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Abstract. This paper focuses on the Coalition Formation paradigm as
a market mechanism. Concretely, Coalition Formation occurs as part of
a wider open world and may occur many times during the lifetime of a
population of agents. This fact can in some circumstances be exploited
by agents to re-use existing partial coalition and social relationships over
time to improve Coalition Formation efficiency. The aim of the work is
to analyze the dynamics of two concrete rational behaviors (Competitive
and Conservative strategies) and, in particular, to investigate how agents
in a heterogeneous population cluster together across multiple Coalition
Formation episodes and varying tasks. Preliminary resuls are also shown
regarding the manner in which playing distinct strategies interact with
one another.

1 Introduction

One branch of economics research investigates how specific market situations
force certain behaviors in their participants. A common example of this phe-
nomenon is Smith’s Invisible Hand, under which, in competitive market scenar-
ios, traders are forced to set the prices where the supply meets the demand [13].
This specific situation does not appear too often in its pure form, and traders
must often choose in what could be a large space of different pricing strategies.

The majority of agent-based research in the Economics area, focuses on study-
ing strategy interactions and dynamics given a certain market. In this paper we
focus on the related question of strategies and dynamics in market mechanism
scenarios where Coalition Formation is required. Coalition Formation is a prob-
lem which has been extensively studied from Multi-Agent Systems perspective.
The problem centers on finding subsets of agents from a general population to
form groups which can most effectively carry out a particular task. The area in-
cludes research on a variety of different fronts, including problems such as finding
core allocations of payoff between the members of a coalition [1], finding stability
properties between coalition structures [7], finding solutions to a problem in a
cooperative way [5], or finding solutions to a coalition problem in a competitive
way, where coalitions compete amongst themselves for a payoff [12].
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In the market mechanism we suggest here, coalition formation occurs as part
of a wider open world and may occur many times during the lifetime of a popula-
tion of agents. As shown in [12] this fact can in some circumstances be exploited
by agents to re-use partial coalition and social relationships over time to improve
Coalition Formation efficiency. Such a broader perspective however raises inter-
esting questions for coalition formation environments. This paper goes further in
analyzing the dynamics of two concrete rational behaviors, a Competitive Strat-
egy and a Conservative Strategy within such an environment. These strategies
are common examples of rational behavior in economic markets. Whilst there are
more complex strategies, these two already show significant interesting behavior.

This type of continuously running market environment requiring coalitions
reflects a large number of real world scenarios such as bidding for construc-
tion projects, the formation of consortia for product development or strategic
alliances in emerging markets. In this context we aim to answer the following
questions:

– To what extent do specific strategies affect the type of coalitions formed?
– To what extent do specific strategies affect the stability properties of the

system?
– How do different agents with different strategies affect each other when they

interact?
– Which strategies benefit agents and the general population more in which

situations?

The paper is structured as follows: Section 2 explains the concrete market
mechanism we are using, the Iterative RFP Coalition Formation method as well
as examples to illustrate the method. Section 3 explains the agent based system
designed to model the Iterative RFP Coalition Formation Method. Section 4
explains the characteristics of the strategies we are testing in this paper, and
analyzes them from a theoretical perspective. Section 5 explains the experimental
setup and the results obtained to underpin the theoretical analysis and to provide
some new information. Section 6 covers related work and finally, Sections 7 and
8 provide conclusions and ongoing / future work repsecitvely.

2 Iterative RFP Coalition Formation Method

As the basis for experimentation, analysis in this paper adopts a model of worlds
based on Request For Proposal (RFP from now on) scenarios. This model was
first studied by [11], and further explored in [12]. In this environment, an entity
or entities regularly issues a call for tender to provide specific goods or services
with certain characteristics. Providers compete amongst themselves (either in-
dividually or in cosortia – coalitions). Providers and/or coalitions bidding for a
particular call are ranked according to an evaluation of their skills for the task,
and receive a payoff according to their placement in the ranking.

There are many existent real systems that follow the RFP type procedures
such as public building projects, competitive tender for government contracts
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or even collaborative research project grants. RFP environments can also be
seen as emerging market opportunities in an economy, with individual calls for
tender representing new opportunities for profit. Such system are characterized
as follows:

– Agents, or groups of agents compete for a given goal.
– The best agents, or groups of agents are rewarded with the award of the

contract to carry out the task and its subsequently payoff.
– Some systems, may also have policies for rewarding 2nd, 3rd, 4th etc. ranked

agents / groups of agents.
– The process repeats over time.
– The objective agents are competing for varies over time – with different CFPs

issued corresponding to functionally different tasks. In this way, an agent or
a group of agents that were very competent for a certain goal, could become
weak for a different one.

– Groups could be dynamic and might change depending on the market situ-
ation.

– Agents are individual utility maximizers. And share the same preference,
that is payoff maximization, but might have different strategies for maxi-
mizing their utility.

A protocol with the described characteristics could also potentially be used as
a service composition mechanism in an automated environment where agents
representing services team up to compete with other teams to present the most
competitive package of services given certain requirements.

3 Problem Definition and Agent Based Models

For the purposes of this paper, the problem is formalized in the following way: In
every game g there is a task Tg that is defined by a set of K tuples. Each tuple
represents an skill and its corresponding demanding value for the named task:

Tg = {〈sk0, Tg0〉, 〈sk1, Tg1〉, . . . , 〈skK , TgK〉}
Every agent Ai in the population has a certain expertise degree in each of the
K skills that task Tg is defined with:

Ai = {〈sk0, Ai0〉, 〈sk1, Ai1〉, . . . , 〈skK , AiK〉}
A coalition Cj is a a set of one or more agents {Ax, .., Az}. Agents’ skills are
aggregated in the coalition in such a way that the resultant values of that ag-
gregation represents the skills of the coalition entity. This is noted as:

Cj = {〈sk0, Cj0〉, 〈sk1, Cj1〉, . . . , 〈skK , CjK〉}
The concrete aggregation function used is:

Cjp = max
∀q:Aq∈Cj

Aqp Having 0 ≤ p ≤ K. (1)
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We could consider each skill as a necessary subtask for performing task Tg. In
this way, by using the aggregation function shown in equation 1, the agent in a
coalition which is the best fit for performing a certain subtask will be in charge
of it.

Amongst the different possibilities for aggregating agent skills in a coalition,
function 1 has been choosen as is a reasonable metaphor of many real coalitional
processes. For example, if we consider a consortium of partners participating in
a call for proposals, each member of the consortium will be representative of a
certain part of the proposal, and normally is the partner best fitted for that part
of the work.

Coalition Cj is endowed with a certain score scr(Cj , Tg). This score is negative
if the coalition is non competent in all the skills for performing the task (∃p :
(0 ≤ Cjp < Tgp)), and is positive otherwise. More concretely, the functions used
for the case of existence of non competent skills in the coalition is:

scr(Cj , Tg) = −#skp : (0 ≤ Cjp < Tgp) (2)

When Coalition Cj is competent in every skill (∀p : (0 < Tgp ≤ Cjp)), the
function used is:

scr(Cj , Tg) =
K∑

p=0

Cjp − Tgp (3)

As we can see in Equation 2, the score of a coalition with some non competent
skill (non competent coalition), is the negative value of the number of non com-
petent skills. In this way, the more skills in which the coalition is not competent,
the lower its score will be.

In Equation 3, we can see that the score of a coalition, competent in every
skill (competent coalition) is the sum of excess value in every requested skill. In
both equations, we can see that only those skills with value higher than 0 count
for their evaluation. Those with values equal to 0 are ignored. This represents
the fact that some tasks do not need a certain skill to be performed, and so
the degree of ability of a coalition in that skill is not taken into account for its
evaluation.

There is non-linear mapping from coalition score to coalition payoff, as in our
model, the payoff of a coalition does not depend only on its score but also on
the scores of other coalitions. All coalitions are decreasingly ordered by score,
and are priced according to their rank with an exponentially decreasing amount
from the best one to the worst. Agents within a coalition spread the coalition
payoff evenly. The concrete payout function we use is:

pay(rank) =
{

MaxAmount/2rank−2, for the last competent coalition
MaxAmount/2rank−1, for the other competent coalitions

(4)

Amongst the different possibilities for doing the mapping, this concrete expo-
nential function has been chosen for two reasons: first, because this function has
the property that, independently of the number of competent coalitions, the to-
tal amount of money spread will always be MaxAmount. This is an interesting
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property in order to compare the economic behavior of different populations. The
second reason is because this represents an exponential distribution of wealth for
which there is empirical evidence from Real Economies (see [6]). This function
creates a rich set of possible scenarios in which coalitions optimize their trade-offs
between score and size, growing in size only when it is valuable to do so.

For every game, a subset of agents are asked at random about an action to
take towards its membership in a coalition. The choices that an agent has are:

– Stay in the coalition.
– Stay in the coalition optimizing it by firing (expelling) one or more members.
– Leave the coalition in order to join a different one.
– Leave the coalition in order to replace one or more agents in a different one.
– Create a new coalition.

When an agent’s decision involve firing or replacing an agent, this action is
submitted to the coalition who will evaluate it. In order to get the action accepted
and executed, it must be approved for more than the half of the members of the
coalition affected, otherwise the action is rejected and not performed. In that
case that an agent is fired or replaced, it automatically becomes the only member
of a brand new coalition.

When agents are requested to perform an action they are able to submit as
many proposals as they want, if none of them is accepted the agent remains in
the same coalition.

Agents are farsighted in the sense that they know the score and payoff values
of any action the agent wants to consider prior to its submission.

4 Conservative and Competitive Strategies

This paper shows results on the different outcomes obtained by using two differ-
ent strategies: competitive and conservative. Agents who choose a conservative
strategy make decisions on which coalition to join based on the payoff this coali-
tion is expected to have. Agents who choose a competitive strategy make deci-
sions on which coalition to join based on the score that this coalition is expected
to have. Both strategies are myopically rational, as when an agent using some
of those strategies is asked to make a choice, it counts with all the information
available at that instant of time, concretely, they have the information on po-
tential payoff and score of any coalition they could create by carrying out any of
the 5 possible actions defined in the previous section, but they do not count on
the possible reactions of the other agents after its decision has been performed.

Both strategies are arguably rational. For the case of conservative strategy, it
makes sense to choose the most profitable coalition at a certain time, expecting
that the situation will not change until the end of the game. For the case of
competitive strategy, it makes sense to join the coalition with highest score, as
even if the payoff is worse than in another coalition with lower score but fewer
members to share the benefit, a new member could be attracted by this growing
score coalition and make it grow in the ranking and gain a higher payoff. In
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other words, for the case of conservative strategy, the agent expects to get the
maximum payoff at any time, while for competitive strategy, the agent invests
for a future better payoff as a side effect of being in a highly competent coalition.

4.1 Theoretical Dynamics of Competitive Population

Competitive agents try to be in a coalition with the highest possible score.
At the same time, coalitions of Competitive agents accept joining proposals,
optimizations or replacements proposed as long as they improve the coalition
score.1 This behavior implies that, for a given task, each movement of an agent
from/to a coalition of Competitive agents, involves an improvement in its score,
otherwise the agent would not had had any motivation to move from/to there.
Thus the score of the best coalition in a game for a given task is monotonically
increasing.

The maximum score of a coalition is obtained with a coalition of as many
members as skills required for the task (at maximum). Agents do not create
coalitions with more members than skills, as given aggregation function 1, there
is just one agent providing the maximum value for each skill, then if the coalition
has more agents than required skills, it could be optimised by expelling those
agents who do not provide any maximum value to any skill. Due to this, Com-
petitive agents in the RFP model do not create the grand coalition, hence this
strategy configures a non-superadditive game.

As the coalition size is self-limited by a certain maximum size, and the score
of the best coalition is monotonically increasing, the score of the best coalition
will stabilise at a certain point while the task doesn’t change. The same happens
with the score of the second best coalition, and so on. This way, a system with a
population of Competitive agents competing for a given task that do not change,
converges into an stable state.

4.2 Theoretical Dynamics of Pure Conservative Population

Conservative agents try to be in a coalition with the highest possible per agent
payoff. At the same time, coalitions of Conservative agents accept joining propos-
als, optimizations or replacements proposed as long as they improve the coalition
per agent score.2 This behavior ensures that during the process of coalition for-
mation, each movement of an agent from/to a coalition of Conservative agents,
involves an improvement in the per agent payoff of the coalition otherwise, the
agent would not have had any motivation to move from/to there. In order to
improve the per-agent payoff, a coalition can either improve its score to increase
its ranking, or it can reduce its size having less members to split the gains be-
tween less members. This second way of improving payoff implies in some cases
a reduction of coalition score.
1 As a secondary criterium of acceptance, we use the size of the coalition, i.e. if the

coalition score is the same, a competitive agent will propose/accept when the number
of agents is smaller than in the origin/original coalition.

2 The same secondary criterion of acceptance as in competitive strategy is applied.
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Differently to the best coalition’s score, the best coalition’s payoff is therefore
not monotonically increasing. The best individual payment can decrease when
the coalition that has it, is out-ranked by another coalition. In this case, the pre-
vious best payed coalition receives less payment as it is in a lower rank, and the
out-ranking coalition, might have more members than the previous best-paying
coalition, thus lower individual payoff. Under these conditions of non monotonic-
ity, convergence to an stable state cannot be ensured in an environment with
Conservative agents.

The sizes of coalitions are determined by the concrete skill distribution amongst
the population, the requirements of the task and the payoff function. More
concretely, the growing possibilities are determined by score differences from coali-
tions in the ranking. Let A1 be an agent, C1 be a coalition and \C1 the rest of coali-
tions competing at a certain moment. The ranking of C1 is noted as rank(C1, \C1),
its size as |C1|, and its payoff as: pay(rank(C1, \C1))/|C1|. We can claim that C1

will never grow in size as long as:

�A1 : pay(rank(C1 ∪ A1))/(|C1| + 1) > pay(rank(C1))/|C1| (5)

Then the difficulty of a coalition has in growing depends on payoff function.
Since the payoff function we are using in our model is monotonically decreasing
as a function of the ranking of the coalition, in order to have a higher payoff in
coalition C1 ∪ A1, the following must be true:

rank(C1 ∪ A1) > rank(C1) (6)

From this, we can see that the possibilities of a coalition to grow up in size also
depend on how difficult what is stated in Condition 6 is.3 As a matter of fact,
the difficulty of condition 6 to hold for any arising coalitions, depends on the
skill distribution of agents, and on the size of coalitions, in such a way that the
smaller the coalition, the easier it is for condition 6 to be fulfilled. The Influence
of coalition size is explained as follows: in a coalition with no redundant agents,
each agent is giving the maximum value to one or more skills. If the coalition has
few agents, its members will each have more skills to be responsible for. If agents
of a population have the same total sum of skill values (

∑K
p=0(Aip)), there will be

many agents with different skill values in the distribution that could improve the
coalition score by taking responsibility of many more skills than if the coalition
were large and each skill would be responsibility of a certain ”expert” agent.
In this way, by having more chances of increasing coalition score by raising the
value of more skills, we will have also more chances of rising the coalition rank.

The stability analysis in this population is more complex than in competitive
population. The system will be stable once agents have reached Pareto opti-
mality, and Nash equilibrium. This situation is made more complex by different

3 Note that it could happen that joining more than one agent to the coalition (C1 ∪
A1 ∪ . . . An) we could improve the coalition enough to make it profitable for all the
agents in it, but given our model, agents do not take decisions in a coordinated
manner.
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factors. An important one is that if coalitions do not need to grow too much
to be competent, we will have many small coalitions, and as we have seen in
the analysis of the importance of the coalition size, for the case of small coali-
tions it will be easier for agents to find profitable coalitions outside their current
coalition. This could create a continuous movement of agents from coalition to
coalition.

5 Experiments

To examine the dynamics of the strategies explained and validate the theoretical
analysis, a range of experiments were conducted by simulation. Each simulation
run consists of a set of a fixed number of model iterations, where agents follow the
Iterated RFP protocol explained in section 2, for solving a number of different
tasks that change sequentially after a fixed number of games.

In order to visualize the relationships established between agents in the ex-
periments, we used Pajek [3]. Graph figures represent the relationships created
between agents throughout a series of games of one or more experiments. Each
node is an agent, and a link represents a collaboration that existed when the
coalition was evaluated in a certain game. Agents collaborate when they are to-
gether in a competent coalition. In this way, a coalition is represented by a clique
of connections amongst the agents in the coalition. In order to ease the visual
analysis edges are colored depending on the frequency of the relationship; the
more often a collaboration happens, the darker the line appears. The graph is
represented using Kamada-Kawai algorithm implemented in Pajek that places
nodes in a close position when they are connected with links of relative high
value. In our case, agents appear close to each other when they have had fre-
quent relationships. Throughout the rest of the paper, these graphs are named
collaboration graphs.

5.1 Experimental Set-Up

A variety of configurations and parameterizations have been used in order to be
able to check the statistical validity of outcomes. The underlying configuration
for the experiments was:

– A static population of 100 agents, with abilities randomly distributed across
10 different skills. Each skill of an agent is assigned a positive integer score or
zero. Agents are each assigned 200 skill points randomly distributed across
their skills.

– A set of 100 different Tasks. Each one requiring a total of 100 skill points
distributed randomly across the same 10 different skills.

– Each task is issued during 1000 games. And each game picks 25 agents at
random to make a choice on their coalition preference (and hence poten-
tially adapt their coalition according to the schemes defined in the previous
section).
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– Every competent coalition is subsequently ranked and rewarded according
to function 4. The concrete MaxAmount value used for this function is 100.
This represents the total amount that will be spread in each game amongst
the competent coalitions.

Collaboration Graphs are used to monitor each relationship established at the
end of every round. The payoff data for each one of the agents, as well as the
coalition sizes are also monitored and analysed.

5.2 Competitive Behavior Experiments

A population of 100 agents following the Competitive behavior strategy have
been used. Figure 1(a) shows the collaboration graph of the population in just
one experiment, and figure 1(b) represents the aggregated results amongst the
set of 100 experiments with different tasks to fulfil. In the first figure we can
appreciate 30 vertices out of the existing 100, this is because the algorithm
places vertices close to each other when relationships between them are very
strong (in our case, strength values means frequent relationships), that means
that some coalitions of agents repeat very frequently over time. In the same
figure, a few residual low frequency relationships of some agents with some of
other clusters can be appreciated. Those two facts verify the analysis performed
in section 4.1. Concretely, the experiments verify that a population of agents
using Competitive strategy converges to a stable state where at a certain point
of the process, there is no movement of agents between coalitions. Those clusters
of nodes in the graph that repeat very frequently are the structures created after
the optimization process has finished. Residual relationships (relationship with
low frequency) belong to the period in which the experiment is not stable yet.

The experiments also reveal another fact that validates the theoretical analy-
sis. The size of coalitions tends to be equal to the number of requested skills by
the task, having normally an expert agent on charge of every skill.

The second figure shows us that even when different tasks are used in the
same experiment, the aggregated collaboration graph still reveals clear clusters
of frequent collaboration. This is explained by the following fact: Competitive
agents create coalitions that maximize the value of all the skills requested by a
task. In order to do that, they create coalitions as big as necessary, having an
expert agent for each requested skill, i.e. an agent which only contribution is to
have the biggest value in the coalition for an specific skill. The only difference
in coalitions created for different tasks is in the exclusion or inclusion of expert
agents for skills that in some tasks are requested and in others are not. This way
a substantial part of a coalition remains static from task to task, as in average,
tasks issued usually have no more than 2 non-required skills (that vary from task
to task) out of 10 skill.

5.3 Conservative Behavior Experiments

In these experiments, we use a population of 100 agents following the con-
servative behavior strategy. Figure 1(c) shows the collaboration graph of the
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(a) 1 Experiment Result pure competitive
population.

(b) 100 Experiments Result pure competi-
tive population.

(c) 1 Experiment Result pure conservative
population.

(d) 100 Experiments Results pure conser-
vative population.

(e) 1 Experiment Result mixed population. (f) 100 Experiments Results mixed popu-
lation.

Fig. 1. Collaboration Graphs for different populations settings
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population of just one experiment, and figure 1(d) represents the aggregated
results amongst the set of 100 experiments with different tasks to fulfil.

In the first figure we can appreciate how collaboration is not concentrated
in clusters, instead it is spread in many different combinations of agents. This
suggests the correctness of the analysis performed in section 4.2, where it was
stated that a conservative population does not necessarily converge into an stable
state. This way agents move from coalition to coalition during the experiment,
and the collaboration graph reflects that behavior by not showing any particular
frequent cluster of agents, instead, the graph shows a cloud of sparse collabora-
tions between the agents. Conservative agents optimise the ratio payoff/members
keeping low the size of coalitions. The experiments reflect an average size of 2.3.
The small size of coalitions, is a destabilisation fact that make them have similar
scores. When coalitions have similar scores a single movement of an agent can
change the whole payment scenario. However, some nodes in the center of the
graph show slightly more frequent connections between them. This suggests that
even though the system does not converge, there are successful agents that have
some preferential attachments with other nodes with which they can create small
coalitions with good scores, and so, it happens that in a dynamically changing
environment they meet each other more frequently.

By observing figure 1(d) representing the aggregation of the data obtained
across all the experiments, we can see that it keeps the same concentric structure,
indicating that successful properties of central agents are kept. By the dark
color in the edges, we can see that although conservative agents spread their
collaboration, they usually cooperate with the same wide range of agents.

5.4 Mixed Strategies Dynamics Experiments

In these experiments, we mix 50 agents using the competitive strategy with 50
agents using conservative strategy. In order to create comparable results when
playing two populations together, we create a symmetric population of 50 dupli-
cated skills vectors. Figure 1(e) shows the collaboration graphs of the population
in just one experiment. Figure 1(f) on the right hand side represents the results

Fig. 2. Payoff gained by each population throughout 100 different tasks
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amongst the set of 100 experiments with different tasks to fulfil. To differentiate
members of each population in the graph, nodes representing conservative agents
are in black color, and nodes representing competitive agents are in white color.

In the first graph we can see how a group with a majority of competitive
agents establishes itself in the experiment, and show almost pure endogamic
relationships. Apart from this, we observe that the rest of agents spread their
collaboration with many different members of any population type. The average
coalition size in this experiment is 5.9. This indicates that competitive agents
boost the competitivity in the games, and large coalitions created by those agents
become attractive also to conservative agents, as once the coalition has a certain
competitive degree it becomes more profitable than small coalitions created by
other conservative agents.

The figure showing results throughout the 100 experiments 1(f) reflects a very
similar situation as in the one experiment graph 1(e). Both figures have a shape
that reflects the mixture between clustering into frequent groups and spreading
among many different ones. It is possible to appreciate a cluster of competitive
agents, and very close to that cluster, reflecting frequent collaboration with the
elements of the cluster, there is a set of conservative agents. Those agents do not
stay in the cluster coalitions as frequently as competitive agents, because they are
probably tempted by other coalitions offering less score and higher payoff, but they
are probably good enough to be accepted in the coalitions when those coalitions
become the most profitable option for a conservative agent at a certain time.

In terms of profit, as we can see in figure 2, the competitive population clearly
outperforms conservative population. This is explained by the fact that competi-
tive agents are the founder creators of the most competitive coalitions and remain
on it as they cannot find any incentive to leave it. On the other hand, conserva-
tive agents that get attracted by a successful high score coalition might join it if
its payout/members ratio is good enough, but they might eventually leave it seek-
ing apparent opportunities in the market of smaller coalitions with higher bene-
fits. This often turns out to be the wrong decision as smaller coalitions are more
dynamic and subject to change (see section 4.2 for an explanation of this fact).

6 Related Work

There is other relevant work in literature that tackles heterogeneity of popula-
tions as a key point of the research. The most representative is [5] which studies
how diversity within the agent population impacts on the quality of the coali-
tions that emerge. Conforth et. al. create a dynamic organization framework in
which heterogeneity turns out to be a crucial element for problem solving tasks.
In this work, heterogeneity is represented upon different initial values of agent’s
parameters such as their connectivity (interaction links), trading strategies and
initialization states. In the present model, all agents know each other but are dis-
tinguished by different values in a fixed set of skills. This fact characterizes every
individual by intrinsic properties that can be complementary, and lead to the
system to have different dynamics from those showed in the cited work. Apart
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from using heterogeneity in the intrinsic properties of the agent, the presented
model contemplates different strategic behavior for agents.

Another interesting example on the use of heterogeneity in coalition formation
processes is the modelling of heterogeneous preferences. Some examples of this
are [2] which models different preferences between leisure and work, and [4] which
provides a method that considers the possibility of different evaluation functions
to coalition structures.

From the point of view of the protocol used (RFP), the work presented is
related to [11]. However, Kraus et. al. have radical differences in its use. Firstly,
in their model, a number of tasks are issued and agents propose coalitions (from
scratch) that are accepted or rejected by the affected members. In order to
motivate agents to form a coalition, a discount factor is used. In the model
presented here, there is just one Task at a time for which all the population
compete for, but not only one coalition gets priced. Agents do not propose entire
structures, instead they construct them by individual movements. In order to
motivate agents to form good coalitions, the motivation instrument is the use of
a decreasing payment function.

The presented model shares many characteristics with economic models, such
as [2]. Some important characteristics are: the iterative nature of the processes,
the episodical evaluation of the structures, and similar type of rational behavior
in the agents, however there is an important difference that is the evaluation
function. The evaluation function applied by Axtell et. al. (Cobb-Douglass) re-
wards a coalition (or a firm) independently of the rest of existing coalitions. In
our case the reward of a coalition is partly dependant on its score, and on the
score of the rest of the existent coalitions.

Traditionally Coalition Formation problems have been tackled as a ”one off”
event. In the present work we seek to go beyond this to consider what may hap-
pen in environments over time. Other important work in the same line includes
[9,10,1].

7 Conclusions

From the analytical and experimental work presented, the following conclusions,
applicable to the Iterative RFP domain, are drawn:

– Competitive strategies (score maximizing) outperforms conservative strate-
gies (payoff maximizing) when symetric populations are played against one
another. This provides a hint as to why competitivity emerges in certain
societies to dominate other conservative behaviours.

– A pure population of agents running the competitive strategy for a give task,
converges to a Nash equilibrium state in which no agent has motivation to
move elsewhere given the coalitional structure created.

– A pure population of agents running the competitive strategy tend to create
coalitions of size equal to the number of requested skills.

– A pure population of agents running the conservative strategy tend to create
small size coalitions.
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– In a pure population of agents running the conservative strategy, there is
a inversely proportional relationship between the size of coalitions and the
degree of dynamism.

Lastly, the long term aim of this work is to analyse the clustering structure
of agents within an RFP population - and investigate how this affects perfor-
mance. To this end, Collaboration Graph representation seems to present a useful
method to analyze properties of the Coalition Formation process in such long
running scenarios.

8 Ongoing and Future Work

Ongoing and future work includes a deeper research on the conditions under
which competitivity dominates conservative strategies.

Other planned work includes study of individual characteristics that make
agents extraordinary, and extract the important patterns that are exploitable
with certain strategies such as those shown in the current paper.

It will be also of significant value to study the stability of results from a for-
mal game theoretic perspective, as well as the game theoretic properties of the
strategies we study.

Finally, we are investigating the use of other large scale network analysis tech-
niques to have a deeper understanding of our domain. Such techniques include
Clique Overlapping, and t-core distribution.
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