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Abstract. In this paper, we investigate the effectiveness of different
types of bidding behaviour for trading agents in the Continuous Dou-
ble Auction (CDA). Specifically, we consider behavioural types that are
neutral (expected profit maximising), passive (targeting a higher profit
than neutral) and aggressive (trading off profit for a better chance of
transacting). For these types, we employ an evolutionary game-theoretic
analysis to determine the population dynamics of agents that use them
in different types of environments, including dynamic ones with market
shocks. From this analysis, we find that given a symmetric demand and
supply, agents are most likely to adopt neutral behaviour in static en-
vironments, while there tends to be more passive than neutral agents
in dynamic ones. Furthermore, when we have asymmetric demand and
supply, agents invariably adopt passive behaviour in both static and dy-
namic environments, though the gain in so doing is considerably smaller
than in the symmetric case.

1 Introduction

The last decade has seen a significant change in the nature of electronic com-
merce with the emergence of trading agents [6], software that is capable of au-
tonomous and flexible action to achieve its objectives and that is endowed with
sophisticated strategies for maximising profit in different types of market mech-
anisms. Now, one of the most important such mechanisms is the Continuous
Double Auction (CDA) [4], a symmetric auction with multiple buyers and sell-
ers. CDAs are so important because they are the principal financial institution
for trading securities and financial instruments (e.g. the NYSE and the NAS-
DAQ both run variants of the CDA institution). However, developing agents
that can participate in the CDA is difficult because it is not amenable to a
game-theoretic analysis and there is no known optimal strategy [4]. Therefore,
a number of heuristic strategies have been proposed [12,11,14], each of which
has a particular behaviour in the market. Given this, in this paper, we are not
concerned with developing yet another strategy, but rather we are interested in
how a particular characteristic of such strategies impacts upon their behaviour
and their effectiveness. The characteristic in question is the aggressiveness of
the bidding behaviour, here defined as how eager an agent is to transact. We
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focus on aggressiveness in particular because we believe it is a key determinant
of success in the market. In particular, we consider three behavioural types1:

1. The neutral agent always submits the quote (a bid or an ask) that maximises
its expected profit. This is the most common type of behaviour and is one
that is often hardwired into various strategies.

2. The passive buyer (seller) submits a lower (higher) quote than its neutral
counterpart in order to try and obtain a more profitable transaction. Thus if
it does transact, it makes more money because it pays less (if it is a buyer)
or receives more (if it is a seller).

3. The aggressive buyer (seller) submits a higher (lower) quote than its neutral
counterpart in order to try and improve its chances of transacting as it offers
more (if it is a buyer) or asks for less (if it is a seller) with the aim of making
sure that it can trade.

At this time, comparatively few researchers have considered the issue of vary-
ing aggressiveness in a market context. Abreu et al. [1] describe the evolutionary
stability of behaviours in a reputational model of bargaining, and how players
can be more profitable when adopting passive or aggressive behaviour. Thus,
while they show that this attitude can have a significant effect on the outcomes
experienced, they do not consider the CDA. Walsh et al. do consider the CDA
and they use an evolutionary game-theoretic (EGT) analysis to examine the in-
teraction of a number of common strategies [15,16]. Thus, their analysis provides
an insight on the population proportion that will adopt each strategy. But, while
they restrict their analysis to a particular set of well-known strategies, we are
more interested in whether a particular strategy can perform better if it is pas-
sive, neutral or aggressive. Phelps et al. [9] also use an EGT analysis, but they
compare two double auction mechanisms, the call and continuous, given that
similar strategies are available for both mechanisms. Thus, they are interested
in the performance of double auction mechanisms given particular strategies
(including one that is evolved using a GA).

Against this background, we believe this study of behavioural types is impor-
tant because it provides an insight into how this fundamental aspect of bidding
behaviour affects the system’s performance. Thus, these results apply to any
CDA strategy that is capable of adjusting its behaviour along this dimension
(e.g. GD [5], ZIP [3] or RB [14]). Such insights are important because if an agent
can be more profitable by deviating to another behaviour, then it will do so.
However, with every agent in the market doing this, the population distribution
of types can change significantly. Now, an effective trading agent can use knowl-
edge of such dynamics to decide on what behavioural type to adopt given the

1 The nomenclature for the different behaviours varies over the literature, with some
like Abreu et al. [1] considering passive and aggressive behaviours and others like
Byde [2] considering the behaviour of different risk attitudes. However, they all
refer to some similar behaviour. For example, a risk-averse agent adopts aggressive
behaviour to improve its chance of winning, while a risk-seeking agent adopts passive
behaviour to target higher profits. The risk neutral agent adopts a neutral behaviour.
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particular population distribution of types. Furthermore, because behavioural
aggressiveness is usually an endogeneous aspect of a strategy, such an analy-
sis can assist the strategy designer when assessing the effectiveness of various
strategies. To perform our analysis, we adopt a similar EGT approach to that
of Walsh et al and we choose EGT because it allows us to study the dynam-
ics of the CDA when agents are allowed to evolve in terms of the behaviour
they adopt. To do this, however, we need to describe the model in a form that
abstracts the complex bidding that the CDA mechanism entails, into a simple
normal-form game. By so doing, the CDA then becomes amenable to such an
analysis. In particular, we develop a set of strategies that vary only in terms of
their different behavioural types.

In Section 2, we formally define the CDA mechanism we use in this work and
then in Section 3 we describe how we model the behavioural type of a strategy.
In Section 4, we detail the model we use for our EGT analysis and in Section 5
we provide our actual analysis. Section 6 concludes.

2 The Continuous Double Auction

The CDA mechanism allows agents to submit quotes at any time during the
auction, and a transaction can occur whenever a buyer’s bid and a seller’s ask
can be matched. We conform to previous studies on the CDA in terms of our
experimental setup [10,12]. In particular, a set of limit prices is endowed to
buyers and sellers and these determine the market demand and supply. Thus,
a desired demand and supply can be induced with the appropriate endowment
to get the desired environment. Furthermore, the CDA consists of a number of
fixed-duration trading periods (or trading days) at the beginning of which an
agent is given an endowment to buy or sell. The CDA protocol includes the
NYSE spread-improvement rule requiring that any bid (ask) submitted must be
higher (lower) than the outstanding bid2 (ask). Because of the non-deterministic
nature of the CDA, payoffs to trading agents are averaged over a sufficient num-
ber of simulations to obtain statistically significant results, as computed by the
Wilcoxon rank sum test (see Section 5).

3 Modelling the Behavioural Types

Software trading agents are usually designed to employ neutral bidding strate-
gies. However, as discussed in Section 1, we are interested in the effect on the
market if trading agents are also designed to be non-neutral and instead have
passive or aggressive bidding behaviour. To this end, we model such behaviours
by modifying the widely used GD strategy [5]. We choose this strategy out of
all those available [12,3,14] because it is one of the most efficient [12] and it can
readily be extended to incorporate different bidding behaviours. However, we
2 The outstanding bid, obid, is the current highest bid and the outstanding ask, oask,

is the lowest ask in the market.
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could equally well have chosen any CDA strategy that can be suitably adjusted
to model passive or aggressive behaviour, and our results generalise to these
cases (not shown due to space restrictions).

Now, in the original GD strategy, while all GD agents have the same belief
about the market, they form a neutral expected utility-maximising quote based
on their own private preferences. In this section, therefore, we detail the GD
strategy and how we modify it to be either passive or aggressive (in addition to
its standard neutral perspective).

In more detail, the GD agent has a belief that its quote to buy or sell will
be accepted in the market. The agent then submits the price that maximises
its expected utility. The utility of a quote is the profit associated with such a
quote given the agent’s private preferences (limit price, �). The GD agent forms
its belief on the basis of observed market information, HM , that includes the
frequencies of accepted quotes (transactions) and rejected quotes. Furthermore,
the belief encompasses some form of recency so that only the most recent quotes
during the past L transactions are considered. We now formally state the buyer’s
belief, q̂(b), associated with a bid b, and seller’s belief, p̂(a), associated with an
ask a:

Fig. 1. (a) Seller’s belief, p̂(a), that an ask a will be accepted in the market. (b) Buyer’s
belief, q̂(b), that a bid b will be accepted in the market.

Definition 1. Bid Frequencies: D is the set of all permissible quotes in the
market. ∀d ∈ D, B(d) is the total number of bid quotes made at price d, TB(d)
is the frequency of accepted bids at d, and RB(d) the frequency of rejected bids
at d.

Definition 2. Ask Frequencies: D is the set of all permissible quotes in the
market. ∀d ∈ D, A(d) is the total number of ask quotes made at price d, TA(d)
is the frequency of accepted asks at d, and RA(d) the frequency of rejected asks
at d.

q̂(b) =

∑

d≤b TB(d) +
∑

d≤a A(d)
∑

d≤a TB(d) +
∑

d≤a A(d) +
∑

d≥a RB(d)
(1)
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p̂(a) =

∑

d≥a TA(d) +
∑

d≥a B(d)
∑

d≥a TA(d) +
∑

d≥a B(d) +
∑

d≤a RA(d)
(2)

We use a cubic spline interpolation to calculate the belief at prices that are
not registered in HM (see [5] for further details). The seller’s belief function
is then modified to satisfy the NYSE spread-improvement rule (see Section 2).
Thus, for any ask that is higher than the current outstanding ask, the belief
function is set to 0. Similarly for the buyer, the belief that any bid below the
outstanding bid is accepted is 0. An example of a buyer’s and a seller’s belief
function is shown in Figure 1.

Given its belief function and neutral behaviour, the GD agent forms a quote
that maximises its expected utility. In particular, the buyer’s utility, Ub(b), for a
bid b is given in Equation 3 and the seller’s utility, Us(a), for an ask a in Equation
4. In both cases, the expected utility is the product of the belief function and
the utility function, and the bid b∗ or ask a∗ to submit is computed as the price
that maximises the expected utility, as shown in Equation 5.

Ub(b) =
{

0 if b ≤ �
(� − b) otherwise (3)

Us(a) =
{

0 if a ≤ �
(a − �) otherwise (4)

b∗ = argmaxb∈(oask,obid) [Ub(b)q̂(b)]
a∗ = arg maxa∈(oask,obid) [Us(a)p̂(a)] . (5)

To modify the GD strategy so that it embodies the other behavioural types,
we alter the agent’s utility as a function of its limit price, �, and some scalar pa-
rameter, θ, that represents its aggressiveness in the market. The new aggression-
sensitive utility functions, ˜Ub(b) and ˜Us(a) for buyers and sellers respectively, are
given in Equations 6 and 7. Here, we vary θ from negative to positive to describe
passive to aggressive behaviour, with θ = 0 describing neutral behaviour. By
way of an illustration, Figure 2 shows the different utility functions for passive
(θ = −1), neutral (θ = 0) and aggressive behaviour (θ = 1) for the buyer and
the seller.

˜Ub(b) =
{

0 if b ≤ �

(� − b)e
θb
� otherwise

(6)

˜Us(a) =

⎧

⎨

⎩

0 if a ≤ �
1 if a > amax

(a − �)e
θ(amax−a)

amax−� otherwise
(7)

Before we proceed to our EGT study of behaviours, we evaluate our new
space of GD strategies to ensure that they remain reasonably efficient compared
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Fig. 2. (a) Seller’s utility Us(a) for an ask a and � = 2.0. (b) Buyer’s utility Us(b) for
a bid b and � = 4.0. The utility is given as a function of the agent’s limit price, �, and
the aggressiveness in bidding behaviour. θ = −1 describes passive behaviour, θ = 0
neutral behaviour, and θ = 1 aggressive behaviour.

to their neutral counterpart. We do so in a homogeneous environment with
a typical symmetric demand and supply. Specifically, we examine the market
efficiency3 of the CDA with a 10-buyer and 10-seller homogeneous population
with similar behaviour. To this end, Figure 3 gives the market efficiency over the
aggressiveness parameter θ and different numbers of allocations to buy or sell.
The latter gives an insight on how efficiency changes as the number of expected
transactions in the market increases with larger allocations given to the traders.
As can be seen, as the market size increases with the number of tradeable units,
the market efficiency increases for all behaviours. However, all agents adopting
neutral behaviour does indeed maximise market efficiency in all cases. Passive
behaviour is slightly less profitable while aggressive behaviour performs worst.
Thus, Gjerstad and Dickhaut’s decision to make GD neutral is validated in such
a homogeneous environment (and indeed this is the result that they report in
[5]). However, we cannot assume that all agents will remain neutral, as if it
profits an agent to deviate to another behaviour, it will do so.

Given this, the question that naturally follows is whether an agent can in-
deed improve its performance by adopting a different behavioural type. Now, to
answer that question, we use an evolutionary game-theoretic analysis, which we
describe in the next section.

4 An Evolutionary Game-Theoretic Model

Evolutionary game-theory has traditionally been used to analyse simple games
(such as the Prisoner’s Dilemma) in terms of the dynamics of the population of
learning agents playing different strategies [17]. Here, however, we are interested
in a much more complex game and so a slightly different model is needed. In
particular, as explained in Section 1, we use Walsh et al.’s model which involves

3 The market efficiency is the ratio of actual total profit of all agents to the maximum
profit that could be extracted in the market.
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Fig. 3. Market efficiency given a homogeneous population of agents with similar be-
havioural type. We consider 3 different set of experiments with agents allocated 1, 5
and 10 limit prices.

considering the action of an agent as playing its bidding strategy during a game
(lasting several trading days) and the payoff as being the total profit at the
end of the game. Furthermore, they describe these payoffs as being heuristic
because they are the output of a mapping of the strategies through a complex,
non-deterministic interaction of the trading agents.

Given this, we first describe how we compute the heuristic payoff table that
details the expected payoff to each agent (as a function of the S strategies that
agents are allowed to play, and the combination of the A agents playing those
strategies). We then describe how we use this table to compute the mixed Nash
equilibrium of the game and the well-documented replicator dynamics model [17]
(which is a standard way of representing the population distribution changes).

4.1 Computing the Heuristic Payoff Table

With the heuristic payoff table, we are interested in the expected payoff of a
player playing a strategy, j, given the strategies adopted by the other (A − 1)
players. Now, because of the non-deterministic and complex nature of the CDA
game, some simplifications are required:

1. The payoff of a strategy is the average payoff of an agent playing that strategy
in the CDA game, given the different strategies all the A agents are playing
in that game.

2. All agents have the same set of strategies to play, andhave the samepayoffwhen
playing the samestrategy.Thus, asdescribed in [16],wecanrestrictouranalysis
to symmetric games [17], and significantly reduce the complexity of the prob-
lem. Rather than having a table of size SA, we reduce it to

(

A+S−1
A

)

entries.
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Given these, we build our heuristic payoff table4 by considering the exhaus-
tive set of strategies the A agents can play, and the number of agents playing
each strategy (rather than considering which strategy each of the A agents is
playing). Now, because payoff in the CDA game is non-deterministic, we require
a significant number of independent simulations for each table entry to ensure
that these are statistically significant. Thus, for each entry, we run a number of
CDA games (typically 1000) with A agents, each assigned a strategy and a type
(buyer or seller) to play, ensuring there is an equal number of buyers and sellers,
with a probability of 0.5 that there will be an additional buyer or seller if A is
odd.

Given our payoff table, we can now proceed with an EGT analysis as we would
with a normal-form game.

4.2 Computing the Equilibrium

Here, we describe how to compute the mixed Nash equilibrium of the CDA
game. An agent i chooses the strategy it plays according to its mixed-strategy,
p̂i = (p̂i,1, ..., p̂i,S) and

∑S
j=1 p̂i,j = 1, where p̂i,j represents the probability that

agent i plays strategy j. At the equilibrium, p̂∗i , an agent i cannot receive a
higher payoff by unilaterally deviating to another mixed-strategy, assuming that
the other agents do not change their strategies [17]. Now, because we assume a
symmetric game, all agents have the same mixed-strategy and the same mixed
Nash equilibrium. Furthermore, because we are considering a very large popula-
tion, we can validate that p is equal to the mixed-strategy. Given this, we denote
both the population distribution and the mixed-strategy as p = (p1, ..., pS), and
the mixed Nash equilibrium as p∗ hereafter.

In our EGT analysis, we denote the expected payoff of an agent playing a strat-
egy j, given the mixed-strategy p, as u(ej , p). To compute u(ej , p), we consider
the results from a large number of CDA games with an agent playing strategy j
and (A − 1) agents selected from the population, with a mixed-strategy p. For
each game and every strategy, we average5 the individual payoffs (obtained from
our heuristic-payoff table) of agents using strategy j. The mixed Nash equilib-
rium is then formulated as the argument to the minimisation problem given in
Equations 8 and 9. Specifically, p∗ is a mixed Nash equilibrium if and only if it is
a global minimum of v(p) [16,8], and we can validate that p is a global minimum
if v(p) = 0.

v(p) =
S

∑

j=1

(

max
[

u(ej, p) − u(p, p), 0
])2

(8)

4 A table entry for a 20-player game with 3 strategies would be (|S1|, |S2|, |S3|,
U1, U2, U3) where Sj is the set of agents playing strategy j, |Sj | is the number of
agents playing strategy j, and Uj is the average payoff of an agent playing strategy
j. Note

∑3
j=1 |Sj | = 20 and we have 231 entries.

5 In effect, here, we are not running the CDA game for every simulation, but only
selecting the appropriate payoff from our heuristic payoff table each time.
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where u(p, p) =
∑S

j=1 u(ej , p)pj is the average payoff of an agent in a population
with distribution p.

p∗ = arg min
p∈Δ

[v(p)] (9)

Solving such a non-linear minimisation problem is non-trivial and computa-
tionally demanding. Thus, we use a method provided by the Matlab optimization
toolbox based on the Nelder-Mead method to find the zero-points of the func-
tion v. Because the algorithm used is a non-linear local minimiser, we restart
the algorithm repeatedly at random points within the unit-simplex until no new
equilibria are found for 20 runs.

Now, while the mixed Nash equilibrium gives a theoretical and static per-
spective of our simplified CDA game, the dynamics of the game and how the
equilibria are reached often provide more insight. Given this, we turn to the
replicator dynamics which have been shown to be a good model for a common
kind of agent learning (namely Reinforcement Learning) [13] and describes how
agents learn to reach the equilibrium.

4.3 Computing the Replicator Dynamics

The replicator dynamics, ṗ = (ṗ1, ..., ṗS), describe how the population distribu-
tion p (where p = (p1, p2, ..., pS), p ∈ Δ is an element of a unit-simplex, Δ, and
∑S

j=1 pj = 1) changes. This approach assumes that an agent deviates to another
strategy that appears to be receiving a higher payoff. Specifically, ṗ is a vector
given as follows:

ṗj =
[

u(ej, p) − u(p, p)
]

pj (10)

The replicator dynamics show us the strategy trajectories and how they con-
verge to an equilibrium, though they do not necessarily settle at a fixed point (see
[17]). In this context, an equilibrium to which trajectories converge, and settle, is
known as an attractor, while a saddle point is an unstable equilibrium at which
trajectories do not settle. The region within which all trajectories converge to
a particular equilibrium is known as the basin of attraction of that equilibrium.
The basin is a very useful measure of the adoption of the attractor equilibrium
and how likely the population is to converge to that equilibrium.

Here, we compute ṗ by starting at different population distributions p inside
the unit-simplex and following the trajectory given by Equation 10.

5 An Empirical Analysis of the Behavioural Types

In these experiments, we compute the heuristic-payoff table for a 20-agent CDA
game with 3 strategies and lasting 10 trading days. At the beginning of each
day, buyers and sellers are each endowed with a single limit price drawn from
uniform distributions Ub and Us respectively. For the purposes of this paper, we
consider different uniform distributions to model representative (symmetric and
asymmetric) small markets (similar to those considered in previous studies on
the CDA [5,3,14]):
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– Market 1: Ub = U(1.5, 4.5) and Us = U(1.5, 4.5). This is a symmetric market
that has an expected equilibrium at 3.0.

– Market 2: Ub = U(2.5, 5.5) and Us = U(2.5, 5.5). This is a symmetric market
that has an expected equilibrium at 4.0.

– Market 3: Ub = U(1.5, 4.5) and Us = U(2.8, 3.2). This is an asymmetric
market in which the slope of the supply curve is greatly reduced (compared
to market 1). The equilibrium is expected at 3.0.

We model a market shock by changing the demand and supply on trading day
6 (and the new demand and supply then remain the same for the ensuing trading
days). In particular, we consider two market shocks, MS12 where demand and
supply changes from Market 1 to 2 and MS13 where it goes from Market 1 to 3.
The former is a market shock that simply results in an increase in equilibrium
price, but produces no change in the symmetry of market. The latter is a more
complex shock as the structure of the demand and supply changes, though the
equilibrium price does not.

We split our analysis into static and dynamic environments to compare our
interpretations of their dynamics. For the former, we consider one symmetric
market (1) (the results are similar for Market 2) and the asymmetric market (3).
For the latter, we consider both types of market shocks. We validate our result
by running a Wilcoxon rank sum test [7] on randomly selected entries covering
10% of our heuristic payoff table in order to ensure statistical significance of
our data. In some experiments where the change across the heuristic payoff
table is particularly small (e.g. in Market 3), 2000 simulations were required for
significance.

Now, because we are considering only 3 strategies (each corresponding to
a behavioural type), the population distribution space is a unit-simplex in a
three-dimensional space. Thus, we can visualise the replicator dynamics ṗ and
the equilibria p∗ by projecting the simplex onto a two-dimensional space [17].
The contour shading in our simplex is proportional to the magnitude of ṗ.

5.1 Static Environments

We first analyse behaviours in the CDA when there are no market shocks. In Mar-
ket 1, we have 2 attractors at A and C and a saddle point at B (see Figure 4). As
can be seen, the basin of attraction of C is considerably larger than that of A.
This means the majority of the trajectories converge to neutral behaviour, with a
non-significant proportion settling at passive. We can see that neutral behaviour
is evolutionarily stable in symmetric markets and so most agents are likely to grav-
itate towards it. Thus, as a designer in such situations, the best thing is to do is
make your agent neutral.

Now, when we consider the dynamics in asymmetric Market 3, we find a single
attractor at A (see Figure 5). Thus, all trajectories converge towards passive
behaviour. However, we note that the magnitude of the dynamics is considerably
smaller compared to that in Market 1. This reflects the comparatively small
gain that the agent achieves in Market 3 as it slowly adopts the evolutionary
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Fig. 4. The replicator dynamics of a CDA game in Market 1. Here, we have 3 equilibria
with attractors at A=(1, 0, 0) and C=(0, 1, 0) and a saddle point at B=(0.95, 0.05, 0).

stable passive behaviour. Here, we can interpret the small gain as follows. At a
particular population distribution, the agent might intend to deviate in opposing
directions from a buyer’s and a seller’s perspective, particularly because of the
asymmetry in the market. Because an agent can be either a buyer or a seller
with the same behavioural type, the deviation is a composite of the buyer’s
and seller’s intentions, which explains the small gain as the dynamics converge.
Having said this, however, it is still more profitable for an agent to be passive
in asymmetric markets, and it should be designed as such.

5.2 Dynamic Environments

The neutral GD strategy has been shown to react well to simple symmetric mar-
ket shocks [5] in a homogeneous environment. Here, however, we are interested
to see whether agents will still adopt neutral behaviour in the presence of market
shocks, or whether there are behaviours that are more profitable in such dynamic
environments.

With market shock MS12, we have 2 attractors at A and C, and a saddle point
at B (see Figure 6), with a relatively larger basin of attraction for equilibrium
A. Here, there are more agents that are likely to be passive than neutral, though
they might all adopt neutral behaviour if there are insufficient passive agents in
the market. Thus, it can be more profitable not to be neutral all the time when
there are simple market shocks. The strategy designer can use the knowledge
of how the dynamics reach the equilibrium to decide what strategy the agent
should adapt given the population distribution of behaviours.
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Fig. 5. The replicator dynamics of a CDA game in Market 3. Here, we have an attractor
equilibria at A=(1, 0, 0) and C=(0, 0.29, 0.71) and a saddle point at D=(0, 0.51, 0.49).
Note that the magnitude of the replicator dynamics is very small compared to that of
Market 1.

Fig. 6. The replicator dynamics of a CDA game and market shock MS12. Here, we
have an attractor equilibrium at A=(0.56, 0.44, 0) and C=(0, 1, 0), and a saddle point
at B=(0.16, 0.84, 0).
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Fig. 7. The replicator dynamics of a CDA game and market shock MS13. Here, we
have an attractor equilibrium at A=(1, 0, 0).

With market shock MS13, we have a single attractor at A. Here, all the agents
very slowly, but eventually, adopt passive behaviour. However, there is compar-
atively little to be gained in moving towards the evolutionary stable passive be-
haviour (for the same reasons we outlined in our discussion of Market 3).

6 Conclusions and Future Work

As electronic marketplaces become ever more common, we believe software
agents will increasingly come to dominate the trading landscape. Their ability to
quickly make informed decisions, based on the available data, make them ideal
candidates for automated trading. To this end, analysing the impact of varying
one of the fundamental characteristics of their bidding behaviour in a range of
market situations is an important step. In particular, in this paper, we show
that in a symmetric market, an agent is more likely to adopt an evolutionary
stable neutral behaviour. However, when there are market shocks that increase
the equilibrium price but maintain the symmetry of the market (meaning agents
have to update their beliefs of the market) neutral is no longer the behaviour
agents are most likely to adopt. In this case, more agents change to being pas-
sive. We also observe that changing behaviour is not particularly profitable for
an agent in an asymmetric market.

For future work, we intend to look at other types of symmetric and asymmet-
ric demand and supply, and other types of market shock in order to obtain fur-
ther insights into how a trader’s behaviour changes in yet other types of market.



116 P. Vytelingum, D. Cliff, and N.R. Jennings

For completeness, we also aim to address the limitation of our model where
an agent has the same behavioural type when it is both a buyer and a seller.
In particular, we believe that separately analysing these two roles can be more
insightful, particular in asymmetric markets, where we do not expect the same
behaviour from them.
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