p1, . . . , pn}⊆Rm. We can get an m×n matrix P with column vectors (p1, . . . ,pn).
An upper bound of Fiedler value of the Laplacian matrix L(P), given by Spiel-
man and Teng, is as following.

Theorem 6. (Spielman-Teng) If G is a subgraph of an α-overlap graph of
a k-ply neighborhood system in Rm and the maximum degree of G is Δ, then
the Fiedler value of L(G) is bounded by γmΔα2(k

n)2/m, where γm = 2(π + 1 +
π
α)2(Am+1

Vm
)2/m.

Am is the surface volume of a unit m-dimensional ball, and Vm is the volume of a
unit m-dimensional ball. In general case, the numbers k and α are two constants,
and the item γm can be considered as a constant if the dimension m is fixed.
Therefore, the bound can be expressed by O(1

n2/m), which is dependant on the
dimension of the space.

If we change the base carefully, the dimension could be changed as well. Hence
we can consider the Laplacian matrix of a k-NNG and find a low-rank approx-
imation matrix which can be contained in a lower dimension space so that the
dimension of the new space is smaller. The changing of basis could make the
problem easier, and we call the new space nearly-Euclidean space.

As we mentioned in Section 2, SVD could help us get a low-rank approxima-
tion matrix Q whose rank is d with d < m. Suppose the column vectors of Q is
(q1, . . . , qn) and these n points form a new point set Q. Suppose that G′ is the
(1 + 7δ

s)-overlap graph of the k-NNG of Q, the maximum degree of G′ is Δ, s is
the length of the shortest edge in G′, δ is the maximum distance between each
pi and qi for any i ∈ {1, . . . , n}, we can prove the following theorem and get a
more accurate bound for L(P).

Theorem 7. If G is the k-NNG of the point set P in Rm space, then using
SVD, we can find an approximate point set Q with rank(Q) = d < m, and
the Fiedler value of L(P) can be bounded by (1 + 7δ

s)2γdΔτdk/n)
2
d where γd =

2(π + 1 + π
α)2(Ad+1

Vd
)2/d.

Here Ad is the surface volume of a unit d-dimensional ball, and Vd is the volume
of a unit d-dimensional ball. To make the idea look clearer, let’s consider a simple
example in R2 space. Q = {q1, . . . , qn} is a set of n points in R2 space. We perturb
these n points in the direction perpendicular to the original plane and get a new
set of n points, denoted by P = {p1, . . . , pn}, in R3 space. Assuming that the
smallest distance between any two points of Q is s, and the perturbation distance
is at most δ. If s ≥ δ, we can get the following inequalities.

‖pi − pj‖ ≤
√

(2δ)2 + ‖qi − qj‖2 ≤ √
5‖qi − qj‖

If ri is the k-NNG radius for qi, and Ri is the k-NNG radius for pi, then we
can see that Ri ≤

√
5ri for all i ∈ {1, . . . , n}. Therefore, we can use

√
5-overlap

graph G′ of Q to approximate the k-NNG G of P . And the Fiedler value of
L(G′) can also be bounded by the Fiedler value of L(G). In fact, we can think

564 Y. Zhao and S.-H. Teng

that all those n points of P in R3 are perturbed perpendicularly to the same
plane and the new point set on the plane is Q.

To prove Theorem 7, let’s get some preparations.

Lemma 4. ∀pi ∈ P , its k-NNG radius Ri is no more than ri + 2δ, where ri is
the k-NNG radius of the corresponding point qi in Q.

Lemma 5. The 1-overlap graph of k-NNG of P in Rm is isomorphic to a sub-
graph of the (1 + 7δ/s)-overlap graph of k-NNG of Q in Rd.

Lemma 6. The k-NNG is a subgraph of its 1-overlap graph.

Proof. Suppose G is a k-NNG, G′ is the 1-overlap graph of G and (pi, pj) is an
arbitrary edge of G. Then we can see that ‖pi − pj‖ ≤ ri or ‖pi − pj‖ ≤ rj . In
addition, ‖pi − pj‖ ≤ ri + rj . Hence (pi, pj) must exists in the graph G′. From
the generality of (pi, pj), we can see that the k-NNG graph is a subgraph of its
1-overlap graph. �

Combining Lemma 4, 5 and 6, we can derive the following corollary.

Corollary 4. The k-NNG of P in Rm is isomorphic to a subgraph of the (1 +
7δ/s)-overlap graph of a k-NNG of Q in Rd, where δ = max ‖pi − qi‖ and s =
min ‖qi − qj‖.
In [11] it is shown that any k-NNG is a subgraph of a kτd-ply neighborhood
system where τd is the kissing number in dimension d. If G is an α-overlap
graph of a k-NNG in Rd then G is a subgraph of an α-overlap graph of a kτd-
neighborhood system in Rd. Suppose that the maximum degree of G is Δ, we
can apply Theorem 6 and get the following corollary directly.

Corollary 5. If G is a subgraph of the α-overlap graph of k-NNG in Rd with
maximum degree Δ, then the Fiedler value of L(G) is bounded by γdΔα2(τdk/n)2/d,
where γd = 2(π + 1 + π/α)2(Ad+1/Vd)2/d.

Finally, we give the proof of Theorem 7.

Proof of Theorem 7. The k-NNG of P in Rm is isomorphic to a subgraph of
the (1+7δ/s)-overlap graph of k-NNG of Q in Rd, according to Corollary 6. The
isomorphic graph has the same Fiedler value as the original graph because they
have the same Laplacian matrices. Hence the k-NNG of P in Rm has no larger
Fiedler value than the (1 + 7δ/s)-overlap graph of k-NNG of Q in Rd according
to Corollary 1.Due to Corollary 5, we know that the Fiedler value of k-NNG in
Rm is bounded by (1 + 7δ

s)2γdΔτdk/n)
2
d where γd = 2(π + 1 + π

α)2(Ad+1
Vd

)2/d. �

5 Conclusion

In this paper, we concentrate on the combinatorial and spectral aspects of near-
est neighbor graphs in doubling dimensional metric spaces and nearly-Euclidean
spaces. For those k-nearest neighbor graphs in metric spaces with doubling

Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 565

dimension γ, we give the ply bound and degree bound, where there are no defi-
nitions like volume or parallel. We analyze the shallow minor excluded property
and bound the separator size. For those graphs in Euclidean spaces with high
dimension, we prove that the k-nearest neighbor graphs could have better spec-
tral properties using SVD. If the number k is a constant, then we can show
that its Fiedler value can be bounded by O(Δ(1 + 7δ/s)2n−2/d) where Δ is the
maximum degree of the approximation graph.

References

1. E. R. Barnes and A. J. Hoffman, Partitioning, spectra and linear programming,
Progress in Combinatorial Optimization, pages 13–25, (1984).

2. P. Dewilde and E. F. Deprettere, Singular value decomposition: An intro-
duction, In Ed. F. Deprettere, editor. SVD and Signal Processing: Algorithms,
Applications, and Architectures pages Elsevier Science Publishers North Holland.

3. C. Eckart and G. Young, The approximation of one matrix by another of lower
rank, Psychometrika, 1:211-218, (1936)

4. C. Eckart and G. Young, A principal axis transformation for non-Hermitian
matrices, Bulletin of the American Mathematical Society, 45:118–121 (1939)

5. T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of Graph Partition
Problems, STOC 1999: 464-472.

6. M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298-305, (1973)

7. Gene H. Golub and Gharles F. Van Loan,Matrix Computations, pages 16-
21,293. Johns Hopkins University Press, Baltimore, Maryland (1992).

8. David R. Karger, Matthias Ruhl, Finding nearest neighbors in growth-
restricted metrics. STOC 2002: 741-750.

9. Richard J. Lipton, Robert Endre Tarjan, A separator theorem for planar
graphs, SIAM J. Appl. Math. 36:177-189, (1979)

10. Richard J. Lipton, Robert Endre Tarjan, Applications of a planar separator
theorem, SIAM Journal on Computing 9:615-627, (1980)

11. Gary L. Miller, Shang-Hua Teng, William P. Thurston, Stephen A.

Vavasis, Separators for sphere-packings and nearest neighbor graphs, J. ACM 44(1):
1-29 (1997)

12. A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with
eigenvectors of graphs, SIAM J. Matrix Anal. Appl, 11:430–452, (1990)

13. S. Plotkin, S. Rao, and W.D. Smith, Shallow excluded minors and improved
graph decomposition, In proceedings at the 5th Symposium Discrete Algorithms.
SIAM, New York, pp.462-470 (1994)

14. Michael Ruzhansky, On uniform properties of doubling measures, Proc. of Amer.
Math. Soc., 129: 3413-3416 (2001)

15. E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I
Teil. Entwicklung willkürlichen Funktionen nach System vorgeschriebener, Mathe-
matische Annalen, 63:433-476, (1907)

16. Daniel A. Spielman, Shang-Hua Teng, Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems, STOC 2004: 81-90.

17. Daniel A. Speilman and Shang-Hua Teng, Spectral Partitioning Works: Planar
Graphs and Finite Element Meshes, FOCS 1996: 96-105.

18. Shang-Hua Teng, Combinatorial aspects of geometric graphs, Computational
Geometry no. 9: 277-287 (1998)

Maximum Edge-Disjoint Paths Problem in

Planar Graphs

Mingji Xia�

State Key Lab. of Computer Science, Institute of Software,
Chinese Academy of Sciences,

P.O. Box 8717, Beijing 100080, China
Graduate University of Chinese Academy of Sciences, Beijing, China

xmj@gcl.iscas.ac.cn

Abstract. We give a randomized algorithm for maximum edge-disjoint
paths problem (MEDP) and the minimal total length of MEDP, if the
graphs are planar and all terminals lie on the outer face in the or-
der s1, s2, . . . sk, tk, tk−1, . . . t1. Moreover, if the degree of the graph is
bounded by 3, the algorithm becomes deterministic and can also out-
put the number of optimal solutions. On the other hand, we prove that
the counting version of these problems are #P-hard even if restricted to
planar graphs with maximum degree 3.

Keywords: maximum edge-disjoint paths, determinant, #P-hard.

1 Introduction

In this paper, we investigate the maximum edge-disjoint paths problem in planar
graphs. Given a graph G = (V, E) and a set T = {{s1, t1}, {s2, t2}, . . . {sk, tk}}
of pairs of vertices, the objective of edge-disjoint paths problem (denoted by
EDP) is to connect all the pairs in T via edge-disjoint paths. This problem
has a long history, and it has some application in areas such as VLSI. In the
maximum edge-disjoint paths problem (MEDP), the objective is to find the max-
imum number of pairs in T that can be connected via edge-disjoint paths. #EDP
(resp. #MEDP) denotes the number of methods of connecting all (resp. max-
imum) pairs via edge-disjoint paths. For convenience, we define function prob-
lems MLMEDP and #MLMEDP. MLMEDP asks for the minimum total length
of disjoint paths connecting maximum pairs in T , and #MLMEDP asks for the
number of methods to connecting maximum number of pairs in T with minimum
total length. The vertices in T are called terminals. Let R = {s1t1, s2t2, . . . sktk},
we call H = (V, R) a demand graph, and let G + H = (V, E ∪ R), where the
disjoint union of E and R is taken, respecting multiplicities.

� The author is grateful to his supervisor Prof. Angsheng Li for advice and encourage-
ment. Supported by NSFC Grant no. 60325206 and no. 60310213.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 566–572, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Maximum Edge-Disjoint Paths Problem in Planar Graphs 567

EDP was shown to be NP-hard even on very restricted instances. Middendorf
and Pfeiffer showed that even if G + H is planar, EDP is NP-complete in [5].
So, MEDP is also NP-hard under this situation. It is shown in [1] that minimum
total length of paths connecting all pairs in T is NP-hard, even if G is planar,
all terminals lie on the boundary of outer face, and G + H is Eulerian with
maximum degree 4. MEDP and MLMEDP are also difficult to approximate. For
example, it is shown in [17] that there is no constant approximation algorithm
for MLMEDP even in planar graph, unless P=NP.

It has been shown that EDP is polynomial solvable, if G + H is planar and k
is bounded [8], or if G is planar, and all terminals lie on the outer face of G and
G+H is Eulerian [10]. The later follows from Okamura-Seymour theorem, which
shows the cut condition is sufficient. A good survey is presented by Schrijver in
part VII of [7].

If the supply graph G is planar and all terminals lie on the outer face in the
order s1, s2, . . . sk, tk, tk−1, . . . t1, we give a randomized algorithm for MEDP and
MLMEDP. Moreover, if the degree of G+H is bounded by 3, the algorithm can
compute them and #MLMEDP determinately. All these results also hold for
directed graphs, and come out by reducing original problems to determinant.
It is interesting to see that intuitively the gap between RP and NP-hard on
problem MLMEDP is just the order of terminals. In contrast to our positive
result for #MLMEDP, we also proved that #EDP, #MEDP and #MLMEDP
are #P-hard (under Turing reduction) when G + H is 3-regular planar graph,
using polynomial interpolation technique [12], [11].

In section 2, we give the algorithm. In section 3, we prove the #P-hardness
results.

2 Maximum Edge-Disjoint Paths Problem

We only consider the problems in unweighted graphs, by reducing it to the
determinant of the adjacent matrix of a weighted graph.

Given a weighted directed graph K = (V, E), there is a corresponding matrix
AK = (wij) of size |V |× |V |, where wij is the weight of edge (i, j). A cycle cover
of K is a subset E′ of E, such that K ′ = (V, E′) is a graph whose vertices have
out degree 1 and in degree 1, and the weight of a cycle cover E′ is the product
of the weights of its edges. The signed weight of a cycle cover is equal to the
weight multiplied by (−1)m, where m is the number of cycles of even length in
this cycle cover. The determinant of AK is

|AK | =
∑

π

n∏

i=1

σ(π)wi,π(i) ,

where the summation is over all permutation π on V , and σ(π) is the sign of π.
Obviously, |AK | is the summation of the signed weights of all cycle covers of K.

It is a natural idea to reduce MEDP to cycle cover, because if we consider
the demand edges in the MEDP problem, a solution to MEDP with satisfied

568 M. Xia

demand edges compose a set of cycles. But there are some difference between
the two problems. Each node is covered by exactly one cycle of a cycle cover,
while there may be vertex not covered by any path or covered by many paths of
a set of edge-disjoint paths. So we use a clique of size d with self-loops as gadget
to simulate a vertex of degree d.

An example is shown in Fig. 1. The first graph is an instance G + H of the
MEDP problem, where the dotted edges mean demand edges. G is planar and
the four terminals lie on the outer face in the order s1, s2, t2, t1. Replace each
vertex in G + H by the gadget, we get the second graph K = (VK , EK). There
are four kinds of edges in K, demand edges (edges in H), self-loops, clique edges
(edges in gadgets except for self-loops), and path edges (the remaining edges
which correspond to the edges in G).

Fig. 1. An example of the reduction

Now we consider the relation of the edge-disjoint paths of G and the cycle
cover of K. We have the following lemma.

Maximum Edge-Disjoint Paths Problem in Planar Graphs 569

Lemma 1. If there is a set of edge-disjoint paths of G such that m pais are
connected and the total length is l, then there is a cycle cover of K, which uses
m demand edges, l path edges, and l + m clique edges. If there is a cycle cover
of K, which uses m demand edges and l path edges, then there is a set of edge-
disjoint paths of G such that m pairs are connected and the total length is no
more than l.

Proof. The first conclusion is straightforward. The m satisfied demand edges,
path edges taken in the edge-disjoint paths, some proper clique edges which
connect the taken path edges, and the self-loops of the remaining uncovered
nodes, compose a required cycle cover of K.

Given a cycle cover of K. We only consider the path edges in the cycle
cover. Because G is planar and all terminals lie on the outer face in the or-
der s1, s2, . . . sk, tk, tk−1, . . . t1, we can rearrangement them into edge-disjoint
paths of G.

Fig. 2.

An example was shown in Fig. 2. There are only two circles of the circle
cover are shown in the first graph of Fig. 2, since the other circles are self-loops.
One of the two circles uses no demand edges, and the other is a circle passing
s1, t3, s3, t4, s4, t2, s2, t1, s1. The second circle can be decomposed into four paths
as shown in the second graph. ��
By this lemma, the MEDP of G + H is just the maximum number of demand
edges taken by cycle covers of K, and the MLMEDP is just the minimum number
of path edges taken by the cycle covers of K which contain maximum demand
edges.

Now we set the weights of edges in K. If e ∈ EK is a demand edge, it is given
a weight wex, and if e is a path edge, it is given a weight wey, otherwise e is
given weight we. Weighted directed graph K corresponds to a matrix AK , whose
determinant is a polynomial in x, y, and we, e ∈ EK . The maximum x degree of
this polynomial is just the answer to the MEDP problem on input G + H .

570 M. Xia

Although the determinant of a numerical matrix is polynomial computable,
we don’t know how to compute the determinant of a matrix with variable entries.
But if there are only finite variables, we can compute the determinant in poly-
nomial time by solving a system of linear equations in its coefficients, and each
equation is obtained by computing the determinant after setting some specific
values to the finite variables.

Given an instance G+H of the MEDP problem, we get K and its matrix AK ,
choose a random value from {0, 1, 2, . . . , 2|EK |} for each variable we, e ∈ EK ,
compute the determinant of AK , which is a polynomial in x and y, output the
maximum degree of x as the answer to the MEDP problem, and output the
minimum degree of y of all monomials with maximum x degree as answer to
MLMEDP problem.

The following lemma is used in the proof of the correctness of the algorithm.

Lemma 2 (Schwarz-Zippel Lemma). Let p(x1, . . . , xm) be a polynomial, not
identically zero, in m variables each of degree at most d in it , and let M > 0
be an integer. Then the number of m-tuples (x1, . . . , xm) ∈ {0, 1, . . . , M − 1}m

such that p(x1, . . . , xm) = 0 is at most mdMm−1. ��
Now we have,

Theorem 1. Suppose G (directed or undirected) is planar and all terminals lie
on the outer face in the order s1, s2, . . . sk, tk, tk−1, . . . t1, there is a randomized
polynomial time algorithm for MEDP and MLMEDP, and if the maximum degree
of G + H is 3, there is a deterministic polynomial time algorithm for MEDP,
MLMEDP and #MLMEDP.

Proof. Suppose m and l are the right answers for MEDP and MLMEDP respec-
tively. By lemma 1, the coefficient of xmyl in |AK | is a nonzero polynomial f in
we, e ∈ EK , and m is the maximum degree of x, l is the minimum degree of y of
all monomials with maximum x degree in |AK |.

Polynomial f is in |EK | variables each of degree at most 1. By lemma 2, with
probability at least 1/2, the algorithm outputs m and l.

Suppose the maximum degree of G + H is 3. The weight of clique edge is
changed to z, and set all we to 1. Find the monomial with minimum z degree
among the monomials of |AK | with maximum x degree, output the the x degree,
the y degree and the absolute value of the coefficient of this monomial as the
answers to MEDP, MLMEDP and #MLMEDP respectively.

Since the maximum degree of G + H is 3, no paths share a vertex. Since the
degree of z is minimized, there are only one way to pass a vertex gadget (the
way composed of two clique edges is excluded), if the entrance and exit vertices
are fixed. So the EDPs of total length l satisfying m demands, are one to one
mapped to cycle covers of K which contain m demand edges, l path edges and
m + l clique edges. Moreover, it is obviously that all these cycle covers have the
same sign, that is they all have signed weight (−1)mxmylzm+l, because each of
them contains m even cycles and some other cycles of length 1.

For undirected graphs, the analysis is the same and so the same conclusions
follow. ��

Maximum Edge-Disjoint Paths Problem in Planar Graphs 571

3 #P-Hardness

In this section, we prove,

Theorem 2. #MEDP, #MLMEDP and #EDP is #P-hard(under Turing re-
duction), even if G + H is 3-regular and planar.

Proof. #3-regular bipartite planar vertex cover is #P-complete [16]. Given an
instance G = (VG, EG) of this problem, we construct some EDP instances Gi

satisfying the requirements, and all of terminals of Gi can be connected by edge-
disjoint paths, and all ways to connect them have the same total length, that is,
#MEDP(Gi) =#MLMEDP(Gi) = #EDP(Gi).

Fig. 3. Part of the graphs and the reduction

The reduction of local part is shown in Fig. 3. For each vertex in G, there is a
demand edge (broken line) in Gi connected by two paths of length 6i + 1. Some
edges are added to the inner path to make the whole graph 3-regular. This (the
square in the figure) is called a vertex gadget. The 6i vertices (the endpoints are
excluded) of the outer path is divided into 3 groups each containing i pairs of
vertices. Each group will be connected to the corresponding group of adjacent
vertex gadget using i bridges as shown in the figure above.

Suppose G contains n vertices and m edges, and

#VC(G) =
n∑

j=1

aj, (1)

where aj denotes the number of vertex covers of G containing j vertices.
We establish a map from EDPs of Gi to the vertex covers of G. A vertex is

taken in the subset of VG which is the image of an EDP, if and only if its gadget
takes the inner path in the EDP. Obviously the subset is a VC of G and this is
an onto map.

Now we count the number of EDPs that are mapped to one VC. Because G
is 3-regular, a vertex cover of size j covers 3j − m edges from both sides and
cover the other edges from one side. For a vertex gadget of Gi, there are 26i

methods to take the inner path. For an edge covered from both sides, there are
2i methods to satisfy the demand edge in the i bridges. So 26ij2i(3j−m) EDPs of
Gi are mapped to one vertex cover of size j of G. We have

572 M. Xia

#EDP(Gi) =
n∑

j=1

aj26ij2i(3j−m) =
n∑

j=1

aj(29i)
j
2−im.

Taking i from 1 to n, we can get n equations about aj , and get #VC(G) from
the values of aj by equation 1. This is a polynomial time Turing reduction, the
conclusion follows. ��

References

1. U. Brandes, G. Neyer, and D. Wagner, Edge-disjoint paths in planar graphs with
short total length. Technical Reports, 1996.

2. M. E. Fishier, Statistical mechanics of dimers on a plane lattice. Phys. Rev., 124
(1961), pp. 1664–1672.

3. P. W. Kasteleyn, The statistics of dimers on a lattice. Physica, 27 (1961), pp.
1209–1225.

4. P. W. Kasteleyn, Graph theory and crystal physics. In Graph Theory and Theo-
retical Physics (F. Harary, ed.), Academic Press, London, 1967, pp. 43–110.

5. M. Middendorf and F. Pfeiffer, On the complexity of the disjoint paths problem.
Combinatorica, 13 (1993), pp. 97–107.

6. C. Papadimitriou: Computational Complexity. Addison–Wesley 1994.
7. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficieny. Springer-

Verlag, Berlin Hiedelberg, 2003.
8. A. Sebő, Integer plane multiflows with a fixed number of demands. J. Comb. Theory

Ser. B, 59(1993), pp. 163–171.
9. H. N. V. Temperley and M. E. Fishier, Dimer problems in statistical mechanicsAn

exact result. Philosophical Magazine, 6 (1961) pp. 1061–1063.
10. D. Wagner and K. Weihe, A linear-time algorithm for edge-disjoint paths in planar

graphs. Conbinatorica, 15 (1995), pp. 135–150.
11. S. P. Vadhan, The complexity of counting in sparse, regular, and planar graphs.

SIAM Journal on Computing, 31 (2001), pp. 398–427.
12. L. G. Valiant, The complexity of enumeration and reliability problems. SIAM Jour-

nal on Computing, 8 (1979), pp. 410–421.
13. L. G. Valiant, Quantum circuits that can be simulated classically in polynomial

time, SIAM Journal on Computing, 31 (2002), pp. 1229-1254.
14. L. G. Valiant, Holographic algorithms (extended abstract). FOCS, 2004 pp.

306–315.
15. L. G. Valiant: Accidental Algorithms. FOCS, 2006 pp. 509–517.
16. M. Xia and W. Zhao, #3-regualar bipartite planar vertex cover is #P-complete.

Theory and Applications of Models of Computation: Third International Confer-
ence, TAMC 2006, Beijing, China, May 15-20, (2006), pp. 356–364.

17. P. Zhang and W. Zhao, On the complexity and approximation fo the min-sum and
min-max disjoint paths problems, manuscripts.

An Efficient Algorithm for Generating Colored

Outerplanar Graphs

Jiexun Wang1, Liang Zhao1, Hiroshi Nagamochi1, and Tatsuya Akutsu2

1 Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan

{wangjx,liang,nag}@amp.i.kyoto-u.ac.jp
2 Bioinformatics Center, Institute for Chemical Research,

Kyoto University, Kyoto 611-0011, Japan
takutsu@kuicr.kyoto-u.ac.jp

Abstract. Given two integers n and m with 1 ≤ m ≤ n, we consider the
problem of generating nonisomorphic colored outerplanar graphs with at
most n vertices, where each outerplanar graph is colored with at most
m colors. In this paper, we treat outerplanar graphs as rooted outer-
plane graphs, i.e., plane embeddings with a designated vertex as the
root, and propose an efficient algorithm for generating all such colored
graphs based on a unique representation of those embeddings. Our algo-
rithm runs in O(n) space and outputs all colored and rooted outerplane
graphs without repetition in O(1) time per graph.

1 Introduction

The problem of enumerating all graphs in a particular class is one of the most
fundamental issues in graph theory, as well as being very important in its wide
applications in computer science and industry. The series of enumerated graphs
can be used to find an optimal graph that satisfies more restricted conditions or
to verify whether the graph class possesses some new features [1,2,3,6].

A colored graph is a graph in which every vertex is assigned a color in a finite
set Σ. A graph is called outerplanar if it admits an embedding in the plane such
that all vertices appear on the boundary of the outer face and no two edges cross
each other except at their endvertices. It is well known that trees are a special
type of outerplanar graphs. Some algorithms for enumerating trees for particular
classes such as rooted trees and colored trees [7,8] have been developed.

Algorithms for enumerating colored graphs have extensive applications such
as drug design via a theoretical approach. In recent years, many approaches
in drug design lie on advanced computer-assisted techniques for cost and time
saving. For example, Fujiwara et al. [3] designed an algorithm to generate tree-
like chemical graphs based on the enumeration algorithm for colored trees due
to Nakano and Uno [8]. Moreover, Horváth et al. [4] revealed that 94.3% of the
chemical compounds in the NCI chemical database are outerplanar graphs. Thus,
to establish a drug-design system based on the graph theoretical approach, it is

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 573–583, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

574 J. Wang et al.

required to design an efficient algorithm for enumerating outerplanar graphs. To
our best knowledge, however, few papers have focused on enumeration of colored
or uncolored outerplanar graphs so far. These motivate us to study the problem
of enumerating nonisomorphic colored outerplanar graphs efficiently.

In this paper, we present an algorithm that enumerates all colored outerplanar
graphs with at most n vertices and at most m colors, where n and m are given
integers such that 1 ≤ m ≤ n. We show that the algorithm runs in O(n) space
and outputs all colored outerplanar graphs without repetition in O(1) time per
graph (this means that it outputs an O(1) difference between two consecutive
graphs in the series of outputs).

In this study, we first treat outerplanar graphs as rooted outerplane graphs,
i.e., plane embeddings with a designated vertex as the root. Note that, unlike
the tree case, outerplane graphs can contain cycles. It is of particular importance
to find a reasonable and good unique representation of colored and rooted out-
erplane graphs, which avoids a predefined embedding drastically being changed
in the process of generating cycles. Thus we introduce “left-heavy” embeddings
based on a new vertex ordering “rightmost block-first depth-first search” (RBF
DFS), which is originated from the “left-heavy” ordered trees based on depth-
first search in [8]. We then define a parent-child relationship among all left-heavy
embeddings to form a family tree rooted at an embedding of the designated ver-
tex, and design a procedure to visit all nodes in the family tree in O(1) time
per node.

The rest of the paper is organized as follows. Section 2 reviews some basic
notions. Section 3 constructs a family tree of left-heavy embeddings of colored
outerplanar graphs based on a defined unique representation. Section 4 presents
our algorithm to enumerate all outerplane graphs with at most n vertices and
at most m colors. Section 5 makes some concluding remarks.

2 Preliminaries

A connected graph with at least three vertices is called biconnected if it is simple
and has no cut vertex, i.e., a vertex whose removal results in a disconnected
graph. A maximal induced subgraph of a graph is called a block if it has no cut
vertex (i.e., it is biconnected or consists of a single edge). Two blocks in a graph
are called adjacent if they share a common cut vertex. A block in a graph is
called a leaf-block if it has at most one adjacent block.

A graph is called planar if it has a plane embedding. An outerplanar graph is
a planar graph that admits a plane embedding such that every vertex lies on the
boundary of the outer face. A plane (resp., outerplane) graph is a planar (resp.,
outerplanar) graph with (such) a fixed embedding. In a plane embedding, an edge
is called outer if it is contained in the outer facial cycle, and inner otherwise. In
this paper, we consider simple connected outerplanar graphs. Generally, there
are three types of blocks in outerplane graphs:

Type 1: a single outer edge;
Type 2: a cycle consisting of at least three outer edges with no inner edge;

An Efficient Algorithm for Generating Colored Outerplanar Graphs 575

Type 3: (otherwise) a cycle consisting of at least three outer edges and at least
one inner edge.

In an outerplane graph, a block of p ≥ 3 vertices can have at most p − 3 inner
edges. We call a block unsaturated if it has less than p − 3 inner edges, and
saturated otherwise. Figure 1 illustrates an outerplane graph G consisting of five
blocks, where blocks 2 and 4 are of Type 1, blocks 1 and 3 are of Type 2, block 5
is of Type 3, and blocks 3 and 5 are saturated leaf-blocks.

Fig. 1. An illustration of an outerplane graph G

Let a vertex r be designated as the root of an outerplane graph G. Define
the root r(B) for each block B be the vertex in B that is the closest to r. Let
B(v) denote the set of all blocks B with r(B) = v. For two adjacent blocks B
and B′ with r(B) ∈ V (B′), we say that B is a child-block of B′ if r(B) �= r(B′)
holds. We define a new search for rooted outerplane graphs, denoted rightmost
block-first depth-first search (RBF DFS), which visits the graph by the following
rules.

Rule 1: when visiting a block B, traverse all its outer edges from r(B) by fol-
lowing the rightmost edges, and then backtrack to visit all inner edges;

Rule 2: then visit all child-blocks of B from right to left.

For instance, an outerplane graph G in Fig. 1 has the vertices {v0, . . . , v11}.
Starting from the root v0, the RBF DFS labels other vertices in the order: v1,
v2, v3, v4, v6, v7, v5, v8, v10, v11, v9.

Correspondingly, the leftmost block-first depth-first search (LBF DFS) is de-
fined by exchanging “right” and “left” in the above rules. Throughout the paper,
we adopt the RBF DFS as the labeling method unless stated otherwise. From
the rule of labeling, an edge (vi, vj) in G is called a forward edge if vi is labeled
earlier than vj ; otherwise it is called a backward edge .

Given a colored and rooted outerplane graph G with n vertices whose colors
belong to a finite set Σ, we label the root as 0 and other vertices as 1, 2, . . . , n−1
by the RBF DFS. Denote the label sequence of G as LSR(G)=[c0, p0c1, p1c2, . . . ,
pn−2cn−1; x1y1, x2y2, . . . , xhyh], where ci is the color of the i-th vertex, pi−1 is
the labeled vertex closest to the i-th vertex in the labeling, i = 1, 2, . . . , n − 1,

576 J. Wang et al.

Fig. 2. An illustration of a colored and rooted outerplane graph G

and xjyj is the pair of labels of the end vertices of the j-th backward edge
(may not exist), j = 1, 2, . . . , h. Similarly, we denote as LSL(G) the label se-
quence of G obtained by the LBF DFS. For simplicity, LSR(G) may be writ-
ten by LS(G). Figure 2 illustrates a colored and rooted outerplane graph G,
where LS(G) = [a, 0b, 1c, 2b, 2b, 4c, 5b, 3c, 7c, 8b, 9a, 10a; 3 0, 6 4, 11 7, 11 8] (Σ =
{a, b, c}). Letting r0 be the root of graph, the rightmost path of G is denoted as
RP (G) = (r0, r1, . . . , ri, . . . , rz), which is defined in the following way: each rj

is the rightmost child of rj−1, and either rz has no child or it has some ri as
its rightmost child. In the latter case, the rightmost path contains a Type 2 or
Type 3 leaf-block rooted at ri. In Fig. 2, the rightmost path is depicted by the
bold line.

3 The Family Tree of Left-Heavy Outerplane Graphs

For enumerating all outerplane graphs without repetition, we introduce “unique
representations” of them, and define a “family relationship” among these repre-
sentations.

3.1 Left-Heavy Outerplane Graphs

For two outerplane graphs G1 and G2, let their label sequences be

LS(G1) = [c0, p0c1, p1c1, . . . , pn1−2cn1−1; x1y1, x2y2, . . . , xh1yh1],
LS(G2) = [c′0, p

′
0c

′
1, p

′
1c

′
1, . . . , p

′
n2−2c

′
n2−1; x

′
1y

′
1, x

′
2y

′
2, . . . , x

′
h2

y′
h2

],

where ni is the number of vertices of Gi and hi (can be 0) is the number of
backward edges of Gi, i = 1, 2. We define relations =1, �1, ⊃1 and >1 as
follows:

(1) LS(G1) =1 LS(G2) if the label sequence of forward edges of G1 (i.e., [c0,
p0c1, . . . , pn1−2cn1−1]) is the same as that of G2 ([c′0, p′0c′1, . . . , p′n2−2c

′
n2−1];

(2) LS(G1) �1 LS(G2) if the label sequence of forward edges of G1 is strictly
lexicographically larger than that of G2 but does not contain it as a prefix.
For example, [b, 0c, 1b, 2a; 3 0] �1 [b, 0c, 1a, 2c; 3 0];

An Efficient Algorithm for Generating Colored Outerplanar Graphs 577

(3) LS(G1) ⊃1 LS(G2) if the label sequence of forward edges of G2 is a pre-
fix of that of G1 but not equal. For example, [b, 0c, 1b, 2a, 3c; 4 0, 4 1] ⊃1

[b, 0c, 1b; 2 0];
(4) LS(G1) >1 LS(G2) if the label sequence of forward edges of G1 is lexico-

graphically larger than that of G2, i.e., LS(G1) �1 LS(G2) or LS(G1) ⊃1

LS(G2).

We let LS(G1) ⊇1 LS(G2) mean LS(G1) ⊃1 LS(G2) or LS(G1) =1 LS(G2),
and let LS(G1) ≥1 LS(G2) mean LS(G1) >1 LS(G2) or LS(G1) =1 LS(G2).
Accordingly, the definitions of LS(G1) =2 LS(G2), LS(G1) �2 LS(G2), LS(G1)
⊃2 LS(G2), LS(G1) >2 LS(G2), LS(G1) ⊇2 LS(G2) and LS(G1) ≥2 LS(G2)
are respective with backward edges.

Besides, we denote as LS(G1) = LS(G2) if LS(G1) equals to LS(G2), i.e.,
LS(G1) =1 LS(G2) and LS(G1) =2 LS(G2); and denote as LS(G1) > LS(G2)
if LS(G1) is lexicographically larger than LS(G2), i.e., LS(G1) >1 LS(G2), or,
LS(G1) =1 LS(G2) and LS(G1) >2 LS(G2). Similarly, we let LS(G1) ≥ LS(G2)
mean LS(G1) > LS(G2) or LS(G1) = LS(G2).

We say that a colored and rooted outerplane graph G is a left-heavy graph if
the following conditions are satisfied:

(1) each pair of blocks B1 and B2 from left to right rooted at the same vertex
satisfies LS(T (B1)) ≥ LS(T (B2)), where T (Bi) represents the subgraph
consisting of Bi and all its descendants, i = 1, 2.

(2) for any Type 2 or Type 3 block B, it satisfies LSR(T (B)) ≥ LSL(T (B)).

Clearly, any colored outerplanar graph has a unique left-heavy outerplane em-
bedding, since its label sequence is larger than that of any other embeddings.
Moreover, any two colored outerplanar graphs with the same left-heavy embed-
ding are isomorphic. Thus, the task of enumerating all nonisomorphic colored
outerplanar graphs can be completed by enumerating all left-heavy embeddings.

3.2 The Family Tree

Now we define a parent-child relationship between left-heavy graphs. Let G be a
left-heavy outerplane graph. We define its parent P (G) as the graph obtained by
removing the rightmost leaf-block (leaving its root unremoved) if it is of Type 1
or Type 2, or, by removing the inner edge (s, t) with the smallest s and the
largest t for s if it is of Type 3. It can be easily inferred that P (G) is also left-
heavy. Accordingly, G is called a child of P (G). For a given G, we can repeatedly
find a series of graphs P (G), P 2(G) = P (P (G)), . . . and obtain all its ancestors.
See Fig. 3 for an example of the ancestors of G.

Clearly, the set of all left-heavy outerplane graphs with exact n vertices and all
their ancestors constructs a family tree of all left-heavy outerplane graphs with
at most n vertices and at most m colors. We show that, by reversing the parent-
generating procedure, a child left-heavy outerplane graph can be obtained by
adding some Type 1 or Type 2 block to a vertex on the rightmost path or by
adding some inner edge to the unsaturated rightmost leaf-block carefully.

578 J. Wang et al.

Fig. 3. The ancestors of a left-heavy outerplane graph G

4 Algorithm

Starting from a graph consisting of a single vertex (the root), our algorithm
generates all left-heavy outerplane graphs by DFS (with some special handling,
see Scenario A in the following part) in the family tree described in the previous
section.

Before describing our algorithm, we need introduce some more notations.
Suppose that a colored and rooted outerplane graph G have n′ vertices, where
every vertex has a color belonging to a finite set Σ. Let l(v) denote the label of
a vertex v. For example, the labels of vertices on the rightmost path in Fig. 2
are (l(r0), l(r1), . . . , l(r6)) = (0, 3, . . . , 8). For any ri on the rightmost path with
|B(ri)| ≥ 2, we always denote the two rightmost blocks in B(ri) from left to
right as B1(i) and B2(i) (note LS(T (B1(i))) ≥ LS(T (B2(i))) if the left-heavy
property is satisfied).

We say that LS(T (B2(i))) is a Class I prefix of LS(T (B1(i))) if LS(T (B1(i)))
⊇1 LS(T (B2(i))) holds, and LS(T (B2(i))) is a Class II prefix of LS(T (B1(i))) if
LS(T (B1(i))) =1 LS(T (B2(i))) and LS(T (B1(i))) ⊃2 LS(T (B2(i))) hold. Also,
we say that G is active at a vertex ra in Class x if |B(ra)| ≥ 2 and LS(T (B2(a)))
is a Class x prefix of LS(T (B1(a))), where x = I or II. Besides, we define the
Class x copy depth dx of G such that G is inactive at any vertex r0, . . . , rdx−1

but is active at vertex rdx in Class x; if no such a dx exists, i.e., G is inactive at
all vertices on the rightmost path in Class x, we let dx be -1, where x = I or II.
As an exception, we let the Class II copy depth dII of G be -2 if the rightmost
leaf-block of G is of Type 1 or is saturated or there exists a vertex ri on the
rightmost path with LS(T (B1(i))) = LS(T (B2(i))), where 0 ≤ i < z.

4.1 Generating Graphs by Adding a Type 1 or Type 2 Block

Scenario A: G is a single vertex v0

If G consists of root v0 only, a single outer edge or any left-heavy cycle of length
at most n rooted at v0 is a child graph of G. To enumerate all of them in O(1)

An Efficient Algorithm for Generating Colored Outerplanar Graphs 579

time each, we define a family tree T (v0) on the set of the children of G (note that
this family tree is different from that of left-heavy outerplane graphs mentioned
in Sect. 3.2). The parent-child relationship in T (v0) is defined in the following
way. The parent of a left-heavy cycle (or an edge) with vertices {v0, . . . , vk} is
defined to be the cycle obtained by replacing two edges (v�k/2�−1, v�k/2�) and
(v�k/2�, v�k/2�+1) with a single edge (v�k/2�−1, v�k/2�+1) and removing the vertex
v�k/2�. Observe that the parent remains leaf-heavy. Based on this, for a left-
heavy cycle, all its children can be generated by inserting a new vertex with a
color c ∈ Σ between v�k/2� and v�k/2�+1, where if k is odd and there is no vertex
v� (� ∈ [1, k−1

2]) such that vl > vk−l+1, then c should be not larger than the
color of v k+1

2
.

Now we consider the case that G is left-heavy and has at least one block. We
distinguish the condition LS(T (B1(i))) ≥ LS(T (B2(i))) as the following three
cases: 1) LS(T (B1(i))) �1 LS(T (B2(i))); 2) LS(T (B1(i))) =1 LS(T (B2(i)))
and LS(T (B1(i))) ≥2 LS(T (B2(i))); and 3) LS(T (B1(i))) ⊃1 LS(T (B2(i))).
We check the vertices on the rightmost path of a given graph starting from the
root r0. If all vertices on the rightmost path belong to 1) or there exists a vertex
ra belonging to 2), then we only need to consider how to make the subgraph
T ∗(B2(i)) obtained by adding a new block B to a vertex of B2(i) be left-heavy,
which guarantees the left-heavy property for the whole derived graph. Otherwise,
if there exists a vertex ra belonging to 3), then we have to check an additional
condition (LS(T (B1(a))) =) LS(T ∗(B1(a))) ≥ LS(T ∗(B2(a))).

More precisely, when searching the vertices on the rightmost path starting
from r0, there are three scenarios depending on dI (see Fig. 4 for an illustration):

Scenario B1: dI = −1;
Scenario B2: dI > −1, LS(T (B1(dI))) =1 LS(T (B2(dI))) and LS(T (B1(dI)))

≥2 LS(T (B2(dI)));
Scenario B3: (otherwise) dI > −1 and LS(T (B1(dI))) ⊃1 LS(T (B2(dI))).

Fig. 4. An illustration of Scenarios B1, B2 and B3

Notes: The hollow vertices indicate that they can be added a new block

580 J. Wang et al.

Let n2 be the number of vertices of T (B2(dI)), p′n2−1 be the label of the vertex
closest to the n2-th in the labeling in T (B1(dI)), and rf ∈ RP (G) be the unique
vertex in T (B2(dI)) such that l(rf) = p′n2−1 + l(ri+1) − 1 (in Scenario B3).
Suppose that B2(i) contains vertices {ri, ri+1, . . . , rg} on the rightmost path.
Then a Type 1 or Type 2 left-heavy block B with at most n − n′ vertices can
be added to a vertex rj ∈ RP (G) in B2(i) if the index i satisfies 0 ≤ i ≤ z in
Scenario B1 (resp., 0 ≤ i ≤ dI in Scenario B2, and 0 ≤ i < f in Scenario B3) and
the index j satisfies one of the following conditions: “j = i and LS(T (B2(i))) ≥
LS(B),” “i < j < g < z,” and “i < j ≤ g = z.”

Besides, in Scenario B3, when B is added to rf , then it should satisfy the addi-
tional condition LS(T (r∗f)) ≥ LS(B) if LS(T (B1(dI))\T (r∗f)) ⊃2 LS(T (B2(dI)))
holds, otherwise the condition LS(T (r∗f)) >1 LS(B), where r∗f is the (n2 + 1)-
th labeled vertex of T (B1(dI)), T (B1(dI))\T (r∗f) is the subgraph by removing
T (r∗f) from T (B1(dI)) (leaving vertex r∗f unremoved). It can be shown that these
conditions guarantee the left-heavy property of the graph obtained by adding B
to the vertex rf . Further details are omitted due to the page limitation.

To achieve an O(1) time enumeration, the copy depths need to be updated in
O(1) time. We show that the two copy depths of a child graph d′I and d′II can be
calculated as Table 1, where Scenarios C1 and C2 will be discussed in Sect. 4.2
and the formulas (1)-(4) in the table are given as below.

Table 1. Updating copy depths of a child graph

Scenario
Copy depth A B1 B2 B3 C1 C2

d′I -1 (1) (2) dI

d′II (3) -1 (4)

d′
I =

��
�

i, if B is added to the root of B2(i) with LS(B2(i)) ⊇1 LS(B),
where 0 ≤ i < z;

−1, otherwise.
(1)

d′
I =

����
���

dI, if B is added to the vertex rf satisfying LS(T (r∗
f)) ⊇1 LS(B);

i, if B is added to the root of B2(i) with LS(B2(i)) ⊇1 LS(B),
where 0 ≤ i < f ;

−1, otherwise.

(2)

d′
II =

������
�����

−2, if B is a Type 1 block or there exists ri satisfies LS(T ∗(B1(i)))
= LS(T ∗(B2(i))), where 0 ≤ i < z;

i, if B is added to the root of B2(i) with LS(T (B2(i))) =1 LS(B)
and LS(T (B2(i))) ⊃2 LS(B), where 0 ≤ i < z;

−1, otherwise.

(3)

d′
II =

��
�

dII, if s = x′
h2+1, t = y′

h2 and h1 > h2 + 1;
−2, if s = x′

h2+1, t = y′
h2 and h1 = h2 + 1;

−1, if y′
h2

≤ t ≤ y′
h2+1 and t + 1 < s < x′

h2+1.
(4)

An Efficient Algorithm for Generating Colored Outerplanar Graphs 581

4.2 Generating Children Graphs by Adding an Inner Edge

Suppose that the rightmost leaf-block of the current graph G is an unsaturated
block and there does not exist a vertex ri on the rightmost path whose two right-
most children blocks B1(i) and B2(i) satisfy LS(T (B1(i))) = LS(T (B2(i))),
where 0 ≤ i < z. We can generate one child of G by adding a new inner edge
(s, t) to the rightmost unsaturated leaf-block in the predefined order, where s
is decreasing and t is increasing for the same s. Similar with the analysis in
Sect. 4.1, we can search the vertices on the rightmost path starting from r0.
There are following two scenarios depending on the Class II copy depth dII of G.

Scenario C1: dII = −1
Suppose that the rightmost leaf-block B2(i) contains h (≥ 1) backward edges

and other q vertices, where the vertices {ri, . . . , rz} are on the rightmost path,
z ≥ i+2. Its label sequence can be denoted by LS(B2(i)) = [cl(ri), 0cl(ri)+1, . . . ,
(q − 1)cl(ri)+q; x1y1, . . . , xhyh]. Since B2(i) is unsaturated, there exists a p sat-
isfying one of the following cases (see Fig. 5):

(1) if xh − yh > 2 holds, i.e. p = h, then (s, t) should satisfy yh < t < t + 1 <
s = xh or yh ≤ t < t + 1 < s < xh;

(2) if xh − yh = 2, yw − yw−1 = 2 and yp − yp−1 > 2 hold, where w = p +1, p +
2, . . . , h, 2 ≤ p ≤ h, then (s, t) should satisfy yp−1 < t < t + 1 < s = yp or
yp−1 ≤ t < t + 1 < s < yp.

Fig. 5. An illustration of two cases that inner edge (s, t) can be added to the rightmost
leaf-block in Scenario C1 (all candidate inner edges are shown by the dash line)

Scenario C2: dII > −1
Here the conditions LS(T (B1(dII))) =1 LS(T (B2(dII))) and LS(T (B1(dII)))

⊃2 LS(T (B2(dII))) hold. Suppose that LS(T (B1(dII))) and LS(T (B2(dII))) are

LS(T (B1(dII))) = [c′0, p
′
0c

′
1, . . . , p

′
n1−2c

′
n1−1; x

′
1y

′
1, . . . , x

′
h2

y′
h2

, . . . , x′
h1

y′
h1

],
LS(T (B2(dII))) = [c′0, p

′
0c

′
1, . . . , p

′
n1−2c

′
n1−1; x

′
1y

′
1, . . . , x

′
h2

y′
h2

],

where ni is the number of vertices of subgraph T (Bi(dII)) and hi is the number
of backward edges of T (Bi(dII)), i = 1, 2, 1 ≤ h2 < h1. A new inner edge

582 J. Wang et al.

(s, t) can be added to the rightmost leaf-block in the predefined order satisfying
y′

h2
≤ t < t + 1 < s < x′

h2+1, or, t + 1 < s = x′
h2+1 and y′

h2
≤ t ≤ y′

h2+1.
Based on the above analysis, we present the outline of the algorithm as follows.

Find-all-graph
Input: An integer n ≥ 1 and a color set Σ = {c1, . . . , cm}
Output: All left-heavy outerplane graphs with at most n vertices and at most

m colors
begin

for each color c ∈ Σ do
G := ({v0}, ∅); Color G with c;
for each child G′ of G do /* G′ is an edge or a cycle in Scenario A */

Call Find-all-children-I(G′);
Call Find-all-children-II(G′);

end for
end for

end

Find-all-children-I (G)
/* Generate the children of G by adding a Type 1 or Type 2 block */
begin

for each child G′ of G do
/* G′ is generated by the method in Scenarios B1, B2 and B3
if “dI = −1,” “dI ≥ 0 and LS(T (B1(dI))) =1 LS(T (B2(dI))),” and
“dI ≥ 0 and LS(T (B1(dI))) ⊃1 LS(T (B2(dI))),” respectively */

Call Find-all-children-I(G′);
Call Find-all-children-II(G′);

end for
end

Find-all-children-II (G)
/* Generate the children of G by adding an inner edge */
begin

for each child G′ of G do
/* G′ is generated by the method in Scenarios C1 and C2
if “dII = −1” and“dII ≥ 0,” respectively */
Call Find-all-children-I(G′);

end for
end

We can show the time and space complexity of our algorithm in a similar way
with the tree-enumeration algorithm due to Nakano and Uno [8], and obtain the
following theorem whose proof is omitted due to the space limitation.

Theorem 1. All colored and rooted outerplane graphs with at most n vertices
and at most m colors can be enumerated without repetition in O(1) time per
graph and in O(n) space. �

An Efficient Algorithm for Generating Colored Outerplanar Graphs 583

5 Conclusion

In this paper, we have presented an efficient algorithm to enumerate all colored
and rooted left-heavy outerplane graphs with at most n vertices and at most m
(≤ n) colors. It runs in O(n) space and outputs all colored and rooted outerplane
graphs without repetition in O(1) time per graph.

References

1. T. Akutsu and D. Fukagawa, Inferring a graph from path frequency. In Proc. 16th
Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer
Science, 3537 (2005), 371-382.

2. T. Akutsu and D. Fukagawa, On inference of a chemical structure from path fre-
quency. In Proc. 2005 International Joint Conference of InCoB, AASBi and KSBI,
(2005) 96-100.

3. H. Fujiwara, L. Zhao, H. Nagamochi and T. Akutsu, Enumerating tree-like chemical
structures from feature vector (in preparation).

4. T. Horváth, T. Akutsu and S. Wrobel, A refinement operator for outerplanar graphs.
In Proc. 16th International Conference of Inductive Logic Programming, (2006)
95-97.

5. G. Li and F. Ruskey, The advantage of forward thinking in generating rooted and
free trees. In Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
(1999) 939-940.

6. H. Nagamochi, A detachment algorithm for inferring a graph from path frequency.
In Proc. 12th Annual International Computing and Combinatorics Conference (CO-
COON’06), Lecture Notes in Computer Science, 4112 (2006) 274-283.

7. S. Nakano and T. Uno, Efficient generation of rooted trees, NII Technical Report
(NII-2003-005) (2003) (http://research.nii.ac.jp/TechReports/03-005E.html).

8. S. Nakano and T. Uno, Generating colored trees. Lecture Notes in Computer Science,
3787 (2005) 249-260.

Orthogonal Drawings for Plane Graphs

with Specified Face Areas

Akifumi Kawaguchi and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Japan

kawaguti@amp.i.kyoto-u.ac.jp, nag@amp.i.kyoto-u.ac.jp

Abstract. We consider orthogonal drawings of a plane graph G with
specified face areas. For a natural number k, a k-gonal drawing of G is an
orthogonal drawing such that the outer cycle is drawn as a rectangle and
each inner face is drawn as a polygon with at most k corners whose area
is equal to the specified value. In this paper, we show that several classes
of plane graphs have a k-gonal drawing with bounded k; A slicing graph
has a 10-gonal drawing, a rectangular graph has an 18-gonal drawing
and a 3-connected plane graph whose maximum degree is 3 has a 34-
gonal drawing. Furthermore, we showed that a 3-connected plane graph
G whose maximum degree is 4 has an orthogonal drawing such that each
inner facial cycle c is drawn as a polygon with at most 10pc +34 corners,
where pc is the number of vertices of degree 4 in the cycle c.

1 Introduction

Graph drawing has important applications in many areas in computer science
such as VLSI design, information visualization and so on. Various graphic stan-
dards are used and studied for drawing graphs [5].

Orthogonal drawings, in which every edge is drawn as a sequence of alternate
vertical and horizontal segments, have applications in circuit design, geometry
and construction. Many aspects have been studied on orthogonal drawings. Stud-
ies of an orthogonal drawing with specified face areas have begun recently. For a
natural number k, a k-gonal drawing of a graph is an orthogonal drawing such
that the outer cycle of the graph is drawn as a rectangle and that each inner
face is drawn as a polygon with k corners. Rahman, Miura and Nishizeki [6]
proposed an 8-gonal drawing for a special class of plane graphs called a good
slicing graph. Recently, de Berg, Mumford and Speckmann [2] proved that a
general slicing graph admits a 12-gonal drawing. They also showed that a rec-
tangular graph admits a 20-gonal drawing and a 3-connected plane graph whose
maximum degree is 3 admits a 60-gonal drawing.

In this paper, we show that a general slicing graph has a 10-gonal drawing, a
rectangular graph has an 18-gonal drawing and a 3-connected plane graph whose
maximum degree is 3 has a 34-gonal drawing. Our approach for a general slicing
graph is different from that by de Berg et al. [2]. We also show that every 3-
connected plane graph G whose maximum degree is 4 has an orthogonal drawing

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 584–594, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Orthogonal Drawings for Plane Graphs with Specified Face Areas 585

such that each inner facial cycle c is drawn as a polygon with at most 10pc + 34
corners if no vertex whose degree is 4 is on the outer cycle of G, where pc is the
number of vertices of degree 4 in the cycle c.

The paper is organized as follows. Section 2 gives some definitions of graphs.
Section 3 introduces outlines of the algorithm for a 10-gonal drawing of a slicing
graph. Sections 4 and 5 discuss an 18-gonal drawing of a rectangular graph,
and an orthogonal drawing of a 3-connected plane graph, respectively. Finally
Section 6 concludes.

2 Preliminary

A plane graph is denoted by G = (V, E, F, c0), where V, E, F and c0 denote a set
of vertices, a set of edges, a set of inner faces and the outer face, respectively.
Let n = |V |, m = |E| and f = |F |. Since G is a plane graph, m = O(n) and
f = O(n) hold. A vertex of degree k is called a k-degree vertex. We denote the
maximum degree of a graph G by Δ(G). An orthogonal drawing of a plane graph
G is a drawing such that each edge e ∈ E is drawn as an alternate sequence of
vertical and horizontal line segments, and any two edges do not intersect except
at their common end. It is known [3] that a plane graph G admits an orthogonal
drawing if and only if Δ(G) ≤ 4. For a natural number k, an orthogonal drawing
is called a k-gonal drawing if the outer cycle of G is drawn as a rectangle, and
each inner facial cycle ci is drawn as a polygon with at most k corners.

We consider a plane graph G such that the area of each inner face ci ∈ F is
specified by a real ai > 0. Let A be a set of areas ai, and we denote a plane graph
with the specified face areas by (G, A). For a plane graph (G, A), we consider
an orthogonal drawing such that the area of each face ci is equal to ai. Figure 1
illustrates an example of a plane graph with specified face areas, and its 10-gonal
drawing.

Fig. 1. (a) An example of a plane graph (G, A) with specified areas, where the number
in each face represents the area specified for the face; (b) A 10-gonal drawing of (G, A)

Let G be a plane graph that has exactly four 2-degree vertices a, b, c and d
in its outer cycle. We call these four vertices a, b, c and d corner vertices. The

586 A. Kawaguchi and H. Nagamochi

four corners a, b, c and d divide the outer cycle of G into four paths sharing end
vertices; the top path, the bottom path, the left path and the right path. We call
each of these four paths an unit path. A path π in G which does not pass through
any other outer vertex is called a vertical (horizontal) path of G if one end of π
is on the top (left) path and the other is on the bottom (right) path. Such a path
π divides the interior of G into two areas, each of which is enclosed by a cycle
and induces a subgraph of G (the subgraph consisting of edges and vertices in
the area and the cycle). We say that π slices G into these two subgraphs of G.

A slicing graph G is a plane graph that is defined recursively as follows; a cycle
G of length 4 with a single inner face is a slicing graph, and G has a vertical
or horizontal path π such that each of the two subgraphs generated from G by
slicing G with π is a slicing graph. Note that Δ(G) ≤ 4 for every slicing graph
G. A vertical or horizontal path in slicing graph G is called a slicing path if two
subgraphs generated by slicing G with π are slicing graphs.

A slicing tree T is a binary tree which represents a recursive definition of a
slicing graph G. We call a non-leaf node of T an internal node. Each node u in
T corresponds to a subgraph Gu of G. Let u be an internal node in T , and v
and w be the left and right child of u, respectively. Then we denote by πu the
slicing path that slices Gu into Gv and Gw; If πu is vertical (horizontal), then
Gv is the upper (left) subgraph of Gu, and Gw is the lower (right) subgraph of
Gu. The node u is called a V-node if πu is vertical, and u is called an H-node
if πu is horizontal. For a leaf u′ of T , the corresponded subgraph Gu′ has one
inner face ci. Figure 2 illustrates an example of a slicing tree and a slicing graph
corresponded to each node of T .

A rectangular graph is a plane graph whose outer face and each inner face can
be drawn as a rectangle. Note that Δ(G) ≤ 4 for every rectangular graph G.
A 3-connected plane graph is a plane graph that remains connected even after
removal of any two vertices together with edges incident to them.

In this paper, we show the following results, where a “combined decagon” is
defined in the next section.

Theorem 1. Every slicing graph with specified face areas has a 10-gonal drawing
such that each inner face is drawn as a combined decagon. Such a drawing can
be found in O(n) time if its slicing tree and four corner vertices on the outer
rectangle are given. ��
Theorem 2. Every rectangular graph with specified face areas has an 18-gonal
drawing. Such a drawing can be found in O(n log n) time if its outer rectangle
and its four corner vertices are given. ��
Theorem 3. Every 3-connected plane graph (G, A) with Δ(G) = 3 has a
34-gonal drawing. Such a drawing can be found in O(n log n) time. ��
Corollary 1. For every 3-connected plane graph (G, A) with Δ(G) = 4 such
that there are no 4-degree vertices on the outer cycle of G, there is an orthogonal
drawing such that (i) each face has at most 10pc + 34 corners, where pc is the
number of 4-degree vertices in its facial cycle of c ∈ F , and (ii) the number of
straight-lines in the entire drawing is at most 28n. ��

Orthogonal Drawings for Plane Graphs with Specified Face Areas 587

Fig. 2. (a) A slicing graph G and subgraphs Gu and Gw of G; (b) A slicing tree with
nodes r, u and w

3 Drawings of Slicing Graphs

By definition, every inner face of a slicing graph can be drawn as a rectangle
if we ignore the area constraint. To equalize the area of inner face to the spec-
ified value, we need to draw some edges with sequences of several straight-line
segments.

We define a step-line as an alternate sequence of three vertical and horizontal
straight-line segments. A step-line has two corners, which we call bends. A verti-
cal step-line (VSL) is a sequence of vertical, horizontal and vertical straight-line
segments. A horizontal step-line (HSL) is a sequence of horizontal, vertical and
horizontal straight-line segments.

Based on step-lines, we introduce a polygon called a “combined decagon,”
which plays a key role to find a 10-gonal drawing of a slicing graph.

3.1 Combined Decagon

We introduce how to draw a cycle with four corner vertices as a k-gon with
4 ≤ k ≤ 10. We consider a plane graph G of cycle G = ({a, b, c, d}, {(a, b), (b, c),
(c, d), (d, a)}). Note that path ab is the top path, dc is the bottom path, ad is
the left path and bc is the right path of G. We call path dab the top-left path
of G.

We consider a k-gon (4 ≤ k ≤ 10) in which each path is drawn as a line
segment, a VSL, an HSL or a pair of these. We use several types of combinations

588 A. Kawaguchi and H. Nagamochi

of lines for each of the top-left path, the right path and the bottom path; Five
types for the top-left path (Fig. 3), three types for the right path (Fig. 4), and
three types for the bottom path (Fig. 5).

Fig. 3. Five types of drawing pattern for the top-left path dab

Fig. 4. Three types of drawing pattern for the right path bc

Fig. 5. Three types of drawing pattern for path dc

We draw cycle (a, b, c, d) by choosing a drawing pattern Ai (i = 1, 2, 3, 4, 5)
for the top-left path, Bj (j = 1, 2, 3) for the right path and Ck (k = 1, 2, 3) for
the bottom path. Note that the resulting polygon has at most 10 corners. A
combined decagon P is defined as a polygon such that each unit path of P is
drawn as a straight-line or a step-line and at least one of its top and left paths
is drawn as a straight-line. Figure 6 illustrates examples of a combined decagon.
We may let Ai denote the set of combined decagons such that the top-left path
is drawn as a pattern in Ai. Similarly for Bj and Ck.

Let P be a combined decagon. A line segment in the top-left path is called
connectable if it is incident to corner b or d. Similarly a line segment in the
right (bottom) path is called connectable if it is incident to corner c. Other line

Orthogonal Drawings for Plane Graphs with Specified Face Areas 589

Fig. 6. Illustration of combined decagons P1 and P2

segments are called unconnectable. In Figs. 3, 4 and 5, connectable segments are
depicted by thick lines.

We denote the connectable segment in the top path, the left path, the right
path and the bottom path of P by αt(P), α�(P), αr(P) and αb(P), respectively.
An unconnectable line segment in the top-left path is called a control segment
if it is incident to corner a. Similarly an unconnectable line segment in the right
(bottom) path is called a control segment if it is incident to corner b (d). In
Figs. 3, 4 and 5, control segments are depicted by dashed lines. We denote the
control segment in the top path, the left path, the right path and the bottom
path of P by βt(P), β�(P), βr(P) and βb(P), respectively. Let βmax(P) be a
control segment whose length is maximum in P . A control segment e is called
convex if both of the two interior angles of P at the both ends of e are 90 degree.

The width w(P) of P is the distance from the leftmost vertical segment to the
rightmost one, and the height h(P) of P is the distance from the top horizontal
segment to the bottom one. We denote by xy the line segment with end points
x and y. We denote the length of segment xy by |xy|, the area of a polygon P
by A(P), and the sum of the areas specified for all inner faces of a plane graph
G by A(G). For a node u of a slicing tree T , we call the following condition the
size condition of combined decagon Pu; A(Pu) = A(Gu).

3.2 Outline of Algorithm

This subsection outlines our algorithm for slicing graphs with specified areas.
The algorithm is a divide-and-conquer based on slicing trees. We are given a
slicing graph G with specified areas, its slicing tree T , and rectangle Pr with
corner vertices for the outer cycle of G. At this point, the positions of all vertices
have not been determined yet. A vertex whose position is determined during the
algorithm is called fixed. We first draw the outer cycle of G as the specified
rectangle Pr, fixing the corner vertices. We then visit all internal nodes in T in
preorder and slice Pr recursively to obtain an entire drawing of G. For a node u

590 A. Kawaguchi and H. Nagamochi

of T , suppose that the outer cycle of Gu is to be drawn as a combined decagon
Pu which satisfies the size condition.

Let u be a V-node. Then Gu has the vertical slicing path πu, and let zt and zb

be end vertices of πu on the top and bottom path of Gu, respectively. First, we
try to slice Pu into two combined decagons which satisfy the size condition by
choosing a (unique) vertical straight-line segment L as its slicing path πu (see
Fig. 7). If L can be drawn correctly, i.e., the end points zt and zb of L are on
αt(Pu) and αb(Pu), respectively, then we slice Pu by L to obtain two combined
decagons. Otherwise, we split Pu by choosing a step-line as its slicing path πu

(see Fig. 7). We can show that the existence of such a suitable step-line πu is
ensured if Pu satisfies the size condition and “boundary condition,” which will
be described later (the detail of the proof is omitted due to space limitation).

The slicing procedure for H-nodes u is analogous with that for V-nodes. An
entire drawing of the given slicing graph G will be constructed by applying the
above procedure recursively. We call the algorithm described above Algorithm
Decagonal-Draw.

Fig. 7. Vertical slicing of Pu

To ensure that a combined decagon can be chosen as the polygon for the outer
facial cycle of each subgraph Gu, the positions of end vertices zt and zb of πu

will be decided so that certain conditions are satisfied. We now describe these
conditions.

For each node u of T , let f t
u be the number of inner faces of Gu that are

adjacent to the top path of Gu, and f �
u be the number of inner faces of Gu that

are adjacent to the left path of Gu.
Let amin be the minimum area of all areas for inner faces of G. Let W and H

be the width and height of the rectangle specified for the outer facial cycle of a
given slicing graph G. We define

λ =
amin

3f · max(W, H)
. (1)

We define some conditions on combined decagon Pu.

Orthogonal Drawings for Plane Graphs with Specified Face Areas 591

A control segment e of Pu is called (λ, f)-admissible if one of the followings
holds:

e is a convex and vertical segment, and f t
uλ ≤ |e| < fλ,

e is a convex and horizontal segment, and f �
uλ ≤ |e| < fλ,

e is a non-convex and vertical segment, and |e| < (f − f t
u)λ,

e is a non-convex and horizontal segment, and |e| < (f − f �
u)λ.

A combined decagon Pu is called (λ, f)-admissible if it satisfies the followings.

(a1) |αt(Pu)| ≥ f t
uλ,

(a2) |α�(Pu)| ≥ f �
uλ,

(a3) Every control segment of Pu is (λ, f)-admissible,
(a4) If Pu ∈ A1, then |αt(Pu)| ≥ (f + f t

u)λ or |α�(Pu)| ≥ (f + f �
u)λ,

(a5) If Pu ∈ A2 ∪ A4, then |α�(Pu)| + |β�(Pu)| ≥ (f + f �
u)λ,

(a6) If Pu ∈ A3 ∪ A5, then |αt(Pu)| + |βt(Pu)| ≥ (f + f t
u)λ,

(a7) If Pu ∈ A2 ∩ B3, then |β�(Pu)| − |βr(Pu)| ≥ f t
uλ,

(a8) If Pu ∈ A3 ∩ C3, then |βt(Pu)| − |βb(Pu)| ≥ f �
uλ,

(a9) If Pu ∈ A4 ∩ B2, then |βr(Pu)| − |β�(Pu)| ≥ f t
uλ,

(a10) If Pu ∈ A5 ∩ C2, then |βb(Pu)| − |βt(Pu)| ≥ f �
uλ.

By (λ, f)-admissibility of Pu, Pu is a simple polygon, and the distance of any
pair of vertical line segments or any pair of horizontal line segments of Pu is at
least λ.

For a combined decagon Pu, let a be the top-left corner vertex of Pu, b′ be a
fixed vertex which is the nearest to a on the top path of Pu, and d′ be a fixed
vertex which is the nearest to a on the left path of Pu. We call the following
conditions the boundary condition of Pu.

(b1) If there exists fixed vertices on the top path of Pu, then these vertices are
on αt(Pu). The distance of any pair of fixed vertices on αt(Pu) is at least
f t

uλ, and the distance from both ends of αt(Pu) to any fixed vertex is at
least f t

uλ.
(b2) If there exists fixed vertices on the left path of Pu, then these vertices are

on α�(Pu). The distance of any pair of fixed vertices on α�(Pu) is at least
f �

uλ, and the distance from both ends of α�(Pu) to any fixed vertex is at
least f �

uλ.
(b3) If Pu ∈ A1, then the distance from b′ to the left path of Pu is greater than

(f + f t
u)λ or the distance from d′ to the top path of Pu is greater than

(f + f �
u)λ.

(b4) If Pu ∈ A2 ∪A4, then the distance from d′ to the top path of Pu is greater
than (f + f �

u)λ.
(b5) If Pu ∈ A3 ∪A5, then the distance from b′ to the left path of Pu is greater

than (f + f t
u)λ.

Let D be the set of all (λ, f)-admissible decagons that satisfy the boundary
and size conditions.

The following lemma guarantees the correctness of the algorithm, whose proof
can be found in the full version of the paper.

592 A. Kawaguchi and H. Nagamochi

Lemma 1. For a decagon Pu ∈ D, let Pv and Pw be combined decagons gener-
ated by slicing Pu in Decagonal-Draw. Then Pv and Pw belong to D. ��

By this lemma, we can prove the existence of 10-gonal drawings in Theorem 1.

Lemma 2. Algorithm Decagonal-Draw finds a 10-gonal drawing of a slicing
graph G with specified face areas correctly.

Proof. Let Pr be a rectangle given as the boundary of G. Clearly Pr has no
control segments and satisfies the size condition. Hence, Pr satisfies (λ, f)-
admissibility. Since Pr satisfies the boundary condition, we have Pr ∈ D. By
Lemma 1, every face of G is drawn as a decagon in D recursively. Hence, al-
gorithm Decagonal-Draw finds a 10-gonal drawing of a slicing graph G with
specified face areas. ��

It is not difficult to observe the time complexity of the algorithm.

Lemma 3. Algorithm Decagonal-Draw can be implemented to run in O(n) time
and space. ��

Lemmas 2 and 3 prove Theorem 1.

4 Drawing of Rectangular Graphs

We assume that a given rectangular graph G has no 2-degree vertex except for
its corner vertices. To utilize Theorem 1, we convert G into a slicing graph. For
this, we slice some inner faces in G by adding new vertices and edges. By the
result due to F. d’Amore and P. G. Franciosa [1], we can convert a rectangular
graph G into a slicing graph G′ by slicing each inner face c of G into at most 4
inner faces so that each unit path of c contains at most 2 unit paths of inner faces
generated in the interior of c (see Fig. 8). A cycle c′ in G′ which corresponds to
the facial cycle of c contains at most 8 unit paths of inner faces generated in the
interior of c′. Figure 9(a) illustrates a inner face c of G sliced into 4 inner faces
c1, c2, c3 and c4. Also, we obtain a slicing tree of the resulting slicing graph from
the way of slicing the region by their slicing algorithm. When an inner face c of
G is sliced into two inner faces c1 and c2, the area of each ci is set to be a half
of the area of c.

We apply Theorem 1 to the resulting slicing graph G′ to obtain a 10-gonal
drawing D′, and remove the edges and vertices added to G from the drawing D′.
In the resulting drawing of G, each inner face c is drawn as a polygon with at
most 7 step-line segments and some straight-line segments since either the top
path or the left path of a combined decagon is always drawn as a straight-line
segment (see Fig. 9(b)). Hence c is drawn as a polygon with at most 14 corners
of step-lines and 4 corners of the original rectangle. Then we obtain an 18-gonal
drawing as described in Theorem 2.

Orthogonal Drawings for Plane Graphs with Specified Face Areas 593

Fig. 8. Four slicing patterns of a rectangle

Fig. 9. (a) An inner face c sliced into four inner faces c1, c2, c3 and c4 in G′; (b) the
drawing of c in D′

5 Drawing of 3-Connected Plane Graph

By the definition of a 3-connected plane graph, the degree of every vertex is at
least three. First, we consider a 3-connected plane graph G with Δ(G) = 3.

An inner dual graph G∗ for G is a plane graph such that G∗ has an embedded
vertex in each inner face of G, and G∗ has an edge (v, w) if and only if two
inner faces cv and cw in G that correspond to the vertices v and w in G∗ are
adjacent. Then edge (v, w) in G∗ intersects only one edge of G which separates
faces cv and cw. Since the degree of each vertex of G is three, G∗ is a triangulated
plane graph. Note that G∗ has no parallel edges since otherwise some two inner
faces in G would share more than one edge as the boundary of each of them,
contradicting the 3-connectivity of G.

C.-C. Liao et al. [4] proved that a plane graph G whose inner dual graph G∗

is a triangulated plane graph without parallel edges has an orthogonal drawing
where outer face of G is drawn as a rectangle and each inner face is drawn as
a rectangle, an L-shape or a T-shape. For each inner face c which is drawn as
an L-shape or a T-shape, we can slice c into 2 inner faces c1 and c2 drawn
as rectangles. Hence by the slicing procedure described in the previous section,
we can convert a 3-connected plane graph G into a slicing graph G′ by slicing
each inner face c of G into at most 8 inner faces. Let c′, c′1 and c′2 be cycles in G′

which correspond to the facial cycle of c, c1 and c2, respectively. Both c′1 and c′2

594 A. Kawaguchi and H. Nagamochi

contains at most 8 unit paths of inner faces generated in their interior, and two
of them are always in the interior of c′. Hence c′ contains 14 unit paths of inner
faces generated in the interior of c′. We apply Theorem 1 to slicing graph G′ to
obtain a 10-gonal drawing D′, and remove the edges and vertices added to G
from the drawing D′. In the resulting drawing of G, each inner face c is drawn as
a polygon with at most 13 step-line segments and some straight-line segments.
Hence c is drawn as a polygon with at most 26 corners of step-lines and at most
8 corners of the original shape (a rectangle, an L-shape or a T-shape). Then we
can obtain a 34-gonal drawing of G, as claimed in Theorem 3.

Now, we consider a 3-connected plane graph G with Δ(G) = 4. We can assume
that there are no 4-degree vertices on the outer cycle of G. We replace each
4-degree vertex v of G with a cycle of length 4 introducing a new inner face cv,
and then convert the resulting graph into a slicing graph G′. Each inner face c
of G is sliced into 8 + pc inner faces in G′, where pc is the number of 4-degree
vertices in the facial cycle of a inner face c (the detail of the proof is omitted
due to space limitation).

Then we apply Theorems 1 and 3 to the slicing graph G′. A drawing of G in
Corollary 1 can be obtained by modifying the drawing of G′.

6 Conclusion

In this paper, we showed that every slicing graph has a 10-gonal drawing, every
rectangular graph has an 18-gonal drawing, and every 3-connected plane graph
whose maximum degree is three has a 34-gonal drawing. We also gave a linear
time algorithm to find a 10-gonal drawing for a slicing graph.

It is left as a future work to derive lower bounds on the number k such that
every slicing graph admits a k-gonal drawing.

References

1. F. d’Amore and P. G. Franciosa: On the optimal binary plane partition for sets of
isothetic rectangles, Information Proc. Letters, Vol. 44, pp. 255-259, 1992.

2. M. de Berg, E. Mumford and B. Speckmann: On rectilinear duals for vertex-weighted
plane graphs. In Proc 13th International Symposium on Graph Drawing, pp. 61-72,
2005.

3. G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis: Graph drawing: Algorithms
for the visualization of graphs, Prentice hall, 1999.

4. C.-C. Liao, H.-I. Lu and H.-C. Yen: Floor-planning via orderly spanning trees, In
Proc. 9th International Symposium on Graph Drawing, pp. 367-377, 2001.

5. T. Nishizeki, K. Miura and Md. S. Rahman: Algorithms for drawing plane graphs,
IEICE Trans. Electron., Vol.E87-D, No.2, pp.281-289, 2004.

6. M. S. Rahman, K. Miura and T. Nishizeki: Octagonal drawings of plane graphs
with prescribed face areas, In Graph Theoretic Concepts in Computer Science:
30th International Workshop, Vol. 3353 of Lecture Notes in Computer Science, pp.
320-331, 2004.

Absolutely Non-effective Predicates and

Functions in Computable Analysis�

Decheng Ding, Klaus Weihrauch, and Yongcheng Wu��

Department of Mathematics, Nanjing University, 210093 Nanjing, China
Department of Mathematics and Computer Science, University of Hagen, Germany
Nanjing University of Information Science and Technology, 210044 Nanjing, China
dcding@nju.edu.cn, Klaus.Weihrauch@FernUni-Hagen.de, ycwu@nuist.edu.cn

Abstract. In the representation approach (TTE) to Computable Analy-
sis those representations of an algebraic or topological structure are
of interest, for which the basic predicates and functions become
computable. There are, however, natural examples of predicates and
functions, which are not computable, even not continuous, for any rep-
resentations. All these results follow from a simple lemma. In this article
we prove this lemma and apply it to a number of examples. In particular
we prove that various predicates and functions on computable measure
spaces are not continuous for any representations, that means “absolutely
non-effective”.

Keywords: computability, undecidability, representation, measure, set.

1 Introduction

In the representation approach to Computable Analysis (TTE) [7] computability
on finite words w ∈ Σ∗ and infinite sequences p ∈ Σω of symbols from a finite
alphabet Σ is defined explicitly, for example, by Turing machines. Computability
on other sets M is introduced via naming systems, that is, notations ν : ⊆Σ∗ →
M or representations δ : ⊆Σω → M where finite or infinite sequences of symbols
serve as “concrete names” of the “abstract” objects x ∈ M . The concept of
computability induced on M depends crucially on the naming system. For a
mere set M there is no criterion to select from the set of all naming systems the
relevant or interesting ones.

If, however, a structure on M is given, for example, a topology or an algebra,
those naming systems are of interest, for which the functions and predicates from
the structure become computable. There are examples of structures, for which
there is exactly one (up to equivalence) naming system with this property [5].

On the other hand, there are functions and predicates, which become com-
putable for no representation. We may call them “absolutely non-computable”.

� The work has been supported by NSFC (Natural Science Foundation of China) and
DFG (Deutsche Forschungsgemeinschaft).

�� Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 595–604, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

596 D. Ding, K. Weihrauch, and Y. Wu

For example, for no representation δ of the real numbers equality is (δ, δ)-
decidable, for no representation of the closed subsets of Euclidean space in-
tersection is (δ, δ, ψ<)-computable, for no representation δ of a non-separable
metric space the distance is (δ, δ, ρ>)-computable [7]. In this article we prove a
number of other results of this type.

The above theorems of the form “there is no representation such that ...”
concern binary predicates or functions. We prove as a central lemma that every
(γ, δ)-open set is a countable union of Cartesian products. So, if a set of pairs
is not a countable union of Cartesian products it is not (γ, δ)-open for any rep-
resentations γ, δ. Applying this lemma we prove for a variety of sets that they
are not (γ, δ)-open and for some binary functions that they cannot be (γ, δ, ψ)-
continuous for any representations γ, δ. Since no choice of representations can
make them effective, such relations (for example equality on the real numbers)
and functions can be called “absolutely non-effective”. We obtain as immediate
consequences that the sets cannot be (γ, δ)-r.e. or (γ, δ)-decidable and the func-
tions cannot be (γ, δ, ψ)-computable for any representations γ, δ. Up to these
consequences the results in this article are purely topological and require only
the topological framework of TTE (Type 2 Theory of Effectivity [7]).

In Section 2 we summarize some basic definitions from TTE. In Section 3 we
prove the central lemma on countable union of products and derive a number
of “non-continuities” as consequences. In Section 4 we consider a σ-algebra A of
measurable sets with infinite measures. which is generated by a σ-finite ring. We
present a number of binary relations, which cannot be (γ, δ)-open, and several
binary functions, which cannot be (γ, δ, ψ)-continuous for any representations
γ, δ of the set A.

2 Concepts from Computable Analysis

In this section we summarize some basic definitions from TTE, for details see
[7]. Let Σ be a sufficiently large finite alphabet of symbols. Let Σ∗ be the
set of all finite strings and Σω the set of all infinite sequences over Σ. For
w ∈ Σ∗ let wΣω⊆Σω be the set of all p ∈ Σω such that w is a prefix of p. A
partial function f : ⊆Y1 × . . .×Yk → Y0 (Y0, . . . , Yk ∈ {Σ∗, Σω}) is computable,
if it can be computed by a Type-2 machines, i.e., a Turing machine with k
input tapes and a one-way output tape for possibly one-way infinite inscriptions.
For (y1, . . . , yk) ∈ Y1 × . . . × Yk, f(y1, . . . , yk) = y0, iff on input (y1, . . . , yk)
the machine halts with result y0 ∈ Σ∗ or the machine computes forever and
writes y0 ∈ Σω, if Y0 = Σ∗ or Y0 = Σω, respectively. A set Z⊆Y1 × . . . × Yk

is recursively enumerable (r.e.), if Z = dom(f) for some computable function
f : ⊆Y1 × . . . × Yk → Σ∗. Let ι : Σ∗ → Σ∗, a1 . . . ak �→ 110a10 . . . 0ak011 be the
“wrapping function”. The “pairing function” π : Σω × Σω → Σω,

π(a0a1 . . . , b0b1 . . .) := a0b0a1b1 . . . (ai, bi ∈ Σ)

is bijective and computable and the projections of its inverse are computable. As
usual we write 〈p, q〉 = π(p, q). The straightforward generalization of π to more
than two arguments is denoted by 〈 〉 as well.

Absolutely Non-effective Predicates and Functions in Computable Analysis 597

On Σ∗ we consider the discrete topology. On Σω we consider Cantor topology
generated by the base {wΣω | w ∈ Σ∗} and on (Σω)k its product topology
generated by the base {v1Σ

ω × . . . × vkΣω | v1, . . . , vk ∈ Σ∗}. Every partial
computable function f : ⊆Y1 × . . . × Yk → Y0 is continuous. Every r.e. set
Z⊆Y1 × . . . × Yk is open.

A naming system of a set M is a surjective function δ : ⊆Y → M where
Y = Σ∗ (notation) or Y = Σω (representation). Let νN and νQ be canoni-
cal notations of the natural and the rational numbers, respectively. Let ρ be
the standard representation of the set of real numbers R and let ρ> be the
upper representation of R := R ∪ {−∞,∞} defined by: ρ>(p) := inf{νQ(w) |
ι(w) is a subword of p and w ∈ dom(νQ)}. Let ρ> be the restriction of ρ>

to R.
For naming systems δi : ⊆Yi → Mi, a function h : ⊆Y1× . . .×Yk → Y0 realizes

a function f : ⊆M1 × . . . × Mk → M0, with respect to (δ1, . . . , δk, δ0), iff

f(δ1(y1), . . . , δk(yk)) = δ0 ◦ h(y1, . . . , yk)

whenever f(δ1(y1), . . . , δk(yk)) exists. The function f is (δ1, . . . , δk, δ0)-continuous
(-computable), iff it has a continuous (computable) (δ1, . . . , δk, δ0)-realization. A
set X⊆M1×. . .×Mk is called (δ1, . . . , δk)-open (r.e.), iff there is some open (r.e.)
set U⊆Y1 × . . . × Yk such that

{(y1, . . . , yk) | (δ1(y1), . . . , δk(yk)) ∈ X} = U ∩ dom(δ1) × . . . × dom(δk) . (1)

X is called (δ1, . . . , δk)-decidable, if X and its complement are (δ1, . . . , δk)-r.e.
For representations δ1, . . . , δk the tupling [δ1, . . . , δk] : ⊆Σω → M1 × . . .×Mk

is defined by [δ1, . . . , δk]〈y1, . . . , yk〉 := (δ1(y1), . . . , δk(yk)). In this article we
need the definitions mainly for the cases k = 1 or k = 2. For representations
γ : ⊆Σω → M , δ : ⊆Σω → M ′ and ψ : ⊆Σω → M ′′, and for X⊆M × M ′ and
f : ⊆M × M ′ → M ′′,

X is (γ, δ)-decidable =⇒ X is (γ, δ)-r.e. =⇒ X is (γ, δ)-open , (2)
X is (γ, δ)-PP ⇐⇒ X is [γ, δ]-PP (for PP ∈ { decidable, r.e., open}), (3)

f is (γ, δ, ψ)-PP ⇐⇒ f is ([γ, δ], ψ)-PP (for PP ∈ { computable, open}) (4)

[7]. We will apply these properties without further mentioning. By δ|N we denote
the restriction of δ to range N .

Lemma 1. Let δ : ⊆Σω → M and δ′ : ⊆Σω → M ′ be representations and let
X⊆M be δ-open.

1. If f : M ′ → M is (δ′, δ)-continuous then f−1[X] is δ′-open.
2. For any N⊆M , X ∩ N is δ|N -open.

Proof. 1. Let γ : A → M and γ′ : A′ → M ′ be the restrictions of δ and δ′ to
dom(δ) and dom(δ′), respectively. We consider the induced topologies on A and

598 D. Ding, K. Weihrauch, and Y. Wu

A′. There is some continuous function h : A′ → A such that fγ′ = γh. (Since
γ, γ′, f and h are total functions we can apply the usual transformation rules.)
Then

X is δ-open =⇒ γ−1[X] is open (in A) =⇒ h−1γ−1[X] is open
=⇒ (γh)−1[X] is open =⇒ (fγ′)−1[X] is open
=⇒ (γ′)−1f−1[X] is open =⇒ f−1[X] is δ′-open .

2. The embedding f : N → M is (δ|N , δ)-continuous (realized by the identity
on Σω). Furthermore, f−1[X] = X ∩ N . Apply 1. for δ′ := δ|N . ��

3 Absolutely Non-open Sets

The main results of this article are based on the following observation.

Lemma 2. Let γ : ⊆Σω → M and δ : ⊆Σω → M ′ be representations. Then for
every non-empty (γ, δ)-open set X⊆M × M ′ there are sequences (Uk)k∈N and
(Vk)k∈N of non-empty sets such that

X =
⋃

k∈N

Uk × Vk . (5)

Proof. Since X is (γ, δ)-open there is an open set W⊆Σω×Σω such that {(p, q) |
(γ(p), δ(q)) ∈ X} = W ∩dom(γ)×dom(δ), therefore, X = {(γ(p), δ(q)) | (p, q) ∈
W ∩ dom(γ) × dom(δ)}. Since W is open and X �= ∅, there are words uk, vk

such that W =
⋃

k∈N
ukΣω × vkΣω, hence X =

⋃
k∈N

γ(ukΣω)× δ(vkΣω). Since
X �= ∅, γ(ukΣω) × δ(vkΣω) �= ∅ for some k ∈ N. Delete all empty elements
from the family (γ(ukΣω)× δ(vkΣω))k∈N. If the resulting family is still infinite,
we are finished. Otherwise, fill it up to a countable one by repeating one of its
elements. ��
By Equation (5) X is the countable union of Cartesian products. The lemma can
be generalized straightforwardly to more than 2 factors.

Using Lemma 2 we will prove that several sets are not (γ, δ)-open and func-
tions f are not (γ, δ, ψ)-continuous for all representations γ and δ. By Formu-
las (2, 3, 4) these results have a number of obvious implications, which we will not
mention repeatedly. Many applications of Lemma 2 follow from the next lemma.

Lemma 3. 1. Let ∼ ⊆M × M be an equivalence relation such that the set
M/∼ of equivalence classes is uncountable. Let ≺ ⊆M × M be an relation
on M such that

a ≺ a and (a ≺ b and b ≺ a =⇒ a ∼ b) (6)

for all a, b ∈ M . Then there are no representations γ, δ of M such that ≺ is
(γ, δ)-open.

2. Let ∼ ⊆M × M be an equivalence relation such that M/∼ is uncountable.
Then there are no representations γ, δ of M such that ∼ is (γ, δ)-open.

Absolutely Non-effective Predicates and Functions in Computable Analysis 599

Proof. 1. Suppose the relation ≺ is (γ, δ)-open. Then it can be written as⋃
k∈N

Uk×Vk with non-empty sets Uk, Vk. For any a ∈ M , (a, a) ∈ ≺ by assump-
tion. Suppose, (a, a), (b, b) ∈ Uk × Vk. Then (a, b), (b, a) ∈ Uk × Vk⊆ ≺ , hence
a ∼ b. Therefore, for every k ∈ N there is some a such that

{b | (b, b) ∈ Uk × Vk} ⊆ a/∼

and hence
{b | (b, b) ∈

⋃

k∈N

Uk × Vk} ⊆
⋃

{a/∼ | a ∈ A}

for some countable set A⊆M . But

{b | (b, b) ∈ ≺} = M,

which is not a countable union of ∼-equivalence classes by assumption. Therefore,
∼ �= ⋃

k∈N
Uk × Vk, and so ∼ cannot be (γ, δ)-open.

2. Apply the first case with ≺ := ∼. ��
Let AΔB := A\B∪B \A be the symmetric difference of the sets A and B. The
following theorem summarizes some more concrete results.

Theorem 4. 1. For an uncountable set M there are no representations γ, δ
such that Eq = {(x, y) | x, y ∈ M, x = y} is (γ, δ)-open.

2. For the set R of real numbers there are no representations γ, δ such that
Leq := {(x, y) | x ≤ y} is (γ, δ)-open.

3. For an uncountable collection S of sets there are no representations γ, δ such
that Sub := {(A, B) | A, B ∈ S, A⊆B} is (γ, δ)-open.

4. For a collection S of sets containing uncountably many singletons (i.e., the
one-element sets) there are no representations γ, δ such that Nei := {(A, B) |
A, B ∈ S, A ∩ B �= ∅} is (γ, δ)-open.

5. For each of the following binary relations T , “A∩B = ∅”, “A∩B is finite”,
“A \ B = ∅”, “A \ B is finite”, “AΔB = ∅”, “AΔB is finite”, on 2N there
are no representations γ, δ of 2N such that T is (γ, δ)-open.

Proof. 1. Eq is an equivalence relation. Apply Lemma 3.2.
2. Apply Lemma 3.1 with ≤ and = for ≺ and ∼, respectively.
3. Apply Lemma 3.1 with ⊆ and = for ≺ and ∼, respectively.
4. If Nei is (γ, δ)-open, then the uncountably many pairs ({x}, {x}) must be

elements of a countable union
⋃

i Xi×Yi. If ({x}, {x}) ∈ Xi×Yi and ({y}, {y}) ∈
Xi ×Yi, then ({x}, {y}) ∈ Xi ×Yi, hence x = y. Therefore each Xi ×Yi contains
at most one pair ({x}, {x}). But there are uncountably many such pairs.

5. Let π : N2 → N be a bijection. For i ∈ N let Ci := {π(i, j) | j ∈ N} and for
L⊆N (L �= ∅, N) let AL :=

⋃
i∈L Ci. Then all the AL constitute an uncountable

family of infinite sets such that AK and AL differ by an infinite set if K �= L. If
T is (γ, δ)-open, then by Lemma 2 it can be written as T =

⋃
i∈N

Xi × Yi.
“A ∩ B = ∅”: For each L, AL ∩ Ac

L = ∅. If (AK , Ac
K), (AL, Ac

L) ∈ Xi × Yi,
then AK ∩ Ac

L = ∅ and AL ∩ Ac
K = ∅, hence AK = AL. Therefore, each Xi × Yi

contains at most one pair (AL, Ac
L). But the set of such pairs is uncountable.

600 D. Ding, K. Weihrauch, and Y. Wu

“A∩B is finite”: Proceed as above and observe that AK ∩Ac
L = ∅ if AK ∩Ac

L

is finite.
“A/B = ∅”: For each L, AL \ AL = ∅. If (AK , AK), (AL, AL) ∈ Xi × Yi, then

AK \AL = ∅ and AL\AK = ∅, hence AK = AL. Therefore, each Xi×Yi contains
at most one pair (AL, AL). But the set of such pairs is uncountable.

“A \B is finite”: Proceed as above and observe that AK \AL = ∅ if AK \AL

is finite.
“AΔB = ∅”: For each L, ALΔAL = ∅. If (AK , AK), (AL, AL) ∈ Xi ×Yi, then

AKΔAL = ∅, hence AK = AL. Therefore, each Xi × Yi contains at most one
pair (AL, AL). But the set of such pairs is uncountable.

“AΔB is finite”: Proceed as above and observe that AKΔAL = ∅ if AKΔAL

is finite. ��
Theorem 4.1 applies, for example, to the real numbers (Thm 4.1.16 in [7]), to
the powerset 2N of N, to the various subset spaces of Euclidean space Rn and
to spaces of continuous functions (Chapters 5.6 in [7]). Notice, however, that
inequality may become r.e., for example, for the standard representation ρ of the
real numbers {(x, y) ∈ R2 | x �= x} is (ρ, ρ)-r.e. Theorem 4.3 can be applied to
2N and to the open, the closed and the compact subsets of RN. Theorem 4.4 can
be applied to the closed and the compact subsets of RN.

Every represented metric space with continuous distance is separable, that is,
it has a countable dense subset. The proofs in [6] and of Lemma 8.1.1 in [7] use
essentially Lemma 2. Here we prove a slight generalization.

Theorem 5. Let γ, δ be representations of a metric space (M, d) such that the
distance d : M × M → R is (γ, δ, ρ>)-continuous. Then the space is separable.

Proof. For each n ∈ N define an open subset of Σω by

Un :=
⋃

{uι(v)Σω | u, v ∈ Σ∗, v ∈ dom(νQ) and νQ(v) < 2−n},

where recall that ι is the “wrapping function”, and let Wn := {x ∈ R | x < 2−n}.
Then ρ−1

> [Wn] = Un ∩ dom(ρ>), hence Wn is ρ>-open. By assumption, d is
([γ, δ], ρ>)-continuous. By Lemma 1.1, d−1[Wn] is (γ, δ)-open and so by Lemma 2
there are (non-empty) sets Xn

k , Y n
k ⊆M such that

{(a, b) ∈ M × M | d(a, b) < 2−n} = d−1[Wn] =
⋃

k∈N

Xn
k × Y n

k .

For every n, k ∈ N choose some xn
k ∈ Xn

k . Suppose x ∈ M and n ∈ N. Then for
some k, (x, x) ∈ Xn

k × Y n
k , hence (xn

k , x) ∈ Xn
k × Y n

k , that is, d(xn
k , x) < 2−n.

Therefore, the countable set {xn
k | n, k ∈ N} is dense in (M, d). ��

Notice that d is (γ, δ, ρ>)-continuous if d is (γ, δ, ρ)-continuous.
By Theorem 5.1.3 in [7] intersection on the closed subsets of Rn is not

(ψ, ψ, ψ<)-continuous. We can conclude this from the observation that the set of
non-empty closed subsets of Rn is ψ<-open. More generally, from Theorem 4.4
we obtain:

Absolutely Non-effective Predicates and Functions in Computable Analysis 601

Corollary 6. Let ψ be a representation of a collection S of sets containing
uncountably many singletons such that {A ∈ S | A �= ∅} is ψ-open. Then there
are no representations γ, δ such that intersection on S is (γ, δ, ψ)-continuous.

Proof. Suppose, intersection on S is ([γ, δ], ψ)-continuous. Since Nem := {A ∈
S | A �= ∅} is ψ-open, ∩−1[Nem] = {(A, B) ∈ S × S | A ∩ B �= ∅} = Nei is
(γ, δ)-open by Lemma 1.1. But this is false by Theorem 4.4. ��
The corollary is applicable to the set of closed subsets of an uncountable T1-space
since for every point x the set {x} is closed [4].

4 Applications to Computable Measure Theory

Computable measure spaces have been introduced in [10]. We recall the main
definitions. As references to Measure Theory see [1], [2] and [3].

A ring in a set Ω is a set R of subsets of Ω such that ∅ ∈ R and A ∪ B ∈ R
and A \ B ∈ R if A, B ∈ R. A σ-algebra in Ω is a set A of subsets of Ω such
that Ω ∈ A, Ω \ A ∈ A if A ∈ A and

⋃∞
i=1 Ai ∈ A, if A1, A2, . . . ∈ A. For any

system E of subsets of Ω let σ(E) be the smallest σ-algebra in Ω containing E .
A premeasure on a ring R is a function μ : R → R = R ∪ {−∞,∞} such that
μ(∅) = 0, μ(A) ≥ 0 for A ∈ R and

μ(
∞⋃

i=1

An) =
∞∑

i=1

μ(An)

if A1, A2, . . . ∈ A are pairwise disjoint and
⋃∞

i=1 An ∈ A. A premeasure μ on a
σ-algebra A is called a measure. In this case, (Ω,A, μ) is called a measure space.

Definition 7. A computable measure space is a quintuple
M = (Ω,A, μ,R, α) such that

1. (Ω,A, μ) is a measure space,
2. R is a countable ring such that A = σ(R), Ω =

⋃R, and μ(A) < ∞ for all
A ∈ R,

3. α : ⊆Σ∗ → R is a notation of R with recursive domain such that union and
intersection are (α, α, α)-computable and μ is (α, ρ)-computable on R.

Since our negative results concern only continuity, we do not need the third axiom
on computability. Therefore, in the following let M = (Ω,A, μ,R) be a measure
space such that 1. and 2. hold true. Since most of the non-effectivities occur
for sets with infinite measure, We assume μ(Ω) = ∞. By Definition, Ω =

⋃R.
The whole set Ω can be exhausted also by a sequence of pairwise disjoint ring
elements each of which has measure μ(D) > 1 and by a sequence of pairwise
disjoint algebra elements each of which has measure μ(G) = ∞.

Lemma 8. 1. There is a sequence (Di)i∈N of ring elements such that
μ(Di) > 1 and Di ∩ Dj = ∅ for i �= j and

⋃
i Di = Ω.

602 D. Ding, K. Weihrauch, and Y. Wu

2. There is a sequence (Gi)i∈N of algebra elements such that
μ(Gi) = ∞ and Gi ∩ Gj = ∅ for i �= j and

⋃
i Gi = Ω.

Proof. 1. Let B0, B1, . . . be a numbering of R. Define Ci := Bi\(B0∪. . .∪Bi−1).
Then for j < i, Bj ∩ Ci = ∅, hence Cj ∩ Ci = ∅. By induction, B0 ∪ . . . ∪ Bi =
C0 ∪ . . . ∪ Ci. Therefore,

⋃
i Ci =

⋃
i Bi = Ω. There are numbers 0 = i0 <

i1 < i2 < . . . such that μ
⋃{Cm | ik ≤ m < ik+1} > 1 for all k. Define

Dk :=
⋃{Cm | ik ≤ m < ik+1}.

2. Let π : N2 → N be a bijection. Define Gi :=
⋃

j∈N
Dπ(i,j). (Di from 1.) ��

The proof can easily be changed to a computable version of the lemma, which,
however, we do not need in this article. Concrete representations of the set A of
a computable measure space have been discussed in [8,9].In the following we list
several properties, which cannot be effective for any representations of this set.

For sets A, B let AΔB := (A \ B) ∪ (B \ A) be their symmetric difference.
Let A0 be the set of all A ∈ A with finite measure and let A∞∞ be the set of
all A ∈ A such that A and its complement Ac have infinite measure. Let (Gi)i

be the fixed sequence from Lemma 8.2. For

GL :=
⋃

i∈L

Gi, (L⊆N) ,

μ(GL) = 0 ⇐⇒ L = ∅ , (7)
GL ∈ A∞∞ for L �∈ {∅, N} , (8)

Gc
L = GLc and GK � GL = GK�L for binary boolean operations � . (9)

Since our ring R is countable, the cardinality of the generated σ-algebra A =
σ(R) is not greater than the cardinality of Σω. Therefore, the set A has a
representation. We list a number of relations defined by the measure on the
σ-Algebra which are not open for any representations.

Theorem 9. Let E ∈ A such that μ(E) < ∞. In each of the following 9 cases
of Q(A, B) there are no representations γ, δ of A such that

X := {(A, B) | A, B ∈ A, Q(A, B)} is (γ, δ)-open :

1. μ(A \ B) = 0, μ(A \ B \ E) = 0, μ(A \ B) < ∞.
2. μ(AΔB) = 0, μ((AΔB) \ E) = 0, μ(AΔB) < ∞,
3. μ(A ∩ B) = 0, μ((A ∩ B) \ E) = 0, μ(A ∩ B) < ∞.

The 9 statements hold accordingly for representations γ, δ of A∞∞ and the sets
Y := {(A, B) | A, B ∈ A∞∞, Q(A, B)}.
Proof. First we prove the theorem for sets from the universe B := {GL |
L⊆N, L �= ∅ and L �= N}⊆A∞∞⊆A. Let γ′, δ′ be representations of B.

1. Case μ(A \ B) = 0: Let A ≺ B ⇐⇒ μ(A \ B) = 0 and A ∼ B ⇐⇒
μ(AΔB) = 0. Then (6) is true and the set of ∼-equivalence classes is uncountable

Absolutely Non-effective Predicates and Functions in Computable Analysis 603

since GK and GL are not equivalent, if K �= L. By Lemma 3.1, {(A, B) ∈ B×B |
μ(A \ B) = 0} is not (γ′, δ′)-open.

Case μ(A \ B \E) = 0: Let A ≺ B ⇐⇒ μ(A \B \E) = 0 and A ∼ B ⇐⇒
μ(AΔB) = 0. Since μ(A \B \E) = 0 implies μ(A \B) = 0 for A, B ∈ B, we can
continue as in the first case.

Case μ(A \ B) < ∞: Let A ≺ B ⇐⇒ μ(A \ B) < ∞. and A ∼ B ⇐⇒
μ(AΔB) = 0. Since μ(A \ B) < ∞ implies μ(A \ B) = 0 for A, B ∈ B, we can
continue as in the first case.

2. In each of the three subcases replace “\” by “Δ” in 1.
3. We apply Lemma 2.
Case μ(A∩B) = 0: Assume that the set X is (γ′, δ′)-open. Then there are sets

Uk, Vk such that X =
⋃

k Uk × Vk. For each L �∈ {∅, N}, (GL, Gc
L) ∈ X . Suppose

(GK , Gc
K), (GL, Gc

L) ∈ Uk × Vk. Then μ(GK ∩ Gc
L) = 0, hence K ∩ Lc = ∅

and correspondingly L ∩ Kc = ∅, hence K = L. Since there are uncountably
many pairs (GK , Gc

K), countably many Cartesian products cannot cover them.
Contradiction.

Case μ((A ∩ B) \ E) = 0: Proceed as in the case μ(A ∩ B) = 0. Notice that
μ(GK ∩ Gc

L \ E) = 0 implies K = L.
Case μ(A ∩ B) < ∞: Proceed as in the case μ(A ∩ B) = 0. Notice that

μ(GK ∩ Gc
L) < ∞ implies K = L.

The 9 results for the sets X and for the sets Y follow by Lemma 1.2: Suppose, X
is (γ, δ)-open, hence [γ, δ]-open. By Lemma 1.2 for N := B×B, the set X∩B×B
is [γ, δ]|B×B-open, hence (γ|B, δ|B)-open. But this is impossible as we have shown.
The argument for the sets Y is similar. ��
In measure theory usually sets which differ by a set of measure 0 are not distin-
guished. For A, B ∈ A let A ≡ B ⇐⇒ μ(AΔB) = 0. Then ≡ is an equivalence
relation. If A ≡ B and A′ ≡ B′ then Ac ≡ Bc and A � A′ ≡ B � B′ for every
binary boolean operation �. Therefore, on the set of equivalence classes, the fac-
torization A/≡, the boolean functions are well-defined. Furthermore, a measure
μ/≡ on A/≡ is well-defined by μ/≡(A/≡) := μ(A). We will consider a modifica-
tion of Theorem 9 where A and μ are replaced by A/≡ and μ/≡, respectively.
We will apply the following lemma.

Lemma 10. For every representation δ : ⊆Σω → A/≡ there is a representation
β : ⊆Σω → A such that the factorization fac : A �→ A/≡ is (β, δ)-computable.

Proof. Let γ⊆Σω → A be any representation of A. Define a representation β by

β〈p, q〉 = A : ⇐⇒ γ(p) = A and γ(p) ∈ δ(q) .

Then the computable function 〈p, q〉 �→ q realizes the factorization w.r.t. (β, δ).
��

Corollary 11. Theorem 9 holds true accordingly for A/≡ and μ/≡ replacing A
and μ.

604 D. Ding, K. Weihrauch, and Y. Wu

Proof. As an example consider the set

X = {(R, S) | R, S ∈ A/≡ and μ/≡(R ∩ S) < ∞} .

Assume that there are representations γ, δ such that X is (γ, δ)-open, hence
[γ, δ]-open. By Lemma 10 there are representations γ′, δ′ of A such that factor-
ization is (γ′, γ)-computable and (δ′, δ)-computable. Therefore, the total function
F : (A, B) �→ (A/≡, B/≡) is ([γ′, δ′], [γ, δ])-continuous. By Lemma 8, F−1[X] is
[γ′, δ′]-open, hence (γ′, δ′)-open. But since

F−1[X] = {(A, B) | (A/≡, B/≡) ∈ X}
= {(A, B) | μ≡(A/≡ ∩ B/≡) < ∞}
= {(A, B) | μ(A ∩ B) < ∞ , }

F−1[X] cannot be (γ′, δ′)-open by Theorem 9. Contradiction.
The proofs for the other 8 cases are similar. Also the proofs for the cases

A∞∞ are similar. ��

References

1. Heinz Bauer. Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. Walter
de Gruyter, Berlin, 1974.

2. Heinz Bauer. Measure and Integration Theory. Walter de Gruyter, Berlin, 2001.
3. Donald L. Cohn. Measure Theory. Birkhäuser, Boston, 1980.
4. Ryszard Engelking. General Topology. Vol.6 of Sigma series in pure mathematics.

Heldermann, Berlin, 1989.
5. Peter Hertling. A real number structure that is effectively categorical. Mathemat-

ical Logic Quarterly,45(2):147–182, 1999.
6. Klaus Weihrauch. Computability on computable metric spaces. Theoretical Com-

puter Science, 113:191–210, 1993.
7. Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
8. Yongcheng Wu and Decheng Ding. Computabibility of measurable sets via effective

metrics. Mathematical Logic Quarterly, 51(6):543–559, 2005.
9. Yongcheng Wu and Decheng Ding. Computabibility of measurable sets via effective

topologies. Archive for Mathematical Logic, 45:365–379, 2006.
10. Yongcheng Wu and Klaus Weihrauch. A computable version of the Daniell-Stone

theorem on integration and linear functionals. Theoretical Computer Science,
359(1-3):28-42, 2006.

Linear-Size Log-Depth Negation-Limited

Inverter for k-Tonic Binary Sequences

Hiroki Morizumi1 and Jun Tarui2

1 Graduate School of Informatics, Kyoto University
Kyoto 606-8501 Japan

morizumi@kuis.kyoto-u.ac.jp
2 Department of Info and Comm Eng, University of Electro-Comm

Chofu, Tokyo 182-8585 Japan
tarui@ice.uec.ac.jp

Abstract. A zero-one sequence x1, . . . , xn is k-tonic if the number of
i’s such that xi �= xi+1 is at most k. The notion generalizes well-known
bitonic sequences. In negation-limited complexity, one considers circuits
with a limited number of NOT gates, being motivated by the gap in
our understanding of monotone versus general circuit complexity, and
hoping to better understand the power of NOT gates. In this context,
the study of inverters, i.e., circuits with inputs x1, . . . , xn and outputs
¬x1, . . . , ¬xn, is fundamental since an inverter with r NOTs can be used
to convert a general circuit to one with only r NOTs. In particular, if
linear-size log-depth inverter with r NOTs exists, we do not lose gen-
erality by only considering circuits with at most r NOTs when we seek
superlinear size lower bounds or superlogarithmic depth lower bounds.
Markov [JACM1958] showed that the minimum number of NOT gates
necessary in an n-inverter is �log2(n + 1)�. Beals, Nishino, and Tanaka
[SICOMP98–STOC95] gave a construction of an n-inverter with size
O(n log n), depth O(log n), and �log2(n + 1)� NOTs. We give a con-
struction of circuits inverting k-tonic sequences with size O((log k)n) and
depth O(log k log log n+log n) using log2 n+log2 log2 log2 n+O(1) NOTs.
In particular, for the case where k = O(1), our k-tonic inverter achieves
asymptotically optimal linear size and logarithmic depth. Our construc-
tion improves all the parameters of the k-tonic inverter by Sato, Amano,
and Maruoka [COCOON06] with size O(kn), depth O(k log2 n), and
O(k log n) NOTs. We also give a construction of k-tonic sorters achieving
linear size and logarithmic depth with log2 log2 n+log2 log2 log2 n+O(1)
NOT gates for the case where k = O(1). The following question by Turán
remains open: Is the size of any depth-O(log n) inverter with O(log n)
NOT gates superlinear?

Keywords: circuit complexity, negation-limited circuit, inverter,
k-tonic.

1 Introduction and Summary

Although exponential lower bounds are known for the monotone circuit size [12],
[8], [5], at present we cannot prove a superlinear lower bound for the size of

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 605–615, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

606 H. Morizumi and J. Tarui

circuits computing an explicit Boolean function. It is natural to ask: What hap-
pens if we allow a limited number of NOT gates? The hope is that by the study
of negation-limited complexity of Boolean functions under various scenarios [6],
[7], [4], [3], [2], [13], [9], we obtain a better understanding about the power of
NOT gates.

As explained in the abstract, the study of inverters is fundamental in this con-
text. We consider circuits consisting of AND/OR/NOT gates, and the size of a
circuit is the number of gates in it. The best known construction of a general in-
verter is due to Beals, Nishino, and Tanaka [4]. Their inverter has size O(n log n)
and depth O(log n) and uses �log2(n + 1)� NOT gates. . In a recent paper [13],
Sato, Amano, and Maruoka considered circuits that is guaranteed to invert a
restricted class of inputs, and gave a construction for a k-tonic inverter , i.e., a
circuit that inverts all k-tonic 0/1 sequences, with size O(kn), depth O(k log2 n),
and O(k log n) NOTs. We give a new, different construction of a k-tonic inverter
achieving improvements of all the three parameters. In particular, for k = O(1),
we achieve asymptotically optimal linear size and logarithmic depth using only
slightly more than log2 n NOT gates. Improvements are shown in Table 1.

Theorem 1. There is a k-tonic inverter that has size O((log k)n) and depth
O(log k log log n + log n), and uses log2 n + log2 log2 log2 n + O(1) NOT gates.

Table 1. The parameters of the k-tonic inverters of Sato et al [13] and this paper

Sato et al [13] this paper

size O(kn) O((log k)n)

depth O(k log2 n) O(log k log log n + log n)

of NOTs O(k log n) log2 n + log2 log2 log2 n + O(1)

Amano, Maruoka, and Tarui [3] considered the minimum size of a circuit
that merges two 0/1 sequences using t NOT gates, and they showed that it is
Θ(n log n/2t), thus demonstrating a smooth trade-off of size versus the number
of NOTs from the monotone case of Θ(n log n) to the general case of Θ(n).
Their merging circuit actually works for any bitonic sequence. Sato, Amano,
Maruoka [13] also considered a generalized scenario in terms of k-tonic sequences
and, for t ≤ log2 n and k = O(log n), they gave a construction of a k-tonic
sorter , i.e., a circuit that sorts all k-tonic binary sequences, that has size O(kn+
(n log n)/2t) and uses O(tk2) NOT gates. The design principle and the analysis
of our k-tonic inverter immediately yields an improved k-tonic sorter:

Theorem 2. There is a k-tonic sorter that uses t NOT gates and has size
O ((log k)n + (n log n)(t/2t)) and depth O((log k) · t + log n).

2 Component Circuits/Networks

In this section we explain the components that we use in our circuits. The con-
structions in Sections 2.1 and 2.2 are due to Beals, Nishino, and Tanaka [4].

Linear-Size Log-Depth Negation-Limited Inverter 607

The reader may choose to skip this section and come back to it after seeing how
components are assembled and used in our circuits.

2.1 Inverting the Inputs of a Comparator Network

Let N1 be a comparator network (see, e.g., Knuth [10]) with inputs v1, . . . , vn and
outputs w1, . . . , wn. Assume that N1 has depth d and contains s comparators.
Consider the case where inputs are Boolean. In the Boolean case, each compara-
tor can be considered as a pair of one AND gate and one OR gate (Figure 1),
and thus N1 can be considered as a depth-d size-2s monotone circuit.

Assume that the negations of the outputs of N1, i.e., ¬w1, . . . ,¬wn are com-
puted by another circuit and are available. Then, we can construct a circuit N2

that outputs the negations of the inputs ¬v1, . . . ,¬vn as follows. For each com-
parator c with inputs x1 and x2 and outputs y1 and y2, we can compute ¬x1

and ¬x2 from x1, x2,¬y1,¬y2 as shown in Figure 1. Repeatedly apply this con-
struction considering comparators one by one from the outputs of N1 towards
the inputs, and obtain the network N2. The circuit N2 has depth 2d and consists
of 2s ANDs and 2s ORs.

x1 x2

y1 y2

x1 x2y1 y2

x1 x2

Fig. 1. computing the negations of inputs using the negations of outputs

2.2 The Beals-Nishino-Tanaka Inverter

The inverter operates as follows. Sort x1, . . . , xn by the (upside-down) AKS n-
sorting network [1] with depth O(log n) and size O(n), and obtain y1 ≥ · · · ≥
yn. Apply Fischer’s network Mn [6], [7], [4], and obtain ¬y1, . . . ,¬yn. Finally,
apply the network explained in Section 2.1 that outputs ¬x1, . . . ,¬xn using
¬y1, . . . ,¬yn. Here Mn is a network that inverts a sorted 0/1-sequence y1 ≥
· · · ≥ yn with size O(n) and depth O(log n) using �log2(n + 1)� NOT gates.
(More precisely, for n = 2r − 1, Mn has size 4n − 3r; this is the minimum

608 H. Morizumi and J. Tarui

size [9] of circuits inverting n sorted inputs with r NOTS.) The inverter uses
�log2(n + 1)� NOT gates and has depth O(log n) and size O(n log n).

2.3 Conditional Shifter

Let p ∈ {0, 1}. Assume that δ ≤ α and let y1, . . . , yα+δ be a 0/1-sequence.
Suppose that we want to let z1, . . . , zα respectively be y1, . . . , yα if p = 1 and
yδ+1, . . . , yα+δ if p = 0. In other words, we want to either (1) discard the last
δ yj’s, or (2) discard the first δ yj’s and then shift by δ. This can be easily be
done using p and ¬p as follows: For j = 1, . . . , α, compute

zj = (p ∧ yj) ∨ (¬p ∧ yj+δ).

Let y′
1 ≤ · · · ≤ y′

α+δ and z′1 ≤ · · · ≤ z′α respectively be the 0/1-sequences ob-
tained by sorting y1, . . . , yα+δ and z1, . . . , zα. Assume further that the following
condition holds:

p = 0 =⇒ y1 = · · · = yδ = 0;
p = 1 =⇒ yα+1 = · · · = yα+δ = 1.

Then, we can easily compute ¬y1, . . . ,¬yα+δ and y′
1, . . . , y

′
α+δ as follows.

¬yj =

⎧
⎨

⎩

(p ∧ ¬zj) ∨ ¬p for j = 1, . . . , δ;
(p ∧ ¬zj) ∨ (¬p ∧ ¬zj−δ) for j = δ + 1, . . . , α;
¬p ∧ ¬zj−δ for j = α + 1, . . . , α + δ.

y′
j =

⎧
⎨

⎩

p ∧ z′i for j = 1, . . . , δ;
(p ∧ z′j) ∨ (¬p ∧ z′j−δ) for j = δ + 1, . . . , α;
p ∨ (¬p ∧ z′j−δ) for j = α + 1, . . . , α + δ.

3 Negation-Limited k-Tonic Inverter

Most of this section is devoted to an explanation of our k-tonic inverter claimed
in Theorem 1. In Section 3.1 we explain the overall structure of our k-tonic
inverter. For the sake of exposition, we first consider computing pivot bits in a
naive way, and we provide rough analysis for the number of NOT gates needed
for reducing the problem size. In Section 3.2 we explain how we actually compute
pivot bits in our circuit to achieve the claimed depth. It turns out that most work
we do is giving appropriate definitions and developing an appropriate framework
for analysis. In Section 3.3 we explain how we can achieve the number of NOT
gates as claimed in Theorem 1 by a simple finer analysis. In Section 3.4 we
explain how we can obtain our k-tonic sorter in a similar way.

3.1 Overall Structure of the k-Tonic Inverter

We first explain using a general algorithmic language and then explain in terms
of circuits. We consider a k-tonic binary input sequence of length n and assume

Linear-Size Log-Depth Negation-Limited Inverter 609

that n = k2r for some integer r. If n is not of this form, we can pad an in-
put sequence x = 〈x1, . . . , xn〉 with trailing 1’s and obtain the sequence x′ =
〈x1, . . . , xn, 1, . . . , 1〉 whose length is the minimum n′ ≥ n of the form n′ = k2r,
apply the inverter for the (k + 1)-tonic sequence x′, and discard the last n′ − n
outputs.

Let x = 〈x1, . . . , xn〉 be a k-tonic 0/1 sequence of length n = 4km. Think
of xi’s as entries of a 4k × m matrix M as follows. (We won’t be doing any
linear algebra; we can equally speak in terms of a rectangular array or a two-
dimensional grid.)

M =

⎛

⎜
⎜
⎜
⎝

x1 x2 · · · xm−1 xm

xm+1 xm+2 · · · x2m−1 x2m

...
...

. . .
...

...
x(4k−1)m+1 x(4k−1)m+2 · · · x4km−1 x4km

⎞

⎟
⎟
⎟
⎠

.

A row is dirty if it contains both 0 and 1; otherwise it is clean; an all-0 row is
0-clean and an all-1 row is 1-clean.

Since the sequence x is k-tonic, among the 4k rows of M , at most k rows are
dirty. Sort each column of M with smaller entries up, and obtain the matrix M0.
The matrix M0 has at most k dirty rows, and all of them as middle rows. Thus
either the bottom (4k − k)/2 = 3k/2 rows are all 1-clean, or else the top 3k/2
rows are all 0-clean. For now, we use the following weaker form: Either (1) all
the bottom k rows are 1-clean or (2) all the top k rows are 0-clean.

Define pivot bit p as p = AND of the km entries in the bottom k rows of M0.
Use one NOT gate and obtain ¬p. Using p and ¬p discard either the bottom
k 1-clean rows or the top k 0-clean rows according to whether p = 1 or 0, i.e.,
whether (1) holds or not. The remaining 3k-row matrix M1 has at most k dirty
rows, and all of them as middle rows. Again discard the bottom (3k − k)/2 = k
rows or the top k rows using the pivot bit for the bottom k rows together with
one NOT gate.

We are left with a 2k ×m matrix M2. Split each row of M2 into the first half
and the last half. Let L be the 4k × m

2 matrix whose 4k rows are the 4k halves
of the rows of M2 stacked on top of one another for each row. At most k rows
of L are dirty. Thus using two NOT gates we have halved the problem size: We
can apply the same operation and arguments for L, i.e., sort each column and
discard 2k clean rows using two NOT gates.

We now explain in terms of circuits. We start over with the 4k×m matrix M
above. To sort each column of M , apply AKS sorting networks each sorting
4k elements; use m separate networks for m columns in parallel. Now consider
the column-sorted matrix M0, and let y1, . . . , yn be the entries in its first row
through its last row.

Consider, for now, computing the pivot bit p naively as p = ∧4k
j=3km+1 yj .

Using one NOT gate compute ¬p. Discard the top k rows or the bottom k rows
by the conditional shifter in Section 2.3: For j = 1, . . . , 3km, compute zj =
(p∧ yj)∨ (¬p∧ yj+k). The zj ’s are the entries of the 3k×m matrix M1. Assume

610 H. Morizumi and J. Tarui

that ¬z1, . . . ,¬z3km are the outputs of the our subcircuit inverting z1, . . . , z3km.
We can use the conditional shifter for negations in Section 2.3 and obtain ¬yj ’s.

Continue halving the problem size ν = log2 log2 n times so that the size is
n′ = n/ log2 n, and then use the Beals-Nishino-Tanaka inverter for n′ inputs.

Our circuit consists of three parts (Figure 2):

subcircuit 1 computing pivot bits and reducing the problem size from n to n′

subcircuit 2: the Beals-Nishino-Tanaka inverter for n′ = n/ log2 n inputs

subcircuit 3, which shifts the outputs appropriately using the the pivot bits

x1

x2

xn

.
.
.

 n/logn
 inv.

T1

T2 .
.
.

... ..
.

S2

S1
.
.
.

x1

x2

xn

.
.
.

Fig. 2. Overall structure of the inverter

The inverter explained so far has the parameters shown in Table 2. The pa-
rameters of subcircuits 2 and 3 are readily seen. We provide some explanation
for the parameters of subcircuit 1.

For n = km, consider the first parallel application of m separate AKS sorting
networks each sorting k elements. This first part has size O((log k)n). Since the
value of n geometrically decreases by a constant factor, the size of subcircuit 1 is
dominated by the size of this first part. If we compute each pivot bit naively as
taking the AND of some yj’s as above, this takes depth O(log n); we repeat this
ν times; thus the depth of subcircuit 1 will be O(log n · ν) = O(log n log log n).
In the consideration above we halve the problem size by two NOT gates; thus a
total of 2ν = 2 log2 log2 n NOTs are used for the problem size reduction.

Linear-Size Log-Depth Negation-Limited Inverter 611

Table 2. The parameters of subcircuits 1, 2, 3

subcircuit 1 subcircuit 2 subcircuit 3

size O((log k)n) O(n) O(n)
depth O(log n log log n) O(log n) O(log n)

of NOTs 2 log2 log2 n + O(1) log2 n − log2 log2 n + O(1) 0

In Section 3.2 and 3.3 we explain how to reduce the depth of subcircuit 1
to O(log k log log n) and the number of NOTs in subcircuit 1 to log2 log2 n +
log2 log2 log2 n + O(1), and thus obtain an k-tonic inverter with the parameters
claimed in Theorem 1.

3.2 Reducing the Depth to O(log k log log n)

Let M be an l × m 0/1-matrix. Let t be a nonnegative integer such that 2t

divides m, i.e., we can divide each row into 2t consecutive parts of equal size.
The parameter t represents the number of pivot bits in our circuit, which equals
the number of times that we shrink the problem size by a constant factor, which
also equals the number of NOT gates that we use.

For s = 0, 1, . . . , t, we define an s-block of M as follows. Each row itself forms
a 0-block; there are l 0-blocks. Split each 0-block, i.e., split each row into the first
half and the last half. These halves are the 2l 1-blocks. Similarly, splitting each
(s − 1)-block yields two s-blocks; there are 2sl s-blocks. Thus each row forms
2s s-blocks for s = 0, . . . , t, and hence forms a total of u =

∑t
s=0 2s = 2t+1 − 1

blocks. For each row, order these u blocks as follows. The first block is the 0-
block, i.e., the whole row. Then comes the two 1-blocks, i.e., the first half and
the last half, in this order. Then comes the four 2-blocks, i.e, the first quarter
up to the last quarter; and so on.

Let F = (fij) be an l× u 0/1-matrix, where u is as above. Our intention will
roughly be to let the equality fij = 1 represent the fact that the j-th block in
the i-th row of M is 1-clean, i.e., all-1.

In our circuit, we call fij a flag bit . We compute flag bits fij ’s just once as
follows. For each t-block b, which is a smallest block, compute the flag bit fb

for block b as fb = ∧xi∈b xi. For s = t − 1, . . . , 0, each s-block b contains two
(s + 1)-blocks b1 and b2; compute fb as fb = fb1 ∧ fb2 . Thus all flag bits are
initially computed using only ANDs in depth log2 m. After initial computation,
we sort flag bits column-wise using AKS sorting networks and discard bottom
or top rows of flag bits as we discard top or bottom rows of input bits.

Right after the initial computation, the flag bit fb for a block b is 1 iff the
block b is 1-clean. After sorting fb’s, this may not hold: it is possible that a
block b is 1-clean but fb = 0. But sorting maintains the property that if fb = 1,
then b is 1-clean (we later call this 1-conservative), and we show how this suffices
for our purposes. We discard the bottom k rows of input bits if the AND of the
corresponding k flag bits is 1, computing the AND in depth �log2 k�. In other

612 H. Morizumi and J. Tarui

words, the first pivot is computed in depth �log2 n�, and thereafter each pivot
bit is computed in depth �log2 k�. This is how we obtain the claimed depth.

We proceed to show the correctness of the method above. We give definitions
of key properties; Lemma 2 says that the properties hold after the initial com-
putation of flag bits; Lemma 3 says that the properties are maintained by the
operations above.

For two matrices M and F as above, the pair (M, F) is 1-conservative if the
following holds: For 1 ≤ i ≤ l and 1 ≤ j ≤ u, if fij = 1 then the j-th block in the
i-th row of M is 1-clean. The j-th block b in the i-th row of M is good if either
(1) b is 1-clean and fij = 1 or (2) b is 0-clean; otherwise b is a bad block. Say
that (M, F) is k-mixed if there are at most k bad s-blocks for each s = 0, . . . , t.
Note that the definitions of 1-conservative and k-mixed are with respect to the
parameter t. When appropriate, we make this dependence explicit by saying,
e.g., k-mixed with respect to t subdivisions .

Let (M, F) be as above: M is an l × m matrix and F is an l × u matrix,
where u =

∑t
s=0 2s = 2t+1 − 1 for a parameter t ≤ 2m. Stacking (M, F) yields

the pair of matrices (M̂, F̂), where M̂ is an 2l × (m/2) matrix and F̂ is an
2l × ((u − 1)/2) matrix obtained as follows. Split each row of M into the first
half and the last half. Stack the 2l halves thus obtained on top of one another,
and obtain a 2l× m/2 matrix M̂ . In other words, the first half and the last half
of the i-th row of M is respectively the (2i− 1)-th row and the 2i-th row of M̂ .
As for F̂ : Throw away the first column of F , which corresponds to 0-blocks of
M ; the 0-blocks have been thrown away by stacking M into M̂ . Put the second
column of F on top to the third column; put the 4th and the 5th column on top
of the 6th and the 7th column respectively; in general put the (2s +r)-th column
on top of the (2s + 2s−1 + r)-th column (0 ≤ r < 2s, 1 ≤ s ≤ t), and obtain F̂ .

Lemma 2. Let x1, . . . , xn be a k-tonic 0/1-sequence of length n = lm. Let
M be the l × m matrix having xi’s in a row-major form: e.g., the first row is
x1, . . . , xm. Consider s-blocks of M for 0 ≤ s ≤ t. Let F = (fij) be the l × m
0/1-matrix such that fij = AND of all xr ’s in the j-th block of the i-th row.
Then, (M, F) is 1-conservative and k-mixed with respect to t subdivisions.

Proof. By definition of fij ’s, the pair (M, F) is 1-conservative; furthermore,
clearly there is no 1-clean block with the corresponding flag bit fij being 0: In
the setting above a block b is bad iff it is dirty. A 0-1 change in the sequence
x1, . . . , xn produces at most one dirty s-block for each s = 0, . . . , t. The lemma
follows. �

Lemma 3. Assume that (M, F) is 1-conservative and is k-mixed with respect to
t subdivisions. Let M and F respectively denote the matrix obtained by sorting
columns of M and F . Further, let M̂ and F̂ respectively denote the matrix
obtained by stacking M and F . Then, (M, F) is 1-conservative and k-mixed
with respect to t subdivisions. Further, (M̂, F̂) is 1-conservative and k-mixed
with respect to t − 1 subdivisions.

Linear-Size Log-Depth Negation-Limited Inverter 613

Proof. For simplicity, first consider 0-blocks, i.e, rows of M and the corre-
sponding first column c = (ci1) of F . Assume that c contains α 1’s, and that
ci11 = ci21 = · · · = ciα1 = 1.

Since (M, F) is 1-conservative, the α rows of M , rows i1, i2, . . . , iα, are 1-clean.
After column-sorting, the first column ci1 of F contains α 1’s at the bottom, and
the bottom α rows of M are 1-clean. Thus the condition of being 1-conservative
holds with respect to the first column of F and the corresponding blocks, i.e.,
all the 0-blocks. Exactly the same argument applies for any column and the
corresponding blocks. Hence (M, F) is 1-conservative.

Assume that M and F have l rows and that M is k-mixed. To see that (M, F)
is k-mixed, again first consider 0-blocks, i.e., rows of M and the corresponding
first column c = (ci1) of F . Assume that M has α 1-clean good rows and β
0-clean good rows. By definition of goodness, the column c contains α 1’s. After
column-sorting, the bottom α rows are 1-clean and the bottom α entries of c are
1’s; thus there are α 1-clean good blocks. The top β rows are 0-clean, and hence
they are good. Thus there are as many good 0-blocks in (M, F) as in (M, F).

Now consider the 1-blocks of M , i.e., the first halves and the last halves of
the rows. Assume that there are k1 bad 1-blocks among the first halves and k2

bad 1-blocks among the last halves, where k1 + k2 ≤ k. We can apply the above
argument for 0-blocks separately for the first halves and for the last halves. In
each of the two cases, after column-sorting there are as many good 1-blocks as
before. Hence the assertion holds for 1-blocks. For the s-blocks, we can argue
similarly separately considering 2s groups of s-blocks. This completes our proof
that (M, F) is k-mixed.

Finally, stacking does not destroy being 1-conservative nor does it introduce
any new bad block. �
In our circuit stacking simply corresponds to rearranging the ordering of the
intermediate gates; it does not need any gate. This completes our proof of the
claimed depth reduction.

3.3 Reducing the Number of NOTs

Consider, as in Section 3,1, a 4k-row matrix M consisting of a k-tonic 0/1-
sequence, and the matrix M0 obtained from M by sorting each column. Discard
k rows using one NOT gate. Now, instead of again discarding as explained in
Section 3.1, consider processing the remaining 6k 1-blocks; i.e., halve the 3k
rows, stack the 6k halves, and consider the resulting 6k-row matrix. At most k
rows are bad. Discard 2k rows. (Actually we can discard (6k − k)/2 = (5/2)k
rows; this does not yield an asymptotic improvement.)

Further halve and stack to obtain 2(6k−2k) = 8k rows, discard 3k rows, obtain
2(8k − 3k) = 10k rows, discard 4k rows, and so on. In general, at iteration s,
discard sk rows out of (2s+2)k rows; halve and stack to obtain ((2s + 2)k − sk)×
2 = 2sk + 4k = (2(s + 1) + 2)k rows. Thus with t NOT gates we reduce the
problem as follows. We assume that t ≥ 2.

614 H. Morizumi and J. Tarui

3
4
· 4
6
· 5
8
· 6
10

· · · · · t + 2
2t + 2

=
t∏

s=1

s + 2
2s + 2

= (1/2)t−1 t + 2
4

≤ (1/2)t · t,

where we have the second equality since each denominator is twice the previous
numerator. Thus we can reduce the size to 1/ log2 n using t NOT gates with t
satisfying 2t/t ≥ log2 n, and hence with t = log2 log2 n + log2 log2 log2 n + O(1).

In the scheme above, the column size in column-sorting increases, and we use
AKS k′-sorting networks for increasing k′. This increases the depth of subnet-
work 1, but we can easily see that the asymptotic depth does not change. This
completes the description of our k-tonic inverter as claimed in Theorem 1, and
thus the proof of Theorem 1.

3.4 Negation-Limited k-Tonic Sorter

We can obtain a k-tonic sorter in Theorem 2 as follows. Use exactly the same
design as above to reduce the problem size to n′ = n (t/2t) with t NOT gates.
Then, instead of the Beals-Nishino-Tanaka inverter use the AKS n′-sorting net-
work. Apply the shifter for sorted outputs described in Section 2.3.

4 Open Problems

The following question by Turán remains open: Is the size of any depth-O(log n)
inverter with O(log n) NOT gates superlinear?

For k = O(1), can we reduce the number of NOT gates in a k-tonic inverter
to log2 n + O(1) while maintaining size O(n) and depth O(log n)? This question
may be of interest somewhat beyond its minor technical appearance: in one way
it asks whether we can utilize each NOT gate to exactly halve the problem size.

Acknowledgement

We thank the anonymous referees for the valuable comments and suggestions.

References

1. M. Ajtai, J. Komlós and E. Szemerédi, An O(n log n) Sorting Network, Pro-
ceedings of STOC83: the 15th Annual ACM Symposium on Theory of Computing
(1983), pp. 1–9.

2. K. Amano and A. Maruoka, A Superpolynomial Lower Bound for a Circuit
Computing the Clique Function with at most (1/6) log log n Negation Gates, SIAM
Journal on Computing (2005) 35(1), pp. 201–216.

3. K. Amano, A. Maruoka and J. Tarui, On the Negation-Limited Circuit Com-
plexity of Merging, Discrete Applied Mathematics (2003) 126(1), pp. 3–8.

Linear-Size Log-Depth Negation-Limited Inverter 615

4. R. Beals, T. Nishino and K. Tanaka, On the Complexity of Negation-Limited
Boolean Networks. SIAM Journal on Computing , (1998) 27(5), pp. 1334–1347;
a preliminary version appears in: Proceedings of STOC95: the 27th Annual ACM
Symposium on Theory of Computing (1995), pp. 585–595.

5. R. Boppana and M. Sipser, The Complexity of Finite Functions, Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complexity,
J. v. Leeuwen editor, Elsevier/MIT Press (1990), pp. 757–804.

6. M. Fischer, The Complexity of Negation-Limited Networks - A Brief Survey,
Lecture Notes in Computer Science (1975) vol. 33, pp. 71–82.

7. M. Fischer, Lectures on Network Complexity. Technical Report 1104, (1974,
revised 1996) CS Department, Yale University, (available on the web).

8. D. Harnik and R. Raz, Higher Lower Bounds on Monotone Size, Proceedings
of STOC00: the 32nd Annual ACM Symposium on Theory of Computing (2000),
pp. 378–387.

9. K. Iwama, H. Morizumi and J. Tarui, Negation-Limited Complexity of Parity
and Inverters, Proceedings of ISAAC06: the 17th International Symposium on
Algorithms and Computation (2006), Lecture Notes in Computer Science vol. 4280,
pp. 223–232.

10. D. Knuth, The Art of Computer Programming vol. 3: Sorting and Searching, 2nd
edition (1998), Addison-Wesley.

11. A. Markov, On the Inversion Complexity of a System of Functions, Journal of
the ACM (1958) 5(4), pp. 331–334.

12. A. Razborov, Lower Bounds on the Monotone Complexity of Some Boolean
Functions, Dokl. Akad. Nauk SSSR (1985) 281(4), pp. 798–801 (in Russian);
English translation in: Soviet Math. Dokl. (1985) 31, pp. 354–357.

13. T. Sato, K. Amano, and A. Maruoka, On the Negation-Limited Circuit Com-
plexity of Sorting and Inverting k-tonic Sequences, Proceedings of COCOON06:
the 12th Annual International Computing and Combinatorics Conference (2006),
Lecture Notes in Computer Science vol. 4112, pp. 104–115.

The Existence of Unsatisfiable Formulas in

k-LCNF for k ≥ 3�

Qingshun Zhang and Daoyun Xu

Department of Computer Science,
Guizhou University (550025), Guiyang, P.R. China
zhangqingshunnb@126.com, dyxu@gzu.edu.cn

Abstract. A CNF formula F is linear if any distinct clauses in F con-
tain at most one common variable. A CNF formula F is exact linear
if any distinct clauses in F contain exactly one common variable. All
exact linear formulas are satisfiable [4], and for the class LCNF of lin-
ear formulas , the decision problem LSAT remains NP-complete. For the
subclasses LCNF of LCNF≥k, in which formulas have only clauses of
length at least k, the decision problem LSAT≥k remains NP-complete
if there exists an unsatisfiable formula in LCNF≥k [3,5]. Therefore, the
NP-completeness of SAT for LCNF≥k (k ≥ 3) is the question whether
there exists an unsatisfiable formula in LCNF≥k. In [3,5], it is shown that
both LCNF≥3 and LCNF≥4 contain unsatisfiable formulas by the con-
structions of hypergraphs and latin squares. It leaves the open question
whether for each k ≥ 5 there is an unsatisfiable formula in LCNF≥k. In
this paper, we present a simple and general method to construct minimal
unsatisfiable formulas in k-LCNF for each k ≥ 3.

1 Introduction

A literal is a propositional variable or a negated propositional variable. A clause
C is a disjunction of literals, C = (L1∨· · ·∨Lm), or a set {L1, · · · , Lm} of literals.
A formula F in conjunctive normal form (CNF) is a conjunction of clauses, F =
(C1 ∧ · · · ∧Cn), or a set {C1, · · · , Cn} of clauses, or a list [C1, · · · , Cn] of clauses.
var(F) is the set of variables occurring in the formula F and var(C) is the set of
the variables in the clause C. We denote #cl(F) as the number of clauses of F
and #var(F) (or |var(F)|) as the number of variables occurring in F . CNF(n, m)
is the class of CNF formulas with n variables and m clauses. The deficiency of
a formula F is defined as #cl(F) − #var(F), denoted by d(F). A formula F is
minimal unsatisfiable (MU) if F is unsatisfiable and F −{C} is satisfiable for any
clause C ∈ F . It is well known that F is not minimal unsatisfiable if d(F) ≤ 0 [1].
So, we denote MU(k) as the set of minimal unsatisfiable formulas with deficiency
k ≥ 1. Whether or not a formula belongs to MU(k) can be decided in polynomial
time [2].

� The work is supported by the National Natural Science Foundation of China (No.
60463001, No. 10410638, No. 60310213).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 616–623, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Existence of Unsatisfiable Formulas in k-LCNF for k ≥ 3 617

A CNF formula F is linear if any two distinct clauses in F contain at most one
common variable. A CNF formula F is exact linear if any two distinct clauses in
F contain exactly one common variable. We define k-CNF := {F ∈ CNF| (∀C ∈
F)(|C| = k)}, LCNF := {F ∈ CNF| F is linear}, LCNF≥k := {F ∈ LCNF| (∀C ∈
F)(|C| ≥ k)}, and k-LCNF := {F ∈ LCNF| (∀C ∈ F)(|C| = k)}. The decision
problems of satisfiability are denoted as k-SAT, LSAT, and k-LSAT for restricted
instances to the corresponding to subclasses, respectively.

It is shown that every exact linear formulas is satisfiable [4], but LSAT re-
mains NP-completeness [3,4,5]. For the subclasses LCNF≥k, LSAT≥k remains
NP-completeness if there exists an unsatisfiable formula in LCNF≥k [3,4,5].
Therefore, the NP-completeness of LSAT≥k for k ≥ 3 is the question whether
there exists an unsatisfiable formula in LCNF≥k. We are interested in some
NP-complete problems for linear formulas, and get some simplified NP-complete
problem by constructing unsatisfiable linear formulas. It is helpful to analyze
complexity of resolutions, and to find some effective algorithm for satisfiability.

In [3,5], by the constructions of hypergraphs and latin squares, the unsat-
isfiable formulas in LCNF≥k (k = 3, 4) are constructed, respectively. But, the
method is too complex and has no generalization. In [5], it leaves the open ques-
tion whether for each k ≥ 5 there is an unsatisfiable formula in LCNF≥k.

In this paper, based on the characterization of minimal unsatisfiable formulas,
we introduce a generalize method in Lemma 1 and Lemma 2, which we can
transform a CNF formula into a required CNF formula by constructing proper
minimal unsatisfiable formulas. By this method, we present a simple and general
method to construct unsatisfiable formulas in k-LCNF for each k ≥ 3 by the
application of minimal unsatisfiable formulas and the induction. It is shown for
each k ≥ 3 that there exist minimal unsatisfiable formulas in k-LCNF.

2 Minimal Unsatisfiable Formulas and Its Applications

A clause C = (L1 ∨ L2 ∨ · · · ∨ Ln) can be presented as a set {L1, L2, · · · , Ln} of
literals. Similarly, A CNF formulas F = (C1 ∧ C2 ∧ · · · ∧ Cm) can be presented
as a set {C1, C2, · · · , Cm} of clauses, or a list [C1, C2, · · · , Cm] of clauses. var(F)
is the set of variables occurring in the formula F and var(C) is the set of the
variables in the clause C. We define |F | =

∑
1≤i≤m |Ci| as the size of F . In this

paper, the formulas mean CNF formulas.
A formula F = [C1, · · · , Cm] with n variables x1, · · · , xn in CNF(n, m) can

be represented as the following n × m matrix (ai,j), called the representation
matrix of F , where aij = + if xi ∈ Cj , aij = − if ¬xi ∈ Cj , otherwise aij = 0
(or, blank).

A formula F is called minimal unsatisfiable if F is unsatisfiable, and for any
clause f ∈ F , F − {f} is satisfiable. We denote MU as the class of minimal
unsatisfiable formulas, and MU(k) as the class of minimal unsatisfiable formu-
las with deficiency k. Let C = (L1 ∨ · · · ∨ Ln) be a clause. We view a clause

618 Q. Zhang and D. Xu

as a set of literals. The collection C1, · · · , Cm of subsets of C (as a set) is a
partition of C, where C =

⋃
1≤i≤m C and Ci ∩ Cj = φ for any 1 ≤ i 	= j ≤ m,

which corresponds to a formula FC = C1 ∧ · · · ∧ Cm. We call FC as a partition
formula of C. Specially, the collection {L1}, · · · {Ln} of singleton subsets of C is
called the simple partition of C, and the formula [L1, · · · , Ln] = L1 ∧ · · · ∧Ln is
called the simple partition formula of C.

Let F1 = [f1, · · · , fm] and F2 = [g1, · · · , gm] be formulas. We denote F1∨clF2 =
[f1∨g1, · · · , fm∨gm]. Similarly, let C be a clause and F = [f1, · · · , fm] a formula,
denote C ∨cl F = [(C ∨ f1), · · · , (C ∨cl fm)].

In the transformation from a CNF formula to a 3-CNF formula, we found
a basic application of minimal unsatisfiable: for a clause C = (L1 ∨ L2 ∨ · · · ∨
Lp) (p > 3) one can introduce (p− 3) new y1, y2, · · · , yp−3 variables, and split C
into a partition {L1, L2}, {L3}, · · · , {Lp−2}, {Lp−1, Lp} of C, and then construct
(p−2) clauses (L1 ∨L2∨y1), (L3∨¬y1 ∨y2), · · · , (Lp−2 ∨¬yp−4 ∨yp−3), (Lp−1∨
Lp ∨ ¬yp−3). In fact, [y1, (¬y1 ∨ y2), · · · , (¬yp−4 ∨ yp−3),¬yp−3] is a minimal
unsatisfiable in MU(1), and the partition {L1, L2}, {L3}, · · · , {Lp−3}, {Lp−1, Lp}
of C corresponds to a CNF formula [(L1∨L2), L3, · · · , Lp−2, (Lp−1∨Lp)]. Thus,
the formula [(L1 ∨ L2 ∨ y1), (L3 ∨ ¬y1 ∨ y2), · · · , (Lp−2 ∨ ¬yp−4 ∨ yp−3), (Lp−1 ∨
Lp∨¬yp−3)] is viewed as clauses-disjunction of [(L1∨L2), L3, · · · , Lp−2, (Lp−1∨
Lp)] and [y1, (¬y1∨y2), · · · , (¬yp−4∨yp−3),¬yp−3] at corresponding positions of
clauses, respectively. Additionally, an unit clause L corresponds to the formula
[(L∨y∨z), (L∨y∨¬z), (L∨¬y∨z), (L∨¬y∨¬z)], where [(y∨z), (y∨¬z), (¬y∨
z), (¬y ∨ ¬z)] is a minimal unsatisfiable formula MU(2), and a clause (L1 ∨ L2)
corresponds to the formula [(L1∨L2∨y), (L1∨L2∨¬y)], where [y,¬y] = y∧¬y
is is a minimal unsatisfiable formula MU(1). It implies that a subclause of the
original clause can be copied.

Based on this observation and the characterization of minimal unsatisfiable
formulas, we introduce a generalize method as follows.

Lemma 1. Let C = (L1 ∨ · · · ∨Ln) (n ≥ 2) be a clause and FC = [C1, · · · , Cm]
(m ≥ 2) a partition formula of C. For any MU formula H = [f1, · · · , fm] with
var(C) ∩ var(H) = φ, if a truth assignment ν satisfies the formula FC ∨cl H,
then ν(C) = 1. Conversely, for any truth assignment ν0 satisfying C, ν0 can be
extended into a truth assignment ν satisfying FC ∨cl H.

Proof. Let C = (L1 ∨ · · · ∨ Ln) be a clause and FC = [C1, · · · , Cm] (m ≥ 2) a
partition formula of C. Without losses of generality (w.l.o.g.), we assume C1 =
(L1 ∨ · · · ∨ Li1), C2 = (Li1+1 ∨ · · · ∨ Li2), · · · , Cm = (Lim−1+1 ∨ · · · ∨ Ln).

Let ν be a truth assignment satisfying FC ∨cl H . Since H is minimal unsatis-
fiable, we have ν(fk) = 0 for some (1 ≤ k ≤ m). It must be ν(Ck) = 1. It implies
ν(C) = 1 since Ck is a subclause of C.

Conversely, suppose that C is satisfied by a truth assignment ν0. Since C
is disjunction of literals L1, · · · , Ln, there exists some k (1 ≤ k ≤ n) such that
ν0(Lk) = 1. W.l.o.g., we assume ν0(L1) = 1, then ν0(C1) = 1. Since H is minimal

The Existence of Unsatisfiable Formulas in k-LCNF for k ≥ 3 619

unsatisfiable, we have H−{f1} is satisfiable, thus there exists a truth assignment
ν1 such that ν1(H − {f1}) = 1. Please note that var(C) ∩ var(H) = φ, we can
join into a truth assignment ν from ν0 and ν1, which for x ∈ var(C) ∪ var(H),
ν(x) = ν0(x) for x ∈ var(C), and ν(x) = ν1(x) for x ∈ var(H). It is clear that
ν is a truth assignment satisfying FC ∨cl H .

Example 1. Let C = (x1 ∨ · · · ∨ x8) be a clause, and FC = [(x1 ∨ x2), (x3 ∨
x4), (x5 ∨ x6), (x7 ∨ x8)]. We take a minimal unsatisfiable formula H = [(y1 ∨
y2), (¬y1 ∨ y2), (¬y2 ∨ y3), (¬y2 ∨ ¬y3)], and generate the formula FC ∨cl H =
[(x1∨x2∨y1∨y2), (x3∨x4∨¬y1∨y2), (x5∨x6∨¬y2∨y3), (x7∨x8∨¬y2∨¬y3)].

Based on the method in Lemma 1 for a clause, we have the following Lemma 2.
It presents a method constructing required formulas.

Lemma 2. Let F = C1 ∧ · · · ∧ Cn be a formula with |Ci| ≥ 2 for 1 ≤ i ≤ m.
Suppose that for each 1 ≤ i ≤ n, Fi is a partition formula of Ci and #cl(Fi) =
mi ≥ 2. Let H1, · · · , Hn be MU formulas satisfying the following conditions:

(1) For each 1 ≤ i ≤ n, #cl(Hi) = mi.
(2) (

⋃
1≤i≤n var(Hi)) ∩ var(F) = ∅.

(3) For any 1 ≤ i 	= j ≤ n, var(Hi) ∩ var(Hj) = ∅.
We define F ∗ := (F1 ∨cl H1) ∧ (F2 ∨cl H2) ∧ · · · ∧ (Fn ∨cl Hn). Then, F is

satisfiable iff F ∗ is satisfiable.

Proof. (⇒) Assume that F is satisfiable. We have a truth assignment ν0 over
var(F) such that ν0(F) = 1. It implies ν0(Ci) = 1 for each 1 ≤ i ≤ n. By the
proof of Lemma 1, we can extend ν0 into a truth assignment νi over var(F) ∪
var(Hi) such that νi(Fi ∨cl Hi) = 1. By the condition (3), we can combine
ν1, · · · , νn into a truth assignment ν∗ over var(F)∪var(H1)∪· · ·∪var(Hn) such
that ν∗(Fi ∨cl Hi) = 1 for each 1 ≤ i ≤ n, where ν∗(x) := ν0(x) for x ∈ var(F)
and ν∗(x) := νi(x) for x ∈ var(Hi) (1 ≤ i ≤ n). It means that F ∗ is satisfiable.

(⇐) Assume that F ∗ is satisfiable. We have a truth assignment ν over var(F)∪
var(H1) ∪ · · · ∪ var(Hn) such that ν(F ∗) = 1. It implies ν(Fi ∨cl Hi) = 1 for
each 1 ≤ i ≤ n. Please note for each 1 ≤ i ≤ n that Hi is minimal unsatisfi-
able and #cl(Hi) = #cl(Fi) = mi. We have νi(Hi) = 0 for each 1 ≤ i ≤ n,
where νi is the restriction of ν over var(Hi). By the definition of Fi ∨cl Hi and
ν(Fi ∨cl Hi) = 1, there exists some clause Ci,j of Fi such that ν0(Ci,j) = 1,
where ν0 is the restriction of ν over var(F). Since Ci,j is a subclause of Ci, we
have ν0(Ci) = 1. So, we have ν0(Ci) = 1 for each 1 ≤ i ≤ n. It means that F is
satisfiable.

Example 2. Let F = [(x1∨· · ·∨x8), (¬x1∨· · ·∨¬x8), (x1∨¬x2∨x3∨¬x4)] be a
formula. We take a minimal unsatisfiable formula H = [(y1∨y2), (¬y1∨y2), (¬y2∨
y3), (¬y2 ∨ ¬y3)], and copy H into two minimal unsatisfiable formulas H1 and
H2 with var(H1) ∩ var(H2) = ∅, and take H3 = [(w1 ∨ w2), (¬w1 ∨ w2),¬w2].
Finally, we generate the formula F ∗ as follows.

620 Q. Zhang and D. Xu

x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

y3

z1

z2

z3

w1

w2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ − +
+ − −

+ − +
+ − −

+ −
+ −

+ −
+ −

+ −
+ + − −

+ −
+ −
+ + − −

+ −
+ −
+ + −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We now introduce the following four MU formulas.

(1) An = [(x1 ∨ · · · ∨ xn), (¬x1 ∨ x2), (¬x2 ∨ x3), · · · , (¬xn−1 ∨ xn), (¬xn ∨
x1), (¬x1 ∨ · · · ∨ ¬xn)] ∈ MU(2). Its representation matrix is:

x1

x2

...

...
xn−1

xn

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ − + −
+ + − −
... +

...
... · · · ...

−
+ + − −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We take a formula Ac
n = [(¬x1∨x2), (¬x2∨x3), · · · , (¬xn−1∨xn), (¬xn∨x1)].

Clearly, both Ac
n+{(x1∨· · ·∨xn)} and Ac

n+{(¬x1∨· · ·∨¬xn)} are satisfiable, and
Ac

n+{(x1∨· · ·∨xn) |= (x1∧· · ·∧xn) and Ac
n+{(¬x1∨· · ·∨¬xn) |= (¬x1∧· · ·∧¬xn).

Clearly, the subformula Ac
n of An is satisfiable, and for any truth assignment

τ satisfying Ac
n it holds that τ(x1) = · · · τ(xn). The formula Ac

n presents a cycle
of implication: x1 → x2 → · · · → xn → x1.

(2) Bn = [(x1∨x3), (¬x1∨x2), · · · , (¬xs∨xs+1), · · · , (¬xn−2∨xn−1), (¬xn−1∨
¬x3)] ∈ MU(1), where n ≥ 6. The representation matrix of B6 is:

x1

x2

x3

x4

x5

⎛

⎜
⎜
⎜
⎜
⎝

+ −
+ −

+ + − −
+ −

+ −

⎞

⎟
⎟
⎟
⎟
⎠

Please note that #cl(Bn) = n and #var(Bn) = n − 1, and Bn is a linear
formula for n ≥ 6.

The Existence of Unsatisfiable Formulas in k-LCNF for k ≥ 3 621

(3) The standard MU formulas Sn with n variables, x1, · · · , xn, is defined by

Sn =
∧

(ε1,···, εn)∈{0,1}n(xε1
1 ∨ · · · ∨ xεn

n)

where x0
i = xi and x1

i = ¬xi for 1 ≤ i ≤ n. Denote the clause Xε1··· εn =
xε1

1 ∨ · · · ∨ xεn
n .

The representation matrix of S3 is:

x1

x2

x3

⎛

⎝
+ + + + − − − −
+ + − − + + − −
+ − + − + − + −

⎞

⎠.

The above MU formulas are useful in constructions of required formulas in
this paper.

3 Construction of Linear Minimal Unsatisfiable Formulas

In this section, we introduce a subclass of CNF, called linear CNF formulas, and
present a general constructing method of linear MU formulas.

Definition 1. (1) A formula F ∈ CNF is called linear if
(a) F contains no pair of complementary unit clauses, and
(b) For all Ci, Cj ∈ F with Ci 	= Cj , |var(Ci) ∩ var(Cj)| ≤ 1.
Let LCNF denote the class of all linear formulas.
(2) A formula F ∈ CNF is called exact linear if F is linear, and for all

Ci, Cj ∈ F with Ci 	= Cj, |var(Ci) ∩ var(Cj)| = 1.

For example, the formula Bn is linear for n ≥ 6. Let (XLCNF) LCNF denote the
class of all (exact) linear formulas. Similarly, denote by (XLCNF≥k) LCNF≥k

the class of all (exact) linear formulas, in which formulas have only clauses of
length at least k ∈ N .

Lemma 3. Let F = [C1, · · · , Cm] be a MU formula with |Ci| = li ≥ 2 for each
1 ≤ i ≤ m, and let {Gi = [f i

1, · · · , f i
li
]} is a collection of linear MU formula

where 1 ≤ i ≤ m, where var(Gi) ∩ var(Gj) = φ for any 1 ≤ i 	= j ≤ m.
Then, the formula F ∗ :=

∧
1≤i≤m(FCi ∨cl Gi) is a linear MU formula, where

FCi is the simple partition formula of clause Ci for 1 ≤ i ≤ m, and var(F) ∩
(
⋃

1≤i≤m var(Gi)) = φ.

Proof. Let F = [C1, · · · , Cm] be a MU formula with |Ci| = li ≥ 2 for each 1 ≤
i ≤ m. For 1 ≤ i ≤ m, we assume that Ci = (Li,1∨· · ·∨Li,li), and define a block
formula: FCi ∨cl Gi := [(Li,1 ∨ f i

1), · · · , (Li,li ∨ f i
li
)], where FCi = [Li,1, · · · , Li,li],

and the the formula: F ∗ :=
∧

1≤i≤m(FCi ∨cl Gi).

(1) F ∗ is minimal unsatisfiable.
Firstly, by Lemma 2, F ∗ is unsatisfiable since F is unsatisfiable and G1, · · · ,

Gm are minimal unsatisfiable.
Secondly, F ∗ is minimal unsatisfiable. For any clause g ∈ F ∗, w.l.o.g., we

assume g = (L1,1 ∨ f1
1), and consider the satisfiability of F ∗ − {g}.

622 Q. Zhang and D. Xu

Since F is minimal unsatisfiable, there exists a truth assignment τ0 over
var(F) satisfying [C2, · · · , Cm], and τ0 forces each literal in C1 to be false, i.e.,
τ0(L1,1) = · · · = τ0(L1,l1) = 0, and τ0(C2) = · · · = τ0(Cm) = 1. Since G1 is
minimal unsatisfiable, there exists a truth assignment τ1 over var(G1) satisfying
G1−{f1

1}. Thus, we have a truth assignment τ∗
1 satisfying (FC1∨cl G1)−{(L1,1∨

f1
1)} by joining τ0 and τ1, where τ∗

1 (x) = τ0(x) for x ∈ var(F) and τ∗
1 (x) = τ1(x)

for x ∈ var(G1).
For each 2 ≤ k ≤ m, since τ0(Ck) = 1, there is a literal Lk,jk

(1 ≤ jk ≤ lk) such
that τ0(Lk,jk

) = 1. By the minimal satisfiability of Gk, we have that Gk −{fk
jk
}

is satisfiable. Therefore, we have a truth assignment τk over var(Gk) satisfying
Gk − {fk

jk
}. Thus, we have a truth assignment τ∗

k satisfying (FCk
∨cl Gk) by

joining τ0 and τk, where τ∗
k (x) = τ0(x) for x ∈ var(F) and τ∗

k (x) = τk(x) for
x ∈ var(Gk).

Finally, we have a truth assignment τ∗ satisfying F ∗ − {g} by combining
τ0, τ1, · · · , τm, where τ∗(x) = τ0(x) for x ∈ var(F) and τ∗(x) = τk(x) for x ∈
var(Gk) (1 ≤ k ≤ m).

(2) F ∗ is linear.
For any distinct clauses f, g ∈ F ∗, we consider the following cases.

Case 1. Both f and g are in the same block formula.
There exists some k (1 ≤ k ≤ m) such that f = (Lk,s∨fk

s) and g = (Lk,s′∨fk
s′)

for some 1 ≤ s 	= s′ ≤ lk. By s 	= s′, var(f) ∩ var(g) ⊆ var(fk
s)∩ var(fk

s′). Since
Gk is linear, we have |var(fk

s) ∩ var(fk
s′)| ≤ 1. Thus, |var(f) ∩ var(g)| ≤ 1.

Case 2. f and g are in the different block formulas.
There exist some k and k′ (1 ≤ k 	= k′ ≤ m) such that f ∈ (FCk

∨cl Gk) and
g ∈ (FC′

k
∨cl Gk′). By constructions of block formulas, we have f = (Lk,s ∨ fk

s)
for some 1 ≤ s ≤ lk and g = (Lk′,s′ ∨ fk′

s′) for some 1 ≤ s′ ≤ lk′ . By k 	= k′, we
have var(Gk) ∩ var(Gk′) = φ. Thus, var(f) ∩ var(g) ⊆ var(Lk,s) ∩ var(Lk′,s′).
It implies that |var(f) ∩ var(g)| ≤ 1.

In Lemma 3, we present a method constructing MU formulas k−LCNF for k ≥ 3
by Sn and Bn (n ≥ 6) .

We consider firstly the construction of formulas for the case of k = 3.
We take MU formulas S6 and B6 with var(S6) ∩ var(B6) = φ in Section 2.

Please note that B6 is a linear MU formula, and |C| = 6 for each C ∈ S6, and
|C| = 2 for each C ∈ B6.

For each clause Xε1··· ε6 = (xε1
1 ∨ · · · ∨ xε6

6) ∈ S6, we take the simple partition
formula Fε1··· ε6 = [xε1

1 , · · · , xε6
6] = xε1

1 ∧ · · · ∧ xε6
6 of Xε1··· ε6 , and take a copy of

B6, denoted by Bε1··· ε6
6 , and define a formula (Fε1··· ε6 ∨cl Bε1··· ε6

6).
It restricts var(Bε1··· ε6

6) ∩ var(Bε′
1···ε′

6
6) = φ for any distinct (ε1, · · · , ε6), (ε′1,

· · · , ε′6) ∈ {0, 1}6, and var(Bε1··· ε6
6)∩var(S6) = φ for any (ε1, · · · , ε6) ∈ {0, 1}6.

We now define the following formula:

SL3 :=
∧

(ε1,···, ε6)∈{0,1}6(Fε1··· ε6 ∨cl Bε1··· ε6
6).

SL3 is a linear MU formula by Lemma 3.
Please note that #cl(SL3) = 6 · 26, and |C| = 3 for each C ∈ SL3.

The Existence of Unsatisfiable Formulas in k-LCNF for k ≥ 3 623

We define inductively a counting functions of clauses cl(k) for k ≥ 3: cl(3) =
6 · 26 and cl(k + 1) = cl(k) · 2cl(k) for k ≥ 3.

For the case of k ≥ 3, suppose that the linear formula SLk has been con-
structed such that SLk is a linear MU formula, and the length of each clause in
SLk equals to k.

By Lemma 3, we define inductively the following linear MU formula:
SLk+1 :=

∧
(ε1,···, εcl(k))∈{0,1}cl(k)(Fε1··· εcl(k) ∨cl SL

ε1··· εcl(k)

k)

where, for (ε1, · · · , εcl(k)) ∈ {0, 1}cl(k)

(a) Fε1··· εcl(k) is the simple partition formula of clause Xε1··· εcl(k) ∈ Scl(k).
(b) SL

ε1··· εcl(k)

k is a copy SLk with new variables.

Scl(k) is minimal unsatisfiable, SLk is both minimal unsatisfiable and linear.
By Lemma 3, SLk+1 is a linear MU formula.

Thus, we have the following result:

Theorem 1. For each positive integer k ≥ 3, k-LCNF contains minimal unsat-
isfiable formulas.

4 Conclusions and Future Works

Based on the application of minimal unsatisfiable formulas and the induction, we
present a simple and general method to construct some linear formulas minimal
unsatisfiable in k-CNF for each k ≥ 3, which is stronger than the open prob-
lem whether or not there are unsatisfiable formulas in LCNF≥k [3,?]. Based on
existences of minimal unsatisfiable formula in k-LCNF for k ≥ 3, we can show
that the decision problem k-LSAT is NP-complete for k ≥ 3. The future works
is to investigate deeply structures and characterizations of linear formulas, and
to apply linear formulas to analyzing complexity of resolutions and modifying
effective algorithms for satisfiability.

References

1. G. Davydov, I. Davydova, H. Kleine Büning, An efficient algorithm for the minimal
unsatisfiability problem for a subclass of CNF, Annals of Mathematics and Artificial
Intelligence, 23 (1998), pp. 229-245.

2. H. Fleischner, O. Kullmann, S. Szeider, Polynomial-time recognition of minimal un-
satisfiable formulas with fixed clause-variable difference,Theoretical Computer Sci-
ence, 289(1)(2002), pp. 503-516.

3. S. Porschen, and E. Speckenmeyer, Linear CNF formulas and satisfiability, Tech.
Report zaik2006-520, University Köln, 2006.

4. S. Porschen, E. Speckenmeyer, and B. Randerath, On linear CNF formulas, in: A.
Biere, C. P. Gomes (eds.), Proceedings of the 19th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2006), LNCS 4121, 2006,
pp. 212-225. (Springer, New York 2006)

5. S. Porschen, and E. Speckenmeyer, NP-completeness of SAT for restricted linear
formulas classes, Proceedings of Guangzhou Symposium on Satisfiability in Logic-
Based Modeling, pp. 111-123.

Improved Exponential Time Lower Bound of

Knapsack Problem Under BT Model�,��

Xin Li1, Tian Liu1,� � �, Han Peng1, Liyan Qian1, Hongtao Sun1,
Jin Xu1, Ke Xu2, and Jiaqi Zhu1

1 School of EECS, Beijing University, Beijing 100871, China
lt@pku.edu.cn, jxu@pku.edu.cn

2 Department of Computer Science, Beihang University, Beijing 100083, China
kexu@nlsde.buaa.edu.cn

Abstract. M. Alekhnovich et al. have recently proposed a model of
algorithms, called BT model, which covers Greedy, Backtracking and
Simple Dynamic Programming algorithms and can be further divided
into three kinds of fixed, adaptive and fully adaptive ones, and have
proved exponential time lower bounds of exact and approximation algo-
rithms under adaptive BT model for Knapsack problem which are about
Ω(20.5n/

√
n) and Ω((1/ε)0.315)(for approximation ratio 1 − ε), respec-

tively (M. Alekhovich, A. Borodin, J. Buresh-Oppenheim, R. Impagli-
azzo, A. Magen, and T. Pitassi, Toward a Model for Backtracking and
Dynamic Programming, Proceedings of Twentieth Annual IEEE Confer-
ence on Computational Complexity, pp308-322, 2005). In this short note,
we slightly improve their lower bounds to Ω(20.66n/

√
n) and Ω((1/ε)0.420),

respectively, through more complicated combinatorial arguments, and
propose as an open question what is the best achievable lower bound for
Knapsack problem under the adaptive BT model.

1 Introduction

Many combinatorial optimization problems are NP-complete and probably have
no polynomial time algorithms [1]. It is presumed, yet has not been proved
that there are only exponential time algorithms for these problems. It is very
hard to prove exponential time lower bound for these problems under univer-
sal model of algorithms, unless proving P �= NP . Nevertheless, under some
restricted model of algorithms, it is possible to prove exponential lower bounds
for NP-complete problems. Alekhnovich et al have proposed a restricted model
of algorithms, called BT model, which covers greedy, backtracking and simple

� In memory of Michael Alekhnovich (1978-2006).
�� This work was partially supported by National 973 Program of China (Grant

Nos. G1999032701, 2002CB312004 and 2005CB321901), the National Science
Foundation of China (Grant Nos. 60403003 and 30670540) and FANEDD(Grant
No.200241). An earlier version of this paper appeared as arxiv:cs.CC/0606064 in
June 2006.

� � � Corresponding author.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 624–631, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Exponential Time Lower Bound of Knapsack Problem 625

dynamic programming algorithms and can be further divided into three kinds
of fixed, adaptive and fully adaptive ones , and have proved exponential lower
bound for Knapsack, Vertex Cover and SAT under these models [2].

In this short note, we slightly improve the above mentioned exponential time
lower bounds of exact and approximation algorithms for Knapsack problem un-
der adaptive BT model. Although the improvement looks small and somewhat
technical, it is still non-trivial, involving some more complicated combinatorial
arguments, and seems to be the first one that provides such an improvement.
We also propose as an open question what is the best achievable lower bound
for Knapsack problem under the adaptive BT model.

The remaining parts of this note are as follows. In Section 2 we briefly in-
troduce the BT model. In Section 3 we improve the lower bounds of knapsack
problem under adaptive BT model. In Section 4 we propose as an open question
about the optimality of our result.

2 A Glimpse on the BT Model

In this section we quickly recall the relevant notions from the BT model which
are necessary to present our results. For more explaining and details, please refer
to the original paper [2].

2.1 A Description of the BT Model

A combinatorial optimization problem P is represented by a set of data items
D and a set of choices H . Each data item represents a partial structure of an
instance. The set of choices contains all the possible choices which can be applied
to data items. For example, in Knapsack problem, each item can be a data item
and ”chosen to be in the knapsack” and ”chosen not to be in the knapsack” can
be the set of choices. In the following, O(S) denotes the set of all the orderings
of all the elements in S.

A BT algorithm A to a problem P is comprised of an ordering function rk
A

and a choice function ck
A, where

rk
A : Dk × Hk �→ O(D)

is the ordering of unprocessed data items made by algorithm after the first k
data items has been processed, and

ck
A : Dk+1 × Hk �→ O(H ∪ {⊥})

represents the constraints made by algorithm when it makes choice for the (k+1)-
th item according to the processed k data items and the choices for them. The
algorithm consider only the choices before ⊥. If rk

A is a constant function and
does not depend on Dk or Hk, then it’s called fixed. If rk

A depends on Dk but
not on Hk, then it’s called adaptive. If rk

A depends on both Dk and Hk, then
it’s called fully adaptive. In this note, only adaptive BT algorithm is considered.

626 X. Li et al.

2.2 Lower Bound Strategies for the BT Model

The lower bound strategies for BT model takes the form of a game between
the adversary and the solver (the BT algorithm) [2,3]. In the game, since at the
beginning the solver cannot see all the input data items, so the adversary always
tries to produce a difficult problem instance for the solver. The game can be
viewed as a series of rounds. The ith round is composed of three parts: Pi, PIi

and Ti(i = 0, 1, 2...). Pi is the finite set of data items owned by the adversary
which cannot be seen by the solver in the ith pattern. PIi is the set of data items
representing a partial instance of the problem which have been seen by the solver
in the ith pattern. And Ti is the set of partial solutions to PIi. See Fig. 1.

P0 P1 P2

PI0 PI1 PI2 PI i

T0 T1 T2 Ti

...
Adversary

Solver

Pi

Fig. 1. Model of solver-adversary

At the beginning of the game, the solver gives an ordering rule on the input
data items. And the adversary constructs rule of deleting data items according
to the solver’s rule and gives P0. In this pattern, PI0 is empty and T0 is also
empty. In the ith(i ≥ 1) pattern, solver picks a data item a from Pi−1 and add
it to PIi−1, and gets PIi = PIi−1 ∪ {a}, and then computes Ti in which every
solution is an extension of some solution in Ti−1. Then adversary deletes a from
Pi−1 and some other data items and gets Pi. This process continues until Pi

is empty. In the last pattern, if PIi is not a valid instance or Ti contains the
optimal solution of PIi, then solver wins, otherwise adversary wins.

If the set of all the solutions to PIi can be classified into some equivalent
classes and for any partial solution PS to any equivalent class, there exists an
instance A ⊆ PIi ∪ Pi so that every optimal solution of A contains PS, then
PS is called ”indispensable”. If there exists a pattern in which the number of
all the indispensable solutions is exponential with the scale of the problem, then
the exponential lower bound of the problem can be achieved under the fixed or
adaptive BT model.

3 Improving Lower Bounds of Knapsack

In this section we improve known exponential lower bounds of exact algorithm
and approximation algorithm on Knapsack under adaptive BT model from [2].
We first define Knapsack Problems formally as:

Improved Exponential Time Lower Bound of Knapsack Problem 627

Knapsack Problem
Input : n pairs of non-negative integers, (x1, p1), ..., (xn, pn) and a positive

integer N . xi represents the weight of the ith item and pi represents the value
of the ith item. N is the volume of the knapsack.

Output : S ⊆ {1, 2, ..., n}, such that
∑

i∈S pi is maximized with respect to∑
i∈S xi ≤ N .

Simple Knapsack Problem
Input : n non-negative integers {x1, ..., xn} and a positive integer N . xi is the

weight and value of the ith item and N is the volume of the knapsack.
Output : S ⊆ {1, 2, ..., n}, such that

∑
i∈S xi is maximized with respect to∑

i∈S xi ≤ N .
Simple Knapsack problem is also NP complete [1]. So it is only needed to

prove the exponential lower bound for simple Knapsack. In the following, we
denote a simple Knapsack problem with n items and knapsack volume of N
with (n, N).

3.1 Lower Bound of Exact Algorithms

M. Alekhnovich et. al have proved the following theorem in [2].

Theorem 1. For simple Knapsack problem (n, N), the time complexity of any
adaptive BT algorithm is at least

(
n/2
n/4

)

= Ω(20.5n/
√

n).

We will prove the following theorem, following the same line of the previous
work but setting parameters differently in the proof and involving some more
complicated combinatorial arguments.

Theorem 2. For simple Knapsack problem (n, N), for any 0 < ε ≤ 1/2, there
exists N0, such that whenever N > N0, the time complexity of any adaptive BT
algorithm is at least

(
(2 − ε)n/3
(2 − ε)n/6

)

= Ω(2(2−ε)n/3/
√

n) ≈ Ω(20.66n/
√

n).

Proof : Let I = {0, 1, ..., 3N
n }, all the weights of the items are from I.

This is an constructive proof containing three steps.

Step 1
Solver chooses the first (2 − ε)n/3 items. After each, adversary deletes some
items from the remaining by the following two rules. Let S be the set of the
items which have been seen by the solver.

(1) For any S1, S2 ⊆ S, delete items with weight of |∑x∈S1
x − ∑

x∈S2
x|.

(2) For any S1 ⊆ S, delete items with weight of |N − ∑
x∈S1

x|.

628 X. Li et al.

Step 2
Let P be the set of the first (2 − ε)n/3 items chosen by solver. Now we prove
that: for all Q ⊂ P and |Q| = (2 − ε)n/6, there exists R ⊂ I − P , such that
|R| = (1 + ε)n/3 and

∑
x∈Q x +

∑
x∈R x = N . See Fig. 2:

Fig. 2. Constructing an indispensable partial solution

For all Q ⊂ P , let U = 3n, a = 3
(1+ε)n (N − ∑

x∈Q x), J = {i|i ∈ Z ∧ i ∈
[a−U, a+U]} (later we will prove that J ⊂ I). Adversary chooses (1+ε)n

3 −2 items
in J . After each choice, adversary will delete some items from the remaining by
the following two rules. Let S be the set of items chosen by solver and adversary.

(1) For all S1, S2 ⊆ S, delete items with weight of |∑x∈S1
x − ∑

x∈S2
x|.

(2) For all S1 ⊆ S, delete items with weight of |N − ∑
x∈S1

x|.
Let the sum of the weighs of these (1+ε)n

3 − 2 items be w. Then the adversary
can choose items with weight bigger or smaller than a so that

|w − a(n/2 − 2)| ≤ U.

Step 3
Adversary choose a pair of items from the following U + 1 pairs (later we will
prove that they are in I), such that the weight of these two items and the weight
of the previously chosen items sum to N :

(
v

2
− i,

v

2
+ i), i = 1, 2, ..., U + 1

in which v = N − ∑
x∈Q x − w.

Since in the process of choosing items, the number of all the items does not
exceed n, let this number be nt. Order these nt items by a fixed order, then every
item corresponds to a single bit of a nt-bit 0-1-(-1) string. And every such string
corresponds to a deleted item in the previous process. In detail, let the sum of
the weights of items corresponding to 1 in the string be s1, and let the sum of
the weights of items corresponding to -1 in the string be s−1. If s1 − s−1 > 0,
then delete item with weight of s1 − s−1 > 0; if s1 = 0, then delete item with
weight of N − s−1 > 0. So the number of the deleted items does not exceed U .

Improved Exponential Time Lower Bound of Knapsack Problem 629

So in these U + 1 pairs of items, there must be one pair which is not deleted.
Then we can choose this pair in the third step.

Next we prove all the weights of the chosen items are in I.
Because

a =
3

(1 + ε)n
(N −

∑

x∈Q

x)

and

0 ≤
∑

x∈Q

x ≤ (2 − ε)n
6

· 3N

n
=

(2 − ε)3N

6
,

so
3εN

2(1 + ε)n
≤ a ≤ 3N

(1 + ε)n
,

clearly,

0 ≤ 3εN

2(1 + ε)n
≤ a ≤ 3N

(1 + ε)n
≤ 3N

n
.

Since
|w − a(n/2 − 2)| ≤ U,

a =
3

(1 + ε)n
(N −

∑

x∈Q

x)

and
v = N −

∑

x∈Q

x − w,

so
|v − 2a| ≤ U,

that is
a − U

2
≤ v

2
≤ a +

U

2
.

So in the third step, the possible lightest and heaviest items are a − U
2 − U − 1

and a + U
2 + U + 1. So in order that all the items chosen in the third step are

from I, it is only needed that
{

a − U
2 − U − 1 ≥ 0

a + U
2 + U + 1 ≤ 3N

n

,

that is
{

N ≥ 3(1+ε)n3n+2(1+ε)n
3ε

N ≥ 3(1+ε)n3n+2(1+ε)n
6ε

,

So it is only need that N ≥ � 1+ε
ε �n3n. In fact, N ≥ � 1+ε

ε �n3n is also sufficient
to J ⊂ I.

Next we prove that solver must keep all Q in P as partial solution in the com-
putation tree, otherwise adversary can keep the solver from finding the optimal
solution.

630 X. Li et al.

We use the reduction to absurdity. Let Q1, Q2 ⊂ P and |Q1| = |Q2| = (2 −
ε)n/6. R1 and R2 correspond to Q1 and Q2 respectively. If solver does not keep
Q1, then adversary deletes all the items except R1. If solver keeps Q2 to get the
optimal solution, then there are only three cases (see Fig. 3):

Fig. 3. Proof of indispensable of partial solution of Knapsack

(1)
∑

x∈Q2
x +

∑
x∈R1

x < N .
The optimal solution N cannot be achieved in this case.
(2)

∑
x∈Q2

x +
∑

x∈R1
x = N .

So
∑

x∈Q1
x =

∑
x∈Q2

x. This is impossible. Since according to the first rule
in the first step, the last chosen item in the first step which is contained in Q1

or Q2 but not both cannot be chosen in the first step.
(3)

∑
x∈Q2

x +
∑

x∈R1
x > N , that is

∑
x∈Q2

x >
∑

x∈Q1
x.

Assume R′
1 is a subset of R1 and it leads to the optimal solution with Q2.

Then there are two subcases:
(3.1) there is only one item in R1 − R′

1.
According to the first rule in the first step, this item should be deleted.
(3.2) there are two or more items in R1 − R′

1.
Among the two or more items in R1 − R′

1, if there is only one item which is
chosen in the third step, then according to the first rule in the second step, it
should be deleted.

If there are two items which are chosen in the third step, then all the items
in R′

1 are chosen in the second step. Let the choosing order of these items be
i1, ..., is, then according to the second rule in the second step, the last item is
should be deleted.

So every Q in P is indispensable. So the time complexity is at least
(

(2 − ε)n/3
(2 − ε)n/6

)

= Ω(2(2−ε)n/3/
√

n) ≈ Ω(20.66n/
√

n).

�

Improved Exponential Time Lower Bound of Knapsack Problem 631

3.2 Lower Bound of Approximation Algorithms

M.Alekhnovich et. al have proved the following theorem in [2].

Theorem 3. For simple Knapsack problem, using adaptive BT algorithm, to
achieve 1− ε approximation ratio, the time complexity is at least Ω((1/ε)1/3.17).

We prove the following theorem:

Theorem 4. For simple Knapsack problem, using adaptive BT algorithm, to
achieve 1− ε approximation ratio, the time complexity is at least Ω((1/ε)1/2.38).
Proof : In theorem 2 we have proved that for given n, for any 0 < δ < 0.5,
if N = � 1+δ

δ �n3n, then time complexity of simple Knapsack problem (n, N)

under adaptive BT algorithms is Ω(2
(2−δ)

3 n/
√

n), so the optimal solution cannot
be achieved by adaptive BT algorithm with complexity of γ = o(2

(2−δ)
3 n/

√
n).

Since the weight of item is integer, so the upper bound of approximation ratio is

N − 1
N

∼ 1 − 1
� 1+δ

δ �n3n
∼ 1 − Õ(γ− 3

2−δ log2 3) ∼ 1 − ε,

so
γ = Ω((1/ε)

2−δ
4.75) ≈ Ω((1/ε)1/2.38).

For arbitrary n and N , we can find n0 such that N = � 1+δ
δ �n03n0 , and set

the weights of n− n0 items in the n items to be 0. Then the above lower bound
works to any number of items. �

4 Discussion

In this note, we have slightly improved the exponential time lower bounds
of exact and approximation algorithms under adaptive BT model for Knap-
sack problem which are Ω(2(2−ε)n/3/

√
n) ≈ Ω(20.66n/

√
n) and Ω((1/ε)1/2.38) ≈

Ω((1/ε)0.420), respectively.
We do not know whether our lower bounds are optimal. An interesting ques-

tion is: what is the best achievable lower bound for Knapsack problem under
adaptive BT model?

Acknowledgments. We thank the anonymous reviewers of TAMC07 whose
comments have greatly helped us to improve our presentations.

References

1. Garey, M.R., Johnson,D. S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness, W. H. Freeman and Sons, New York (1979)

2. Alekhnovich, M., Borodin, A., Buresh-Oppenheim,J., Impagliazzo, R. , Magen,A.
and Pitassi,T.: Toward a Model for Backtracking and Dynamic Programming, Pro-
ceedings of Twentieth Annual IEEE Conference on Computational Complexity
(2005) 308-322

3. Pudlak, P.: Proofs as games. American Math. Monthly, 23 (2000) 541–550

Phase Transition of Multivariate Polynomial

Systems

Giordano Fusco and Eric Bach

Computer Sciences Department
University of Wisconsin-Madison

{fusco, bach}@cs.wisc.edu

Abstract. A random multivariate polynomial system with more equa-
tions than variables is likely to be unsolvable. On the other hand if there
are more variables than equations, the system has at least one solu-
tion with high probability. In this paper we study in detail the phase
transition between these two regimes, which occurs when the number of
equations equals the number of variables. In particular the limiting prob-
ability for no solution is 1/e at the phase transition, over a prime field.

We also study the probability of having exactly s solutions, with s ≥ 1.
In particular, the probability of a unique solution is asymptotically 1/e if
the number of equations equals the number of variables. The probability
decreases very rapidly if the number of equations increases or decreases.

Our motivation is that many cryptographic systems can be expressed
as large multivariate polynomial systems (usually quadratic) over a finite
field. Since decoding is unique, the solution of the system must also be
unique. Knowing the probability of having exactly one solution may help
us to understand more about these cryptographic systems. For example,
whether attacks should be evaluated by trying them against random
systems depends very much on the likelihood of a unique solution.

1 Introduction

A random multivariate quadratic system in n variables is composed of m equa-
tions of the form

a11x
2
1 + a12x1x2 + · · · + b1x1 + · · · + bnxn = c,

where the coefficients are independently and uniformly distributed on GF (p) (in
the case of p = 2 the square terms are not present). More generally, a multivariate
polynomial system can have terms up to degree d.

In this paper we study the probability that a multivariate polynomial system
has no solutions. If the number of equations is much greater than the number of
variables, it is very likely that the system has no solution. On the other hand if
there are more variables than equations we expect to have at least one solution.
For n + α random equations in n variables over GF (p) with p prime, we show
that the asymptotic probability that they have no common solution is e−p−α

.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 632–645, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Phase Transition of Multivariate Polynomial Systems 633

The phase transition occurs when the number of equations equals the number
of variables. The asymptotic probability in that case is 1/e.

We also study the probability that a multivariate polynomial system has ex-
actly s solutions, with s ≥ 1. Asymptotically, this probability follows the Poisson
distribution λse−λ/s!, where λ = e−α log p. Its highest value is e−1/s!, which is
attained when the number of equations equals the number of variables. As the
number of equations increases or decreases, the probability decays very rapidly.

The motivation for studying the probability of exactly s solutions comes from
recent developments in cryptography. Many attacks on cryptosystems have been
based on solving a large multivariate polynomial system over a finite field (some
of them are [1] [5] [6]). The idea is to express the cryptosystem as a quadratic or
cubic system, and then to use an ad-hoc method to solve it. The solution of this
system is unique because it represents the decoded text. One of the methods
used to solve these systems is called XL and it was first proposed in [5]. In
[5] and in subsequent papers, it has been argued that XL takes advantage of
the uniqueness of the solution. Knowing the probability of having exactly one
solution, we can understand how often XL has the claimed advantage, if applied
to random quadratic systems.

The quadratic systems from cryptography are not perfectly random, but in
absence of a better theory we would like to get some insight by assuming that
they are. In particular, the asymptotic probability that a random quadratic
system has exactly one solution is 1/e, if the number of equations equals the
number of variables, and decays very rapidly if the number of equations increases
or decreases.

We ran a large set of experiments to confirm the validity of our results, includ-
ing some cases that are not covered by our proofs. We found that the variance
of the distance between our formulas and the experimental data is small in most
of the cases.

In order to apply our formulas to polynomial systems from cryptanalysis,
we consider also particular configurations that occur in that case. Polynomial
systems from cryptanalysis have two important properties: their equations are
linearly independent and the systems are sparse. Experimental results confirm
that our formulas remain valid also in this case of linearly independent equations.
We generated different types of sparse systems and our formulas matched the
experimental results in most of the cases.

Finally we show the results of the application of our formulas to the quadratic
systems of some real cryptographic systems. Using the dimensions of those sys-
tems we determine the probability of having exactly one solution. This probabil-
ity is extremely small, but on the other hand there is a huge number of possible
quadratic systems of that size.

This paper is organized as follows. Section 2 gives a brief overview of related
work. The probability formulas are derived in section 3. Section 4 contains the
results of some experiments that confirm the general validity of our formulas. In
section 5, we apply our formulas to some cryptographic systems.

634 G. Fusco and E. Bach

2 Related Work

Given a quadratic system there is a well known procedure to determine the num-
ber of solutions. The outline of the method is the following. A single quadratic
equation can be transformed into canonical form, as described by Jordan [13] for
p odd, and Dickson [7] for p = 2. From this form it is easy to count the solutions.
Then, a system of quadratic equations can be handled by counting the solutions
to a number of single equations. A detailed description of this procedure for
GF (2) is given in [16]. This method requires exponential time.

This is not surprising, as Valiant proved in [15] that it is #P-complete to
count the number of solutions of a multivariate polynomial system of degree 2
or higher.

The problem we study in this paper is different. We are not computing the
number of solutions of given quadratic systems, but we are determining the
probability that a random system has no solutions or exactly s solutions.

Recently, much attention has been given to unsatisfiable systems, as there
is a direct connection between tautologies and unsatisfiable systems (see for
example [2] [4] [3] [14]). The focus of those papers is to study proof complexity,
in particular to determine under which conditions a system is unsatisfiable. Here
instead we determine the probability that a random system is unsatisfiable given
its size.

Woods in [16] shows that there exists a phase transition on multivariate poly-
nomial systems, by showing that a system is unsatisfiable when the difference
between the number of equations and the number of variables goes to infinity,
and that the system has at least one solution when the difference between the
number of variables and the number of equations goes to infinity. In this paper
we study the phase transition in more detail, in particular we determine the point
in which the phase transition occurs and the limiting value of the probability
near the transition point.

To our knowledge this is the first detailed study of phase transitions in poly-
nomial systems. However, there is a well known phase transition between satis-
fiability and unsatisfiability for boolean formulas, which has been studied both
theoretically and experimentally. We believe that Friegut [8] was the first one to
prove the existence of a phase transition in boolean formulas. More details have
been found experimentally, and surveys of this work have been given by Franco,
in [9] and [10]. Our results do say something about boolean formulas, since a
boolean formula in conjunctive normal form can be easily transformed into a
quadratic system over GF (2) (see for example [12]). However, they are more
general, in that we consider polynomial systems of any degree and for any prime
field. We also have rigorous theorems to support our experimental observations.

3 Probability of No Solutions and of Exactly s Solutions

The following theorems comprise our main result. Theorem 1 is a special case
of theorem 2, but we preferred to state it separately to emphasize the phase
transition.

Phase Transition of Multivariate Polynomial Systems 635

Theorem 1. Let d ≥ 2 and p be a prime number. Given a multivariate polyno-
mial system of n + α random equations of degree-d in n variables over GF (p),
the probability that the system has no solution is e−p−α

, asymptotically in n.

Corollary 1. For a system as in theorem 1, the probability of no solution is
e−1, if the number of equations equals the number of variables (i.e. α = 0).

Theorem 2. Let d ≥ 2 and p be a prime number and λ = e−α log p. Given
a multivariate polynomial system of n + α random equations of degree-d in n
variables in GF (p), the probability that the system has exactly s ≥ 1 solutions
follows the Poisson distribution λse−λ/s! asymptotically in n.

Corollary 2. For a system as in theorem 2, the probability that the system has
exactly s ≥ 1 solutions is e−1/s!, if the number of equations equals the number
of variables (i.e. α = 0).

The rest of this section contains the proofs of these results.

Proof of theorem 1. Let p be a prime, and for an n-tuple x = (x1, . . . , xn) of
elements from GF (p) let Rx = (1, · · · , xr , · · · , xrxs, · · ·). For a system of degree
d, Rx contains the monomials up to degree d. Let G be the pn × ν matrix whose
rows are the Rx for distinct x, where ν ≈ nd is the number of coefficients in each
equation.

Consider the indicator variable

Zx =

{
1, if x is a solution to all equations;
0, otherwise

Its expectation is E[Zx] = p−(n+α), and the probability that there is no common
solution is

E[
∏

x

(1 − Zx)].

By the inclusion-exclusion principle we have
∏

x

(1 − Zx) ≥ 1 −
∑

x

Zx,

∏

x

(1 − Zx) ≤ 1 −
∑

x

Zx +
∑

x,y

ZxZy,

∏

x

(1 − Zx) ≥ 1 −
∑

x

Zx +
∑

x,y

ZxZy −
∑

x,y,z

ZxZyZz,

and so on. Any partial sum with an even (resp. odd) number of terms provides
a lower (resp. upper) bound. Also, in these sums, the indices x, y, z, etc. refer to
distinct n-tuples, so each term is effectively a sum over subsets.

Now consider a typical term in the above sum, such as
∑

x(1),...,x(k)

∏

i

Zx(i)

636 G. Fusco and E. Bach

Its expected value is
∑

x(1),...,x(k)

E

[
∏

i

Zx(i)

]

(1)

A subset for which the corresponding Z ′s are stochastically independent will
contribute p−k(n+α) to the sum. We need to show that most of the subsets are
of this type. We say that a subset {x(1), . . . , x(k)} is in general position if the
extended vectors (1, x(1)), . . . , (1, x(k)) are linearly independent. Observe that
for any general position subset, the random variables Zx(i) , are stochastically
independent. The number of general position subsets is

pn(pn − 1)(pn − p) . . . (pn − pk−2)
k!

Hence, the general position subsets contribute, for large n, the value

pnk

k!
p−k(n+α) =

p−αk

k!
If all the rows of G were linearly independent then all subsets would be in
general position. Unfortunately this is not true. However, by lemma 1 below,
the contribution from subsets not in general position is insignificant compared
to this.

Let k∗ be the largest odd integer not bigger than ν. For quadratic systems,
k∗ is approximatively n2/2, and in general, k∗ goes to infinity with n. Then, if

δ = Pr[no solution] −
k∗−2∑

k=0

p−αk

k!
,

we have

−p−α(k∗−1)

(k∗ − 1)!
(1 + o(1)) ≤ δ ≤ p−αk∗

k∗!
(1 + o(1))

By Stirling’s formula, the upper and lower bounds go to 0 as n → ∞, and the
sum is the Taylor series for the (entire) exponential function, so the limit of δ is
0, and we conclude

lim
n→∞Pr[no solution] = e−p−α ��

Proof of theorem 2. The indicator for exactly s solutions is

I =
∑

x(1)

Zx(1)

∑

x(2) �=x(1)

Zx(2) · · ·
∑

x(s) �=x(1)

···
x(s) �=x(s−1)

Zx(s)

∏

y �=x(1)

···
y �=x(s)

(1 − Zy).

If we expand this and collect terms, we get
∑

k≥0

(−1)k

(
s + k

k

) ∑

x(1),...,x(s+k)

Zx(1) · · ·Zx(s+k) .

As before, the k-th inner sum is over the subsets of GF (p)n of size (s + k).

Phase Transition of Multivariate Polynomial Systems 637

For each n, this expansion of I is a finite sum. Furthermore, the Z’s are all
non-negative, so taking its expectation produces an alternating series. We can
therefore evaluate the limit of these expectations by computing limits termwise
as we did in the proof of theorem 1.

So let us consider a particular value of k. The number of general position
subsets of size s + k is given by

pn(pn − 1) · · · (pn − ps+k−2)
(s + k)!

Therefore, their contribution to the expectation is asymptotically

pn(s+k)p−(s+k)(n+α)

(s + k)!
=

p−(s+k)α

(s + k)!

Using lemma 1 below with k replaced by s + k, we see that including subsets
not in general position will not change the value of this limit.

Arguing as before, the expectation of I has the limit

∑

k≥0

(−1)k

(
s + k

k

)
p−(s+k)α

(s + k)!
=

p−sα

s!

∑

k≥0

(−1)k p−kα

k!

The value of the last sum is e−p−α

= e−λ, and this gives the desired result. ��
The following lemma is used in the proof of theorems 1 and 2. It is the key

device for our analysis, as it allows us to compute limiting probabilities as if we
had full independence.

Lemma 1. Let p be a prime, and for an n-tuple x = (x1, . . . , xn) of elements
from GF (p) let Rx = (1, · · · , xr, · · · , xrxs, · · ·). Let G be the pn×ν matrix whose
rows are the Rx for distinct x. For fixed k and n → ∞, the contribution to (1)
from subsets not in general position goes to 0.

Proof of lemma 1. The points x(0), . . . , x(�) in GF (p)n are affinely independent
if the differences x(1) −x(0), . . . , x(�) −x(0) are linearly independent. For distinct
points, this happens iff the corresponding subset is in general position.

Let S be a particular k-subset of the rows of G, corresponding to a set of
k points. Let � + 1 be the maximum number of points in S that are affinely
independent. We may choose coordinates so that the rows for these points are

x1 x� x�+1 xn x2
1 x2

n xixj

1 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · ·
1 1 · · · 0 0 · · · 0 1 · · · 0 · · · 0 · · ·

...
1 0 · · · 1 0 · · · 0 0 · · · 1 · · · 0 · · ·

(2)

for a quadratic system. In general, for a degree-d system the coordinate would
follow a similar pattern.

638 G. Fusco and E. Bach

Assume that � + 1 < k, that is, the subset S is degenerate. We claim that the
rank of S cannot be � + 1. (It is obviously at least this large.) If it were, then
any other row would be of the form

1 w1 · · · w� 0 · · · 0 w2
1 · · · w2

n · · · wiwj · · ·
Since it is a linear combination of rows from (2), we must have all wiwj = 0.
This means that at most one wi, say w1, is nonzero. Then we would have (from
inspection of the x1 and x2

1 columns)

w1 · 1 = w2
1

So w1 ∈ {0, 1}, but this is impossible since the rows came from distinct points.
Hence, the rank is at least � + 2.

For a fixed value of �, there will be at most

pn(pn − 1)(pn − p) · · · (pn − p�−1) × pk2

such degenerate subsets of rows. The first factor is an upper bound for the
number of ways to choose �+1 affinely independent points, and the second factor
follows from � ≤ k and affine independence. (Once we have chosen coordinates,
only wi with i ≤ � are eligible to be nonzero.) As n → ∞, we have

pn(pn − 1) · · · (pn − p�−1) × pk2 ∼ p(�+1)n+k2

Now, if a collection of rows has rank r, the probability of choosing coefficients
so that a degree-d function vanishes at the points corresponding to those rows
is p−r. Similarly, the probability of choosing m sets of coefficients independently
with the same property is p−mr. So, for any fixed �, the contribution of degenerate
subsets to (1) is at most

p(�+1)n+k2

pmr
≤ p(�+1)n+k2

pm(�+2)

This is because of our rank estimate. If we substitute m = n + α, this becomes

pk2−(�+2)α

pn

which has the limit 0 as n goes to infinity. ��

3.1 Extension of the Results to Z/(pq)

In this section we derive the probability formulas for Z/(pq) where p and q are
distinct primes.

Theorem 3. Given a multivariate polynomial system of n+α random equations
of degree-d in n variables in Z/(pq) with p and q distinct primes, the probability
that the system has no solution is e−p−α

+ e−q−α − e−(p−α+q−α), asymptotically
in n.

Phase Transition of Multivariate Polynomial Systems 639

Corollary 3. For a system as in theorem 3, the limiting probability of no so-
lution is 2e−1 − e−2, if the number of equations equals the number of variables
(i.e. α = 0).

Theorem 4. Let λ = e−α log p and μ = e−α log q. Given a multivariate polyno-
mial system of n+α random equations of degree-d in n variables in Z/(pq) with
p and q distinct primes, the limiting probability that the system has exactly s ≥ 1
solutions is

e−λ−μ
∑

uv=s
u,v≥1

λu μv

u! v!

asymptotically in n.

Corollary 4. For a system as in theorem 4, the limiting probability that the
system has exactly s ≥ 1 solutions is e−2

∑
uv=s
u,v≥1

1
u! v! , if the number of equations

equals the number variables (i.e. α = 0).

Proof of theorem 3. A solution does not satisfy the system modulo pq if it does
not satisfy it modulo p or it does not satisfy it modulo q. But this way, we are
double counting the probability that it does not satisfy it both modulo p and
modulo q.

The probability that there are no solutions modulo p and no solutions modulo
q is the product of these two probabilities:

e−p−α · e−q−α

= e−(p−α+q−α)

The probability that there are no solutions modulo pq is the sum of the
probability of having no solutions modulo p and no solutions modulo q, minus
the probability of no solutions modulo p and modulo q together.

e−p−α

+ e−q−α − e−(p−α+q−α) ��

Note that the previous result can be further extended to products of many
distinct primes, by using the inclusion-exclusion principle.

Proof of theorem 4. To have exactly s solutions modulo pq, we must have u
solutions mod p and v solutions mod q, where uv = s. For different factorizations
of s, these events are disjoint. Therefore, for n going to infinity, the probability is

e−λ−μ
∑

uv=s
u,v≥1

λu μv

u! v! ��

4 Experimental Results

We ran a large set of experiments, which confirm the validity of our results also in
the cases that are not covered by our proofs. We generated 10,000 random poly-
nomial systems for each configuration and we counted the number of solutions in

640 G. Fusco and E. Bach

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 n

o
so

lu
tio

ns

m / n

Quadratic systems, Z/2

n = 4
n = 8

n = 12
n = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 e

xa
ct

ly
 1

 s
ol

ut
io

n

m / n

Quadratic systems, Z/2

n = 4
n = 8

n = 12
n = 16

(a) (b)

Fig. 1. Fraction of quadratic systems with (a) no solutions, and (b) exactly one solution
in Z2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 n

o
so

lu
tio

ns

m / n

Quadratic systems, Z/6

n = 4
n = 8

n = 12
n = 16

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 e

xa
ct

ly
 1

 s
ol

ut
io

n

m / n

Quadratic systems, Z/6

n = 4
n = 8

n = 12
n = 16

(a) (b)

Fig. 2. Fraction of quadratic systems with (a) no solutions, and (b) exactly one solution
in Z6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 n

o
so

lu
tio

ns

m / n

Cubic systems, Z/3

n = 4
n = 8

n = 12
n = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 e

xa
ct

ly
 1

 s
ol

ut
io

n

m / n

Cubic systems, Z/3

n = 4
n = 8

n = 12
n = 16

(a) (b)

Fig. 3. Fraction of cubic systems with (a) no solutions, and (b) exactly one solution
in Z3

each case. Figure 1a shows the fraction of quadratic systems with no solutions in
Z2. Figure 1b shows the fraction of quadratic systems with exactly one solution
in Z2. The continuous line represents the value of the functions described in the
previous section, while the discrete symbols give results from the experiments.
We can see that the experimental results are consistent with the formulas even
in the case of a small number of variables. This is better than what we were

Phase Transition of Multivariate Polynomial Systems 641

Table 1. Variance of experimental values with respect to the formulas for (a) uniform
at random equation, (b) linearly independent equations

no solutions 1 solution

Z2 1.66 · 10−5 1.95 · 10−5

Z3 7.30 · 10−6 7.56 · 10−6

Z5 2.48 · 10−6 1.74 · 10−6

Z6 1.54 · 10−5 1.60 · 10−6

Z7 2.00 · 10−6 2.78 · 10−6

no solutions 1 solution

Z2 1.79 · 10−5 2.09 · 10−5

Z3 7.30 · 10−6 7.56 · 10−6

Z5 2.58 · 10−6 1.82 · 10−6

Z6 1.65 · 10−5 1.72 · 10−6

Z7 2.89 · 10−6 4.02 · 10−6

(a) (b)

expecting, because the formulas were derived for n going to infinity. Figures 2a
and 2b show similar results for Z6. Figures 3a and 3b show that similar results
hold for cubic systems. Table 1a shows the variance of the experimental values
with respect to the formulas for the quadratic systems. The data of this table is
obtained varying n from 4 to 16 and m from 1 to 28.

These experiments were designed to investigate a range of applicability wider
than the one considered in our theorems. The fact that the variance is small
makes us believe that our theorems are valid more generally than our proofs
would indicate.

4.1 Linearly Independent Equations

We considered the case of non-linear systems with linearly independent equa-
tions. This is motivated by the fact that the quadratic systems used in crypt-
analysis have only linearly independent equations.

The formulas derived in section 3 hold in the case of linearly independent
equations also. This is because the equations of a random polynomial system
are linearly independent with very high probability. In fact a system of degree q
with n variables has more than nq coefficients, which implies that the matrix of
the coefficients is rectangular even when we consider m > n. As shown in [11],
it is very likely that a random rectangular matrix has maximal rank.

This is confirmed by the experimental data. We ran the same experiment as
the one described at the beginning of section 4, but enforcing that the equations
must be linearly independent, by eliminating the linearly dependent equations.
As we can see from table 1b the variance is very small in this case also.

4.2 Sparse Systems

In this section we check our formulas on sparse systems. Again the motivation
comes from cryptanalysis, where the quadratic systems are usually sparse. In
order to simulate the sparseness, we consider three kind of sparse systems:

1. Each coefficient can be 0 with probability z and non zero with probability
1 − z. Note that the known term can still assume any value with equal
probability.

2. Each equation contains exactly a fraction f of the variables, i.e. the coeffi-
cients of the remaining variables are 0.

642 G. Fusco and E. Bach

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 n

o
so

lu
tio

ns

m / n

Quadratic systems, Z/2, sparse, coefficients are 0 with probability z=0.8

n = 4
n = 8

n = 12
n = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 e

xa
ct

ly
 1

 s
ol

ut
io

n

m / n

Quadratic systems, Z/2, sparse, coefficients are 0 with probability z=0.8

n = 4
n = 8

n = 12
n = 16

(a) (b)

Fig. 4. Fraction of quadratic systems with (a) no solutions, and (b) exactly one solution,
in Z2 with coefficients set to 0 with probability z = 2/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 n

o
so

lu
tio

ns

m / n

Quadratic systems, Z/2, sparse, 50% variables/equation

n = 4
n = 8

n = 12
n = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 e

xa
ct

ly
 1

 s
ol

ut
io

n

m / n

Quadratic systems, Z/2, sparse, 50% variables/equation

n = 4
n = 8

n = 12
n = 16

(a) (b)

Fig. 5. Fraction of quadratic systems with (a) no solutions, and (b) exactly one solution,
in Z2 with exactly 50% variables per equation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 n

o
so

lu
tio

ns

m / n

Quadratic systems, Z/2, bi-affine equations

n = 4
n = 8

n = 12
n = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

fr
ac

tio
n

of
 Q

S
 w

ith
 e

xa
ct

ly
 1

 s
ol

ut
io

n

m / n

Quadratic systems, Z/2, bi-affine equations

n = 4
n = 8

n = 12
n = 16

(a) (b)

Fig. 6. Fraction of quadratic systems with (a) no solutions, and (b) exactly one solution,
in Z2 with bi-affine equations

3. Bi-affine equations. These are the type of equations used in the cryptanalysis
of Rijndael (see for example [6]).

Case 1: the coefficients have higher probability to be 0. This is the most generic
type of sparseness that we are considering. The variance between the formulas
from section 3 and the experimental results is very small for values of z up to 0.7.

Phase Transition of Multivariate Polynomial Systems 643

Table 2. Variance of experimental values with respect to the formulas for (a) different
values of z with random system in Z3, and (b) for different fields when the coefficients
are zero with probability z = 2/3

z no solutions 1 solution

0.5 3.66 · 10−6 6.30 · 10−6

0.6 1.62 · 10−5 9.04 · 10−6

0.7 7.14 · 10−5 3.21 · 10−5

0.8 1.82 · 10−3 6.81 · 10−4

0.9 1.32 · 10−2 3.31 · 10−3

no solutions 1 solution

Z2 3.74 · 10−5 3.27 · 10−5

Z3 8.05 · 10−5 3.62 · 10−5

Z5 1.54 · 10−4 7.81 · 10−5

Z6 1.19 · 10−3 7.17 · 10−5

Z7 1.27 · 10−4 4.00 · 10−5

(a) (b)

Table 3. Variance of experimental values with respect to the formulas for (a) random
system in Z3 generated varying f from 0.1 to 0.5, and (b) for different fields when f
is fixed to 0.5. (c) Variance of experimental values with respect to the formulas for
different fields with bi-affine equations.

f no solutions 1 solution

0.1 4.16 · 10−1 1.74 · 10−2

0.2 2.58 · 10−1 1.65 · 10−2

0.3 8.78 · 10−2 1.45 · 10−2

0.4 3.65 · 10−3 9.54 · 10−3

0.5 5.21 · 10−3 2.87 · 10−3

no solutions 1 solution

Z2 3.34 · 10−3 2.56 · 10−3

Z3 5.33 · 10−3 2.94 · 10−3

Z5 9.17 · 10−2 4.11 · 10−3

Z6 1.87 · 10−2 1.02 · 10−3

Z7 1.91 · 10−2 7.90 · 10−3

no solutions 1 solution

Z2 9.17 · 10−6 2.00 · 10−5

Z3 2.63 · 10−5 3.99 · 10−5

Z5 1.24 · 10−6 9.04 · 10−6

Z6 4.14 · 10−5 1.23 · 10−5

Z7 4.10 · 10−6 5.10 · 10−6

(a) (b) (c)

Table 2a shows how the variance varies using different values of z with random
system in Z3. A similar situation is obtained in other prime fields. Table 2b
shows the value of the variance of random systems in different fields where the
coefficients are zero with probability z = 2/3.

If z is smaller than 0.7, the results are very similar to figures 1a and 1b.
Figures 4a and 4b show the result obtained with random systems in Z2 where
the coefficients are zero with probability z = 0.8. As we can see in the plot, the
formula does not approximate well a system with n = 4 variables, but it still
works for bigger values of n.

Case 2: each equation contains exactly a fraction f of the variables. In this case
the variance from the experiments is much higher. Table 2a shows the values of
the variance of random system in Z3 generated varying f from 0.1 to 0.5. Similar
results are obtained in other fields where f is fixed to 0.5, as shown in table 2b.

An explanation of these results is that this model reduces the freedom of the
randomequations,which in fact are no longer perfectly uniformat random.For this
reason the formulas no longer exactly describe the phenomenon and the variance
from the experiment is much higher. This is also evident from figures 5a and 5b.

Case 3: bi-affine equations. Bi-affine equations are used only for quadratic sys-
tems. The variables are partitioned into two sets of equal size. Each quadratic

644 G. Fusco and E. Bach

Table 4. (a) Sizes of quadratic systems from cryptography. (b) Total number of
quadratic systems and probability of exactly 1 solution.

Cryptosystem n m α

Khazad 6464 7664 1200
Misty1 3856 3856 0
Kasumi 4264 4264 0
Camellia-128 3584 6224 2640
Rijndael-128 3296 6296 3000
Serpent-128 16640 17680 1040

Cryptosystem Total # of systems Pr[1 solution]

Khazad 6.86 · 106249185 5.81 · 10−362

Misty1 1.68 · 102239709 1/e
Kasumi 4.20 · 102738543 1/e
Camellia-128 1.64 · 101934992 1.91 · 10−795

Rijndael-128 5.40 · 101636625 8.13 · 10−904

Serpent-128 3.58 · 1041683551 8.49 · 10−314

(a) (b)

term is composed of a variable from the first set and one from the second (i.e.
two variables from the same set never appear multiplied together). The variance
in this case is small as we can see from table 3c. The results for Z2 are plotted
in figures 6a and 6b.

5 Equations from Cryptographic Systems

In this section we apply the formula for exactly one solution to the sizes of
quadratic systems for some well known cryptographic systems. The results ob-
tained with the experimental data (see section 4) give us confidence in using the
formula in this case, even if this is not a case covered by our proofs. The data in
the table 4a is from [1]. All the equations are in Z2. For the quadratic systems
of Misty1 and Kasumi, the parameters m and n are in the range of applicability
of our formulas.

In table 4b we can see that for many systems the probability of having exactly
one solution is extremely small. However the number of systems with exactly one
solution is not that small, if we consider that the total number of possible systems
is huge.

One inference that can be drawn from this study is that quadratic systems
with unique solutions are relatively rare, so rare that in most cases, studying the
performance of solution algorithms for random systems might not tell us much
about their efficacy in attacking specific cryptosystems.

6 Conclusions and Open Problems

We showed that the probability that a random polynomial system has no so-
lution has a phase transition when the number of equations equals the number
of variables. The value of the probability at the phase transition is 1/e if the
computation is over a prime field.

We showed that probability of having exactly s solution, s ≥ 1, follows a
Poisson distribution with parameter λ = e−α log p, for prime fields.

We extended the result to Z/(pq), with p and q distinct primes. It is an open
problem to extend the result to the case of Z/(pr), with p prime.

Phase Transition of Multivariate Polynomial Systems 645

It is an open problem to adapt the formulas in the case of sparse systems
where each equation contains exactly a fixed number of variables.

Acknowledgments

We would like to thank Dieter van Melkebeek and Janos Simon for their helpful
comments. We also would like to thank NSF grant CCF-0523680.

References

1. A. Biryukov, C. De Cannière, Block ciphers and systems of quadratic equations,
Proc. FSE 2003, LNCS 2887, pp. 274–289, 2003.

2. P. Beame, R. Impagliazzo, J. Kraj́ıc̆ek, T. Pitassi, P. Pudlák, Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs, Proc. London Math. Soc., n.
73, pp. 1–26, 1996.

3. S. Buss, R. Impagliazzo, J. Kraj́ıc̆ek, A.A. Razborov, J. Sgall, Proof com-
plexity in algebraic systems and bounded depth Frege systems with modular count-
ing, Comput. Complex., n. 6, pp. 256–298, 1997.

4. M. Clegg, J. Edmonds, R. Impagliazzo, Using the Groebner basis algorithm to
find proofs of unsatisfiability, Proc. 28th Ann. ACM Symp. Theory Comput., pp.
174–183, 1996

5. N. Courtois, A. Klimov, J. Patarin, A. Shamir, Efficient algorithms for solving
overdefined systems of multivariate polynomial equations, Proc. Eurocrypt 2000,
LNCS 1807, pp. 392–407, 2000.

6. N. Courtois, J. Pierpzyk, Cryptanalysis of block ciphers with overdefined systems
of equations, Proc. Asiacrypt 2002, LNCS 2501, pp. 267–287, 2002.

7. L. E. Dickson, Determination of the structure of all linear homogeneous groups
in a Galois field which are defined by a quadratic invariant, Amer. J. Math., v. 21,
pp. 193–256, 1899.

8. E. Friegut, Necessary and sufficient conditions for sharp thresholds of graph prop-
erties and the k-SAT problem, Amer. J. Math., v. 12, pp. 1017–1054, 1999.

9. J. Franco, Results related to threshold phenomena research in satisfiability: lower
bounds, Theoret. Comput. Sci., v. 265, n. 1–2, pp. 147–157, 2001.

10. J. Franco, Typical case complexity of satisfiability algorithms and the threshold
phenomenon Disc. Appl. Math., v. 153, n. 1–3: pp. 89–123, 2005.

11. F. Gerth III, Limit probabilities for coranks of matrices over GF(q), Lin. Multilin.
Alg., v. 19, pp. 79–93, 1986.

12. J. Håstad, S. Phillips, S. Safra, A well-characterized approximation problem,
Inf. Proc. Lett., v. 47, n. 6, pp. 301–305, 1993.

13. C. Jordan, Sur la forme canonique des congruences du second degré et le nombre
de leurs solutions, J. Math. Pures. Appls. (2), v. 17, pp. 368–402, 1872. [Abstract
of results in C. R. Acad. Sci. Paris, v. 74, pp. 1093–1095, 1872.]

14. T. Pitassi, Algebraic propositional proof systems, Descriptive Complexity and
Finite Models, v. 31 of DIMACS Ser. Discrete Math. Thoret. Comput. Sci. pp.
215–244, 1997.

15. L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J.
Comput. v. 8, pp. 4120–421, 1979.

16. A. R. Woods, Unsatisfiable systems of equations, over a finite field, Proc. 39th
Ann. Symp. Found. Comput. Sci., pp. 202–211, 1998.

Approximation Algorithms for Maximum Edge

Coloring Problem�

Wangsen Feng, Li’ang Zhang, Wanling Qu, and Hanpin Wang

School of Electronic Engineering and Computer Science
Peking University, Beijing 100871, P.R. China
{fengws,zliang,qwl,whpxhy}@pku.edu.cn

Abstract. We propose polynomial time approximation algorithms for
a novel maximum edge coloring problem which arises from the field of
wireless mesh networks [8]. The problem is about coloring all the edges in
a graph and finding a coloring solution which uses the maximum number
of colors with the constraint, for every vertex in the graph, all the edges
incident to it are colored with no more than q(q ∈ Z, q ≥ 2) colors. The
case q = 2 is of great importance in practice. In this paper, we design
approximation algorithms for cases q = 2 and q > 2 with approximation
ratio 2.5 and 1 + 4q−2

3q2−5q+2 respectively. The algorithms can give prac-
tically usable estimations on the upper bounds of the numbers of the
channels used in wireless mesh networks.

1 Introduction

1.1 Problem Definition

Graph coloring problems occupy an important place in graph theory. Generally,
there are two types of coloring: vertex coloring and edge coloring. For vertex
coloring, Brooks [1] states that χ(G) ≤ Δ(G) for any graph G except complete
graphs Kn and odd circles C2k+1, where chromatic number χ(G) is the minimum
number of colors needed in a vertex coloring of graph G. Karp [2] proves that to
determine χ(G) is an NP-hard problem . If P �= NP holds, Garey and Johnson [3]
point out that there is even no polynomial time approximation algorithm with
ratio 2. However, Turner [4] designs an algorithm of complexity O(|V |+ |E|logk)
and with probability almost 1 to color a given k-colorable graph with k colors for
the case that k is not too large relative to |V |. For edge coloring, Vizing [5] states
that for any graph G, either χ

′
(G) = Δ(G) or χ

′
(G) = Δ(G)+1, where chromatic

index χ
′
(G) is the minimum number of colors needed in an edge coloring of G.

Holyer [6] proves that it is also an NP-hard problem to determine χ
′
(G). The

proof of Vizing Theorem yields an approximation algorithm for this problem

� Supported by the National Grand Fundamental Research 973 Program of China un-
der Grant No. 2002CB312004 and the National High-tech Research and Development
863 Program of China under Grant No. 2006AA01Z160.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 646–658, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximation Algorithms for Maximum Edge Coloring Problem 647

which finds an edge coloring solution using Δ(G) + 1 kinds of colors within one
of optimal. Recently, Uriel Feige et al. [7] have investigated the maximum edge
t-coloring problem in multigraphs. The problem is to color as many edges as
possible using t colors, such that no pairs of adjacent edges are colored with the
same color. They show that the problem is NP-hard and further design constant
factor approximation algorithms for it.

The problems mentioned above are all traditional coloring ones, they obey the
same rule: no pairs of adjacent vertices(edges) are colored with the same color.
In this paper, we study a novel kind of edge coloring problem. The problem is
also about edge coloring, but to use as many colors as possible to satisfy the
constraint: for every vertex in the graph, all the edges incident to it are colored
with no more than q(q ∈ Z, q ≥ 2) colors. Usually, q is equal to 2. We call it
“maximum edge coloring problem”. It can be defined formally as follows:

Maximum edge coloring problem: Given a connected undirected simple
graph G = (V, E) and a positive integer q ≥ 2, color all the edges in E, with the
constraint: for every vertex in V , all the edges incident to it are colored with no
more than q colors, ask for a solution which uses maximum number of colors.

We want to emphasize two points in the definition. Firstly, the input graph is
restricted to be connected in the definition. In fact, general graphs can also be
solved if we can find a solution to any connected graph. Secondly, q is required
to be no less than 2. Since if q = 1, it is easy to see that all the edges must be
colored with only one color because of the connectivity of the graph. So it is a
trivial case.

1.2 Motivation

In 2005, Ashish Raniwala and Tzi-cker Chiueh [8] proposed a multi-channel wire-
less mesh network architecture (called Hyacinth) that equips each mesh network
node with multiple 802.11 network interface cards (NICs). They point out that
intelligent channel assignment is critical to Hyacinth’s performance. A series of
experiments are carried and the results show that with 2 NICs on each node, it is
possible to improve the network throughput by a factor of 6 to 7 when compared
with the conventional single-channel ad hoc network architecture. For more de-
tails, readers are referred to [8,9]. Actually, in such kind of channel assignment
problem in multi-channel wireless mesh networks, a novel computational prob-
lem is involved. The wireless mesh network can be modeled as a network graph
GN = (VN , EN , q, m), where VN is the set of mesh routers in the mesh network,
EN is the set of pairs of mesh routers which can communicate directly, q de-
notes the number of network interface cards each node owns, m is the number of
non-overlapping channels provided by the network. Clearly, GN is a connected,
undirected, simple graph and the number of channels assigned to each node can’t
exceed the number of its NICs: q. If we omit m and take GN = (VN , EN , q) as
the input of the above maximum edge coloring problem, then the solution pro-
vides an upper bound of the number of channels the mesh network can use. This
bound is an important parameter for wireless mesh network researchers.

648 W. Feng et al.

Because the mesh routers in a wireless mesh network often have two network
interface cards, the case q = 2 is very important. We design approximation
algorithms for this special case and case q > 2 is also considered. For more
knowledge on approximation algorithms, readers are referred to [10].

The rest of the paper is organized as follows. In section 2, two important
properties on the problem are introduced. In section 3 and section 4, we discusses
the approximation algorithms and the corresponding approximation ratios for
case q = 2 and case q > 2, respectively. In section 5, we conclude the paper and
propose future research direction.

2 Preliminaries

ALG(G) is used to denote the number of colors used in the solution given by
our algorithm on the input graph G; OPT (G) to denote the number of colors
used in an optimal coloring solution of G.

Lemma 1: Given an arbitrary connected graph G = (V, E), suppose the optimal
solutions use m colors: 1, 2, ..., m. Based on the color of each edge, we can divide
the edge set into m subsets: E1, E2, ..., Em. Each subset Ei denotes the set of
edges colored with color i. If we choose one edge from each subset, the subgraph
H induced by these m edges satisfies:

1) Δ(H) ≤ q;
2) If q = 2, then H consists of paths and cycles;
3) If q = 2, OPT (G) ≤ n, where n = |V (G)|.
Proof: 1) Because the colors of the edges in H are different from each other,
noting the q-constraint for optimal solutions, the degree of each vertex v in H
satisfies 1 ≤ dH(v) ≤ q, that means Δ(H) ≤ q.
2) If q = 2, it is clear that H is a set of paths and cycles, i.e. each connected
component of H is either a path or a cycle.
3) According to 2), OPT (G) = m = |E(H)| ≤ |V (H)| ≤ n.

Lemma 2: Given a vertex cover V ∗ of a graph G with |V ∗| = k, let H be the
subgraph induced by V ∗ in G. Then:

1) OPT (G) ≤ kq;
2) If H has a matching of size m, then OPT (G) ≤ kq − m;
3) If q = 2 and H is connected, then OPT (G) ≤ k + 1;
4) If q = 2 and H has l connected components (1 ≤ l ≤ k), then OPT (G) ≤ k+l.

Proof: 1) Since V ∗ is a vertex cover, every edge of G is incident to a vertex in
V ∗ at least. On the other hand, the edges incident to V ∗ can be colored with
|V ∗|q colors at most based on the q-constraint. Thus, OPT (G) ≤ |V ∗|q = kq.
2) Let MH be a matching in H of size m. E(G) can be divided into two non-
intersecting parts: MH and E(G) − MH . It is clear that E(G) − MH can be
colored with (k − 2m)q + 2m(q − 1) = kq − 2m new colors at most, no matter

Approximation Algorithms for Maximum Edge Coloring Problem 649

how MH is colored. On the other hand, MH can be colored with m colors at
most. So, OPT (G) ≤ (kq − 2m) + m = kq − m.
3) Suppose H is colored with x colors. According to Lemma 1, 1 ≤ x ≤ k.
If H is connected, then there are at least x − 1 vertices in V ∗ incident to two
edges colored with different colors in H . Thus, E(G)−E(H) can be colored with
[k− (x− 1)](q− 1)+ (x− 1)(q− 2) = k−x+1 new colors at most. It yields that
OPT (G) ≤ (k − x + 1) + x = k + 1.
4) Denote by c1, c2, ..., cl (

∑l
i=1 ci = k) the numbers of the vertices in the l

connected components of H respectively. According to 3), OPT (G) ≤ ∑l
i=1(ci

(q − 1) + 1) = k(q − 1) + l = k + l.

3 Approximation Algorithms for Case q = 2

Clearly, if Δ(G) ≤ q, the number of colors used by an optimal solution is equal
to |E|. According to this fact, we adopt the greedy strategy to design the fol-
lowing approximation algorithm. The main idea is that, first, we find a maximal
subgraph H of G with Δ(H) ≤ q − 1, then we assign a new color to each edge
of H . When dealing with the rest edges, we must be more careful, because this
procedure may lead to conflict, which means the constraint is broken. To avoid
the conflict, we employ a simple trick as follows: delete the edges of H from the
original graph G and just let every non-isolated vertex connected component of
the residual graph G

′
share one new color.

1. Compute a maximal matching M of G;
2. Assign a new color to each edge in M ;
3. Delete the edges in M from the original graph G and for each connected compo-

nent of the residual graph G
′

which is not an isolated vertex, assign to it a new
color;

4. Output each edge with the color assigned to it.

Fig. 1. Algorithm 1

Obviously, the solution given by Algorithm 1 is feasible, because it satisfies
the q-constraint. A maximal matching can be found in O(|E|) time. Thus, the
time complexity of Algorithm 1 is O(|E|). Now we consider the approximation
ratio of the algorithm.

Theorem 1: For any connected graph G, Algorithm 1 achieves an approximation
factor of 3.

Proof: As we all know, the vertex set V ∗ matched by the maximal matching M
is a vertex cover of G. Clearly, |V ∗| = 2|M | and M is also a matching of the
subgraph induced by V ∗. Base on Lemma 2, we can easily draw the conclusion:

650 W. Feng et al.

OPT (G) ≤ 2|M |∗2−|M | = 3|M |. On the other hand, ALG(G) ≥ |M |+1 (Here,
we assume that the residual graph G

′
= G − M has at least one edge. Because

if G
′

has no edge, M = G. Thus Δ(G) < 2. This case is trivial: ALG(G) =
OPT (G) = |E|, Theorem 1 follows immediately.). So the approximation ratio is:

OPT (G)
ALG(G)

≤ 3|M |
|M | + 1

≤ 3 (1)

The following graph gives a tight example for Algorithm 1.

Example 1: In the graph shown in Figure 2, the set of vertical edges is a
maximal matching of G; on the other hand, G can be colored with 3m kinds of
colors at most. So, ALG(G) = m + 2, and OPT (G) = 3m.

1 2 3 4 m m - 1

m + 1 m + 2 m + 3 2 m - 1 2 m

2 m + 1 2 m + 2 2 m + 3 3 m - 1 3 m

Fig. 2. Tight example for Algorithm 1

Intuitively, if we find a maximum matching rather than finding a maximal
matching in step 1, the algorithm would be better. Can this change bring the
improvement of the approximation ratio? It can easily be seen that, if the graph
is chosen to be a bipartite, the modified algorithm is a factor 2 approximation
algorithm for it. Because in bipartite graphs, there exists maxmatching M |M | =
minvertex cover U |U |. Combined with Lemma 2, we have

OPT (G)
ALG(G)

≤ 2|Umin|
|Mmax| ≤ 2 (2)

In fact, for general graphs, we can modify Algorithm 1 as above to get an im-
proved algorithm with ratio 2.5.

Algorithm 2 is shown in Figure 3. A maximum matching can be found in
O(|V | 12 |E|) time ([11]). So, the time complexity of Algorithm 2 is O(|V | 12 |E|).
Next, we begin to consider the approximation ratio of Algorithm 2. Based on
Algorithm 2, the edge set of an input graph G can be divided into three parts.
E1: the maximum matching M ; E2: the set of edges between the unsaturated
vertices of M and the saturated vertices; E3: the set of rest edges. Denote by
n(E1), n(E2) and n(E3) the maximum number of different colors held by E1, E2

and E3 respectively. Then OPT (G) is bounded by the sum of n(E1), n(E2) and
n(E3). Obviously, this upper bound is too big. To tighten the upper bound, we
need to consider how many kinds of new colors can be held in E3 at most after
E1 and E2 have been colored. This is the main idea in the proof of Theorem 2.

Approximation Algorithms for Maximum Edge Coloring Problem 651

1. Compute a maximum matching M of G;
2. Assign a new color to each edge in M ;
3. Delete the edges of M from the original graph G and for each connected compo-

nent of the residual graph G
′

which is not an isolated vertex, assign to it a new
color;

4. Output each edge with the color assigned to it.

Fig. 3. Algorithm 2

Because n(E2) is not easy to estimate, a little trick is employed to divide E(G)
in a similar but different way to obtain an upper bound of OPT (G) easily.

Theorem 2: For any connected graph G, Algorithm 2 achieves an approximation
factor of 2.5.

Proof: Given a graph G, let M be a maximum matching of G and G
′
= G−M .

We will take two steps to prove the theorem.

1. Divide the edges in M and the unsaturated vertices into three parts so that
we can choose a set of saturated vertices to bound the number of different
colors held in the set of edges between unsaturated vertices and saturated
vertices;

2. Divide the edge set of G into three subsets to evaluate an upper bound of
OPT (G).

Step 1: Obviously, there is no M -augmenting path in G. Based on this important
property, we discuss the topology of G in depth. Clearly, there is no edge among
the unsaturated vertices of M , and all the unsaturated vertices are adjacent to
some of the saturated vertices. For an edge e in M , it is impossible for both of its
end points adjacent to different unsaturated vertices (otherwise, there will ap-
pear an M -augmenting path in G). This leads to the following three possibilities:

1) neither of the end points of e is adjacent to any unsaturated vertex;
2) only one of the end points of e is adjacent to some unsaturated vertices;
3) both of the end points of e are adjacent to the same unsaturated vertex.

So, we can classify the set of unsaturated vertices into two classes. Class 1: the
subset of the unsaturated vertices which are adjacent to both end points of one
edge in M at least; Class 2: the left subset of unsaturated vertices which are adja-
cent to one of the end points of e at most for any given edge e in M . First, we con-
sider the unsaturated vertices in Class 1. There are three kinds of such vertices:

1) those vertices of degree 2;
2) those vertices of degree > 2 and only adjacent to both end points of one edge
in M ;
3) the left vertices of degree > 2 and adjacent to both end points of at least two
edges in M . (See Figure 4).

652 W. Feng et al.

1) 2) 3)

 v
d (v) = 2

 v
d (v) > 2

 v
d (v) > 2

Fig. 4. The three kinds of unsaturated vertices in Class 1. (The filled vertices are
saturated ones, and the empty ones correspond to unsaturated vertices.)

We consider three kinds of widgets corresponding to the three kinds of unsat-
urated vertices mentioned above.

1) widget A: the unsaturated vertex v of degree 2 and the edge e in M whose
both end points are adjacent to it;
2) widget B: the unsaturated vertex v of degree > 2 and the only edge e in M
whose both end points are adjacent to it;
3) widget C: the unsaturated vertex v of degree > 2 and all the edges (at least
two) whose both end points are adjacent to it. (See Figure 5).

1) 2)

 v
d (v) = 2

 v
d (v) > 2

3)

e e v
d (v) > 2

Fig. 5. 1) widget A; 2) widget B; 3) widget C

Widget A and B look very similar, however, they are different. We will show
the difference soon. Because of the connectivity of the original graph G, widget
A must connect to another edge in M . Clearly v is a two-degree vertex, so it is
one of the end points of e in the triangle which connects to another saturated
vertex v1. Obviously, there is an edge e1 in M incident to v1. And e1 satisfies:
1) both of its end points can’t be adjacent to an unsaturated vertex at the same
time; 2) if one of its end points adjacent to an unsaturated vertex, then the end
point must be v1. For widget B, because the degree of v is more than 2, it must
connect to another saturated vertex v2, and there is an edge e2 in M incident
to v2. Similarly, e2 satisfies: the other end point of it, which is not v2, can’t be
adjacent to another unsaturated vertex. (See Figure 6).

Now we divide G into three parts as follows: (See Figure 7).

1. Extract all the three kinds of widgets from the original graph G to get
three collections of widget A, B and C: SA = {wA1 , ..., wAi} (i ≥ 0),
SB = {wB1 , ..., wBj} (j ≥ 0) and SC = {wC1 , ..., wCk

} (k ≥ 0).

Approximation Algorithms for Maximum Edge Coloring Problem 653

1)

v 1

e1

2)

e2

v 2

 v
d (v) = 2

 v
d (v) > 2

e e

Fig. 6. The bold edge is the connecting edge

2. Part1 = SC ;
while (SB �= ∅)
{
1) Take an element wB from SB. Then the unsaturated vertex v in wB is at
least adjacent to one saturated vertex v2 and v2 is incident to an edge e2 in
M .
2) Scan the left elements in SB. Once the unsaturated vertex of such an
element is adjacent to v2, then take it out of SB.
3) Scan the elements in SA. If one of the two saturated vertices in wA ∈ SA

is adjacent to v2, then take wA out of SA.
4) Put all the widgets taken from SB and SA, the connecting edges and e2

into Part1.
5) Delete all the elements chosen from SB and SA in above steps.
}
while (SA �= ∅)
{
1) Take an element wA from SA. Then one of the saturated vertices in wA

is adjacent to one saturated vertex v1 and v1 is incident to an edge e1 in M .
2) Scan the elements in SA. If one of the two saturated vertices in w

′

A ∈ SA

is adjacent to v1, then take w
′

A out of SA.
3) Put all the widgets taken from SA, the connecting edges and e1 into
Part1.
4) Delete all the elements chosen from SA in above steps.
}

3. Part2 = {The left edges in M having only one of the end points adjacent to
unsaturated vertices.}

4. Part3 = {The left edges in M having no end point adjacent to unsaturated
vertices.}

For an edge in M whose both end points are adjacent to the same unsaturated
vertex, if one of its end points is incident to a connecting edge, then select the
end point as a rectangle vertex, the other as a triangle vertex; otherwise, arbi-
trarily select one of its end points as a rectangle vertex, the other as a triangle

654 W. Feng et al.

e1

v 1

v 2

e2

P a r t 1

P a r t 2 P a r t 3

wC

wA wA

wA wA

wB wB wB

Fig. 7. The topology of graph G (I)

vertex. For an edge in M with only one of its end points adjacent to unsaturated
vertices, select the one adjacent to unsaturated vertices as a rectangle vertex,
the other as a triangle vertex. For the connecting vertex v1(v2), no matter it is
adjacent to an unsaturated vertex, take it as a rectangle vertex, and the other
end point of e1(e2) as a triangle vertex. For an edge in widgets A,B and C in
Part1 which connects an unsaturated vertex to one end point of an edge in M ,
if it is incident to a rectangle vertex, then keep it solid; if it is incident to a
triangle vertex, then change it to a dashed line. (See Figure 8).

Step 2: The edge set of G, E(G), can be divided into three non-intersecting
parts. E1: the edges incident to rectangle vertices and the dashed edges; E2: the
edges in M in Part3; E3: the edges among “the triangle vertices and the vertices
in Part3” except the edges in E2. Obviously, E(G) = E1 ∪ E2 ∪ E3, E1 ∩ E2 =
∅, E1 ∩ E3 = ∅, E2 ∩ E3 = ∅. It is clear that the number of rectangle vertices
is equal to the number of edges in M in Part1 and Part2. We use x to denote
the number of rectangle vertices. Then the number of edges in M in Part3 is
|M | − x. Clearly, E1 can be colored with 2x kinds of colors at most, E2 can be
colored with |M | − x kinds of colors at most. Noting that: the triangle vertices
and the vertices in Part3 are all saturated vertices. So these vertices have only
one degree “free” for new colors no matter how E1 and E2 are colored. As a
consequence, E3 can be colored with
 [x+2(|M|−x)]

2 � at most. Thus, we have:

OPT (G) ≤ 2x + (|M | − x) +
 [x + 2(|M | − x)]
2

� ≤ 2|M | + x

2
≤ 5|M |

2
(3)

Approximation Algorithms for Maximum Edge Coloring Problem 655

e1

v 1

v 2

e2

P a r t 1

P a r t 2
P a r t 3

Fig. 8. The topology of graph G (II)

It yields the approximation ratio:

OPT (G)
ALG(G)

≤
5|M|

2

|M | + 1
≤ 2.5 (4)

4 Approximation Algorithms for Case q > 2

Based on the same idea, we can modify Algorithm 1, and get Algorithm 3 shown
in Figure 9 for case q > 2.

1. Using a greedy method to get a maximal subgraph H with Δ(H) ≤ q − 1;
2. Assign a new color to each edge of H ;
3. Delete the edges of H from the original graph G and for each connected compo-

nent of the residual graph G
′

which is not an isolated vertex, assign to it a new
color;

4. Output each edge with the color assigned to it.

Fig. 9. Algorithm 3

The first two steps of Algorithm 3 are used to color some edges of G employing
a greedy strategy. The greedy procedure of step 1 stops when all the edges of the
residual graph G

′
are at least incident to one vertex v in H with dH(v) = q − 1.

656 W. Feng et al.

Clearly, a maximal subgraph H with Δ(H) ≤ q−1 can be found in time O(|E|).
The time complexity of Algorithm 3 is O(|E|).

Theorem 3: For any connected graph G, Algorithm 3 achieves an approximation
factor of 2 + 2

q−1 .

Proof: Without loss of generality, we suppose the vertex set of the subgraph H
obtained in step 1: V (H) = V1 ∪ V2, where V1 is the set of vertices with degree
dH(v) = q−1, V2 is the set of vertices with degree dH(v) < q−1. Assume |V1| = s.
Then the sum of the degrees of vertices in H is s(q − 1) +

∑
v∈V2

dH(v). So H

has 1
2 [s(q − 1) +

∑
v∈V2

dH(v)] edges. Thus we get a lower bound of the number
of colors used in the solution given by Algorithm 3: ALG(G) ≥ 1

2 [s(q − 1) +
∑

v∈V2
dH(v)]+1. (As usual, we assume that the residual graph G

′
= G−E(H)

has at least one edge.)
Now, we begin to estimate an upper bound of the number of colors used by

an optimal solution: OPT (G). Clearly, for any edge in G
′
, it is incident to one

vertex in V1 at least. Otherwise, it will contradict the fact that H is a maximal
subgraph with Δ(H) ≤ q− 1. Now we can classify the edges of G into two class:
1) Those incident to a vertex in V1; 2) Those whose two endpoints are both in
V2. For the first class, they are colored with sq kinds of colors at most. For the
second class, they are colored with
 1

2

∑
v∈V2

dH(v)� kinds of colors at most. So,
OPT (G) ≤ sq +
 1

2

∑
v∈V2

dH(v)�. The approximation ratio:

OPT (G)
ALG(G)

≤ sq +
 1
2

∑
v∈V2

dH(v)�
1
2 [s(q − 1) +

∑
v∈V2

dH(v)] + 1
≤ 2 +

2
q − 1

(5)

By a similar idea from the case q = 2, we can also find a maximum subgraph
whose degree ≤ q−1 instead of finding a maximal subgraph whose degree ≤ q−1,
which can be used to design a new algorithm with a better approximation ratio.
The new algorithm is in Figure 10. To show it is a polynomial time algorithm,
the classical maximum b-matching problem should be introduced.

Maximum b-matching problem: Given an undirected graph G = (V, E) and
a function b: V → Z+ specifying an upper bound for each vertex, the maximum
b-matching problem asks for a maximum cardinality set M ⊆ E such that ∀ v ∈
V, degM (v) ≤ b(v).

Gabow [12] designed an algorithm of complexity O(|V ||E|log|V |) for the max-
imum b-matching problem in 1983. As a consequence, the time complexity of
Algorithm 4 is O(|V ||E|log|V |). Now we are ready to give the approximation
ratio.

Theorem 4: For any connected graph G, Algorithm 4 achieves an approximation
factor of

1 +
4q − 2

3q2 − 5q + 2
(6)

Proof: (see full paper.)

Approximation Algorithms for Maximum Edge Coloring Problem 657

1. Find a maximum subgraph Hq−1 with Δ(Hq−1) ≤ q − 1;
2. Assign a new color to each edge of Hq−1;
3. Delete the edges of Hq−1 from the original graph G and for each connected

component of the residual graph G
′

which is not an isolated vertex, assign to it
a new color;

4. Output each edge with the color assigned to it.

Fig. 10. Algorithm 4

Table 1 compares the approximation ratios of Theorem 3 and Theorem 4. It
is clear that Algorithm 4 has made progress compared with Algorithm 3. For
instance, if q = 3, the approximation ratio of Algorithm 3 is 3, much larger than
1.71, that of Algorithm 4. As q increases, the first ratio approaches 2, while the
second one approaches 1. This means Algorithm 4 is almost a precise one in
some sense.

Table 1. Comparison of the approximation ratios of Theorem 3, 4

q 3 4 5 6 7 . . . ∞
2 +

2

q − 1
3 2 2

3 ≈ 2.67 2.5 2.4 2 1
3 ≈ 2.33 . . . 2

1 +
4q − 2

3q2 − 5q + 2
1 5

7 ≈ 1.71 1 7
15 ≈ 1.47 1 9

26 ≈ 1.35 1.275 1 13
57 ≈ 1.22 . . . 1

5 Conclusion

This paper studies a novel maximum edge coloring problem which arises from the
field of wireless mesh networks. We have designed approximation algorithms for
cases q = 2 and q > 2 with approximation ratio 2.5 and 1+ 4q−2

3q2−5q+2 respectively.
However, we don’t know the complexity of the problem. The corresponding de-
cision problem can be defined as: Maximum-edge-coloring= {(G, q, k)|(G, q)
has a k-color solution}. Obviously, it belongs to NP class. We conjecture it is
NP-complete.

References

1. Brooks, R.L. On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37,
1941, pp 194-197

2. Karp, R.M. Reducibility among combinatorial problems. In: Complexity of com-
puter computations (Eds. R.E.Miller and J.W.Thatcher.) Plenum Press, New York,
1972, pp 85-103

3. Garey, M.R. and Johnson, D.S. The complexity of near optimal graph coloring. J.
ACM 23, 1976, pp 43-49

658 W. Feng et al.

4. Turner, J.S. Almost all k-colorable graphs are easy to color. J. Algor. 9, 1988, pp
63-82

5. Vizing V.G. On an estimate of the chromatic class of a p-graph. (in Russian)
Diskret. Analiz. 3, 1964, pp 25-30

6. Holyer, I.J. The NP-completeness of edge-coloring. SIAM J. Comp. 10, 1981, pp
718-720

7. Uriel Feige, Eran Ofek and Udi Wieder: Approximating maximum edge coloring
in multigraphs. APPROX 2002, pp 108-121

8. Ashish Raniwala, Tzi-cker Chiueh: Architecture and algorithms for an IEEE
802.11-based multi-channel wireless mesh network. INFOCOM 2005, pp 2223-2234

9. Ashish Raniwala, Kartik Gopalan, Tzi-cker Chiueh: Centralized channel assign-
ment and routing algorithms for multi-channel wireless mesh networks. Mobile
Computing and Communications Review 8(2), 2004: pp 50-65

10. Vijay V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001

11. S. Micali, Vijay V. Vazirani. An O(|V | 1
2 |E|) algorithm for finding maximum match-

ing in general graphs. Proc. 21st IEEE FOCS, 1980, pp 17–27
12. H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and

bidirected network flow problems. Proc. 15th ACM STOC, 1983, pp 448-456

Two Improved Range-Efficient Algorithms for F0

Estimation�

He Sun1,2 and Chung Keung Poon1

1 Department of Computer Science, City University of Hong Kong
Hong Kong, China

2 Department of Computer Science and Engineering, Fudan University
Shanghai, China

Abstract. We present two new algorithms for range-efficient F0 esti-
mating problem and improve the previously best known result, proposed
by Pavan and Tirthapura in [15]. Furthermore, these algorithms pre-
sented in our paper also improve the previously best known result for
Max-Dominance Norm Problem.

1 Introduction

Problem. Let S = r1, · · · , rn be a sequence of intervals where each interval
ri = [xi, yi] ⊆ [1, U] is an interval of integers between xi and yi. Let mj =
||{i|j ∈ ri}|| denote the number of intervals in the sequence S that contains j.
Then the kth-frequency moment of S is defined as Fk =

∑U
i=1 mk

i . In practice,
the zeroth-frequency moment of S is the number of distinct elements in ∪n

i=1ri.
In this paper, we consider the problem of estimating F0 in the above data

stream model. Let ε, δ > 0 be two constants. An algorithm A is said to (ε, δ)-
approximate F0 if the output Z of the algorithm A satisfies Pr[|F0 − Z| >
εF0] < δ. The time and space complexity of algorithm A are functions of the
domain size U , the approximation parameter ε and the confidence parameter δ.
In practice, the number of intervals n and the size of the universe U are very
large. So we seek for algorithms that run quickly using relatively small space.
In particular, the time for processing each interval should be sublinear with the
length of the interval. We call such algorithms range-efficient.

Motivation. The cardinality of a database or data stream is of great importance
in itself. In databases, some operations (such as query optimization) require
knowledge of the cardinality—the number of distinct items—of a specific col-
umn in a database. Since commercial databases are usually very large, we can
afford to scan each item only once and use limited space to give a desired ap-
proximation of F0. Another application arises from routing of Internet traffic. In
this scenario, the router usually has very limited memory and needs to gather

� The work described in this paper was fully supported by a grant from CityU (SRG
7001969).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 659–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

660 H. Sun and C.K. Poon

various statistical properties of the traffic flow. For instance, the number of dis-
tinct destination IP addresses in a specific period is a critical property for the
router to analyze the behavior of the Internet users. This motivates the single
item case of the problem, i.e., the estimation of F0 in a data stream model where
each item of the input is a single integer (instead of intervals).

Bar-Yossef et al. [2] formalize the concept of reductions between algorithms
for data streams and motivate the concept of list-efficient streaming algorithms
which includes range-efficient F0 estimation as a special case. Through reduc-
tions, a range-efficient F0 algorithm can solve the problem of estimating the num-
ber of distinct triangles in graphs. Pavan and Tirthapura [15] also pointed out
the relationship between range-efficient Fk estimation algorithm and the Max-
Dominance Norm Problem. Though there are other algorithms for the problem
that rely on stable distributions and Nisan’s pseudorandom generators [6], the
solution based on the problem that we focus on is more elegant and has smaller
running time.

Related works. In the past twenty years, most research focuses on the single
item case. Flajolet and Martin [9] gave the first algorithm for estimating F0 for
this case. The drawback of their algorithm is that they require a perfect hash
function to make the input data uniform and independent. In 1999, Alon et al. [1]
gave several algorithms for estimating Fk, k ≥ 0, and used pairwise independent
hash functions to get a constant factor approximation F0 algorithm with space
complexity O(log U). In 2002, Bar-Yossef et al. [2] gave the first algorithm for
estimating the number of distinct elements in a data stream that approximates
with arbitrarily small relative error. Since then, several approximation schemes
have been proposed such as the Loglog Counting algorithm [8,11], algorithm
using stable distributions [5], and algorithms based on sampling technique [3].

Unfortunately, applying these algorithms on our problem results in an update
time proportional to the product between the length of the interval and the
running time for updating one item. To overcome this drawback, Bar-Yossef
et al. [2] designed two range-efficient approximation algorithms for F0 and F2

estimation, which are, to our best knowledge, the first efficient approximation
scheme for this kind of problems. In 2005, Pavan and Tirthapura [15] improved
the F0 estimation algorithm of Bar-Yossef et al. and reduced the processing
time per item from O(1

ε5 log5 U log 1
δ) to O(log U

ε log 1
δ). However the worst case

update time per element could be as much as O(log2 U
ε2 log 1

δ).

Results. (1). We give two algorithms with different amortized running time and
worst case running time updating each interval for approximating F0, whose
space complexity is the same as the algorithm in [15]. The following table sum-
marizes our results and gives the comparison between our results and the previ-
ously best known algorithm proposed in [15]. The Õ notation suppresses log log U
factors. (2). We improve the previously best known result for Max-Dominance
Norm Problem and reduce the worst case update time from Õ(1

ε2 log ai,j log 1
δ)

to Õ((1
ε2 + log ai,j) log 1

δ).

Two Improved Range-Efficient Algorithms for F0 Estimation 661

2 Preliminaries

Hash functions. A k-universal family of hash functions is a set H of functions
A �→ B such that for all distinct x1, · · · , xk ∈ A and all (not necessarily distinct)
b1, · · · , bk ∈ B

Pr
h∈H

[h(x1) = b1 ∧ · · · ∧ h(xk) = bk] = |B|−k

Carter and Wegman’s original definition [4] is different from the above, which is
what they call strongly k-universal hash functions [16].

Here we describe a hash function used in our improved algorithm. First choose
a prime number p between U2 and U3, and pick a from the set {1, · · · , p−1} and
b from {0, · · · , p − 1} randomly. Let h(x) = (a · x + b) mod p. It is well known
that h(x) is a pairwise independent hash function. Let ρ(x) be the number
of consecutive 0’s from the rightmost in x’s binary expression. For instance,
ρ(2) = 1 and ρ(7) = 0. In addition, define ρ(0) = 	log p
. The following lemma
gives the pairwise independence of the hash function ρ(h(x)).

Lemma 1. The random variables {ρ((ax + b) mod p)|a ∈ {1, · · · , p − 1}, b ∈
{0, · · · , p − 1}} are pairwise independent.

Proof. Since h(x) = (ax + b) mod p is a pairwise independent hash function, for
any x �= y and α, β ∈ {0, · · · , p − 1}, there holds

Pr
a,b

[h(x) = α ∧ h(y) = β] = Pr
a,b

[h(x) = α] · Pr
a,b

[h(y) = β] =
1
p2

For all x �= y ∈ {0, · · · , p − 1} and i, j ∈ {0, · · · , �log p�},

Pr
a,b

[ρ(h(x)) = i ∧ ρ(h(y)) = j]

=

p−1�

α=0

p−1�

β=0

Pr
a,b

�
h(x) = α ∧ h(y) = β

�
· Pr

�
ρ(h(x))= i ∧ ρ(h(y)) = j

��h(x) = α ∧ h(y)=β
�

=

p−1�

α=0

p−1�

β=0

Pr
a,b

�
h(x) = α ∧ h(y) = β

�
· Pr

�
ρ(α) = i ∧ ρ(β) = j

�

=
1

p2

p−1�

α=0

p−1�

β=0

Pr[ρ(α) = i] · Pr[ρ(β) = j]

=
1

p2

p

2i+1

p

2j+1

= Pr[ρ(h(x)) = i] · Pr[ρ(h(y)) = j]

(1)

In summary, the random variables {ρ((ax + b) mod p)|a ∈ {1, · · · , p− 1}, b ∈
{0, · · · , p − 1}} are pairwise independent. �

662 H. Sun and C.K. Poon

Table 1. Comparison of time complexity for range-efficient F0 estimating algorithm

Algorithm Worst case update time Amortized update time

Algorithm in [15] O(1
ε2 log2 U log 1

δ
) O(log U

ε
log 1

δ
)

Our algorithm Õ((1
ε2 + log U) log 1

δ
) Õ(log U

ε
log 1

δ
)

Our algorithm[revised] O(log 1
ε

log U log 1
δ
) O(log 1

ε
log U log 1

δ
)

3 Algorithm for Range-Efficient F0 Estimation

We first give the high level overview of our approach. Like [3,15], our algorithm
maintains a current sampling level �. Initially, � = 0. We use a set S, whose size
is α = Θ(1

ε2), to store the sampled intervals. When a new interval r comes, the
algorithm checks whether or not r intersects with any existing interval r′ in S.
If there exists such interval r′, let r ← r′ ∪ r. Then we calculate M(r) and G(r),
where M(r) := max

x∈r
ρ(h(x)) and G(r) := ||{x ∈ r|ρ(h(x)) = M(r)}||. In other

words, M(r) is the highest level achieved by the elements in the interval r and
G(r) is the number of elements attaining this level.

If M(r) ≥ �, then we put the interval r into S. When the number of intervals
in S exceeds α, the level � increases and the algorithm deletes the intervals whose
M(·)-value is less than �. Finally, the estimated value of F0 is

Z =
(�log p�∑

i=�

Xi · 2i+1
)
· 2� (2)

where
Xi =

∑

r∈S∧M(r)=i

G(r) (3)

Calculating M(r) and G(r). For the given interval r = [x, y] and hash function
h(x) = (a · x + b) mod p, where p is a prime number, we design an efficient
algorithm to calculate M(r) and G(r).

For this problem, a naive solution to get M(r) is to calculate ρ(h(z)) for
each z ∈ [x, y], and get the maximum value of them. The time complexity is
O(y − x + 1), which could be as much as Θ(U). In this paper, we reduce the
processing time per interval to O(log U log log U).

Consider the following problem: Given the sequence u, (u+d) mod p, · · · , (u+
t · d) mod p, we want to find the maximum integer i, i ∈ {0, · · · , 	log p
}, such
that there exists an integer x ∈ {0, · · · , t} satisfying the following equation

(u + x · d) mod p ≡ 0 (mod 2i) (4)

It is obvious to see the equivalence of calculating M(·) and the above problem
by putting u = h(x), d = a and t = y − x.

For any fixed i, Equation (4) is equivalent to u+x·d ≡ v ·2i (mod p), for some
v ∈ {0, · · · , p−1}. Therefore d·x ≡ v ·2i−u (mod p). Since p is a prime number,
(d, p) = 1 and the solution of the congruence equation d ·x ≡ v ·2i−u (mod p) is

Two Improved Range-Efficient Algorithms for F0 Estimation 663

x ≡ dφ(p)−1 · (v · 2i − u) mod p

= d−1 · (v · 2i − u) mod p
(5)

where φ(·) is the Euler function.
We can express x as

x ≡ (−u · d−1 + v · 2i · d−1) mod p (6)

Thus we can use the procedure Hits, described in [15], to determine the size of
the intersection of the set {0, · · · , t} and the sequence

u′ mod p, (u′ + d′) mod p, · · · , (u′ + (p − 1) · d′) mod p

where u′ = −u · d−1 and d′ = 2i · d−1.
We now describe our algorithm, MG, for computing M(·) and G(·). For the

given hash function h(·), integers d, p and interval r = [x, y], set u′ ← −h(x) ·
d−1(mod p) first. Then the algorithm uses the binary search to determine the
maximum i ∈ {0, · · · , 	log p
} such that v:=Hits(p, 2i·d−1, u′, p−1, [0, y−x])> 0.
Finally, the algorithm outputs i and v as the value of M(r) and G(r).

The formal description of the procedure Hits, which calculates the size of the
intersection between a given interval and an arithmetic progression over ZZp,
can be found in [15].

Theorem 1. The time complexity of algorithm MG is O(log U log log U) and the
space complexity is O(log U).

Proof. Since the maximum value of i is 	log p
 and we use binary search to
determine the required i, we call the procedure Hits at most O(log log U) times
to get the maximum i. By the analysis of [15], the time complexity of Hits is
O(log U), and the space complexity is O(log U). Therefore, the time complexity
of the algorithm MG is O(log U log log U), and the required space is O(log U). �
Algorithm and complexity analysis. In the initialization step, the algorithm
picks a prime number p between U2 and U3, and chooses two numbers a from
{1, · · · , p − 1} and b from {0, · · · , p − 1} at random. Let � be the current level
the algorithm stays in and � ← 0 initially. In addition, let the sample set S be
empty and α ← c

ε2 where c is a constant determined by the following analysis.
We store an interval r in S as a triple (r, d, w) where d = M(r) and w = G(r).

When a new interval ri = [xi, yi] arrives, the algorithm executes the following
operations:

1. If ∃(r, d, w) ∈ S such that ri ∩ r �= ∅:
(a) While ∃(r, d, w) ∈ S such that r ∩ ri �= ∅

S ← S − {(r, d, w)}, ri ← r ∪ ri, Xd ← Xd − w · 2d+1,
Z ← Z − w · 2d+1.

(b) di ← M(ri), wi ← G(ri).
(c) S ← S ∪ {(ri, di, wi)}, Xdi ← Xdi + wi · 2di+1, Z ← Z + wi · 2di+1.

664 H. Sun and C.K. Poon

2. Else If M(ri) ≥ � then
(a) di ← M(ri), wi ← G(ri).
(b) S ← S ∪ {(ri, di, wi)}, Xdi ← Xdi + wi · 2di+1, Z ← Z + wi · 2di+1.
(c) If ||S|| > α then

i. Z ← Z − X�; S ← {(r, d, w)|d > �}; � ← min(r,d,w)∈S d.
ii. If � > �log p� then return;

When an estimate for F0 is asked for, the algorithm returns Z · 2�.
To boost up the probability of achieving the desired approximation value, we

run in parallel O(log 1
δ) copies of the algorithm above and take the median of

the resulting approximations as the final estimated value.

Theorem 2. The space complexity of the algorithm above is O(1
ε2 log U log 1

δ).

Proof. The space required by calculating M(·) and G(·) is O(log U). For estima-
tion algorithm, the sample S consists of α = Θ(1

ε2) elements, each of whom needs
O(log U) space. In addition, the algorithm needs min{ c

ε2 , �log p�} · log U space
to store the value of X0, · · · , X�log p�. Therefore the total space is O(1

ε2 log U).
Since we execute the algorithm O(log 1

δ) times in parallel, the space complexity
of this algorithm is O(1

ε2 log U log 1
δ). �

Theorem 3. The amortized time to process an interval r = [x, y] for the algo-
rithm is Õ(log U

ε log 1
δ), and the worst case running time to process an interval

r = [x, y] is Õ((1
ε2 + log U) log 1

δ).

Proof. The running time to process an interval consists of three parts: 1. Check
whether or not there exists an interval r′ ∈ S, such that r ∩ r′ �= ∅; 2. Time for
calculating M(r) and G(r); 3. Time for handling an overflow in the sample.

We use a balanced binary search tree T to store the elements in S. So we can
use O(log 1

ε) time to check if r intersects with any interval in S in the first part.
As Theorem 1 mentioned, we need O(log U log log U) time to calculate M(r)
and G(r). Now we analyze the running time of the third part. When the size of
S exceeds α, the algorithm uses O(1

ε2) time to calculate the current level �′ ←
min(r,d,w)∈S∧d>� d and discards the intervals whose M(·)’s value is less than �′.
This step need scan each element (r, d, w) ∈ S once, which requires O(1

ε2) time.
Therefore the worst case time complexity of the algorithm is Õ((1

ε2 +log U) log 1
δ).

As for the amortized time, we follow the approach of Pavan and Tirthapura
and argue that the total time for handling overflow in the sample (i.e., part 3)
over the whole data stream is not more than Õ(1

ε2 log U log 1
δ) since the maximum

number of level changes is O(log U). Therefore, the amortized time for inserting
an interval for this part is O(1) if the number of input intervals in the data
stream is large. Consequently, the amortized time is dominated by the time for
part 1 and 2 which is Õ(log U

ε log 1
δ) in total. �

Revised algorithm implementation. The algorithm above uses a balanced
binary tree to store the intervals in S. In the streaming algorithms, some re-
searchers (such as [2]) use the maximum number of steps the algorithm spent

Two Improved Range-Efficient Algorithms for F0 Estimation 665

on a single item as the measure of time complexity. In order to improve the
worst case running time for updating per element, we revise our algorithm pro-
posed above. We use a list of balanced binary trees T0, T1, · · · , Tu, u = �log p�,
to store the intervals in the sample S. The number of trees is not more than
min{�log p�, c

ε2 }. When we need to store an interval r in S, the algorithm cal-
culates M(r) and G(r) first of all, and stores r in TM(r) if M(r) is not less than
the current level �. At the same time, the algorithm updates the estimator Z,
and XM(r), whose value is defined by Equation (2) and (3).

Theorem 4. The space complexity of the revised algorithm is O(1
ε2 log U log 1

δ).

Proof. The space used by the algorithm is the space required for the procedure
MG plus the space for storing the list of trees T0, . . . , Tu. By Theorem 1, the space
complexity for calculating M(r) and G(r) is O(log U). For the list of binary trees,
we store at most O(1

ε2) items, each of which consists of an interval ri = [xi, yi].
In addition, we need O(min{�log p�, c

ε2 } · log U) space to store Xi for each tree
Ti and O(log U) space to store Z. Therefore the total space is O(1

ε2 log U). Since
we run O(log 1

δ) copies of the algorithm in parallel, the total space required by
the algorithm is O(1

ε2 log U log 1
δ). �

Theorem 5. The amortized time to process an interval r = [x, y] for the revised
algorithm is O(log 1

ε log U log 1
δ), and the worst case running time to process an

interval r = [x, y] is O(log 1
ε log U log 1

δ).

Proof. The running time to process an interval r consists of three parts: 1.
Check whether or not there exists an interval r′ ∈ Tj , 0 ≤ j ≤ �log p�, such
that r ∩ r′ �= ∅; 2. Time for calculating M(r) and G(r); 3. Time for handling an
overflow in the sample.

For the first part, let ni denote the number of intervals in Ti. Since all the
intervals in each tree are disjoint, we can use a balanced binary search tree to
store the intervals. Therefore for each tree Ti, we can use O(log ni) time to check
if r intersects with any interval in Ti. The total time for this part is not more
than

�log p�∑

i=0

log ni = log
�log p�∏

i=0

ni

≤ log
(α

log p

)log p

= O
(
log p

(
log

1
ε
− log log p

))

= O
(
log U log

1
ε
− log U log log U

)

(7)

By Theorem 1, the required time for the second part is O(log U log log U).
For part 3, when the size of S exceeds α, the algorithm finds the minimum
�

′
, �

′
> �, such that T�′ is not an empty tree. The algorithm discards tree T�,

and lets � ← �
′
. We can use a linked list to store the root of each (non-empty)

666 H. Sun and C.K. Poon

tree and the running time for finding �
′
is O(1). Since the maximum number of

level changes is O(log U), the total time taken by level changes over the whole
data stream is not more than O(log U log 1

δ), and the amortized time updating
per element for this part is O(1) if the number of intervals in the data stream
is large.

Combined with the three parts, both the amortized and worst case update
time to process each interval are O(log 1

ε log U log 1
δ). �

Correctness proof. Let the sample S = ∪�log p�
i=0 Ti, where Ti = {r|M(r) = i}.

Let NTi be the number of distinct elements in set Ti. In addition, let W (x, i) be
the indicator random variable whose value is 1 if and only if ρ(h(x)) = i.

Define

Z� =
Z

2�
=

�log p�∑

i=�

Xi · 2i+1 (8)

Lemma 2. E[Z�] = F0 · 1
2� , Var[Z�] = F0

1
2� (1 − 1

2�).

Proof. Let D(I) denote the set of distinct elements in I = {r1, · · · , rn}. We want
to estimate F0 = ||D(I)||.

Since E[W (x, �)] = 1
2�+1 , we get

E[Xi] =
∑

r∈Ti

∑

x∈r

E[W (x, i)] = E[NTi] · 1
2i+1

Assume that the current level is �, so we get

E[Z�] = E
[�log p�∑

i=�

Xi · 2i+1
]

=
�log p�∑

i=�

2i+1E[NTi] · 1
2i+1

=
�log p�∑

i=�

E[NTi] = F0 · 1
2�

By Lemma 1, the random variables {W (x, i)|x ∈ D(I)} are all pairwise
independent, thus the variance of Z� is F0

1
2� (1 − 1

2�). �
Theorem 6. Pr

{
Z ∈ [(1 − ε)F0, (1 + ε)F0]

} ≥ 2
3 .

Proof. Let s be the level in which the algorithm stops, and t� is the lowest
level such that E[Zt�] < α

C , where C is the constant number determined by the
following analysis. Let the size of the sample S be α = c

ε2 . Then the probability
that the algorithm fails to give a desired estimation is

Pr
{|Z − F0| > εF0

}
= Pr

{∣
∣
∣
Z

2s
− F0

2s

∣
∣
∣ > ε

F0

2s

}

=
�log p�∑

i=0

Pr
{∣

∣Zi − F0

2i

∣
∣ > ε

F0

2i

∣
∣
∣s = i

}
· Pr{s = i}

=
�log p�∑

i=0

Pr
{∣

∣Zi − E[Zi]
∣
∣ > εE[Zi]

∣
∣
∣s = i

}
· Pr{s = i}

≤
t�

∑

i=0

Pr
{∣
∣Zi − E[Zi]

∣
∣ > εE[Zi]

}
+

�log p�∑

i=t�+1

Pr{s = i}

(9)

Two Improved Range-Efficient Algorithms for F0 Estimation 667

By Chebyshev’s inequality, we know that for all i ∈ {0, · · · , t�}, there holds

Pr
{∣

∣Zi − E[Zi]
∣
∣ > εE[Zi]

}
≤ Var[Zi]

ε2E2[Zi]

On the other hand, if the algorithm stops in the level �′ > t�, it implies that
there are at least α disjoint intervals in S in level t�, each of whom contributes
at least one to the corresponding Xj , t

� ≤ j ≤ �log p�. So we get Zt� ≥ α, and

Pr
{|Z − F0| > εF0

} ≤
t�

∑

i=0

Var[Zi]
ε2E2[Zi]

+ Pr{Zt� ≥ α}

<
t�

∑

i=0

2i

ε2F0
+ Pr

{
Zt� − E[Zt�] ≥ α − α

C

}

<
1

ε2F0
· 2t�+1 +

1
Cα(1 − 1/C)2

<
4

ε2E[Zt�−1]
+

1
Cα(1 − 1/C)2

≤ 4C

ε2α
+

1
Cα(1 − 1/C)2

=
4C

c
+

ε2

Cc(1 − 1/C)2

<
4C

c
+

1
Cc(1 − 1/C)2

<
1
3

(10)

by using C = 3 and c = 50. �
So the probability can be amplified to 1 − δ by running in parallel O(log 1

δ)
copies of the algorithm and outputting the median of the returning O(log 1

δ)
approximating values.

4 Extension: Max-Dominance Norm Problem

Let the input consist of k streams of m integers, where each integer 1 ≤ ai,j ≤ U ,
i = 1, · · · , k, j = 1, · · · , m, represents the jth element of the ith stream. The
max-dominance norm is defined as

∑m
j=1 max1≤i≤k ai,j .

Employing stable distributions, Cormode and Muthukrishnan [6] designed an
(ε, δ)-approximation algorithm of this problem. Pavan and Tirthapura showed
the relationship between this problem and range-efficient F0 estimation [15].
In the same paper, they gave an approximation algorithm for Max-Dominance
Norm Problem, whose space complexity is O(1

ε2 (log m+log U) log 1
δ), with amor-

tized update time O(log ai,j

ε log 1
δ) and worst case update time Õ(1

ε2 log ai,j log 1
δ).

Combining with Pavan and Tirthapura’s technique and our algorithm
presented in this paper, it is not hard to show the following theorem.

668 H. Sun and C.K. Poon

Theorem 7. There exists an (ε, δ)-approximation algorithm for Max-
Dominance Norm Problem, whose space complexity is O(1

ε2 (log m+logU) log 1
δ),

with amortized update time Õ(log ai,j

ε log 1
δ) and worst case update time Õ((1

ε2 +
log ai,j) log 1

δ).

5 Further Work

We consider a more general range-efficient F0 estimation problem — range-
efficient F0 estimation under the turnstile model [13] where there can be both
insertions and deletions of intervals. Let the multiset S be empty initially. When
the intervals arrive, we can not only insert some intervals into S but also delete
the intervals from S. When an estimate is requested, the algorithm need to give
a desired approximation value of ||S||.

Some algorithms, such as [5,10], focus on single item case and are suitable
for this turnstile model. However, all these known algorithms cannot be easily
generalized to the range-efficient case for the following reasons: (1) It is proven
in [5] that stable distributions with small stability parameter can be used to ap-
proximate F0 norm. The difficulty of generalizing this method to range-efficient
case is the lack of general range-summable p-stable random variables. Though
strong range-summability results are known for F1 and F2, for general 0 < p ≤ 2,
there is no any known p-stable range-summable random variable construction
algorithm, which was also listed in [7]. (2) Ganguly et al. gave another algorithm
to estimate the cardinality of the multiset S [10], but this algorithm required
the use of Θ(log 1

δ)-wise independent hash function. Let h be such kind of hash
functions. The algorithm presented in [10] need to calculate ρ(h(x)). Though
there exist some k-wise range-summable hash function construction algorithms
for general k, it is not clear how to calculate ||{x ∈ r|ρ(h(x)) = t}|| effectively, for
the given interval r and parameter t. We leave this more general range-efficient
F0 estimation problem for further work.

Acknowledgements. We thank Piotr Indyk, Graham Cormode and Omer
Reingold for some helpful discussions.

References

1. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58:137-147, 1999.

2. Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In Proceedings of 13th ACM-
SIAM Symposium on Discrete Algorithms, pages 623-632, 2002.

3. Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting
distinct elements in a data stream. In Proceedings of 6th International Workshop on
Randomization and Approximation Techniques in Computer Science, pages 1-10,
2002.

4. J. L. Carter, M. N. Wegman. Universal classes of hash functions. Journal of Com-
puter and System Sciences, 18(2):143-154, 1979.

Two Improved Range-Efficient Algorithms for F0 Estimation 669

5. G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams
using hamming norms (How to zero in). In Proceedings of the 28th International
Conference on Very Large Data Bases, pages 335-345, 2002.

6. G. Cormode, S. Muthukrishnan. Estimating dominance norms of multiple data
streams. In Proceedings of the 11th European Symposium on Algorithms, pages
148-160, 2003.

7. G. Cormode. Stable distributions for stream computations: it’s as easy as 0,1,2.
In Workshop on Management and Processing of Massive Data Streams, at FCRC,
2003.

8. M. Durand and P. Flajolet. Loglog counting of large cardinalities. In Proceedings
of the European Symposium on Algorithms, pages 605-617, 2003.

9. P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base ap-
plications. Journal of Computer and System Sciences, 31:182-209, 1985.

10. S. Ganguly, M. Garofalakis, and R. Rastogi. Tracking set-expression cardinalities
over continuous update streams. The International Journal on Very Large Data
Bases, 13:354-369, 2004.

11. F. Giroire. Order statistics and estimating cardinalities of massive data sets. Dis-
crete Mathematics and Theoretical Computer Science, Vol. AD, pages 157-166,
2005.

12. P. Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In Proceedings of the 40th Symposium on Foundations of
Computer Science, pages 189-197, 2000.

13. S. Muthukrishnan. Data streams: algorithms and applications. Invited talk
at 14th ACM-SIAM Symposium on Discrete Algorithms. Available from
http://athos.rutgers.edu/~muthu/stream-1-1.ps

14. N. Nisan. Pseudorandom generators for space-bounded computation, In Proceed-
ings of the 22nd Symposium on Theory of Computation, pages 204-212, 1990.

15. A. Pavan, S. Tirthapura. Range-efficient computation of F0 over massive data
stream. In Proceedings of the 21st International Conference on Data Engineering,
pages 32-43, 2005.

16. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Science, 22:265-279, 1981.

17. R. Weron. On the Chambers-Mallows-Stuck method for simulating skewed stable
random variables. Technical report, Hugo Steinhaus Center for Stochastic Methods,
Wroc�law, 1996.

Approximation to the Minimum Rooted Star

Cover Problem

Wenbo Zhao1,2,� and Peng Zhang1,2

1 State Key Lab. of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.O.Box 8718, Beijing, 100080, China

2 Graduate University of Chinese Academy of Sciences, Beijing, China
{zwenbo,zhp}@gcl.iscas.ac.cn

Abstract. In this paper, we study the following minimum rooted star
cover problem: given a complete graph G = (V, E) with a length func-
tion l : E → Z+ that satisfies the triangle inequality, a designated root
vertex r ∈ V , and a length bound D, the objective is to find a minimum
cardinality set of rooted stars, that covers all vertices in V such that the
length of each rooted star is at most D, where a rooted star is a subset
of E having a common center s ∈ V and containing the edge (r, s). This
problem is NP-complete and we present a constant ratio approximation
algorithm for this problem.

Keywords: Minimum Rooted Star Cover, Approximation Algorithm.

1 Introduction

We consider an interesting vehicle routing problem, in which we want to find
a minimum size collection of subgraphs that cover the graph. Formally, the
problem is as follows. Consider a metric space, i.e., a complete graph G = (V, E)
with a length function l : E → Z+ that satisfies the triangle inequality. A root
vertex r ∈ V is designated in this graph. A star S in this graph is a subset of E
having a common center s ∈ V and an r-star S with center s is a star containing
the edge (r, s). Also, we refer to a r-star as a rooted star. Here, we say a vertex v is
covered by a star S if v is in the subgraph induced by S and we use the notation
l(S) to denote the length of a star S, i.e., l(S) =

∑
e∈S l(e). The input to the

minimum rooted star cover problem consists of a complete graph G = (V, E)
with a length function l : E → Z+ that satisfies the triangle inequality, one
designated root vertex r ∈ V , and a length bound D. The objective is to find a
minimum cardinality set of r-stars (rooted stars), that cover all vertices in V . In
addition, all these r-stars are required to have length at most D.

This problem has many applications in power network design and routing,
resource allocation, and other related areas. Actually, various vehicle routing

� This work is part of the author’s master thesis. The author is grateful to his su-
pervisor Prof. Angsheng Li for advice and encouragement. The author is partially
supported by NSFC Grant no. 60325206 and no. 60310213.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 670–679, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximation to the Minimum Rooted Star Cover Problem 671

problems have been extensively studied in the literatures [3,6,8,9]. Most of these
papers focus on developing heuristic solutions or solving these problems opti-
mally, there are only a few results on approximation algorithms of these prob-
lems. Even et al. [4] considered the min-max star cover problem where it is called
unrooted k-stars cover problem. They presented a bicriteria (4, 4)-approximation
algorithm, i.e., a polynomial-time algorithm that outputs a solution which covers
all vertices of the graph with no more than 4k (unrooted) stars, and the cost of
the solution is no more than four times the cost of an optimal solution which uses
no more than k (unrooted) stars. Their method is based on LP-rounding. Arkin
et al. [2] considered the minimum star cover problem. The stars considered in
[2] are also unrooted and they are pairwise disjoint, i.e., no vertex is covered by
two different (unrooted) stars. In [2], they presented a (2α + 1)-approximation
algorithm, where α is the approximation ratio for the minimum metric k-median
[1]. Arkin et al. [2] also used their algorithm for minimum star cover problem
to obtain a bicriteria (3 + ε, 3 + ε)-approximation for the unrooted k-stars cover
problem. Recently, Nagarajan and Ravi study a minimum vehicle routing prob-
lem where their goal is to find a minimum cardinality set of paths that cover
all vertices of graph [7]. The path considered in [7] is required to start from a
specified root vertex and has length no more than a “common deadline”, say, D.
They also presented a O(log D)-approximation algorithm for the problem.

Inspired by the work of Nagarajan and Ravi in [7], we consider the minimum
rooted star problem. We firstly show that it is NP-hard. Also, we present an
approximation algorithm for this problem by firstly dividing vertices of graph
into O(log D) levels and then connecting the root to each “small” (unrooted)
star on each level. Our approximation algorithm is similar to the one in [7], but
it achieves a constant performance ratio, which is 7 · (2α + 1).

2 Hardness

In this section, we prove that the minimum rooted star cover problem is
NP-complete even in the special case that the metric space is induced by a
weighted star. Here we propose a reduction from the NP-complete problem
k-partition problem [5]: Given a set T = {t1, t2, . . . , tn} of integers, can T be
partitioned into k disjoint sets T1, T2, . . . , Tk such that

∑
ti∈T1

ti =
∑

ti∈T2
ti =

. . . =
∑

ti∈Tk
ti?

Theorem 1. The minimum rooted star cover problem is NP-complete.

Proof. Given an instance to the k-partition problem consisting of a set T =
{t1, t2, . . . , tn} of integers, we define a complete graph G = (V, E) with V =
{r, v1, v2, . . . , vn} and a length function l : E → Z+ as follows:

l(u, v) =
{

ti (u, v) = (r, vi)
ti + tj (u, v) = (vi, vj)

We designate the root vertex as r ∈ V and the length bound D =
∑

ti∈T ti/k.

672 W. Zhao and P. Zhang

The key observation is that setting the center of any r-star S on the vertex
r will reduce the length of the star. Thus, we can assume that all r-stars in G
have their centers on r. Clearly, T can be partitioned into k sets T1, T2, . . . , Tk

such that
∑

ti∈T1
ti =

∑
ti∈T2

ti = . . . =
∑

ti∈Tk
ti if and only if the minimum

size of the set of r-stars with length bound D is k, where these r-stars cover all
vertices of this graph and their centers are all r. This leads to the conclusion of
this theorem. ��

3 Minimum Rooted Star Cover

In this section, we present an approximation algorithm achieving a constant
guarantee for minimum rooted star cover problem. Our algorithm uses an algo-
rithm for minimum star cover problem in [2]. In order to distinguish it from the
minimum rooted star cover problem, we also refer to this problem as minimum
(unrooted) star cover problem, which is described next.

3.1 Minimum Rooted Star Cover

In the minimum (unrooted) star cover problem, we are given a complete graph
G = (V, E) with a length function l : E → Z+ that satisfies the triangle inequal-
ity, and a length bound D. The goal is to cover all vertices of the graph with
the minimum number of (unrooted) stars whose lengths are at most D, more-
over, these (unrooted) stars are pairwise disjoint, i.e., no vertex is covered by
two different (unrooted) stars. As mentioned in the introduction, this problem
along with other variants has been studied recently in [2]. The authors in [2] also
presented a (2α+1)-approximation algorithm, where α is the approximation ra-
tio for the minimum metric k-median problem [1]. Thus, we have the following
theorem.

Theorem 2 (Theorem 10 [2]). There is a (2α + 1)-approximation algorithm
for the minimum unrooted star cover problem, where α is the approximation ratio
for the minimum metric k-median problem. ��

3.2 Minimum Rooted Star Cover

The basic idea of the algorithm for rooted star cover problem is that, if an
r-star visits some points with “large” distances from the root, it resembles an
unrooted star (with smaller length) covering just those vertices. More concretely,
we divide the vertices of the graph into log D levels, roughly accordingly to their
distances from the root, and solve an unrooted star cover problem on each level
(with appropriate length constraint). Given a complete graph G = (V, E) with a
length function l : E → Z+ that satisfies the triangle inequality, one designated
root vertex r ∈ V , and a length bound D, algorithm MinRSC works as follows.

Approximation to the Minimum Rooted Star Cover Problem 673

Algorithm MinRSC

1. Define levels as follows:

Lj =

⎧
⎨

⎩

{v : D − 1 < l(r, v) ≤ D} j = 0
{v : D − 2j < l(r, v) ≤ D − 2j−1} 1 ≤ j ≤ �log D�
{v : 0 < l(r, v) ≤ D − 2�log D�} j = �log D� + 1

.

2. For each vertex on L0, take a single edge from r to this vertex as an r-star.
3. For j = 1, 2, . . . , �log D� + 1 do

(a) Run the (2α + 1)-approximation algorithm for the minimum (unrooted)
star cover problem, on the vertex set Lj , with length bound 2j−1. Let
the (unrooted) stars obtained be Sj

1 , S
j
2 , . . . , S

j
tj

. Their centers are sj
1, s

j
2,

. . . , sj
tj

, respectively.
(b) For each of these (unrooted) stars, add the edge (r, sj

k) to the star Sj
k, 1 ≤

k ≤ tj , to obtain an r-star, i.e., Sj
k = Sj

2 ∪ {(r, sj
k)}.

For an r-star S with a center s, we use the notation δ(S) to denote the set of
vertices connected by s (excluding root r), i.e., δ(S) = {v ∈ V : v is connected by
s and v
∈ {r, s}}. If S is a (unrooted) star, then δ(S)={v ∈ V : v is connected by
s and v
= s}. Here, we should mention that the (unrooted) stars obtained by
the (2α + 1)-approximation algorithm in [1] are pairwise disjoint, i.e., no vertex
is covered by two different (unrooted) stars. In the following, we firstly present
some interesting properties of any instance of r-star.

Lemma 1. For any r-star S with length bound D, the star center s and the
vertices of the set δ(S) can only locate on at most 3 different levels.

Proof. For a proof by contradiction, we assume that the star center s and vertices
of set δ(S) locate on 4 different levels. Without loss of generality, we can also
assume that the subscripts of these 4 levels are consecutive, i.e., Li+3, Li+2, Li+1,
Li. Let the 3 vertices of δ(S) other than s on the different levels be v1, v2, v3,
respectively. Next, we will distinguish 4 cases according to the location of s.

Case 1: s ∈ Li+3, v1 ∈ Li+2, v2 ∈ Li+1, and v3 ∈ Li. It is easy to verify that
l(r, s)+l(s, v1) > D−2i+2. Moreover, it is clear that l(s, v2) > 2i+1 and l(s, v3) >
2i+1 +2i. Thus, we have l(S) ≥ l(r, s)+ l(s, v1)+ l(s, v2)+ l(s, v3) > D+2i > D.
This leads to a contradiction.

Case 2: v1 ∈ Li+3, s ∈ Li+2, v2 ∈ Li+1, and v3 ∈ Li. Again, it is easy to verify
that l(r, s) + l(s, v2) > D − 2i+1. Moreover, it is clear that l(s, v1) + l(s, v3) >
2i+1 +2i. Thus, we have l(S) ≥ l(r, s)+ l(s, v1)+ l(s, v2)+ l(s, v3) > D+2i > D,
This also leads to a contradiction.

Case 3: v1 ∈ Li+3, v2 ∈ Li+2, s ∈ Li+1, and v3 ∈ Li. It is clear that l(s, v1) +
l(s, v3) > 2i+1 + 2i. Similarly, we also have l(r, s) + l(s, v2) > D − 2i+1. Thus,
we have l(S) ≥ l(r, s) + l(s, v1) + l(s, v2) + l(s, v3) > D + 2i > D, which implies
a contradiction.

Case 4: v1 ∈ Li+3, v2 ∈ Li+2, v3 ∈ Li+1, and s ∈ Li. It is clear that l(s, v1) >
2i+1 + 2i and l(s, v2) > 2i. Moreover, l(r, s) + l(s, v3) > D − 2i. Thus, we have

674 W. Zhao and P. Zhang

l(S) ≥ l(r, s)+ l(s, v1)+ l(s, v2)+ l(s, v3) > D+2i+1+2i > D, which also implies
a contradiction.

With all of this, the lemma thus follows. ��

Given an r-star S with length bound D, we may split the r-star S into several
r-stars Si, i = 1, 2, . . . , such that for each resultant r-star Si, the center of Si

and the vertices of δ(Si) are all on the same level, and also, the length of each
resultant r-star is no more than D. We will prove the following lemma.

Lemma 2. For any r-star S with star center s and length bound D, there are t
r-stars Si, 1 ≤ i ≤ t ≤ 5, such that they satisfy the following conditions:

1. for each Si, i = 1, 2, . . . , t, l(Si) ≤ D;
2. for each Si, i = 1, 2, . . . , t, the center of Si, si, and the vertices of δ(Si) are

all on the same level;
3. {s} ∪ δ(S) =

⋃t
i=1({si} ∪ δ(Si)).

Proof. We will prove this lemma by “splitting” S into at most 5 r-stars. By
lemma 1, the center s of S and the vertices of δ(S) can only locate on at most 3
different levels. Assume that the 3 levels are Li1 , Li2 , Li3 and s ∈ Li1 . Divide the
vertices of δ(S) into 3 sets, i.e., δ(Si1) = δ(S)∩Li1 , δ(Si2) = δ(S)∩Li2 , δ(Si3) =
δ(S)∩Li3 , where Sik , 1 ≤ k ≤ 3, is a r-star such that the center of Sik is s, and
δ(Sik) = δ(S) ∩ Lik

. Since s ∈ Li1 , it is clear that r-star Si1 satisfies conditions
1 and 2.

For Si2 , order the vertices of δ(Si2), u1, u2, . . . , um, so that l(s, u1) ≤ l(s, u2) ≤
. . . ≤ l(s, um), where m = |δ(Si2)|. Since the length of r-star S is no more than
D, we have

m∑

i=1

2l(s, ui) ≤ 2D − 2l(r, s). (1)

Here, we can also assume that left part of the above equation is more than
D − l(r, s), otherwise, we could handle this case more easily.

If there exists some i∗, 1 ≤ i∗ ≤ m, such that
∑i∗−2

i=1 2l(s, ui) + l(s, ui∗−1) ≤
D − l(r, s), but

∑i∗−1
i=1 2l(s, ui) > D − l(r, s), then by inequality (1) we have

∑m−1
i=i∗ 2l(s, ui) + l(s, um) ≤ D − l(r, s). Thus, by triangle inequality, we have

l(r, u1) +
i∗−1∑

i=2

l(u1, ui) ≤ l(r, s) +
i∗−2∑

i=1

2l(s, ui) + l(s, ui∗−1) ≤ D. (2)

Notice that the left hand side of the above inequality is just the length of the
r-star with center u1, and the vertices (excluding r) covered by this r-star are
just u1, u2, . . . , ui∗−1. Similarly,

l(r, ui∗) +
m∑

i=i∗+1

l(ui∗ , ui) ≤ l(r, s) +
m−1∑

i=i∗

2l(s, ui) + l(s, um) ≤ D. (3)

Approximation to the Minimum Rooted Star Cover Problem 675

Also, the left hand side of the above inequality is just the length of the r-star
with center u∗

i , such that the vertices (excluding r) covered by this r-star are
exact ui∗ , ui∗+1, . . . , um.

Otherwise, there exsits some i∗, 1 ≤ i∗ ≤ m,
∑i∗−1

i=1 2l(s, ui) ≤ D − l(r, s),
but

∑i∗−1
i=1 2l(s, ui) + l(s, ui∗) > D − l(r, s), then by inequality (1) we have

∑m−1
i=i∗ 2l(s, ui) + l(s, um) ≤ l(s, ui∗) +

∑m
i=i∗+1 2l(s, ui) ≤ D − l(r, s). By the

triangle inequality again, we have

l(r, u1) +
i∗−1∑

i=2

l(u1, ui) ≤ l(r, s) +
i∗−1∑

i=1

2l(s, ui) ≤ D, (4)

and

l(r, ui∗) +
m∑

i=i∗+1

l(ui∗ , ui) ≤ l(r, s) +
m−1∑

i=i∗

2l(s, ui) + l(s, um) ≤ D, (5)

which implies that we can also “split” r-star Si2 into 2 r-stars.
For the r-star Si3 , by the same “splitting” approach as r-star Si2 , we can

“split” it into at most 2 r-stars too. It is clear that the vertices covered by
these resultant r-stars are just the vertices covered by r-star S. This leads the
conclusion of this lemma. ��
Now, we will turn our attention on how to divide a r-star S into at most 3
(unrooted) stars, where the center of S, vertices of δ(S), and the 3 resultant
(unrooted) stars are all on the same level.

Lemma 3. Given any r-star S with center s and length bound D, and s and
the vertices of the set δ(S) are all on the same level Lj, 1 ≤ j ≤ �log D� + 1,
there are t (unrooted) stars Si, 1 ≤ i ≤ t ≤ 3, such that they satisfy the following
conditions:

1. for each Si, i = 1, 2, . . . , t, l(Si) ≤ 2j−1;
2. for each Si, i = 1, 2, . . . , t, the center of Si, si, and the vertices of δ(Si) are

all in the same level Lj;
3. {s} ∪ δ(S) =

⋃t
i=1({si} ∪ δ(Si)).

Proof. Order the vertices of δ(S), u1, u2, . . . , um such that l(s, u1) ≥ l(s, u2) ≥
. . . ≥ l(s, um), where m = |δ(S)|. Since the center of S and the vertices of the
set δ(S) are all in the same level Lj, we have

∑m
i=1 l(s, ui) ≤ 2j. Since l(s, ui) ≤

D, 1 ≤ i ≤ m, there is some k, 1 ≤ k ≤ m, such that,
∑m

i=k+1 l(s, ui) ≤ 2j−1

but
∑m

i=k l(s, ui) > 2j−1. (If
∑m

i=1 l(s, ui) ≤ 2j−1, one (unrooted) star will be
sufficient.) Let S1 be the (unrooted) star having vertex s as center such that
δ(S1) = {uk+1, uk+2, . . . , um}. Notice that

l(s, u1) +
k−1∑

i=2

2l(s, ui) + l(s, uk) ≤
k−1∑

i=1

2l(s, ui) ≤ 2 · 2j−1.

676 W. Zhao and P. Zhang

Here, we can also assume that the left hand side of the above inequality is more
than 2j−1, otherwise, another (unrooted) star will be sufficient.

If there exits some i∗, 1 ≤ i∗ ≤ k, such that l(s, u1)+
∑i∗−1

i=2 2l(s, ui) ≤ 2j−1 <

l(s, u1) +
∑i∗−1

i=2 2l(s, ui) + l(s, ui∗), then, by triangle inequality we have

i∗−2∑

i=1

l(ui∗−1, ui) ≤ l(s, u1) +
i∗−1∑

i=2

2l(s, ui) ≤ 2j−1, (6)

and
k−1∑

i=i∗

l(uk, ui) ≤ l(s, ui∗) +
k−1∑

i=i∗+1

2l(s, ui) + l(s, uk) ≤ 2j−1. (7)

Thus, we can let S2 be the (unrooted) star having vertex ui∗−1 as center such
that δ(S2) = {u1, . . . , ui∗−2} and let S3 be the (unrooted) star having vertex uk

as center such that δ(S2) = {ui∗ , . . . , uk−1}.
Otherwise, there exits some i∗, 1 ≤ i∗ ≤ k, such that l(s, u1)+

∑i∗−1
i=2 2l(s, ui)+

l(s, ui∗) ≤ 2j−1 < l(s, u1)+
∑i∗

i=2 2l(s, ui), Again, by triangle, inequality, we have

i∗−1∑

i=1

l(ui∗ , ui) ≤ l(s, u1) +
i∗−1∑

i=2

2l(s, ui) + l(s, ui∗) ≤ 2j−1, (8)

and
k−1∑

i=i∗+1

l(uk, ui) ≤ l(s, ui∗+1) +
k−1∑

i=i∗+2

2l(s, ui) + l(s, uk) ≤ 2j−1. (9)

Similarly, we can let S2 be the (unrooted) star having vertex ui∗ as center and
δ(S2) = {u1, . . . , ui∗−1} and let S3 be the (unrooted) star having vertex uk as
center and δ(S2) = {ui∗+1, . . . , uk−1}.

Clearly, these (unrooted) stars satisfy the 3 conditions required by this lemma,
and thus the lemma follows. ��
With the previous three lemmas, we prove our main theorem as follows.

Theorem 3. Algorithm MinRSC is a (2α+1)βγ-approximation algorithm for
the minimum rooted star cover problem, where β = 3, γ = 5, and α is the
approximation ratio for the minimum metric k-median problem.

Proof. Define nj to be the size of the optimal solution to the minimum (un-
rooted) star cover problem on the subgraph induced by vertex set Lj, 1 ≤
j ≤ �log D� + 1. Let n′

j be the number of the (unrooted) stars returned by
the (2α + 1)-approximation algorithm on the subgraph induced by vertex set
Lj, 1 ≤ j ≤ �log D� + 1 in step 3(a). Let n0 be the cardinality of L0 and n′

0 be
the number of r-stars returned in the step 2. Since n′

i

ni
< 2α + 1 and n0 = n′

0, we
have ∑�log D�+1

j=0 n′
i

∑�log D�+1
j=0 ni

≤ 2α + 1.

Approximation to the Minimum Rooted Star Cover Problem 677

Suppose OPT , a set of r-stars, is one of the optimal solution to the minimum
(unrooted) star cover problem. By lemmas 1, 2, and 3, for any r-star S ∈ OPT ,
we can “split” it into at most βγ (unrooted) stars such that the vertices of each
(unrooted) star are all in the same level respectively, and all these (unrooted)
stars cover all the vertices which are covered by S. Moreover, the length of each
(unrooted) star in the level Lj is no more than 2j−1. Notice that the set of the
resultant (unrooted) stars in the same level also give a feasible solution to the
minimum (unrooted) star cover problem in that level. Thus, we have

βγ|OPT | ≥
�log D�+1∑

j=0

ni,

which implies that
�log D�+1∑

j=0

n′
i ≤ (2α + 1)βγ|OPT |.

This completes the proof of theorem 3. ��

3.3 Better Approximation

In the previous subsection, we present a general framework to show that our
approximation algorithm achieves a constant performance ratio. The basic idea
of our framework is to split an r-star into several (unrooted) stars (with appro-
priate length bound) such that they can cover all vertices of the r-star, and also
the vertices of each (unrooted) star are all on the same level. In the following, we
will improve the constant guarantee by splitting the r-star into smaller number
of (unrooted) stars. For that, we need the following two lemmas.

Lemma 4. For any r-star S with star center s and the length bound D, if all
vertices of the set δ(S) are on the same level Lj, and

∑
v∈δ(S) l(s, v) ≤ 2j−1, 1 ≤

j ≤ �logD� + 1, there are t (unrooted) stars Si, 1 ≤ i ≤ t ≤ 2, such that

1. for each Si, 1 ≤ i ≤ t, the center of Si, si, and the vertices of δ(Si) are all
on the level Lj,and moreover l(Si) ≤ 2j−1;

2. δ(S) =
⋃t

i=1({si} ∪ δ(Si)).
��

The proof of the above lemma is quit similar to that of lemma 2, we omit the
details here.

Lemma 5. For any r-star S with star center s and the length bound D, there
are t (unrooted) stars Si, 1 ≤ i ≤ t ≤ 7, such that

1. for each Si, 1 ≤ i ≤ t, the center of Si, si, and the vertices of δ(Si) are all
in the same level Lij ,and moreover l(Si) ≤ 2ij−1;

2. {s} ∪ δ(S) =
⋃t

i=1({si} ∪ δ(Si)).

678 W. Zhao and P. Zhang

Proof. If the center s and the vertices of δ(S) are all on the same level, by lemma
3, it is easy to cover these vertices by at most 3 (unrooted) stars which satisfy
the 2 conditions of the lemma.

If the center s and the vertices of δ(S) are in 2 different levels. Without loss of
generality, we can assume that subscripts of the 2 different levels are consecutive,
i.e., Li+1, Li. There are 2 cases according the location of s.

Case 1: s ∈ Li+1. Clearly, s and the vertices of δ(S)∩Li+1 can be covered by a
single (unrooted) star whose length is at most 2i. Let S′ be the r-star such that
the center of S′ is s and δ(S′) = δ(S)∩ Li. By the similar “splitting” approach
of lemma 2, we can “split” S′ into at most 2 r-stars, S′

1, S′
2. Then by lemma 3,

we can “split” the 2 r-stars S′
1 and S′

2 into at most 6 (unrooted) stars. Thus, we
can cover the s and the vertices of δ(S) by at most 7 (unrooted) stars, which
satisfy the 2 conditions of this lemma.

Case 2: s ∈ Li. Clearly, by lemma 3, vertex s and the vertices of δ(S) ∩ Li can
be covered by at most 3 (unrooted) stars such that the length of each (unrooted)
star is at most 2i−1. For the vertices of δ(S) ∩ �Li+1, by lemma 4, they can be
covered by at most 2 (unrooted) stars. It is easy to verify that the 5 stars satisfy
the conditions of this lemma.

If the center s and the vertices of δ(S) are in 3 different levels, Without loss
of generality, we can assume that their subscripts levels are consecutive, i.e.,
Li+2, Li+1, Li. There are 3 cases according to the location of s.

Case 3: s ∈ Li+2. It is easy to verify that there is only one vertex of δ(S) in level
Li. Thus, we can make it as a (unrooted) star, and we have

∑
vδ(S)∩Li+1

l(s, v) ≤
2i. By lemma 4, the vertices of δ(S)∩�Li+1 can be covered by at most 2 (unrooted)
stars. For the vertex s and the vertices of δ(S) ∩ Li+2, they can be covered by
a (unrooted) star such that its center is s and its length is no more than 2i+1.
Clearly, the 4 (unrooted) stars satisfy the conditions of this lemma.

Case 4: s ∈ Li+1. Also, it is easy to verify that there is only one vertex of δ(S)
in level Li. For the vertex s and vertices of δ(S) ∩ �Li+1, they can be covered by
a (unrooted) star such that its center is s and its length is no more that 2i. For
the vertices of δ(S) ∩ Li+2, by lemma 4, they can be covered by 2 (unrooted)
stars. Clearly, the 4 (unrooted) stars here satisfy the conditions of this lemma.

Case 5: s ∈ Li. Assume that one of the vertices of δ(S) in level Li+2 is v1. Since
l(S) > l(r, s) + l(s, v1) > D − 2i + 2i, it leads to a contradiction.

All of this, the lemma follows. ��
By lemma 5 and we have the following theorem directly.

Theorem 4. Algorithm MinRSC is a (2α + 1)τ-approximation algorithm for
the minimum rooted star cover problem, where α is the approximation ratio for
the minimum metric k-median problem and τ = 7. ��

Approximation to the Minimum Rooted Star Cover Problem 679

4 Discussion

In this paper, we show that the minimum rooted star cover problem is
NP-complete. We present an approximation algorithm for this problem and
also we show a general framework to prove that our algorithm is a constant
ratio approximation algorithm. Then, by a more careful analysis, we obtain a
better performance guarantee. However, the bottleneck for improving approxi-
mation ratio is in the case 1 of lemma 5. It is interesting to ask whether we can
do something more in this case.

Acknowledgement

We would like to express our sincere thanks to anonymous referees for their
comments that improved our paper. Kindly do needful for its publication.

References

1. Arya, V., Garg N., Khandekar, R., Pandit, V., Meyerson, A., Nunagata, K.: Local
Search Heuristics for k-median and Facility Location Problems. In the proceedings
of STOC 2001, 21–29.

2. Arkin, E. M., Hassin, R., Levin, A.: Approximation for Minimum and Min-Max
Vehicle Routing Problems. Journal of Algorithms 59 (2006), 1–18.

3. Desrochers, M., Desrosiers, J., Solomon, M.: A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows. Operation Research 40 (1992):
342–354.

4. Even, G., Garg N., Konemann, J., Ravi, R., Sinha, A.: Covering Graph Using Trees
and Stars. In the proceedings of APPROX 2003, 24–25.

5. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco, 1979.

6. Kohen, A., Kan, A. R., Trienekens, H.: Vehicle Routing with Time Windows. Op-
erations Research 36 (1987): 266–273.

7. Nagarajan, V., Ravi, R.: Minimum vehicle routing with a common deadline. In the
proceedings of APPROX 2006.

8. Savelsbergh, M.: Local Search for Routing Problems with Time Windows. Annals
of Operations Research, 4 (1985): 285–305.

9. Tan, K. C., Lee, L. H., Zhu, K. Q., Ou, K.: Heuristic Methods for Vehicle Routing
Problems with Time Windows. Artificial Intelligence in Engineering 2001: 281–295.

Approximability and Parameterized Complexity

of Consecutive Ones Submatrix Problems

Michael Dom, Jiong Guo�, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{dom,guo,niedermr}@minet.uni-jena.de

Abstract. We develop a refinement of a forbidden submatrix character-
ization of 0/1-matrices fulfilling the Consecutive Ones Property (C1P).
This novel characterization finds applications in new polynomial-time ap-
proximation algorithms and fixed-parameter tractability results for the
problem to find a maximum-size submatrix of a 0/1-matrix such that
the submatrix has the C1P. Moreover, we achieve a problem kerneliza-
tion based on simple data reduction rules and provide several search tree
algorithms. Finally, we derive inapproximability results.

1 Introduction

A 0/1-matrix has the Consecutive Ones Property (C1P) if there is a permutation
of its columns, that is, a finite series of column swappings, that places the 1’s
consecutive in every row1. The C1P of matrices has a long history and it plays
an important role in applications from computational biology and combinatorial
optimization. It is well-known that it can be decided in linear time whether
a given 0/1-matrix has the C1P, and, if so, also a corresponding permutation
can be found in linear time [1,6,10,11,14]. Moreover, McConnell [13] recently
described a certifying algorithm for the C1P.

Often one will find that a given matrix M does not have the C1P. Hence, it
is a natural and practically important problem to find a submatrix of M with
maximum size that has the C1P [5,8,16]. Unfortunately, even for sparse matrices
with few 1-entries this quickly turns into an NP-hard problem [8,16]. In this
paper, we further explore the algorithmic complexity of this problem, providing
new polynomial-time approximability and inapproximability and parameterized
complexity results. To this end, our main technical result is a structural theorem,
dealing with the selection of particularly useful forbidden submatrices. Before
we describe our results concerning algorithms and complexity in more detail, we
introduce some notation.

We call a matrix that results from deleting some rows and columns from a
given matrix M a submatrix of M . Then the decision version of the problem we
study here is defined as follows:
� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research

group PIAF (fixed-parameter algorithms), NI 369/4.
1 It can be defined symmetrically for columns; we focus on rows here.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 680–691, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Consecutive Ones Submatrix Problems 681

Consecutive Ones Submatrix (COS)
Input: An m × n 0/1-matrix M and a nonnegative integer n′ ≤ n.
Question: Is there an m × n′ submatrix of M that has the C1P?

We study two optimization versions of the decision problem: The minimization
version of COS, denoted by Min-COS, asks for a minimum-size set of columns
whose removal transforms M into a matrix having the C1P. The maximization
version of COS, denoted by Max-COS, asks for the maximum number n′ such
that there is an m × n′ submatrix of M having the C1P.

Whereas an m×n matrix is a matrix having m rows and n columns, the term
(x, y)-matrix will be used to denote a matrix that has at most x 1’s in a column
and at most y 1’s in a row. (This notation was used in [8,16].) With x = ∗
or y = ∗, we indicate that there is no upper bound on the number of 1’s in
columns or in rows.

Hajiaghayi [7] observed that in Garey and Johnson’s monograph [5] the ref-
erence for the NP-hardness proof of COS is not correct. Then, COS has been
shown NP-hard for (2, 4)-matrices by Hajiaghayi and Ganjali [8]. Tan and Zhang
showed that for (2, 3)- or (3, 2)-matrices this problem remains NP-hard [16]. COS

is trivially solvable in O(m · n) time for (2, 2)-matrices.
Tan and Zhang [16] provided polynomial-time approximability results for the

sparsest NP-hard cases of Max-COS, that is, for (2, 3)- and (3, 2)-matrices:
Restricted to (3, 2)-matrices, Max-COS can be approximated within a factor
of 0.5. For (2, ∗)-matrices, it is approximable within a factor of 0.5; for (2, 3)-
matrices, the approximation factor is 0.8.

Let d denote the number of columns we delete from the matrix M to get
a submatrix M ′ having the C1P. Besides briefly indicating the computational
hardness (approximation and parameterized) of Max-COS and Min-COS on
(∗, 2)-matrices, we show the following main results.
1. For (∗, Δ)-matrices with any constant Δ ≥ 2, Min-COS is approximable
within a factor of (Δ + 2), and it is fixed-parameter tractable with respect
to d. In particular, this implies a polynomial-time factor-4 approximation al-
gorithm for Min-COS for (∗, 2)-matrices. Factor-4 seems to be the best factor
one can currently hope for, because a factor-δ approximation for Min-COS re-
stricted to (∗, 2)-matrices will imply a factor-δ/2 approximation for Vertex

Cover. It is commonly conjectured that Vertex Cover is not polynomial-
time approximable within a factor of 2 − ε, for any constant ε > 0, unless
P=NP [12].
2. For (∗, 2)-matrices, Min-COS admits a data reduction to a problem kernel
consisting of O(d2) columns and rows.
3. For Min-COS on (2, ∗)-matrices, we give a factor-6 polynomial-time ap-
proximation algorithm and a fixed-parameter algorithm with a running time
of O(6d · min{m4n, mn6}).

Due to the lack of space, several proofs are deferred to the full version of the
paper.

682 M. Dom, J. Guo, and R. Niedermeier

2 Preliminaries

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems [3,4,15]. One dimension is the input size n
(as in classical complexity theory) and the other one the parameter d (usually
a positive integer). A problem is called fixed-parameter tractable (fpt) if it can
be solved in f(d) · nO(1) time, where f is a computable function only depending
on d. A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction rules, often yielding a reduction to a prob-
lem kernel (kernelization). Here the goal is, given any problem instance x with
parameter d, to transform it into a new instance x′ with parameter d′ such
that the size of x′ is bounded from above by some function only depending
on d, the instance (x, d) has a solution iff (x′, d′) has a solution, and d′ ≤ d. A
mathematical framework to show fixed-parameter intractability was developed
by Downey and Fellows [3] who introduced the concept of parameterized reduc-
tions. A parameterized reduction from a parameterized language L to another
parameterized language L′ is a function that, given an instance (x, d), computes
in time f(d) · nO(1) an instance (x′, d′) (with d′ only depending on d) such that
(x, d) ∈ L ⇔ (x′, d′) ∈ L′. The basic complexity class for fixed-parameter in-
tractability is W[1] as there is good reason to believe that W[1]-hard problems
are not fixed-parameter tractable [3,4,15].

We only consider 0/1-matrices M = (mi,j), that is, matrices containing
only 0’s and 1’s. We use the term line of a matrix M to denote a row or column
of M . A column of M that contains only 0-entries is called a 0-column. Two
matrices M and M ′ are called isomorphic if M ′ is a permutation of the rows
and columns of M . Complementing a line � of a matrix means that all 1-entries
of � are replaced by 0’s and all 0-entries are replaced by 1’s.

Let M = (mi,j) be a matrix. Let ri denote the i-th row and let cj the j-th
column of M , and let M ′ be the submatrix of M that results from deleting
all rows except for ri1 , . . . , rip and all columns except for cj1 , . . . , cjq from M .
Then M ′contains an entry mi,j of M , denoted by mi,j ∈ M ′, if i ∈ {i1, . . . , ip}
and j ∈ {j1, . . . , jq}. A row ri of M belongs to M ′, denoted by ri ∈ M ′, if i ∈
{i1, . . . , ip}. Analogously, a column cj of M belongs to M ′ if j ∈ {j1, . . . , jq}.
A matrix M is said to contain a matrix M ′ if M ′ is isomorphic to a submatrix
of M .

3 Hardness Results

As observed by Tan and Zhang [16], Max-COS with each row containing at most
two 1’s is equivalent to the Maximum Induced Disjoint Paths Subgraph

problem (Max-IDPS), where, given an undirected graph G = (V, E), we ask for
a maximum-size set W ⊆ V of vertices such that the subgraph of G induced
by W , denoted by G[W], is a set of vertex-disjoint paths. Since we may assume
w.l.o.g. that the input matrix M has no two identical rows and no row of M
contains only one 1, a 0/1-matrix M where each row contains exactly two 1’s

Consecutive Ones Submatrix Problems 683

can be interpreted as a graph GM = (V, E) with V corresponding to the set of
columns and E corresponding to the set of rows. It is easy to verify that M has
the C1P iff GM is a union of vertex-disjoint paths.

We show the hardness of Max-IDPS by giving an approximation-preserving
reduction from the NP-hard Independent Set problem to Max-IDPS2.

Theorem 1. There exists no polynomial-time factor-O(|V |(1−ε)) approximation
algorithm, for any ε > 0, for Maximum Induced Disjoint Paths Subgraph

(Max-IDPS) unless NP-complete problems have randomized polynomial-time al-
gorithms.

With the equivalence between Max-COS, restricted to (∗, 2)-matrices, and Max-
IDPS and results from [2,3,9], we get the following corollary.

Corollary 1. Even in case of (∗, 2)-matrices,

1. there exists no polynomial-time factor-O(|V |(1−ε)) approximation algorithm,
for any ε > 0, for Max-COS unless NP-complete problems have randomized
polynomial-time algorithms,

2. Max-COS is W[1]-hard with respect to the number of the columns in the
resulting consecutive ones submatrix, and

3. assuming P�=NP, Min-COS cannot be approximated within a factor of 2.7212.

4 (∗, Δ)-Matrices

This section will present two positive results for the minimization version of
Consecutive Ones Submatrix (Min-COS) restricted to (∗, Δ)-matrices, one
concerning the approximability of the problem, the other one concerning its
fixed-parameter tractability. To this end, we develop a refinement of the forbid-
den submatrix characterization of the C1P by Tucker [18], which may also be of
independent interest.

Definitions and Observations. Every 0/1-matrix M = (mi,j) can be interpreted
as the adjacency matrix of a bipartite graph GM : For every line of M there
is a vertex in GM , and for every 1-entry mi,j in M there is an edge in GM

connecting the vertices corresponding to the i-th row and the j-th column of M .
In the following definitions, we call GM the representing graph of M ; all terms
are defined in analogy to the corresponding terms in graph theory.

Let M be a matrix and GM its representing graph. Two lines �, �′ of M are
connected in M if there is a path in GM connecting the vertices corresponding
to � and �′. A submatrix M ′ of M is called connected if each pair of lines belonging
to M ′ is connected in M ′. A maximal connected submatrix of M is called a
component of M . A shortest path between two connected submatrices M1, M2

of M is the shortest sequence �1, . . . , �p of lines such that �1 ∈ M1 and �p ∈ M2

2 A different reduction from Independent Set to Max-IDPS was independently
achieved by Tan and Zhang [16].

684 M. Dom, J. Guo, and R. Niedermeier

c1c1 c2

c2
c3

c3 c4c4 c5c5

c6

c6

r1

r1

r2

r2

r3 r3
r4

r4

11
111

1
1
11

0
0
0

0 00
00
0
0

0

00 0
0

Fig. 1. A matrix with two components and its representing bipartite graph

k + 2

k + 2

MIk
, k ≥ 1

k + 3

k + 3

MIIk
, k ≥ 1

k + 3

k + 2

MIIIk
, k ≥ 1

MIV MV

· · ·
· · ·· · ·

· · ·· · ·

· · ·
· · · · · · · · ·· · ·

· · · · · ·
· · · · · · · · ·· · ·

111
11

11
11

111
1111
11

11

11
1 1

11
11

1 11
1 1

11
11

1 1
11

1

1 1

11
11

000
0000

00
0

0
00

0
0

00
0

00 0
0 00

0 0
0

0
0

0

00
0

00
0 00

0
0

00
0

0
0

0 00

0
0

00
0

Fig. 2. The forbidden submatrices due to Tucker mentioned in Theorem 2

and the vertices corresponding to �1, . . . , �p form a path in GM . If such a shortest
path exists, the value p − 1 is called the distance between M1 and M2.

Note that each submatrix M ′ of M corresponds to an induced subgraph of GM

and that each component of M corresponds to a connected component of GM .
An illustration of the components of a matrix is shown in Fig. 1. If the distance
between two lines �1 and �p is a positive even number, then �1 and �p are either
both rows or both columns; if the distance is odd, then exactly one of �1 and �p

is a row and one is a column.

Observation 1. Let M be a matrix and let � be a line of M . Then � belongs to
exactly one component M ′ of M and M ′ contains all 1-entries of �.

The following corollary is a direct consequence of Observation 1.

Corollary 2. Let M be a matrix and let M1, . . . , Mi be the components of M . If
the column sets F1, . . . , Fi are optimal solutions for Min-COS on M1, . . . , Mi,
respectively, then F1 ∪ . . . ∪ Fi is an optimal solution for Min-COS on M .

Matrices that have the C1P can be characterized by a set of forbidden subma-
trices as shown by Tucker [18].

Theorem 2 ([18, Theorem 9]). A matrix M has the C1P iff it contains none
of the matrices MIk

, MIIk
, MIIIk

(with k ≥ 1), MIV, and MV (see Fig. 2).

The matrix type MI is closely related to the matrix types MII and MIII ; this
fact is expressed, in a more precise form, by the following two lemmas. They are
used in the proof of our main structural result presented in Theorem 4.

Consecutive Ones Submatrix Problems 685

k + 3 k + 3k + 3

k
+

3

k
+

3

k
+

3

· · · · · ·
· · · · · · · · ·· · ·

· · · · · ·
· · · · · · · · ·· · ·· · ·

· · · · · ·
· · · · · ·

· · ·

1
1

1

1 1

11
11

1
1

1
1

1 1

11
11

1
1

1

1

1

1

11
1

11

11
11

1
1

0
0
0

0
0

0
0

00

00
0

0

0
0

0
0
0

0
0

0
0

0

00

00
0

0

0

0

0

0
0

0 0

00
0

0

0
0

M M ′ M ′′

Fig. 3. An illustration of Lemma 1. Matrix M contains an MIIk and a 0-column.
Complementing rows r2, rk+1, and rk+2 of M leads to matrix M ′. Complementing the
rows of M ′ that have a 1 in column ck+3, namely, r2, rk+1, and rk+3, transforms M ′

to matrix M ′′ which contains an MIk+1 and a 0-column, ck+3.

Lemma 1. For an integer k ≥ 1, let M be a (k + 3) × (k + 4)-matrix contain-
ing MIIk

and additionally a 0-column, and let M ′ be the matrix resulting from M
by complementing a subset of its rows.

Then complementing all rows of M ′ that have a 1 in column ck+3 results in
a (k + 3) × (k + 4)-matrix containing MIk+1 and additionally a 0-column.

Proof. Let R ⊆ {1, 2, . . . , k + 3} be the set of the indices of the complemented
rows, that is, all rows ri of M with i ∈ R are complemented.

After complementing the rows ri, i ∈ R, the column ck+3 of M ′ contains 1’s
in all rows ri with i ∈ ({1, . . . , k + 1}∩R)∪ ({k + 2, k + 3} \R). It is easy to see
that complementing these rows of M ′ results in the described matrix. ��
See Fig. 3 for an illustration of Lemma 1. The proof of the following lemma is
analogous.

Lemma 2. For an integer k ≥ 1, let M = MIIIk
, and let M ′ be the matrix

resulting from M by complementing a subset of its rows.
Then complementing all rows of M ′ that have a 1 in column ck+3 results in

a (k + 2) × (k + 3)-matrix containing MIk
and additionally a 0-column.

The Circular Ones Property, which is defined as follows, is closely related to the
C1P, but is easier to achieve. It is used as an intermediate concept for dealing
with the harder to achieve C1P.

Definition 1. A matrix has the Circular Ones Property (Circ1P) if there exists
a permutation of its columns such that in each row of the resulting matrix the 1’s
appear consecutively or the 0’s appear consecutively (or both).

Intuitively, if a matrix has the Circ1P then there is a column permutation such
that the 1’s in each row appear consecutively when the matrix is wrapped around
a vertical cylinder. We have no theorem similar to Theorem 2 that characterizes
matrices having the Circ1P; the following theorem of Tucker is helpful instead.

Theorem 3 ([17, Theorem 1]). Let M be a matrix. Form the matrix M ′

from M by complementing all rows with a 1 in the first column of M . Then M
has the Circ1P iff M ′ has the C1P.

686 M. Dom, J. Guo, and R. Niedermeier

Corollary 3. Let M be an m × n-matrix and let j be an arbitrary integer
with 1 ≤ j ≤ n. Form the matrix M ′ from M by complementing all rows with
a 1 in the j-th column of M . Then M has the Circ1P iff M ′ has the C1P.

Algorithms. In order to derive a constant-factor polynomial-time approximation
algorithm or a fixed-parameter algorithm for Min-COS on (∗, Δ)-matrices, we
exploit Theorem 2 by iteratively searching and destroying in the given input
matrix every submatrix that is isomorphic to one of the forbidden submatrices
given in Theorem 2: In the approximation scenario all columns belonging to a
forbidden submatrix are deleted, whereas in the fixed-parameter setting a search
tree algorithm branches recursively into several subcases—deleting in each case
one of the columns of the forbidden submatrix.

Observe that a (∗, Δ)-matrix cannot contain submatrices of types MIIk
and

MIIIk
with arbitrarily large sizes. Therefore, for both algorithms, the main dif-

ficulty is that every problem instance can contain submatrices of type MIk
of

unbounded size—the approximation factor or the number of cases to branch into
would therefore not be bounded from above by Δ.

To overcome this difficulty, we use the following approach:

1. We first destroy only those forbidden submatrices that belong to a certain
finite subset X of the forbidden submatrices given by Theorem 2 (and whose
sizes are upper-bounded, therefore).

2. Then, we solve Min-COS for each component of the resulting matrix. As
we will show in Lemma 3, this can be done in polynomial time. According
to Corollary 2 these solutions can be combined into a solution for the whole
input matrix.

The finite set X of forbidden submatrices is specified as follows.

Theorem 4. Let X := {MIk
| 1 ≤ k ≤ Δ−1}∪{MIIk | 1 ≤ k ≤ Δ−2}∪{MIIIk |

1 ≤ k ≤ Δ−1}∪{MIV, MV}. If a (∗, Δ)-matrix M contains none of the matrices
in X as a submatrix, then each component of M has the Circ1P.

Proof. Let M be a (∗, Δ)-matrix containing at most Δ ones per row, and let X be
the set of submatrices mentioned in Theorem 4. We use Corollary 3 to show that
if a component of a matrix M does not have the Circ1P, then this component
contains a submatrix in X .

Let A be a component of M that does not have the Circ1P. Then, by Corol-
lary 3, there must be a column c of A such that the matrix A′ resulting from A
by complementing those rows that have a 1 in column c does not have the C1P
and, therefore, contains one of the submatrices given in Theorem 2.

In the following, we will make a case distinction based on which of the forbid-
den submatrices is contained in A′ and which rows of A have been complemented,
and show that in each case the matrix A contains a forbidden submatrix from X .

We denote the forbidden submatrix contained in A′ with B′ and the subma-
trix of A that corresponds to B′ with B. Note that the matrix A′ must contain
a 0-column due to the fact that all 1’s in column c have been complemented.

Consecutive Ones Submatrix Problems 687

B′ B
1 2 3 45

1

2
3

4

111 1

11
11

1

11

11
11

1

1

1
11

00

00
00

0
00

00 00

00
00

0

0
00

0
00

0
0

0
0

Fig. 4. Illustration for Case 1 in the proof of Theorem 4. Complementing the second
row of an MIV generates an MV. (The rows and columns of the MV are labeled with
numbers according to the ordering of the rows and columns of the MV in Fig. 2.)

B′ B
compl.

1
11

11
1
1

11

1111
11

1

1

1
11

0

0

0
000

0
00

0
00

000

0
0

0
0

0
0

0

0

0
00

0
0

Fig. 5. Illustration for Case 2 in the proof of Theorem 4. Suppose that only the third
row of B is complemented. Then B together with the complementing column forms
an MIV.

Because no forbidden submatrix given by Theorem 2 contains a 0-column, col-
umn c cannot belong to B′ and, hence, not to B. We will call this column the
complementing column of A.

When referencing to row or column indices of B′, we will always assume that
the rows and columns of B′ are ordered as shown in Fig. 2.
Case 1: The submatrix B′ is isomorphic to MIV. If no row of B has been com-
plemented, then B = B′, and A also contains a submatrix MIV, a contradiction
to the fact that M contains no submatrices from X .

If exactly one of the first three rows of B has been complemented, then B
contains one 0-column, and B with the 0-column deleted forms an MV, indepen-
dent of whether the fourth row of B also has been complemented (see Fig. 4).
Again, we have a contradiction.

If two or three of the first three rows of B have been complemented, then A
contains an MI1 as a submatrix: Assume w.l.o.g. that the first two rows have been
complemented. If the fourth row has also been complemented, there is an MI1

consisting of the rows r1, r2, r4 and the columns c2, c4, c5 of B. Otherwise, there
is an MI1 consisting of the rows r1, r2, r4 and the columns c1, c3, c6 of B. This is
again a contradiction.
Case 2: The submatrix B′ is isomorphic to MV. Analogously to Case 1 we can
make a case distinction on which rows of A have been complemented, and in
every subcase we can find a forbidden submatrix from X in A. In some of the
subcases the forbidden submatrix can only be found in A if in addition to B
also the complementing column of A is considered. We will present only one
example representing all subcases of Case 2. If e.g. only the third row of B has
been complemented, then the complementing column of A contains a 0 in all
rows that belong to B except for the third. Then B forms an MIV together with
the complementing column of A (see Fig. 5).

688 M. Dom, J. Guo, and R. Niedermeier

We omit the details for the other cases. Herein, the case that B′ is isomorphic
to MIk

, k ≥ Δ, is the most complicated one; one has to distinguish two subcases
corresponding to the parity of the distance between the complementing column
and B. Lemma 1 and Lemma 2 are decisive for the cases that B′ is isomorphic
to MIIk

, k ≥ 1, and that B′ is isomorphic to MIIIk
, k ≥ 1, respectively. ��

If all submatrices mentioned in Theorem 4 are destroyed, then every component
of the resulting matrix has the Circ1P by Theorem 4. The next lemma shows
that Min-COS on these components then is polynomial-time solvable.

Lemma 3. Min-COS can be solved in O(nΔ·m) time, when restricted to (∗, Δ)-
matrices that have the Circ1P. Herein, n denotes the number of columns and m
the number of rows.

We can now state the algorithmic results of this section.

Theorem 5. Min-COS on (∗, Δ)-matrices for constant Δ can be approximated
in polynomial time within a factor of Δ + 2 if Δ = 2 or Δ ≥ 4, and it can be
approximated in polynomial time within a factor of 6 if Δ = 3.

Proof. Our approximation algorithm searches in every step for a forbidden sub-
matrix of X given by Theorem 4 and then deletes all columns belonging to this
submatrix. An optimal solution for the resulting matrix can be found in polyno-
mial time: Due to Corollary 2 an optimal solution for a matrix can be composed
of the optimal solutions for its components, and due to Theorem 4 after the dele-
tion of all submatrices from X all components have the Circ1P, which means
that an optimal solution for every component can be found in polynomial time
as shown in Lemma 3.

Because an optimal solution has to delete at least one column of every for-
bidden submatrix of X , the approximation factor is the maximum number of
columns of a forbidden submatrix from X .

The running time of the algorithm is dominated by searching for submatrix
from X with the largest number of rows and columns. Such a submatrix M ′

with R rows and C columns can be found in O(min{mnCRC, mRnRC}) time.
If Δ �= 3, every submatrix of X has at most Δ + 1 rows and Δ + 2 columns.

If Δ = 3, the matrix MIV with four rows and six columns is the biggest matrix
of X . This yields the claimed approximation factors and running times. ��
Theorem 6. Restricted to (∗, Δ)-matrices, Min-COS with parameter d =“num-
ber of deleted columns” can be solved in O((Δ + 2)d · (min{mΔ+1n, mnΔ+2} +
mnΔ)) time if Δ = 2 or Δ ≥ 4 and in O(6d · (min{m4n, mn6} + mn3)) time
if Δ = 3.

Proof. We use a search tree approach, which searches in every step for a forbid-
den submatrix of X given by Theorem 4 and then branches on which column
belonging to this submatrix has to be deleted. The solutions for the resulting
matrices without submatrices from X can be found, without branching, in poly-
nomial time due to Lemma 3. The number of branches depends on the maximum
number of columns of a forbidden submatrix from X ; the running time of the
algorithm can therefore be determined analogously to Theorem 5. ��

Consecutive Ones Submatrix Problems 689

5 (∗, 2)- and (2, ∗)-Matrices

(∗, 2)-Matrices. By Theorem 6 we know that Min-COS, restricted to (∗, 2)-
matrices, can be solved in O(4d · m3n) time with d denoting the number of
deleted columns. Here, we show that Min-COS, restricted to (∗, 2)-matrices, ad-
mits a quadratic-size problem kernel. Using the equivalence between Min-COS

restricted to (∗, 2)-matrices and the minimization dual of Maximum Induced

Disjoint Paths Subgraph (Max-IDPS) (see Sect. 3), we achieve this by show-
ing a problem kernel for the dual problem of Max-IDPS with the parameter d
denoting the number of allowed vertex deletions.

We use Min-IDPS to denote the dual problem of Max-IDPS and formulate
Min-IDPS as a decision problem: The input consists of an undirected graph G =
(V, E) and an integer d ≥ 0, and the problem is to decide whether there is a
vertex subset V ′ ⊆ V with |V ′| ≤ d whose removal transforms G into a union of
vertex-disjoint paths. W.l.o.g., we assume that G is a connected graph.

Given an instance (G = (V, E), d) of Min-IDPS, we perform the following
polynomial-time data reduction:

Rule 1: If a degree-two vertex v has two degree-at-most-two neighbors u, w
with {u, w} /∈ E, then remove v from G and connect u, w by an edge.

Rule 2: If a vertex v has more than d + 2 neighbors, then remove v from G,
add v to V ′, and decrease d by one.

A graph to which none of the two rules applies is called reduced.

Lemma 4. The data reduction rules are correct and a graph G = (V, E) can be
reduced in O(|V | + |E|) time.

Theorem 7. Min-IDPS with parameter d denoting the allowed vertex deletions
admits a problem kernel with O(d2) vertices and O(d2) edges.

Proof. Suppose that a given Min-IDPS instance (G, d) is reduced w.r.t. Rules 1
and 2 and has a solution, i.e., by deleting a vertex subset V ′ with |V ′| ≤ d the
resulting graph H = (VH , EH) is a union of vertex-disjoint paths. Then H has
only degree-one and degree-two vertices, denoted by V 1

H and V 2
H , respectively.

Note that VH = V 1
H ∪ V 2

H = V \ V ′.
On the one hand, since Rule 2 has removed all vertices of degree greater

than d+2 from G, the vertices in V ′ are adjacent to at most d2 +2d VH -vertices
in G. On the other hand, consider a V 1

H -vertex v. If v is not a degree-one vertex
in G, then v is adjacent to at least one vertex from V ′; otherwise, due to Rule 1,
v’s neighbor or the neighbor of v’s neighbor is adjacent to at least one vertex
from V ′. Moreover, due to Rule 1 and the fact that H is a union of vertex-disjoint
paths, at least one of three consecutive degree-two vertices on a path from H
is adjacent in G to at least one vertex from V ′. Hence, at least |VH |/5 vertices
in VH are adjacent in G to V ′-vertices. Thus, the number of VH -vertices can be
upper-bounded by 5 · (d2 + 2d).

Since H is a union of vertex-disjoint paths, there can be at most |VH | − 1 =
5d2 +10d−1 edges in H . As shown above, each vertex from V ′ can have at most
d + 2 incident edges. ��

690 M. Dom, J. Guo, and R. Niedermeier

(2, ∗)-Matrices. Here, we consider matrices M that have at most two 1’s in each
column but an unbounded number of 1’s in each row. From Theorem 2, if M
does not have the C1P, then M can only contain an MIV or an MIk

in Fig. 2.
The following lemma can be shown in a similar way as Theorem 4.

Lemma 5. Let M be a (2, ∗)-matrix without identical columns. If M does not
contain MIV and MI1 and does not have the C1P, then the matrices of type MIk

that are contained in M are pairwise disjoint, that is, they have no common row
or column.

Based on Lemma 5, we can easily derive a search tree algorithm for Min-COS

restricted to (2, ∗)-matrices:
1. Merge identical columns of the given matrix M into one column and assign
to this column a weight equal to the number of columns identical to it;
2. Branch into at most six subcases, each corresponding to deleting a column
from an MIV- or MI1-submatrix found in M . By deleting a column, the para-
meter d is decreased by the weight of the column.
3. Finally, if there is no MIV and MI1 contained in M , then, by Lemma 5, the
remaining MI-submatrices contained in M are pairwise disjoint. Then, Min-

COS is solvable in polynomial time on such a matrix: Delete a column with
minimum weight from each remaining matrix of type MIk

.
Clearly, the search tree size is O(6d), and a matrix of type MIV can be found

in O(min{m4n, mn6}) steps, which gives the following theorem.

Theorem 8. Min-COS, restricted to (2, ∗)-matrices with m rows and n columns,
can be solved in O(6d · min{m4n, mn6}) time where d denotes the number of
allowed column deletions.

By removing all columns of every MIV- and MI1-submatrix found in M , one can
show the following.

Corollary 4. Min-COS, restricted to (2, ∗)-matrices, can be approximated in
polynomial time within a factor of 6.

6 Future Work

Our results mainly focus on Min-COS with no restriction on the number of
1’s in the columns; similar studies should be undertaken for the case that we
have no restriction for the rows. Moreover, it shall be investigated whether Δ
can be eliminated from the exponents in the running times of the algorithms
for Min-COS on (∗, Δ)-matrices—in the parameterized case the question is if
Min-COS on (∗, Δ)-matrices is fixed-parameter tractable with d and Δ as a
combined parameter, or if Min-COS on matrices without restrictions is fixed-
parameter tractable with d as parameter. Finally, we focused only on deleting
columns to achieve a maximum-size submatrix with C1P. It remains to consider
the NP-hard symmetrical case [5] with respect to deleting rows; our structural
characterization theorem should be helpful here as well.

Consecutive Ones Submatrix Problems 691

References

1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13:335–379, 1976.

2. I. Dinur and S. Safra. On the hardness of approximating Minimum Vertex Cover.
Annals of Mathematics, 162(1):439–485, 2005.

3. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
4. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.
6. M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition refine-

ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoretical Computer Science, 234(1–2):59–84, 2000.

7. M. T. Hajiaghayi. Consecutive ones property, 2000. Manuscript, University Wa-
terloo, Canada.

8. M. T. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix
problem. Information Processing Letters, 83(3):163–166, 2002.

9. J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):
798–859, 2001.

10. W.-L. Hsu. A simple test for the consecutive ones property. Journal of Algorithms,
43:1–16, 2002.

11. W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements. The-
oretical Computer Science, 296(1):99–116, 2003.

12. S. Khot and O. Regev. Vertex Cover might be hard to approximate to within
2−ε. In Proc. 18th IEEE Annual Conference on Computational Complexity, pages
379–386. IEEE, 2003.

13. R. M. McConnell. A certifying algorithm for the consecutive-ones property. In
Proc. 15th ACM-SIAM SODA, pages 768–777. SIAM, 2004.

14. J. Meidanis, O. Porto, and G. P. Telles. On the consecutive ones property. Discrete
Applied Mathmatics, 88:325–354, 1998.

15. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

16. J. Tan and L. Zhang. The consecutive ones submatrix problem for sparse matri-
ces. To appear in Algorithmica. Preliminary version titled “Approximation algo-
rithms for the consecutive ones submatrix problem on sparse matrices” appeared
in Proc. 15th ISAAC, Springer, volume 3341 of LNCS, pages 836–846, 2004.

17. A. C. Tucker. Matrix characterizations of circular-arc graphs. Pacific Journal of
Mathematics, 2(39):535–545, 1971.

18. A. C. Tucker. A structure theorem for the consecutive 1’s property. Journal of
Combinatorial Theory (B), 12:153–162, 1972.

Parameterized Algorithms for Weighted

Matching and Packing Problems�

Yunlong Liu1,2, Jianer Chen1,3, and Jianxin Wang1

1 College of Information Science and Engineering, Central South University,
Changsha 410083, P.R. China

2 School of Continuing Education, Hunan Normal University,
Changsha 410012, P.R. China

3 Department of Computer Science Texas AM University,
College Station, TX 77843, USA

hnsdlyl@163.com, chen@cs.tamu.edu, jxwang@mail.csu.edu.cn

Abstract. The weighted m-d matching and m-set packing problems
(m ≥ 3) are usually solved through approximation algorithms. In this
paper, we define the parameterized versions of these problems and study
their algorithms. For the weighted m-set packing problem, we develop
a parameterized algorithm of running time O(12.8mknO(1)), which is
based on the recently improved color-coding technology and dynamic
programming. By refining the techniques, we also develop a more effi-
cient parameterized algorithm of running time O(12.8(m−1)knO(1)) for
the weighted m-d matching problem, which is a restricted version of
the weighted m-set packing problem.

1 Introduction

Matching and packing problems are among the most often studied combinatorial
problems. In particular, the m-d matching problem and the m-set packing

problems are widely applied to many fields such as scheduling, coding optimiza-
tion, and biology computation. The m-d matching problem can be regarded
as a special case of the m-set packing problem. In the following, we first list
a number of related definitions for the m-set packing problem. A collection of
sets is a packing if no two sets in the collection intersect.

Definition 1. m-set packing ([7]): given a collection S of n sets, in which
each set contains at most m elements, find a packing in S that contains the
maximum number of sets.

A packing is a k-packing if it consists of exactly k sets.

� This work is supported by the National Natural Science Foundation of China
(60433020) and the Program for New Century Excellent Talents in University
(NCET-05-0683).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 692–702, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parameterized Algorithms for Weighted Matching 693

Definition 2. (parameterized) m-set packing ([5]): given a pair (S, k), where
S is a collection of n sets, in which each set contains at most m elements, and
k is an integer, either construct a k-packing in S or report that no k-packing
exists in S.

The m-packing problem can be generalized by allowing each set to have an
associated weight, which is a non-negative real number. In the weighted case,
the weight of a packing is defined to be the sum of the weights of the sets in the
packing.

Definition 3. (weighted) m-set packing ([2]): given a collection S ofn weighted
sets (i.e., each set has an associated weight), each contains at most m elements,
find a packing of the maximum weight in S.

The m-set packing problem is NP-complete [7], which means that it has no
polynomial time exact algorithm unless P = NP. Nevertheless, researchers have
been dealing with it through some effective approaches. In particular, with the
development of parameterized computation theory, people have employed effi-
cient parameterized computational techniques to solve the parameterized version
of the problem (i.e. the problem defined in Definition 2) and obtained a series
of improved algorithms [5,9,10]. Very recently, Liu et al. [10] developed an algo-
rithm of running time O∗(4.613k) for the parameterized 3-set packing problem
using an improved color-coding construction, which is the best result up to now
for the parameterized 3-set packing problem.

On the other hand, to the authors’s knowledge, there has not been study
for parameterized algorithms for the weighted m-set packing problem. The
weighted m-set packing problem is also NP-hard [2] and was studied in the
research of approximation algorithms. The best approximation algorithm for
the weighted m-set packing problem is due to Chandra and Halldorsson [2],
who gave an approximation algorithm of approximation ratio 2(m+1)/3 for the
problem.

The current paper is aimed at using the theory and techniques of parameter-
ized computation theory to develop efficient algorithms for the weighted m-set

packing problem and the weighted m-d matching problem. The parameter-
ized weighted m-set packing problem and the parameterized weighted m-d

matching problem are defined as follows.

Definition 4. (parameterized weighted) m-set packing: given a pair (S, k),
where S is a collection of n weighted sets, in which each set contains at most m
elements, and k is an integer, either find a k-packing of the maximum weight in
S, or report that no k-packing exists in S.

The m-d matching problem is a restricted version of the m-set packing prob-
lem. Let A1, . . ., Am be m pairwise disjoint finite symbol sets. Each (ordered)
tuple (a1, . . . , am), which is an element in A1×· · ·×Am (i.e., ai ∈ Ai for all i), is
called an m-tuple. A matching is a collection of m-tuples in which no two tuples
share a common symbol, and an k-matching is a matching containing exactly k

694 Y. Liu, J. Chen, and J. Wang

m-tuples. In the weighted case, each m-tuple is associated with a non-negative
weight, and the weight of a matching is equal to the sum of the weights of the
m-tuples in the matching.

Definition 5. (parameterized weighted) m-d matching: given a pair (S, k),
where S is a collection of n weighted m-tuples, and k is an integer, either find a
k-matching of the maximum weight in S, or report no k-matching exists in S.

We remark that parameterized algorithms for other weighted NP-hard problems
have appeared in the literature. For instance, Fernau studied the parameterized
complexity for the weighted vertex cover problem and for the weighted edge

subgraph problem [6], and Guo and Niedermeier developed parameterized al-
gorithms for the weighted tree-like set cover problem [8].

We will concentrate on parameterized algorithms for the problems given in
Definition 4 and Definition 5. The paper is organized as follows. In Section 2,
we provide some related preliminaries and lemmas. In Section 3, we present in
detail a parameterized algorithm for the weighted m-set packing problem. In
Section 4, on the basis of the previous section, we give a more efficient parame-
terized algorithm for the weighted m-d matching problem. Section 5 provides
conclusion of the paper.

2 Preliminaries

Before presenting our parameter algorithms, we give some related terminologies
and lemmas.

Fix m finite symbol sets A1, . . ., Am. For an m-tuple ρ = (a1, . . . , am) in
A1 × · · · ×Am, denote by Val(ρ) the set {a1, . . . , am}, and let Vali(ρ) = {ai} for
all 1 ≤ i ≤ m. For a collection S of m-tuples, define Val(S) =

⋃
ρ∈S Val(ρ), and

Vali(S) =
⋃

ρ∈S Vali(ρ), for all 1 ≤ i ≤ m. The symbols in Vali(S) will be called
the i-th dimension symbols of S.

Definition 6. ([6]) A parameterized maximization problem P can be specified
by: (1). a set IP of instances; (2) for each instance x ∈ IP , a set of feasible
solutions SP (x); (3) a measure function fP yielding the value fP (x, y) for any
feasible solution y ∈ SP (x) for an instance x ∈ IP ; and (4) a distinguished part
of the input called the parameter k that is an integer. The objective is for each
given instance x ∈ IP to find a feasible solution y ∈ SP (x) such that f(x, y) is
maximized.

To study the complexity of parameterized maximization problems, we introduce
the following concept.

Definition 7. A parameterized maximization problem P is fixed parameter
tractable if there is an algorithm A that, given an instance x in IP , returns
a feasible solution y0 in SP (x) such that fP (x, y0) = max{fP (x, y) | y ∈ SP (x)}
if SP (x) �= ∅; or reports that SP (x) = ∅. Moreover, the running time of the
algorithm A should be bounded by O(g(k)|x|O(1)), for a fixed function g.

Parameterized Algorithms for Weighted Matching 695

Recent research has shown that color-coding [1] is a very important technique
for solving parameterized problems [3]. It will also be the main technique used in
this paper. For this, we give the precise definition and related results as follows.

Definition 8. Let S be a set of elements. A k-coloring of S is a function mapping
S to the set {1, 2, . . . , k}. A subset W of S is colored properly by a coloring f if
no two elements in W are colored with the same color under f .

Definition 9. A collection C of k-colorings of a set S is a k-color coding scheme
if for every subset W of k elements in S, there is a k-coloring in C that colors W
properly. The size of the k-color coding scheme C is the number of k-colorings
in C.

The concept of color-coding was introduced by Alon, Yuster, and Zwick [1], who
proved that for a set of n elements there exists a k-color coding scheme whose
size is bounded by O(2O(k)n). Progress has been made recently. Chen et al. [3]
presented a construction that gives a k-color coding scheme of size O(6.4kn) for
a set of n elements, and developed an algorithm of running time O(6.4kn) that
generates such a k-color coding scheme.

Lemma 1 ([3]). For any finite set S of n elements and any integer k, n ≥ k,
there is a k-color coding scheme C of size O(6.4kn) for the set S. Moreover, such
a k-color coding scheme can be constructed in time O(6.4kn).

3 An Algorithm for Weighted m-set Packing

We first present an algorithm for the weighted m-set packing problem. Let
(S, k) be an instance of the problem, where S is a collection of weighted m-sets
and k is the parameter. To simplify our discussion, for an element a in an m-set
in a sub-collection S′ of S, we simply say that a is an element in S′.

Suppose that we use an (mk)-coloring f to color all the elements in S. We
say that a packing P in S is properly colored if no two elements in P are colored
with the same color under f .

First we suppose that the collection S contains a k-packing. Moreover, we
suppose that at least one of the k-packings in the collection S is properly colored
under f . We give an algorithm that, under the k-coloring f , finds a properly
colored k-packing that has the maximum weight over all properly colored k-
packings in the collection S.

We need some notations and terminologies before we present our algorithm.
For a packing P in S, we will use the notation cl(P) to denote the set of colors
that are used to color the elements in the packing P . In this case, we also say that
the packing P uses the color set cl(P). Note that the color set cl(P) contains
exactly ml colors if the packing P is properly colored and contains exactly l
m-sets, and that two packings may use the same color set.

696 Y. Liu, J. Chen, and J. Wang

Let Q be a super-collection1 of properly colored packings, and let P be a
properly colored packing not in Q. By “updating the super-collection Q with
the packing P”, we mean we perform the following procedure on Q: (1) if Q
does not contain a properly colored packing that uses the color set cl(P) and
if P contains no more than k m-sets, then add P to Q; (2) if Q contains a
properly colored packing P1 that uses cl(P), but the weight of P1 is smaller
than the weight of P , then replace P1 in Q by P ; and (3) in all other cases, do
nothing.

Our algorithm is given in Figure 1.

Algorithm SLMP(S, k, f)
Input: A collection S of weighted m-sets in which elements are colored by

an (mk)-coloring f , and an integer k
Output: a properly colored k-packing whose weight is the maximum over

all properly colored k-packings in S;

1. remove all m-sets in S in which any two elements have the same color;
2. let the remaining m-sets in S be ρ1, ρ2,· · · , ρr;
3. Q = ∅;
4. for i = 1 to r do

for each packing P in Q do
if cl(P) ∩ cl(ρi) = ∅
then P ′ = P ∪ {ρi}; update Q with P ′;

5. if Q contains no k-packing
then return “no properly colored k-packing in S”
else return the k-packing of the maximum weight in Q.

Fig. 1. An algorithm on a colored collection of m-sets

Theorem 1. If the collection S contains at least one properly colored k-packing,
then the algorithm SLMP(S, k, f) returns a properly colored k-packing whose
weight is the maximum over all properly colored k-packings in S.

Proof. Step 1 is obviously correct: no m-set in which two elements have the same
color can be in a properly colored packing.

From step 4 of the algorithm, it can be seen that every packing added to
the super-collection Q is a properly colored packing. Therefore, if the algorithm
returns a k-packing in step 5, the packing must be a properly colored k-packing.

At step 3, we assume that the collection S contains the m-sets ρ1, ρ2, . . ., ρr.
For each i, 1 ≤ i ≤ r, let Si = {ρ1, ρ2, · · · , ρi} . We prove by induction on i

for the following claim:

Claim. For all j ≤ k, if Si contains a properly colored j-packing P0,
then after the i-th execution of the for-loop in step 4 of the algorithm,

1 We use “super-collection” for a collection of packings because each packing itself is
a collection of m-sets.

Parameterized Algorithms for Weighted Matching 697

the super-collection Q contains a properly colored j-packing that uses
the color set cl(P0) and has the maximum weight in Si over all properly
colored j-packings that use the color set cl(P0).

The initial case i = 0 is trivial since Si = ∅ and Q = ∅.
Now consider a general value i ≥ 1. Suppose that the collection Si has a

properly colored j-packing P0 (j ≤ k). Without loss of generality, let P0 be
a properly colored j-packing that has the maximum weight over all properly
colored j-packings in Si that use the color set cl(P0). Let ρq be the m-set in P0

with the largest index q. There are two cases.
Case 1. q < i. Then P0 is also a properly colored j-packing in the collection

Sq. Obviously, P0 has the maximum weight over all properly colored j-packings
in Sq that use the color set cl(P0). Therefore, by the inductive hypothesis, after
the q-th execution of the for-loop in step 4, the super-collection Q contains a
properly colored j-packing P that uses the color set cl(P0) and has the maximum
weight over all properly colored j-packings in Sq that use the color set cl(P0).
This implies that P and P0 have the same weight and use the same color set.
Since the only operations we allow to update the super-collection Q are to add a
packing and to replace a packing of smaller weight by a packing using the same
color set but with a larger weight, we conclude that after the i-th execution of the
for-loop in step 4 (note q < i), the super-collection Q must contain a properly
colored j-packing P that uses the color set cl(P0) and has weight at least as large
as that of P0. By the definition of P0, P is a properly colored j-packing that
uses the color set cl(P0) and has the maximum weight over all properly colored
j-packings in Si that use the color set cl(P0). Thus, the induction goes through.

Case 2. q = i. Then all m-sets ρp in P1 = P0 − ρq must have their index p
bounded by i−1. Thus, P1 is a properly colored (j−1)-packing in the collection
Si−1. In fact, P1 must have the maximum weight over all properly colored (j−1)-
packings in Si−1 that use the color set cl(P1) – otherwise, the packing P0 would
have not been a properly colored j-packing with the maximum weight over all
j-packings in Si that use the color set cl(P0). By the inductive hypothesis on
i− 1, after the (i− 1)-th execution of the for-loop in step 4, the super-collection
Q contains a properly colored (j − 1)-packing P ′

1 that uses the color set cl(P1)
and has the same weight as P1. Therefore, during the i-th execution of step 4,
when this (j − 1)-packing P ′

1 is considered, the m-set ρq and P ′
1 will make a

properly colored j-packing, which will consequently makes the super-collection
Q to include a properly colored j-packing that uses the color set cl(P0) and has
weight equal to the weight of P0. Thus, the induction also goes through.

This proves the claim. The theorem now follows directly: let P0 be a properly
colored k-packing whose weight is the maximum over all properly colored k-
packings in S. Since S = Sr, by the claim, when step 4 is completely done and
we reach step 5, the super-collection Q contains a properly colored k-packing P
that uses the color set cl(P0) and has weight at least as large as that of P0. In
consequence, the k-packing P is properly colored and has the maximum weight
over all properly colored k-packings in the collection S. ��
The complexity of the algorithm SLMP is given in the following theorem.

698 Y. Liu, J. Chen, and J. Wang

Theorem 2. The time complexity of the algorithm SLMP(S, k, f) is O(2mkknm),
where n is the number of m-sets in the input collection S.

Proof. By our rules of updating the super-collection Q, Q contains only properly
colored j-packings, where j ≤ k. In particular, each packing in Q uses a color
set that contains at most km colors. Moreover, for each color set of at most km
colors, the supper-collection Q contains at most one packing that uses the color
set. Since there are no more than 2mk color sets that use at most mk colors,
we conclude that the total number of packings in Q is bounded by 2mk. Now in
step 4, for each packing P in Q (there are at most 2km such P) and for each
m-set ρi (there are at most n such ρi), in time O(mk) we can check if P and
ρi can make a new properly colored packing and how Q can be updated (for
this we can keep an array of size 2km to record the status of all color sets). In
conclusion, the running time of the algorithm is bounded by O(2mkknm). ��
Now we are ready for our main result for this section. Consider the algorithm
given in Figure 2.

Algorithm SMP(S, k)
Input: A collection S of weighted m-sets, and an integer k
Output: a k-packing of the maximum weight in S;

1. P0 = ∅;
2. let μ be the set of all elements appeared in S; let N = |μ|;
3. construct an (mk)-color coding scheme C of size O(6.4kmN) for the set μ;
4. for each (mk)-coloring f in C do
4.1 color the elements in S by f ;
4.2 call SLMP(S, k, f);
4.3 if step 4.2 returns a k-packing P whose weight is larger than that of P0

4.4 then P0 = P ;
5. if P0 = ∅

then return “S contains no k-packing”
else return P0.

Fig. 2. Algorithm for weighted m-set packing

Theorem 3. The algorithm SMP solves the parameterized weighted m-set

packing problem in time O(12.8mk(mn)2k), where n is the number of m-sets
in the collection S.

Proof. The existence of the (mk)-color coding scheme C and its construction
complexity are given by Lemma 1.

Suppose that the collection S contains a k-packing. Let P1 be a k-packing
in S whose weight is the maximum over all k-packings in S. The packing P1

contains exactly mk elements. Since C is an (mk)-color coding scheme for the
element set μ, there is an (mk)-coloring f0 in C such that P1 is properly colored
under f0. When step 4.2 calls the algorithm SLMP(S, k, f0), by Theorem 1, a

Parameterized Algorithms for Weighted Matching 699

properly colored k-packing P is returned whose weight is at least as large as
that of P1. By the definition of the packing P1, the packing P is a k-packing of
the maximum weight. Thus, the following step 4.4 will record a k-packing of the
maximum weight in P0, which will be returned in step 5. Thus, in this case the
algorithm SMP(S, k) will correctly produce a k-packing of the maximum weight
in the collection S.

On the other hand, if the collection S does not contain a k-packing, then since
the algorithm SLMP is correct, step 4.2 will never return a k-packing, and the
set P0 will keep empty. Thus, in this case, the algorithm SMP(S, k) will correctly
report in step 5 that the collection S contains no k-packing.

Finally, we consider the complexity of the algorithm. Since the (mk)-color
coding scheme C has O(6.4mkN) = O(6.4mkmn) (mk)-colorings, the loop 4.1-
4.4 is executed O(6.4mkmn) times. Each execution of the loop, by Theorem 2,
takes time O(2mkknm). We conclude that the running time of the algorithm
SMP(S, k) is bounded by O(12.8mk(mn)2k). ��

4 An Algorithm for Weighted m-d Matching

The weighted m-d matching problem is a restricted version of the weighted
m-set packing problem. Therefore, the algorithm presented in the previous
section can be directly applied to the weighted m-d matching problem. In this
section, we show that for this restricted version, we can develop an even more
efficient algorithm.

Recall that an instance of the parameterized weighted m-d matching prob-
lem is a pair (S, k), where S is a collection of weighted m-tuples, and each
m-tuple is an element in the product set A1 × · · · × Am of m pairwise disjoint
symbol sets A1, . . ., Am. Instead of coloring all symbols in the collection S using
an (mk)-coloring, we will only use an ((m − 1)k)-coloring to color the symbols
in the 2nd to the m-th dimensions in S. Again let f be an ((m − 1)k)-coloring
on the symbols in the 2nd to the m-th dimensions in S. Again we say that a
matching is properly colored if no two symbols in its 2nd to m-th dimensions are
colored with the same color.

Similar to what we did for m-set packing, for a matching M in S, we
will use the notation cl(M) to denote the set of colors that are used to color
the (2nd to m-th dimension) symbols in the matching M . In this case, we also
say that the matching M uses the color set cl(M). For a super-collection Q of
properly colored matchings and for a properly colored matching M not in Q, we
update the super-collection Q with the matching M by performing the following
procedure on Q: (1) if Q does not contain a properly colored matching that uses
the color set cl(M) and if M contains no more than k m-tuples, then add M
to Q; (2) if Q contains a properly colored matching M1 that uses the color set
cl(M), but the weight of M1 is smaller than the weight of M , then replace M1

in Q by M ; and (3) in all other cases, do nothing.
Consider the algorithm given in Figure 3.

700 Y. Liu, J. Chen, and J. Wang

Algorithm SLMM(S, k, f)
Input: A collection S of weighted m-tuples in which symbols in the 2nd to the

m-th dimensions are colored by an ((m − 1)k)-coloring f , an integer k
Output: a properly colored k-matching whose weight is the maximum over

all properly colored k-matchings in S;

1. remove all m-tuples in S in which any two symbols have the same color;
2. let the set of the remaining m-tuples be S′;
3. let the symbols in the first dimension of S′ be x1, . . ., xh;
4. Qold = {∅}; Qnew = {∅};
5. for i = 1 to h do
5.1 let S′

i = {ρ1, . . . , ρr} be the collection of m-tuples in S′ whose
symbols in the first dimension are in {x1, . . . , xi};

5.2 for j = 1 to r do
for each matching M in Qold do

if cl(M) ∩ cl(ρj) = ∅
then M ′ = M ∪ {ρj}; update Qnew with M ′;

5.3 Qold = Qnew;
6. if Qold contains no k-matching

then return “no properly colored k-matching in S”
else return the k-matching of the maximum weight in Qold.

Fig. 3. Algorithm for weighted m-d matching

Theorem 4. If S has at least one properly colored k-matching, then the algo-
rithm SLMM(S, k, f) returns a properly colored k-matching whose weight is the
maximum over all properly colored k-matchings in the collection S. The running
time of the algorithm SLMM(S, k, f) is bounded by O(2(m−1)kkn2m), where n is
the total number of m-tuples in the input collection S.

Proof. The proof of the correctness of the algorithm SLMM(S, k, f) is similar to
that for the algorithm SLMP, which was given in the proof of Theorem 1. Thus,
we only describe the difference here.

As given in the algorithm, let S′
i = {ρ1, . . . , ρr} be the collection of m-tuples

in S′ whose symbols in the first dimension are in {x1, . . . , xi}. Define S′
ij =

{ρ1, . . . , ρj} for 1 ≤ j ≤ r. Then we can prove the following claim by induction.

Claim. For all q ≤ k, if S′
ij contains a properly colored q-matching P0,

then during the i-th execution of the for-loop in step 5 and after the j-th
execution of the for-loop in step 5.2, the super-collection Qnew contains
a properly colored q-matching in S′

ij that uses the color set cl(P0) and
has the maximum weight over all properly colored q-matchings in S′

ij

that use the color set cl(P0).

With this claim, as proceeded in Theorem 1, we can easily prove that the
algorithm SLMM(S, k, f) produces a properly colored k-matching of the max-
imum weight over all properly colored k-matchings in the collection S, in case
such a k-matching exists.

Parameterized Algorithms for Weighted Matching 701

As for the running time of the algorithm, note that f is an ((m−1)k)-coloring
that uses only (m − 1)k colors, and that for each color set, the super-collection
Qold (and the super-collection Qnew) records at most one matching. Thus, the
total number of matchings in Qold is bounded by 2(m−1)k. From this, we can
prove, in the way similar to that for the algorithm SLMP, that an execution of
the entire step 5.2 takes time bounded by O(2(m−1)kknm). Now the theorem
follows because the number h of symbols in the first dimension of S is bounded
by the number n of m-tuples in S. ��
Now, completely similar to that of Theorem 3, but by constructing an ((m−1)k)-
color coding scheme for the symbols in the 2nd to the m-th dimensions in the
collection S, we conclude with the following theorem.

Theorem 5. The parameterized weighted m-d matching problem can be solved
in time O(12.8(m−1)km2n3k), where n is the number of m-tuples in the input
collection S.

5 Conclusions

In this paper, we study the parameterized weighted m-set packing problem
and the parameterized weighted m-d matching problem. By applying the the-
ory and techniques recently developed in parameterized computation theory, we
developed fixed-parameter tractable algorithms for the problems. As far as we
know, the fixed-parameter tractable algorithms presented in the current paper
are the first group of exact algorithms for solving these weighted problems.

Subgraph packing problems have recently drawn much attention [4,11]. The
algorithms presented in the current paper can be directly applied to solve the
weighted versions of many subgraph packing problems, such as the graph pack-

ing problem and the graph edge-packing problem studied in [4,11].

References

1. N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM 42,
(1995), pp. 844–856.

2. B. Chandra and M. Halldorsson, Greedy local improvement and weighted set
packing approximation, Journal of Algorithms 39, (2001), pp. 223–240.

3. J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for path, match-
ing, and packing problems, Proc. 18th Annual ACM-SIAM Symp. on Discrete Al-
gorithms (SODA 07), (2007), pp. 298–307.

4. M. Fellows, P. Heggernes, F. Rosamond, C. Sloper, and J. Telle, Finding
k disjoint triangles in an arbitrary graph, Lecture Notes in Computer Science 3353
(WG 2004), (2004), pp. 235–244.

5. M. R. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U.

Stege, D. Thilikos, and S. Whitesides, Faster Fixed-parameter tractable al-
gorithms for matching and packing problems, Lecture Notes in Computer Science
3221 (ESA 2004), (2004), pp. 311–322.

702 Y. Liu, J. Chen, and J. Wang

6. H. Fernau, Parameterized maximization, Technical Report WSI-2001-22, Univer-
sityTubingen (Germany), Wilhelm-Schickard-Institut fur Informatik, (2001).

7. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman Co., 1979.

8. J. Guo and R. Niedermeier, Exact algorithms and applications for tree-like
weighted set cover, Journal of Discrete Algorithms 4, (2006), pp. 608–622.

9. W. Jia, C. Zhang, and J. Chen, An efficient parameterized algorithm for m-Set
Packing, Journal of Algorithms 50, (2004), pp. 106–117.

10. Y. Liu, S. Lu, J. Chen, and S.-H. Sze, Greedy localization and color-coding:
improved matching and packing algorithms, Lecture Notes in Computer Science
4169 (IWPEC 06), (2006), pp. 84–95.

11. L. Mathieson, E. Prieto, and P. Shaw, Packing edge disjoint triangles: a para-
meterized view, Lecture Notes in Computer Science 3162 (IWPEC 2004), (2004),
pp. 127–137.

Kernelizations for Parameterized Counting

Problems

Marc Thurley�

Institut für Informatik, Humboldt-Universität zu Berlin
thurley@informatik.hu-berlin.de

Abstract. Kernelizations are an important tool in designing fixed para-
meter algorithms for parameterized decision problems. We introduce an
analogous notion for counting problems, to wit, counting kernelizations
which turn out to be equivalent to the fixed parameter tractability of
counting problems. Furthermore, we study the application of well-known
kernelization techniques to counting problems. Among these are the Buss
Kernelization and the Crown Rule Reduction for the vertex cover prob-
lem. Furthermore, we show how to adapt kernelizations for the hitting
set problem on hypergraphs with hyperedges of bounded cardinality and
the unique hitting set problem to their counting analogs.

1 Introduction

In the last decade, parameterized complexity matured as a field of refined com-
plexity analyses of algorithms and decision problems. It replaces the classical
notion of tractability with fixed parameter tractability [12], requiring tractable
problems to be solvable by a deterministic algorithm in time f(k) · nO(1) for
some (small) parameter k, a computable function f : N → N and n the input
size. This notion is tightly connected to the concept of kernelization. Intuitively,
a kernelization is a polynomial time computable function mapping problem in-
stances to instances whose size is bounded effectively in terms of the parameter.
Ever since its introduction in [11] this concept has found may applications with
the result that today most fixed parameter algorithms use techniques that are
inspired by this notion [15,8,19,20].

Notably, all of the work mentioned is devoted to decision problems. In con-
trast, the study of parameterized counting problems has not yet matured as far.
Some work has been done on carrying over fixed parameter algorithm design to
counting problems. For example, the best known algorithms following this ap-
proach solve the counting analog of the vertex cover problem in time O(1.62kn)
(due to Fernau [16] - another, yet unpublished, result by Rossmanith [24] es-
tablishes an even lower bound of O(1.47kn)). For some other counting problems
fixed parameter algorithms were developed [10,17,22] as well. A variety of more

� This research was supported in part by the Deutsche Forschungsgemeinschaft within
the research training group ’Methods for Discrete Structures’ (GRK 1408).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 703–714, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

704 M. Thurley

general results states the fixed parameter tractability of large classes of counting
problems [2,7,18].

However, a notion of kernelization that is applicable to counting problems has
not yet been developed, although there has been some recent interest in forming
a notion of this kind. Nishimura et al. [22] suggested compactor enumeration,
which performs a reduction to an enumeration problem on an instance with
size depending only on the parameter. However, this notion has not yet been
thoroughly formalized. In particular, the informal definition of a compactor from
[22] is not applicable to counting problems in general.

We will remedy this deficiency by formally describing kernelizations of count-
ing problems. Moreover, we will show that this notion is equivalent to the notion
of fixed parameter tractability for counting problems and we give some exam-
ples, how this notion can be applied in practice. These examples will include
vertex cover and hitting set problems.

There are at least three important kernelizations of the vertex cover decision
problem: the Buss kernelization [11], the Crown Rule Reduction [15] and the
kernel based on the Nemhauser-Trotter theorem [5]. We will apply the former
two to the counting problem (the Nemhauser-Trotter kernel can be applied to
counting in a way analogous to that of the Crown Rule [26]). Furthermore, we will
adapt the Sunflower kernel [17] for the hitting set problem on hypergraphs with
edges of bounded cardinality. Additionally, for the unique hitting set problem
[13] we will develop an adaptation of a well-known kernelization of the decision
problem to counting.

This paper is organized as follows. Section 1 gives the basic definitions and the
concept of counting kernelization. In Section 2 we give kernelizations of vertex
cover and hitting set counting problems. Section 3 is devoted to the Crown Rule
Reduction. Then, in section 4, we will kernelize the counting unique hitting set
problem and the last section will reveal the equivalence of counting kernelizations
and fixed parameter tractable counting problems.

2 Definitions and the Concept of Counting Kernelizations

We will briefly sketch the basic notions of fixed parameter tractability. For a
more thorough introduction to the field the reader is refered to one of [13,21,17].

Parameterized problems are formed from classical problems by adding a pa-
rameterization of the input alphabet Σ, that is, a polynomial time computable
function κ : Σ∗ → N. Thus for classical decision problems Q ⊆ Σ∗ and counting
problems F : Σ∗ → N we obtain parameterized analogs (Q, κ) and (F, κ). We
denote the class of all fixed parameter tractable decision problems by FPT and
that of fixed parameter tractable counting problems by FFPT .

For parameterized decision problems, a kernelization is a mapping K :Σ∗→Σ∗

satisfying the following conditions.

(K1) K is polynomial time computable and there is a computable function
g : N → N such that for all x ∈ Σ∗ we have

|K(x)| ≤ g(κ(x))

Kernelizations for Parameterized Counting Problems 705

(K2) x ∈ Q ⇔ K(x) ∈ Q, for all x ∈ Σ∗

Hence, if a problem (Q, κ) has a kernelization it is fixed parameter tractable.
This concept has indeed led to the creation of some of the most efficient

fpt-algorithms and it is one of the most frequently applied approaches in para-
meterized algorithm design. Considering this popularity of kernelization in the
field of decision problems one would naturally ask, if this notion can be applied
to counting problems as well. We will discuss this question now.

2.1 Counting Kernelization

Note that in this purely theoretical context we regard computations always as
computations of Turing machines. We begin with some preliminary definitions.

Definition 1. Let κ : Σ∗ → N be a parameterization of Σ∗.

(I) A mapping K : Σ∗ → Σ∗ is κ-bounded if there is a computable function
g : N → N such that for all x ∈ Σ∗:

|K(x)| ≤ g(κ(x)).

(II) A relation Y ⊆ Σ∗×{0, 1}∗ is K-aware for a κ-bounded mapping K if there
are computable functions h, f : N → N such that for every x ∈ Σ∗ and every
y ∈ {0, 1}∗:
(1) Given K(x), it can be decided in time f(κ(x)) whether (K(x), y) ∈ Y

holds.
(2) if (K(x), y) ∈ Y then |y| ≤ h(κ(x)).

Note that the notion of κ-boundedness is simply derived from the notion of
kernelization by omitting (K2), i.e. the part that deals explicitly with decision
problems. Furthermore K-aware relations Y will be used to characterize the
”solutions” of the reduced instance K(x) that have to be found by search al-
gorithms. Unfortunately, the formal definition of a counting problem does not
mention what a solution might be. Therefore we will formalize this by the well-
known notion of witnesses :

Let Y ⊆ Σ∗×{0, 1}∗ be a relation. For x ∈ Σ∗ we define wY (x) := {y |(x, y) ∈
Y } as the set of witnesses of x in Y . Note that K-aware relations are compatible
with the notions of P-relations from classical complexity (see e.g. [23]) in such
a way that every P -relation is a K-aware relation.

A notion of counting kernelization needs an additional ingredient. This will
become clear by an example. Consider the following problem:

p-#VertexCover

Instance: A graph G = (V,E) and k ∈ N

Parameter: k
Problem: Compute the number of vertex covers of size k in G

706 M. Thurley

Let #vc(G, k) denote the number of size k vertex covers in G. Let K : Σ∗ → Σ∗

be κ-bounded, mapping instances of p-#VertexCover to instances of the same
problem s.t. for all graphs H we have |K(H, k)| ≤ g(k), for some computable
function g : N → N.

Example 1. Let G = (V, E) be a graph and k ∈ N. Suppose that #vc(K(G, k)) =
#vc(G, k). Let K(G, k) =: (G′, k′) for a graph G′ = (V ′, E′) and k′ ∈ N. As
‖G′‖ ≤ g(k), we know that there can be no more than

(
g(k)
k′

)
vertex covers of

cardinality k′ in G′.
Let H = (W, ∅) be a graph with |W | = g(k) + k. It is easy to see that

#vc(H, k) =
(

g(k) + k

k

)

>

(
g(k)
k

)

≥ #vc(K(H, k)).

This example illustrates, that the reduced instance K(x) may have less solutions
than x itself. Hence we need a function, say μ, that for each solution y of the
reduced instance K(x) computes the number of solutions of an instance x that
are ”represented” by y. Moreover, the function μ has to depend on the original
instance x to be able to create the link between K(x) and x.

Definition 2 (Counting Kernelization). Let (F, κ) be a parameterized
counting problem over Σ. A counting kernelization of (F, κ) is a pair (μ, K) of
polynomial time computable functions K : Σ∗ → Σ∗ and μ : Σ∗×Σ∗×{0, 1}∗ →
N such that for all x ∈ Σ∗ the following is satisfied:

(1) K is κ-bounded
(2) There is a K-aware relation Y ⊆ Σ∗ × {0, 1}∗ such that

F (x) =
∑

y ∈wY (K(x))

μ(x, K(x), y) (1)

We call |K(x)| the size of the kernel.

Note that, on an informal basis, this notion follows the intuition given in [22],
to wit, a counting kernelization reduces a counting problem to an enumeration
problem on an instance that is bounded in terms of the parameter. This is done
in such a way that we can associate solutions of the kernel to (sets of) solutions
of the original instance by an efficiently computable function μ.

Nevertheless, this definition still seems somewhat arbitrary. Its motivation
will become clear if we know how to apply it to some counting problems. We
have to note that in the course of this, we will sloppily define K-aware relations
Y that do not directly satisfy Y ⊆ Σ∗ ×{0, 1}∗, however, it will always be clear
that they can be represented straightforwardly in such a way.

3 p-#VertexCover and p-Card-#Hittingset

We start with two tightly connected problems. Recall that a hitting set in a
hypergraph H = (V, E) is a set S ⊆ V such that S ∩ e �= ∅ for all e ∈ E.

Kernelizations for Parameterized Counting Problems 707

Furthermore, if we regard graphs as hypergraphs, vertex covers are simply a
special case of hitting sets.

In the analysis of all algorithms considered here we will use the uniform cost
measure. This implies that all basic arithmetic computations can be carried out
in constant time.

p-card-#HittingSet

Instance: A hypergraph H = (V,E) and k ∈ N

Parameter: k + d with d := maxe∈E |e|
Problem: Compute the number of hitting sets of cardinality k in H

We define #hs(H, k) to denote the number of hitting sets of size k in the
hypergraph H.

The kernelization of the decision problem p-card-HittingSet given in [17]
utilizes the well known Sunflower Lemma. Given a hypergraph H = (V, F), a
sunflower in H is a family S = {S1, . . . , Sk} ⊆ F of hyperedges such that there
is a set C ⊆ V satisfying

Si ∩ Sj = C for all 1 ≤ i < j ≤ k (2)

C is the core of the sunflower S and for all i ∈ [k] the set Si \C is called a petal
if it is nonempty.

Lemma 3 (Sunflower Lemma). Let k, d ∈ N and be H = (V, F) a d-uniform
hypergraph with more than (k − 1)d · d! hyperedges. Then there is a sunflower S
of cardinality k in H.

The Sunflower Lemma can be applied to counting in a straightforward manner:

Lemma 4. 1. There is an algorithm FindSunflower that computes a sun-
flower S according to the Sunflower Lemma in time O(d‖H‖).

2. Let S with |S| = k + 1 be a sunflower in H with core C. Define H′ = (V, E′)
with

E′ := E \ S ∪ {C}
then #hs(H, k) = #hs(H′, k).

The kernelization mapping KSunflower is given in algorithm 1. Observe that the
algorithm deletes vertices that are isolated after the graph has been reduced
(line 1). The following Lemma shows how to compute the correct hitting set
count from the output of KSunflower.

Lemma 5. Let (H, k) be an instance of p-card-#HittingSet with H = (V, E)
and let H′ ← KSunflower(H, k) with H′ = (V ′, E′). Define I := V \ V ′, then

#hs(H, k) =
∑k

i=0 #hs(H′, i) · (|I|
k−i

)

The proof of this Lemma follows from the easily observable fact that any size
k hitting set C satisfies |C ∩ V ′| = i and |C ∩ I| = k − i for some suitable
0 ≤ i ≤ k. Conversely, for any size i hitting set C′ of H′ and for every set I ′ ⊆ I
of cardinality |I ′| = k − i the union C′ ∪ I ′ is a size k hitting set of H.

708 M. Thurley

KSunflower(H, k) // H = (V, E) a hypergraph, k ∈ N

d ← maxe∈E|e|;1

// Begin kernelization
for i ← 1 to d do2

Ei ← {e ∈ E : |e| = i };3

Vi ←
�

e∈Ei
e;4

while FindSunflower((Vi, Ei), k + 1) �= (∅, ∅) do5

Let (S, C) be the sunflower returned by FindSunflower ;6

Ei ← (Ei \ S) ∪ {C};7

Vi ← (Vi \
�

X∈S X) ∪ C;8

end9

end10

// End kernelization
V ′ ← V1 ∪ V2 ∪ . . . ∪ Vd;11

E′ ← E1 ∪ E2 ∪ . . . ∪ Ed;12

return (V ′, E′);13

Algorithm1.The Kernelization algorithm based on the Sunflower Lemma

Note that a run of KSunflower(H, k) takes time at most O(d2 · |E| · ‖H‖) and
for the hypergraph H′ = (V ′, E′) the Sunflower Lemma implies |E′| ≤ kd · d! · d
and |V ′| ≤ kd · d! · d2. Thus we have a kernelization of size ‖H′‖ ≤ 2 · kd · d! · d2.

To complete the definition of the counting kernelization, we define a relation
Y such that for all instances (H, k) of p-card-#HittingSet and C ⊆ V we have
((H, k), C) ∈ Y if and only if C is a hitting set of size k in H. Hence, wY ((H′, k))
can be enumerated in time h(k) for some computable function h and we are done
by defining

μ((H, k), (H′, k), C) :=
(|I|

k − |C|
)

.

For Vertex Cover we can easily form a slightly better kernel. Observe that,
for graphs, the sunflower kernel implies |E′| ≤ 2k2 and |V ′| ≤ 4k2. A simple but
powerful kernelization of p-VertexCover is known as Buss’ Kernelization. Its
idea is very similar to that of of the sunflower kernel:

Lemma 6. Let G = (V, E) be a graph and k ∈ N then:

1. Any v ∈ V with d(v) > k is contained in every k-element vertex cover of G.
2. If Δ(G) ≤ k and G has a k-element vertex cover, then |E| ≤ k2.

From this we derive a kernel of half the size of the sunflower kernel, as for
the kernel G′ = (V ′, E′) the Lemma implies |E′| ≤ k2 and hence |V ′| ≤ 2k2.
Note that the counting kernelization according to Buss’ Lemma can be build
completely analogously to that of the sunflower kernel.

Observe furthermore that we can always combine these kernelizations with
fixed parameter algorithms, based on the method of bounded search trees. In this

Kernelizations for Parameterized Counting Problems 709

way, for example, for the p-#VertexCover problem, using the algorithm by
Fernau [16], we obtain an algorithm which runs in time O(1.62kk2+poly(n)) [26].

4 Crown Rule Reduction for p-#VertexCover

One of the most efficient kernelization techniques known in parameterized algo-
rithm design is the application of the so-called Crown Rule Reduction [15]. We
will see now, how to apply this kernelization to counting vertex covers. This will,
somewhat surprisingly, result in a counting kernelization with size exponential in
k. Nevertheless it still may guide the way to counting kernelizations of problems
for which no kernel is known at all.

Definition 7. Let G = (V, E) be a graph. A crown in G is a bipartite subgraph
C = (I, N(I), F) of G satisfying three conditions:

(1) I is an independent set in G and N(I) is the set of all neighbors of vertices
from I in G.

(2) F contains all edges from E that connect vertices in N(I) to vertices in I.
(3) C has a matching of cardinality |N(I)|.
Let vc(G) denote the minimum size of a vertex cover in G.

Let G = (V, E) be a graph and k ∈ N. For the time being, let us assume, that
G contains no isolated vertices. The case of isolated vertices will be considered
later. We follow the construction of a crown as given in [17], this construction
algorithm produces three different results:

(A) it determines vc(G) > k
(B) |V | ≤ 3k holds
(C) a crown C = (I, N(I), F) on at least |V | − 3k vertices is constructed

In the case of p-VertexCover the crown can simply be deleted. In counting
we have to do some additional work to obtain an appropriate kernel.

Applying a crown in a counting algorithm. Let G \C be the graph obtained from
G by deleting all vertices in C and all edges incident to vertices in C.

Let SC be a vertex cover of C and let G′ = (V ′, E′) be the graph obtained
from G\C by deleting all edges covered by vertices in SC . One can easily see that
#vc(G′, k − |SC |) equals the number of size k vertex covers S in G with S ⊇ SC .
As |V ′| ≤ 3k, #vc(G′, k − |SC |) can be computed in time depending only on k.
Therefore, to show how to compute the number of size k vertex covers in G it
remains to show, how to enumerate the vertex covers of C.

Recall that |N(I)| < k and note that, with respect to the edges in G (and
hence in C as well), all vertices in I have neighbors only in N(I). Therefore,
we can define an equivalency relation with at most 2k equivalency classes by
defining for all v, w ∈ I:

v ∼ w :⇔ N(v) = N(w) (3)

For every v ∈ I define [v] := {w ∈ I | v ∼ w}, i.e. the equivalence class of v.

710 M. Thurley

Claim 1. Given a vertex cover C of C such that there is a vertex y ∈ N(I) \ C.
Let v ∈ I be a vertex with y ∈ N(v), then [v] ⊆ C.

Proof. Assume that there is a w ∈ [v] with w /∈ C. Then, by the definition of [v]
there is an uncovered edge {y, w} in C. Contradiction.

Consider a vertex cover C of C and let S = N(I)∩C and X = I ∩C. Note that
S and X form a partition of C. Let

A(S) := {[v] | v ∈ I, ∃ y ∈ N(I) \ S such that y ∈ N(v)}.

and define
L(S) :=

⋃

[v]∈A(S)

[v] (4)

Now, claim 1 implies that L(S) ⊆ X , that is A(S) is the (unique) minimal
family of equivalency classes that is necessary such that S ∪ L(S) is a vertex
cover in C. Hence, we finally have to move from minimal (w.r.t. inclusion) vertex
covers to arbitrary vertex covers of C. In fact this means to consider the sets
R := X \L(S). As R ⊆ I \L(S), for each l ∈ {0, . . . , k− |S ∪L(S)|} the number
of such sets with |R| = l is exactly

(|I \ L(S)|
l

)

Hence, we are able to define our counting kernelization. The relation Y con-
tains a pair ((G, C, k), C) iff C = (W, F) is a subgraph of G and C is a vertex
cover of G with |C| ≤ k such that C ∩ W is minimal (w.r.t. inclusion) in C.

For the Kernelization mapping K reconsider the exit conditions (A),(B) and
(C) of the crown construction. If (A) vc(G) > k, then K(G, k) := (G0, C0, 0)
with G0 = ({a, b}, {a, b}) and C0 the empty crown, i.e. trivial negative instance.
In case (B) K(G, k) := (G, C0, k) as G is small. If (C) holds, the construction
algorithm returns a crown C = (I, N(I), F). Then K(G, k) := (G′, C′, k) where
C′ = (I ′, N(I ′), F ′) is obtained from C by keeping one vertex from I per equiva-
lence class and deleting the rest of the vertices in I. G′ = (V ′, E′) is obtained from
G in the same manner. Thus, |I ′| ≤ 2k, |N(I)| ≤ k which implies |V ′| ≤ 2k +4k,
that is, K is a κ-bounded mapping.

Finally, the mapping μ is defined as follows. Let (G, k) be the input instance
and C = (I, N(I), F) the crown in G. Let the kernel be K(G, k) := (G′, C′, k)
with C′ = (I ′, N(I ′), F ′) and G′ defined as in the previous paragraph.

Consider a vertex cover C of G′ with |C| ≤ k such that C ∩ (I ′ ∪ N(I ′)) is
minimal with respect to the vertices in C′. Define S′ := N(I ′) ∩ C. We know
that C ∩ I ′ is one-to-one with A(S′) as I ′ contains one representative of each
equivalency class, hence |L(S′)| =

∑
v∈C∩I′ |[v]|. Thus defining

μ((G, k), K(G, k), C) :=
(|I \ L(S′)|

l

)

Kernelizations for Parameterized Counting Problems 711

with l := k− |C ∩N(I ′)| − |L(S′)| satisfies our needs, as the binomial coefficient
is zero if l < 0 or l > |I \ L(S′)|. Obviously, μ is polynomial time computable
and the correctness of our kernelization follows from the above considerations.

For the case that the input graph G contains m isolated vertices, it is easy to
see that it suffices to delete them from G and accommodate m in the computation
of the binomial coefficient for the μ function.

5 A Kernelization for p-#UniqueHittingSet

The problem p-#UniqueHittingSet provides us with another nice example of
applying well known kernelization techniques to counting problems. The corre-
sponding decision problem is described in [13] (see exercise 3.2.5).

p-#UniqueHittingSet

Instance: A hypergraph H = (V,E)
Parameter: |E|
Problem: Compute the number of unique hitting sets sets in H that is

all sets X ⊆ V satisfying ∀ e ∈ E : |e ∩ X| = 1

As with the previous problems we will outline the well known solution of the
decision problem and show how it can be used to design an efficient algorithm
for the counting problem.

Let H = (V, E) be a p-#UniqueHittingSet instance. Let k := |E|. For all
x, y ∈ V we define an equivalency relation by

x ∼ y =def ∀e ∈ E : x ∈ e ⇔ y ∈ e.

Clearly, this relation defines l nonempty equivalency classes for an l ≤ 2k. Let A0

be the equivalency class of all isolated vertices and define Ã := {A1, . . . , Al−1}
as the family of all nonempty equivalency classes, except for A0.

Furthermore, we define H̃ := (Ã, Ẽ). This hypergraph will play the part of
the kernel in our algorithm. Its set of hyperedges Ẽ represents the hyperedges in
E with respect to the equivalency classes in Ã. To make this precise, we define
two functions. Let h : V → Ã be defined by h(v) := A ∈ Ã s.t. v ∈ A, i.e.
we map vertices to their corresponding equivalency classes. A second function
f : 2V → 2Ã defined by f({v1, . . . , vb}) := {h(v1), . . . , h(vb)} does so analogously
for sets of vertices. Note that h (and f) are undefined for isolated vertices (and
sets containing them, respectively). The definition of Ẽ is easy now:

Ẽ := {f(e) | e ∈ E}.

The following Lemma displays the correctness of our approach.

712 M. Thurley

Lemma 8. Let H, H̃ and Ã be defined as above.
Let Ũ be the set of all unique hitting sets in H̃, then the number #uhs(H) of
unique hitting sets in H satisfies:

#uhs(H) =
∑

S̃∈Ũ

2|A0|
∏

A∈S̃

|A| (5)

By this Lemma, we can develop a counting kernelization (μ, K). We simply
define a relation Y s.t. for every hypergraph H = (V, E) and S ⊆ V , we have
(H, S) ∈ Y iff S is a unique hitting set in H.

We define K(H) := H̃ and for any hitting set S̃ of H̃:

μ(H, H̃, S̃) := 2|A0|
∏

A∈S̃

|A|.

Obviously, by the construction of H̃ we have |Ẽ| = |E| = k and |Ã| ≤ 2k

and H̃ can be constructed from H in polynomial time. Furthermore, μ can be
computed in polynomial time, as well. Lemma 8 now implies that (μ, K) is a
valid counting kernelization.

6 Characterizing FFPT by Counting Kernelizations

Up to now, we have seen that counting kernelizations can be used to describe
certain fpt algorithms for counting problems. Theorem 9 diplays that the notion
of counting kernelization is even more general in the sense that it provides a
complete characterization of fixed parameter tractable counting problems.

Theorem 9. Let (F, κ) be a parameterized counting problem. The following are
equivalent:

(1) (F, κ) ∈ FFPT
(2) (F, κ) has a counting kernelization.

Note that the direction (2) ⇒ (1) is straightforward. The other direction of the
proof uses as a main tool the following Lemma, which itself shows the relation
between fixed parameter tractable counting problems and K-aware relations.

Lemma 10. Let (F, κ) ∈ FFPT be a parameterized counting problem over Σ.
Let K : Σ∗ → Σ∗ be a κ-bounded polynomial time computable mapping.

There is a K-aware relation Y ⊆ Σ∗ × {0, 1}∗ such that for all x ∈ Σ∗:

F (K(x)) = |wY (K(x))|.

7 Concluding Remarks

We have introduced kernelizations of fixed parameter tractable counting prob-
lems which provide a characterization of fixed parameter tractability. As a line

Kernelizations for Parameterized Counting Problems 713

of future research we would suggest scrutinizing kernelization techniques to-
wards their applicability to counting problems. Although we demonstrated that,
in principle the Crown Rule Reduction is applicable to counting problems, for
other problems, which were originally kernelized by the Crown Rule, the ker-
nelizations omit some cases that are trivial in decision problems but highly
non-trivial for counting. These include, among others, p-SetSplitting [19],
p-DisjointTriangles [20] and p-(n-k)-Coloring [6]. In fact it would not be
very surprising if their counting analogs turn out to be #W [1]-hard.

References

1. Susanne Albers and Tomasz Radzik, editors. Algorithms - ESA 2004, 12th An-
nual European Symposium, Bergen, Norway, September 14-17, 2004, Proceedings,
volume 3221 of Lecture Notes in Computer Science. Springer, 2004.

2. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. J. Algorithms, 12(2):308–340, 1991.

3. Hans L. Bodlaender, editor. Graph-Theoretic Concepts in Computer Science, 29th
International Workshop, WG 2003, Elspeet, The Netherlands, June 19-21, 2003,
Revised Papers, volume 2880 of Lecture Notes in Computer Science. Springer, 2003.

4. Hajo Broersma, Matthew Johnson, and Stefan Szeider, editors. Algorithms and
Complexity in Durham 2005 - Proceedings of the First ACiD Workshop, 8-10 July
2005, Durham, UK, volume 4 of Texts in Algorithmics. King’s College, London,
2005.

5. Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and
further improvements. J. Algorithms, 41(2):280–301, 2001.

6. Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or

how to save k colors in o(n2) steps. In WG, pages 257–269, 2004.
7. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter

complexity of graph enumeration problems definable in monadic second-order logic.
Discrete Applied Mathematics, 108(1-2):23–52, 2001.

8. Frank K. H. A. Dehne, Michael R. Fellows, Frances A. Rosamond, and Peter Shaw.
Greedy localization, iterative compression, modeled crown reductions: New fpt
techniques, an improved algorithm for set splitting, and a novel 2k kernelization
for vertex cover. In Downey et al. [14], pages 271–280.

9. Frank K. H. A. Dehne, Alejandro López-Ortiz, and Jörg-Rüdiger Sack, editors.
Algorithms and Data Structures, 9th International Workshop, WADS 2005, Wa-
terloo, Canada, August 15-17, 2005, Proceedings, volume 3608 of Lecture Notes in
Computer Science. Springer, 2005.

10. Josep Dı́az, Maria J. Serna, and Dimitrios M. Thilikos. Fixed parameter algorithms
for counting and deciding bounded restrictive list h-colorings. In Albers and Radzik
[1], pages 275–286.

11. R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In
P. Clote, J. Remmel (eds.): Feasible Mathematics II, pages 219–244. Boston:
Birkhäuser, 1995.

12. Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and
completeness. In Complexity Theory: Current Research, pages 191–225, 1992.

13. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer,
1999.

714 M. Thurley

14. Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne, editors. Pa-
rameterized and Exact Computation, First International Workshop, IWPEC 2004,
Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture Notes
in Computer Science. Springer, 2004.

15. Michael R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in
fpt. In Bodlaender [3], pages 1–12.

16. Henning Fernau. Parameterized algorithmics: A graph-theoretic approach. Habil-
itationsschrift, Universität Tübingen, 2005.

17. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
18. M. Frick. Easy Instances for Model Checking. PhD thesis, Universität Freiburg,

2001.
19. Daniel Lokshtanov and Christian Sloper. Fixed parameter set splitting, linear

kernel and improved running time. In Broersma et al. [4], pages 105–113.
20. Luke Mathieson, Elena Prieto, and Peter Shaw. Packing edge disjoint triangles: A

parameterized view. In Downey et al. [14], pages 127–137.
21. Rolf Niedermeier. Invitation to fixed-parameter algorithms. Habilitationsschrift,

Universität Tübingen, 2002.
22. Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Parameterized

counting algorithms for general graph covering problems. In Dehne et al. [9], pages
99–109.

23. Christos H. Papadimitriou. Computational Complexity. Pearson, 1994.
24. Peter Rossmanith. (unpublished).
25. Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-2):273–

302, 1996.
26. M. Thurley. Tractability and intractability of parameterized counting problems.

diploma thesis. humboldt universität zu berlin, 2006.
27. Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.

Sci., 8:189–201, 1979.
28. Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM

J. Comput., 8(3):410–421, 1979.

Revisiting the Impossibility for Boosting Service

Resilience

Xingwu Liu1, Zhiwei Xu1, and Juhua Pu2

1 Research Center for Grid and Service Computing, Institute of Computing
Technology, Chinese Academy of Sciences

2 School of Computer Science, BeiHang University
xlw@software.ict.ac.cn, zxu@ict.ac.cn, pujh@buaa.edu.cn

Abstract. An asynchronous distributed system consisting of a collec-
tion of processes interacting via accessing shared services or variables.
Failure-tolerant computability for such systems is an important issue,
but too little attention has been paid to the case where the services
themselves can fail. Recently, it’s proved that consensus problem can’t
be (f +1)-resiliently solved using a finite number of reliable registers and
f -resilient services (failure-aware services must be fully connected). We
generalize the result in two dimensions. Firstly, it’s shown that the im-
possibility holds even if infinitely many registers and services are al-
lowed. Secondly, we prove that replacing the reliable registers with reli-
able shared variables still leave the impossibility to hold, if only failure-
oblivious services are allowed.

1 Introduction

1.1 Background

Asynchronous distributed systems consist of a finite collection of processes inter-
acting via some shared mechanisms. The examples of such mechanisms include
shared variables, communication channels, atomic objects, and services [1, 2]. A
service is itself an arbitrary distributed system with more complicated interface
than atomic objects. The major difference between atomic objects and services
lies in that a response of an atomic object at a port must exclusively correspond
to a previous invocation at the same port, while an invocation to a service at
a port may lead to an finite number of responses at any ports, and the service
itself may generate responses even without invocations.

Fault-tolerant computability problem is fundamental for asynchronous dis-
tributed systems, which explores whether a task can be solved by asynchronous
distributed systems, when the components may be subject to failures?

In the related massive literature, consensus tasks [3] are most frequently stud-
ied, because they are fundamental in the sense that every atomic object can
be implemented from consensus objects and shared read/write variables [4]. [2]
also deals with the computability of consensus tasks, proving that there is no
(f +1)-resilient implementation of consensus objects from canonical f -resilient

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 715–727, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

716 X. Liu, Z. Xu, and J. Pu

failure-aware services, canonical f -resilient failure-oblivious services, and canon-
ical reliable registers, if each failure-aware service is required to be connected
with each process (the requirement is called full connection). [2] is noticeable
because it’s the first paper and presently the only one studying the computabil-
ity using fault-prone services, while most of the related work only considers
reliable atomic objects.

Note that the results in [2] are based on two assumptions. Finiteness as-
sumption: only a finite number of services and registers are included in a sys-
tem. Distribution assumption: canonical registers, which are atomic objects
of read/write type, are used instead of shared variables. However, systems not
satisfying these assumptions are also of significance in the theory of distributed
computing. For example, in the well-known Herlihy’s hierarchy [4], the universal
implementation of an n-process atomic object needs infinitely many n-consensus
objects if the n-consensus objects are not augmented with a reset operation, and
more seriously, the hierarchy can’t be maintained if read/write shared memory
is not available [5].

1.2 Problem Addressed

The following question naturally arises: can we implement a (f +1)-resilient con-
sensus object from infinitely many reliable read/write variables and f -resilient
services?

This question can’t be answered as a trivial corollary of the results in [2], since
no one has proven that a system with shared variables and fault-prone services
can be simulated by one with reliable atomic objects and fault-prone services.
[6] shows that any shared variable system can be simulated by a shared atomic
object system, but it relies on (1) that a process and its user are exclusively
enabled, which fails to hold for our case, and (2) all processes in the simulated
system interact only via shared variables, while services are also allowed in our
systems.

Furthermore, two obstacles exist if we straightforwardly borrow the proof in
[2]. Firstly, the proof of [Lemma 5, 2] doesn’t carry over, as shown in Subsection
3.2. Secondly, Claim 3 in [Lemma 8, 2] fails if shared reliable read/write variables
are used instead of canonical registers, due to the reason in Subsection 4.1.

1.3 Related Work

There is a long line of research on the computability of distributed decision
problems in shared object systems. However, much of it focuses on fault-prone
processes and assumes that the shared variables and objects are reliable. Well-
known examples include the impossibility of set-consensus/renaming using
shared read/write variables [7,8], the solvability of set consensus using arbitrary
objects under certain conditions [9], and the Herlihy’s hierarchy.

Afek et al. [10] first studied the solvability of consensus with faulty shared
memory. It’s shown that faults do not qualitatively decrease the power of such

Revisiting the Impossibility for Boosting Service Resilience 717

primitives as test-and-set and read-modify-write, in that they retain their po-
sitions in Herlihy’s hierarchy. The failures of a variable are spontaneous modi-
fications of its value, modeled by arbitrary writes from the environment of the
whole system.

Though Afek et al. have focused on a few types of shared memory,
Jayanti et al. [11] studied implementing arbitrary objects with fault-prone base
objects. They classify object failures into responsive and non-responsive, and
shows that any type of object can be implemented so as to keep reliable when
some base objects are responsively faulty, and that any non-responsive fault
can’t be tolerated in this sense. The faults considerd by Afek et al belong to the
responsive class.

Attie et al [2] go a step further by considering implementing objects using
general services rather than only shared variables and atomic objects. Another
critical difference of [2] from [10, 11] lies in the failure model. In [10,11], a base
object fails spontaneously, i.e. independently of the processes; however, [2] mod-
els a failure of a service with an input action fail from the system environment.
Because any client process of the service shares the fail action with the service,
the failures of a service and its processes are not independent. The main result
of Attie et al is that it’s impossible to implement a (f +1)-resilient consensus
object from canonical reliable registers, f -resilient canonical atomic objects, and
f -resilient services. When failure-aware services are allowed, full connectivity
should be satisfied in order to maintain the impossibility. The result is also the
starting point of the present paper.

1.4 Our Contribution

We generalize [2] in two dimensions. We first discard the finiteness assumption,
proving that all the results in [2] hold even if an infinite number of services and
canonical registers can be in one system. This is achieved by a novel scheduling
approach such that each of an infinite collection of tasks has infinitely many
opportunities to be scheduled. Then we discard the distribution assumption,
showing that using the seemingly more synchronized shared read/write variables
instead of canonical registers still maintains the impossibility results if failure-
aware services are not allowed. For this end, a generalized version of [Theorem
13.7, 6] is proposed, indicating that any distributed system where processes com-
municate via reliable shared variables and services can be simulated by another
one with the shared variables replaced by reliable atomic objects of the corre-
sponding types. This step is itself very interesting, since it frees us from many
constraints in constructing or optimizing an asynchronous distributed system.

1.5 Organization

The rest of this paper is organized as follows. Section 2 presents some pre-
liminaries. Section 3 and Section 4 are devoted to the two dimensions of our
generalization, respectively. And Section 5 concludes this paper.

718 X. Liu, Z. Xu, and J. Pu

2 Preliminaries

We assume the terminology of [2] and [6]. Some concepts are mentioned below.
For more detail, please refer to the references.

2.1 Sequential Types, Atomic Objects, and Services

We remind the notion of a ”sequential type”, in order to describe allowable
sequential behavior of atomic objects. It’s borrowed from [2]. A sequential type
Γ= 〈 V, V 0, invs, resps, δ 〉 consists of:

– V, a nonempty set of values,
– V 0 ⊆V , a nonempty set of initial values,
– invs, a set of invocations,
– resps, a set of responses, and
– δ, a relation from invs ×V to resps ×V that is total, in the sense that, for

every (a,v)∈invs×V, there is at least one (b, v ′)∈resps×V such that ((a,v),
(b, v ′))∈δ.

We sometimes use dot notation, writing Γ .V, Γ .V 0, Γ .invs, . . . for the
components of Γ .

Example. Read/write sequential type: Here, V is a set of ”values”, Γ .V 0=Γ .v0,
where v0 is a distinguished element of V , invs = {read}∪{write(v) : v V },
resps=V∪{ack}, and δ= {((read, v), (v, v)) : v∈V }∪{((write(v), v ′), (ack, v)):
v, v ′ ∈V }.
Example. Binary consensus sequential type: Here, V = {{0}, {1}, ∅}, V 0={∅},
invs = {init(v)) : v∈{0, 1}}, resps={decide(v): v∈{0, 1}}, and δ={((init(v),∅),
(decide(v), {v})): v∈V }∪{((init(v), {v ′}), (decide(v ′), v ′)): v, v ′∈V }.

An atomic object of sequential type Γ is an automaton whose behavior, if
serialized in some way, satisfies Γ . An atomic object of read/write type is called
a register, and that of binary consensus type is called a consensus object. An
atomic object is f -resilient if when no more than f ports fail, all non-failed ports
can provide correct behavior. A canonical f -resilient atomic object of type Γ is
a special atomic object which describes the allowable concurrent behavior of all
f -resilient atomic objects of type Γ . For more about atomic objects, see [2, 6].

A service is a generalized notion of atomic object. Services can be classified
into failure-oblivious and failure-aware ones, depending on whether they provide
a port with the failure information of other ports. The behavior of a service is
also specified by a service type. For more about services, see [2].

In the present paper and [2], both atomic objects and services permit con-
current operations at the same or different endpoints, in the sense that multiple
invocations can be issued, without waiting for responses to the previous ones.

2.2 Shared Variable Systems with Services

In [2], all the systems considered consist of processes, reliable registers, and
failure-prone services, and have only a finite number of components. In Section 4

Revisiting the Impossibility for Boosting Service Resilience 719

of the present paper, we will consider a similar system model which is different
in two aspects. Firstly, we use shared reliable variables instead of reliable regis-
ter. Secondly, an infinite number of services and variables may be included in a
system. The system in fact is composed of a shared variable subsystem and a col-
lection of services, with the actions used to communicate among the components
hidden.

The shared variable subsystem is modeled as a single I/O automaton. The
interface of a process Pi includes invocation and response actions to interact
with the external world, input and output actions to invoke and receive response
from the services, and an input fail i to model an unexpected failure. We assume
that the fail i input action affects Pi in such a way that, from that point onward,
no output actions or shared variable actions are enabled. It’s supposed that in
any state, a process Pi always has an action enabled.

A process can access the shared variables only by internal actions, and each
action can access at most one shared variable. So, we further distinguish between
two different kinds of internal actions: those that involve the shared variables
(called shared variable actions) and those don’t. If a variable x is of sequential
type Γ x= 〈 V, V 0, invs, resps, δ 〉, each shared variable action accessing it by
Pi must be of the form:

Precondition: p(statei) //p is a predicate of Pi’s current state
Effect: (b, x)←δ(a, x) // a∈Γ x.invs

statei) ← any s such that (statei), b, s) belongs to g //g
is a certain relation

In the complete system, processes interact only via services and variables, ser-
vices don’t communicate directly with one another, and can’t access the shared
variables. The interface of the complete system consists of all the invocation and
response actions of the processes, plus fail i for every process Pi.

An issue has to be clarified. Composing I/O automata is usually under the
following condition: each action is shared by only a finite number of compo-
nent automata. Otherwise some properties may fail to hold, for example, [Theo-
rems 8.3 and 8.5, 6]. However, in our specification, two services S 1 and S 2 share
the input action fail i if i is an endpoint for both S 1 and S 2, so it’s possible
that infinitely many services share an input action. Fortunately, whether this
phenomenon occurs is irrelevant to the proof of our first main result, and our
second main result only uses services such that necessary properties still hold
even if infinitely many services share some fail i.

2.3 The Implementation of Consensus Objects

We also consider boosting resilience in implementing f -resilient consensus ob-
jects. By the definition of binary consensus type, an n-process f -resilient con-
sensus objects satisfies:

– Agreement. No two processes decide on different values,
– Validity. Any value decided on is the initial value of some process,

720 X. Liu, Z. Xu, and J. Pu

– Termination. In every fair execution in which at most f processes fail, any
non-faulty process receives an input eventually decides.

3 Impossibility for Infinite Systems

To begin our argument, the idea of [2] has to be briefly reviewed. In this sec-
tion, a finite (respectively, infinite) system will stand for a system with a finite
(respectively, infinite) collection of reliable registers and fault-prone services.

3.1 A Brief Review

All the impossibility results of Theorem 1, 10, and 11 in [2] can be restated
collectively as the following proposition.

Proposition 1. (f +1)-resilient consensus objects can’t be implemented from fi-
nitely many canonical reliable registers and canonical f -resilient services if each
failure-aware service must be connected to all the processes.

The proof is by contradiction and includes seven lemmas. Assume that there is
a finite system C to solve such a problem. In [Lemma 2, 2], it’s shown that once
a task of C is enabled in the final state of a finite execution, it’s enabled from
then on until it’s applied. This commutability is used in proving [Lemma 5, 2].
[Lemma 3, 2] is trivial, claiming that every finite failure-free input-first execution
of C is either bivalent or univalent, based on which [Lemma 4, 2] guarantees the
existence of a finite bivalent execution. Then [Lemma 5, 2] shows that from the
finite bivalent execution one can construct a hook-like subgraph of the graph
G(C) of C. [Lemmas 6 and 7, 2] prove that two univalent finite executions, if
similar in some sense, must have the same valence, which leads to a contradiction
that G(C) contains no hooks, as stated in [Lemma 8, 2]. So, such a finite system
C doesn’t exist.

For convenience and without loss of generality, [2] assumes that the processes
Pi, i∈I, are deterministic automata in the sense that in each state s, there is at
most one transition (s, a, s ′) such that a is non-input action. The services are
also assumed to be deterministic in the sense that its type has a single initial
value and the transition relations are mappings. It’s also assumed that each
process has a single task, and always has an action enabled. In this section, we
adopt these assumptions, so any failure-free execution of C can be defined by
applying a sequence of tasks, one after the other, to the initial state of C.

The above mentioned G(C) is defined as follows.

(1) The vertices of G(C) are the finite failure-free input-first extensions of the
finite bivalent execution αb).

(2) G(C) contains an edge labeled with task e from α to α′ provided that
α′ = e(α), the extension of α with the task e.

By the determinism assumption, for any vertex α of G(C) and any task e,
there is at most one edge labeled with e outgoing from α.

The above mentioned hook is a subgraph of G(C) of the form in Fig. 1, where
s1 and s2 are univalent but have different valence.

Revisiting the Impossibility for Boosting Service Resilience 721

Fig. 1. A hook. (from [2]).

3.2 A Generalization to the Case of Infinite Systems

We prove that the above Proposition 1 also holds even if infinite systems are
allowed. Our main result in this section is Theorem 2.

Theorem 2. (f +1)-resilient consensus objects can’t be implemented from infi-
nitely many canonical reliable registers and canonical f -resilient services if each
failure-aware service must be connected to all the processes.

As in [2], we also proceed by contradiction and perform an analysis on the
hook structure. So, assume there is an infinite system C to implement (f +1)-
resilient consensus objects. [Lemmas 2-8, 2], except [Lemma 5, 2], all carry over
since they don’t care whether the number of canonical reliable registers and
canonical f -resilient services is finite or infinite. Thus, if only [Lemma 5, 2] keeps
correct, our Theorem 2 holds. However, the proof of [Lemma 5, 2] doesn’t carry
over, because it extend an execution with an infinite number of tasks in a round-
robin fashion. When infinitely many services are used, there are infinitely many
tasks, so the round-robin extension must be modified in order to guarantee that
the resulting execution, if infinite, is fair. This new version of [Lemma 5, 2] is
presented as the following Lemma 3.

In an infinite system, there are infinitely many tasks, so the idea of our modi-
fication is to extend the execution in infinite rounds, and to consider only a finite
collection of tasks (called candidate task set for this round) for each round. If
the candidate task sets are chosen properly, every task eventually has infinite
opportunities to be considered.

Before the formal proof, some definitions from [2,6] have to be reminded.
A finite failure-free input-first execution α is defined to be 0-valent if (1) some

failure-free extension of α contains a decide(0)i action, for some process Pi, and
(2) no failure-free extension of α contains a decide(1)i action. The definition of
a 1-valent execution is symmetric. A finite failure-free input-first execution α is
univalent if it is either 0-valent or 1-valent, and is bivalent if it’s not univalent.

Lemma 3. G(C) contains a hook.

Proof. Arbitrarily arrange all the tasks of C into an infinite sequence σ =
σ1σ2...σn... such that the process tasks all appear in prefix σ1σ2...σn. Let
Σi=σ1σ2...σn+i, i≥1.

Now starting with a bivalent failure-free αb), we construct a path π in G(C)
round after round.

722 X. Liu, Z. Xu, and J. Pu

In round i, for each i≥1, we consider the tasks in the segment Σi from left
to right. Suppose that we have reached a bivalent execution α so far, and that
task e is the next one in Σi that is applicable to α.

[Lemma 2, 2] implies that, for any finite failure-free extension α′=α·γ where
e is not executed along the suffix γ, e is applicable to α′, and hence e(α′) is de-
fined. We look for a vertex α′ of G(C), reachable from α without following any
edge labeled with e, such that e(α′) is bivalent. If no such vertex α′ exists, the
path construction terminates. Otherwise, we proceed to e(α′) and then there are
two possibilities. (1) If there a task e ′ after e in Σi which is applicable to e(α′),
consider e ′ in the next step. (2) If either e is the end of Σi or no task after e in Σi
is applicable to e(α′), then go to round i+1 and consider the left-most task e ′ in
Σi+1 that is applicable to e(α′). In the second case, such e ′ in Σi+1 always exists
since Σi+1 contains all process tasks which are always enabled by assumption.

For the detail of this construction, please refer to [Appendix I, 12].
We claim that π must be finite. Suppose for contradiction that it’s infinite.

Then infinitely many rounds occur in the construction. Given a task σi, it gets a
turn to be executed in every round j such that j≥ max{1,i-n}, so it gets infinitely
many turns to be executed in π. As a result, π is a failure-free input-first fair
execution of C. By the termination condition of consensus object, every process
decides in π, which contradicts the facts that every finite prefix of π is bivalent.

The rest of the proof tries to find a hook structure following the finite execu-
tion . Since the counterpart of the proof of [Lemma 5, 2] doesn’t care whether
the collection of tasks is finite or infinite, it carries over. �

4 Impossibility for Systems with Shared Variables

In this section we further generalize Theorem 2 by replacing the canonical reli-
able registers with shared reliable variables. We show that Theorem 2 still holds
if failure-aware services are not allowed. Based on the system model in Subsec-
tion 2.2, the following Theorem 3 is obtained.

4.1 Impossibility and the Idea for Its Proof

Theorem 4. (f +1)-resilient consensus objects can’t be implemented from infi-
nitely many shared reliable variables and canonical failure-oblivious f -resilient
services.

Suppose for contradiction that there exists such an implementation. Lem-
mas 2-7, plus Claims 1-5 in the proof of [Lemma 8, 2], except Claim 3, all carry
over. However, the proof of Claim 3 relies on the key fact that an invocation to a
canonical register from a process Pi only affects the local state of the process and
the ith invocation buffer of the register, leaving the register’s value unchanged.
On the contrary, an access to a shared variable instantaneously modifies its value.
As a result, the proof of that Claim 3 can’t carry over.

To circumvent proving that claim, we simulate systems with shared variables
and canonical services by those with reliable registers and canonical services.
Then apply Theorem 2, rather than follow its proof.

Revisiting the Impossibility for Boosting Service Resilience 723

4.2 The Construction of a Simulating System

In fact, the simulation presented here is quite generic, because of the follow-
ing characteristics. Firstly, the services are not necessarily canonical ones. Sec-
ondly, there is no constraint on the resilience of the services. Thirdly, the reliable
atomic objects are required to be canonical. Fourthly and lastly, unlike [Theo-
rem 13.7, 6], the existence of turn functions are not required.

However, some constraints on services are still needed. Arbitrarily chose a
segment γ = α · β from a (fair) trace of a service S. (1) If α is a response and
β is an invocation, then replacing γ with β · α still results in a (fair) trace of S.
(2) If α and β are responses at different endpoints, then replacing γ with β · α
still results in a (fair) trace of S. (3) If α=fail i for some endpoint i of S, and β
is an arbitrary external action of S (not an invocation from endpoint i), then
replacing γ with β · α still results in a (fair) trace of S. (4) If α=fail i, there is
an (fair) execution e of S such that τ=trace(e) and either α is the first action
or immediately follows an external action in e.

These constraints aren’t so restrictive, for example, any canonical failure-
oblivious service satisfies all of them.

Now consider a shared variable system C with services, as specified in Sub-
section 2.2. The services are supposed to satisfy the above constraints. There
are two technical assumptions on the processes. (1) In every state, each process
has an action enabled. (2) There is a single task for each process, containing all
non-input actions of the process. The two assumptions don’t reduce the gener-
ality of our simulation (as in the sense of Theorem 5), since there must be such
a system that simulates C.

Let V be the set of shared variables of C, and associate each v in V with a
compatible reliable atomic object ov. Atomic object o and variable v are said
to be compatible if both of the following conditions hold. (1) o and v are of the
same sequential type Γv. (2) A process P of C can directly access v if and only
if P is in the endpoint set of o.

Let O={ov|v∈V }. We construct a system T (C) which intuitively, is derived
from C by replacing each v ∈ V with ov. The aim of T (C) is to simulate C in
some sense. The construction of T (C) is specified as follows.

A shared variable system with services can be described as 〈P, I,V〉, where
P, I, andV are its set of processes, services, and shared variables, respectively. If
C= 〈{P1,P2, ...Pn}, I,V〉, then T (C) =〈{Q1,Q2, ...Qn}, I ∪ O〉. The processes
Qi is almost the same as Pi, but has the following difference in states, signature,
and transition relation.

Qi includes all the state components of Pi, plus seven more. (1) A binary
semaphore, whether it’s 1 indicates whether process Qi is waiting for the re-
sponse from an atomic object in O. (2) An 1-length queue pending-invo, storing
a pending invocation to an object in O. (3) An 1-length queue vari-resp, stor-
ing the response just received from an object in O. (4) A variable local-tran,
recording how to transit the local state of Qi once the response from an object
in O is received. (5) An infinite first-in-first-out queue resp-buffer, holding the
responses sent by services in I but not yet processed by Qi. (6) A binary flag,

724 X. Liu, Z. Xu, and J. Pu

whether it’s 1 implies whether it’s Qi’s turn to process a response in the buffer.
(7) A Boolean failed, whether it’s True implies whether fail i has occurred. Ini-
tially, semaphore=0, pending-invo is empty, local-tran is arbitrary, vari-resp is
empty, resp-buffer is empty, and flag=1. The introduction of the flag is a lit-
tle technical, in order to preclude that Qi keeps busy with only receiving and
processing service responses in a fair execution.

Let Φi denote the set of internal actions of Pi that access a shared variables.
Given an arbitrary c∈ Φi, introduce an action, denoted by l(c), which is to start
up c. Introduce another action stubi to perform the local part of all c. For each
input action b of Pi, introduce an action l(b), which is intended to process b, i.e.
to change the local state of Qi as b does that of Pi; the original b is preserved,
while it means that Pi only receives the input. Introduce an internal action livei,
to keep Qi live even it fails just after some l(c). Let the input signature, output
signature, and internal signature of Pi be In, Out, and Int respectively, and
those of Qi be In ′, Out ′, and Int ′ respectively. Then In ′=In∪{b| b is an output
action at endpoint i of an atomic object in O}, Out ′=Out∪a|a
= fail i ∧ a is an
input action at endpoint i of an atomic object in O}, and Int ′=(Int-Φi)∪{l(c)|
c∈ Φi}∪{l(b)|b∈In∧ b
=fail i}∪{stubi}.

To give an intuition on the transition relation of Qi, we sketch here the idea
of using T (C) to simulate C.

Firstly, all the output actions and internal actions except those in Φi are
simulated directly, with only their preconditions changed to involve the new
state components.

Secondly, an action c∈ Φi that accesses a shared variable is simulated by
four steps of Q i. The first step l(c) starts up the simulation of c, enqueuing
pending-invo with the invocation to v involved in c, and storing into local-tran
the relation about how to change local state as in c. The second step invokes
ov as is hinted by pending-invo, and then dequeues pending-invo. The third
step enqueues vari-resp with the response from ov. The forth step stubi changes
the local state according to vari-resp and local-tran, and dequeues vari-resp.
The four steps are collectively called a complete simulation of c, l(c) is celled
the initialization, and stubi the finalization.

The four steps must be executed one after another without interruption, so
other actions, even the inputs from services and external world, must be tem-
porarily disabled. As a result, on the one hand, l(c) sets semaphore to 1, stubi

resets it to 0, the other actions keep it unchanged and most of them are enabled
only if it’s 0. On the other hand, each input action b
=fail i of Pi is simulated in
two steps, one (also named b in Q i) to buffer the response, and the other (i.e.
l(b)) to update the local state using the response. b and l(b) don’t have to be
executed consecutively, and in fact, l(b) is always done between some stubi and
the next l(c).

There are two technical maneuvers. On the one hand, in order for the sim-
ulation to preserve fairness of traces, it must be precluded that Q i indefinitely
performs only b and l(b) for inputs b and ignores real workload. So, each l(b)
sets flag to 0 and is enabled only if flag=1, and flag can be reset to 1 only by

Revisiting the Impossibility for Boosting Service Resilience 725

other input actions. On the other hand, to keep Q i live, when it fails during the
simulation of a shared variable action, semaphore must be reset to 0.

Please refer to [Appendix II, 12] for the formal definition of T (C).

4.3 A Property of T(C)

If a system S is obtained by composing a collection of component automata and
then hiding a set of actions, denote by R(S) the system where the set of actions
are not hidden.

Lemma 5. For R(T (C)) and R(C), Theorems 8.2, 8.3, 8.5, and 8.6 in [6] hold,
though each fail i action may be shared by infinitely many components. �
This guarantees that under some conditions, the (fair) traces/executions of the
component automata can be pasted into (fair) traces/executions of the complete
system.

Lemma 6. T (C) simulates C in the following sense.

(1) They have the same interface,
(2) Any (fair) trace of T (C) is a also a (fair) trace of C, up to a permutation

which preserves both the order of invocations and that of responses at each port,
and preserves the input-covering property. A trace is input-covering if at each
port, an invocation precedes all responses.

Remark of the proof: The basic idea is similar to the proof of [Theorem 13.7, 6],
but there are two key differences. Firstly, the existence of services, plus the non-
existence of turn functions, makes it possible that a process Q i) receives inputs
(including responses) during its simulation of a variable access of Pi. Secondly,
inputs sent to Q i) are buffered and not necessarily processed immediately, so it’s
possible that Q i) receives inputs or performs locally controlled actions during
its simulation of an input to Pi. As a result, that proof can’t carry over. Our
proof of Lemma 6 is elaborated in [Appendix III, 12]. �
Suppose the above C is an implementation of n-process consensus object from
shared variables and canonical f -resilient failure-oblivious services. A trace of C
is said to be input-first if each Pi begins with an init() action, and has no other
init() actions.

Corollary 7. There is a fair input-first trace of C where no more than f +1
processes fail, and which doesn’t satisfy the three conditions of consensus.

Proof: Assume for contradiction that this is not the case. In the construction
of T (C), if each ov is a canonical reliable register, then T (C) is a system with
canonical reliable registers and f -resilient failure-oblivious services. [2] in fact
proves that there is a fair input-first trace α of C where no more than f +1
processes fail, and which doesn’t satisfy the three conditions of consensus. By
Theorem 5, there is a fair trace β of C which is the same as α up to a certain
permutation. The property of the permutation guarantees that is also input-
first, and that the projection of β to each port of C is the same as that of α

726 X. Liu, Z. Xu, and J. Pu

to each port of T (C). As a result, no more than f +1 processes fail in β but β
doesn’t satisfy the three conditions of consensus. A contradiction. �
Corollary 6 immediately leads to Theorem 4.

5 Conclusion

We have generalized the results of [2] in two dimensions. First, we show that
all the impossibility results still hold even if infinitely many reliable registers
and fault-prone services are allowed. Second, we show that even if the system is
strengthened by replacing canonical reliable registers with shared variables, the
impossibility still holds in the case where canonical failure-oblivious services are
used. To prove the second result, we in some degree generalize [Theorem 13.7, 6]
by discarding the requirement of turn functions, and by extending shared variable
systems to systems having both shared variables and failure-oblivious services.
Our work under way is to extend our second result to the case of failure-aware
services.

Acknowledgment

The work is supported by China’s Natural Science Foundation (60603004,
60403023).

References

1. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51-59, June
2002.

2. P. Attie, et al. The Impossibility of Boosting Distributed Service Resilience (Ex-
tended abstract). In Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems (ICDCS2005), 39-48. The full version is available
at http://theory.lcs.mit.edu/tds/papers/Attie/boosting-tr.ps

3. M. Fischer, et al. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(3):374-382, April 1985.

4. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, January 1991.

5. P. Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the 12th
Annual ACM Symposium on Principles of Distributed Computing (PODC1993),
145-157.

6. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
7. M. Herlihy and N. Shavit. The topological structure of asynchronous computability.

Journal of the ACM, 46(6):858-923, November 1999.
8. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology

of public knowledge. SIAM Journal on Computing, 29:1449-1483, March 2000.
9. M. Herlihy and S. Rajsbaum. Set Consensus Using Arbitrary Objects. In Proceed-

ings of 13th Annual ACM Symposium on Principles of Distributed Computing
(PODC 1994), pp. 324-333.

Revisiting the Impossibility for Boosting Service Resilience 727

10. Y. Afek, et al. Computing with Faulty Shared Memory. In Proceedings of 13th
Annual ACM Symposium on Principles of Distributed Computing (PODC 1992),
pp. 47-58.

11. P. Jayanti, et al. Fault-Tolerant Wait-Free Shared Objects. Journal of the ACM,
45(3): 451-500, May 1998.

12. X. Liu, et al. Revisiting the Impossibility for Boosting Service Resilience. Tech-
nical report, January 1998. Available at http://blog.software.ict.ac.cn/xliu/files/
2007/03/RevisitingtheImpossibilityfor BoostingServiceResilience-full.pdf

An Approximation Algorithm to the k-Steiner

Forest Problem

Peng Zhang�

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.O.Box 8718, Beijing, 100080, China
Graduate University of Chinese Academy of Sciences, Beijing, China

zhangpeng04@iscas.cn

Abstract. Given a graph G, an integer k, and demands set D = {(s1, t1),
. . . , (sl, tl)}, the k-Steiner Forest problem finds a forest in graph G to con-
nect at least k demands in D such that the cost of the forest is minimized.
This problem is proposed by Hajiaghayi and Jain in SODA’06. There-
after, using Lagrangian relaxation technique, Segev et al. give the first
approximation algorithm to this problem in ESA’06, with performance
ratio O(min{n2/3,

√
l} log l). We give a new approximation algorithm to

this problem with performance ratio O(min{n2/3,
√

l} log k) via greedy
approach, improving the previously best known ratio in the literature.

1 Introduction

Given a graph G = (V, E) with costs on edges, an integer k > 0, and a demand
set D = {(s1, t1), . . . , (sl, tl)}, where each demand (a.k.a. source-sink pair) is
distinct but vertices in different demands are not required to be distinct, the
k-Steiner Forest problem asks to find a forest in graph G to connect at least
k demands in D, such that the cost of the forest is minimized. The k-Steiner

Forest prolem is proposed by Hajiaghayi and Jain [8] when they studied the
prize-collecting generalized Steiner tree problem.

If we remove the given parameter k in k-Steiner Forest, then we get the
classical Steiner Forest problem. The currently best approximation ratio for
Steiner Forest is 2(1−1/l), due to Agrawal, Klein and Ravi [1] and Goemans
and Williamson [5]. On the other hand, k-Steiner Forest also captures the
classical rooted k-MST and rooted k-Steiner Tree problems. If in k-Steiner

Forest let D = {(r, v) : ∀v ∈ V − {r}} where r is the given vertex used as
root, then k-Steiner Forest reduces to the rooted k-MST problem. Similarly,
if in k-Steiner Forest let D = {(r, v) : ∀v ∈ R − {r}} where R is the set of
vertices required to be connected and r is the given vertex used as root, then
k-Steiner Forest reduces to the rooted k-Steiner Tree problem. Garg [4]
showed that in fact the unrooted k-MST problem is equivalent to the rooted
� Supported by NSFC grants No. 60325206 and No. 60310213. This work is part of

the author’s Ph.D. thesis prepared at Institute of Software, Chinese Academy of
Sciences under the supervision of Prof. Angsheng Li.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 728–737, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Approximation Algorithm to the k-Steiner Forest Problem 729

k-MST problem, and gave a 2-approximation algorithm to k-MST, which is also
the currently best known approximation to k-MST. Both k-MST and k-Steiner

Tree have been studied using the Lagrangian relaxation technique by Chudak,
Roughgarden and Williamson [2].

Although the basic Steiner Forest problem [1,5] and the prize-collecting
Steiner Forest problem [8] (which is called the prize-collecting generalized
Steiner Tree problem therein) can be well approximated, it is difficult to ap-
proximate k-Steiner Forest. Hajiaghayi and Jain [8] proved that if k-Steiner

Forest can be approximated within α, then the Densest k-Subgraph prob-
lem can be approximated within α2. On the other hand, the best known perfor-
mance ratio for Densest k-Subgraph is O(n1/3−ε) for some small ε > 0 [3].
It seems that obtaining performance ratio better than O(n1/6−ε) for k-Steiner

Forest requires new ideas.
Segev et al. [10] gave the first non-trivial approximation algorithm to k-

Steiner Forest,with performance ratio O(min{n2/3,
√

l} log l). Their approach
is the Lagrangian relaxation technique. In fact, since the seminar work of Jain
and Vazirani [7] for the Facility Location and the k-Median problems, in
which the Lagrangian relaxation technique was introduced to the design and
analysis of approximation algorithm for the first time, the study on approximat-
ing the prize-collecting version and k-version of many optimization problems has
attracted more attention (see, for instance, [2,7,9]).

1.1 Our Results and Techniques

We give a simple greedy approximation algorithm to this problem with perfor-
mance ratio O(min{n2/3,

√
l} log k), improving the previously best known ratio

O(min{n2/3,
√

l} log l) [10]. The optimal solution to k-Steiner Forest must
consist of several disjoint trees, and thus is a forest. Intuitively, a “good” tree in
a solution to k-Steiner Forest connects many demands by as small as possi-
ble cost. In other words, to find a cost-effective tree connecting some demands
is a core problem to k-Steiner Forest. The cost-effectiveness of a tree in [10]
(which is referred to as the density of a tree therein) is defined as the ratio of
the cost of the tree and the number of demands connected by this tree. Segev
et al. gave a constructive method to find a tree with cost-effectiveness not much
more than that of the most cost-effective tree, meanwhile with cost not exceeded
Δ much more, where Δ is a given budget and is guessed by means of exhaus-
tive searching such that OPT ≤ Δ ≤ 2OPT . Then they gave a greedy prize-
collecting algorithm for the prize-collecting Steiner Forest problem. Since the
prize-collecting algorithm possesses the so-called Lagrangian Multiplier Preserv-
ing [6] property, k-Steiner Forest can be solved by reducing to prize-collecting
Steiner Forest in the framework of Lagrangian relaxation.

We consider k-Steiner Forest in the framework of Set k-Cover, which
is the k-version of the Set Cover problem. Set k-Cover finds a sub-family
of the given set family S = {S1, S2, . . . , Sm} to cover at least k elements in the
given grounding set U = {e1, e2, . . . , en}. Slav́ık [11] gave a greedy approximation
algorithm for Set k-Cover with performance ratio Hk, where Hk = 1+ 1

2 + 1
3 +

730 P. Zhang

· · · + 1
k is the k-th harmonic number. The greedy algorithm for Set k-Cover

finds the most cost-effective set in each iteration to cover some elements still
remaining in U , until at least k elements are covered. In [11] the cost-effectiveness
of a set S is carefully defined as the ratio of the cost of S and the number of
elements validly covered by S. Given k′ being the number of elements that need
to be covered currently, the number of elements validly covered by S is k′ if S
covers more than k′ new elements, and is the number of new elements covered
by S otherwise.

We first prove a coupling lemma which shows that the greedy algorithm cou-
pled with an α-approximation algorithm for finding a cost-effective covering set
gives an αHk-approximation to the Set k-Cover-like problem. This is very use-
ful for the problems that can be casted in the framework of Set k-Cover but it
is not known how to find the most cost-effective covering set in polynomial time.
Obviously k-Steiner Forest can be casted in the framework of Set k-Cover.
We define the cost-effectiveness of a covering tree T as the ratio of the cost of T
and the numbers validly covered by T , the same as that in [11]. Our newly defined
cost-effectiveness of covering tree is different from that in [10]. Then, by implant-
ing the newly defined cost-effectiveness into the constructive method proposed in
[10], we give a polynomial time α-approximation algorithm to find a cost-effective
covering tree. This eventually leads to an αHk-approximation algorithm to k-

Steiner Forest, where α = O(min{n2/3,
√

l}). Our global approach is greedy,
which is completely different from that (the Lagrangian relaxation technique) of
[10]. Although our algorithm relies on the constructive method proposed therein,
we would like to point out that the constructive method armed with our cost-
effectiveness of covering tree and the coupling lemma are key to the success of
our algorithm. Our algorithm is of two nested loops and is simpler and faster,
while the algorithm in [10] has three nested loops. More importantly, our method
gives better performance ratio to the problem k-Steiner Forest. We believe
that our method is of independent interest and may have more applications.

2 The Coupling Greedy Algorithm for Set k-Cover

Slav́ık [11] proposed the greedy algorithm for the problem Set k-Cover, which
is denoted by A in our setting. Given the grounding set U = {e1, e2, . . . , en}
and set family S = {S1, S2, . . . , Sm} with each set S ∈ S having cost c(S), the
algorithm A repeatedly finds the most cost-effective set Sj in each iteration j,
until the found sets cover at least k elements in U . Denote by Cj the set of covered
elements at the beginning of iteration j. For a set S ∈ S, define new(S) = |S\Cj |,
that is, new(S) is the number of elements newly covered by set S. Suppose that
at the beginning of iteration j the number of elements needs to be covered is
k′. Then the cost-effectiveness of S is defined by cost-efv(S) = c(S)

val(S) , where
val(S) = min{k′, new(S)} is the number of elements validly covered by S. Note
that in the traditional greedy algorithm for Set Cover, the cost-effectiveness
of a set S is defined by cost-efn(S) = c(S)

new(S) . We remind the readers that the

An Approximation Algorithm to the k-Steiner Forest Problem 731

function new(·) and val(·) are defined with respect to the set of elements currently
covered by A.

If the most cost-effective set S can be found in polynomial time, then algo-
rithm A gives an Hk-approximation. There are many problems which can be
casted in the framework of Set k-Cover, but for these problems the most cost-
effective set may not be found (or do not know how to find) in polynomial time,
usually due to that the family of sets is of exponential size. This motivates us
to couple the greedy algorithm A with an approximation algorithm to find the
most cost-effective covering set.

Lemma 1 (The coupling lemma). If the greedy algorithm A for Set k-

Cover is coupled with an algorithm H, where H in polynomial time finds an
α-approximation to the most cost-effective covering set S∗

j in each iteration j
of A, then A outputs an αHk-approximation to the problem Set k-Cover in
polynomial time.

Proof. Without loss of generality, suppose that by reordering the elements in
U , the elements covered by algorithm A in the executing process of A are
e1, e2, . . . , ek̂, breaking ties arbitrarily. Recall that k̂ ≥ k. Before giving the
detailed analysis, we first introduce some notations. Denote by OPT the op-
timum of Set k-Cover, and let O = {O1, . . . , Or} be an optimal solution.
Denote by Aj the set found by algorithm H in the j-th iteration of A. For
each element ei covered by Aj , define price(i) = c(Aj)

val(Aj)
. Then we know that

A(I) =
∑

j c(Aj) =
∑k

i=1 price(i), where A(I) is the value of the approximate
solution found by A.

We argue that for every 1 ≤ i ≤ k, price(i) ≤ α
k−i+1OPT . This will give the

performance ratio αHk for the coupled greedy algorithm A. Recall that k′ is the
number of elements that need to be covered at the beginning of iteration j. For
clarity, let aj = val(Aj). Since the prices are the same as that for all elements
ek−k′+1, . . . , ek−k′+aj , and 1

k′ ≤ 1
k−i+1 for each k−k′+1 ≤ i ≤ k−k′+aj, we only

need to show that price(i) ≤ α
k′ OPT , where i = k − k′ + 1 is the “first” element

covered by Aj . We already have that price(i) = c(Aj)
val(Aj)

≤ α · c(S∗
j)

val(S∗
j) because Aj

is an α-approximation to S∗
j . By the optimality of S∗

j ,
c(S∗

j)

val(S∗
j) ≤ c(Ou)

val(Ou) for each
set Ou ∈ O satisfying that val(Ou) �= 0. So we get

c(S∗
j)

val(S∗
j)

≤
∑

Ou∈O : val(Ou) �=0 c(Ou)
∑

Ou∈O : val(Ou) �=0 val(Ou)
≤ OPT

k′ ,

where the last inequality holds since
∑

Ou∈O : c(Ou) �=0 val(Ou) ≤ OPT , and at
the beginning of iteration j, there are at least k′ elements in (

⋃
Ou∈O Ou) \ Cj ,

resulting in
∑

Ou∈O : val(Ou) �=0 val(Ou) ≥ |(⋃Ou∈O Ou) \ Cj | ≥ k′. The proof is
completed. �	
We give two remarks on the coupling lemma. Firstly, the function val(·) plays
an important role in the proof of the coupling lemma, since we define price(i) =

732 P. Zhang

c(Aj)
val(Aj)

for every element i covered by Aj . Secondly, for the problems that can be
casted into the framework of Set k-Cover, the coupling lemma gives a general
approach to obtaining an αHk-approximation to the problems.

3 Approximating k-Steiner Forest

3.1 Find Cost-Effective Covering Tree

Then we turn back to the problem k-Steiner Forest. k-Steiner Forest

can be viewed as a Set k-Cover-like problem in which the grounding set U =
{d1, d2, . . . , dl} where each di = (si, ti) denotes a demand, and the set family S
is the collection of all edges set Ej such that the edges in Ej form a tree in G.
Obviously S has exponential size.

In the framework of Set k-Cover for k-Steiner Forest, one of the key
steps is to find the most cost-effective covering tree. Since there are exponential
trees in G, it is obvious that one can not hope to find the most cost-effective
covering tree by enumerating them one by one. Denote by Fj the collection of
trees selected by the algorithm at time j (actually, at the beginning of iteration
j), and by Rj the set of demands not yet connected at time j. Let Cj = D \ Rj

be the set of demands already connected by the algorithm at this point. For
succinctness, when the time j is clear in the context, Fj , Cj , Rj are also written
as F, C, R, respectively. For a tree T in G, denote by dem(T) the number of
demands connected by T . Similarly to that in the setting of Set k-Cover,
we define new(T) to be the number of demands in R connected by T . Since
the goal is to connect at least k demands in D, given the already connected
demands set C and the selected tree collection F , adding T to F may connect
more than k demands. The quantity exceeding k is useless to the goal. Under
this consideration, the function val(·) is defined by

val(T) = min{k′, new(T)},

where k′ = k − |C|. That is, val(T) is the number of demands validly connected
by T . Then the cost-effectiveness of tree T is defined by

cost-efv(T) =
c(T)

val(T)
.

The problem of finding the most cost-effective covering tree is to find a tree T
such that cost-efv(T) is minimized over all possible trees in G. Similarly, we also
define the cost-effectiveness of a tree T with respect to the function dem(·) as

cost-efd(T) =
c(T)

dem(T)
.

Given the unconnected demand set R, suppose that T ∗ is the most cost-
effective covering tree. For clarity, T ∗ is also called the optimal covering tree.

An Approximation Algorithm to the k-Steiner Forest Problem 733

Segev et al. [10] gave a constructive method to find a covering tree, which is ap-
proximately optimal with respect to the function cost-efd(·) (which is referred to
as the density function therein). We modify their method by using the new idea
to make it fit our settings, that is, to find a covering tree which is approximately
optimal with respect to the function cost-efv(·). Before giving the algorithm, we
first prove Lemma 2. We state the rooted quota-MST problem here, which is
used in the proof of Lemma 2. Given a graph G with costs on edges and each
vertex v ∈ V (G) having profit(v) ∈ Z+, a vertex r ∈ V (G), and a nonnegative
quota Q, the rooted quota-MST problem asks to find a spanning tree T̃ with
minimized cost satisfying

∑
v∈V (�T) profit(v) ≥ Q. If each profit(v) is polynomial

bounded, this problem can be reduced to the k-MST problem and thus can be
approximated within factor 2 by the result of [4]. In Lemma 2, T ∗ is an optimal
covering tree and is not known in advance.

Lemma 2. Given q = val(T ∗), an arbitrary vertex r ∈ T ∗, and an arbitrary
tree T that contains r, then an augmented tree T+ ⊇ T can be constructed
in polynomial time such that at least one of the two properties (1) |V (T +)| ≥
|V (T)| + √

q/2 and (2) val(T +) ≥ 3q/8 holds.

Proof. Suppose that new(T) ≥ q/2. If new(T) ≤ k′, then we have val(T) =
min{k′, new(T)} = new(T) ≥ q/2. If new(T) > k′, since q = val(T ∗) =
min{k′, new(T ∗)} ≤ k′, we know that val(T) = min{k′, new(T)} = k′ ≥ q.
So T itself is a tree satisfying property (2) in the lemma and we are done.

So in the following we suppose that new(T) < q/2.
If |V (T ∗) \ V (T)| ≥ √

q/2 then one can construct a quota spanning tree T̃
rooted at r by approximating the rooted quota-MST instance on G, in which
profit(v) = 1 for all v ∈ V (G) \ V (T), profit(v) = 0 for all vertices in V (T), and
the quota is

√
q/2. Now T + = T ∪ T̃ is a feasible tree satisfying the property

(1) in the lemma. Such a tree T̃ must exist, since T ∗ itself is a feasible quota
spanning tree rooted at r.

Otherwise we have |V (T ∗) \ V (T)| <
√

q/2. Once again, a quota spanning
tree T̃ rooted at r can be constructed by approximating the rooted quota-MST
instance on G, in which profit(v) for all v ∈ V (G) \V (T) is equal to the number
of demands in R consisting of v and an additional vertex from T , all vertices in
V (T) have zero profit, and the quota is 3q/8.

We argue that such a spanning tree T̃ must exist. Denote by D(T) the set of
demands covered by a tree T . For 0 ≤ j ≤ 2, define set Nj = {(si, ti) ∈ R ∩
D(T ∗) : |{si, ti}∩V (T)| = j}, that is, Nj is just the set of demands newly covered
by T ∗ with exactly j endpoints in V (T). Since even if all the vertices in V (T ∗) \
V (T) form demands newly covered by T ∗, there are at most

(|V (T ∗)\V (T)|
2

) ≤
(�√q/2	

2

) ≤ q/8 new demands entirely in V (T ∗) \ V (T), eventually we have that
|N0| ≤ q/8. Notice that new(T ∗) ≥ min{k′, new(T ∗)} = val(T ∗) = q and |N2| ≤
new(T) < q/2. So we have

734 P. Zhang

|N1| = new(T ∗) − |N0| − |N2|
≥ q − |N0| − |N2|
≥ q − q

8
− q

2

=
3q

8
.

Since
∑

v∈V (T ∗)\V (T) profit(v) ≥ |N1| ≥ 3q/8, T ∗ itself is a feasible tree to the
rooted quota-MST instance.

Now we get a tree T + = T ∪ T̃ with new(T +) ≥ 3q/8. Again, if new(T +) ≤ k′

then we have val(T +) = min{k′, new(T +)} = new(T +) ≥ 3q/8. If new(T +) > k′

then we have val(T +) = min{k′, new(T +)} = k′ ≥ q since q = val(T ∗) =
min{k′, new(T ∗)} ≤ k′. So, we always have that val(T +) ≥ 3q/8 and hence T +

satisfies the property (2) in the lemma.
The lemma follows since we can solve the two instances separately and prefer-

ably pick the second tree as output when both are feasible, although T ∗ is
unknown to us. �	
We shall point out that although in the proof of Lemma 2 we adapt the con-
structive method in [10], our result val(T +) ≥ 3q/8 in Lemma 2 is stronger than
that in [10] because of the newly defined sets Nj’s, which is crucial to the success
of our algorithm.

Algorithm B
input: Graph G, integer k′ > 0, and the uncovered demands set R.
output: A tree T covering some demands in R.

(denote by T ∗ an optimal covering tree)
1. guess q = val(T ∗) from {1, . . . , k′} and an arbitrary vertex r ∈ T ∗ from V (G)
2. if q < n2/3 then return the shortest path connecting any demand in R and

stop
(else we have that q ≥ n2/3)

3. let T ← {r}
4. repeatedly extend T by Lemma 2 until val(T) ≥ 3q/8
5. return T

For algorithm B we have Lemma 3.

Lemma 3. In polynomial time, algorithm B finds a covering tree T satisfying
that cost-efv(T) ≤ α · cost-efv(T ∗), where α = O(n2/3) and T ∗ is an optimal
covering tree with respect to the function cost-efv(·).
Proof. Suppose that algorithm B guesses the right q = val(T ∗) and r ∈ T ∗. If
q < n2/3, the algorithm returns the shortest path connecting a new demand in
R as the covering tree T . Obviously in this case val(T) = 1. So we get

cost-efv(T) =
c(T)

val(T)
= c(T) ≤ c(T ∗) ≤ n2/3 · c(T ∗)

q
= α · cost-efv(T ∗),

An Approximation Algorithm to the k-Steiner Forest Problem 735

where the first inequality holds since T ∗ connects at least one new demand.
Next we consider the case q ≥ n2/3. By the constructive proof of Lemma 2,

we know that T is extended by approximating the problem rooted quota-MST,
which can be approximated with factor 2 by the work of [4]. Before new(T) ≥
3q/8, at least

√
q/2 new vertices are added to T in each iteration of step 4. So

the number of iterations is at most n√
q/2 + 1 ≤ 2n2/3 + 1, and T is extended at

most 2n2/3 + 1 times from the trivial tree {r}, whose cost is zero. Thus we have
c(T) ≤ (2n2/3 + 1) · 2c(T ∗). By step 4 of the algorithm, we have

cost-efv(T) =
c(T)

val(T)
≤ c(T)

3q/8
≤ 8

3
(2n2/3 + 1)

2c(T ∗)
q

= α · cost-efv(T ∗)

provided q ≥ n2/3.
Finally, trying all the possible 1 ≤ q ≤ k′ and r ∈ V (G) and picking the tree

with minimal cost-efv(·) completes the proof. �	
Segev et al. proposed a separate construction method in [10] similar to the

one in Lemma 2. For the details of the construction the readers may refer to
[10]. Using the method in [10], we are able to construct an approximate covering
tree T such that cost-efv(T) ≤ O(

√
l) · cost-efv(T ∗). The proof of the following

lemma is similar to that of Lemma 2 and Lemma 3 and hence is omitted.

Lemma 4. A covering tree T can be found in polynomial time, such that
cost-efv(T) ≤ α · cost-efv(T ∗), where α = O(

√
l) and T ∗ is an optimal cov-

ering tree with respect to the function cost-efv(·). �	

3.2 The Greedy Algorithm for k-Steiner Forest

Now we are ready to deduce the greedy algorithm for k-Steiner Forest. The
algorithm is given as algorithm C. In each iteration of algorithm C, the algorithm
finds an approximate covering tree T and adds T to F , until at least k demands
have been connected. At last, the algorithm outputs F as the solution. As before,
the notation k′ denotes the number of demands that need to be covered at the
beginning of iteration j.

Algorithm C
input: Graph G, demand set D = {(s1, t1), . . . , (sl, tl)}, integer k > 0.
output: A collection of trees F that connects at least k demands in D.

1. let F ← ∅, C ← ∅, R ← D
2. while k′ = k − |C| > 0 do
3. find a covering tree T by algorithm B
4. let F ← F ∪ {T }, C ← C ∪ D(T), R ← R \ D(T)
5. end
6. return F

736 P. Zhang

In step 4 of algorithm C, the notation D(T) denotes the set of demands con-
nected by T . For algorithm C, we have the main theorem of this paper.

Theorem 1 (The main theorem). k-Steiner Forest can be approximated
within factor O(min{n2/3,

√
l} log k) in polynomial time.

Proof. By Lemma 3, in each iteration of algorithm C an approximate covering
tree T is found in polynomial time, such that cost-efv(T) ≤ α1 · cost-efv(T ∗)
where α1 = O(n2/3). By the coupling lemma, algorithm C yields an α1Hk-
approximation to k-Steiner Forest. Also, algorithm C is of polynomial time,
since there are at most k iterations in total. Similarly, by Lemma 4 and the
coupling lemma, algorithm C yields an α2Hk-approximation in polynomial time,
where α2 = O(

√
l). The theorem follows. �	

We give some technical comments on algorithm C. Firstly, although an optimal
solution to k-Steiner Forest must be a forest, in general the trees found by
algorithm C are not disjoint. So, the output of algorithm C is really a collection
of trees. Secondly, consider step 4 of the algorithm. When a covering tree T is
added to F , there may be some new demands {d′ = (s′, t′)} covered by F and T
together, since in general T is not disjoint from the already found trees in F . In
algorithm C, which obeys the framework of Set k-Cover, these demands in {d′}
are not added to C and hence still remain in R. In other words, the algorithm
only considers the demands covered by a separated tree in F are “really” covered.
On the other hand, if we also add the demand in {d′} to C, and remove them
from R, the same performance ratio will be proved by slightly modifying the
proof of the coupling lemma (that is, by taking only as many demands in {d′} to
form a feasible k-cover and defining the price of them to be zero). The advantage
of such action is only that it will accelerate the algorithm.

4 Discussion

We obtain an improved performance ratio O(min{n2/3,
√

l} log k) for the k-

Steiner Forest problem via greedy approach, while the previous best known
ratio in the literature is O(min{n2/3,

√
l} log l), obtained by Segev et al. [10]

through the Lagrangian relaxation technique. Our global framework is com-
pletely different from that in [10]. Another difference is that our algorithm is
simpler and faster. We believe that the coupling lemma for Set k-Cover has
its own independent interest. To improve the performance ratio further for k-

Steiner Forest in the framework of Set k-Cover, it seems that entirely new
constructive method for building a covering tree is needed. Furthermore, the
constructive method used in this paper does not take advantage of the special
structure of the underlying graph, implying that approximating the problem k-

Steiner Forest on trees, which is also proposed by Hajiaghayi and Jain [8],
still remains open.

An Approximation Algorithm to the k-Steiner Forest Problem 737

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal of Computing,
24(3):440–456, 1995.

2. Chudak, F., Roughgarden, T., Williamson, D.: Approximate k-MSTs and k-Steiner
trees via the primal-dual method and Lagrangean relaxation. Mathematical Pro-
ramming, 100(2):411–421, 2004.

3. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica,
29:410–421, 2001.

4. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC’05), 302–309, 2005.

5. Goemans, M., Willamson, D.: A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

6. Jain, K., Mahdian, M., Markaksi, E., Saberi, A., Vazirani, V.: Greedy facility lo-
cation algorithms analyzied using dual fitting with factor-revealing LP. Journal of
the ACM, 50(6):795–824, 2003.

7. Jain, K., Vazirani, V.: Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. Journal
of the ACM, 48(2):274–296, 2001.

8. Hajiaghayi, M., Jain, K.: The prize-collecting generalized Steiner tree problem via
a new approach of primal-dual schema. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’06), 631–640, 2006.

9. Levin, A., Segev, D.: Partial multicuts in trees. In Proceedings of the 3rd Interna-
tional Workshop on Approximation and Online Algorithms (WAOA’05), 320–333,
2005.

10. Segev, D., Segev, G.: Approximate k-Steiner Forests via the Lagrangian relaxation
technique with internal preprocessing. In Proceedings of the 14th Annual European
Symposium on Algorithms (ESA’06), 600–611, 2006.

11. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Infor-
mation Processing Letters, 64:251–254, 1997.

A Distributed Algorithm of Fault Recovery for

Stateful Failover

Indranil Saha1 and Debapriyay Mukhopadhyay2,�

1 Honeywell Technology Solutions Lab (HTSL),
151/1, Doraisanipalya, Bannerghatta Road, Bangalore 560 076, India

indranil.saha@honeywell.com
2 Ixia Technologies,

Infinity Tower II, 8th Floor, Block GP, Sector V, Salt Lake, Kolkata 700091, India
dmukhopadhyay@ixiacom.com

Abstract. In [8], a high availability framework based on Harary graph
as network topology has been proposed for stateful failover. Framework
proposed therein exhibits an interesting property that an uniform load
can be given to each non-faulty node while maintaining fault tolerance. A
challenging problem in this context, which has not been addressed in [8]
is to be able to come up with a distributed algorithm of automated fault
recovery which can exploit the properties exhibited by the framework.
In this work, we propose a distributed algorithm with low message and
round complexity for automated fault recovery in case of stateful failover.
We then prove the correctness of the algorithm using techniques from
formal verification. The safety, liveness and the timeliness properties of
the algorithm have been verified by the model checker SPIN.

Keywords: distributed algorithm, stateful failover, verification of
programs, SPIN model checker.

1 Introduction

Critical business processes and mission critical systems should provide a high de-
gree of availability and reliability to the end users and redundancy techniques are
mostly used to achieve this. For distributed systems, redundancy can be achieved
by using extra copies of its components which include hardware, software and
network components. These systems are often called highly available systems or
fault tolerant systems and they are capable of tolerating against certain kind of
failures which can be either software or hardware component failures.

From the availability perspective, systems can be broadly classified into two
heads depending on their intended application. In one hand, we have appli-
cations in which availability is one of the requirements, but occasional loss of
application state information or data is tolerable. On the other hand, there are

� When this work was carried out, the author was a member of Honeywell Technology
Solution Lab, Bangalore, India.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 738–749, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Distributed Algorithm of Fault Recovery for Stateful Failover 739

mission critical systems with stringent fault tolerance requirements, such as air-
craft flight control systems, where restoration of the state or data pertaining to
the application is required for highly accurate recovery. Thus, we have two types
of failovers - stateless and stateful. In stateless failover of an application, the
system is simply restarted without any state or data restoration.

A number of fault tolerant designs for specific multi-processor architectures
have been proposed in the past [2,3,4,5,6,7]. Graph theoretic models have been
extensively used to represent processor-to-processor interconnection structure
is represented as a graph. As for example, minimum k-Hamilton graphs are
widely used to meet reliability considerations for loop type communication net-
works [5,6,7]. Fault tolerant networks based on de Bruijn graph are proposed
in [4] and can tolerate up to k − 2 node faults, where the graph is regular of
degree k and have kn number of vertices for some n. But, none of these works
discriminates between stateless and stateful failover. In case of stateless failover,
any live node in the network is a promising candidate to take over the processes
of any failed node, which in case of stateful failover is not. So the most pertinent
questions that need to be addressed for stateful failover are - i) how to distribute
the state information of a node across the network, i.e., how to decide who are
the nodes to receive the state information of which nodes; ii) how to checkpoint
the state information and how often it is required to be done.

A framework of high service availability for stateful failover, which is tolerant
up to a maximum of k-processor faults in a network is proposed in [8] based on
Harary graph. In this work the answer of the first question has been provided
with sufficient theoretical justifications, but the second problem has not been
dealt with. It has been assumed that the network is consisted of a set of multi-
processors and they are connected via bi-directional links. In addition, this work
also relies on the assumption that the processors are equipped with enough
computing power and thus can execute more than one processes.

High availability framework proposed there [8] not only enables the network to
tolerate a maximum of k processor faults, but also guarantees that in the event
of k processor failures, the load can be uniformly distributed across the rest
of the network. Design always ensures connectedness among non-faulty nodes
in the network, exploiting which it is possible to develop a distributed solution
of automated recovery. But, the problem of finding a distributed solution of
automated fault recovery has not been considered in that work. In this work,
we aim to solve this problem and have come up with a distributed algorithm of
automated fault recovery for stateful failover based on the framework proposed
in [8] utilizing all the properties of the framework. Analysis shows that message
and the round complexity of the algorithm are considerably low. Distributed
algorithms are very hard to design and more so is to prove that they are correct.
So, formal verification can be applied to prove the correctness of the distributed
algorithms. Model checking is one such technique where a formal model of the
system is constructed against which the properties of the system are verified. To
prove the correctness of our algorithm we have used the model checker SPIN,

740 I. Saha and D. Mukhopadhyay

which is extensively used to formally verify distributed algorithms. Relevant
properties of our algorithm, we have verified here using SPIN.

We organize our work as follows. Section 2 outlines the network and fault
model and also reviews the framework for k-fault tolerance proposed in [8]. Dis-
tributed algorithm ensuring automated fault recovery is described in section 3
along with its analysis. In section 4, we describe the formal verification exper-
iment on the proposed distributed algorithm. Section 5, finally, concludes our
paper.

2 High Availability Framework for k-Fault Tolerance

2.1 Network and Fault Model

In this work we consider the same network and the fault model under which the
framework proposed in [8] has been shown to function properly. The network is
consisted of the set of nodes N with |N | = n and each node is labeled with a
unique id from 0 to n − 1. We assume that each node is handling one process
initially, and is capable of executing at most m processes simultaneously. We
denote by pi, the process which node i ∈ N starts executing initially when the
network becomes functional. We consider in this work failstop kind of failures,
i.e., the nodes in the network can stop operating at any point of time due to a
crash and k node faults are allowed in the network. With a processor failed, all
the links incident on that node also becomes non-functional.

Given the set of nodes N , each node i ∈ N, (0 ≤ i ≤ n − 1), in the network
is connected to the set of nodes Pi ⊆ N, such that |Pi| = l = k + x, where
k + x(≤ n − 1) is even, and

Pi = {j ∈ N : j = (i + p)(mod n), where − l/2 ≤ p ≤ l/2, p �= 0} (1)

Thus, the underlying undirected graph modeling the network can be written as
(N, E) where E = ∪n−1

i=0 {(i, j) : j ∈ Pi}. Since, we are talking about undirected
graphs, so (i, j) and (j, i) represents the same edge (link) connecting node i with
j. Its easy to see here that the graph (N, E) represents a regular network, for,
the degree of each node is l.

Thus, for any n and k, the graph (N, E) corresponds to the Harary Graph [1]
Hl,n, where

l = k + x ≥
{

k + 2, for k even,
k + 1, for k odd,

and hence is l-connected with χ(G) ≥ l(> k), χ(G) denotes the connectivity of
G. This implies that there exists no node cutset of size k.

2.2 Framework

Given the value of k, the amount of fault tolerance that we require, the state
information of processor i, i ∈ N , is periodically forwarded to all the nodes in

A Distributed Algorithm of Fault Recovery for Stateful Failover 741

the set Fi ⊆ N such that |Fi| = k and

Fi = {j ∈ S : j = (i + p)(mod n), where − �k/2	 ≤ p ≤
k/2�, p �= 0}. (2)

Following Theorems have been theoretically proved in [8] for the framework. Here
we will simply state the theorems for the sake of completeness as the distributed
algorithm that we propose here utilizes those properties.

Theorem 1. A. Forwarding state information of each process to k other nodes
in the network following (2) ensures k-fault tolerance.
B. A sufficient condition to ensure k-fault tolerance is to forward the state in-
formation by each node to at least k other nodes in the network.

Theorem 2. As long as k ≤ �m−1
m .n	, no live node has to execute more than

m processes including one of its own and an algorithm to attain the same under
the proposed framework can also be found.

Theorem 3. Minimum number of nodes with which any node in a network with
n > 2k (or n = 2k) is required to be connected directly is 2k (or 2k−1) to ensure
that all the eligible nodes corresponding to a process can be updated about its state
information all the time in one hop.

Note that, Fi ⊆ Pi and only the nodes in Fi are updated about the state infor-
mation of process pi by node i in the event of no failure. Lets now consider the
case that a set T of nodes has failed with |T | ≤ k. Then, for each node i ∈ T,
one of the node, say j ∈ Fi − T, starts executing pi apart from running its own
process pj . For each i ∈ T, existence of such a j ∈ Fi − T is guaranteed by
Theorem 1. Node j then starts forwarding the state information of process pi

to the set of nodes in Fi − T − {j} (Theorem 3 assures that node j is directly
connected to all the nodes in Fi − T −{j}) and also continues sending the state
information of its own process pj to the set of nodes in Fj − T.

Given a set of k faulty nodes, Theorem 2 can be applied to find out a fault
tolerant solution which will map each faulty node to a live node eligible to take
up the process of the faulty node. This only applies when all the k nodes have
either failed at the same time or they have failed at different times but fault
tolerance is sought only after k nodes have failed. A more realistic consideration
is to be able to apply fault tolerant solution when faults occur, i.e., being able to
take into account the order in which faults have happened. To be specific, when
node i has failed, the node that will fail next is unknown - it could even be the
node who has taken up the process of node i. Designing a fault tolerant solution
considering this realistic scenario is a challenging problem and in Section 3, we
have provided a distributed solution for that.

3 Automated Fault Recovery

3.1 Distributed Algorithm

In this section, we present a distributed algorithm of automated fault recovery
up to a maximum of k faults, the design of which has been done following a round

742 I. Saha and D. Mukhopadhyay

based model. In the first round when the network starts up, each and every node
i sends an INFO message to all the nodes in the set Fi. It also receives INFO
messages from all the nodes j in the network such that i ∈ Fj . INFO message is
consisted of the tuple (j, Fj) and thus helps the recipient (node i) of the message
to know about the set of nodes eligible to take up the process pj when node j
fails. Every node i stores this (j, Fj) pair on its local memory on receipt of an
INFO message.

Node i then evaluates (i− j) mod n and this value is assigned to the variable
Id diffj. Node i also finds out its position in the set Fj and assigns it to the
variable pref i

j . Nodes that are ahead of i in their position in the set Fj will be
considered before i when the need of executing process pj of j arises. But, still
they may not be in a position to take over process pj because of the fact that
either they are overloaded (i.e., executing m processes) or they have failed, in
which case responsibility goes to node i. Node i assigns values to the variables
Id diffj and pref i

j for each node j from which it receives an INFO message.
pref i

j is assigned either of the values k
2 − Id diffj + 1 or k

2 + (n − Id diffj)
depending on whether Id diffj is less than equal to or greater than n

2 . The
rational behind this assignment is to ensure that eligible nodes in the right of j
are given higher preferences than nodes in the left of j while it comes to take
over pj . If i ∈ Fj is the rightmost node from j then pref i

j = 1, meaning that
node i will be given the chance first to take over the process pj of j.

Preference Finding Algorithm

[Code for node i, 0 ≤ i ≤ n − 1]

node status = NOT OV ERLOADED;
no of processes = 1;
T = φ;
Other Processes = φ;

forall nodes j such that i ∈ Fj do
fault flagj = FALSE;

end

Send INFO message to all the nodes in Fi;

Receive INFO messages from all the nodes j such that i ∈ Fj ;

forall such node j do

Save the tuple (j, Fj) in local memory;
Id diffj = (i − j) mod n;

if Id diffj ≤ n
2 then

pref i
j = k

2 − Id diffj + 1;
else

pref i
j = k

2 + (n − Id diffj);
end

end

Algorithm 3.1. Preference Finding Algorithm for Node i

A Distributed Algorithm of Fault Recovery for Stateful Failover 743

Starting from the second round in each successive rounds, every live node i
sends STATUS message for every process pj (including its own process pi) that
is running on it to all the live nodes in the set Fj . STATUS message for a process
pj is consisted of the tuple (pj , Spj), where Spj denotes the state information of
the corresponding process, which is required for any node in the set Fj to initiate
the process. If in a round, node i does not receive the STATUS message from
a live node j in the network such that i ∈ Fj , then it assumes that node j has
failed. If a node fails, then for each process running on it there can be at most k
nodes to take up the load of this process. To decide which node will take up the
load of which process being executed by this failed node, we adopt the following
scheme.

When node i detects that node j such that i ∈ Fj has failed, then it first
checks whether it is already overloaded (i.e., executing m processes) or not. if
it is not already overloaded, then node i waits up to pref i

j rounds to start the
process pj of the faulty node j by using the state information obtained from
the last STATUS message from j. After initiating process pj of j, node i sends
RESOLV EDj message to all other nodes in the set Fj . But, if node i receives
the RESOLV EDj message within pref i

j rounds, then that means some other
node in Fj has already taken up the process pj and in which case node i does not
require to start pj . In case node i is already overloaded, it then expects to receive
RESOLV EDj message within k + pref i

j rounds. But if it does not receive the
RESOLV EDj message, then in the k + pref i

j -th round it constructs a set A
consisting of those processes pl, (l �= i) such that |Fj − T | ≤ |Fl − T |. If A is not
an empty set (According to Theorem 1, the set A can never be empty, unless
the number of faulty nodes is more than k), then node i finds out a process
pl ∈ A for which |Fl − T | is maximum and then stops this process and starts
executing pj . The process pk that gets stopped by node i will be then taken up
by some other node in Fk and this is possible by following the same algorithm
since nodes in Fk without having received the STATUS message corresponding
to pk detects that process k has failed.

We have two implicit requirements in order for this distributed algorithm to
work. They are as follows. All the nodes in the network are required to be time
synchronized; and the time required for a message to reach from one node to
another should be less than the span of each round. We will now illustrate our
algorithm through an example. Lets consider that network is consisted of 10
nodes and the value of k is equal to 4 and as such it is only required on behalf of
each node to execute at most 2 processes (i.e., m = 2). Following the framework
described in Section 2, the underlying graph modeling the network will be a
regular graph with degree of each node equals to 8 and also H4,10 comes as
a subgraph of this network. Preferences of each node i, can then be found by
following the Preference Finding Algorithm and they are as shown in Table 1.
If we now consider that nodes 9, 2, 8, and 0 will fail in this order, then Table 2
illustrates how the distributed Fault Recovery Algorithm works.

744 I. Saha and D. Mukhopadhyay

Fault Recovery Algorithm

[Code for node i, 0 ≤ i ≤ n − 1]

forall process pk executing in node i do
Send STATUS message to all the nodes in Fk;

end

Receive STATUS message from all the processes pj such that i ∈ Fj ;

if STATUS message is not received from pj such that i ∈ Fj then
fault flagj = TRUE;
roundj = 0;
T = T ∪ {j};

end

forall all the processes pj such that i ∈ Fj do
if node status == NOT OV ERLOADED then

if fault flagj then
roundj = roundj + 1;
if RESOLV EDj is not yet received then

if roundj == pref i
j then

Start process pj ;
Send RESOLV EDj message to all the other nodes in Fj ;
Other Processes = Other Processes ∪ {pj};
fault flagj = FALSE;
no of processes = no of processes + 1;
if no of processes == m then

node status = OV ERLOADED;
end

end
else

fault flagj = FALSE;
end

end
else

if fault flagj then
roundj = roundj + 1;
if RESOLV EDj is not yet received then

if roundj == k + pref i
j then

Find A = {pl ∈ Other Processes : |Fj − T | ≤ |Fl − T |};
if A �= φ then

Stop process pl ∈ A for which |Fl − T | is maximum;
Start process pj ;
Send RESOLV EDj message to all the other nodes in Fj ;
Other Processes = (Other Processes − {pl}) ∪ {pj};
fault flagj = FALSE;

end
end

else
fault flagj = FALSE;

end
end

end
end

Algorithm 3.2. Fault Recovery Algorithm for Node i

A Distributed Algorithm of Fault Recovery for Stateful Failover 745

Table 1. Preference Table

i pref i
i−2 pref i

i−1 pref i
i+1 pref i

i+1

0 pref0
8 = 1 pref0

9 = 2 pref0
1 = 3 pref0

2 = 4

1 pref1
9 = 1 pref1

0 = 2 pref1
2 = 3 pref1

3 = 4

2 pref2
0 = 1 pref2

1 = 2 pref2
3 = 3 pref2

4 = 4

3 pref3
1 = 1 pref3

2 = 2 pref3
4 = 3 pref3

5 = 4

4 pref4
2 = 1 pref4

3 = 2 pref4
5 = 3 pref4

6 = 4

5 pref5
3 = 1 pref5

4 = 2 pref5
6 = 3 pref5

7 = 4

6 pref6
4 = 1 pref6

5 = 2 pref6
7 = 3 pref6

8 = 4

7 pref7
5 = 1 pref7

6 = 2 pref7
8 = 3 pref7

9 = 4

8 pref8
6 = 1 pref8

7 = 2 pref8
9 = 3 pref8

0 = 4

9 pref9
7 = 1 pref9

8 = 2 pref9
0 = 3 pref9

1 = 4

Table 2. Illustration of the Algorithm

Failed Node Id Assigned To No. of Rounds Explanation
9 1 1 pref1

9 = 1

2 4 1 pref4
2 = 1

8 0 1 pref0
8 = 1

0 1 6 pref1
0 = 2 (Stops p9)

8 7 3 pref7
8 = 3

9 7 8 pref7
9 = 4 (Stops p8)

8 6 4 pref6
8 = 4

3.2 Analysis of the Algorithm

Theorem 4. At most 2k rounds are required to resolve a single fault.

Proof. For any process pi corresponding to the node i, we have |Fi| = k. Now,
when it is detected that node i has failed, the Fault Recovery Algorithm in
each round examines a particular node in the set Fi to check whether it is in
the NOT OV ERLOADED condition. That requires k rounds. Even in these
k rounds it may not be possible for any of the nodes in Fi to start process pi

because some of them may have failed and some of them are overloaded. But,
according to Theorem 1, it is not possible that all the nodes in Fi are faulty
and as such there must be one live node eligible to take up the process pi. If it
happens to be the case that the only live node eligible to take up process pi is
having the highest pref value, then k more rounds are still required for this node
to start process pi by forcefully stopping another process that it was executing
previously. This is the worst case that we can think of fault to get resolved as
is also evident from the example that we have explained earlier. Hence, at most
2k rounds are required to resolve a single fault. �
Theorem 5. To resolve a single fault, the maximum number of RESOLV ED
messages that is required to be sent across the network is (k− 2)m + 1, where m
is the maximum number of processes that a node is capable of executing.

746 I. Saha and D. Mukhopadhyay

Proof. Let us first consider that node i is executing m processes, viz, pi (of its
own), and m − 1 other processes pj1 , pj2 , . . . , pjm−1 . This essentially means that
nodes j1, j2, . . . , jm−1 have already failed. Then all these m processes are taken up
by appropriate eligible processors. For each of these m−1 other processes there can
be at most k−2 live nodes and it is required to send the RESOLV ED message to
each of these live nodes. For pi, the number of live nodes can be at most k−1 and
it is also required to send the RESOLV ED message of pi to each of them. Hence,
the upper bound of the number of RESOLV ED messages that are required to be
sent across the network is (k − 2)(m − 1) + k − 1 = (k − 2)m + 1. �

4 Formal Verification of the Distributed Algorithm

To prove the correctness of the proposed algorithm, we use model checker
SPIN [9] to formally verify the desired properties of the algorithm. SPIN is a tool
for model checking distributed systems automatically and verifies properties of
distributed algorithms modeled in the Promela language, by exploring their state
space. Promela is a non-deterministic guarded-command language for modeling
systems of concurrent processes that can interact via shared variables and mes-
sage channels. Given a concurrent system modeled by a Promela program, SPIN
can check for violations of user specified assertions, and temporal properties ex-
pressed by LTL formulas. When a violation of a property is detected, SPIN re-
ports a scenario i.e. an execution sequence where the property is not valid.

We have modeled the processor as a parameterized process processor. The
number of nodes, maximum fault-tolerance, maximum number of loads that can
be taken by a processor are defined at the start of the model, so that they can be
changed very easily to create different instances. The nodes have been defined
as a structure which is as given below.

typedef Node {
byte id;
byte status; /* 0 - Faulty, 1- Not Overloaded, 2 - Overloaded */
byte noofprocesses;
Neighbour neighbours[L]; /* L = 2k */
Process processes[P]; /* P = m + 1 */

}

The neighbors and the processes follow the following data types

typedef Neighbour {
byte id;
byte status; /* 0 - Faulty, 1- Not Overloaded, 2 - Overloaded */

}
typedef Process {

byte procid;
byte nodeid;
byte faultflag; /* 0 - Not Faulty, 1- Faulty, 2 - Unknown */
byte round;

}

A Distributed Algorithm of Fault Recovery for Stateful Failover 747

The neighbors of a node are those nodes to whom the STATUS message of
the node is required to be sent. The processes for a node represents the processes
that the node may have to take at any point of time in future. The procid of a
process is the ID of the node where the process was running for the first time. The
nodeid field of a process indicates on which node the process is currently running.
The faultflag variable is used to keep track of the status of the node where the
process was running last. When a neighbor of a node detects that the node has
become faulty it makes the flag corresponding to that process 1. Whenever it
takes up that process or receives a RESOLV ED message corresponding to that
process, it makes the faultflag 0. This is done to check the liveness property
that will be discussed later. The variable round indicates that how many rounds
have been passed after the node detected that the node where the process was
running is faulty.

To introduce faults in any order, a separate process endround has been in-
troduced. After the end of a round, zero, one or more number of processors are
randomly made faulty by this process until the total number of faulty nodes are
less than equal to k.

In order to prove the correctness, we have considered for verification safety
property, liveness property, and timeliness property. Liveness property has been
expressed as a LTL formula, and other properties are inserted as simple assertions
at proper places in the Promela model. The properties are described below.

Safety 1. Whenever a node becomes faulty, at least one of its neighboring nodes
is non-faulty. This property has been checked as an assertion in the endround
process after making a node faulty.
assert(node[node[j].neighbours[0].id].status != 0 ||
node[node[j].neighbours[1].id].status != 0);

Safety 2. No node has to take more than M processes at any point of time.
In the process corresponding to a processor, when a node take up a new
process we increase its noofprocesses field by 1 and this is followed by the
following assertion
assert(node[nodeid].noofprocesses <= M),
where the meaning of M has been discussed earlier.

Liveness. Whenever a node becomes faulty, its process is eventually taken up
by some other live nodes.
The property has been expressed by the following LTL formula
[](s− ><> t),
s ∼= node[0].processes[1].faultflag==1, t ∼= node[0].processes[1].faultflag==0

Timeliness. Every fault is recovered in no more than 2K rounds.
When a processor detects that the node where one of the processes that
it is supposed to take was running is faulty, it starts counting the round.
When this round is equal to its preference value for that process, then if
that process has not yet been taken up by some other process, it takes up
that process. So, in any case, the value of the round should not be more than
2K according to Theorem 3. We check this by the following assertion
assert(node[nodeid].processes[j].round <= 2 ∗ K)

748 I. Saha and D. Mukhopadhyay

We have been able to verify our model for N=8, K=3 and M=2 and all lower
instances. Due to the state-space explosion problem inherent in model checker
SPIN, we could not verity our algorithm for more than 8 processors.

5 Conclusion

In this paper we have presented a distributed algorithm of automated fault
recovery for stateful failover in a network. In whatever way the fault may arise
the algorithm can handle that fault and in at most 2k rounds the processes of
the faulty processor are taken up by a(some) eligible live node(nodes) in the
network. The message complexity of our algorithm is linear with the number
of nodes. The correctness of the algorithm has been proved by modeling the
algorithm in SPIN and verifying its desired properties.

References

1. F. Harary, “The Maximum Connectivity of a Graph”, Proc. Nat. Acad. Sci., U.S.A.,
48, pages 1142-1146, 1962.

2. J. G. Kuhl and S. M. Reddy, “Distributed Fault Tolerance for Large Multiproces-
sor Systems”, Computer Architecture News, 8, page 23-30, 7th Intl. Symposium on
Computer Architectures, 1980.

3. C.L. Yang and G. M. Massona, “Distributed Algorithm for Fault Diagnosis in Sys-
tems with Soft Failures”, IEEE Transaction on Computers, Vol. 37, No. 11, Novem-
ber 1988.

4. M. A. Sridhar, C. S. Raghavendra, “Fault-Tolerant Network Based on De Bruijn
Graph”, IEEE Transaction On Computers, Vol. 40, No. 10, October 1991.

5. K.Mukhopadhyay, B.P. Sinha, “Hamiltonian Graphs with Minimum Number of
Edges For Fault-Tolerant Topologies”, Information Processing Letters, 44, pages
95-99, November, 1992.

6. T. Sung, T. HO, C. Chang AND L. Hsu, “Optimal k-Fault-Tolerant Networks for
Token Rings”, Journal of Information Science and Engineering, 16, pages 381-390,
2000.

7. C. Hung, L. Hsu, T. Sung, “On the construction of combined k-fault-tolerant Hamil-
tonian graphs”, Networks, 37(3), pages 165-170, 2001.

8. I. Saha, D. Mukhopadhyay, S. Banerjee, “Designing Reliable Architecture for State-
ful Fault Tolerance, In Proceedings of Seventh International Conference on Paral-
lel and Distributed Computing, Applications and Technologies (PDCAT’06), pages
545-551, 2006.

9. G. J. Holtzman. The SPIN Model Checker, Primer and Reference Manual, Addison-
Wesley, 2003.

6 Appendix

6.1 Harary Graph

An undirected graph G can be represented as (N, E), where N denotes a set
of nodes and E denotes a set of edges which can be defined as an unordered

A Distributed Algorithm of Fault Recovery for Stateful Failover 749

pair of distinct nodes. A node cut of G is a subset N ′ of N such that G − N ′ is
disconnected, where G−N ′ is obtained by removing all the nodes in N ′ and also
by removing all the edges incident on the nodes in N ′. A k-node cut is a node cut
of cardinality k. The minimum cardinality of a node cut is called connectivity
χ(G) of G and the graph G is called k-connected if χ(G) ≥ k, i.e., there exists
no node cut of size k− 1. Its a known result that the least number of edges that
a k-connected graph on n(n > k) vertices can have is greater or equal to nk

2 .
Harary graph [1] Hk,n, which we will be describing next, is a k-connected graph
on n vertices with exactly nk

2 edges.
Structure of a Harary graph Hk,n is defined for three different cases.

Case 1: k even. Then Hk,n = (N, E) is defined as follows. The nodes in N are
labeled as 0, 1, 2, . . . , n − 1 and

E = ∪n−1
i=0 {(i, j) : j = (i + p)(mod n), where − k/2 ≤ p ≤ k/2 and p �= 0}. (3)

(i, j) and (j, i) both denotes the same edge, since we are talking about undirected
graphs.
Case 2: k odd, n even.Hk,n is then constructed by first drawing Hk−1,n fol-
lowing case 1 and then by adding edges joining node i to node (i + n

2)(mod n)
for 1 ≤ i ≤ n

2 .
Case 3: k odd, n odd.Hk,n is then constructed by first drawing Hk−1,n and
then joining node 0 to nodes n−1

2 and n+1
2 and node i to node (i+ n+1

2)(mod n)
for 1 ≤ i ≤ n−1

2 .

0

1

2

3

4

5

6

7

8

9

Fig. 1. Harary Graph H4,10

The fact that the graph Hk,n is k-connected with minimum number of edges
is known from Harary, 1962.

Path Embedding on Folded Hypercubes

Sun-Yuan Hsieh

Department of Computer Science and Information Engineering,
National Cheng Kung University,

No. 1, University Road, Tainan 70101, Taiwan
hsiehsy@mail.ncku.edu.tw

Abstract. We analyze some edge-fault-tolerant properties of the folded
hypercube, which is a variant of the hypercube obtained by adding
an edge to every pair of nodes with complementary address. We show
that an n-dimensional folded hypercube is (n − 2)-edge-fault-tolerant
Hamiltonian-connected when n(≥ 2) is even, (n − 1)-edge-fault-tolerant
strongly Hamiltonian-laceable when n(≥ 1) is odd, and (n − 2)-edge-
fault-tolerant hyper Hamiltonian-laceable when n(≥ 3) is odd.

1 Introduction

Because of the hypercube’s importance, many variants of it have been proposed
(for example, see [3,6,7,16]). One variant that has been the focus of a great deal
of research is the folded hypercube, an extension of the hypercube constructed
by adding an edge to every pair of nodes that are the farthest apart, i.e., two
nodes with complementary addresses. It has been shown that, compared to a
regular hypercube, the folded hypercube can improve the system’s performance
in many measurements, such as diameter, mean inter-node distance, and traffic
density [3,20].

A graph G = (V, E) is a pair of two sets composed of a node set V and an
edge set E, where V is a finite set and E is a subset of {(u, v)| (u, v) is an
unordered pair of V }. We also use V (G) and E(G) to denote the node set and
edge set of G, respectively. A path, P [v0, vk] = 〈v0, v1, . . . , vk〉, is a sequence of
distinct nodes in which any two consecutive nodes are adjacent. We call v0 and
vk the end-nodes of the path. A path with end-nodes u and v is said to be a
u-v path. A path may contain a subpath, denoted as 〈v0, v1, . . . , vi, P [vi, vj], vj ,
vj+1, . . . , vk〉, where P [vi, vj] = 〈vi, vi+1, . . . , vj−1, vj〉. A cycle is a path with
v0 = vk and k ≥ 3. When the Hamiltonicity of a graph G is being investigated, it
is necessary to determine whether G is Hamiltonian or Hamiltonian-connected.
A cycle (respectively, path) in G is called a Hamiltonian cycle (respectively,
Hamiltonian path) if it contains every node of G exactly once. G is said to be
Hamiltonian if it contains a Hamiltonian cycle, and Hamiltonian-connected if
there exists a Hamiltonian path between every two nodes of G.

A graph G = (V0

⋃
V1, E) is bipartite if V0 ∩ V1 = ∅ and E ⊆ {(x, y)| x ∈

V0 and y ∈ V1}. We say V0 and V1 are partite sets of G, and V0

⋃
V1 a bipar-

tition. Two well-known interconnection networks, hypercubes [6,14] and star

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 750–759, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Path Embedding on Folded Hypercubes 751

graphs [1,12], are both bipartite. However, because a bipartite graph is not
Hamiltonian-connected, except for K1 or K2, Simmons [17] introduced the con-
cept of Hamiltonian-laceability for such graphs. A Hamiltonian bipartite graph
G = (V0

⋃
V1, E) is Hamiltonian-laceable if there is a Hamiltonian path between

any two nodes x and y, where x ∈ V0 and y ∈ V1. Hsieh et al. [11] extended this
concept and proposed the concept of strong Hamiltonian-laceability. A graph
G = (V0

⋃
V1, E) is strongly Hamiltonian-laceable if there is a simple path of

length |V0| + |V1| − 2 between any two nodes of the same partite set. Lewinter
et al. [15] introduced another concept, called hyper Hamiltonian-laceability. A
bipartite graph G = (V0

⋃
V1, E) is hyper Hamiltonian-laceable if for any node

f ∈ Vi, i ∈ {0, 1}, there is a Hamiltonian path of G − f between any two nodes
of V1−i.1

The edge-fault-tolerant Hamiltonicity proposed by Hsieh et al. [10] measures
Hamiltonicity in interconnection networks with faulty edges. A Hamiltonian
graph G is k-edge-fault-tolerant Hamiltonian if G − F remains Hamiltonian for
every F ⊂ E(G) with |F | ≤ k. A Hamiltonian-laceable graph G is k-edge-
fault-tolerant Hamiltonian-laceable if G − F remains Hamiltonian-laceable for
every F ⊂ E(G) with |F | ≤ k. A strongly Hamiltonian-laceable graph G is
k-edge-fault-tolerant strongly Hamiltonian-laceable if G − F remains strongly
Hamiltonian-laceable for every F ⊂ E(G) with |F | ≤ k. A hyper Hamiltonian-
laceable graph G is k-edge-fault-tolerant hyper Hamiltonian-laceable if G − F
remains hyper Hamiltonian-laceable for every F ⊂ E(G) with |F | ≤ k.

Latifi et al. [13] showed that an n-dimensional hypercube is (n−2)-edge-fault-
tolerant Hamiltonian. Tsai et al. [18] further showed that an n-dimensional hy-
percube is (n − 2)-edge-fault-tolerant strongly Hamiltonian-laceable, and
(n − 3)-edge-fault-tolerant hyper Hamiltonian-laceable. Wang [20] showed that
the n-dimensional folded hypercube is (n − 1)-edge-fault-tolerant Hamiltonian.
It is known that the n-dimensional folded hypercube is bipartite (non-bipartite)
when n is odd (even) [23]. In this paper, we show that an n-dimensional folded
hypercube is (n − 2)-edge-fault-tolerant Hamiltonian-connected when n(≥ 2) is
even, (n − 1)-edge-fault-tolerant strongly Hamiltonian-laceable when n(≥ 1) is
odd, and (n − 2)-edge-fault-tolerant hyper Hamiltonian-laceable when n(≥ 3)
is odd.

2 Preliminaries

When using undirected graphs to model interconnection networks, our funda-
mental graph terminologies follow those in [21]. A subgraph of G = (V, E) is
a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. Given a set V ′ ⊆ V , the
subgraph of G = (V, E) induced by V ′ is the graph G′ = (V ′, E′), where
E′ = {(u, v) ∈ E| u, v ∈ V ′}. In a graph G, the neighbors of a node v are
the nodes adjacent to it in G, and the degree of v is the number of edges incident
1 Let S be a set of edges and/or nodes of a graph G. Throughout this paper, the

notation G − S represents the resulting graph obtained by deleting those elements
in S from G.

752 S.-Y. Hsieh

to it. A graph is said to be regular if all nodes have a common degree. Two
graphs G1 and G2 are isomorphic if there is a one-to-one function π from V (G1)
onto V (G2) such that (u, v) ∈ E(G1) iff (φ(u), φ(v)) ∈ E(G2).

An n-dimensional hypercube (n-cube for short) can be represented as an undi-
rected graph Qn = (V, E), where V consists of 2n nodes that are labelled as
binary numbers of length n from 00 . . . 0︸ ︷︷ ︸

n

to 11 . . .1︸ ︷︷ ︸
n

, and E is the set of edges

that connects two nodes iff their labels differ by exactly one bit. Note that Qn

is regular because the degree of each node is equal to n, and |E| = n2n−1.
An edge e = (u, v) ∈ E is said to be of dimension i if u = bnbn−1 . . . bi . . . b1

and v = bnbn−1 . . . bi . . . b1, where bj ∈ {0, 1} for j = 1, 2, . . . , n, and bi is the
one’s complement of bi, i.e., bi = 1 − bi. Note that there are 2n−1 edges in each
dimension.

Let x = xnxn−1 . . . x1 be an n-bit binary string. For 1 ≤ k ≤ n, we use
xk to denote the binary strings ynyn−1 . . . y1 such that yk = 1 − xk = xk and
xi = yi for all i �= k. The Hamming weight hw(x) of x is the number of i’s that
make xi = 1. Let x = xnxn−1 . . . x1 and y = ynyn−1 . . . y1 be two n-bit binary
strings. The Hamming distance h(x, y) between two nodes x and y is the number
of different bits in the corresponding strings of both nodes. Note that Qn is a
bipartite graph with a bipartition {x| hw(x) is odd} and {x| hw(x) is even}.
Let dG(x, y) be the distance of the shortest path between two nodes x and y in
graph G. It is known that dQn(x, y) = h(x, y).

An n-dimensional folded hypercube (folded n-cube for short) FQn is a regular
n-dimensional hypercube augmented by adding more edges between its nodes.
More specifically, a folded n-cube is obtained by adding an edge between two
nodes whose addresses are complementary, i.e., a node whose address is b =
bnbn−1 . . . b1 now has one more edge to node b = bnbn−1 . . . b1, in addition to
its original n edges. Hence, FQn has 2n−1 more edges than Qn. We call these
augmented edges skips, to distinguish them from regular edges.

For convenience, FQn can be represented by ∗ ∗ . . . ∗ ∗︸ ︷︷ ︸
n

= ∗n, where ∗ ∈

{0, 1} means “don’t care”. An i-partition on FQn = ∗n partitions FQn along
dimension i for some i ∈ {1, 2, . . . , n}, into two subcubes, Q0

n−1 = ∗n−i0∗i−1 and
Q1

n−1 = ∗n−i1∗i−1, where Q0
n−1 and Q1

n−1 are the subgraphs of FQn induced
by {xn . . . xi . . . x1 ∈ V (FQn)| xi = 0} and {xn . . . xi . . . x1 ∈ V (FQn)| xi = 1}),
respectively. Note that each Qj

n−1, where j ∈ {0, 1}, is isomorphic to an (n− 1)-
cube. An i-partition of an n-cube Qn can be defined similarly.

The following lemmas are useful in our method.

Lemma 1. [8] Let x and y be two distinct nodes in Qn; and let h(x, y) = d.
There are x-y paths in Qn whose lengths are d, d+2, d+4, ..., c, where c = 2n−1
if d is odd, and c = 2n − 2 if d is even.

Lemma 2. [18] The following two statements hold:

1. Qn is (n − 2)-edge-fault-tolerant strongly Hamiltonian-laceable.
2. Qn is (n − 3)-edge-fault-tolerant hyper Hamiltonian-laceable.

Path Embedding on Folded Hypercubes 753

It is well known that Qn (FQn for odd n) is bipartite. Thus, the following
proposition is used in each proof presented in this paper.

Proposition 1. For two distinct nodes x and y in Qn (or FQn for odd n),
h(x, y) is odd (even) iff x and y are in different partite sets (the same partite
set).2

Two paths are said to be node-disjoint if they have no common node.

Lemma 3. [19] Let V0 and V1 be partite sets of a fault-free Qn, where n ≥ 2.
Let a and b be two distinct nodes of V0, and a′ and b′ be two distinct nodes of V1.
Then, there exist two node-disjoint paths P [a, a′] and P [b, b′] spanning V (Qn),
i.e., V (P [a, a′]) ∪ V (P [b, b′]) = V (Qn).

3 Three Edge-Fault-Tolerant Properties

Let Q0
n−1(= ∗n−i0∗i−1) and Q1

n−1 = (∗n−i1∗i−1) be two subcubes after execut-
ing an i-partition on FQn. We define the set of crossing edges as EC = {(u, v) ∈
E(FQn)| u ∈ V (Q0

n−1), v ∈ V (Q1
n−1), and h(u, v) �= n}, and the set of skips

as ES = {(u, v) ∈ E(FQn)| u ∈ V (Q0
n−1), v ∈ V (Q1

n−1), and h(u, v) = n}.
Moreover, let F be the set of faulty edges of FQn; F0 = F ∩ E(Q0

n−1); F1 =
F ∩E(Q1

n−1); FC = F ∩EC ; and let FS = F ∩ES . For a node u = unun−1 . . . u1

in FQn, recall that u = un . . . u1.

3.1 Edge-Fault-Tolerant Hamiltonian-Connectivity

In this subsection, we demonstrate the edge-fault-tolerant Hamiltonian-
connectivity of the folded hypercube.

Lemma 4. FQn is (n − 2)-edge-fault-tolerant Hamiltonian-connected when
n(≥ 2) is an even integer.

Proof. Since FQ2 is a complete graph comprised of four nodes, it is clearly
Hamiltonian-connected. We now consider FQn, where n ≥ 4 is an even integer.
In the following, we attempt to construct a fault-free Hamiltonian path between
two arbitrary distinct nodes x and y when |F | = n−2. We consider the following
two cases.

Case 1. h(x, y) is odd. As FQn is constructed from Qn by adding skips, FQn−
F contains a subgraph G that is isomorphic to Qn with at most n− 2 faulty
edges. Since h(x, y) is odd, x and y are in different partite sets in H . By
Lemma 2(1), G contains a fault-free Hamiltonian path between x and y, and
so as FQn − F .

Case 2. h(x, y) is even. We have the following scenarios.

2 Hereafter, the terms “h(x, y) is odd” and “x and y are in different partite sets” are
used interchangeably; and “h(x, y) is even” and “x and y are in the same partite
set” are used similarly.

754 S.-Y. Hsieh

Case 2.1. There is at least one faulty skip, i.e., FS �= ∅. We can execute
an i-partition on FQn for some i ∈ {1, 2, . . . , n} such that x and y
are in different subcubes. Without loss of generality, we assume that
x ∈ V (Q0

n−1) and y ∈ V (Q1
n−1). Since FS �= ∅, we have |FC ∪ FS | ≥ 1.

Recall that both FC and FS are two set of edges located between Q0
n−1

and Q1
n−1 after executing an i-partition. Therefore, the number of faulty

edges remaining in each of {Q0
n−1, Q1

n−1} is at most (n− 2)− 1 = n− 3,
i.e., |F0| ≤ n − 3, and |F1| ≤ n − 3. Let u(�= x) be a node in Q0

n−1

such that h(x, u) is odd, u �= y, and (u, u) is fault-free. (If such a node
u does not exist, then |FS | ≥ 2n−2 − 1 > n − 2 for n ≥ 4, which is a
contradiction.) Clearly, h(x, u) = n − h(x, u) is odd because n is even,
i.e., x and u are in different partite sets in the subgraph Qn according to
Proposition 1.3 Moreover, since x and y are in the same partite set in Qn

because of even h(x, y), y and u are in different partite sets in Qn. Since
|Fj | ≤ n−3 for j = 0, 1, by Lemma 2(1), Q0

n−1−F0 (Q1
n−1−F1) contains

a fault-free Hamiltonian path P0[x, u] (P1[u, y]). A desired Hamiltonian
x-y path can be constructed as P0[x, u]⊕(u, u)⊕P1[u, y], where ⊕ denotes
a path-concatenation operation.4

Case 2.2. There are no faulty skips, i.e., FS = ∅. In this case, no faulty
edges are skips. Let e be an arbitrary faulty edge whose dimension is i,
where i ∈ {1, 2, . . . , n}. We can execute an i-partition on FQn such that
|FC ∪FS | = |FC | ≥ 1. Using an argument similar to that in Case 2.1, we
have |F0| ≤ n − 3 and |F1| ≤ n − 3.
Case 2.2.1. x and y are in the same subcube. Without loss of gener-

ality, we assume that x, y ∈ V (Q0
n−1).

Case 2.2.1.1. |Fj | = n − 3 for some j ∈ {0, 1}. Without loss of
generality, we assume that |F0| = n − 3. Then, |FC | = 1 and
|F1| = 0. We first select an arbitrary node w in Q0

n−1 such that w
is in a different partite set to the partite set that {x, y} belongs
to. We then select one arbitrary faulty edge (u, v) ∈ F0. By
Lemma 2(2), Q0

n−1 − w − (F0 − (u, v)) contains a Hamiltonian
path P0[x, y]. We then have the following scenarios.
Case 2.2.1.1.1. P0[x, y] contains (u, v). Path P0[x, y] can be

represented by P0[x, u]⊕ (u, v)⊕P0[v, y]. Consider four nodes
u, v, w, and wi. Since w �= u and w �= v, we have |{u, v} ∩
{w, wi}| ≤ 1.
Case 2.2.1.1.1.1. |{u, v} ∩ {w, wi}| = 0. Clearly, u and v

belong to different partite sets in Q1
n−1. Moreover, since

h(x, wi) is even and h(x, w) = n− h(x, w) is odd, wi and w
belong to different partite sets in Q1

n−1; Hence, there are two
nodes, one derived from {u, v} and the other from {wi, w},

3 For convenience, we adopt the notation Qn to represent a subgraph in FQn that is
isomorphic to an n-dimensional hypercube.

4 Throughout the paper, we use the notation “⊕” to represent a path-concatenation
operation in order to distinguish it from an ordinary addition “+” operation.

Path Embedding on Folded Hypercubes 755

which come from different partite sets. Without loss of gen-
erality, we assume that u and w are in different partite sets,
and v and wi are in different partite sets. By Lemma 3,
Q1

n−1 contains two node-disjoint paths P1[u, w] and P1[v, wi]
spanning V (Q1

n−1). A desired Hamiltonian x-y path can be
constructed as P0[x, u]⊕(u, u)⊕P1[u, w]⊕(w, w)⊕(w, wi)⊕
P1[wi, v] ⊕ (v, v) ⊕ P0[v, y].

Case 2.2.1.1.1.2. |{u, v} ∩ {w, wi}| = 1. Without loss of
generality, we assume that v = wi. Recall that u and v
are in different partite sets, and wi and w are in different
partite sets. Therefore, u and w are in the same partite set
in Q1

n−1. By Lemma 2(2), Q1
n−1 − w contains a fault-free

Hamiltonian path P1[u, w]. A desired Hamiltonian x-y path
can be constructed as P0[x, u]⊕ (u, u)⊕ P1[u, w]⊕ (w, w)⊕
(w, v) ⊕ (v, v) ⊕ P0[v, y].

Case 2.2.1.1.2. P0[x, w] does not contain (u, v). In this case,
we can select an arbitrary edge in place of (u, v). A desired
Hamiltonian x-y path can then be constructed using a method
similar to that in Case 2.2.1.1.1.

Case 2.2.1.2. |F0| ≤ n− 4 and |F1| ≤ n− 4. We first select a node
w ∈ V (Q0

n−1) such that (w, wi) is fault-free and w is in a different
partite set to the partite set that x and y belong to. (If such a
w does not exist, then |Fc| > 2n−2 > n − 2 for n ≥ 4, which
is a contradiction.) By Lemma 2(2), Q0

n−1 − w − F0 contains a
Hamiltonian path P0[x, y]. Let v be a unique node in P0[x, y]
such that v = wi, and let u ∈ P0[x, y] be a unique neighbor
of v such that P0[x, y] = P0[x, u] ⊕ (u, v) ⊕ P0[v, y]. Using an
argument similar to that applied in Case 2.2.1.1.1.1, we know
that u and w are in different partite sets. Again, by Lemma 2(2),
Q1

n−1 − w − F0 contains a fault-free Hamiltonian path P1[u, w].
Therefore, a desired Hamiltonian x-y path can be constructed as
P0[x, u] ⊕ (u, u) ⊕ P1[u, w] ⊕ (w, w) ⊕ (w, v) ⊕ (v, v) ⊕ P0[v, y].

Case 2.2.2. x and y are in different subcubes. Without loss of general-
ity, we assume that x ∈ Q0

n−1 and y ∈ Q1
n−1. Let w(�= x) be a node

in Q0
n−1 such that h(x, w) is odd. Note that h(x, w) = n − h(x, w)

is also odd. Moreover, since x and y are in the same partite set,
w and y are in different partite sets (restricted to Qn). Since both
|F0| and |F1| are at most n − 3, Q0

n−1 − F0 (Q1
n−1 − F1) contains

a fault-free Hamiltonian path P0[x, w] (P1[w, y]) by Lemma 2(1).
Therefore, a desired Hamiltonian x-y path can be constructed as
P0[x, w] ⊕ (w, w) ⊕ P1[w, y].

By combining the above cases, we complete the proof.

Due to the space limitation, we omit the proof for FQn being (n−1)-edge-fault-
tolerant strongly Hamiltonian-laceable when n(≥ 1) is odd.

756 S.-Y. Hsieh

3.2 Edge-Fault-Tolerant Hyper Hamiltonian-Laceability

In this subsection, we demonstrate the edge-fault-tolerant hyper Hamiltonian-
laceability of the folded hypercube.

Lemma 5. FQn is (n−2) edge-fault-tolerant hyper Hamiltonian-laceable, where
n(≥ 3) is an odd integer.

Proof. Suppose that FQn = (V0∪V1, E), where n(≥ 3) is odd. Let f be any node
in Vi, i ∈ {0, 1}. In the following, for two arbitrary distinct nodes x, y ∈ V1−i, we
attempt to construct a fault-free Hamiltonian x-y path in FQn − F − f , where
|F | = n − 2. We consider the following two cases.

Case 1. FS �= ∅. Since FQn − F contains a subgraph isomorphic to Qn with
at most n − 3 faulty edges, the result holds by Lemma 2(2).

Case 2. FS = ∅. In this case, all faulty edges are not skips. We can execute an i-
partition on FQn, for some i ∈ {1, 2, . . . , n}, such that |FC ∪FS | = |FC | ≥ 1,
|F0| ≤ n − 3, and |F1| ≤ n − 3. There are the following scenarios.
Case 2.1. |FC | = 1 and |Fj | = n − 3 for some j ∈ {0, 1}. Without loss of

generality, we assume that |F0| = n − 3. Then, |F1| = 0.
Case 2.1.1. x, y ∈ V (Q0

n−1) and f ∈ V (Q1
n−1).

By Lemma 2(1), Q0
n−1 − F0 contains a fault-free Hamiltonian cycle

C0 = 〈u0, u1, . . . u2n−1−1, u0〉 of length 2n−1, where x = u0 and y =
uk for some k ∈ {1, . . . , 2n−1−1}. As h(x, y) is even, k ≥ 2. Let x′ =
uk+1 (mod 2n−1) and y′ = u1. Clearly, Q0

n−1 − F0 contains two fault-
free paths, P0[x, x′] = 〈u0, u2n−1−1, u2n−1−2, . . . , uk+1 (mod 2n−1)〉
and P0[y′, y] = 〈u1, u2, . . . , uk〉, which spans V (Q0

n−1). Since x and y
are in the same partite set and x′ and y are in different partite sets,
x and x′ are in different partite sets, i.e., h(x, x′) is odd. Similarly,
y and y′ are in different partite sets, i.e., h(y, y′) is odd. Moreover,
h(x, x′) = n− h(x, x′) and h(y, y′) = n− h(y, y′) are both even, i.e.,
x, y, x′, and y′ are in the same partite set and thus h(x′, y′) is even.
Note that f and {x′, y′} are in different partite sets. Since Q1

n−1 is
fault-free, by Lemma 2(2), Q1

n−1 − f contains a fault-free Hamil-
tonian path P1[x′, y′] of length 2n−1 − 2. A desired x-y path can be
constructed as P0[x, x′]⊕(x′, x′)⊕P1[x′, y′]⊕(y′, y′)⊕P0[y′, y], which
has length 2n−1 + 2n−1 − 2 = 2n − 2.

Case 2.1.2. f, x, y ∈ V (Q0
n−1). Let (u, v) be an arbitrary faulty edge

in F0. Note that (u, u) and (v, v) are both fault-free. By Lemma 2(2),
Q0

n−1 − f − (F0 − (u, v)) contains a path P0[x, y] of length 2n−1 − 2.
Case 2.1.2.1. P0[x, y] contains (u, v). Thus P0[x, y] = P0[x, u] ⊕

(u, v)⊕P0[v, y]. By Lemma 1, Q1
n−1 contains a fault-free Hamil-

tonian path P1[u, v] of length 2n−1 − 1. A desired x-y path can
be constructed as P0[x, u] ⊕ (u, u) ⊕ P1[u, v] ⊕ (v, v) ⊕ P0[v, y],
which has length (2n−1 − 2) − 1 + 2 + (2n−1 − 1) = 2n − 2.

Case 2.1.2.2. P0[x, y] does not contain (u, v). In this case, we select
an arbitrary edge in P0[x, y] instead of (u, v) in Case 2.1.2.1. The
construction of a desired path is similar to that of Case 2.1.2.1.

Path Embedding on Folded Hypercubes 757

Case 2.1.3. f, x ∈ V (Q0
n−1) and y ∈ V (Q1

n−1). By Lemma 2(1),
Q0

n−1 − F0 contains a fault-free Hamiltonian path P0[x, f]. Let u ∈
P0[x, f] be the neighbor of f . Thus P0[x, f] = P0[x, u] ⊕ (u, f).
Note that u and x are in the same partite set, and u and y are
in different partite sets. By Lemma 1, Q1

n−1 contains a fault-free
Hamiltonian path P1[u, y]. A desired x-y path can be constructed as
P0[x, u] ⊕ (u, u) ⊕ P1[u, y], which has length 2n − 2.

Case 2.1.4. x ∈ V (Q0
n−1) and f, y ∈ V (Q1

n−1). Let w(�= x) be the node
in Q0

n−1 such that h(x, w) is odd and w �∈ {f, y}. Since h(w, x) =
n − h(x, w) is even and h(x, y) is even, y and w are in the same
partite set. Since |F0| = n − 3, by Lemma 2(1), Q0

n−1 − F0 contains
a fault-free Hamiltonian path P0[x, w]. Moreover, by Lemma 2(2),
Q1

n−1 − f − F1 contains a fault-free Hamiltonian path P1[w, y]. A
desired x-y path can be constructed as P0[x, w] ⊕ (w, w) ⊕ P1[w, y],
which has length 2n − 2.

Case 2.1.5. f, x, y ∈ V (Q1
n−1). By Lemma 2(2), Q1

n−1 − f contains a
fault-free Hamiltonian path P1[x, y]. Let (u, v) be an edge in P1[x, y].
Thus P1[x, y] = P1[x, u]⊕(u, v)⊕P1[v, y]. By Lemma 2(1), Q0

n−1−F0

contains a fault-free Hamiltonian path P0[u, v]. A desired x-y path
can be constructed as P1[x, u] ⊕ (u, u) ⊕ P0[u, v] ⊕ (v, v) ⊕ P1[v, y],
which has length 2n − 2.

Case 2.1.6. f ∈ V (Q0
n−1) and x, y ∈ V (Q1

n−1). Let u �= f be a node in
Q0

n−1 whose partite set is the same with the partite set to which x
and y belong. Therefore, u and f are in different partite sets. Since
|F0| = n − 3, by Lemma 2(1), Q0

n−1 − F0 contains a Hamiltonian
path P0[u, f]. Let v ∈ P0[u, f] be the neighbor of f . Thus P0[u, f] =
P0[u, v] ⊕ (v, f). Clearly, u and v are in the same partite set, and u
and v are in the same partite set. Further, the partite set of {u, v} is
different from the partite set to which {x, y} belongs. By Lemma 3,
Q1

n−1 contains two node-disjoint paths P1[x, u] and P1[v, y] spanning
V (Q1

n−1). A desired x-y path can be constructed as P1[x, u]⊕(u, u)⊕
P0[u, v] ⊕ (v, v) ⊕ P1[v, y], which has length 2n − 2.

Case 2.2. |FC | > 1, |F0| ≤ n − 4, and |F1| ≤ n − 4.
Case 2.2.1. f, x, y ∈ V (Qj

n−1) for some j ∈ {0, 1}. Without loss of gen-
erality, we assume that f, x, y ∈ V (Q0

n−1). By Lemma 2(2), Q0
n−1 −

f − F0 contains a fault-free Hamiltonian path P0[x, y]. Let (u, v) be
an arbitrary edge in P0[x, y] and thus P0[x, y] = P0[x, u] ⊕ (u, v) ⊕
P0[v, y]. By Lemma 2(1), Q1

n−1 contains a fault-free Hamiltonian
path P1[u, v]. A desired x-y path can be constructed as P0[x, u] ⊕
(u, u) ⊕ P1[u, v] ⊕ (v, v) ⊕ P0[v, y], which has length 2n − 2.

Case 2.2.2. x, y ∈ V (Qj
n−1) and f ∈ V (Q1−j

n−1) for some j ∈ {0, 1}.
The proof is similar to that of Case 2.1.1 and thus we omit here.

Case 2.2.3. x, f ∈ V (Qj
n−1) and y ∈ V (Q1−j

n−1) for some j ∈ {0, 1}.
Without loss of generality, we assume that x, f ∈ V (Q0

n−1) and y ∈
V (Q1

n−1). Let w(�∈ {f, x}) be the node in Q0
n−1 such that h(x, w)

is even. Since h(x, w) = n − h(x, w) is odd, w �= y because h(x, y)

758 S.-Y. Hsieh

is even. This implies that w and y are in different partite set. By
Lemma 2(2), Q0

n−1 − f − F0 contains a fault-free Hamiltonian path
P0[x, w]. Moreover, by Lemma 2(1), Q1

n−1 − F1 contains a fault-free
Hamiltonian path P1[w, y]. A desired x-y path can be constructed as
P0[x, w] ⊕ (w, w) ⊕ P1[w, y], which has length 2n − 2.

By combining the above cases, we complete the proof.

We now present our main result.

Theorem 1. There are three edge-fault-tolerant properties for FQn as follows:

P1. FQn is (n − 2)-edge-fault-tolerant Hamiltonian-connected, where n(≥ 2) is
an even integer.

P2. FQn is (n − 1)-edge-fault-tolerant strongly Hamiltonian-laceable, where
n(≥ 1) is an odd integer.

P3. FQn is (n− 2)-edge-fault-tolerant hyper Hamiltonian-laceable, when n(≥ 3)
is an odd integer.

4 Concluding Remarks

The path (linear array) is the most fundamental network for parallel and dis-
tributed computation, which is suitable for designing simple algorithms with
low communication costs. Numerous efficient algorithms designed on the path
for solving various algebraic problems and graph problems can be found in [2,14].
The path can also be used as control/data flow structure for distributed com-
putation in arbitrary networks. Another application for the longest path to a
practical problem was addressed in the on-line optimization of a complex flex-
ible manufacturing system [4]. These applications motivate the embedding of
paths in networks. Our result implies that those algorithms designed for paths
can also be executed well on the folded hypercube with faulty edges.

References

1. S. B. Akers, D. Harel, and B. Krishnamurthy, The star graph: an attractive alterna-
tive to the n-cube, Proceedings of International Conference on Parallel Processing,
St. Charles, IL, 1987, pp. 555–556.

2. S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall, NJ, 1997.
3. Ahmed El-Amawy and Shahram Latifi, Properties and performance of folded hy-

percubes, IEEE Transactions on Parallel and Distributed Systems 2(1991), 31–42.
4. N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexi-

ble manufacturing systems, Ph.D. Thesis, University of Technology, Berlin, Ger-
many, 1995 (also available from 〈 ftp://ftp.zib.de/pub/zib-publications/reports/
TR-96-03.ps〉).

5. J. C. Bermond, Ed., “Interconnection networks,” a special issue of Discrete Applied
Mathematics, 1992, Vol. 37–38.

6. L. Bhuyan and D. P. Agrawal, Generalized hypercubes and hyperbus structure for
a computer network, IEEE Transactions on Computers c33(1984), 323–333.

Path Embedding on Folded Hypercubes 759

7. A. H. Esfahanian, L. M. Ni, and B. E. Sagan, The twisted n-cube with application
to multiprocessing, IEEE Transactions on Computers 40(1991), 88–93.

8. J. S. Fu and G. H. Chen, Hamiltonicity of the hierarchical cubic network, Theory
of Computing Systems 35(2002), 59–79.

9. D. F. Hsu, “Interconnection networks and algorithms,” a special issue of Networks,
1993, Vol. 23, No. 4.

10. S. Y. Hsieh, G. H. Chen, and C. W. Ho, Fault-free hamiltonian cycles in faulty
arrangement graphs, IEEE Transactions on Parallel Distributed Systems 10(1999),
223–237.

11. S. Y. Hsieh, G. H. Chen, and C. W. Ho, Hamiltonian-laceability of star graphs,
Networks 36(2000), 225–232.

12. J. S. Jwo, S. Lakshmivarahan, and S. K. Dhall, Embedding of cycles and grids in
star graphs, Journal of Circuits, Systems, and Computers 1(1991), 43–74.

13. S. Latifi, S. Q. Zheng, and N. Bagherzadeh, Optimal ring embedding in hyper-
cubes with faulty links, Proceedings of the Twenty-Second Annual International
Symposium on Fault-Tolerant Computing, Boston, Massachusetts, USA, 1992, pp.
178–184.

14. F. T. Leighton, Introduction to Parallel Algorithms and Architecture:
Arrays· Trees· Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.

15. M. Lewinter and W. Widulski, Hyper-Hamiltonian laceable and caterpillar-
spannable product graphs, Computer and Mathematics with Applications
34(1997), 99–104.

16. F. P. Preparata and J. Vuillemin, The cube-connected cycles: a versatile network
for parallel computation, Communication of the ACM 24(1981), 300–309.

17. G. Simmons, Almost all n-dimensional retangular lattices are Hamiltonian laceable,
Congressus Numerantium 21(1978), 103–108.

18. Chang-Hsiung Tsai, Jimmy J. M. Tan, T. Liang, and L. H. Hsu, Fault-tolerant
hamiltonian laceability of hypercubes, Information Processing Letters 83(2002),
301–306.

19. Chang-Hsiung Tsai, Linear array and ring embedding in conditional faulty hyper-
cubes, Theoretical Computer Science 314(2004), 431–443.

20. Dajin Wang, Embedding Hamiltonian cycles into folded hypercubes with faulty
links, Journal of Parallel and Distributed Computing 61(2001), 545–564.

21. D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ
07458, 2001.

22. Junming Xu, Topological Structure and Analysis of Interconnection Networks,
Kluwer academic publishers, Dordrecht, The Netherlands, 2001.

23. Junming Xu, Cycles in folded hypercubes, Applied Mathematics Letters 19(2006),
140–145.

An Approximation Algorithm Based on Chain

Implication for Constrained Minimum Vertex
Covers in Bipartite Graphs�

Jianxin Wang1, Xiaoshuang Xu1, and Jianer Chen1,2

1 School of Information Science and Engineering, Central South University, Changsha
410083, China

jxwang@mail.csu.edu.cn
2 Department of Computer Science Texas A&M University

College Station, TX 77843, USA
chen@cs.tamu.edu

Abstract. The constrained minimum vertex cover problem on bipartite
graphs (the Min-CVCB problem) is an NP-complete problem. This paper
presents a polynomial time approximation algorithm for the problem
based on the technique of chain implication. For any given constant ε > 0,
if an instance of the Min-CVCB problem has a minimum vertex cover
of size (ku, kl), our algorithm constructs a vertex cover of size (k∗

u, k∗
l),

satisfying max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.

1 Introduction

With the development of VLSI technology, the scale of electric circuit chip be-
comes larger and larger, and the possibility of introducing defects also increases
along with the manufacture craft. With the increasing in the chip integration,
it is not allowed that the wrong memory element appears in the manufacture
process. A better solution is to use reconfigurable arrays. A typical reconfig-
urable memory array consists of a rectangular array plus a set of spare rows and
spare columns. A defective element is repaired by replacing the row or the col-
umn containing the element with a spare row or a spare column. Since the cost
of reconfiguration is proportional to the number of replaced rows and columns,
people often replace as few as possible rows and columns to repair the array. This
problem can be formulated as a constrained minimum vertex cover problem on
bipartite graphs [3,7], which is formulated as follows.

Definition 1. [Constrained minimum vertex cover in bipartite graphs (Min-
CVCB)] Given a bipartite graph G = (V, E) with the vertex bipartition V =
U ∪L and two integers ku and kl, determine whether there is a minimum vertex
cover of G with at most ku vertices in U and at most kl vertices in L.
� This work is supported by the National Natural Science Foundation of China

(60433020) and the Program for New Century Excellent Talents in University
(NCET-05-0683).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 760–769, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Approximation Algorithm Based on Chain Implication 761

For simplify our description, we will say that a bipartite graph G = (U ∪L, E)
has a minimum vertex cover of size (ku, kl) if G has a minimum vertex cover
with at most ku vertices in U and at most kl vertices in L.

The Min-CVCB problem is NP-complete [3]. The problem was proposed by
Hasan and Liu [7] in 1988, who introduced the concept of the critical set to de-
velop a branch-and-bound algorithm for solving the Min-CVCB problem, based
on the A∗ algorithm [12]. No explicit analysis was giving in [7] for the running
time of their algorithm, but it is not hard to see that in the worst-case the
running time of the algorithm is at least O(2ku+kl + mn1/2). The Min-CVCB
problem has been extensively studied in last two decades, mainly on heuristic
algorithms. Interested readers are referred to [1,2,8,9,11,13] for the progress.

Recently, people used the parameterized computation theory to study exact
algorithms for the Min-CVCB problem [3,6]. After analyzing the structures of bi-
partite graphs, Fernau and Niedermeier [6] used the branching search technology
to develop an algorithm of time complexity O((ku + kl)n + 1.4ku+kl). Chen and
Kanj [3] proved that the Min-CVCB problem is NP-complete. By using classical
results in matching theory and recently developed techniques in parameterized
computation theory, they proposed an exact algorithm with time complexity
O((ku + kl)|G| + 1.26ku+kl), which is currently the best exact algorithm for the
Min-CVCB problem.

Both heuristic algorithms and exact algorithms for the Min-CVCB problem
have drawbacks. Heuristic algorithms are unable to provide solutions in a guar-
anteed time; while exact algorithms could get optimal solutions but run in expo-
nential time. In this paper, we are interested in polynomial time approximation
algorithms for the Min-CVCB problem. While a polynomial time approximation
algorithm may not be able to find an optimal solution, it finds a near-optimal
solution with a guaranteed error bound. In practice, near-optimality is often
good enough, and acceptable in many application fields.

Our algorithm proceeds as follows. We firstly reduce the input size of a given
instance of the Min-CVCB problem by applying the technique of kernelization
proposed in parameterized computation theory [5]. Then we make full use of
the classic matching theory on bipartite graphs to give a deep analysis of the
structures of bipartite graphs. Based on the analysis, we get a 1 + ε approxima-
tion algorithm based on the technique of chain implication for the Min-CVCB
problem, in the following sense: for a given constant ε > 0, if the instance
of the Min-CVCB problem has a constrained minimum vertex cover of size
(ku, kl), then our algorithm produces a vertex cover of size (k∗

u, k∗
l) satisfying

max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.
The paper is organized as follows. In section 2, we formally define what is

an approximation algorithm for the Min-CVCB problem. Section 3 describes
some related definitions and lemmas. The heart of this paper is section 4, which
proposes a 1 + ε approximation algorithm for the Min-CVCB problem based
on the formulation of a directed acyclic graph. Section 5 gives the description
of our algorithm and an explicit analysis of its approximation ratio and time
complexity. Conclusions and future research are given in section 6.

762 J. Wang, X. Xu, and J. Chen

2 Approximation Algorithms for the Min-CVCB Problem

First, we give some basic concepts in approximation algorithm theory. More
details could be found in [4].

Definition 2. Given an NP optimization problem Q, we say that an algorithm
A for Q has an approximation ratio f(n) if, for any given instance I of Q, the
value A(I) of the solution produced by the algorithm A is within a factor of
f(|I|) of the value Opt(I) of an optimal solution:

max{A(I)/Opt(I), Opt(I)/A(I)} ≤ f(|I|)

Note that f(n) can be a constant.

Definition 3. Let Q be an NP optimization problem. If there exists an approx-
imation algorithm A for Q that takes (x, ε) as its input, where x is an instance
of Q and ε > 0 is a constant, and outputs a solution y to x such that the ap-
proximation ratio of y over the optimal solution to x is bounded by 1 + ε, and
for any fixed constant ε > 0, the algorithm A runs in time polynomial in the
size of its input instance, then we say that the approximation algorithm A is a
polynomial-time approximation scheme (shortly a PTAS) for the problem Q.

Therefore, approximation algorithms and PTAS are for computational optimiza-
tion problems, in which a solution of optimal value is searched. On the other
hand, the Min-CVCB problem is a decision problem, in which we only need to
answer “yes” or “no” by determining if a given bipartite graph G = (U ∪ L, E)
has a minimum vertex cover of size (ku, kl). To study approximability of the
Min-CVCB problem, we formally define, as follows, what is a PTAS for the
Min-CVCB problem.

Definition 4. An algorithm A is a polynomial time approximation scheme (i.e.,
PTAS) for the Min-CVCB problem if for any instance (G = (U ∪ L); ku, kl) of
the Min-CVCB problem, and for any given constant ε > 0, the algorithm A
either claims that the bipartite graph G has no minimum vertex cover of size
(ku, kl), or, in case G has a minimum vertex cover of size (ku, kl), constructs a
vertex cover of size (k∗

u, k∗
l) for G, satisfying max{k∗

u/ku, k∗
l /kl} ≤ 1 + ε, and

the algorithm A runs in polynomial time for any fixed ε > 0.

3 Related Definitions and Lemmas

Our algorithm that searches for a near-optimal solution for the Min-CVCB prob-
lem contains the following two steps:

(1) Reducing to the kernel. The main idea of reducing to the kernel is to
reduce the algorithm’s search space size. To reduce to the Min-CVCB problem’s
kernel is to reduce the size of the input bipartite graph. In Lemma 1, by using
a polynomial time preprocessing algorithm, we reduce a given instance of the

An Approximation Algorithm Based on Chain Implication 763

Min-CVCB problem to an equivalent instance (G′; k′
u, k′

l) in which the bipartite
graph G′ has a perfect matching and has at most 2(k′

u + k′
l) vertices. Based on

this, Lemma 2 applies the classical matching theory to convert it into a directed
acyclic graph consisting of elementary bipartite graphs.

(2) Making full use of the technique of chain implication to enumerate the
minimum vertex covers of the elementary bipartite graphs whose size is larger
than a constant to search for a vertex cover for the given graph. It makes sure
that, if the input bipartite graph G′ has a minimum vertex cover of size (k′

u, k′
l),

then the algorithm will find a close enough vertex cover for G′.
We start with some related definitions and related known results.

Definition 5. A graph G is bipartite if its vertex set can be partitioned into two
sets U (the ”upper part”) and L (the ”lower part”) such that every edge in G
has one endpoint in U and the other endpoint in L. A bipartite graph is written
as G=(U ∪L, E) to indicate the vertex bipartition. The vertex sets U and L are
called the U -part and the L-part of the graph, and a vertex is a U -vertex (resp.
an L-vertex) if it is in the U -part (resp. in the L-part) of the graph.

Let G = (U ∪ L, E) be a bipartite graph with a perfect matching. The graph
G is elementary [10] if every edge in G is contained in a perfect matching in G.
It is known that an elementary bipartite graph has only two minimum vertex
covers, namely U and L [10].

Lemma 1. ([3]) The time complexity for solving an instance (G; ku, kl) of the
Min-CVCB problem, where G is a bipartite graph of n vertices and m edges, is
bounded by O(mn1/2 + t(ku + kl)), where t(ku + kl) is the time complexity for
solving an instance (G′, k′

u, k′
l) of the problem, with k′

u ≤ ku, k′
l ≤ kl, and G′ has

a perfect matching and contains at most 2(k′
u + k′

l) vertices.

Lemma 2. (The Dulmage-Mendelsohn Decomposition theorem [10]) A bipartite
graph G = (U ∪L, E) with perfect matching can be decomposed and indexed into
elementary subgraphs Bi = (Ui ∪ Li, Ei), i = 1, 2, . . . , r, such that every edge in
G from a subgraph Bi to a subgraph Bj with i < j must have one endpoint in the
U -part of Bi and the other endpoint in the L-part of Bj. Such a decomposition
can be constructed in time O(|E|2).
An elementary subgraph Bi will be called an (elementary) block. The weight of
a block Bi = (Ui ∪Li, Ei) is defined to be |Ui| = |Li|. Edges connecting vertices
in two different blocks will be called inter-block edges.

Lemma 3. ([3]) Let G be a bipartite graph with perfect matching, and let B1,
B2, . . ., Br be the blocks of G given by the Dulmage-Mendelsohn Decomposition.
Then every minimum vertex cover for G is a union of minimum vertex covers
of the blocks B1, B2, . . ., Br.

We say that an instance (G; ku, kl) of the Min-CVCB problem is normalized if
G = (U ∪ L, E) has a perfect matching, |L| = |U | ≤ (ku + kl), and a Dulmage-
Mendelsohn Decomposition of G is given. By Lemmas 1 and 2, we only need to
concentrate on normalized instances of the Min-CVCB problem. Formally, this
approach is validated by the following results

764 J. Wang, X. Xu, and J. Chen

Lemma 4. ([3]) There is an algorithm that, on a given instance (G; ku, kl) of
the Min-CVCB problem, constructs a subset Z0 of vertices in G and a normalized
instance (G′; k′

u, k′
l) of the problem, where G′ is a subgraph of G, such that

(1) Every vertex cover of G′ plus Z0 is a vertex cover of G; and
(2) A vertex set Y in G′ is a constrained minimum vertex cover of size (k′

u, k′
l)

for G′ if and only if the set Y ∪ Z0 is a constrained minimum vertex cover of
size (ku, kl) for G.

The running time of the algorithm is O(|G|2).
By Lemma 4, if we want to develop a polynomial time approximation scheme
for the Min-CVCB problem, we can simply concentrate on normalized instances
of the problem, as shown by the following corollary.

Corollary 1. Let (G; ku, kl) be an instance of the Min-CVCB problem. Then
a normalized instance (G′; k′

u, k′
l) of the problem can be constructed in time

O(|G|2), such that from a vertex cover of size (k′′
u, k′′

l) for G′ satisfying the
condition max{k′′

u/k′
u, k′′

l /k′
l} ≤ 1 + ε, we can construct in time O(|G|) a vertex

cover of size (k∗
u, k∗

l) for G satisfying max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.

Proof. For the given instance (G; ku, kl) of the Min-CVCB problem, where G =
(U ∪L, E) is a bipartite graph, we apply the algorithm in Lemma 4 to construct,
in time O(|G|)2), the set Z0 and the normalized instance (G′; k′

u, k′
l) satisfying

the conditions in the lemma. Suppose that the set Z0 contains u U -vertices and
l L-vertices in the bipartite graph G. By condition (2) in Lemma 4, we must
have k′

u + u = ku and k′
l + l = kl.

Suppose that Y is a vertex cover of size (k′′
u, k′′

l) for the graph G′ satisfying
max{k′′

u/k′
u, k′′

l /k′
l} ≤ 1 + ε. By condition (1) in Lemma 4, the set Y ∪ Z0 is a

vertex cover of size (k∗
u, k∗

l) for the graph G, where k∗
u = k′′

u +u and k∗
l = k′′

l + l.
Moreover, we have

k∗
u/ku = (k′′

u + u)/(k′
u + u) ≤ max{1, k′′

u/k′
u} ≤ 1 + ε, and

k∗
l /kl = (k′′

l + l)/(k′
l + l) ≤ max{1, k′′

l /k′
l} ≤ 1 + ε.

That is, Y ∪ Z0 is a vertex cover of size (k∗
u, k∗

l) for the graph G that can be
constructed from the vertex cover Y of the graph G′ in time O(|G|) and satisfies
the condition max{k∗

u/ku, k∗
l /kl} ≤ 1 + ε. ��

4 The AACI-D Algorithm

We concentrate on normalized instances (G; ku, kl) of the Min-CVCB problem,
by which we assume that the bipartite graph G = (U ∪ L, E) has a perfect
matching, |L| = |U | ≤ (ku + kl), and a Dulmage-Mendelsohn Decomposition
{B1, . . . , Br} of G is given, where each Bi is a block in G, and every edge
between two blocks Bi and Bj with i < j has one end in the U -part of Bi and
the other end in the L-part of Bj .

An Approximation Algorithm Based on Chain Implication 765

We construct a directed acyclic graph (a DAG) D from the decomposition
{B1, . . . , Br} of G, as follows. Each block Bi in G corresponds to a vertex wi in
D, and there is a directed arc from wi to wj in the DAG D if and only if there
is an edge from the U -part of the block Bi to the L-part of the block Bj in the
graph G.

Let ε > 0 be a fixed constant. The PTAS for the Min-CVCB problem on
normalized instances is given in Figure 1. Without loss of generality, we assume
that ku ≥ kl (otherwise, we simply exchange U and L).

Algorithm AACI-D(G, ku, kl, ε)
input: a normalized instance (G, ku, kl) of Min-CVCB, and a constant ε > 0
output: a vertex cover for G, or report no vertex cover of size (ku, kl) for G

1. construct the DAG D based on the decomposition {B1, . . . , Br} of G;
2. let B be the collection of the blocks Bi whose weight is at least εku;
3. for each union Y of minimum vertex covers of the blocks in B do
3.1 Y = Y ∪ Y ′, where Y ′ is the set of vertices that are forced by Y ;
3.2 if Y is consistent, with u U -vertices and l L-vertices then

let B′
1, . . ., B′

t be the rest of the blocks, sorted as in the DAG D;
let h be the first index such that u + |B′

1| + · · · |B′
h| > ku;

add the U -parts of B′
1, . . ., B′

h and the L-parts of B′
h+1, . . ., B′

t to Y ;
return Y ;

4. return (“no vertex cover of size (ku, kl) for G”).

Fig. 1. The AACI-D Algorithm for normalized instances of Min-CVCB

We first give some explanations to the algorithm. Let Bi = (Ui ∪ Li, Ei) be
a block in the graph G. By Lemma 3, every minimum vertex cover of G either
includes Ui but excludes Li, or includes Li but excludes Ui. Thus, for two blocks
Bi = (Ui ∪ Li, Ei) and Bj = (Uj ∪ Lj , Ej) in the graph G with an edge from
Ui to Lj (thus i < j), if a minimum vertex cover of G includes Li then it must
also include Lj (since it excludes Ui and there is an edge from Ui to Lj). In this
case, we say that the set Lj is forced (to be in the minimum vertex cover) by
the set Li. Similar derivation shows that the set Ui is forced by the set Uj. More
generally, let Bi = (Ui ∪ Li, Ei) be a block in the graph G, and let Bi be the
collection of blocks Bj such that there is a directed path from Bi to Bj in the
DAG D. Then all L-parts of the blocks in Bi are forced by the set Li. Similarly,
let B′

i be the collection of blocks Bj such that there is a directed path from Bj

to Bi in the DAG D, then all U -parts of the blocks in B′
i are forced by the set

Ui. Even more generally, let Y be a set that is a union of U -parts and L-parts
of some blocks in G that does not contain both U -part and L-part of any block,
then we say that a set Y ′ is forced by Y if the set Y ′ consists of those vertices
that are either L-vertices forced by L-vertices in Y or U -vertices that is forced by
U -vertices in Y . This technique of forcing more vertices into a minimum vertex
cover using the existing vertices in the minimum vertex cover is called the chain
implication technique [3].

766 J. Wang, X. Xu, and J. Chen

For the given instance (G; ku, kl) of the Min-CVCB problem, we say that a
set Y of vertices in the graph G is consistent if each block of the graph G either
has no intersection with Y , or has exactly one of its U -part or L-part entirely
contained in the set Y , and if the number of U -vertices in Y is bounded by ku

and the number of L-vertices in Y is bounded by kl.
Now we are ready to discuss the algorithm. Let {B1, . . . , Br} be the Dulmage-

Mendelsohn Decomposition of the graph G, sorted in the order that every edge
between two blocks Bi and Bj with i < j has one end in the U -part of Bi and
the other end in the L-part of Bj . As described in the algorithm, let B be the
collection of the blocks Bi whose weight is at least εku.

By Lemma 3, every minimum vertex cover of the graph G is a union of mini-
mum vertex covers of its blocks. Therefore, if the graph G has a minimum vertex
cover Y0 of size (ku, kl), then in the enumeration of step 3, we will eventually
get a set Y in which the minimum vertex cover for each block Bi in B is the
same as that in the set Y0. For such a set Y , after forcing further vertices in Y ′

to the set Y , we still get a set Y that is a subset of the set Y0. In particular,
this set Y should be consistent. We show that on this set Y , the algorithm will
return a vertex cover of the graph G with the desired properties. Suppose that
Y contains u U -vertices and l L-vertices, u ≤ ku and l ≤ kl.

Let B′
1, . . ., B′

t be the blocks in which no vertices are in the set Y . Note
that none of these blocks B′

i is in the collection B since every block in B has
either its U -part or its L-part included in the set Y by step 3. In particular,
the weight of each B′

i is smaller than εku. Since h is the first index such that
u + |B′

1| + · · · + |B′
h| > ku, we must have

u + |B′
1| + · · · + |B′

h−1| ≤ ku

Combining this with |B′
h| ≤ εku, we get

u + |B′
1| + · · · + |B′

h−1| + |B′
h| ≤ ku + εku < (1 + ε)ku

Therefore, in the final returned set Y , the number k∗
u of U -vertices in Y is

bounded by (1 + ε)ku. Moreover, since every block has exactly one of its U -part
and L-part in Y , the number k∗

l of L-vertices in the final returned set Y is
actually smaller than kl since ku + kl ≥ k∗

u + k∗
l . In consequence, the numbers

k∗
u and k∗

l satisfy the condition max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.
We still need to prove that in this case the returned set Y is a vertex cover

of the graph G. Let e = [vi, vj] be any edge in the graph G. If e is an edge in a
block Bi, then since every block in G has either its U -part or its L-part in the
set Y , one of the vertices vi and vj must be contained in the set Y . If e is an
inter-block edge, let vi be a U -vertex in a block Bi and vj be an L-vertex in a
block Bj , i < j. If Bi is a block of weight at least εku, and if the U -part of Bi

is not in Y , then the L-part of Bi must be in Y by our construction, and the
L-part of Bi also forces the L-part of Uj into Y . So the vertex vj is in the set
Y . Similarly, if Bj has weight at least εku, then one of the vertices vi and vj

must be in the set Y . The only remaining case is that both blocks Bi and Bj

have weight smaller than εku. In this case, if Bi is one of the blocks B′
1, . . ., B′

h,

An Approximation Algorithm Based on Chain Implication 767

then the U -part of Bi, thus the vertex vi, is in the set Y . On the other hand, if
Bj is one of the blocks B′

h+1, . . ., B′
t, then the L-part of Bj , thus the vertex vj ,

is in the set Y . Note that because the sets B′
1, . . ., B′

t are topologically sorted
as in the DAG D, these are the only two possible cases: if the block Bj is in
the collection {B′

1, . . . , B
′
h} then so is the block Bi, and if the block Bi is in the

collection {B′
h+1, . . . , B

′
t} then so is the block Bj . In summary, it is always the

case that one of the ends of the edge e is in the set Y . Since e is an arbitrary
edge in G, we conclude that the set Y is a vertex cover of the graph.

This proves the correctness of the algorithm. We have the following theorem.

Theorem 1. The algorithm AACI-D runs in time O(m2 + 22/εm), where m
is the number of edges in the graph G. If the input instance (G; ku, kl) has a
minimum vertex cover of size (ku, kl), then the algorithm produces a vertex cover
for the graph G of size (k∗

u, k∗
l) satisfying max{k∗

u/ku, k∗
l /kl} ≤ 1 + ε.

Proof. The second part of the theorem has been proved by the previous discus-
sion. What remains is to prove the time complexity of the algorithm.

By Lemma 2, step 1 of the algorithm takes time O(m2). It is also easy to
verify that step 2 of the algorithm takes no more than time O(m2).

The key observation is that the number of blocks in the collection B is bounded
by 2/ε. In fact, by our assumption, ku ≥ kl. Therefore, the total number of U -
vertices in the graph G is bounded by ku + kl ≤ 2ku (note that the size of a
minimum vertex cover of the graph G is equal to the number of U -vertices, which
is equal to the number of L-vertices in G). Since all blocks in G are disjoint, and
each block in B has weight (i.e., the number of U -vertices) at least εk, the total
number of blocks in B is not larger than

(ku + kl)/(εku) ≤ 2ku/(εku) = 2/ε

Since each enumeration in step 3 takes either the U -part or the L-part of each
block in B, the total number of possible sets Y enumerated in step 3 is bounded
by 22/ε. Each execution of the body of step 3 obviously takes time no more than
O(m). In conclusion, the total running time of step 3 of the algorithm is bounded
by O(22/εm). This concludes the theorem. ��

5 Putting All Together

We summarize all the discussions given in the previous sections and present the
AACI algorithm in Figure 2.

Some explanation is needed.
Let u be a U -vertex of degree larger than kl. If u is not included in the vertex

cover, then all neighbors of u must be in the vertex cover. Since u has more than
kl neighbors, which are all L-vertices, this implies that the number of L-vertices
in the vertex cover would exceed the given bound kl, which is not allowed in the
minimum vertex cover of size (ku, kl). This justifies step 2: a U -vertex of degree
larger than kl should be directly included in the vertex cover. Similarly, in step 3,

768 J. Wang, X. Xu, and J. Chen

Algorithm AACI(G,ku, kl, ε)
input: an instance (G, ku, kl) of Min-CVCB, and a constant ε > 0
output: a vertex cover for G, or report no vertex cover of size (ku, kl) for G

1. Y0 = ∅;
2. for each U -vertex u of degree larger than kl do

Y0 = Y0 ∪ {u}; ku = ku − 1;
3. for each L-vertex l of degree larger than ku do

Y0 = Y0 ∪ {l}; kl = kl − 1;
4. construct an equivalent normalized instance (G′; k′

u, k′
l) by Corollary 1;

5. call algorithm AACI-D on instance (G′; k′
u, k′

l, ε);
6. if step 5 returns a vertex cover Y ′ for the graph G′

then construct a desired vertex cover Y for G from Y ′ and Y0

else return (“no vertex cover of size (ku, kl) for G”).

Fig. 2. The AACI-D Algorithm for normalized instances of Min-CVCB

all L-vertices of degree larger than ku are directly included in the vertex cover.
The running time of steps 1-3 is obviously bounded by O((n + m)2), where n
and m are the number of vertices and number of edges in the graph G.

By Corollary 1, an equivalent normalized instance (G′; k′
u, k′

l) can be con-
structed in time O((n + m)2) in step 4.

By Theorem 1, step 5 takes time O(m2 +22/εm), which either claims that the
graph G′ has no constrained minimum vertex cover of size (k′

u, k′
l), or returns

a vertex cover Y ′ of size (k′′
u, k′′

l) satisfying max{k′′
u/k′

u, k′′
l /k′

l) ≤ 1 + ε. By
Lemma 4, if the graph G′ has no constrained minimum vertex cover of size
(k′

u, k′
l), then the graph G has no constrained minimum vertex cover of size

(ku, kl). On the other hand, if G′ has a minimum vertex cover of size (k′
u, k′

l),
then by Theorem 1, step 5 of the algorithm returns a vertex cover of size (k′′

u, k′′
l)

satisfying max{k′′
u/k′

u, k′′
l /k′

l) ≤ 1 + ε. Now from Corollary 1, step 6 of the
algorithm AACI will return a vertex cover of size (k∗

u, k∗
l) for the input graph G

satisfying the condition max{k∗
u/ku, k∗

l /kl) ≤ 1 + ε.
This proves the correctness of the algorithm AACI.
The time complexity of the algorithm also follows from the previous discus-

sion. In particular, step 4 of the algorithm takes time O((n+m)2) by Corollary 1,
and step 5 takes time O((n + m)2 + 22/ε(n + m)) by Theorem 1.

We summarize these discussions in the following theorem.

Theorem 2. The algorithm AACI is a polynomial time approximation scheme
for the Min-CVCB problem, and its running time is bounded by O((n+m)(22/ε+
n + m)).

6 Conclusions

In this paper, we have studied the Min-CVCB problem that has direct applica-
tions in the area of VLSI manufacturing. Since heuristic algorithms and exact

An Approximation Algorithm Based on Chain Implication 769

algorithms may not meet the requirement of industry applications, we studied
approximation algorithms for the problem. We developed a polynomial time al-
gorithm with a 1 + ε approximate ratio for the problem in the following sense:
given an instance (G; , ku, kl) for the Min-CVCB, where G is a bipartite graph
and looking for a minimum vertex cover of at most ku U -vertices and at most
kl L-vertices, our algorithm either reports that no such a minimum vertex cover
exists, or constructs a vertex cover of k∗

u U -vertices and k∗
l L-vertices in G satisfy-

ing the condition max{k∗
u/ku, k∗

l /kl} ≤ 1+ε. The running time of our algorithm
is bounded by O((n + m)(22/ε + n + m)).

References

1. D. M. Blough, On the reconfigurable of memory arrays containing clustered
faults. Proc. 21th Int. Symp. on Fault-Tolerant Computing (FTCS’91), (1991), pp.
444-451. .

2. D. M. Blough and A. Pelc, Complexity of fault diagnosis in comparison models.
IEEE Trans.Comput.,41(3) (1992), pp. 318-323.

3. J. Chen and I. A. Kanj, Constrained minimum vertex cover in bipartite graphs:
complexity and parameterized algorithms, Journal of Computer and System Sci-
ence 67, (2003), pp. 833-847.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rovest Introduction to Algorithms,
McGraw-Hill Book Company, New York, 1992.

5. R. Downey and M. Fellows, Parameterized Complexity, Springer, New York,
1999.

6. H. Fernau, and R. Niedermeier, An efficient exact algorithm for constraint
bipartite vertex cover, J. Algorithms 38, (2001), pp. 374-410.

7. N. Hasan and C. L. Liu, Minimum Fault Coverage in Reconfigurable Ar-
rays, Proc. 18th Int. Symp. on Fault-Tolerant Computing (FTCS’88), (1988), pp.
348-353.

8. N. Hasan and C. L. Liu, Fault covers in reconfigurable PLAs. Proc. 20th Int.
Symp. on Fault-Tloerant Computing (FTCS’90), (1990), pp. 166-173.

9. S.-Y. Kuo and W. Fuchs, Efficient spare allocation for reconfigurable arrays.
IEEE Des. Test 4 (1987), pp. 24-31.

10. L. Lovasz and M. D. Plummer, Matching Theory, Annals of Discrete Mathe-
matics Vol.29, North-Holland, Amsterdam, 1986.

11. C. P. Low and H. W. Leong, A new class of efficient algorithms for reconfigu-
ration of memery arrays, IEEE Trans. Comput.45(1), (1996), pp. 614-618.

12. N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co., Palo
Alto, CA, 1980.

13. M. D. Smith and P. Mazumder, Generation of minimal vertex cover for
row/column allocation in self-repairable arrays, IEEE Trans.Comput. 45, (1996),
pp. 109-115.

Author Index

Ajtai, Miklós 13
Akutsu, Tatsuya 573
Andersen, Reid 1

Bach, Eric 632
Bai, Xi 148
Barmpalias, George 89

Cai, Zhun 189
Cao, Yi 136
Chan, Joseph Wun-Tat 416
Chen, Jianer 692, 760
Chen, Jing 46
Chen, Zhenyu 386
Cheng, Qi 296
Chung, Fan 1
Cooper, S. Barry 199

Diedrich, Florian 34
Ding, Decheng 595
Dom, Michael 680
Duan, Zhenhua 521

Fan, Yun 212
Feng, Keqin 318
Feng, Rongquan 159
Feng, Wangsen 646
Feng, Ze 284
Fusco, Giordano 632

Gao, Huang-Ming 274
Graham, Ronald L. 284
Grubba, Tanja 100
Guo, Jiong 680
Gupta, Sushmita 354

Harren, Rolf 34
Hinkelmann, Markus 486
Hori, Yoshiaki 362
Hou, Haiyang 58
Hsieh, Sun-Yuan 274, 750
Hu, Xiaoming 171
Huang, Shangteng 171

Imai, Katsunobu 511
Iwamoto, Chuzo 511

Jakoby, Andreas 330, 486
Jansen, Klaus 34

Kawaguchi, Akifumi 584
Kerenidis, Iordanis 306
Kim, Kwangsoo 533
Kobayashi, Satoshi 398
Kong, Fanyu 189
Kugimoto, Yoshinori 499
Kurtz, Stuart A. 542

Lam, Tak-Wah 416
Lewis, Andrew E.M. 89
Li, Angsheng 79
Li, Daxing 148, 189
Li, Minming 284
Li, Xiang 408
Li, Xin 624
Li, Yong 440
Li, Zhimin 408
Lingas, Andrzej 256
Lískiewicz, Maciej 330
Liu, Feng 318
Liu, Tian 624
Liu, Xingwu 715
Liu, Yunlong 692
Lu, Enyue 46

Mak, Kin-Sum 416
Mizuki, Takaaki 499
Morita, Kenichi 511
Morizumi, Hiroki 605
Morsy, Ehab 342
Mukhopadhyay, Debapriyay 738
Murray, Elizabeth 296

Nagamochi, Hiroshi 342, 573, 584
Nakano, Shin-ichi 115, 428
Niedermeier, Rolf 680

Pan, Li 222
Pei, Shi-Hui 181
Peng, Han 624
Peng, Sheng-Lung 244
Poon, Chung Keung 659
Pu, Juhua 715

772 Author Index

Qian, Liyan 624
Qu, Wanling 646

Rao, M.V. Panduranga 450
Reischuk, Rüdiger 330
Ryoo, Hong Seo 533

Saha, Indranil 738
Sakurai, Kouichi 362
Schindelhauer, Christian 330
Shoudai, Takayoshi 67
Simon, Janos 542
Sone, Hideaki 499
Soskova, Mariya Ivanova 89, 199
Stechert, Peer 486
Sun, He 659
Sun, Hongtao 624

Tan, Xuehou 262
Tao, Zhihong 386
Tarui, Jun 128, 605
Teng, Shang-Hua 554
Thöle, Ralf 34
Thomas, Henning 34
Thurley, Marc 703
Tian, Cong 521
T̂ırnăucă, Cristina 398
Trahtman, A.N. 234

Uehara, Ryuhei 115, 428
Uno, Takeaki 115, 428

Wahlen, Martin 256
Wang, Hanpin 646
Wang, Jianxin 692, 760
Wang, Jiexun 573
Wang, Jin 148
Wang, Shumei 222
Wang, Yufeng 362
Wang, Zhicheng 222
Wei, Gang 222

Weihrauch, Klaus 595
Wong, Prudence W.H. 416
Wu, Hongfeng 159
Wu, Yongcheng 595

Xia, Mingji 566
Xu, Daoyun 616
Xu, Jin 624
Xu, Ke 624
Xu, Xiaoshuang 760
Xu, Yatao 100
Xu, Zhiwei 715

Yamasaki, Hitoshi 67
Yang, Bing 46
Yang, Boting 136
Yang, Shih-Cheng 274
Yang, Yi-Chuan 244
Yao, Andrew C.C. 462, 474
Yao, Frances F. 284, 462, 474
Yi, Jin 374
Yoneda, Harumasa 511
Yong, Jun-Hai 440
Yu, Jia 148, 189

Zhang, Guochuan 58
Zhang, Li’ang 646
Zhang, Peng 670, 728
Zhang, Qingshun 616
Zhang, Wenhui 374
Zhao, Hong-Wei 181
Zhao, Liang 573
Zhao, Weidong 222
Zhao, Wenbo 670
Zhao, Yingchao 554
Zhao, Yong-Zhe 181
Zhao, Yunlei 462, 474
Zheng, S.Q. 46
Zhou, Conghua 386
Zhu, Jiaqi 624

	Title
	Preface
	Organization
	Table of Contents
	Detecting Sharp Drops in PageRank and aSimplified Local Partitioning Algorithm
	Introduction
	Preliminaries
	Approximate Personalized PageRank Vectors

	A Sharp Drop in PageRank Implies a Good Cut
	Ensuring That a Sharp Drop Exists
	Local Partitioning Algorithm

	Generalizations of the Compactness Theorem and G¨odel’s Completeness Theorem for Nonstandard Finite Structures
	Introduction
	The Formulation of the Results
	Connection with Complexity Theory

	Set Theory
	Finite Set Theory
	Standard and Nonstandard Sets

	First-Order Formulas
	Extensions of Interpretations
	First-Order Definability
	Compactness Theorem
	First-Order Definability of Sets Sequences
	The Proof of the Compactness Theorem
	The Completeness Theorem
	Proofs in LK
	Diagrams, and Induction Axioms
	The Statement of the Completeness Theorem
	The Sketch of the Proof of the Completeness Theorem

	Approximation Algorithms for 3D Orthogonal Knapsack
	Introduction
	An Algorithm Based on Strip Packing
	A Refined Construction
	Enumerations and a Shifting Technique
	Conclusion

	A Comparative Study of Efficient Algorithms for Partitioning a Sequence into Monotone Subsequences
	Introduction
	Modified Yehuda-Fogel Algorithm
	Average Performance
	A Closer Look at Greedy Algorithm
	Concluding Remarks

	The Hardness of Selective Network Design for Bottleneck Routing Games
	Introduction
	Preliminaries
	Main Results

	A Polynomial Time Algorithm for Finding Linear Interval Graph Patterns
	Introduction
	Interval Graph Patterns
	Interval Graph Pattern Matching
	Minimally Generalized Linear Interval Graph Patterns
	Conclusions and Future Work

	Elementary Differences Among Jump Hierarchies
	Introduction
	Requirements and Strategies
	The Priority Tree T

	Working with the LR Degrees
	Introduction
	Oracle Martin-Löf Tests
	LR Reducibility and Degrees
	Global Structure
	Computably Enumerable LR Degrees

	Computability on Subsets of Locally Compact Spaces
	Introduction
	Preliminaries
	Type-2 Theory of Effectivity (TTE)
	Representations of Points and Sets in Computable \T_0-Spaces

	Effectivity in Locally Compact Hausdorff Spaces
	Computability on Subsets of Computably Locally Compact, Computably Hausdorff Spaces
	Computability on Closed Subsets
	Computability on Compact Subsets

	Conclusion and Future Work
	Appendix: Proofs

	A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs
	Introduction
	Preliminaries
	Open and Closed Prefix Trees and Basic Operation

	Canonical Trees
	Linear Time Construction of Canonical Trees
	Applications

	Finding a Duplicate and a Missing Item in a Stream
	Introduction
	Simple Algorithms
	Limitations of Multiple-Pass Streaming Algorithms
	The Minimum Space Required for One-Pass Algorithms
	One-Pass Las-Vegas Randomized Algorithms
	Open Problems and Discussions

	Directed Searching Digraphs: Monotonicity and Complexity
	Introduction
	Monotonicity of the Mixed Directed Search Model
	Monotonicity of the Directed Search Model
	NP-Completeness Results
	Conclusion

	Protecting Against Key Escrow and Key Exposure in Identity-Based Cryptosystem
	Introduction
	Background
	Related Work
	Our Contribution

	Preliminaries
	Our Key Issuing and Updating Model
	Entities Involved
	Framework and Security Model

	Our Proposed Encryption Scheme
	The IBKIUE Scheme
	Correctness
	Analysis and Comparison
	Security Analysis

	Our Proposed Signature Scheme
	The IBKIUS Scheme
	Security Analysis

	Conclusion
	References

	Encapsulated Scalar Multiplications and Line Functions in the Computation of Tate Pairing
	Introduction
	Preliminaries
	Computation of Miller's Paths
	Miller's Path to 4T
	Miller's Path to $2T\pm P$
	Miller's Path to $3T$
	Miller's Path to $6T$
	Miller's Path to $iT\pm P$ for $i=3,4,6$.

	Example
	Conclusion

	A Provably Secure Blind Signature Scheme
	Instruction
	Preliminaries
	The Proposed Scheme
	Security Proofs
	Conclusions

	Construct Public Key Encryption Scheme Using Ergodic Matrices over GF(2)
	Introduction
	Ergodic Matrices over Finite Field \F_2
	New Public Key Encryption System
	Hard Problem
	Public Key Encryption Scheme
	Example

	Conclusions

	New Left-to-Right Radix-r Signed-Digit Recoding Algorithm for Pairing-Based Cryptosystems
	Introduction
	Preliminaries
	Notations
	Radix-r Signed-Digit Number Representations
	Left-to-Right Recoding Algorithm and Its Application in ECC

	New Left-to-Right Radix-r Signed-Digit Recoding Algorithm
	The Basic Idea of Our Algorithm
	The Proposed Algorithm

	Analysis and Comparison
	Analysis
	Comparison

	Conclusion

	The Strongest Nonsplitting Theorem
	Introduction
	Requirements and Strategies
	The Naive N_{Ψ}-Strategy
	The Naive P_{Θ}-Strategy
	N_{Ψ} Below P_{Θ}
	The Approximations
	The Basic Module for One \ptheta- and One \npsi- Requirement
	All Requirements

	There is an Sw-Cuppable Strongly c.e. Real
	Introduction
	A Corollary
	Procedure $\P(n,k)$
	Proof of Theorem 1.6
	References

	On Computation Complexity of the Concurrently Enabled Transition Set Problem
	Introduction
	Basic Definitions
	Petri Nets
	Concurrently Enabled Transition Set

	Computational Complexity
	Independent Set Problem
	Concurrently Enabled Transition Set Problem
	Maximal Concurrently Enabled Transition Set Problem

	Subproblem Analysis
	Conclusions

	Synchronization of Some DFA
	Introduction
	Preliminaries
	The Graph Γ^2
	Transition Semigroup of Automaton
	The State Outside t-Cycle
	Aperiodic Strongly Connected DFA
	The General Case of Aperiodic DFA

	On the Treewidth and Pathwidth of Biconvex Bipartite Graphs
	Introduction
	Bipartite Permutation Graphs
	Biclique Structure
	Computing Treewidth in Linear Time

	Biconvex Bipartite Graphs
	Biclique Structure
	Treewidth and Pathwidth

	On Exact Complexity of Subgraph Homeomorphism
	Introduction
	Walks and Sets of Walks
	An Exact Algorithm for Fixed-Vertex Homeomorphism
	A Faster Algorithm for Fixed-Vertex Homeomorphism
	Exact Algorithms for Subgraph Homeomorphism
	Final Remarks

	Searching a Polygonal Region by Two Guards
	Introduction
	Preliminary
	Basic Definitions
	Two-Guard Searchability of Corridors

	Necessary Conditions
	Sufficiency
	The Search Schedule for Case 1
	The Search Schedule for Case 2

	On the Internal Steiner Tree Problem
	Introduction
	Preliminaries
	MAX SNP-Hardness Result
	An Approximation Algorithm
	Concluding Remarks

	Approximately Optimal Trees for Group Key Management with Batch Updates
	Introduction
	Preliminaries
	Lower Bound for Optimal Tree Cost as $p \to 0$
	Heuristic LR and Its Approximation Ratio
	Heuristic LB and Its Approximation Ratio
	Conclusions

	On Deciding Deep Holes of Reed-Solomon Codes
	Introduction
	Related Work
	Our Results

	A Simple Proof That the Maximum Likelihood Decoding Is NP-Complete
	A Hypersurface Related to Deep Holes
	A Smooth Curve
	Estimation of Number of Rational Points
	Concluding Remarks

	Quantum Multiparty Communication Complexity and Circuit Lower Bounds
	Introduction
	Multiparty Communication Complexity and Circuit Lower Bounds

	Quantum Multiparty Communication Complexity
	Simulating Classical Players
	A Quantum Reduction for Circuit Lower Bounds
	The Quantum Communication Complexity of GIP

	Efficient Computation of Algebraic Immunity of Symmetric Boolean Functions
	Introduction
	General Observation for $f\in SB_{n}$ with $AI_{n}(f)\geq d$
	Computing Algebraic Immunity of a Given Symmetric Boolean Function
	Searching All Symmetric Boolean Functions with Algebraic Immunity \geq d
	Our Experiments and Conclusions

	Improving the Average Delay of Sorting
	Introduction
	Timing of a Boolean Circuit
	Average Case Efficient Comparator Modules
	Average Case Delay for the Uniform Distribution
	Average Case Delay for Nonuniform Distributions
	Conclusion

	Approximating Capacitated Tree-Routings in Networks
	Introduction
	Preliminaries
	Tree Cover
	Approximation Algorithm to CTR
	Conclusion

	Feedback Arc Set Problem in Bipartite Tournaments
	Introduction
	Randomized Algorithm for FAS
	Deterministic Algorithm for FAS
	Conclusion

	Studying on Economic-Inspired Mechanisms for Routing and Forwarding in Wireless Ad Hoc Network
	Introduction
	System Models
	Cost Model
	Concepts in Mechanism Design

	Hidden Information and Routing Mechanisms
	Hidden Actions in Message Forwarding
	Conclusion and Future Works
	References

	Enhancing Simulation for Checking Language Containment
	Introduction
	Preliminaries
	Search Pairs of States for Language Containment
	Construct New Büchi Automaton
	Comparison

	Conclusion

	QBF-Based Symbolic Model Checking for Knowledge and Time
	Introduction
	Quantified Boolean Formula
	Interpreted System Semantics
	Computation Tree Logic of Knowledge-CTLK

	Bounded Semantics of CTLK
	The BMC Algorithm for CTLK
	The Correctness of the Translation

	Summary

	A Characterization of the Language Classes Learnable with Correction Queries
	Introduction
	Preliminaries
	Query Learning
	Gold-Style Learning

	Characterization of the Class $\CorQ^(A)$
	Relations to Other Learning Models
	A Model Included in $CorQ$
	A Model Which Includes $CorQ^(A)$

	Concluding Remarks

	Learnable Algorithm on the Continuum
	Introduction
	Limiting Recursion
	Learnable Real Numbers
	Learnable Sequences of Real Numbers

	Online Deadline Scheduling with Bounded Energy Efficiency
	Introduction
	Preliminaries
	Relaxed Energy Efficiency Threshold
	The Online Algorithm
	Performance of $\Efficiency_{E/(1+\epsilon)}$

	Randomized Algorithm
	Performance of the Randomized Algorithm
	Comparing Non-preemptive and Preemptive Optimal Schedules at Fixed Speed

	Without Demanding Jobs

	Efficient Algorithms for Airline Problem
	Introduction
	Minimum Cost Network
	Minimum Cost Spanning Tree
	NP-Hardness for Finding a Spanning Tree of Minimum Loss
	Approximation Algorithms for a Tree Airline Network

	Concluding Remarks and Acknowledgment

	Efficient Exact Arithmetic over Constructive Reals
	Introduction
	Basic Definitions and Algorithms
	Problems
	Addition Algorithm with Balanced Precision
	Algorithm with Precision Control
	Conclusions and Discussions

	Bounding Run-Times of Local Adiabatic Algorithms
	Introduction
	Preliminaries
	Perturbed Unordered Search
	The Bounds
	Global Evolution
	Local Evolution

	Conclusions

	A Note on Universal Composable Zero Knowledge in Common Reference String Model
	Introduction
	Related Works

	Preliminaries
	Concurrent General Composition Attack on UCZK in the Common Reference String Model
	The Protocol Structure of UCZK of [18]
	The CGC Attack

	Comments

	A Note on the Feasibility of Generalized Universal Composability (Extended Abstract)
	Introduction
	Preliminaries
	On the Hardness of Achieving Generalized UC
	The UCZK Protocol Implied by [8,9,11]
	A Simple State-Information-Sharing Attack
	Comments and Discussion

	Fixing Suggestion with Source/Session-Authentic Commitments

	t-Private and Secure Auctions
	Introduction
	Notation and Preliminaries
	t-Private Garbled Circuit Construction
	Security Against Active Attacks
	Dynamic t-Private Auctions
	Conclusions

	Secure Multiparty Computations Using a Dial Lock (Extended Abstract)
	Introduction
	Dial Locks
	Secure Multiparty Computations
	Our Results

	Secure Computations Using Dial Locks
	An Example
	Our Protocols
	Abstraction

	A Necessary Condition for Dial-Computable Functions
	Characterizing Symmetric Dial-Computable Functions
	Conclusions

	A Time Hierarchy Theorem for Nondeterministic Cellular Automata
	Introduction
	Nondeterministic Cellular Automata
	Time Hierarchy for Nondeterministic CA
	Universal CA
	Recursive Padding
	Recursively Padding CA and Their Languages
	Proof of Theorem 1

	Conclusion and Final Observations

	Decidability of Propositional Projection Temporal Logic with Infinite Models
	Introduction
	Propositional Projection Temporal Logic
	Normal Form of PPTL
	Normal Form Graph
	Definition of NFG
	Algorithm for Constructing NFG
	Finiteness of NFG

	Decision Procedure for PPTL Formulas
	Path and Satisfiability
	Decision Procedure

	Conclusion

	Separation of Data Via Concurrently Determined Discriminant Functions
	Introduction
	Model Development
	Experiments with Six Well-Studied Datasets
	Conclusion

	The Undecidability of the Generalized Collatz Problem
	Introduction
	Conway's Reduction
	Reducing a Counter Machine to a FracTran Program
	Reducing FracTran to GCP

	Improvements to Conway's Reduction
	Universal Totality
	Unintended Factors
	Our Main Result

	Combinatorial and Spectral Aspects of Nearest Neighbor Graphs in Doubling Dimensional and Nearly-Euclidean Spaces
	Introduction
	Graphs and Geometry
	Metric Spaces and Doubling Dimension
	Nearest Neighbor Graphs
	Graph Partitioning and Vertex Separators
	Laplacian and the Fiedler Value
	Singular Value Decomposition

	A Separator Theorem for Doubling Dimensional Spaces
	Shallow Minors
	Proof of Theorem 2

	A Spectral Theorem for Nearly-Euclidean Spaces
	Conclusion

	Maximum Edge-Disjoint Paths Problem in Planar Graphs
	Introduction
	Maximum Edge-Disjoint Paths Problem
	#P-Hardness

	An Efficient Algorithm for Generating Colored Outerplanar Graphs
	Introduction
	Preliminaries
	The Family Tree of Left-Heavy Outerplane Graphs
	Left-Heavy Outerplane Graphs
	The Family Tree

	Algorithm
	Generating Graphs by Adding a Type 1 or Type 2 Block
	Generating Children Graphs by Adding an Inner Edge

	Conclusion

	Orthogonal Drawings for Plane Graphs with Specified Face Areas
	Introduction
	Preliminary
	Drawings of Slicing Graphs
	Combined Decagon
	Outline of Algorithm

	Drawing of Rectangular Graphs
	Drawing of 3-Connected Plane Graph
	Conclusion

	Absolutely Non-effective Predicates and Functions in Computable Analysis
	Introduction
	Concepts from Computable Analysis
	Absolutely Non-open Sets
	Applications to Computable Measure Theory

	Linear-Size Log-Depth Negation-Limited Inverter for k-Tonic Binary Sequences
	Introduction and Summary
	Component Circuits/Networks
	Inverting the Inputs of a Comparator Network
	The Beals-Nishino-Tanaka Inverter
	Conditional Shifter

	Negation-Limited k-Tonic Inverter
	Overall Structure of the k-Tonic Inverter
	Reducing the Depth to $O(\log k \log\log n)$
	Reducing the Number of NOTs
	Negation-Limited k-Tonic Sorter

	Open Problems

	The Existence of Unsatisfiable Formulas in k-LCNF for k ≥ 3
	Introduction
	Minimal Unsatisfiable Formulas and Its Applications
	Construction of Linear Minimal Unsatisfiable Formulas
	Conclusions and Future Works

	Improved Exponential Time Lower Bound of Knapsack Problem Under BT Model
	Introduction
	A Glimpse on the BT Model
	A Description of the BT Model
	Lower Bound Strategies for the BT Model

	Improving Lower Bounds of Knapsack
	Lower Bound of Exact Algorithms
	Lower Bound of Approximation Algorithms

	Discussion

	Phase Transition of Multivariate PolynomialSystems
	Introduction
	Related Work
	Probability of No Solutions and of Exactly s Solutions
	Extension of the Results to $\mathbb{Z}/(pq)$

	Experimental Results
	Linearly Independent Equations
	Sparse Systems

	Equations from Cryptographic Systems
	Conclusions and Open Problems

	Approximation Algorithms for Maximum Edge Coloring Problem
	Introduction
	Problem Definition
	Motivation

	Preliminaries
	Approximation Algorithms for Case $q=2$
	Approximation Algorithms for Case $q>2$
	Conclusion

	Two Improved Range-Efficient Algorithms for F_0 Estimation
	Introduction
	Preliminaries
	Algorithm for Range-Efficient F_0 Estimation
	Extension: Max-Dominance Norm Problem
	Further Work

	Approximation to the Minimum Rooted Star Cover Problem
	Introduction
	Hardness
	Minimum Rooted Star Cover
	Minimum Rooted Star Cover
	Minimum Rooted Star Cover
	Better Approximation

	Discussion

	Approximability and Parameterized Complexity of Consecutive Ones Submatrix Problems
	Introduction
	Preliminaries
	Hardness Results
	$(*,\Delta)$-Matrices
	$(*, 2)$- and $(2, *)$-Matrices
	Future Work

	Parameterized Algorithms for Weighted Matching and Packing Problems
	Introduction
	Preliminaries
	An Algorithm for Weighted $m-set Packing$
	An Algorithm for Weighted $m-d Matching$
	Conclusions

	Kernelizations for Parameterized Counting Problems
	Introduction
	Definitions and the Concept of Counting Kernelizations
	Counting Kernelization

	p-#VertexCover and p-Card-#Hittingset
	Crown Rule Reduction for p-#VertexCover
	A Kernelization for p-#UniqueHittingSet
	Characterizing FFPT by Counting Kernelizations
	Concluding Remarks

	Revisiting the Impossibility for Boosting Service Resilience
	Introduction
	Background
	Problem Addressed
	Related Work
	Our Contribution
	Organization

	Preliminaries
	Sequential Types, Atomic Objects, and Services
	Shared Variable Systems with Services
	The Implementation of Consensus Objects

	Impossibility for Infinite Systems
	A Brief Review
	A Generalization to the Case of Infinite Systems

	Impossibility for Systems with Shared Variables
	Impossibility and the Idea for Its Proof
	The Construction of a Simulating System
	A Property of $T(C)$

	Conclusion

	An Approximation Algorithm to the k-Steiner Forest Problem
	Introduction
	Our Results and Techniques

	The Coupling Greedy Algorithm for Set k-Cover
	Approximating k-Steiner Forest
	Find Cost-Effective Covering Tree
	The Greedy Algorithm for k-Steiner Forest

	Discussion

	A Distributed Algorithm of Fault Recovery for Stateful Failover
	Introduction
	High Availability Framework for k-Fault Tolerance
	Network and Fault Model
	Framework

	Automated Fault Recovery
	Distributed Algorithm
	Analysis of the Algorithm

	Formal Verification of the Distributed Algorithm
	Conclusion
	Appendix
	Harary Graph

	Path Embedding on Folded Hypercubes
	Introduction
	Preliminaries
	Three Edge-Fault-Tolerant Properties
	Edge-Fault-Tolerant Hamiltonian-Connectivity
	Edge-Fault-Tolerant Hyper Hamiltonian-Laceability

	Concluding Remarks

	An Approximation Algorithm Based on Chain Implication for Constrained Minimum Vertex Covers in Bipartite Graphs
	Introduction
	Approximation Algorithms for the Min-CVCB Problem
	Related Definitions and Lemmas
	The AACI-D Algorithm
	Putting All Together
	Conclusions

	Author Index

