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Preface

The design and analysis of trading agents and electronic trading systems in which
they are deployed involve finding solutions to a diverse set of problems, involv-
ing individual behaviors, interaction, and collective behavior in the context of
trade. A wide variety of trading scenarios and systems, and agent approaches to
these, have been studied in recent years. The present volume includes a number
of papers that were presented as part of the Joint International Workshop on
Trading Agent Design and Analysis and Agent-Mediated Electronic Commerce
which was collocated with the Autonomous Agents and Multi-agent Systems
(AAMAS) Conference in Hakodate, Japan, in May 2006.

The Joint TADA/AMEC Workshop brought together the two successful and
well-established events of the Trading Agent Design and Analysis (TADA) and
Agent-Mediated Electronic Commerce (AMEC) Workshops. The TADA series
of workshops serves as a forum for presenting work on trading agent design
and technologies, theoretical and empirical evaluation of strategies in complex
trading scenarios as well as mechanism design. TADA also serves as the main
forum for the Trading Agent Competition (TAC) research community. TAC is
an annual tournament whose purpose is to stimulate research in trading agents
and market mechanisms by providing a platform for agents competing in well-
defined market scenarios (http://www.sics.se/tac). The AMEC series of work-
shops presents interdisciplinary research on both theoretical and practical issues
of agent-mediated electronic commerce ranging from the design of electronic
marketplaces and efficient protocols to behavioral aspects of agents operating in
such environments. The merging of the two workshops was a unique opportunity
for researchers working in agents and multi-agent systems, artificial intelligence,
operational research, economics and game theory to explore issues pertinent to
the development of agent-populated electronic markets. The collection of papers
in this volume provides a glimpse into this wide field of research.

The papers presented at the workshop contribute to the theory and practice
of agent-based electronic trade and commerce addressing both the agent level
and the system level. The papers presented included work directly related to
TAC, work related to generic markets and trading scenarios, theoretical and
experimental studies, automated negotiation, market mechanism design as well
as strategy design.

We hope that this collection of papers will be a useful resource for researchers,
practitioners and students working in automated trading and electronic market-
places.

March 2007 Maria Fasli
Onn Shehory
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Evolutionary Optimization of ZIP60: 
A Controlled Explosion in Hyperspace 

Dave Cliff 

Foreign Exchange Complex Risk Group, Deutsche Bank 
1 Great Winchester Street, London EC2N 2DB 

dave.cliff@bcs.org 

Abstract. The “ZIP” adaptive trading algorithm has been demonstrated to out-
perform human traders in experimental studies of continuous double auction 
(CDA) markets. The original ZIP algorithm requires the values of eight control 
parameters to be set correctly. A new extension of the ZIP algorithm, called 
ZIP60, requires the values of 60 parameters to be set correctly. ZIP60 is shown 
here to produce significantly better results than the original ZIP (called “ZIP8” 
hereafter), for negligable additional computational costs. A genetic algorithm 
(GA) is used to search the 60-dimensional ZIP60 parameter space, and it finds 
parameter vectors that yield ZIP60 traders with mean scores significantly better 
than those of ZIP8s. This paper shows that the optimizing evolutionary search 
works best when the GA itself controls the dimensionality of the search-space, 
so that the search commences in an 8-d space and thereafter the dimensionality 
of the search-space is gradually increased by the GA until it is exploring a 60-d 
space. Furthermore, the results from ZIP60 cast some doubt on prior ZIP8 re-
sults concerning the evolution of new ‘hybrid’ auction mechanisms that ap-
peared to be better than the CDA. 

1   Introduction  

The Zero-Intelligence Plus (ZIP) adaptive automated trading algorithm [6] has been 
demonstrated to outperform human traders in experimental studies of continuous 
double auction (CDA) markets populated by mixtures of human and “robot” traders 
[15]. To successfully populate a market with ZIP traders, the values of eight real-val-
ued control parameters need to be set correctly. While these eight values can of course 
be set manually, previous papers have demonstrated that this 8-d parameter-value 
vector can be automatically optimized using a simple genetic algorithm (GA) search 
to tailor ZIP traders to particular markets, thereby producing results superior to those 
from ZIP traders with manually-set parameter values [7, 8]. Furthermore, a simple 
extension of the GA-ZIP approach (i.e., adding a single additional real-valued nu-
meric parameter, its value set by the GA) allows for automated market-mechanism 
design, and has been demonstrated as a possible way of automatically discovering 
novel “hybrid” forms of auction mechanism that appear to be more efficient than the 
CDA [10, 11, 12]. This paper introduces a more sophisticated version of the ZIP algo-
rithm, which is shown to produce significantly better results. The extended variant is 
known as “ZIP60”, because it requires 60 real-valued control parameters to be set 
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correctly, and thus the original algorithm is now re-named as “ZIP8”. Manually iden-
tifying the correct values for 60 control parameters could be a very laborious task, but 
it is demonstrated here that an appropriate automatic search or optimization process 
(such as a GA) can reliably discover good sets of values for the parameters, so long as 
some care is exercised in controlling a gradual expansion of the dimensionality of the 
search-space. The GA operating in the 60-dimensional parameter space is shown to 
produce markets populated by ZIP60 traders with mean scores significantly better 
than those of ZIP8s. Moreover, the ZIP60 results presented in this paper, while better 
than ZIP8, show a markedly reduced incidence of cases where the GA also discovers 
novel hybrid auction mechanisms within which the ZIP traders perform significantly 
better than when they interact within the fixed CDA mechanism. A plausible conclu-
sion drawn from this is that it indicates that the earlier ZIP8 results (where apparent 
“improvements” on the CDA were common) were actually consequences of the rela-
tive lack of sophistication in the ZIP8 algorithm, rather than consequences of previ-
ously-undiscovered weaknesses in the CDA mechanism that the ZIP8 traders were 
operating within. 

In the interests of scientific openness and ease of replicability, the C source-code 
that was used to generate the ZIP60 results in this paper has been published in a 
technical report freely available on the web [13]. 

This paper reports on an ongoing line of research, and there are several open 
avenues of research that could be pursued to extend or further explore the ideas 
presented here. In particular, it is important to note that the results in this paper are 
certainly not intended as an absolute and conclusive demonstration that ZIP60 is 
superior to all other CDA bidding algorithms, or that the solutions discovered by the 
GA are optimal in the sense of the GA routinely discovering Nash equilibria in the 
experimental markets that ZIP60 is studied within here. This paper studies the 
equilibrating performance of markets that are homogeneously populated with one 
type of trader-agent, in the style of frequently-cited prior work such as that by Gode 
& Sunder [20], Cliff [6, 9, 12], Preist & van Tol [30], and Gjerstad & Dickhaut [19]; 
rather than studying strategic interactions within markets heterogeneously populated 
by two or more different types of trading algorithms or market mechanisms, such as is 
exemplified by [38, 39, & 29]. Although the original paper [6] that introduced the 
ZIP8 algorithm also studied ZIP8’s performance only in homogeneously populated 
markets, nevertheless ZIP8 was subsequently used as a benchmark trading algorithm 
in numerous studies of strategic interactions between heterogeneous mixes of trading 
algorithms, performed by several independent groups of researchers. The number of 
such papers in which ZIP8 (or close derivatives of ZIP8) have been used is fairly 
large, and the list includes: [15, 38, 39, 23, 29, 40, & 1]. Thus, given that so much 
prior work exploring strategic interactions and heterogeneous populations has been 
based on ZIP8, it seems reasonable at least to presume that researchers with an 
interest in studying heterogeneous marketplaces might find ZIP60 a useful new 
benchmark, even though this current paper reports only on ZIP60 in homogeneous 
settings. While the study of ZIP60’s strategic interactions with other CDA bidding 
algorithms is certainly an important topic of further research, it is beyond the scope of 
this current paper. 

Furthermore, it is worth noting that in pretty much all of the above-cited papers 
studying strategic interactions between heterogeneous mixtures of bidding algorithms, 
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the results come from experiments in which the nature of the market supply and de-
mand curves are essentially fixed for the duration of each experiment. That is, studies 
exploring the effects that significant changes to the supply or demand (or both) curves 
can have on the trading-agent market’s internal dynamics seem pretty rare. Most of-
ten, the supply and demand curves in any one trader-agent experiment remain largely 
the same for the entire duration of that experiment. This seems very curious, given 
that one commonly-claimed motivation for studying market systems is that mecha-
nisms such as the CDA are interesting because of their ability to quickly and robustly 
adapt to dynamic and unexpected changes in supply and/or demand; that studies of 
shock-changes in human CDA markets date back as far as Vernon Smith’s seminal 
1962 paper [36]; and that such changes are known to occur in real-world markets.1 If 
CDA markets are interesting because they exhibit attractive adaptation to dynamic 
changes in supply and demand, why is there this affection in the trading-agent litera-
ture for studying CDA systems where such changes are largely absent? In contrast, 
the results reported in this paper all come from experiments in which the marketplaces 
periodically undergo sudden “shock” changes to the supply and/or demand curves, 
and where the ZIP60 traders are optimized on the basis of their ability to rapidly and 
stably adapt to the new market conditions prevailing after each shock-change.  

The rest of this paper is structured as follows. Section 2 gives an overview of ZIP 
traders and of the experimental methods used, including a description of the continu-
ously variable space of auction types. This description is largely identical to the ac-
count given in previous papers (e.g., [10, 12]), albeit extended to describe how the 
new experiments whose results are presented here differ from the previous work. The 
new ZIP60 results are then presented, analyzed, and discussed in Section 3. 

2   Methods 

2.1   The Original Eight-Parameter ZIP 

The original eight-parameter ZIP trading algorithm was first described fully in a 
lengthy report [6], which included source-code (in ANSI C) of an example imple-
mentation. For the purposes of this paper, a high-level description of the algorithm 
and its eight key parameters is sufficient. Illustrative C source-code for ZIP60 has 
been published in [13]. As will be seen in Section 3, there are in fact a family of ZIP 
algorithms between ZIP8 and ZIP60, and so hereinafter the acronym “ZIP” with no 
numeric suffix is intended to mean “all ZIPn for 8≤n≤60 and beyond”. 

ZIP traders deal in arbitrary abstract commodities. Each ZIP trader i is given a 
private (i.e., secret) limit-price, λi, which for a seller is the price below which it must 
not sell and for a buyer is the price above which it must not buy. If a ZIP trader 
completes a transaction at its λi price then it generates zero utility (“profit” for the 
sellers or “saving” for the buyers). For this reason, each ZIP trader i maintains a time-
varying utility margin μi(t) and generates quote-prices pi(t) at time t using 
pi(t)=λi(1+μi(t)) for sellers and pi(t)=λi(1-μi(t)) for buyers. The “aim” of traders is to 

                                                           
1 E.g., in high-frequency foreign-exchange price time series, “gap” step-changes in price are not 

unusual. 
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maximize their utility over all trades, where utility is the difference between the 
accepted quote-price and the trader’s λi value. Trader i is given an initial value μi(0) 
(i.e., μi(t) for t=0) which is subsequently adapted over time using a simple machine 
learning technique known as the Widrow-Hoff rule which is also used in back-propa-
gation neural networks and in learning classifier systems. This rule has a “learning 
rate” parameter βi that governs the speed of convergence between trader i’s quoted 
price pi(t) and the trader’s idealized “target” price τi(t). When calculating τi(t), ZIP 
traders introduce a small random absolute perturbation generated from2 U[0,ca] (this 
perturbation is positive when increasing τi(t), negative when decreasing) and also a 
small random relative perturbation generated from U[1-cr,1] when decreasing τi(t), or 
from U[1,1+cr] when increasing τi(t), where ca and cr are global system constants. To 
smooth over noise in the learning system, there is an additional “momentum” pa-
rameter γi for each trader (such momentum terms are also common in back-
propagation neural networks).  

So, adaptation in each ZIP trader i has the following parameters: initial margin 
μi(0); learning rate βi; and momentum term γi.  In an entire market populated by ZIP 
traders, values for these three parameters are randomly assigned to each trader via 
μi(0)=fa(μmin, μΔ),  βi=fa(βmin, βΔ), and γi=fa(γmin, γΔ); for fa(α, κ)=U[α, α+κ]. Hence, 
to initialize an entire ZIP-trader market, it is necessary to specify values for the six 
market-initialization parameters μmin, μΔ, βmin, βΔ, γmin, and γΔ; and for the two system 
constants ca and cr. Thus any set of initialization parameters for a ZIP-trader market 
exists within an eight-dimensional real space – hence “ZIP8”.  

Vectors in this 8-space can be considered as “genotypes” in a genetic algorithm 
(GA), and from an initial population of randomly generated genotypes it is possible to 
allow a GA to find new genotype vectors that best satisfy an appropriate evaluation 
function. This is exactly the process that was first introduced in [7, 8]. For the 
purposes of this paper, we will consider the GA optimizer as a “black box” and leave 
it largely un-discussed: full details accompany the source-code in [13].  

In addition to using the GA to optimize the control parameters for the trader-
agents, one more real-valued numeric parameter was introduced in [10–12] to give the 
GA automated control over the auction mechanism. This market-mechanism 
parameter is called Qs and it governs the exogenously imposed probability that the 
next quote in the marketplace will be taken from a seller, so Qs=0.0 is a pure  
one-sided auction where only buyers can quote (and hence is similar to an English 
auction); Qs=1.0 is pure one-sided with only sellers quoting (as in a Dutch Flower 
auction); and Qs=0.5 makes quotes from buyers or sellers equi-probable (as in a 
CDA).  The surprising result reported in [10–12] is that “hybrid” auction mechanisms 
(such as Qs=0.25) were found by the GA to give the best evaluation scores when the 
value of Qs was evolved alongside the values of the eight ZIP control parameters. 
Experiments where the value of Qs was under control of the GA are referred to here as 
“EM“ (for “evolving mechanism”) experiments, and experiments where the value of 

                                                           
2 Here v=U[x,y] denotes a random real value v generated from a uniform distribution over the 

range [x,y]. 
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Qs was fixed, typically at the CDA value of 0.5, are referred to as “FM” experiments 
(for “fixed mechanism”). 

The fitness of genotypes was evaluated here using the methods described 
previously [7, 8, 10–12]: one trial of a particular genome was performed by 
initializing a ZIP-trader market from the genome, and then allowing the ZIP traders to 
operate within the market for a fixed number of trading periods (often colloquially 
referred to as “days”), with allocations of stock and currency being replenished 
between each trading period. During each trading period, Smith’s [36] α measure 
(root mean square deviation of transaction prices from the market’s theoretical com-
petitive equilibrium price) was monitored, and a weighted average of α was calcu-
lated across the days in the trial, using a method described in more detail in the next 
section. As the outcome of any one such trial is influenced by stochasticity in the 
system, the final evaluation score for an individual was calculated as the arithmetic 
mean of 100 such trials. Note that as minimal deviation of transaction prices from the 
theoretical equilibrium price is desirable, lower scores are better: we aim here to 
minimize the evaluation scores. That is, individuals with lower scores have greater 
reproductive fitness. 

2.2   Previous ZIP8 Results 

In [12], results from 32 sets of experiments were published, where each experiment 
involved sequences built from one or more of four specific market supply and demand 
schedules. These four schedules are referred to as markets M1, M2, M3, and M4, and 
are illustrated in [12, 13]. In all four schedules there are 11 buyers and 11 sellers, each 
empowered to buy/sell one unit of commodity. Market M1 is taken from Smith’s 
seminal 1962 paper [36] on his early experimental economics work, and the remain-
ing three markets are variations on M1. In M2 the slope of the demand curve has been 
greatly reduced while the slope of the supply curve has been increased only slightly; 
and in M4 the slope of the supply curve has been greatly reduced while the slope of 
the demand curve has been increased only slightly. In M3 the slopes of both the 
supply and demand curves are only slightly steeper than the slopes in M1, yet these 
minor differences between the supply and demand curves in M1 and M3 can still lead 
to significant differences in the final best evolved solutions.  

The experiments reported in this paper use a method first explored in ZIP8 experi-
ments, involving “shock changes” being inflicted on the market by swapping from 
one schedule to another partway through the evaluation process. Here, two shocks 
occurred during each evaluation process (i.e., switching between three schedules). For 
instance, in one experiment referred to here as M121, the evaluation involved six 
trading periods (“days”) with supply and demand determined by M1, then a sudden 
change to M2, then six periods/days later a reversion to M1 for a final six periods. 
The other sets of experiments are similarly named M212, M123, M321, and so on. 
Each of the three market schedules was used for six “days”, so the two-shock trials 
last for 18 days. As in the previous GA-ZIP work, the evaluation function was a 
weighted average of Smith’s [36] “α” measure of root mean square deviation of 
transaction prices from the underlying theoretical equilibrium price at the start of the 
experiment, measured across the six periods for each schedule used: in each trading 
period p the value αp was calculated, and the evaluation score was computed as 
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(1/Σwp).Σ(αp.wp) for p=1…18 with weights w1=1.75, w2=1.5, w3=1.25, w3<p<7=1.0, 
wp>6=wp-6, and  wp>12=wp-12. 

The process used to compare the EM and FM cases is as follows. In any one 
experiment, here involving a population of 30 genotypes over 500 generations, in 
each generation the elite (best-scoring) individual is of most interest, and so the time-
series of the elite fitness score for the population is monitored across the 500 
generations. These results are non-deterministic: different runs of the GA (with 
different seed values for its random number generator) will yield different elite 
trajectories. Examining the results from 50 repetitions of an experiment (varying only 
the random seed between repetitions) often gives multimodal results, and in all 
experiments we are interested only in the best elite mode (i.e. the mode with lowest 
scores), which can be summarized by the mean and standard deviation (s.d.) of the 
scores within that mode at each generation: these two values will be referred to here 
as the best elite-mode fitness mean and s.d.. For comparison purposes, in the ZIP8 
work reported in [12], similar trajectories of best elite-mode fitness values were 
recorded from 50 repetitions of the each experiment in fixed-mechanism (FM) 
conditions, where the value of Qs was not evolved but instead was fixed at the CDA 
value of Qs=0.5.  

The results from 18 dual-shock (triple-schedule) experiments were presented in 
four separate data-tables in [12], grouped by the nature of the shocks (i.e., the 
“treatment regime”). Table 3 showed results from experiments where only the de-
mand curve undergoes a major change on each shock (i.e.: M121, M212, M232, 
M323, M123, and M321). Table 4 showed results from experiments where only the 
supply curve undergoes a major change on each shock (i.e.: M141, M414, M434, 
M343, M143, and M341). In Table 5, one of the two shocks involves a major change 
only to the demand curve while the other shock involves a major change only to the 
supply curve (i.e.: M432, M234, M412, and M214); and in Table 6 each shock in-
volved a major change to both the supply curve and the demand curve (i.e.: M242 and 
M424). In this paper, all 18 dual-shock results are shown together in a single graph, 
but the results appear in table order, as was just listed.  

Analysis of the ZIP8 results showed that the GA never failed to discover EM geno-
types that were at least as good (i.e. had elite evaluation scores at least as low) as the 
corresponding FM genotypes, and in several cases the EM result was significantly 
better (lower) than the FM result, at the 1% confidence level, using appropriate non-
parametric significance tests such as the Wilcoxon-Mann-Whitney (see, e.g., [35]), or 
latterly the Robust Rank Order test [16].  

The histogram in Figure 1 shows the results for GA-optimized ZIP8 in FM and EM 
conditions. Fig.1 also shows the results from various styles of ZIP60 EM experiments, 
discussed further in Section 3 of this paper. The ZIP8 statistics in Fig.1 are the results 
of conducting a more rigorous and careful analysis (discussed in [13]) of the data than 
was originally summarized and tabulated in [12]. The final evaluation score recorded 
as the outcome of any one experiment is now taken as an average of the final few elite 
scores (over generations 490 to 500) to smooth over noise in the evaluation process; 
and the summary statistics for each type of experiment are here always calculated 
from the top 10% (i.e., the upper decile) of the 50 repetitions of each type of experi-
ment, regardless of how many repetitions converged on solutions with final elite 
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scores in the best elite mode. So, the data in Fig.1 show the mean and s.d. of the final 
outcome elite scores from the best (lowest-scoring) five experiments in each study.  

2.3   Related Work  

These previous GA-ZIP results have subsequently been replicated, adapted, and ex-
tended in a number of independent studies. Robinson [32] explored the use of evolved 
market-mechanisms in the context of market-based control (e.g. [4]) of scarce re-
sources in utility-scale corporate data centers. Walia [41] explored the use of the same 
evolving-mechanism techniques but with markets populated by Gode & Sunder’s [20] 
ZI trader-agents rather than ZIP traders, again finding evidence that non-standard hy-
brid mechanisms were discovered as good/best solutions by the GA; and Byde [2] 
demonstrated that the same techniques could lead to the evolution of hybrid sealed-
bid auction mechanisms, regardless of the type of trader operating in the market. 
Shipp [34] investigated how the nature of the evolved solutions changed as the num-
ber of “market shocks” used in the evaluation process increased; and Wichett [43] 
explored a system in which multiple reproductively separate “gene-pools” of ZIP 
traders competed, co-adapted, and co-evolved along with the market mechanism. 
Other recent uses of ZIP include modifying it for bargaining in sealed-bid auctions 
[1]; using ZIP traders to study speculative trading in business-to-business exchanges 
[25]; and using ZIP traders to explore issues of reputation and information quality in a 
variety of market configurations [24]. 

The results in [10] were the first demonstration that radically new market 
mechanisms for artificial traders may be designed by automatic means. But, at much the 
same time as they were being generated, Steve Phelps and his colleagues were 
independently working on a conceptually very similar (but algorithmically rather differ-
ent) theme of using artificial evolution to develop and study new auction-market 
mechanisms [29]. In addition to the contemporaneous work of Phelps et al., a number of 
other authors have more recently reported on the results of using artificial evolution and 
other forms of automated search, learning, or optimization for exploring spaces of 
possible trader-agent strategies, and possible new auction mechanisms, generally with 
positive results [39, 18, 26, 28, 21, 27, 31, & 42]. Of course, the paper introducing ZIP 
[6] was not the first-ever study of artificial trading agents in double-auction markets; 
notable prior work includes [44], [17], and [33]. Also, [19] was developed indepen-
dently at much the same time. For additional discussion of earlier work, see [6]. 

3   ZIP60 

3.1   From 8 to 60 in Five Paragraphs  

The results from using a GA to fine-tune the ZIP8 trader were sufficiently encourag-
ing that they provoke the question of whether new variants of ZIP can be developed to 
take advantage of the fact that we can now (generally, at least) rely on automated 
optimizers like the GA to set appropriate values for the numeric parameters affecting 
the traders. If we commit to using an optimizer to set the parameter values, we don’t 
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need to keep the number of parameters small enough for them all to be manageable or 
comprehensible by humans. That’s the rationale for ZIP60.  

To this end, observe that in ZIP8 the genome specifies the same vector of eight real 
values {μmin , μΔ , βmin , βΔ , γmin , γΔ , ca , cr} whether the trader is a buyer or a seller. 
But in some situations it’s plausible that the market dynamics might be better if the 
parameter-values used by the buyers were different to those used by the sellers, so we 
could in principle have a GA-ZIP system dealing with these two cases (i.e. where 
Case 1 is that the trader is a buyer; Case 2 is that the trader is a seller) and hence op-
timizing sixteen real parameters (i.e., “ZIP16”), with the first vector of eight values 
being used to initialize the buyers and the second being used to initialize the sellers. 

Next, note that in some situations a ZIP trader (whether it is a buyer or a seller) has 
to increase its margin, and in others it has to decrease its margin, and that it may be 
useful to have different parameter-values depending on which of the four cases we are 
in, i.e. whether the trader is a buyer raising its margin, a buyer lowering its margin, a 
seller raising, or a seller lowering. That’s 4 cases, each with 8 values, and so “ZIP32”. 
But we can then additionally note that, in the original specification of the ZIP algo-
rithm, both for buyers and for sellers, there are actually three different cases or 
circumstances in which the trader alters its margin (see [6] pp.42-43 for the details of 
and rationale for this design). For example, a seller’s margin is raised if one condition 
holds true (i.e., if the last quote was accepted and the seller’s current price is less than 
the price of the current quote); but a seller’s margin is lowered if either of two other 
possible conditions are true (i.e.: if the last quote was an accepted bid and the seller is 
active and the seller’s price is greater than the price of the last quote; or if the last 
quote was an offer that was accepted and the seller is active and its price is greater 
than the price of the last quote). So we could have the genome specify three corre-
sponding parameter-value vectors for the buyers and also three such vectors for the 
sellers, i.e. a total of six different vectors for six different cases, which at eight values 
per vector gives us “ZIP48”. 

And in a final flourish of parameter-count inflation, let’s abandon the use of a mere 
pair of system-wide global constants ca and cr and in place initialize each trader i with 
its own corresponding “personal” values ca,i and cr,i, generated at initialization from 
the uniform distributions U[ca:min, ca:min+ca:Δ] & U[cr:min, cr:min+cr:Δ]. This addition of 
extra parameters still allows solutions involving the old system-wide constant ca and 
cr values to be “discovered” by the GA − that will happen if better evaluation scores 
are associated with (near-)zero values of ca:Δ and cr:Δ. So, the parameter-value vectors 
for each case needs now to specify not only the six previous system parameters (μmin , 
μΔ , βmin , βΔ , γmin , and γΔ) but also the values for the four newly-introduced system 
parameters ca:min, ca:Δ, cr:min, and cr:Δ  −   i.e., ten values per vector. For six cases, each 
with ten values per vector, we get to sixty values: “ZIP60”. 

It is worth noting that this final increase from eight to ten parameter-values per 
case could also be applied to any of the other ZIPn versions mentioned in the 
preceding paragraphs. That is, by the expansion of the specification of ca and cr, ZIP8 
becomes ZIP10; ZIP16 becomes ZIP20; and ZIP32 becomes ZIP40.  

We need also to introduce some terminology that will ease the analysis and discus-
sion that come later. While a ZIP8 trader has one genetically-specified value for each 
parameter (so, for example, it has only one βmin value), a ZIP60 genome specifies six 
related parameter values – one for each case – which we will refer to by adding  
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case-numbers to the subscript (e.g.: βmin:1, βmin:2, ..., βmin:6). For ZIP60, the entire set of 
sixty parameters can be generated from the pattern Pt:n where P is one of {μ , β , γ, ca , cr}; 
t is one of {min, Δ}; and n is an integer in {1,…,6}. We’ll refer to the set of six values for 
any one parameter-type (i.e., {Pt:1, Pt:2, …, Pt:6} for some given P and t) as the 
homologous set of Pt parameter values.  

Finally, note that the additional computational costs of using ZIP60 as a 
replacement for ZIP8 are virtually zero. The space costs are those incurred in storing 
the additional 52 real-valued parameters: this is a large percentage increase, but in 
absolute terms it is still a very small amount of storage when expressed as actual 
additional bytes required. The additional time costs are also very low indeed: a tiny 
amount of extra processing is needed in initialising the ZIP60 trader (i.e., populating 
its look-up table of 60 real values) and then in doing table look-up while the trader is 
operating (i.e. choosing the values to use that are appropriate to the current “case”), 
but that’s it.  

3.2   ZIP60 Results: Control of Search-Space Dimensionality Required 

In testing the performance of ZIP60, all effort thus far has been devoted to exploring 
the performance of ZIP60 on dual-shock tests: if markets populated by ZIP traders 
cannot cope with sudden shock-changes in supply and demand, then they are of little 
interest. Moreover, it seems highly likely (but has not yet actually been empirically 
verified) that if ZIP60 does better than ZIP8 on these multi-shock tests, then it will 
also do better in those cases where there are fewer or no market shocks.  

Experience with GA optimisation of ZIP60 indicates that significant care is needed 
in managing the dimensionality of the search-space: simply applying the old methods 
that worked well with ZIP8 does not give best results when working with ZIP60. This 
is a lesson learnt from experience: for the very first attempts at evolutionary optimi-
zation of ZIP60 traders, the same experiment methods as described in Section 2 were 
used, except that the initial population was composed entirely of randomly generated 
ZIP60 individuals, rather than ZIP8s. The results from these attempts were somewhat 
mixed. Although the scores of the elite evolved ZIP60 traders were on average sig-
nificantly better than the elite ZIP8 scores in the same experiments, the standard de-
viation on that average improvement was almost identical to the mean improvement 
itself. This large standard deviation was a reflection of the fact that, in a few cases, the 
evolved elite ZIP60 results were actually significantly worse than the corresponding 
ZIP8 results. Now there is nothing preventing the ZIP60 GA system from evolving 
genotypes that correspond to ZIP8 solutions, so it seems peculiar that the ZIP60s per-
form worse than the ZIP8s in some cases. There are certainly points within the ZIP60 
genome-space that correspond perfectly to ZIP8 solutions: if for each of the ten ho-
mologous sets the within-set variance of the parameter values for the set is (near) 
zero, then that ZIP60 genome is functionally equivalent to the corresponding single-
case ZIP10 genome; and furthermore if the values of the ca:Δ and cr:Δ homologous sets 
are all zero, then the ZIP60 is functioning as a ZIP8. So, how come the ZIP60 results 
are sometimes worse than ZIP8? The fact that the GA failed to find ZIP8 solutions 
within the ZIP60 genome space is a strong indication that the 60-dimensional search 
space has characteristics (such as local maxima, sharp ridges, and plateaus in the  
fitness landscape) which make the search for good genomes a nontrivial process. 
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To address this, the ZIP genetic encoding was extended, allowing the number of 
cases (1, 2, 4, or 6, as discussed in Section 3.1) to be specified on the genome itself. 
The rest of the genome is still a set of ten homologous-set vectors (each made of six 
real numbers). If an individual’s gene specifying the number of cases is set to one, 
then all six parameter-values are set to be identical within each homologous set, by 
copying the values from the first element of the set into the remaining five. If the 
number of cases is set to two, then the three buyer-case parameter values within each 
set are forced to be identical copies of each other, as are the three seller values; and if 
the number of cases is set to be six, then the three buyer and the three seller 
parameters can all be different numeric values. Thus, the ZIP60 genomes are always 
60 parameter-values long, but over-writing duplication of values within the genome 
can reduce the effective dimensionality of the parameter-vectors encoded on a 
particular genome so that it codes for any of the family of ZIP algorithms between 
ZIP60 and ZIP8.  

The motivating hypothesis for placing the dimensionality of the search-space under 
evolutionary control was the belief that the GA’s evolutionary search would be more 
successful if it could start by first simply optimizing the 1-case genome, and then 
(only once all the values are approximately correct) could successive multi-case re-
finements be progressively introduced by the GA as necessary. So, for example, if a 
1-case individual mutated to become a high-case individual, thereby decoupling its 
genome-values across the different cases, such a mutant would only be retained in the 
population if the mutation that increases the number of cases is also associated with 
higher fitness. Strictly speaking, the initial case-increasing mutation is selectively 
neutral: the genome values for the different cases start out as identical copies of each 
other, but the case-increasing mutation allows subsequent mutations to introduce dif-
ferences across cases, and it is those mutations that will be retained if they are corre-
lated with higher fitness.  Handing evolutionary control of the dimensionality of a 
search-space to the GA that is searching that space is an idea that was first explored in 
depth in Harvey’s [22] thesis, where he developed the “species adaptation genetic 
algorithm”, which was first successfully applied in evolving neural-network control-
lers for autonomous mobile physical robots [5].3 

Two new sets of ZIP60 experiments were performed to test the effects of GA-con-
trolled dimensionality. In the first set, the population was initialised with individuals 
that had a randomly-assigned value for the number of cases on their genome, with the 
values 1, 2, 4, and 6 being equally probable. This is the initialization we refer to here 
as ZIP60(1:6) (for “from 1 case to 6 cases”). In the second set, every individual in the 
initial population was set to have a 1-case genome; this is referred to here as the 
ZIP60(1:1) initialization.  And so the first set of experiments, where all individuals in 
the initial populations were 6-case individuals, are referred to as ZIP60(6:6). Results 
from the EM experiments with ZIP60 with the (1:1), (1:6), and (6:6) initializations are 
shown in Figure 1, with ZIP8 EM and FM scores shown alongside, for comparison. 

The histogram in Figure 1 shows the mean elite ZIP60 EM scores alongside the 
ZIP8 EM and FM scores: ZIP60 consistently out-performs ZIP8, and the error bars 

                                                           
3 A recent paper by Stanley & Miikkulainen [37] re-discovers some of Harvey’s [22] ideas of 

evolutionarily controlled dimensionality increase, which Stanley & Miikkulainen rename as 
“complexification”. 
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showing the s.d. values make it clear that these differences are significant. On the 
average, the ZIP60(1:1) scores are 14.0% better (lower) than the ZIP8 scores (and the 
s.d. on that mean improvement is 5.7%). In comparison, the ZIP60(6:6) scores are on 
average 12.91% better than the ZIP8, but the s.d. on that improvement is 12.88%; and 
for ZIP60(1:6), the average improvement is 12.32% with s.d.=7.03%. So, ZIP60(1:1) 
has the highest mean increase in performance and the lowest s.d. on its mean increase.  

 

Fig. 1. Mean elite outcome scores from the best 10% (n=5) of the 50 repetitions of each of the 
18 “dual-shock” experiments involving two sudden changes in market supply and demand 
function, as described in the text. Labels on the horizontal axis indicate the specific shock se-
quence. Vertical axis is evaluation score: a weighted average of root mean square deviation of 
transaction prices from the theoretical competitive equilibrium price, expressed as a percentage 
of the equilibrium price; a metric labeled “α” by Smith [36]. Lower scores are better. Each bar 
in the graph shows a mean score, with error bars at plus and minus one s.d. For each shock-
sequence, the cluster of 5 bars shows the results for (from left to right): EM ZIP60(1:1); EM 
ZIP60(1:6); EM ZIP60(6:6); FM ZIP8, & EM ZIP8. See text for further discussion. 

Results from significance analysis of the differences between the ZIP60(1:1) and 
ZIP60(1:6) upper-decile elite scores for the 18 dual-shock experiment schedules are 
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tabulated in [13], and they offer weakly supportive evidence for the claim that 
ZIP60(1:1) is a better initialization than ZIP60(1:6). Using the Robust Rank Order test 
[16] at the 1% significance level reveals that, over the 18 types of experiment, only 
for schedule M242 does ZIP60(1:1) lead to significantly better results than 
ZIP60(1:6). In all other cases, no statistically significant difference in the scores is 
detected. So, ZIP60(1:1) is certainly no worse than ZIP60(1:6), and the evidence thus 
far is that it is actually significantly better in one of the 18 cases studied. The absence 
of a huge difference is perhaps no surprise given that a ZIP60(1:1) system will, after 
sufficiently many generations, be pretty much indistinguishable from a ZIP60(1:6) as 
mutants with case-values greater than unity are progressively retained in the (1:1)-
seeded population. 

Examination of the elite genomes across the course of the 500 generations, 
discussed and illustrated in [13], shows that although the ZIP60(1:1) population starts 
out composed entirely of 1-case genomes, after a while the number of 2-case, 4-case, 
and 6-case mutant genomes starts to increase, and by the end of each experiment the 
elite individual is almost always a 6-case genome. ZIP60(1:6)-seeded experiments 
also virtually always end with 6-case elite genomes. 

3.3   Principal Component Analysis 

The results just presented demonstrate that ZIP60(1:1) most consistently out-performs 
ZIP8, which strongly suggests that the larger number of additional parameters are 
indeed useful. However, as was noted above, it is possible for a ZIP60 genome to be 
functionally equivalent to a lower-dimensioned ZIPn genome. In the most extreme 
case, if all the values in each homologous set of parameters are equal for any one ge-
nome (so, e.g., βΔ 1=βΔ 2=βΔ 3=βΔ 4=βΔ 5=βΔ 6), or if the differences between them are 
all sufficiently small to be ignored as mutational noise, then that ZIP60 genome is 
functionally equivalent to a ZIP10 genome. And if it has zero values for its caΔ and 
crΔ  parameters, then it is effectively a ZIP8.  

So, to confirm that ZIP60 is indeed an advance on ZIP8 (or ZIP10), some analysis 
of the final evolved parameter-sets is necessary, to see whether they contain any low-
dimensional solutions embedded in higher-dimensional spaces. To this end, principal 
component analysis (PCA) was used on the parameter-values from the top-decile 
ZIP60 genomes. PCA is explained in most textbooks on multivariate analysis, e.g. [3]. 
Each six-dimensional homologous set of final evolved parameter values from all 18 
sets of experiments was individually subjected to PCA, and the percentage of the 
variance in the parameter values accounted for by each principal component (PC) was 
calculated. If all the values in any one homologous set were equal or approximately 
equal, the first PC would account for very nearly 100% of the variance. However, the 
first PC would also account for close to 100% of the variance if the values in the ho-
mologous set were positioned along/around any line in the 6-D space, e.g. one where 
Pt:i≠Pt:j  (for some P in {μ , β , γ, ca , cr}; some t in {min, Δ}; and for i, j integers in 
{1,…,6} with i≠j). So, to identify a ZIP8/ZIP10 embedded in a ZIP60 genome, we’d 
need to see the first PC for each homologous set accounting for close to 100% of the 
variance, and see the angle θ  between the first PC and the line Pt:1=Pt:2=…=Pt:6 be-
ing very close to zero. That is for θ = π  – | cos-1 ( (p1 . u ) / | p1 | ) –π | with p1 being 
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the first PC (a 6-D vector) and u being a 6-D unit vector with elements ui:i=1…6  such 
that u1=u2=u3=u4=u5=u6>0. 

PCA analysis was performed on the entire data-set of top-decile elite genomes; and 
the results are presented graphically and discussed further in [14]. Although p1 ac-
counts for more than 50% of the variance in all homologous sets, the highest value is 
90.29% for p1 of the βmin set, which is not high enough to cause alarm. The mean vari-
ance accounted for by p1 across all homologous sets was 68% (s.d.=10%), and the 
minimum value was 58%. Also, the angle θ is safely high in all cases (mean=24o; 
s.d.=17o; min=5o; max=50o). So, the evolved ZIP60s are not ZIP8s in disguise. 

3.4   Discussion: Fewer Hybrids? 

Comparing the ZIP8 and ZIP60 results presented here reveals that for ZIP60 the GA 
much less frequently discovers hybrid values of Qs yielding overall market dynamics 
that are better than those of the corresponding fixed-market CDA Qs=0.5 experiments. 
That is, despite the final ZIP60 EM evolved Qs values varying quite widely, few of 
them give results that are statistically significantly better than the corresponding FM 
results. Data tables available in [13] show that in two thirds (12 out of 18) of the 
original ZIP8 experiments, the EM experiment found a “hybrid” Qs value that im-
proved on the corresponding FM score; yet in the ZIP60 experiments, the occurrence 
of superior EM results fell by 67%, i.e. from 12/18 down to 4/18. This could be an 
indication that the previously-published results showing evolved hybrid auction 
mechanisms are to some extent artifacts of the lack of sophistication in the ZIP8 trad-
ers that were used in those studies. A counterargument to this is that Byde [2]  
presented results from applying similar GA-search for designs for hybrid sealed-bid 
auctions, where the GA found hybrid solutions to be preferable to the traditional first-
price and second-price sealed bid auctions and those results were independent of the 
sophistication of the traders in the market. Clearly this is another issue that should be 
explored in more depth in future research.  

4   Conclusions 

From the data summarized and analyzed in this paper, it is clear that the ZIP60 variant 
of ZIP is a genuine improvement on the original ZIP8, and that ZIP60 parameter-
vectors that outperform ZIP8 by over 10% can be found by a search/optimization 
process such as the simple GA used here, provided that care is taken in the progres-
sive expansion of the dimensionality of the search-space explored by that GA. Princi-
pal component analysis of the elite evolved parameter-sets from multiple runs under 
differently-changing sequences of supply and demand schedules revealed that the 
evolved parameter-vectors make active use of considerably more values than the eight 
available in ZIP8. The fact that (in comparison to previous experiments using ZIP8 
traders) the experiments with ZIP60 traders reported here show a reduced incidence 
of the discovery of “hybrid” auction mechanisms is possibly an indication that the 
hybrid auctions reported on in the E-Commerce Research and Applications journal 
paper [12] actually evolved as a consequence of the lack of sophistication in the be-
havior of ZIP8 traders: with the comparatively finer-grained responses of ZIP60  
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traders, hybrid mechanisms evolve much less frequently, and so it is tempting to con-
jecture that if the same type of auction-design experiments were repeated with even 
more sophisticated trader agents, hybrid mechanisms would not occur at all.  
Exploring that question remains one of several topics for further research.  
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Abstract. In a previous work we extended the notion of multi-unit combinatorial
reverse auction (MUCRA) by adding a new dimension to the goods at auction. A
buyer can express transformability relationships among goods: some goods can
be transformed into others at a transformation cost. Through this new auction
type, a buyer can find out what goods to buy, to whom, and what transformations
to apply to the acquired goods in order to obtain the best savings. The main focus
of the paper is to perform some preliminary experiments to quantitatively assess
the potential savings that a buying agent may obtain in considering transformation
relationships.

1 Introduction

Since many reverse (or direct) auctions involve the buying (or selling) of a variety of
complementary assets, combinatorial auctions [2], (CA) have recently deserved much
attention in the literature. In particular, a significant amount of work has been devoted
to the problem of selecting the set of winning bids chapters 12, 13, 14, 15, and 16 of
[2]. Nonetheless, to the best of our knowledge, while the literature has considered the
possibility to express relationships among goods on the bidder side —such as comple-
mentarity and substitutability—, the impact of the production relationships among the
different assets to sell/buy on the bid-taker side has been only addressed so far in [3].

Consider that a company devoted to the assembly and repairing of personal comput-
ers (PCs) requires to assembly new PCs in order to fulfil his demand. Figure 1 graphi-
cally represents the way a PC is assembled. Our graphical description largely borrows
from the representation of Place/Transition Nets (PTN) [6], a particular type of Petri
Net. Each circle (corresponding to a PTN place) represents a good. Horizontal bars
connecting goods represent assembly/disassembly operations, likewise transitions in a
PTN. Assembly and disassembly operations are labelled with an indexed t, and shall
be referred to as transformation relationships (t-relationships henceforth). In particular,
t1 and t2 stand for assembly operations. An arc connecting a good to a transformation
indicates that the good is an input to the transformation, whereas an arc connecting a
transformation to a good indicates that the good is an output from the transformation.
In our example, a CPU, RAM, USB and Empty Board are input goods to t2, whereas
Motherboard is an output good of t2. Thus, t2 represents the way a motherboard is man-
ufactured (assembled). The labels on the arcs connecting input goods to transitions, and
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Fig. 1. Graphical representation of an RFQ with t-relationships

the labels on the arcs connecting output goods to transitions indicate the units required
of each input good to perform a transformation and the units generated per output good
respectively. In figure 1, the labels on the arcs connected to t2 indicate that 1 moth-
erboard is assembled from 1 CPU, 4 RAM units, 3 USBs and 1 empty motherboard.
Each transformation has an associated cost every time it is carried out. In our example,
assembling a motherboard via t2 costs e 7.

Say that the company’s warehouse contains most of the components composing each
PC. However, there are no components to assemble motherboards. Therefore, the com-
pany would have to start an automated sourcing process to acquire such components.
For this purpose, it may opt for running a combinatorial reverse auction with qualified
providers. But before that, a buying agent may realise that he faces a decision problem:
shall he buy the required components to assemble them in house into motherboards, or
buy already-assembled motherboards, or opt for a mixed purchase and buy some com-
ponents to assemble them and some already-assembled motherboards? This concern is
reasonable since the cost of components plus transformation (assembly) costs may even-
tually be higher than the cost of already-assembled motherboards. Hence, the buying
agent requires a combinatorial reverse auction mechanism that provides: (a) a language
to express required goods along with the relationships that hold among them; and (b) a
winner determination solver that not only assesses what goods to buy and to whom, but
also the transformations to apply to such goods in order to obtain the initially required
ones. In the first part of the paper we summarize how we solved these issues in [3].
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Firstly, since state-of-the-art multi-unit CA only allow buying agents to require a
fixed number of units per good when expressing his requirements (henceforth referred
to as Request for Quotation (RFQ)), we undo such constraint to allow for the introduc-
tion of t-relationships among goods. Thus, we introduce a formal definition of a Trans-
formability Network Structure (TNS) that largely borrows from Place/Transition Nets
[6], where transitions stand for t-relationships and places stand for goods. Secondly, we
extend the formalisation of multi-unit combinatorial reverse auction (MUCRA), depart-
ing from the model in [9], to introduce transformability by applying the expressiveness
power of multi-set theory. Additionally, we provide a mapping of our formal model to
integer programming that takes into account t-relationships to assess the winning set of
bids along with the transformations to apply in order to obtain a buying agent’s initial
requirements. At this point, it is important to make clear that we focus on the following
central problem: given a collection of bids on bundles and a collection of t-relationships,
find a set of non-conflicting bids that minimises cost. Thus, it is beyond the scope of this
paper to design any CA mechanisms that consider t-relationships from a game-theoretic
perspective. Thirdly, we empirically analyse the benefits of introducing t-relationships
with respect to a classical multi-unit combinatorial reverse auction. We explain how to
generate artificial negotiation scenarios to compare in a fair way the two types of auc-
tions. Then, we experimentally observe that the benefits of introducing t-relationships
for a buyer increase when its production process is more efficient than the providers’
one, that is, when its transformation costs are smaller.

The paper is organised as follows. In section 2 we provide some background knowl-
edge on place/transition nets and multi-sets. In section 3 we present a formal model of
multi-unit combinatorial reverse auctions with t-relationships among goods, along with
its winner determination problem and its mapping to integer programming. Section 4
thoroughly describes the data set generator and some experimental results. Finally, sec-
tion 5 draws some conclusions and outlines directions for future research.

2 Background

A multi-set is an extension to the notion of set, considering the possibility of multiple
appearances of the same element. A multi-set MX over a set X is a function MX :
X → N mapping X to the cardinal numbers. For any x ∈ X , MX(x) ∈ N is called the
multiplicity of x. An element x ∈ X belongs to the multi-set MX if MX(x) �= 0 and
we write x ∈ MX . We denote the set of multi-sets over X by XMS . Given the multi-
sets MS ,M′

S ∈ SMS , their union is defined as: MS∪M′
S(x) = MS(x)+M′

S(x).
Following [6], a Place/Transition Net Structure (PTNS) is a tuple N = (G, T, A, E)

such that: (1) G is a set of places; (2) T is a finite set of transitions such that P ∩
T = ∅; (3) A ⊆ (G × T ) ∪ (T × G) is a set of arcs; (4) E : A → N+ is an
arc expression function. A marking of a PTNS is a multi-set over G. A PTNS with a
given initial marking M0 ∈ GMS is denoted by PTN = (N,M0) and it is called
a Place/Transition Net (PTN). The graphical representation of a PTNS is composed
of the following graphical elements: places are represented as circles, transitions are
represented as bars, arcs connect places to transitions or transitions to places, and E
labels arcs with values (see figure 1).
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A step is a non-empty and finite multi-set over T . A step S ∈ TMS is enabled in a
markingM ∈ GMS if the following property is satisfied: ∀g ∈ G

∑
t∈S E(g, t)S(t) ≤

M(g).
Let step S be enabled in a marking M1. Then, S may occur, changing the M1

marking to another M2 ∈ GMS marking. Setting Z(g, t) = E(t, g) − E(g, t) M2 is
expressed as: ∀g ∈ G M2(g) = M1(g) +

∑
t∈S Z(g, t)S(t). Moreover, we say that

marking M2 is directly reachable from marking M1 by the occurrence of step S, and
we denote it by M1[S > M2.

A finite occurrence sequence is a finite sequence of steps and markings:M1[S1 >
M2 . . .Mn[Sn > Mn+1 such that n ∈ N and Mi[Si > Mi+1 ∀i ∈ {1, . . . , n}. M1

is called the start marking, while Mn+1 is called the end marking. The firing count
multi-set K ∈ TMS associated to a finite occurrence sequence is the union of all its
steps: K =

⋃
i∈{1,2,...,n} Si.

A marking M′′ is reachable from a marking M′ iff there exists a finite occur-
rence sequence having M′ as start marking and M′′ as end marking. We denote it
as M′[S1 . . .Sn > M′′, where n ∈ N. Furthermore the start and end markings are
related by the following equation:

∀g ∈ G M′′(g) = M′(g) +
∑

t∈K
Z(g, t)K(t). (1)

The set of all possible markings reachable from a marking M′ is called its reacha-
bility set, and is denoted as R(N,M′).

In [8], Murata shows that in an acyclic Petri Net a marking M′′ is reachable from a
marking M′ iff there exists a multi-set K ∈ TMS such that expression 1 holds (which
is equivalent to say that the state equation associated to a PTN admits an integer solu-
tion). As a consequence, when a Petri Net is acyclic, the reachability set R(N,M′) is
represented as:

R(N,M′) = {M′′ | ∃K ∈ TMS : ∀g ∈ G

M′′(g) = M′(g) +
∑

t∈K
Z(g, t)K(t)}. (2)

3 MUCRA with t-Relationships

In this section we formalise the winner determination problem (WDP) for MUCRA
with t-relationships (MUCRAtR) borrowing from our work in [3].

3.1 Transformability Network Structures

A Transformability Network Structure describes the different ways in which goods can
be transformed and at which cost. More formally, a transformability network structure
(TNS) is a pair S = (N, CT ), where N = (G, T, A, E) is a Place-Transition Net Struc-
ture and CT : T → R+ is a cost function. The cost function associates a transformation
cost to each t-relationship. In this context we associate: (1) the places in G to a set of
goods to negotiate upon; (2) the transitions in T to a set of t-relationships among goods;
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(3) the directed arcs in A along with their weights E to the specification of the number
of units of each good that are either consumed or produced by a transformation.

The values of C and the values of E label respectively transitions (between paren-
thesis) and arcs in figure 1.

Given a Place/Transition net PTN = (N,M0), if we consider M0 as a good con-
figuration, PTN defines the space of good configurations reachable by applying trans-
formations to M0. The application of transformations is obtained by firing transitions
on PTN . Hereafter, we consider the concepts of transformation step, enabling of a
transformation step, occurrence of a transformation step and transformation sequence
as the counterparts to, respectively, step, enabling of a step, occurrence of a step, and
finite occurrence sequence on a PTN .

We also need to define the concept of transformation cost, taking into account the
cost of transforming good configuration M0 into another good configuration M1 ∈
R(N,M0) by means of some transformation sequence J = (S1, . . . ,Sn). The K fir-
ing count multi-set associated to J accounts for the number of times a transition in the
sequence is fired. Thus, the cost of transforming good configurationM0 into good con-
figuration M1 amounts to adding the transformation cost of each transition in the firing
count multi-set K associated to J . We assess the transformation cost associated to J as
CTS(J) =

∑
S∈J

∑
t∈S CT (t)S(t) =

∑
t∈K CT (t)K(t). Notice that the transforma-

tion cost of a transformation sequence only depends on its firing count multi-set.

3.2 WDP for MUCRA with t-Relationships

In a classic MUCRA scenario, a Request for Quotation (RFQ) can be expressed as a
multi-set U ∈ GMS whose multiplicity indicates the number of units required per good.
In the example of figure 1, if U(motherboard) = 1,U(CPU) = 1,U(RAM) =
2,U(EmptyBoard) = 1,U(USB) = 2, U would be representing a buying agent’s
need for 1 motherboard (M), 1 CPU (C), 1 empty board (E), 2 RAM units (R), and 2
USB (U) connectors. Nonetheless, since t-relationships hold among goods, the buyer
may have different alternatives depending on the bids he receives. If we represent
each bid as a multi-set B ∈ GMS , whose multiplicity indicates the number of units
offered per good, the buyer might, for instance, have the following alternatives: (1)
buy all items as requested, formally M0 = {M, C, R, R, E, U, U}; and (2) M1 =
{C, R, R, R, R, E, U, U, U} ⋃ {C, R, R, E, U, U}, do not buy any motherboard, but
buy its parts (1 CPU, 4 RAM units, 1 Empty Board, and 3 USB connectors) instead to
manufacture it at cost CT (t2) = e 7. The overall cost of the purchase results from the
cost of the acquired units plus the additional transformation cost. Notice that both alter-
natives allow the buyer to obtain his initial requirement, though each one at a different
cost. The goal of the WDP is to assess what alternative to select optimally.

We begin by defining the set of possible auction outcomes. Given a set of bids B,
a possible auction outcome is a pair (W, J), where W ⊆ B, and J = (S1, . . . ,Sn)
is a transformation sequence, such that the application of J to PTN = (N,∪B∈WB)
allows a buyer to obtain a good configuration that fulfils his requirements in U . More
formally, the set of possible auction outcomes is defined (assuming free disposal) as:

Ω = {(W, J), W ⊆ B | ∃X ∈ GMS(
⋃

B∈W

B)[J > X ,X ⊇ U}. (3)
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To each auction outcome (W, J) we associate an auction outcome cost as follows:

CO(W, J) =
∑

B∈W

CB(B) + CTS(J) (4)

where CB : B → R+ stands for the bid cost function.
Given a set of bids B, an RFQ U ∈ GMS , and a transformability network structure

S = (N, CT ), the winner determination problem for an MUCRA with t-relationships
amounts to assessing the auction outcome (W opt, Jopt) ∈ Ω that minimises the auction
outcome cost function CO. Formally,

(W opt, Jopt) = argmin
(W,J)∈Ω

CO(W, J) (5)

3.3 Mapping to Integer Programming

In section 2, we defined the reachability set according to equation 2 for the case of
acyclic Petri nets. Thus, if we restrict to the case of acyclic TNS, a finite occurrence
sequence J is completely specified by its firing count vector K. Then, we can rewrite
expressions 3 and 4 respectively as follows:

Ω = {(W,K), W ⊆ B,K ∈ TMS | ∃X ∈ GMS(
⋃

B∈W

B)[K > X ,X ⊇ U}. (6)

CO(W,K) =
∑

B∈W

CB(B) + CTS(K) (7)

where CTS(K) =
∑

t∈K CT (t)K(t). Hence, the WDP when considering acyclic TNSs
can be restated, from equation 5, to assess:

(W opt,Kopt) = argmin
(W,K)∈Ω

CO(W,K) (8)

We can model the problem of assessing (W opt,Kopt) as an Integer Programming
problem. For this purpose, we need to associate integer variables to the elements in: (1)
a generic subset of bids (W ⊆ B); and (2) a generic firing count multi-set (K).

In order to represent W we assign a binary decision variable xB to each bid B ∈ B,
standing for whether B is selected (xB = 1) or not (xB = 0) in W . A multi-set is
uniquely determined by its mapping function K : T → N. Hence, we represent a multi-
set K ∈ TMS by considering an integer decision variable qt for each t ∈ T . Each qt

represents the multiplicity of element t in the K multi-set.
Then, consider G = {g1, . . . , gn}, n ∈ N, is a finite set of goods, T = {t1, . . . , tr},

r ∈ N, is a finite set of transitions, U = {u1, . . . , un} is a finite set of requirements,
where ui = U(gi) stands for the number of units requested of good gi, and B =
{B1, . . . ,Bm}, m ∈ N, is a finite set of bids. Furthermore, for each bid Bj ∈ B we
construct a pair 〈pj , [a1

j , . . . , a
n
j ]〉 where pj = p(Bj) stands for the bid price and ai

j =
MBj (gi) stands for the units offered of good gi by bid Bj . Therefore, the problem
represented by expression 8 can be translated into the following integer program:



Savings in Combinatorial Auctions Through Transformation Relationships 23

min[
m∑

j=1

xjpj +
r∑

k=1

qkc(tk)] (9)

s.t. ∀1 ≤ i ≤ n

m∑

j=1

ai
jxj +

r∑

k=1

qkmi
k ≥ ui (10)

where xj ∈ {0, 1} ∀1 ≤ j ≤ m stands for whether bid Bj is selected or not, and mi
k =

Z(gi, tk). Hence, notice that each element mi
k is in fact obtained from the incidence

matrix[8] of the place-transition net within a TNS1. Notice that leaving the qt(t ∈ T )
decision variables unbounded is utterly unrealistic because it is equivalent to say that
the buyer has got the capability of applying as many transformations as required to fulfil
U .Therefore it is realistic to assume that the number of in-house transformations that
he can apply are constrained. Hence, we add the following constraints: ∀t ∈ T qt ∈
{0, 1, . . . , maxt}, where maxt ∈ N.

The new integer program defined by expressions 9 and 10 can be readily imple-
mented with the aid of an optimisation library. Notice too that our integer program can
be clearly regarded as an extension of the integer program we must solve for an MU-
CRA as formalised in [10]. Thus, the second component of expression 9 changes the
overall cost as transformations are applied, whereas the second component of expres-
sion 10 makes sure that the units of the selected bids fulfil with a buyer’s requirements
taking into account the units consumed and produced by transformations.

4 Empirical Evaluation

The main purpose of our experiments is to empirically evaluate the benefits of
introducing t-relationships in a multi-unit combinatorial reverse auction. Our experi-
ments artificially generate different data sets, each one composed of a a TNS, a buyer’s
requirements, and a collection of combinatorial bids. Each data set stands for a multi-
unit combinatorial reverse auction problem. We solve the WDP for each auction prob-
lem regarding and disregarding t-relationships to quantitatively assess the potential
savings that a buyer/auctioneer may obtain thanks to t-relationships. In order to solve
the WDP for an MUCRA, as formalised in [10], we exploit the equivalence to the
multi-dimensional knapsack problem pointed out in [5]. In order to solve the WDP
for an MUCRA with t-relationships we implement the integer program represented by
expressions 9 and 10.

4.1 Data Set Generation

As outlined above, each data set shall be composed of: (1) a TNS; (2) an RFQ; and
(3) a set of combinatorial bids. The WDP for an MUCRA will consider the last two
components of the data set, whereas the WDP for an MUCRAtR will consider them all.

1 Given a TNS (N, CT ) where N = (G, T, A, E) is a place-transition net with r transitions
and n places, its incidence matrix M = [mi

k] is an r × n matrix of integers such that mi
k =

E(tk, gi) − E(gi, tk) represents the difference of tokens of place gi produced and consumed
by transition tk.
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When we create a TNS associated to an auction, we should enforce a certain coherence
among the items prices, and thus among bid prices. This concern is taken into account
at bid generation time, and it will be explained in section 4.1. Thus, in the following we
detail the generation of TNSs, RFQs and bids.

TNS Creation. Recall from section 3 that if we restrict to the case of an acyclic TNS,
then the WDP for an MUCRAtR can be formulated as an integer program. Thus, we
shall focus on generating acyclic TNSs for our data sets. For this purpose, we create
TNSs fulfilling the following requirements: (a) each transition receives a single input
arc; (b) each place has got no more than one input and one output arc; and (c) there
exists a place, called root place, that has got only output arcs. Figure 2(b) depicts an
example of a TNS that satisfies such requirements.

We have designed an algorithm to construct acyclic TNSs that is composed of two
sequential sub-algorithms. Firstly, algorithm 1 creates a tree structure from which a
second algorithm constructs a TNS by creating transformations with costs and attach-
ing weights to the edges connecting places with transformations. Figure 2 illustrates
the extension of a tree to an acyclic TNS. A distinguishing feature of our algorithm is
that, since we aim at empirically assessing the potential savings when considering t-
relationships independently of TNSs’ shapes, it is capable of constructing acyclic TNSs
that may largely differ in their shapes (e.g. with different widths, depths, either sym-
metric or asymmetric,...etc).

(a) Example of good tree (b) Corresponding TNS

Fig. 2. Extension of a tree to a TNS

Algorithm 1 constructs a tree of n nodes (goods) and r branching points (i.e. nodes
with children). It represents the tree as a vector of n components, named Tree. The
value of each vector component is a pointer to the index of the father good. For instance,
if the i-th component of Tree is set to j, it means that good gj is the father of good gi.
Given this representation, it is easy to build a random tree. The rough idea is: (1) build a
null vector Tree of n components; (2) set to 0 the first component of Tree; (3) set each
element of the vector Tree[j] to a random number chosen in [1, j−1]. This constructive
process first builds the root (g1), then assigns a child (g2) to the root (g1), then assigns
a child (g3) to a random node within {g1, g2},...etc. More in detail. While (line 2) the
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exact required number (r) of father goods are not generated, the algorithm proceeds as
follows. At each iteration of the loop in line (5), the algorithm assesses the father of
each good gj . Firstly, it stores the indexes of the goods that have at least one child into
Fathers through the EXTRACT-NONZERO-ENTRIES function applied over Tree. If
the father goods that have been generated are less than r (line 8), the father of gj is
randomly assessed (line 9), otherwise its father is selected out of the goods that have
already children (line 11). Finally, the algorithm returns a tree (line 18).

Algorithm 1. CREATE-TREE(n, r)
1: k← 0
2: while k �= r do
3: Tree← Empty-Vector(n)
4: k← 0
5: for j ← 2 to n do
6: Fathers← EXTRACT-NONZERO-ENTRIES(Tree)
7: k← length[Fathers]
8: if k < r then
9: father ← EXTRACT-RANDOM-NUMBER (1, j − 1)
10: else
11: father ← EXTRACT-RANDOM-ELEMENT(Fathers)
12: end if
13: Tree[j] ← father
14: end for
15: Fathers← EXTRACT-NONZERO-ENTRIES (Tree)
16: k← length[Fathers]
17: end while
18: return Tree

From the tree generated by algorithm 1, a second algorithm extends it to generate a
TNS taking as inputs the minimum and maximum arc weights (wmin and wmax respec-
tively) and the minimum and maximum transformation costs (cmin and cmax respec-
tively). The algorithm assigns to each branching node of the input tree a t-relationship
having as input good the branching node, and as output goods the children of the very
same branching node. Then it attaches to each created t-relationship a transformation
cost randomly chosen in [cmin, cmax]. Finally, the algorithm assigns to each arc in the
created TNS an integer random weight in [wmin, wmax]. The outputs of the algorithm
are thus the incidence matrix M of the associated TNS and a transformation cost vector
C. Notice that M and C are enough to characterise a TNS and to build expressions 9
and 10 of the Integer Program.

RFQ Creation. Considering the notion of requirements as described in section 3.3, an
RFQ is represented as a set U = {u1, . . . , un} where ui = U(gi) stands for the number
of units requested of good gi. We generate each number of required units ui ∈ U from a
uniform discrete distribution U [umin, umax], where umin and umax are two parameters
standing for the minimum and maximum number of units required per item respectively.
Notice that this differs from Leyton-Browns’s approach [7] since we have not included
any constraint ensuring that each data set involves the same total number of required units.

Bids Creation. In order to create a data set, the most delicate task is concerned with the
generation of a collection of combinatorial bids. To the best of our knowledge, and as
already pointed out in chapter 18 of [2], no real-world benchmarks of combinatorial bids
do exist. We find two approaches in the CA literature to generate artificial data sets to
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compare winner determination algorithms for MUCRA: (1) design specific generators
([7] and chapters 18 and 19 of [2]); or (2) given the equivalence of the WDP for an
MUCA/MUCRA to the multi-dimensional knapsack problem [5], employ the very same
data sets used for evaluating MDKP solvers ([1]). Unfortunately, we cannot benefit
from any previous results in the literature since they do not take into account the novel
notion of t-relationship, and thus the generated data set never reflects the relationships
among goods. For instance, consider the t2 transformation in figure 1. It is clear that
it is unrealistic that a bid offers a motherboard cheaper than some of its components.
This fact motivated the need for substantially changing the approach in [7] to coherently
introduce t-relationships.

In order to generate a plausible set of combinatorial bids, we assume that all pro-
viding agents produce goods in a similar manner. In other words, they share similar
production structures (similar TNSs). This means that given a particular good, two pro-
viding agents will roughly use the same raw materials (components), but acquired at
different prices and transformed at different costs. We believe that this assumption is
utterly realistic. Under this assumption, we can artificially generate bids that can be
used for both MUCRA and MUCRAtR. Nonetheless, one might be tempted to intu-
itively think that bids that take into account t-relationships are not valid whatsoever
for an MUCRA since that would lead to an unfair comparison with MUCRAtR. Not
at all. Upon reception of an RFQ, providing agents do compose bids taking into ac-
count their own t-relationships, and thus their own production costs. Thereafter, in an
MUCRA scenario, the winner determination algorithm shall solely focus on finding an
optimal allocation for the required goods, whereas in an MUCRAtR scenario, the win-
ner determination algorithm shall assess whether an optimal allocation that considers
the buying agent’s t-relationships can be obtained. Therefore, the difference is that an
MUCRAtR winner determination algorithm does consider and exploit both the buying
agent’s t-relationships along with the implicit transformation cost within each bid, while
an MUCRA winner determination algorithm does not.

In 3.3 we mentioned that from a bidBj ∈ B we can construct a pair 〈pj , [a1
j , . . . , a

n
j ]〉

where pj stands for the bid price and [a1
j , . . . , a

n
j ] for the units offered per good. First of

all, we describe how to generate the units to offer for each bid based on algorithm 2. This
algorithm receives several input parameters, namely: n (number of goods); m (number
of bids to generate); pbid density (parametrizes a geometric distribution [4] used for ob-
taining the number of goods that jointly appear in a bid); and poffered units (parameter
of a geometric distribution used for obtaining the number of units offered per good.).
Algorithm 2 proceeds as follows. For each bid, it firstly obtains the number of goods to
jointly bid for from a geometric distribution (line 3). It subsequently obtains the num-
ber of units to offer per good (line 8) from another geometric distribution. We employed
geometric distributions since they provide large variances.

Once generated the units to offer per good for all bids, we must assess all bid prices.
This process is rather delicate when considering t-relationships if we want to guarantee
the production of a set of plausible bids. As outlined above, we make the assumption
that all providing agents in the market share similar production structures, which in turn
are similar to the buying agent’s one. In practice, our providing agents use the same TNS
as the buying agent, though each one has his own transformation costs, which in turn are
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Algorithm 2. GENERATE-OFFER-VECTOR[n, m, pbid density , poffered units]
1: for j ← 1 to m do
2: [a1

j , . . . , an
j ]← Empty-Vector [n]

3: k← SAMPLE-GEOMETRIC-DISTRIBUTION[pbid density ]
4: for l← 1 to k do
5: i← randomly choose in [1, .., n] such that ai

j = 0

6: u← 0
7: while u �= 0 do
8: u← SAMPLE-GEOMETRIC-DISTRIBUTION[poffered units]
9: ai

j ← u

10: end while
11: end for
12: end for

assessed as a variation of the buying agent’s ones. With this assumption in mind, next
we describe how to produce a unitary price for each good offered in a given bid. For
this purpose, we depart from the value of a parameter, proot, standing for the average
price of the root good of a TNS 4.1 (e.g. the root good in figure 2(b) is g1).

The first step of our pricing policy calculates the unitary price of the root good for
each bid under the assumption that all providing agents have similar values for such
good. Thus, for each bid Bj ∈ B, its unitary price for the root good is assessed as
Proot,j = proot · |λ|, where λ is sampled from a distribution N(1, σroot price).

After that, our pricing policy proceeds as follows. Given a particular bid and a good
whose unitary price is known, this is propagated down the TNS through the transition it
is linked to towards its output goods. In fact, the value to propagate results from weight-
ing the unitary price (considering the arc connecting the input good to the transition)
and adding the transformation cost of the transition. The resulting value is unevenly
distributed among the output goods according to a share factor randomly assigned to
each output good. For instance, consider the TNS in figure 2(b) and a bid Bj such that:
its unitary cost for g1 is Pg1,j = e 50, its transformation cost (different from the buying
agent’s one) for t1 is e 10, and w1 = 2. In such a case, the value to split down through
t1 towards g2, g3, g4, and g5 would be 50 ∗ 2 + 10 = e 110. Say that g2 is assigned 0.2
as share factor. Thus, 110 ∗ 0.2 = e 22 would be allocated to g2. Finally, that amount
should be split further to obtain g2 unitary price if w2 > 1. For instance, if w2 = 2,
then the final unitary price for g2 would be e 11.

Generalising the example above, in what follows we provide a general way of cal-
culating the unitary price for any good in a given bid. Let Bj be a bid represented by
〈pj , [a1

j , . . . , a
n
j ]〉 and g a good such that ag

j �= 0. Let t be a transition such that g is one
of its output goods, and father(g) is its single input good2. Besides, we note as G′ the
set of output goods of t. Then, we obtain Pg,j , the unitary price for good g of bid Bj as
follows:

Pg,j =
Pfather(g),k · |M [father(g), t]| + c(t) · |ν|

M [g, t]
ωg (11)

where Pfather(g),k is the unitary price for good father(g) in a bid Bk �= Bj; the matrix
|M [father(g), t]| indicates the units of good father(g) that are input to transition t; ν

2 Recall that our method to construct acyclic TNSs ensures that there is a single input good per
transition.
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is a value obtained from a distribution N(μproduction cost, σproduction cost) that weighs
transformation cost c(t); M [g, t] indicates the number of units of good g that are output
by transition t; and ωg is the share factor for good g.

Several remarks apply to equation 11. Firstly, the share factors for output goods must
satisfy

∑
g′∈G′ ωg′ = 1. Secondly, it may surprise the reader to realise that the value to

propagate down the TNS (Pfather(g),k) is collected from a different bid. We enforce this
crossover operation among bids to avoid undesirable cascading effects that occur when
we start out calculating unitary prices departing from either high or low unitary root
prices. In this way we avoid to produce non-competitive and extremely competitive
bids respectively that could be in some sense regarded as noise that could eventually
lead to diverting results. Notice that after applying our pricing policy we obtain P , an
n × m matrix storing all unitary prices.

Finally, from equation 11 we can readily obtain the bid price for a each bid Bj ∈ B
as pj =

∑n
i=1 ai

j · Pi,j . To summarise, the parameters that is possible to set when
creating an MUCRAtR scenario are listed along the first column of table 1.

Table 1. Parameters characterising our experimental scenario

Parameter Explanation Value

n The number of items 20
r The number of transitions 8

umin, umax The minimum/maximum number of units required per item 10/10

wmin, wmax Minimum/Maximum arc weight 1/5
cmin, cmax Minimum/Maximum Transformation cost 10/10

m The number of bids to generate 1000
poffered goods Statistically sets the number of items simultaneously present in a bid {0.2, 0.3, 0.4, 0.5}
poffered units Statistically sets the number of unit offered per item {0.2, 0.3, 0.4, 0.5}

proot Average price of the root good 1000
μroot price Parameters of a Gaussian 1
σroot price distribution weighting the root price proot 0.01

μproduction cost Parameters of a Gaussian distribution setting 0.8:0.1:1.8
σproduction cost the production costs difference between buyer and providers 0.1

4.2 Experimental Settings and Results

In order to measure the benefits provided by the introduction of t-relationships among
goods we compute the cost of the optimal outcome, that is, the cost of the winning bid
set for MUCRA (OCMUCRA) and the cost of the winning bid set plus transformations
for MUCRAtR (OCMUCARtR). We define the savings increment (SI) as: SI = 100 ∗
OCMUCRA−OCMUCRAtR

OCMUCRA The larger the index, the higher the benefits that a buyer can
expect to obtain by using an MUCRAtR instead of an MUCRA.

The third column of table 1 shows the parameter configuration used in our ex-
periments. In this preliminary experiment we consider the outcomes produced when
varying three parameters, namely μproduction cost, poffered units and pbid density . In
particular μproduction cost takes on values in [0.8, 1.8], and we set poffered units =
pbid density ∈ {0.2, 0.3, 0.4, 0.5}. Our experimental hypothesis are: (1) the SI index
increases as the buyer’s transformation costs decrease (larger μproduction cost) with re-
spect to the providers’ ones; and (2) SI will increase when increasing the bid density
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(low pbid density) and the number of offered units (low poffered units). This hypothesis
is motivated by the following reasons. Firstly, increasing the μproduction cost parame-
ter models the fact that in-house transformations are cheaper, therefore more likely to
be employed. An MUCRAtR improves savings with respect to an MUCRA as more
in-house transformations are employed. In such a case the sets of winning bids of MU-
CRA and MUCRAtR largely differ among them. Secondly, when increasing the bid
density and the number of offered units, it is very difficult for an MUCRA to allocate
offers so that they perfectly fit the requirements. An MUCRAtR, instead, can employ
the free-disposal goods obtained by imperfect allocations as inputs to transformations,
so as to obtain other required goods. Therefore, we will analyse how the difference in
production costs between the buyer and providers affects SI . The difference among the
buyer’s transformation costs and the average transformation costs of providers is set
by the μproduction cost parameter. We expect that, as the average transformation costs
of providers increases with respect to the buyer’s ones, so do the benefits of using an
MUCRAtR instead of an MUCRA. In fact, the experimental results do strongly agree
with our hypothesis: an increment in μproduction cost causes an increment in the sav-
ings. Figure 3 depicts the results when varying μproduction cost from 0.8 to 1.8. The x
axis represents the values of the μproduction cost parameter. The y axis represents the
corresponding values of SI . Each point is obtained by averaging 30 runs of the exper-
iment. The legend lists the value of the poffered goods = (poffered units) parameter3.
As μproduction cost increases, so do savings. As the bids’ density and the number of
offered units jointly increase, so does savings.

Fig. 3. Varying the µproduction cost parameter

3 Notice that an increment in poffered units = pbid density stands for a decrement in the number
of offered units and in the bids’ density, since they are parameters of a geometric distribution.
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5 Conclusions and Future Work

We have performed a set of preliminary experiments to quantitatively assess the poten-
tial savings of employing an MUCRAtR instead of an MUCRA in different scenarios.
The main conclusion that stems from the experiments is that the cheaper the in-house
t-relationships available to the buyer, the more he can benefit from applying them. The
second conclusion is that when the number of offered units and the bid density increase
simultaneously, so does the savings (SI).

The novel idea presented in the paper opens several paths to future development. The
first being a further development of the empirical experiments and to carry out a sound
sensitivity analysis. That would allows us to fully characterize the auction scenarios
where exploiting t-relationships is expected to bring larger savings than an MUCRA.
On the other hand, we aim at comparing MUCRAtR and MUCRA in terms of compu-
tational complexity, performing some scalability experiments, too.

Finally, notice that it was beyond the scope of this paper any mechanism design
analysis. That is left out for future work.
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Abstract. This paper studies bilateral, multi-issue negotiation between self in-
terested agents with deadlines. There are a number of procedures for negotiating
the issues and each of these gives a different outcome. Thus, a key problem is
to decide which one to use. Given this, we study the three main alternatives: the
package deal, the simultaneous procedure, and the sequential procedure. First,
we determine equilibria for the case where each agent is uncertain about its op-
ponent’s deadline. We then compare the outcomes for these procedures and de-
termine the one that is optimal (in this case, the package deal is optimal for each
party). We then compare the procedures in terms of their time complexity, the
uniqueness and Pareto optimality of their solutions, and their time of agreement.

1 Introduction

Negotiation is a process that allows disputing agents to decide how to divide the gains
from cooperation [13,10]. Now, in practice, most negotiations involve multiple issues.
However, for such encounters, the outcome depends on the procedure that is used [6].
Such procedures specify how the issues will be settled. Broadly speaking, there are three
possibilities: (i) Discuss the issues together as a package deal (PD). This gives rise to
the possibility of making tradeoffs across issues. (ii) Discuss the issues simultaneously,
and independently of each other. This is called the simultaneous procedure (SIM). (iii)
Discuss the issues one after another. This is called the sequential procedure (SEQ).
Note that in the latter two cases, the issues are settled independently and so the agents
cannot make tradeoffs.

As the three procedures yield different outcomes [7], a key problem for the agents is
to decide what procedure they should use. Moreover, in many practical cases the agents
have to decide this in the presence of time constraints and uncertain information. Given
this, it is important to study the strategic behaviour of agents in such circumstances,
and to determine what is the optimal procedure (i.e., the one that maximises expected
utilities). To this end, this paper studies and compares the three main procedures for
agents with deadlines and where each agent is uncertain about the other’s deadline.
We show that, for each agent, the PD is the best. We then compare the procedures
in terms of four important attributes: their time complexity, whether their solutions
are Pareto optimal, the uniqueness of their solutions, and their time of agreement. Our
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analysis shows that, only the PD generates a Pareto optimal outcome, and that all three
procedures have polynomial time complexity. In terms of the time of agreement, the
PD and the SIM procedures are similar but the SEQ procedure is comparatively slower.
Finally, we find the conditions for uniqueness of the solution.

There has been some formal comparison of different procedures to find the optimal
one (see Section 5). However, all this work has two major limitations. First, it has fo-
cused on comparing procedures for negotiation without deadlines. But we believe dead-
lines are an important feature of most automated negotiations. Moreover, the strategic
behaviour of agents with deadlines differs from that without. Second, it has only fo-
cused on finding the optimal procedure, but has not compared the solution properties of
different procedures. Again, we believe this is a serious shortcoming that we rectify in
this paper. Given this, our paper therefore makes a twofold contribution. First, we ob-
tain the equilibrium for each procedure1 when there are deadlines. Second, on the basis
of this equilibrium, we provide the first comprehensive comparison of their solution
properties (viz. time complexity, Pareto optimality, uniqueness, and time of agreement)
and thereby allow agents to make a more informed choice about which procedure is
most suitable in which circumstances.

The remainder of the paper is organised as follows. Section 2 introduces single-issue
negotiation. Section 3 studies the three multi-issue procedures for the complete infor-
mation scenario. Section 4 treats the agents’ deadlines as uncertain. Section 5 discusses
related work and Section 6 concludes.

2 Single-Issue Negotiation

We first give a reasonable standard model of single-issue negotiation and then move
to the multi-issue case which is the main focus of this work. Two agents (a and b)
negotiate over a single issue i using Rubinstein’s alternating offers protocol [12]. Each
agent has time constraints in the form of deadlines and discount factors. Since we focus
on competitive scenarios with self-interested agents, we model negotiation with the
‘split the pie game’. This complete information game is based on the split the pie game
analysed in [14,16]. The issue i is a ‘pie’ of size 1 and the agents want to find how to
split it between themselves. The pie shrinks with time, and this shrinkage is represented
by a discount factor denoted 0 < δi ≤ 1 for both agents. At time t = 1, the size of the
pie is 1, but at t > 1, the pie shrinks to δt−1

i . Let na ∈ N
+ (nb ∈ N

+) denote agent
a’s (b’s) deadline. If an agreement is not reached by an agent’s deadline, then it quits
and negotiation ends in a conflict. Both agents prefer an agreement to a conflict. Hence,
negotiation must end by the earlier deadline n = min(na, nb).

We denote the set of real numbers as R and the set of real numbers in the interval
[0, 1] as R1. Let [xt

i, y
t
i ] denote the offer made at t where xt

i and yt
i denote a’s and

b’s share respectively. Then, the set of possible offers is {[xt
i, y

t
i ] : xt

i ≥ 0, yt
i ≥

0, and xt
i + yt

i = δt−1
i } where xt

i ∈ R1 and yt
i ∈ R1. At time t ≤ n, if a and b

receive a share of xt
i and yt

i (where xt
i + yt

i = δt−1
i ), then their utilities are xt

i and yt
i

1 Note that existing work has obtained equilibrium for negotiation with deadlines but only for
the single issue case, and a special type of the SEQ procedure for multiple issues.
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respectively. Agent a (b) gets zero utility if t > na (t > nb). Finally, the conflict utility
is zero for both agents.

For this setting, the offers are determined as follows. Let a make an offer at t = 1.
To begin, let the earlier deadline is n = 1. If b accepts at a’s offer at t = 1, the division
occurs as agreed; if not, neither agent gets anything (since n = 1). Here, a is in a
powerful position and is able to propose to keep 100 percent of the pie and give nothing
to b.2 Since n = 1, b accepts this offer and an agreement takes place at t = 1.

Now consider the case where the earlier deadline is n = 2. At t = 1, the size of the
pie is 1 but it shrinks to δi at t = 2. In order to decide what to offer in the first round, a
looks ahead to t = 2 and reasons backwards. It reasons that if negotiation proceeds to
t = 2, b will take 100 percent of the shrunken pie by offering [0, δi] and leave nothing
for a. Thus, at t = 1, if a offers b anything less than δi, b will reject the offer. Hence, at
t = 1, a offers [1 − δi, δi]. Agent b accepts and an agreement occurs at t = 1.

In general, if the earlier deadline is n, a decides what to offer at t = 1 by looking
ahead to t = n and then reasoning backwards. This decision making leads a to offer
[Σn−1

j=0 ((−1)jδj
i ), 1−Σn−1

j=0 ((−1)jδj
i ))] at t = 1. Agent b accepts and negotiation ends

at t = 1. We now extend this single-issue model to the multi-issue case.

3 Multi-issue Negotiation with Complete Information

As mentioned in Section 1, the existing literature does not analyse the multi-issue proce-
dures for negotiation with deadlines.3 Hence, we first analyse the complete information
setting. Here, a and b negotiate over m > 1 issues. These issues are m distinct pies and
the agents want to determine how to split each one. As before, each pie is of size 1. Let
the discount factor for issue c where 1 ≤ c ≤ m be 0 < δc ≤ 1. For each issue, let
na (nb) denote agent a’s (b’s) deadline. In the offer for time period t, a’s (b’s) share for
each of the m issues is represented as an m element vector xt ∈ R

m
1 (yt ∈ R

m
1 ). Thus,

if a’s share for issue c at time t is xt
c, then b’s share is yt

c = (δt−1
c − xt

c). The shares for
a and b are together represented as the package [xt, yt].

An agent’s cumulative utility from the package [xt, yt] is the sum of its utilities
for each of the m issues. Let Ua : R

m
1 × R

m
1 × N

+ → R and U b : R
m
1 × R

m
1 ×

N
+ → R denote the cumulative utilities for a and b respectively at time t ≤ n where

Ua([xt, yt], t) = Σm
c=1k

a
c xt

c and U b([xt, yt], t) = Σm
c=1k

b
cy

t
c where ka ∈ R

m denotes
an m element vector for a and kb ∈ R

m that for b. These vectors indicate how the
agents value different issues. For example, if ka

c > ka
c+1, then agent a values issue

c more than issue c + 1. Likewise for agent b. Each agent has complete information
about all the negotiation parameters (i.e., na, nb, m, ka

c , kb
c , and δc for 1 ≤ c ≤ m).

For this setting, we now obtain the equilibrium for the PD, the SIM, and the SEQ
procedures.

2 It is possible that b may reject such a proposal. In practice, a will have to propose an offer that
is just enough to induce b to accept. However, to keep the exposition simple, we assume that a
can get the whole pie by making the 100 percent proposal.

3 The existing literature only analyses the case where each issue is discussed sequentially one
after another (this is a special case of the procedures we study here). Section 5 gives details.
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The package deal procedure. For this procedure, the agents use the same protocol as
for the single-issue case (described in Section 2). However, an offer for the PD includes
a proposal for each of the m issues. Agents are allowed to either accept a complete
offer (i.e., all m issues) or reject a complete offer. An agreement can therefore take
place either on all the m issues or none of them. As per single-issue negotiation, an
agent decides what to offer by backward reasoning. However, since an offer for the PD
includes a share for all the m issues, agents can now make tradeoffs across the issues
in order to maximise their cumulative utilities. The function TRADEOFFA is agent a’s
function for making tradeoffs, and is described in more detail in the proof of Theorem 1.
The function TRADEOFFB for b can be defined analogously.

The equilibrium offer for issue c at time t is denoted as [at
c, b

t
c], where at

c and bt
c

denote the shares for a and b. We denote the equilibrium package at time t as [at, bt]
where at ∈ R

m
1 (bt ∈ R

m
1 ) is an m element vector that denotes a’s (b’s) share for each

of the m issues. Also, δt−1 ∈ R
m is an m element vector that represents the sizes of

the m pies at time t. The symbol 0 denotes an m element vector of zeroes. For each
pie, the sum of the agents’ shares at time t is equal to the size of the pie at t (i.e., for
1 ≤ t ≤ n, at

c + bt
c = δt−1

c ). Finally, for time period t ≤ n, we let A(t) and B(t)
denote the equilibrium strategy for agents a and b respectively. Given this, Theorem 1
characterises the equilibrium for the PD.

Theorem 1. The following strategies form a Nash equilibrium. For t = n they are:

A(n) =

{
OFFER [δn−1, 0] if a’s turn

ACCEPT if b’s turn
(1)

B(n) =

{
OFFER [0, δn−1] if b’s turn

ACCEPT if a’s turn
(2)

For t < n, if [xt, yt] denotes the offer made at time t, then the strategies are:

A(t) =

{
OFFER TRADEOFFA(UB(t)) if a’s turn

If (Ua([xt, yt], t) ≥ UA(t)) ACCEPT else REJECT if b’s turn
(3)

B(t) =

{
OFFER TRADEOFFB(UA(t)) if b’s turn

If (Ub([xt, yt], t) ≥ UB(t)) ACCEPT else REJECT if a’s turn
(4)

where UA(t) = Ua([at+1, bt+1], t + 1) and UB(t) = U b([at+1, bt+1], t + 1). An agree-
ment takes place at t = 1.

Proof. We look ahead to the last time period (i.e., t = n) and then reason backwards.
If negotiation reaches the deadline (n), then the offering agent takes everything and its
opponent gets nothing. Hence, we get Equations 1 and 2.

In all the preceding time periods (t < n), the offering agent proposes a package that
gives its opponent a cumulative utility equal to what the opponent would get from its
own equilibrium offer for the next time period. During time period t, either a or b could
be the offering agent. Consider the case where a makes an offer at t. The package that a
offers at t gives b a cumulative utility of U b([at+1, bt+1], t + 1). However, since there is
more than one issue, there is more than one package that gives b this cumulative utility.
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Between these packages, a offers the one that maximises its own cumulative utility.
Thus, a’s tradeoff problem is to find a package [at, bt] that maximises Σm

c=1k
a
c at

c such
that Σm

c=1(δt−1
c − at

c)kb
c = U b([at+1, bt+1], t + 1) and 0 ≤ at

c ≤ 1 for 1 ≤ c ≤ m.
This tradeoff problem is similar to the fractional knapsack problem [11,3], the optimal
solution for which can be found using the greedy approach (i.e., by filling the knapsack
with items in their decreasing order of value per unit weight). The items in the knapsack
problem are analogous to the issues in our case. The only difference is that the fractional
knapsack problem starts with an empty knapsack and aims at filling it with items so as
to maximise the cumulative value, while an agent’s tradeoff problem can be viewed as
starting with the agent having 100 per cent of all the issues and then aiming to give away
portions of issues to the other agent so that the latter gets a given cumulative utility
while the resulting loss in the former’s utility is minimised. Hence, in order perform
tradeoffs, agent a considers ka

c /kb
c for 1 ≤ c ≤ m because ka

c /kb
c is the utility that a

needs to give up in order to increase b’s utility by one. Since a wants to maximise its
own utility and give b a utility of U b([at+1, bt+1], t + 1), it divides the m pies such that
it gets the maximum possible share for those issues for which ka

c /kb
c is high and gives

to b the maximum possible share for those issues for which ka
c /kb

c is low. Thus, a begins
by giving b the maximum possible share for the issue with the lowest ka

c /kb
c . It then

does the same for the issue with the next lowest ka
c /kb

c and repeats this process until b’s
cumulative utility is U b([at+1, bt+1], t+1). In this way, agent a performs tradeoffs with
the TRADEOFFA(UB(t)) function that uses the greedy approach described above. Thus
we get Equation 3.

Analogously, if b offers at t, we get the equilibrium package of Equation 4. In this
way, the first mover obtains the offer for t = 1 which its opponent accepts. �

Theorem 2. For the PD, the time to find an equilibrium offer for t = 1 is O(mn).

Proof. The time to compute the equilibrium offer for t = n is linear in the number of
issues (see Equations 1 and 2). For t < n, the agents make tradeoffs. Recall from Theo-
rem 1, that an agent’s tradeoff problem is analogous to the fractional knapsack problem.
Hence the time complexity TRADEOFFA (and TRADEOFFB) is O(m) (see [11,3] for the
complexity of the fractional knapsack problem). Tradeoffs are made in every time pe-
riod from the (n − 1)th to the first. Hence the time complexity of finding an offer for
t = 1 is O(mn). �

Theorem 3. The PD has a unique equilibrium outcome if the following condition (C1)
is true:

C1 : for all i and j, if (i �= j) then (ka
i /kb

i �= ka
j /kb

j)

Proof. Consider a time period t < n and let a denote the offering agent. Recall from
Theorem 1 that a splits the m issues in the increasing order of ka

i /kb
i . Thus, for a given

i and j, if ka
i /kb

i = ka
j /kb

j , then agent a is indifferent between which of the two issues
(i and j) it splits up first. For example, if m = 2, n = 2, δ = 0.5, ka

1 = 1, ka
2 = 2,

kb
1 = 2, and kb

2 = 4, then ka
1/kb

1 = ka
2/kb

2 = 0.5. If a is the offering agent at t = 1, it
can offer (1, 0) for issue 1 and (1/4, 3/4) for issue 2. This gives a cumulative utility of
1.5 to a and 3 to b. Alternatively, a can offer (0, 1) for issue 1 and (3/4, 1/4) for issue
2 since this also results in the same cumulative utilities to a and b.
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But if ka
i /kb

i �= ka
j /kb

j , then a splits issue i first if ka
i /kb

i < ka
j /kb

j and issue j first
if ka

i /kb
i > ka

j /kb
j . Hence there is only one possible offer that a can make at any time

t < n. Likewise there is one possible offer that b can make at any time t < n. Since
there is a unique offer for each time period, the equilibrium outcome is unique. �

Theorem 4. The PD generates a Pareto optimal outcome.

Proof. As we consider competitive negotiations, for an individual issue c (where 1 ≤
c ≤ m), an increase in one agent’s utility results in a decrease in that of the other.
However, for the PD procedure, an agent considers its cumulative utility from all m
issues. Consequently, during the process of backward reasoning, at time t < n, the
agent that makes tradeoffs maximises its own cumulative utility without lowering that
of its opponent (with respect to what the opponent would offer in the next time period).
Hence the equilibrium outcome for the PD is Pareto optimal. �

The SIM procedure. Here the m issues are partitioned into μ > 1 disjoint subsets. For
1 ≤ c ≤ μ, Sc denotes the cth partition, where ∪µ

c=1Sc = {1, . . . , m}. Negotiation for
each partition starts at t = 1 and each partition is settled using the PD. Thus, for μ = m,
all m issues are settled simultaneously and independently of each other. At the other
extreme, for μ = 1, we have only one partition which is the PD procedure described
earlier. Since the issues in each subset are settled using the PD, the equilibrium for each
of these μ partitions is obtained from Theorem 1. Hence we get the following results.

First, an agreement for each issue occurs at t = 1. Since negotiation for each partition
starts at t = 1 and an agreement for the PD occurs at t = 1 (see Theorem 1), an
agreement for the SIM procedure (for each partition and hence each issue) occurs at
t = 1. Second, if |Sc| is the number of issues in Sc and n is the earlier deadline then
the time to determine an equilibrium offer for t = 1 is Σµ

c=1O(|Sc|n). Let M denote
the size of the largest partition. Then, Σµ

c=1O(|Sc|n) = O(Mn). This is because the
time to find the equilibrium offer for t = 1 for the PD (i.e., for μ = 1) is O(mn) (see
Theorem 2), so the time to compute equilibrium offer for t = 1 for the cth partition is
O(|Sc|n). Hence, for all μ partitions, the time complexity is Σµ

c=1O(|Sc|n). Third, it
follows from Theorem 3 that the equilibrium outcome for the SIM procedure is unique
if the condition C1 is true for each of the μ partitions (irrespective of how the m issues
are split into μ > 1 partitions). Finally, as Theorem 5 shows, the SIM procedure does
not always generate a Pareto optimal outcome.

Theorem 5. The SIM procedure does not always generate a Pareto optimal outcome.

Proof. We show this with a counter example. Let n = 2, δ = 0.5, m = 3, μ = 2,
S1 = {1, 2}, S2 = {3}, ka

1 = 1, ka
2 = 2, ka

3 = 3, kb
1 = 1, kb

2 = 0.5, and kb
3 = 0.25. Let

a denote the first mover. From Theorem 1, we know that in the equilibrium for partition
S1, agent a gets a share of 0.25 for issue 1 and 1 for issue 2, and b gets a share of 0.75
for issue 1 and nothing for issue 2. For partition S2, each agent gets a share of 1/2.
Thus, a’s cumulative utility from all the three issues is 3.75 and that of b is 0.875.

Now consider the case where all the three issues are discussed using the PD. Here,
μ = 1 and all other parameters remain the same. In the equilibrium outcome (i.e., the
package [(1

8 , 1, 1), (7
8 , 0, 0)]), a gets a cumulative utility of 5.125 and b gets 0.875. This

means that the procedure with μ = 2 does not generate a Pareto optimal outcome. The
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reason for this is that the PD allows tradeoffs to be made across all the m issues while
the simultaneous procedure only allows tradeoffs to be made across issues within each
partition but not across partitions.

The SEQ procedure. The SEQ procedure differs from the SIM one in that the parti-
tions are now negotiated sequentially, one after another. The issues within a subset are
settled using the PD. Negotiation for the first partition starts at time t = 1. If negotiation
for the cth (for 1 ≤ c ≤ μ) partition ends at tc, then negotiation for the (c + 1)th parti-
tion starts at time tc +1. Each agent gets its share for all the issues in a partition as soon
as the partition is settled. Since the issues in each subset are settled using the PD, the
equilibrium for each of these subsets is obtained from Theorem 1 by substituting the ap-
propriate negotiation start times for each partition. Since negotiation for each partition
ends in the same time period in which it starts, the time to settle all the m issues is μ.
Note that the time complexity of the SEQ procedure is the same as the SIM one. Also,
like the SIM procedure, the equilibrium for SEQ is not always Pareto optimal. Finally,
the SEQ procedure has a unique outcome if the condition C1 is true fro all the partitions.

The optimal procedure. The procedure that gives a player the maximum utility is its
optimal procedure. For the SEQ procedure the equilibrium outcome strongly depends
on the negotiation agenda (i.e., the order in which the partitions are settled). There are
two ways of defining the agenda [6]: exogenously (i.e., before the actual negotiation
over the issues begins) or endogenously (the agents decide what issue they will settle
next during the actual process of negotiation). The agenda that gives an agent the max-
imum utility is its optimal one [4]. Our objective here is not to determine the optimal
agenda, but to consider a given agenda and compare the outcome for the SEQ procedure
for the given agenda with the outcomes for the SIM and the PD procedures, in order to
find the optimal one. The following theorem characterises this procedure.

Theorem 6. Irrespective of how the m issues are split into μ > 1 partitions, the PD is
optimal for both parties.

Proof. We first show that the PD is no worse than the SIM procedure. Consider the SIM
procedure for μ > 1. Since the difference between the procedure with μ = 1 and that
with μ > 1 is that the former makes tradeoffs across all the m issues, while the latter
does not, each agent’s utility from the former is no worse than its utility from the latter.

We now show that for a given μ (where μ > 1), for each agent, the outcome for
the SIM procedure is better than that for the SEQ one (irrespective of the agenda for
the SEQ procedure). We do this by considering each partition. Consider the partition
c = 1. Since negotiation for the first partition starts at t = 1 for both SIM and SEQ
procedures, the outcome for this partition is the same for μ = 1 and μ > 1. Hence,
for the first partition, an agent gets equal utility from the two procedures. Now consider
a partition c > 1. Let a denote the first mover for partition c (for 2 ≤ c ≤ μ) for
both SIM and SEQ procedures. For the SIM procedure, negotiation for each partition
starts at t = 1, and an agreement also occurs at t = 1. But, for the SEQ procedure,
negotiation for the cth partition starts at t = c and results in an agreement in the same
time period. Since each pie shrinks with time, each agent’s cumulative utility for the
SIM procedure is greater than its cumulative utility for the SEQ one. Thus, for each
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agent, the PD is better than the SIM procedure, and the SIM procedure is better than
the SEQ one.

We now extend the analysis to an incomplete information setting.

4 Multi-issue Negotiation with Uncertainty About Deadlines

Here, there is uncertainty about the agents’ deadlines. Both agents have a probability
distribution over the possible values for na and nb. Let N ∈ N

r denote a vector of r
integers such that for 1 ≤ i ≤ r − 1, Ni < Ni+1. This vector represents the possible
values for na and nb (i.e., there are r types for a and r types for b). Let P a : N

+ → R1

denote the discrete probability distribution function for na and P b : N
+ → R1 that for

nb. The vector N and the functions P a and P b are common knowledge to the agents.
Also, each agent knows its own type but not that of its opponent. In addition, each agent
knows r, δ, ka, kb, and m. Since there are r possible types for each agent, we define
r different cumulative utility functions for each of the two agents. If a is of type i (for
1 ≤ i ≤ r) then its cumulative utility Ua

i : R
m
1 × R

m
1 × N

+ → R from the division
specified by the package [xt, yt] at time t ≤ Ni is Ua

i ([xt, yt], t) = Σm
c=1k

a
c xt

c and zero
if t > Ni. For b, U b

i = Σm
c=1k

b
cy

t
c .

The PD procedure. We know from Theorem 1, that the equilibrium outcome for the
complete information setting depends on the earlier deadline n. In the present setting,
since there is uncertainty about n, the equilibrium outcome now differs from that in
Theorem 1. We first introduce some notation and then obtain the equilibrium.

Let A(i, t) denote the equilibrium strategy for an agent a of type i at time t. Analo-
gously, for b we have B(i, t). Let [at, bt] denote the package offered at t in equilibrium
where at + bt = δt−1. Also, let A(i, j, t) denote the equilibrium strategy for an agent a
of type i for the time period t, assuming that b is of type j. Analogously, for b we have
B(i, j, t).

Also, let EUA(i, t) (EUB(i, t)) denote the cumulative utility that an agent a (b) of
type i expects to get from b’s (a’s) equilibrium offer at time t. We let EUA(i, j, t) denote
agent a’s expected cumulative utility from its own equilibrium offer at time t if a is of
type i, assuming that b is of type j (EUB(i, j, t) is defined analogously). Note that the
difference between EUA(i, t) and EUA(i, j, t) is that the former denotes a’s utility for
the case where b is the offering agent at t, while the latter is a’s utility for the case where
a is the offering agent at t. Likewise for EUB(i, t) and EUB(i, j, t).

Recall that in this setting, an agent only knows its own type but not that of its oppo-
nent. Since there are r possible types for each agent, there are r possible offers an agent
can make at any time period (one offer corresponding to each possible type). Between
these r offers, the one that gives an agent the maximum expected cumulative utility is
its optimal offer. If the cth offer (1 ≤ c ≤ r) gives an agent the maximum expected
cumulative utility, then we say that its optimal choice is c. For time period t, we let
OPTA(i, t) (OPTB(i, t)) denote the optimal choice for agent a (b) of type i.

Consider t = Nr. For this time period, for 1 ≤ i ≤ r, we have the following (since
Nr is the largest possible value for n):

EUA(i, Nr) = 0 and EUB(i, Nr) = 0
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EUA(i, j, Nr) =

{
0 if Ni < Nr

P b(Nr) ×
(
∑m

c=1 ka
c δt−1

c

)

if Ni = Nr

EUB(i, j, Nr) =

{
0 if Ni < Nr

P a(Nr) ×
(
∑m

c=1 kb
cδ

t−1
c

)

if Ni = Nr

Note that EUA(i, j, Nr) and EUB(i, j, Nr) do not depend on j because in the last time
period, the offering agent gets 100 per cent of all the m pies. For t < Nr, we have:

EUA(i, t) = EUA(i, θ, t + 1) and EUB(i, t) = EUB(i, λ, t + 1)
where θ = OPTA(i, t + 1) and λ = OPTB(i, t + 1).

EUA(i, j, t) =

⎧
⎨

⎩

0 if Ni < t
∑r

e=1

(

F a(i, j, e, t) × P b(Ne)
)

if Ni ≥ t

EUB(i, j, t) =

{
0 if Ni < t
∑r

e=1

(

F b(i, j, e, t) × P a(Ne)

)

if Ni ≥ t

The function F a takes four parameters: i, j, e, and t, and returns the utility that an agent
a of type i gets from offering the equilibrium package for time t, assuming that b is of
type j but b is actually of type e. Obviously, b accepts a’s offer if U b

e (A(i, j, t), t) ≥
EUB(e, γ, t + 1) where γ = OPTB(e, t + 1). Hence, F a is:

F a(i, j, e, t) =
{

Ua
i (A(i, j, t)) if Ub

e (A(i, j, t)) ≥ EUB(e, γ, t + 1)
EUA(i, t + 1) otherwise

where γ = OPTB(e, t + 1). The strategy A(i, j, t) for t = Nj is:

A(i, j, t) =
{

OFFER [δn−1, 0] if a’s turn
ACCEPT otherwise

and for all time periods t < Nj it is:

A(i, j, t) =
{

OFFER TRADEOFFA(EUB(j, t)) if a’s turn
if Ua

i ([xt, yt], t) ≥ EUA(i, t) ACCEPT else REJECT otherwise

where [xt, yt] is the package offered at t. Analogously, F b is:

F b(i, j, e, t) =
{

Ub
i (B(i, j, t)) if Ua

e (B(i, j, t)) ≥ EUA(e, α, t + 1)
EUB(i, t + 1) otherwise

where α = OPTA(e, t + 1). The strategy B(i, j, t) for t = Nj is:

B(i, j, t) =
{

OFFER [0, δn−1] if b’s turn
ACCEPT otherwise

and for all preceding time periods t < Nj it is:

B(i, j, t) =
{

OFFER TRADEOFFB(EUA(j, t)) if b’s turn
if Ub

i ([xt, yt], t) ≥ EUB(i, t) ACCEPT else REJECT otherwise



40 S.S. Fatima, M. Wooldridge, and N.R. Jennings

Thus, the optimal choices for a and b are:

OPTA(i, t) = arg maxr
j=1EUA(i, j, t) (5)

OPTB(i, t) = arg maxr
j=1EUB(i, j, t) (6)

We compute the optimal choice for t = 1 by reasoning backwards from t = Nr.
At t = 1, if an agent a of type i is the offering agent, then it offers the package that
corresponds to b being of type OPTA(i,1). Likewise, if an agent b of type i is the offering
agent, then it offers the package that corresponds to a being of type OPTB(i,1).

But since OPTA(i,1) and OPTB(i,1) are obtained under uncertainty, an agreement may
or may not occur at t = 1. If it does not, then the agents update their beliefs as follows.
Assume an agent a of type i makes an offer at t = 1. If this offer gets rejected, then it
means that b is not of type OPTA(i, 1) and so a updates its beliefs about b using Bayes’
rule (excluding passed deadlines and putting all the weight of the posterior distribution
of a’s type over all Ni such that i �= OPTA(i, 1)). Now, on the basis of a’s offer at
t = 1 (say [a1, b1]), b can infer the possible types for a. Thus, b also updates its beliefs
using Bayes’ rule (putting all the weight of the posterior distribution of a’s type over N
where N ⊆ N is the set of possible types for a that can offer [a1, b1] in equilibrium).
The belief update rules for the case where b offers at t = 1 are analogous to the case
where a offers at t = 1. If the offer at t = 1 gets rejected, then negotiation goes to the
next round. At t = 2, the offering agent (say an agent a of type i) finds OPTA(i, 2) with
the updated beliefs. This process of updating beliefs and making offers continues until
either an agreement is reached or one of the agents quits negotiation.

Theorem 7. If [xt, yt] denotes the offer made at time t, then for the PD procedure, for
the time period t ≤ Nr, the following strategies form a sequential equilibrium:

A(i, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

QUIT if t > Ni

OFFER TRADEOFFA(EUB(ψ, t)) if a’s turn

If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS if b’s turn

If (Ua
i ([xt, yt], t) ≥ EUA(i, t)) ACCEPT else REJECT

(7)

B(i, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

QUIT if t > Ni

OFFER TRADEOFFB(EUA(φ, t)) if b’s turn

If offer gets rejected UPDATE BELIEFS

RECEIVE OFFER and UPDATE BELIEFS if a’s turn

If (Ub
i ([xt, yt], t) ≥ EUB(i, t)) ACCEPT else REJECT

(8)

for 1 ≤ i ≤ r. Here, ψ = OPTA(i, t) and φ = OPTB(i, t). Negotiation ends either in an
agreement or a conflict. The earliest possible time of agreement is t = 1.

Proof. There are r possible values for the earlier deadline, and the vector N contains
these possible values in ascending order. Hence, if i < j, then min(Ni, Nj) is Ni. To
begin, consider the time period t = 1 and assume that an agent a of type i is the offering
agent. There are r possible offers that a can make at t, one offer corresponding to each
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of the possible types for b (i.e., A(i, j, 1) for 1 ≤ j ≤ r). From these, a offers the one
that gives it the maximum expected cumulative utility (i.e., the one with j = OPTA(i, 1)).

However, since OPTA(i, 1) is computed under uncertainty (i.e., on the basis of ex-
pected utilities), an agreement may or may not take place at t = 1. If it does not, then
negotiation proceeds as follows. Consider a time period t such that 1 ≤ t < Nr. Let
[xt, yt] denote the offer made at time t. The agent that receives the offer (say a) updates
its beliefs using Bayes’ rule (excluding passed deadlines and putting all the weight
of the posterior distribution of b’s type over N where N ⊆ N is the set of possible
types for b that can offer [xt, yt] in equilibrium). If the proposed offer ([xt, yt]) gets
rejected, then the offering agent (say agent b of type i) updates its beliefs using Bayes’
rule (putting all the weight of the posterior distribution of a’s type over all Ni such
that i �= OPTA(i, 1)). The belief update rules for the case where a offers at time t are
analogous to the above rule. Hence we get Equations 7 and 8.

We now show that the beliefs specified above are consistent. During any time period
t < Nr, suppose the strategy profile (A(i, t), B(i, t)) assigns probability 1 − ε to the
above specified posterior beliefs and probability ε to the rest of the support for the
opponent’s type. As ε → 0, the fully mixed strategy pair converges to (A, B). Also,
the beliefs generated by the fully mixed strategy pair converge to the beliefs described
above. Given these beliefs, strategies A and B are sequentially rational.

We show the earliest possible time of agreement is t = 1 with an example: let m =
2, δ = 0.5, Nr = 2, r = 2, N = [1, 2], ka = [1, 2], kb = [2, 1], P a(1) = 0.1,
P a(2) = 0.9, P b(1) = 0.9, P b(2) = 0.1. Let an agent a of type 1 (i.e., na = 1)
be the offering agent at t = 1. Since r = 2, a can play two possible strategies at
t = 1: one corresponding to the case where b is of type 1 and the other to the case
where b is of type 2. For the former, a’s equilibrium offer at t = 1 is [1, 0] for each
issue. Hence EUA(1, 1, 1) = 2.7. For the latter case, a’s offer at t = 1 is [0.325, 0.675]
for the first issue and [1, 0] for the second one. Hence EUA(1, 2, 1) = 2.325. Since
EUA(1, 1, 1) > EUA(1, 2, 1), OPTA(1, 1) = 1 and a plays the former strategy. Now
if b is actually of type 1, then it accepts a’s offer. Thus, the earliest possible time of
agreement is t = 1. But if b is of type 2, it rejects a’s offer since it can get a higher
expected utility at t = 2. However, since a is of type 1, negotiation ends in a conflict.

If agent a’s offer at t = 1 gets rejected it knows that agent b is not of type OPTA(i, 1).
Thus the number of possible types for b is now reduced to r−1. This happens every time
a makes an offer that gets rejected. When negotiation reaches time period t = 2r − 1,
there is only one possible type for b. An agreement therefore takes place at the latest by
t = 2r − 1. However, if n < 2r − 1 then negotiation may end in a conflict.

Theorem 8. The time complexity of the PD procedure is O(mr3T (Nr − T
2 )) where

T = min(2r − 1, n).

Proof. Let a be the offering agent at t = 1 and let Nr be even (the proof for odd Nr

is analogous). We begin with the last time period and then reason backwards. Since Nr

is even and a starts at t = 1, it is b’s turn to offer in the last time period. For t = Nr,
the time taken to find EUB(i, j, t) (for a given i and j) is O(m) (see the definition of
EUB(i, j, t)). Hence, the time taken to find EUB(i, j, t) for all possible types of b (i.e.,
1 ≤ j ≤ r) is O(mr). Note that at this stage EUB(j, t − 1) is known for 1 ≤ j ≤ r.
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Now consider t = Nr − 1. Since Nr is even, it is a’s turn to offer at t = Nr − 1.
In order to find A(i, t), we first need to find ψ = OPTA(i, t). From the definition for
OPTA(i, t) we know that, for a given i, the time to find OPTA(i, t) depends on the time to
find EUA(i, j, t) which in turn depends on the time to find Fa(i, j, e, t). The time taken
for Fa(i, j, e, t) depends on the time taken for A(i, j, t). For a given i and a given j, the
time taken to find A(i, j, t) is the time taken by the function TRADEOFFA. Since EUB(j, t)
is already known at time t, the time taken by TRADEOFFA is O(m) (see Theorem 2 for
the complexity of TRADEOFFA). The time taken to find Fa(i, j, e, t) is therefore O(m).
Given this, the time to find EUA(i, j, t) (for a given i and j) is O(mr). Hence, for a
given i, the time to find ψ = OPTA(i, t) is O(mr2). Consequently, for a given i, the
time to find A(i, t) is O(mr2). Recall that each agent knows only its own type and not
that of its opponent. Hence we need to determine A(i, t) for all possible types of a (i.e.,
for 1 ≤ i ≤ r). This takes O(mr3) time. Note that at this stage EUA(i, j, t) is known
for all possible values of i and j.

Now consider the time period t = Nr − 2 when it is b’s turn to offer. For t = Nr − 2
and a given i, the time to find OPTB(i, t) is O(mr2) and so the time to find OPTB(i, t) for
all possible types of b is O(mr3). In the same way, the computation for each time period
t < Nr takes O(mr3) time. Hence, the total time to find the equilibrium offer for t = 1
is O((Nr −1)mr3). However, as noted previously, an agreement may or may not occur
at t = 1. If it does not, then the agents update their beliefs and find the equilibrium
offer for t = 2. The time to compute the equilibrium offer for t = 2 is O((Nr −2)mr3).
This process of updating beliefs and finding the equilibrium offer is repeated at most
T = min(2r − 1, n) times (see the last paragraph of the proof for Theorem 7). Hence
the time complexity of the PD is ΣT

i=1O((Nr − i)mr3) = O(mr3T (Nr − T
2 )).

Obviously, Theorems 3 and 4 extend to this scenario as well.

The SIM procedure. For the SIM procedure, the equilibrium for each partition is the
same as that of Theorem 7. Consequently, the time complexity of computing an equi-
librium offer is Σµ

c=1[Σ
T
i=1O((Nr − i)|Sc|r3)] = O(Mr3T (Nr − T

2 )). As before, M
denotes the size of the largest partition. It is obvious that the condition for uniqueness

Table 1. Outcomes for the incomplete information setting – m is the total number of issues and
M is the number of issues in the largest partition (for a definition of C1 see Theorem 3)

Package deal Simultaneous Sequential

Time of Earliest possible time Earliest possible time Earliest possible time

agreement (tc) for the cth issue for the cth issue for the cth partition

tc = 1 for 1 ≤ c ≤ m tc = 1 for 1 ≤ c ≤ m tc = c for 1 ≤ c ≤ µ

Time to compute O(mr3T (Nr − T
2 )) O(Mr3T (Nr − T

2 )) O(Mr3T (Nr − T
2 ))

equilibrium

Pareto optimal? Yes No No

Conditions for if C1 is true if C1 is true for every partition if C1 is true for every partition

uniqueness
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is the same as that for the SIM procedure for the complete information case. Also, the
outcome is not always Pareto optimal (see Theorem 5). Finally, for each partition, the
earliest possible time of agreement is t = 1.

The SEQ procedure. For the SEQ procedure, the equilibrium outcome for the cth (for
1 ≤ c ≤ μ) partition is obtained from Theorem 7. The condition for uniqueness is the
same as that for the SEQ procedure for the complete information case. The outcome is
not always Pareto optimal (see Theorem 5). Also, the time complexity of the SEQ pro-
cedure is O(Mr3T (Nr− T

2 )) (see Theorem 8). Finally, for the cth partition, the earliest
possible time of agreement is tc = c (since the earliest possible time of agreement for
the package deal is the first time period).

The optimal procedure. For each agent, the PD is optimal. The proof is analogous
to the proof for Theorem 6 (except the fact that instead of actual utilities, we now use
expected utilities).

5 Related Work

A number of studies have analysed different procedures for multi-issue negotiation. For
instance, Fershtman [6] extended Rubinstein’s model [14] for splitting a single pie to
SEQ negotiation for two pies. This model assumes complete information, imposes an
agenda exogenously, and studies the relation between the agenda and the outcome of
the SEQ bargaining game. On the other hand, [9,8,1] study negotiations with an en-
dogenous agenda. For instance, [9] studies PD, SIM, and SEQ negotiation by assuming
complete information. Furthermore, the agents are assumed to have discount factors
but no deadlines. The main result of this work is that the PD is the optimal procedure
and that for each procedure there exist multiple equilibria. [8] extends this work by
finding conditions under which the equilibrium is unique. [1] developed an asymmet-
ric information model for two issues and studied the PD and the SEQ procedure. A
slightly different approach was taken in [2] by adding a preliminary period in which
agents bargain over an agenda first and then settle the issues using this agenda. How-
ever, in [1] and [2] the players have discount factors but no deadlines. In summary, the
above work differs from ours in that we consider both discount factors and deadlines,
whereas previous work only considers discount factors and no deadlines.4 Negotiation
with deadlines was studied in [15] but only for a single issue. Also, the existing litera-
ture does not compare the different procedures in terms of a comprehensive list of their
attributes (viz. time complexity, Pareto optimality, uniqueness, and time of agreement).
Our comparative study of these attributes allows a more informed choice to be made
about which procedure is most suitable in which circumstances.

Perhaps the work closest to ours is [5]. This work considers a setting which is similar
to Section 4, but instead of treating the negotiation deadline as uncertain, it treats an
agent’s information about its opponent’s utility as uncertain. For this setting, the PD is
shown to be the optimal procedure.

4 [4] only determines the optimal agenda for SEQ negotiation (with a single issue in each parti-
tion) with deadlines.
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6 Conclusions and Future Work

This paper analysed the three key procedures for bilateral multi-issue negotiation be-
tween self-interested agents: the PD, the SIM, and the SEQ procedures. Our results (see
Table 1) show that the PD is better than the other two because it is the optimal pro-
cedure for both agents, it is the only one to generate a Pareto optimal outcome, and it
achieves these with polynomial time complexity (as the other two procedures). With
regard to the time of agreement, the PD and the SIM procedures are similar in that, for
the complete information setting, both procedures result in an agreement at t = 1 for
all the issues. Also, when there is uncertainty about deadlines, the earliest possible time
of agreement is the same for both procedures. But the SEQ procedure is slower in terms
of the time of agreement. Finally, all the three procedures have a unique outcome under
certain conditions.

In future, we will extend our symmetric information analysis by studying asymmet-
ric information settings. Also, in this work, we modelled the players’ time preferences
in the form of discount factors. However, it has been shown that the outcome for nego-
tiation with discount factors can differ from that for fixed time costs [2]. Therefore, it
will be interesting to extend our analysis to negotiations with fixed time costs.
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Abstract. Supply chains are ubiquitous in the manufacturing of many
complex products. Traditionally, supply chains have been created through
the interactions of human representatives of the companies involved, but
advances in autonomous agent technologies have sparked an interest in
automating the process. The Trading Agent Competition Supply Chain
Management (TAC SCM) scenario provides a unique testbed for studying
supply chain management agents. This paper introduces TacTex-05, the
champion agent from the 2005 competition, focusing on its ability to adapt
to opponent behavior over a series of games. The impact of this adaptivity
is examined through both analysis of competition results and controlled
experiments.

1 Introduction

In today’s industrial world, supply chains are ubiquitous in the manufactur-
ing of many complex products. Traditionally, supply chains have been created
through the intricate interactions of human representatives of the various com-
panies involved. However, recent advances in autonomous agent technologies
have sparked an interest, both in academia and in industry, in automating the
process [1] [2] [3].

One barrier to supply chain management research is that it can be difficult
to benchmark automated strategies in a live business environment, due to the
proprietary nature of the systems and the high cost of errors. The Trading Agent
Competition Supply Chain Management (TAC SCM) scenario provides a unique
testbed for studying and prototyping supply chain management agents by pro-
viding a competitive environment in which independently created agents can
be tested against each other over the course of many simulations in an open
academic setting.

In this paper, we describe TacTex-05, the winner of the 2005 TAC SCM
competition, and focus on its ability to adapt to opponent behavior over a series
of games. In particular, we describe how decisions concerning purchases at the
start of a game and sales at the end of a game are influenced by observations
from past games. While the start- and end-game effects observed in a TAC SCM
game may appear to be artifacts of the fixed game length, there are analogues
in real-world supply chains: products are frequently introduced or phased out,
and analyzing the behavior of competitors when such events have occurred in
the past may provide clues for the future.

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 46–61, 2007.
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The remainder of this paper is organized as follows. We first summarize the
TAC SCM scenario, and then describe the design of TacTex-05. Next, we describe
the methods used by TacTex-05 to adapt to past opponent behavior. Finally, we
examine the impact of this adaptivity, through both analysis of competition
results and controlled experiments.

2 The TAC Supply Chain Management Scenario

In this section, we provide a summary of the TAC SCM scenario. Full details
are available in the official specification document.1

In a TAC SCM game, six agents act as computer manufacturers in a simulated
economy managed by a game server. The length of a game is 220 simulated days,
with each day lasting 15 seconds of real time. The game can be divided into
three parts: i) component procurement, ii) computer sales, and iii) production
and delivery, as expanded on in the remainder of this section.

2.1 Component Procurement

The computers are made from four components: CPUs, motherboards, memory,
and hard drives, each of which come in multiple varieties. From these compo-
nents, 16 different computer configurations can be made. Agents must purchase
these components from a set of suppliers managed by the game server.

Agents wanting to purchase components send requests for quotes (RFQs) to
suppliers indicating the type and quantity of components desired, the date on
which they should be delivered, and a reserve price stating the maximum amount
the agent is willing to pay. Agents may send at most 5 RFQs per component per
supplier each day. Suppliers respond to RFQs the next day by offering a price
for the requested components if the request can be satisfied. Agents may then
accept or reject the offers.

Suppliers have a limited capacity for producing components, and this capacity
varies throughout the game according to a random walk. The price offered in
response to an RFQ depends on the fraction of the supplier’s capacity that is
free before the requested due date.

2.2 Computer Sales

Customers wishing to buy computers send the agents RFQs consisting of the
type and quantity of computer desired, the due date, a reserve price indicat-
ing the maximum amount the customer is willing to pay per computer, and
a penalty that must be paid for each day the delivery is late. Agents respond
to the RFQs by bidding in a first-price auction: the agent offering the lowest
price on each RFQ wins the order. The number of RFQs sent by customers
each day depends on the level of customer demand, which fluctuates throughout
the game.

1 http://www.sics.se/tac/tac05scmspec v157.pdf

http://www.sics.se/tac/tac05scmspec_v157.pdf
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2.3 Production and Delivery

Each agent manages a factory where computers are assembled. Factory operation
is constrained by both the components in inventory and assembly cycles. Each
day an agent must send a production schedule and a delivery schedule to the
server indicating its actions for the next day. The production schedule specifies
how many of each computer will be assembled by the factory, while the delivery
schedule indicates which customer orders will be filled from the completed com-
puters in inventory. Agents are required to pay a small daily storage fee for all
components in inventory at the factory.

3 Overview of TacTex-05
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Fig. 1. Agent overview

In this section we present a
high-level overview of TacTex-
05. Details on specific agent
components are contained in
the sections that follow.2

Figure 1 illustrates the basic
components of TacTex-05 and
their interaction. There are five
basic tasks a TAC SCM agent
must perform: i) sending RFQs
to suppliers to request com-
ponents, ii) deciding which of-
fers from suppliers to accept,
iii) bidding on RFQs from cus-
tomers requesting computers,
iv) sending the daily produc-
tion schedule to the factory,
and v) delivering completed
computers. We assign the first
two tasks to a Supply Manager module, and the last three to a Demand Manager
module. The Supply Manager handles all planning related to component inven-
tories and purchases, and requires no information about computer production
except for a projection of component use over a future period, which is provided
by the Demand Manager. The Demand Manager, in turn, handles all planning
related to computer sales and production. The only information about compo-
nents required by the Demand Manager is a projection of the current inventory
and future component deliveries, along with an estimated replacement cost for
each component used. This information is provided by the Supply Manager.

We view the tasks to be performed by these two managers as optimiza-
tion tasks: the Supply Manager tries to minimize the cost of obtaining the
2 The information in sections 3-5 is condensed from [4] and is included to provide a

fully self-contained agent description. Section 6 presents new information about the
adaptive aspects of TacTex-05, the focus of this paper.
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components required by the Demand Manager, while the Demand Manager seeks
to maximize the profits from computer sales subject to the information provided
by the Supply Manager. In order to perform these tasks, the two managers need
to be able to make predictions about the results of their actions and the future
of the economy. TacTex-05 uses three predictive models to assist the managers
with these predictions: a predictive Supplier Model, a predictive Demand Model,
and an Offer Acceptance Predictor.

The Supplier Model keeps track of all information available about each supplier,
such as TacTex-05’s outstanding orders and the prices that have been offered in re-
sponse to RFQs. Using this information, the Supplier Model can assist the Supply
Manager by making predictions concerning future component prices.

The Demand Model tracks customer demand and tries to estimate the un-
derlying demand parameters With these estimates, it is possible to predict the
number of RFQs that will be received on any future day. The Demand Manager
can then use these predictions to plan for future production.

When deciding what bids to make in response to customer RFQs, the Demand
Manager needs to be able to estimate the probability of a particular bid being
accepted (which depends on the bidding behavior of the other agents). This
prediction is handled by the Offer Acceptance Predictor. Based on past bidding
results, the Offer Acceptance Predictor produces a function for each RFQ that
maps bid prices to the predicted probability of winning the order.

4 The Demand Manager

The Demand Manager handles all computation related to computer sales and
production. This section describes the Demand Manager, along with the Demand
Model and the Offer Acceptance Predictor upon which it relies.

4.1 Demand Model

When planning for future computer production, the Demand Manager needs to
be able to make predictions about future demand. The Demand Model is respon-
sible for making these predictions, and does so using an approach introduced by
the agent DeepMaize in 2003 (and fully described in [5]). Basically, this is a
Bayesian approach that involves maintaining a probability distribution over the
parameters used in the game server’s algorithm for generating customer demand.
Using this information, it is possible to to project expected future demand.

4.2 Offer Acceptance Predictor

In order to bid on customer RFQs, the Demand Manager needs to be able to
predict the orders that will result from the offers it makes. The Offer Acceptance
Predictor makes these predictions possible. For each customer RFQ received, the
Offer Acceptance Predictor generates a function mapping the possible offer prices
to the probability of the customer accepting the offer. (The function can thus be
viewed as a cumulative distribution function.) In [6] we explored the possibility of
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learning to generate these functions based on past games. In TacTex-05, however,
we use a simpler approach adapted from the method used by the agent Botticelli
in 2003 [7]. Essentially, a linear function is generated for each computer type
by performing regression on data points representing recent prices offered by
TacTex-05 along with the resulting acceptance rate.

4.3 Demand Manager

The Demand Manager is responsible for bidding on customer RFQs, producing
computers, and delivering them to customers. All three tasks are performed
using the same greedy production scheduling algorithm. As these tasks compete
for the same resources (components, completed computers, and factory cycles),
the Demand Manager begins by planning to satisfy existing orders, and then
uses the remaining resources in planning for RFQs. The latest possible due date
for an RFQ received on the current day is 12 days in the future, meaning the
production schedule for the needed computers must be sent within the next 10
days. The Demand Manager thus always plans for the next 10 days of production.

The Demand Manager begins each day by initializing its production resources
using the values provided by the Supply Manager. The production scheduler is
then applied to existing orders, and orders that are due immediately and can be
filled from inventory are scheduled for delivery.

Next, the Demand Manager tries to identify the set of bids in response to
customer RFQs that will maximize the expected profit from using the remaining
production resources for the next 10 days. This profit depends not only on the
RFQs being bid on on the current day, but also on RFQs that will be received on
later days for computers due during the period. The Demand Manager therefore
uses the future level of customer demand predicted by the Demand Model to
generate a predicted set of all RFQs that will be received for computers due
during the period. Bids for these RFQs are chosen at the same time as those
for the actual RFQs from the current day, effectively causing a portion of the
remaining production resources to be reserved for the actual RFQs that will be
received in the future.

Once the predicted RFQs are generated, the Offer Acceptance Predictor is
used to generate an acceptance prediction function for every RFQ, both real
and predicted. The Demand Manager then considers the production resources
remaining, set of RFQs, and set of acceptance prediction functions and simulta-
neously generates a set of bids on RFQs and a production schedule that produces
the expected resulting orders. This process involves the use of a variation of our
greedy production scheduler in which expected order quantities (where the ex-
pected quantity ordered for an RFQ is the probability of acceptance times the
actual quantity requested) are considered. Full details are available in [6].

After applying the production scheduler to the current orders and RFQs, the
Demand Manager is left with a 10-day production schedule and a set of bids
for the actual and predicted RFQs. The bids on actual RFQs are sent to the
customers, and the first day of the production schedule is sent to the factory
specifying the instructions for the next day.
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Finally, the Demand Manager projects component use for the period from 11
to 40 days in the future by using the Demand Model to predict customer demand
and assuming that some fraction of this demand will be produced.

5 The Supply Manager

The Supply Manager is responsible for purchasing components from suppliers
based on the projection of future component use provided by the Demand Man-
ager, and for informing the Demand Manager of expected component deliveries
and replacement costs. In order to be effective, the Supply Manager must be able
to predict future component availability and prices. The Supplier Model assists
in these predictions.

5.1 Supplier Model

The Supplier Model keeps track of all information sent to and received from
suppliers. This information is used to model the state of each supplier, allowing
the Supplier Model to predict the price that a supplier will offer in response to
an RFQ with a given quantity and due date.

Recall that the price offered in response to an RFQ requesting delivery on a
given day is determined entirely by the fraction of the supplier’s capacity that is
committed through that day. As a result, the Supplier Model can compute this
fraction from the price offered. With enough offers, the Supplier Model can form
a reasonable estimate of the fraction of capacity committed by a supplier on
any single day. For each supplier and supply line, the Supply Manager maintains
an estimate of free capacity, and updates this estimate daily based on offers
received. Using this estimate, the Supplier Model is able to make predictions on
the price a supplier will offer for a particular RFQ.

5.2 Supply Manager

The Supply Manager’s goal is to obtain the components that the Demand Man-
ager projects it will use at the lowest possible cost. This process is divided into
two steps: first the Supply Manager decides what components will need to be de-
livered, and then it decides how best to ensure the delivery of these components.
These two steps are described below.

Deciding What to Order. The Supply Manager seeks to keep the inventory of
each component above a certain threshold. This threshold is 800, or 400 in the case
of CPUs, and decreases linearly to zero between days 195 and 215. Each day, the
Supply Manager determines the exact deliveries that would be needed to maintain
the threshold on each day in the future given current inventory, expected deliv-
eries, and projected component use. The result is a list of needed deliveries that
we will call intended deliveries. When informing the Demand Manager of the ex-
pected future component deliveries, the Supply Manager will add these intended
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deliveries to the actual deliveries expected from previously placed component or-
ders. The idea is that although the Supply Manager has not yet placed the orders
guaranteeing these deliveries, it intends to, and is willing to make a commitment
to the Demand Manager to have these components available.

Deciding How to Order. Once the Supply Manager has determined the in-
tended deliveries, it must decide how to ensure their delivery at the lowest pos-
sible cost. We simplify this task by requiring that for each component and day,
that day’s intended delivery will be supplied by a single order with that day as
the due date. Thus, the only decisions left for the Supply Manager are when to
send the RFQ and which supplier to send it to. For each individual intended
delivery, the Supply Manager predicts whether sending the RFQ immediately
will result a lower offered price than waiting for some future day, and sends the
RFQ if this is the case.

In order to make this prediction correctly, the Supply Manager would need to
know the prices that would be offered by a supplier on any future day. Although
this information is clearly not available, the Supplier Model does have the ability
to predict the prices that would be offered by a supplier for any RFQ sent on
the current day. To enable the Supply Manager to extend these predictions into
the future, we make the simplifying assumption that the price pattern predicted
on the current day will remain the same on all future days. This assumption is
not entirely unrealistic due to the fact that agents tend to order components a
certain number of days in advance, and this number generally changes slowly.
Essentially, the Supply Manager follows a heuristic saying, “Given the current
ordering pattern of other agents, prices are lowest when RFQs are sent x days
in advance of the due date, so plan to send all RFQs x days in advance.”

The final step is to predict the replacement cost of each component. The
Supply Manager assumes that any need for additional components that results
from the decisions of the Demand Manager will be felt on the first day on which
components are currently needed, i.e., the day with the first intended delivery.
Therefore, for each component’s replacement cost, the Supply Manager uses the
predicted price of the first intended delivery of that component, even if no RFQ
was sent.

6 Adaptation over a Series of Games

The predictions made by the predictive modules as described above are based
only on observations from the current game. Another source of information that
could be useful in making predictions is the events of past games, made available
in log files kept by the game server. During the final rounds of the TAC SCM
competition, agents are divided into brackets of six and play a number of games
(16 on the final day of competition) against the same set of opponents. When
facing the same opponents repeatedly, it makes sense to consider adapting pre-
dictions in response to completed games. TacTex-05 makes use of information
from these games in its decisions during two phases of the game: buying compo-
nents at the beginning of the game (impacting mainly the behavior described in
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Section 5.2), and selling computers at the end of the game (impacting the behav-
ior in Section 4.2). We chose to focus on these areas for two reasons. Behavior
during these two phases varies significantly from one agent to another, possibly
due to the fact that these phases are difficult to reason about in general and
may thus be handled using special-case heuristic strategies by many agents. At
the same time, each agent’s behavior remains somewhat consistent from game
to game (e.g. many agents order the same components at the beginning of each
game). This fact is critical to the success of an adaptive strategy – the limited
number of games played means that it must be possible to learn an effective
response from only a few past games.

6.1 Initial Component Orders

At the beginning of each game, many agents place relatively large component
orders (when compared to the rest of the game) to ensure that they will be
able to produce computers during the early part of the game. Prices for some
components may also be lower on the first day than they will be afterwards,
depending on the due date requested. Determining the optimal initial orders to
place is difficult, because no information is made available on the first day of the
game, and prices depend heavily on the orders of other agents.

TacTex-05 addresses this issue by analyzing component costs from past games
and deciding what components need to be requested on the first two days in
order to ensure a sufficient supply of components early in the game and to
take advantage of low prices. The process is very similar to the one described
in Section 5.2, except that predictions of prices offered by suppliers are based
on past games. First, the components needed are identified, then the decision
of which components should be requested is made, and finally the RFQs are
generated.

The Supply Manager begins by deciding what components will be needed. On
the first day, when no demand information is available (customers begin sending
RFQs on the second day), the Supply Manager assumes that it will be producing
an equal number of each type of computer, and projects the components needed
to sustain full factory utilization for 80 days. On the second day, the Supply
Manager projects future customer demand as before and assumes it will receive
orders for some fraction of RFQs over each of the next 80 days. The projected
component use is converted into a list of intended deliveries as before.

Next, the Supply Manager must decide which components should be requested
on the current day (the first or second day of the game). As in Section 5.2, the
Supply Manager must determine which intended deliveries will be cheapest if
they are requested immediately. At the beginning of the game, the Supplier
Model will have no information to use in predicting prices, and so information
from past games is used. By analyzing the log from a past game and modeling
the state of each supplier, it is possible to determine the exact price that would
have been offered in response to any possible RFQ. Predictions for the current
game can be made by averaging the results from all past games. When modeling
the states of suppliers, RFQs and orders from TacTex-05 are omitted to prevent
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the agent from trying to adapt to its own behavior. If the initial component
purchasing strategies of opponents remain the same from game to game, these
average values provide a reasonable means of estimating prices.

At the beginning of the game, the Supply Manager reads in a table from a file
that gives the average price for each component for each pair of request date and
due date. Using this table, the Supply Manager can determine which intended
deliveries will cost less if requested on the current day than on any later day. In-
tended deliveries due within the first 20 days are always requested on the first day,
however, to avoid the possibility that they will be unavailable later. If opponents
request many components on the first day of the game but few on the second, the
prices offered in response to RFQs sent on the second day will be about the same
as if the RFQs had been sent on the first day. Since information about customer
demand is available on the second day of the game but not the first, it might be
beneficial to wait until the second day to send RFQs. For this reason, the Supply
Manager will not send a request for an intended delivery if the price expected on
the second day is less than 3% more than the price expected on the first.

Once the Supply Manager has decided which intended deliveries to request, it
must decide how to combine these requests into the available number of RFQs
(five, or ten if there are two suppliers). In Section 5.2, this problem did not
arise, because there were typically few requests per day. On the first two days,
it is possible for the number of intended deliveries requested to be much larger
than the number of RFQs available. Intended deliveries will therefore need to
be combined into groups, with delivery on the earliest group member’s deliv-
ery date. The choice of grouping can have a large impact on the prices offered.
When there is only one supplier, the Supply Manager begins by dividing the 80
day period into five intervals, defined by six interval endpoints, with a roughly
equal number of intended deliveries in each interval. Each interval represents a
group of intended deliveries that will have delivery requested on the first day of
the interval. One at a time, each endpoint is adjusted to minimize the sum of
expected prices plus storage costs for those components delivered early. When
no more adjustments will reduce the cost, the Supply Manager sends the result-
ing RFQs. When there are two suppliers, ten intervals are used, and intervals
alternate between suppliers.

6.2 Endgame Sales

Near the end of each game, some agents tend to run out of inventory and stop
bidding on computers, while other agents tend to have surplus computers, pos-
sibly by design, that they attempt to sell up until the last possible day. As a
result, computer prices on the last few days of the game are often either very
high or very low. When end-game prices will be high, it can be beneficial to hold
on to inventory so as to sell it at a premium during the last days. When prices
will be low, the agent should deplete its inventory earlier in the game. TacTex-05
adapts in response to the behavior of its competitors in past games by adjusting
the predictions of the Offer Acceptance Predictor (Section 4.2) during the last
few days of each game.
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TacTex-05’s endgame strategy is essentially to reserve only as many computers
for the final few days as it expects to be able to sell at high prices. In particular,
from day 215 to 217, the Demand Manager will always respond to a customer
RFQ (if it chooses to respond) by offering a price slightly below the reserve. For
RFQs received on these days, the probability predicted by the Offer Acceptance
Predictor is set to the fraction of computers that would have sold at the reserve
price on that day in past games. When the Demand Manager plans for a period
of production that includes one of these days, these acceptance probabilities will
hopefully result in an appropriate number of computers being saved for these
three days.

7 Competition Results and Additional Experiments

In this section, we look at the results of the final day of the 2005 TAC SCM
competition to determine how TacTex-05’s adaptivity contributed to its perfor-
mance. We also present the results of controlled experiments designed to test
this adaptivity under differing conditions.

Out of 32 teams that initially entered the competition, 24 advanced past a
seeding round to participate in the finals, held over three days at IJCAI 2005.
On each day of the finals, half of the teams were eliminated, until six remained
for the final day. Game outcomes depended heavily on the six agents compet-
ing in each game, as illustrated by the progression of scores over the course of
the competition, underscoring the potential value of adaptation. In the seeding
round, TacTex-05 won with an average score of $14.9 million, and several agents
had scores above $10 million. Making a profit was much more difficult on the
final day of competition, however, and TacTex-05 won with an average score of
only $4.7 million, followed by SouthamptonSCM with $1.6 million and Mertacor
with $.5 Million. The other three agents (each of which averaged at least $6
million in the seeding round) lost money.3

In order to visualize the game results from the final day of competition, we
tracked four quantities over the course of each game, and plotted the average
over all 16 games, shown in Figure 4. These quantities are component costs,
time between component order and use, revenue, and profit. To determine daily
component costs for each agent, a record of each component order was placed
into a queue at the time the order was delivered. Whenever a computer order
was delivered to a customer, components were removed from the queue, and the
cost (including storage costs) recorded for that day (the day of delivery). Rev-
enue from computer deliveries was similarly recorded on the day of the delivery.
Penalties were not tracked. The precise meanings of the quantities graphed in
Figure 4, from top to bottom, are as follows. Cost represents the average cost,
as a fraction of the base price, for each component used (delivered as part of
a computer) on a given day. Order time represents the average length of time
between the date a component is ordered and the date a component is used,
regardless of when the component is delivered to the agent. Revenue represents
3 Competition scores are available at http://www.sics.se/tac/scmserver

http://www.sics.se/tac/scmserver
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the total sales prices for all orders delivered on a given day. Profit is equal to
revenue minus all costs for the day. Thus both costs and order times are given as
an average for all components used (not ordered) on a given day, while revenues
and profits represent totals for the day. The data shown in Figure 4 has been
smoothed with a Gaussian filter with a standard deviation of 5 days to reduce
day-to-day noise. For clarity, only the data for the top three agents is shown.
Similar patterns can be observed in the data for the three remaining agents. Be-
low, we discuss what can be learned from these graphs about the performance
of TacTex-05’s adaptive methods.

7.1 Initial Component Orders During the Competition

We begin by examining the component orders placed by TacTex-05 at the be-
ginning of games. Recall that TacTex-05 will order components on the first or
second day of a game if it predicts that prices will be lowest on these days,
based on the results of past games. (For simplicity, we will say that components
were ordered on a day when in fact the order was placed the following day in
response to an offer.) Figure 2 shows the number of components ordered on the
first and second day of each game. As two games were played at a time, there are
eight points plotted per day, each representing the average of two simultaneous
games. For the first pair of games, when no previous games against the same
opponents were available to use in predicting prices, data from the previous day
of the competition was used. After the first two games, price predictions were
based only on games from the final day of competition. First day orders jumped
immediately after the first pair of games, and continued to rise to about 95,000,
while second day orders gradually dropped to nearly zero. By the later games,
TacTex-05 was ordering nearly all of the components it expected to use over
the first 80 game days on the very first day. For comparison, the second largest
orders came from the agent Deep Maize, which averaged 40,000 first day and
7,000 second day orders. SouthamptonSCM averaged 22,000 first day and 6,000
second day orders, Mertacor averaged 18,000 first day and 10,000 second day
orders, and the other two agents had somewhat smaller orders. While the order
sizes of the agents other than TacTex-05 did vary from game to game, they did
so by relatively small amounts, and it is not clear if such changes were related to
intentional adaptation. The fact that TacTex-05’s first day orders continued to
increase suggests the possibility of a self-reinforcing process: when more compo-
nents are ordered on the first day, prices on later days may be driven up, making
first day orders even more appealing.

The effects of these large first day orders on TacTex-05’s performance can be
seen in Figure 4. The most significant of these graphs is the daily profit. For roughly
the first 40 days, TacTex-05’s profit is below the profits of the other two agents, but
between days 40 and 90, TacTex-05’s profit is much higher. After day 90, TacTex-
05 and SouthamptonSCM have mostly similar profits.The differences in profits
during these two periods can be explained as a result of the large first day orders.

During the period in which TacTex-05’s profit is highest, it receives slightly
more revenue than SouthamptonSCM, but not enough to explain the gap. The
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difference must therefore be in costs, and this is seen to be the case in the costs
graph. This difference in costs comes as no surprise – TacTex-05 ordered most
of its components on the first day precisely because it expected costs to increase
on later days. What is a surprise is the fact that TacTex-05’s costs are higher
than those of other agents for the first 40 days. These higher costs (along with
what the revenue graph suggests is a slight lag in initial computer deliveries)
explain the lower profit during this period, but are unexpected given TacTex-
05’s attempts to place orders in a way that minimizes cost. The explanation
is related to the limited number of RFQs allowed per supplier per day. After
deciding which components need to be ordered on the first day, TacTex-05 must
decide how to group these components into the allowed number of RFQs, as
described previously. The cost per component for one group can only be reduced
by increasing the costs of another group, and so the differences between the
two periods can be seen as a tradeoff: lower prices during the second period at
the expense of higher prices in the first. Because the other agents order fewer
components on the first day, they are not as affected by this tradeoff, and can
obtain lower prices during the early part of the game.

7.2 Experimenting with Initial Component Orders

To see how TacTex-05’s early-game adaptation would perform under different
circumstances, and to better measure the impact of this adaptation, we ran an
experiment using two versions of TacTex-05. A non-adaptive version used the
price predictions resulting from the final day of the competition, leading to initial
orders similar to those in the later games of Figure 2. An adaptive version began
with these same predictions, but then adapted them as normal. 30 games were
played between these agents and four agents that were not part of the final day
of competition: PhantAgent, Botticelli, RationalSCM, and CrocodileAgent.4

Figure 3 shows the changes in first and second day orders over the 30 games.
For this set of opponents, it appears that prices are no longer consistently lowest
on the first day. First day orders immediately drop to the lowest level allowed
(since some components will always be ordered on the first day), and more com-
ponents are usually ordered on the second day than the first. The variation in
second day orders is mainly due to the fact that customer demand can be taken
into account on the second day. Figure 5 shows that the adaptive agent had
lower component costs during the first part of the game, and these lower costs
resulted in much higher profits during the first 50 days. The reason for slightly
higher profits and revenue for the non-adaptive agent shortly after day 50 is
not immediately clear. The average score of the adaptive agent was $.81 million
higher than the non-adaptive agent’s score, and this difference is statistically
significant with 95% confidence according to a paired t-test. The results of this
experiment indicate that optimal first and second day orders may be very differ-
ent for different sets of opponents, and that TacTex-05 is able to quickly adapt
to take advantage of this fact.

4 Taken from the TAC Agent Repository, http://www.sics.se/tac/showagents.php

http://www.sics.se/tac/showagents.php


58 D. Pardoe, P. Stone, and M. VanMiddlesworth

 0
 20000
 40000
 60000
 80000

 100000

 0  1  2  3  4  5  6  7

O
rd

er
s

Game Pair

first day
second day

Fig. 2. Initial orders – competition

 0
 20000
 40000
 60000
 80000

 100000

 0  5  10  15  20  25  30

O
rd

er
s

Game

first day
second day

Fig. 3. Initial orders – experiment

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200

C
os

ts

TacTex-05
SouthamptonSCM

Mertacor

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

O
rd

er
 T

im
es

 0

 200000

 400000

 600000

 0  50  100  150  200

R
ev

en
ue

-40000

 0

 40000

 80000

 0  50  100  150  200

P
ro

fit

Day

Fig. 4. Results – final day of competition

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200

C
os

ts

Day

Adaptive
Non-adaptive

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

O
rd

er
 T

im
es

 0

 200000

 400000

 600000

 0  50  100  150  200

R
ev

en
ue

-60000

-30000

 0

 30000

 60000

 0  50  100  150  200

P
ro

fit

Day

Fig. 5. Results – experiment

7.3 Endgame Sales During the Competition

The goal in adaptively predicting offer acceptance probabilities at the end of a
game is to determine whether computers should be held back in hopes of high
prices or sold early before prices drop. The first strategy turned out to be the
correct one during the final day of the competition – on average, the fraction
of customer RFQs receiving offers dropped from 57% on day 215 to 37% on
day 217, and prices rose accordingly. From that standpoint, TacTex-05 behaved
correctly, reducing computer sales near the end of the game and then increasing
them during the last few days, as shown by Figure 4. However, TacTex-05 sold
fewer computers overall during the last 20 days than it could have, and did not
have particularly high profits during this period. The problem appears to be a
lack of components caused by factors other than the adaptation, such as the
reduction of the inventory threshold.
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7.4 Experimenting with Endgame Sales

Since it is difficult to evaluate the success of the endgame adaptation that took
place during the competition, we instead rely on experimental evaluation. We
performed an experiment using four different versions of TacTex-05. One used
endgame adaptation as normal, one assumed 100% offer acceptance during the
final three days, one assumed 0% acceptance, and one (which we’ll call “stan-
dard”) used the same method of predicting offer acceptance as during the rest of
the game. The other two agents were the “dummy” agents provided by the game
server. The results are presented in the first column of Table 1. The adaptive
agent outperformed the 0% agent and the standard agent (statistically significant
with 95% confidence according to paired t-tests), but was slightly worse than
the 100% agent (not significant). The 0% agent and the standard agent both
had fairly large penalties during the final few days that accounted for much
of the difference, caused by the fact that they underestimated offer acceptance
probabilities.

Although the 100% agent worked well, under different circumstances this
strategy might not work. To demonstrate, we ran another experiment with one
adaptive agent and three 100% agents. The results are presented in the sec-
ond column of Table 1. This time, the adaptive agent outscored the 100% agents
(statistically significant). The 100% agents tended to have more unsold inventory

Table 1. Endgame adaptation experiments

Agent Exp. 1 Score Exp. 2 Score
adaptive $7.14M $6.85M

100% $7.20M $6.41M
0% $6.46M –

standard $6.74M –

than the adaptive agent, indicat-
ing that they overestimated their
chances of selling computers dur-
ing the final days. These two ex-
periments demonstrate the need
to handle sales differently during
the end of a game than during the
rest of the game, and the draw-
backs of using a fixed strategy.

8 Related Work

A number of agent descriptions for TAC SCM have been published present-
ing various approaches to the tasks faced by an agent. (See http://tac.eecs.
umich.edu/researchreport.html for a collection of papers.) Although several
agents make efforts to adapt to changing conditions during a single game (e.g.
[8], [9]), methods of adaptation to a set of opponents over a series of games
in TAC SCM have not been reported on to our knowledge. (Such adaptation
has been used in the TAC Travel competition, however, both during a round
of competition [10], and in response to hundreds of previous games [11].) While
attention has been paid to the problem of early-game component procurement,
much of it has focused on an unintended feature of the game rules (eliminated
in the 2005 competition) that caused prices to always be lowest on the first day
of the game [12].

http://tac.eecs.umich.edu/researchreport.html
http://tac.eecs.umich.edu/researchreport.html
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9 Conclusion

In this paper we described the TacTex-05 agent, focusing on its ability to adapt
over a series of games. The adaptation of component purchases during the be-
ginning of a game was shown to have a positive impact on performance during
the 2005 TAC SCM competition, and both start-game and end-game adaptation
were experimentally shown to allow the agent to respond to various types of op-
ponent behavior. Improving TacTex-05’s predictive modules through additional
forms of adaptation remains an important area for future work.
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Abstract. The TAC SCM tournament is moving into its fourth year.
In an effort to track agent progress, we present a benchmark market ef-
ficiency comparison for the tournament, in addition to prior measures of
agent competency through customer bidding. Using these benchmarks
we find statistically significant increases in intratournament market effi-
ciency, whereas agents are generally decreasing in manufacturer market
power. We find that agent market share and bid efficiency have increased
while the variance of average sales prices has been significantly reduced.
Additionally, we test for a statistical relationship between agent profits
and the bullwhip effect.

1 Introduction

The supply chain management (SCM) game of the Trading Agent Competition
(TAC) has provided three years of rich competition among a diverse pool of
participants. We seek to evaluate progress and changes in the field of agents,
and employ a variety of measures for this evaluation. These include measures
of both social welfare and individual performance. We also raise the issue of
bullwhip effects in the TAC SCM game, since this is a commonly discussed
phenomenon in other supply chain settings. Our analysis is complicated by the
strategic interactions that played out in the component procurement markets
on day 0 during the early years of competition, and the subsequent changes to
the game specification. We will discuss the possible effects of these changes at
relevant points in the discussion.

In Section 3 we discuss a method for calculating market efficiency and the divi-
sion of surplus in the SCM game. Using this measure of efficiency as a benchmark,
we compare agent performance between rounds in each of the three tournaments
and note interesting trends between tournaments. Section 4 gives results com-
paring several measures of sales performance in the customer market. Since the
specification of the customer market has changed less drastically than the supply
market, comparisons across tournaments on these metrics hold more weight. In
Section 5 we apply a basic measure of the bullwhip effect to the SCM market

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 62–74, 2007.
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and consider the relationship of this measure with market efficiency and the di-
vision of surplus. We conclude with a summary of the results and discussion of
the usefulness of the various measures.

2 TAC SCM Game

The TAC supply chain management game ([1], [2], [3]) consists of six manufac-
turing agents competing simultaneously in two separate markets over a period of
220 simulated days to assemble and sell PCs to customers. The manufacturing
agents attempt to procure processors, motherboards, memory, and hard drives
from eight suppliers at low cost, while assembling and selling 16 different types of
PCs to customers at a high price. Each agent is assigned an identical factory for
production. Factories have a limited number of cycles each day for production.
PC types vary in the number of cycles necessary for production.

Supplier prices are determined by available capacity and inventory levels. The
available capacity is driven by a mean reverting random walk, while inventory
is determined by past excess capacity and orders already on the books. In 2005,
a reputation component was added to the supplier pricing equation. An agent’s
reputation determines the order in which the agent’s request for quotes will be
considered. Lower reputations result in higher price offers. The agent’s reputation
is assigned by considering the ratio of requested amounts to actual amounts
purchased. If that ratio is within some acceptable range (acceptable purchase
ratio) the agent is designated as having a perfect reputation.

Daily customer demand is Poisson distributed about a mean for each market
segment. The mean evolves according to a random walk with an evolving trend
parameter. Each customer request for quote contains the requested PC type,
quantity, due date, reserve price, and penalty amount. An agent receives an
order if the agent issues the lowest bid that meets the reserve price. Agents pay
the assigned daily penalty if they faily to deliver by the due date.

3 Market Efficiency and Power

In order to gauge the aggregate agent behavior in the TAC SCM market, we
present market power and efficiency benchmarks for evaluating and analyzing
the entire economy. We generally expect market efficiency to increase during
each subsequent tournament. However, as noted in [4], market efficiency is not
a direct measure of agent progress and competent agents may not necessarily
maximize market efficiency. We also show the results of analyzing market power
(distribution of surplus). The market power held by manufacturers tends to
decrease in subsequent tournaments and across rounds.

3.1 Calculating Market Efficiency

We calculate market efficiency by comparing TAC SCM market revenue to the
revenue generated by a central planner using complete knowledge of supplier
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capacity and customer demand. We assume that the supplier value of compo-
nents is the discounted base price, P base

c (1 − δ),1 and that the customer value
of a PC in an order is the reserve price of the request for quote. Therefore the
revenue extracted from the market for a single PC is the customer value minus
the suppliers’ cost of components, penalties, and storage costs. On any day d,
a PC given in a customer RFQ may be produced from the available supplier
components of days 2 . . . d − 3, denoted Cd, and the available factory capacity
on days 3 . . . d − 2, denoted Fd. Therefore the constraints on a day d accepted
RFQ set Ad are

i. The set of components Components(Ad) required by Ad must be contained
in the available component set Cd:

Components(Ad) ⊆ Cd(A4, . . . , Ad−1).

ii. The factory cycles Factory(Ad) required to produce Ad must be contained
in the available factory cycles set Fd:

Factory(Ad) ⊆ Fd(A4, . . . , Ad−1).

Therefore, we would maximize social welfare by finding the RFQ acceptance set
A which solves the following problem

max
{Ad : Ad ⊆ RFQd}

∑

d∈Days

V(Ad) − C(Ad)

s.t. ∀d ∈ Days Components(Ad) ⊆ Cd

Factory(Ad) ⊆ Fd

(1)

where V(·) is the customer value and C(·) is the supplier component cost plus
any storage costs and penalties. This amounts to a large mixed integer linear
programming problem. For any given day, the central planner may use the cur-
rent day’s component availability and factory capacity as well as the remaining
aggregate available components and factory capacity. In doing this we actually
allow component availability and factory capacity to be scheduled for early pro-
duction in order to fill orders that otherwise would not have been obtainable. It
is typical behavior for agents in the tournament to procure components in the
expectation of customer sales. In our implementation we make a simplification
that allows for the possibly infeasible case where aggregate factory capacity is
used to build PCs from aggregate component availability that is not yet techni-
cally available. For example, consider an acceptance set decision for day 30. An
infeasible production state would occur if day 10 had available factory capacity
that was used to manufacture PCs with components available on day 20 due for
delivery on day 30. As mentioned later in the results regarding the naive cen-
tral planner, shifting component availability and factor capacity accounts for less

1 P base
c (1 − δ) is the lower bound on component price given in [3].
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than 9% of market surplus. Given the current (2005) settings, factory capacity is
usually the binding constraint and therefore we feel justified in considering the
possibility and additionally the effect of generating infeasible production states
negligible. A typical example of a game in the TAC 2005 finals contains over
35,000 values (potential orders) and 2,500 constraints (aggregate component
availability and factor capacity), which is not computationally feasible for a
standard solver. In order to approximate an optimal central planner, we create
a greedy central planner that seeks to maximize Equation 1 given a subset of the
game’s potential orders subject to the constraints. For instance, suppose that
we make a greedy choice for every simulation day, the central planner solves 220
instances of the 0-1 multiple knapsack problem in approximately 100 variables
and 11 constraints.

3.2 0-1 Multiple Knapsack Solver

We test two different types of solvers for the 0-1 multiple knapsack problem
(MKP). Both use a genetic algorithm to search for optimal solutions. The first
solver, which we denote the direct search genetic algorithm (DSGA), searches
the variable domain directly. The second is a variant of the hybrid genetic al-
gorithm developed in [5], which we denote the meta-search genetic algorithm
(MSGA). The MSGA uses a construction heuristic to search over perturbed
problem spaces. Both genetic algorithms are tested using a population size of
100 with mutation rate 1/n where n is the length of the chromosome, two point
crossover, and tournament selection with tournament size 4.

In DSGA, the objective function we use allows infeasible assignments. When
a constraint is violated a set of active objects that contribute to the constraint
are ordered by value. The active object with the minimum profit is deacti-
vated and its value subtracted from the objective function. This process con-
tinues until all constraints are satisfied. The fitness of the remaining object
set is then computed according to Equation 1. This treatment of infeasible
strings is similar to [6] but differs in that the penalty term is added per con-
straint violation, which amounts to a smaller jump in fitness. We initialize the
population by generating object sets such that each set is either infeasible or
exactly satisfies some constraint. Each chromosome is created in the initial pop-
ulation by starting with all objects inactive and then sequentially activating un-
til the chromosome is infeasible, exactly satisfies at some constraint, or is fully
active.

We chose to compare DSGA and MSGA on a subset of the problems used by
[5]. This also served as a validation of our implementation of MSGA. While
DSGA was competitive with MSGA, MSGA did have a higher mean score
in every problem instance. We chose to use our implementation of DSGA for
the greedy central planner due to its significant superiority in execution
speed.2

2 On both the Java VM implementations for OS X and FreeBSD DSGA ran an order
of magnitude faster than MSGA.
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3.3 Market Efficiency Comparison

We consider changes in market efficiency both between years and rounds within
the same tournament. These results are shown in Table 1, while the p-values for
intratournament comparison are shown in Table 2. The comparisons between
tournaments are presented with the caveat that specification changes prevent us
from making definative judgements.

In 2005 there was a statistically significant improvement from semifinal to
finals play while the improvement in agent efficiency from quarterfinals to semi-
finals was statistically insignificant. This is consistent with the understanding
that teams are improving agents across rounds, and weaker agents are elimi-
nated. This was quite different from the scenario in 2004. While agents exhibited
a significant improvement in the quarterfinals to semifinals, this trend did not
continue into the finals. Analysis by [7] identified the blocking strategy employed
by FreeAgent, which barred agents from procuring non-CPU components for a
substantial part of the game. This behavior, while competitive, seems to have
resulted in an overall loss in market efficiency.

Table 1. Intratournament Market Efficiency

QF SF F

2003 57.0% 56.3% 60.1%
2004 64.6% 73.1% 54.3%
2005 84.1% 84.8% 87.7%

QF - Quarterfinals, SF - Semifinals, F - Finals

Table 2. p-value of Intratournament Market Efficiency Comparisons

2003 2004 2005
QF SF F QF SF F QF SF F

QF 1 0.42 0.13 1 2.8e-3 9.6e-4 1 0.21 2.8e-5
SF 1 0.12 1 1.8e-9 1 1.9e-3
F 1 1 1

In order to better understand the measure of market efficiency we tested two
benchmarks which give a relative comparison for the TAC SCM 2005 tourna-
ment. The first benchmark used a set of six Dummy agents provided in the SCM
server software. Given the 2005 configuration, this set of agents had a mean mar-
ket efficiency of 54.4%. The second benchmark considers only the factory and
component capacity for a given day, instead of the aggregate prior respective
values, as the constraints on production. Using this approach the naive central
planner achieves an average market efficiency of 91.2%.
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3.4 Market Power Comparison

Given the supplier and customer utility defined above we analyze the distribution
of surplus within the TAC SCM market over the prior years’ tournaments. The
market power distribution is given in Table 3 with the corresponding significances
given in Table 4. We expect that a more competent field of agents will have lower
aggregate market power. The 2004 tournament has a statistically significant
decrease in market power from the semifinal to final rounds, while the 2005
tournament shows a decrease in the transition from quarterfinals to semifinals.

Table 3. Tournament Market Power Distribution

QF SF F
Year S M C S M C S M C

2003 14% 39% 47% 22% 23% 55% 28% 11% 61%
2004 21% 32% 47% 16% 33% 51% 38% 9% 53%
2005 36% 13% 51% 48% 2% 50% 46% 4% 50%

S - Supplier, M - Manufacturer, C - Customer

Table 4. p-value of Intratournament Manufacturer Market Power Comparisons

2003 2004 2005
QF SF F QF SF F QF SF F

QF 1 0.26 0.04 1 0.34 1.5e-4 1 1.4e-4 2.2e-3
SF 1 0.31 1 1.5e-5 1 0.19
F 1 1 1

4 Customer Market

One of our goals is to develop useful metrics for evaluating agent play in addition
to overall profits. In this section we focus specifically on the customer market,
presenting three different benchmarks that provide information about agent in-
teractions in this market. These are market share, average selling price (ASP),
and bid efficiency. One motivation for specific analysis of the customer market is
that the structure of this market has remained relatively constant, allowing for
somewhat better intertournament comparisons. There were some changes after
2003, with modifications to the demand evolution process and separation of the
market into three distinct segments. In addition, we note that changes in the
supplier market can have an effect on customer market measures.

4.1 Market Share

Market share numbers are presented in Table 5. The most obvious feature is that
unbid market share dropped dramatically in 2005. Figure 1 shows a breakdown
of the total satisfied fraction of the market by simulation day, averaged over
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Fig. 1. Mean Daily Market Share

The figure shows the mean aggregate agent market share
over the 2003, 2004, & 2005 finals

all finals games in the three tournaments. In 2003 and 2004 the fraction of the
market satisfied early in the game is very low compared to 2005. The difference
is attributable to changes in the day-0 purchasing behavior. In 2003 and 2004
the large orders placed on day 0 prevented agents from getting a full complement
of components necessary for production until many days into the game in most
cases. They were willing to make this tradeoff because of the very low prices
for these components. Another explanation for the higher fraction of the market
satisfied in 2005 is the increase in nominal supplier capacity from 500 to 550
components per line per day. This reduces prices and instances where production
is not feasible due to supplier capacity constraints. Both of these are instances
where changes to the supplier market had a clear effect on behaviors in the
customer market.

Another interesting feature of the data may be less influenced by the changes
in the supplier market. The variability in agent’s market share decreased notica-
ble in 2005, and particularly in the final round. This is an indicator of increased
parity between the agents and possibly greater consistency in dealing with a
variety of market conditions.

4.2 Average Sales Price

We now consider the average selling price (ASP) for PCs. All prices are normal-
ized by the base price. We look particularly at the standard deviation of these
values. In earlier tournaments, agents were able to corner markets for significant
periods of time because of the strategic day-0 procurement issues. This resulted
in a decreasing trend in customer ASPs over the course of the game, identified
in [7]. While there is still a benefit to early production, this effect has been at-
tenuated by the specification changes. This is noticable in the significant drops
in the standard deviation of ASP in subsequent tournaments.
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Table 5. Market Share per Agent

Year Mean Std. Dev. Unbid

QF 8.9% 2.8% 47.3%
2003 SF 8.3% 2.4% 50.2%

F 9.6% 2.2% 42.2%

QF 10.8% 1.2% 35.0%
2004 SF 10.1% 3.1% 39.4%

F 10.1% 0.9% 39.7%

QF 13.4% 1.1% 19.6%
2005 SF 13.6% 1.1% 18.4%

F 13.5% 0.8% 19.0%

Table 6. TAC SCM Tournament ASP

2003 2004 2005
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

QF 77.1% 30.1% 82.3% 21.2% 77.4% 15.4%
SF 76.2% 32.0% 80.2% 21.0% 78.3% 15.3%
F 78.2% 26.8% 84.0% 20.6% 78.5% 15.2%

4.3 Bid Efficiency

We define bid efficiency to be the ratio of actual revenue achieved by bids and
the maximum possible revenue that could have been achieved by bidding on the
same set of requests, but with perfect information about opponents’ bids. In other
words, this is the winning price divided by either the first losing bid or the reserve
price if there was no other bid. This is an interesting measure because we can di-
rectly compare at least one aspect of agent behavior against the optimal behavior.

Table 7 shows the evolution of agents’ bidding efficiency over the competition’s
three year history. All comparisons are statistically significant. Note that the
standard deviation of agent bid efficiency in the 2005 tournament finals is less
than 5.2% in comparison to 14.2% and 11.8% in the 2003 and 2004 tournament
finals, respectively. One possible explanation for this is increased stability in the
customer market prices, which would make it somewhat easier for agents to make
bids close to the winning price levels. In general, increases in bidding efficiency
reflect improvements in an agent’s ability to predict the winning price levels.

Table 7. TAC SCM Tournament Bid Efficiency

2003 2004 2005
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

QF 88.7% 15.6% 92.6% 11.0% 95.7% 6.7%
SF 87.9% 16.2% 93.8% 9.3% 97.1% 4.5%
F 89.0% 14.2% 94.0% 11.8% 97.1% 5.2%



70 P.R. Jordan et al.

Bidding efficiency is very high in the 2005 finals, so it is likely to be difficult
to gain much advantage from improving this aspect of bidding performance in
future agent designs.

5 Bullwhip Effect

The bullwhip effect is a widely known and commonly studied issue in supply
chain scenarios [8]. The effect was made famous by the MIT beer game, which is
often used to demonstrate the idea in business schools. The basic problem is that
volatility in demand (orders) is amplified as it moves up the supply chain, making
planning more difficult for entities further from end demand. The SCM scenario
is a supply chain with three echelons: customers, manufacturers, and suppliers.
Since it is a supply chain, we might expect that it would exhibit the bullwhip ef-
fect. We looked for evidence of this by comparing the relative demand variability
in the Supplier-Manufacturer echelon and the Manufacturer-Customer echelon.
For a specific supply web, we define the component demand C and the customer
demand Q. An example of the supply web formed by component 100 and PCs
1, 2, 3, and 4 is shown in Figure 2. We can then quantify the bullwhip effect
as the ratio of the component demand standard deviation to customer demand
standard deviation[9]:

ω =
σ[C]
σ[Q]

(2)

The customer demand Q is Poisson distributed with an evolving trend
parameter[3]. TAC agents must plan their component procurement according
to this evolution in order to effectively manage the supply chain. Figure 3 shows
these signals for the component 100 supply web of game 3717 in the 2005 finals.
The bullwhip measure ω for this supply web is 1.37. Any measure greater than
1 indicates a possible instance of the bullwhip effect.

We measured the bullwhip effect for all of the 2005 finals games. The mean
and standard deviation of ω for the finals are 2.35 and 0.36, respectively. In
addition, we measured the correlation between Q and C, denoted ρQ,C . For the
finals the mean and standard deviation for this correlation are 0.19 and 0.09,
respectively. We performed linear regressions of the base bullwhip metric ω and
the correlation measure against market efficiency and the division of surplus. The

Supplier Echelon Agent Echelon Customer Echelon

Component
100

Supplier

Agent 1

PC 1 Customer

PC 2 Customer

PC 3 Customer

PC 4 Customer

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Fig. 2. Component 100 Processor Supply Web
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results are shown in Table 8. The bullwhip measure had very little predictive
power on any of the market measures, though there seems to be some relationship
with the correlation measure.

We also considered bullwhip effects for individual agents. Figure 4 gives an
example of the evolution of the C and Q signals for the six agents during a game.
We regressed each agent’s demand adjusted profits (DAP, calculated similarly
to [10]) against ω and ρQ,C . The R2 value for the ω regression is 3.8% and the
R2 value for the ρQ,C regression is 17.1%, both with positive coefficients. The ω
measure has very little explanatory power for agent scores, but well correlated
procurement behavior may have positive benefits.

Table 8. Bullwhip Regression R2

ω Coefficient ω R2 ρQ,C Coefficient ρQ,C R2

Market Efficiency 0.086 1.7% -0.089 13%
Supplier Power 0.014 1.47% -0.199 21%
Manufacturer Power 0.017 0.8% -0.215 8.4%
Customer Power -0.03 2.2% 0.414 27%

Table 9. Finals’ Agent Bullwhip

Agent Mean Std. Dev.

Deep Maize 2.69 0.24
TacTex 2.88 0.53
MinneTAC 1.41 0.16
Southampton 2.30 0.32
Maxon 2.52 0.77
Mertacor 1.23 0.15

In general, our current measures of the bullwhip effect do not seem to yield
useful insights in the SCM domain. This does not mean that the bullwhip effect
is not relevant. It may well be that our simple measures are not adequate to
capture the complex dynamics of the SCM environment. Another issue is that
the upstream agents (suppliers agents) in the SCM game are not very adaptive
to changing demand conditions. This may be one reason that bullwhip effects
are muted, particularly in how they effect overall measures of market efficiency.
However, suppliers do have some behavior modifications based on demand, no-
tably the behavior of producing ahead for future committments with unused
capacity. This should be sufficient to see effects from better demand visibility
under certain circumstances. We believe that the bullwhip effect is an interesting
area for further investigation in the TAC/SCM game, and may shed new light
on existing supply chain literature.
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Fig. 3. Supply web signal for component 100 and PCs 1,2,3, and 4 in game 3717

The top-left plot shows the distribution of the change in order quantity per day of
component 100. Similarly, the top-right plot shows the distribution of the change
in order quantity per day of the PCs corresponding to component 100. These dis-
tributions are formed from the component and PC signals shown in the lower plot.
Notice that the component, which is in a higher echelon, has a distribution with a
significantly larger variance, signifying that there is a bullwhip effect in this supply
web.
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6 Conclusion

We have examined a variety of measures of agent performance and overall mar-
ket efficiency in the TAC SCM tournaments. These measures provide indirect
evidence that agent competency is increasing, but it is difficult to separate out
the effects of the changes in the game specification. The effects of these changes
are pronounced in some of the measures. Overall market efficiency has increased
in successive tournaments, while the market power held by manufacturing agents
has decreased markedly. This is consistent with increases in the competitiveness
of these agents. It is also an indication that the specification changes have in-
creased competitive behavior. In the customer market, agents have increased
market share while simultaneously increasing their bid efficiency. The variance
on both bid efficiency and mean average selling prices has also decreased, ef-
fectively compressing the spread of relevant prices in the customer market. The
addition of a repository of binary agents and stability in the specification will
allow for more direct and extensive comparisons of agent performance in future
tournaments. We also believe that there is a great deal to be learned by exploring
widely studied phenomena like the bullwhip effect in the context of TAC SCM,
and we look forward to further refinements of this analysis.
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Janson, S., eds.: Agent-Mediated Electronic Commerce: Designing Trading Agents
and Mechanisms. LNAI 3937, Springer-Verlag (2006) 99–112

8. Lee, H.L., Padmanabhan, V., Whang, S.: The Bullwhip Effect in Supply Chains.
Sloan Management Review 38(3) (1997) 93–102

9. Fransoo, J.C., Wouter, M.J.: Measuring the bullwhip effect in the supply chain.
Supply Chain Management 5(2) (2000) 78–89

10. Wellman, M.P., Estelle, J., Singh, S., Vorobeychik, Y., Kiekintveld, C., Soni, V.:
Strategic Interactions in a Supply Chain Game. Computational Intelligence 21(1)
(2005) 1–26



Agent Compatibility and Coalition Formation:

Investigating Two Interacting Negotiation
Strategies

Carlos Merida-Campos and Steven Willmott
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Abstract. This paper focuses on the Coalition Formation paradigm as
a market mechanism. Concretely, Coalition Formation occurs as part of
a wider open world and may occur many times during the lifetime of a
population of agents. This fact can in some circumstances be exploited
by agents to re-use existing partial coalition and social relationships over
time to improve Coalition Formation efficiency. The aim of the work is
to analyze the dynamics of two concrete rational behaviors (Competitive
and Conservative strategies) and, in particular, to investigate how agents
in a heterogeneous population cluster together across multiple Coalition
Formation episodes and varying tasks. Preliminary resuls are also shown
regarding the manner in which playing distinct strategies interact with
one another.

1 Introduction

One branch of economics research investigates how specific market situations
force certain behaviors in their participants. A common example of this phe-
nomenon is Smith’s Invisible Hand, under which, in competitive market scenar-
ios, traders are forced to set the prices where the supply meets the demand [13].
This specific situation does not appear too often in its pure form, and traders
must often choose in what could be a large space of different pricing strategies.

The majority of agent-based research in the Economics area, focuses on study-
ing strategy interactions and dynamics given a certain market. In this paper we
focus on the related question of strategies and dynamics in market mechanism
scenarios where Coalition Formation is required. Coalition Formation is a prob-
lem which has been extensively studied from Multi-Agent Systems perspective.
The problem centers on finding subsets of agents from a general population to
form groups which can most effectively carry out a particular task. The area in-
cludes research on a variety of different fronts, including problems such as finding
core allocations of payoff between the members of a coalition [1], finding stability
properties between coalition structures [7], finding solutions to a problem in a
cooperative way [5], or finding solutions to a coalition problem in a competitive
way, where coalitions compete amongst themselves for a payoff [12].

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 75–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In the market mechanism we suggest here, coalition formation occurs as part
of a wider open world and may occur many times during the lifetime of a popula-
tion of agents. As shown in [12] this fact can in some circumstances be exploited
by agents to re-use partial coalition and social relationships over time to improve
Coalition Formation efficiency. Such a broader perspective however raises inter-
esting questions for coalition formation environments. This paper goes further in
analyzing the dynamics of two concrete rational behaviors, a Competitive Strat-
egy and a Conservative Strategy within such an environment. These strategies
are common examples of rational behavior in economic markets. Whilst there are
more complex strategies, these two already show significant interesting behavior.

This type of continuously running market environment requiring coalitions
reflects a large number of real world scenarios such as bidding for construc-
tion projects, the formation of consortia for product development or strategic
alliances in emerging markets. In this context we aim to answer the following
questions:

– To what extent do specific strategies affect the type of coalitions formed?
– To what extent do specific strategies affect the stability properties of the

system?
– How do different agents with different strategies affect each other when they

interact?
– Which strategies benefit agents and the general population more in which

situations?

The paper is structured as follows: Section 2 explains the concrete market
mechanism we are using, the Iterative RFP Coalition Formation method as well
as examples to illustrate the method. Section 3 explains the agent based system
designed to model the Iterative RFP Coalition Formation Method. Section 4
explains the characteristics of the strategies we are testing in this paper, and
analyzes them from a theoretical perspective. Section 5 explains the experimental
setup and the results obtained to underpin the theoretical analysis and to provide
some new information. Section 6 covers related work and finally, Sections 7 and
8 provide conclusions and ongoing / future work repsecitvely.

2 Iterative RFP Coalition Formation Method

As the basis for experimentation, analysis in this paper adopts a model of worlds
based on Request For Proposal (RFP from now on) scenarios. This model was
first studied by [11], and further explored in [12]. In this environment, an entity
or entities regularly issues a call for tender to provide specific goods or services
with certain characteristics. Providers compete amongst themselves (either in-
dividually or in cosortia – coalitions). Providers and/or coalitions bidding for a
particular call are ranked according to an evaluation of their skills for the task,
and receive a payoff according to their placement in the ranking.

There are many existent real systems that follow the RFP type procedures
such as public building projects, competitive tender for government contracts
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or even collaborative research project grants. RFP environments can also be
seen as emerging market opportunities in an economy, with individual calls for
tender representing new opportunities for profit. Such system are characterized
as follows:

– Agents, or groups of agents compete for a given goal.
– The best agents, or groups of agents are rewarded with the award of the

contract to carry out the task and its subsequently payoff.
– Some systems, may also have policies for rewarding 2nd, 3rd, 4th etc. ranked

agents / groups of agents.
– The process repeats over time.
– The objective agents are competing for varies over time – with different CFPs

issued corresponding to functionally different tasks. In this way, an agent or
a group of agents that were very competent for a certain goal, could become
weak for a different one.

– Groups could be dynamic and might change depending on the market situ-
ation.

– Agents are individual utility maximizers. And share the same preference,
that is payoff maximization, but might have different strategies for maxi-
mizing their utility.

A protocol with the described characteristics could also potentially be used as
a service composition mechanism in an automated environment where agents
representing services team up to compete with other teams to present the most
competitive package of services given certain requirements.

3 Problem Definition and Agent Based Models

For the purposes of this paper, the problem is formalized in the following way: In
every game g there is a task Tg that is defined by a set of K tuples. Each tuple
represents an skill and its corresponding demanding value for the named task:

Tg = {〈sk0, Tg0〉, 〈sk1, Tg1〉, . . . , 〈skK , TgK〉}
Every agent Ai in the population has a certain expertise degree in each of the
K skills that task Tg is defined with:

Ai = {〈sk0, Ai0〉, 〈sk1, Ai1〉, . . . , 〈skK , AiK〉}
A coalition Cj is a a set of one or more agents {Ax, .., Az}. Agents’ skills are
aggregated in the coalition in such a way that the resultant values of that ag-
gregation represents the skills of the coalition entity. This is noted as:

Cj = {〈sk0, Cj0〉, 〈sk1, Cj1〉, . . . , 〈skK , CjK〉}
The concrete aggregation function used is:

Cjp = max
∀q:Aq∈Cj

Aqp Having 0 ≤ p ≤ K. (1)



78 C. Merida-Campos and S. Willmott

We could consider each skill as a necessary subtask for performing task Tg. In
this way, by using the aggregation function shown in equation 1, the agent in a
coalition which is the best fit for performing a certain subtask will be in charge
of it.

Amongst the different possibilities for aggregating agent skills in a coalition,
function 1 has been choosen as is a reasonable metaphor of many real coalitional
processes. For example, if we consider a consortium of partners participating in
a call for proposals, each member of the consortium will be representative of a
certain part of the proposal, and normally is the partner best fitted for that part
of the work.

Coalition Cj is endowed with a certain score scr(Cj , Tg). This score is negative
if the coalition is non competent in all the skills for performing the task (∃p :
(0 ≤ Cjp < Tgp)), and is positive otherwise. More concretely, the functions used
for the case of existence of non competent skills in the coalition is:

scr(Cj , Tg) = −#skp : (0 ≤ Cjp < Tgp) (2)

When Coalition Cj is competent in every skill (∀p : (0 < Tgp ≤ Cjp)), the
function used is:

scr(Cj , Tg) =
K∑

p=0

Cjp − Tgp (3)

As we can see in Equation 2, the score of a coalition with some non competent
skill (non competent coalition), is the negative value of the number of non com-
petent skills. In this way, the more skills in which the coalition is not competent,
the lower its score will be.

In Equation 3, we can see that the score of a coalition, competent in every
skill (competent coalition) is the sum of excess value in every requested skill. In
both equations, we can see that only those skills with value higher than 0 count
for their evaluation. Those with values equal to 0 are ignored. This represents
the fact that some tasks do not need a certain skill to be performed, and so
the degree of ability of a coalition in that skill is not taken into account for its
evaluation.

There is non-linear mapping from coalition score to coalition payoff, as in our
model, the payoff of a coalition does not depend only on its score but also on
the scores of other coalitions. All coalitions are decreasingly ordered by score,
and are priced according to their rank with an exponentially decreasing amount
from the best one to the worst. Agents within a coalition spread the coalition
payoff evenly. The concrete payout function we use is:

pay(rank) =
{

MaxAmount/2rank−2, for the last competent coalition
MaxAmount/2rank−1, for the other competent coalitions

(4)

Amongst the different possibilities for doing the mapping, this concrete expo-
nential function has been chosen for two reasons: first, because this function has
the property that, independently of the number of competent coalitions, the to-
tal amount of money spread will always be MaxAmount. This is an interesting
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property in order to compare the economic behavior of different populations. The
second reason is because this represents an exponential distribution of wealth for
which there is empirical evidence from Real Economies (see [6]). This function
creates a rich set of possible scenarios in which coalitions optimize their trade-offs
between score and size, growing in size only when it is valuable to do so.

For every game, a subset of agents are asked at random about an action to
take towards its membership in a coalition. The choices that an agent has are:

– Stay in the coalition.
– Stay in the coalition optimizing it by firing (expelling) one or more members.
– Leave the coalition in order to join a different one.
– Leave the coalition in order to replace one or more agents in a different one.
– Create a new coalition.

When an agent’s decision involve firing or replacing an agent, this action is
submitted to the coalition who will evaluate it. In order to get the action accepted
and executed, it must be approved for more than the half of the members of the
coalition affected, otherwise the action is rejected and not performed. In that
case that an agent is fired or replaced, it automatically becomes the only member
of a brand new coalition.

When agents are requested to perform an action they are able to submit as
many proposals as they want, if none of them is accepted the agent remains in
the same coalition.

Agents are farsighted in the sense that they know the score and payoff values
of any action the agent wants to consider prior to its submission.

4 Conservative and Competitive Strategies

This paper shows results on the different outcomes obtained by using two differ-
ent strategies: competitive and conservative. Agents who choose a conservative
strategy make decisions on which coalition to join based on the payoff this coali-
tion is expected to have. Agents who choose a competitive strategy make deci-
sions on which coalition to join based on the score that this coalition is expected
to have. Both strategies are myopically rational, as when an agent using some
of those strategies is asked to make a choice, it counts with all the information
available at that instant of time, concretely, they have the information on po-
tential payoff and score of any coalition they could create by carrying out any of
the 5 possible actions defined in the previous section, but they do not count on
the possible reactions of the other agents after its decision has been performed.

Both strategies are arguably rational. For the case of conservative strategy, it
makes sense to choose the most profitable coalition at a certain time, expecting
that the situation will not change until the end of the game. For the case of
competitive strategy, it makes sense to join the coalition with highest score, as
even if the payoff is worse than in another coalition with lower score but fewer
members to share the benefit, a new member could be attracted by this growing
score coalition and make it grow in the ranking and gain a higher payoff. In
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other words, for the case of conservative strategy, the agent expects to get the
maximum payoff at any time, while for competitive strategy, the agent invests
for a future better payoff as a side effect of being in a highly competent coalition.

4.1 Theoretical Dynamics of Competitive Population

Competitive agents try to be in a coalition with the highest possible score.
At the same time, coalitions of Competitive agents accept joining proposals,
optimizations or replacements proposed as long as they improve the coalition
score.1 This behavior implies that, for a given task, each movement of an agent
from/to a coalition of Competitive agents, involves an improvement in its score,
otherwise the agent would not had had any motivation to move from/to there.
Thus the score of the best coalition in a game for a given task is monotonically
increasing.

The maximum score of a coalition is obtained with a coalition of as many
members as skills required for the task (at maximum). Agents do not create
coalitions with more members than skills, as given aggregation function 1, there
is just one agent providing the maximum value for each skill, then if the coalition
has more agents than required skills, it could be optimised by expelling those
agents who do not provide any maximum value to any skill. Due to this, Com-
petitive agents in the RFP model do not create the grand coalition, hence this
strategy configures a non-superadditive game.

As the coalition size is self-limited by a certain maximum size, and the score
of the best coalition is monotonically increasing, the score of the best coalition
will stabilise at a certain point while the task doesn’t change. The same happens
with the score of the second best coalition, and so on. This way, a system with a
population of Competitive agents competing for a given task that do not change,
converges into an stable state.

4.2 Theoretical Dynamics of Pure Conservative Population

Conservative agents try to be in a coalition with the highest possible per agent
payoff. At the same time, coalitions of Conservative agents accept joining propos-
als, optimizations or replacements proposed as long as they improve the coalition
per agent score.2 This behavior ensures that during the process of coalition for-
mation, each movement of an agent from/to a coalition of Conservative agents,
involves an improvement in the per agent payoff of the coalition otherwise, the
agent would not have had any motivation to move from/to there. In order to
improve the per-agent payoff, a coalition can either improve its score to increase
its ranking, or it can reduce its size having less members to split the gains be-
tween less members. This second way of improving payoff implies in some cases
a reduction of coalition score.
1 As a secondary criterium of acceptance, we use the size of the coalition, i.e. if the

coalition score is the same, a competitive agent will propose/accept when the number
of agents is smaller than in the origin/original coalition.

2 The same secondary criterion of acceptance as in competitive strategy is applied.
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Differently to the best coalition’s score, the best coalition’s payoff is therefore
not monotonically increasing. The best individual payment can decrease when
the coalition that has it, is out-ranked by another coalition. In this case, the pre-
vious best payed coalition receives less payment as it is in a lower rank, and the
out-ranking coalition, might have more members than the previous best-paying
coalition, thus lower individual payoff. Under these conditions of non monotonic-
ity, convergence to an stable state cannot be ensured in an environment with
Conservative agents.

The sizes of coalitions are determined by the concrete skill distribution amongst
the population, the requirements of the task and the payoff function. More
concretely, the growing possibilities are determined by score differences from coali-
tions in the ranking. Let A1 be an agent, C1 be a coalition and \C1 the rest of coali-
tions competing at a certain moment. The ranking of C1 is noted as rank(C1, \C1),
its size as |C1|, and its payoff as: pay(rank(C1, \C1))/|C1|. We can claim that C1

will never grow in size as long as:

�A1 : pay(rank(C1 ∪ A1))/(|C1| + 1) > pay(rank(C1))/|C1| (5)

Then the difficulty of a coalition has in growing depends on payoff function.
Since the payoff function we are using in our model is monotonically decreasing
as a function of the ranking of the coalition, in order to have a higher payoff in
coalition C1 ∪ A1, the following must be true:

rank(C1 ∪ A1) > rank(C1) (6)

From this, we can see that the possibilities of a coalition to grow up in size also
depend on how difficult what is stated in Condition 6 is.3 As a matter of fact,
the difficulty of condition 6 to hold for any arising coalitions, depends on the
skill distribution of agents, and on the size of coalitions, in such a way that the
smaller the coalition, the easier it is for condition 6 to be fulfilled. The Influence
of coalition size is explained as follows: in a coalition with no redundant agents,
each agent is giving the maximum value to one or more skills. If the coalition has
few agents, its members will each have more skills to be responsible for. If agents
of a population have the same total sum of skill values (

∑K
p=0(Aip)), there will be

many agents with different skill values in the distribution that could improve the
coalition score by taking responsibility of many more skills than if the coalition
were large and each skill would be responsibility of a certain ”expert” agent.
In this way, by having more chances of increasing coalition score by raising the
value of more skills, we will have also more chances of rising the coalition rank.

The stability analysis in this population is more complex than in competitive
population. The system will be stable once agents have reached Pareto opti-
mality, and Nash equilibrium. This situation is made more complex by different

3 Note that it could happen that joining more than one agent to the coalition (C1 ∪
A1 ∪ . . . An) we could improve the coalition enough to make it profitable for all the
agents in it, but given our model, agents do not take decisions in a coordinated
manner.
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factors. An important one is that if coalitions do not need to grow too much
to be competent, we will have many small coalitions, and as we have seen in
the analysis of the importance of the coalition size, for the case of small coali-
tions it will be easier for agents to find profitable coalitions outside their current
coalition. This could create a continuous movement of agents from coalition to
coalition.

5 Experiments

To examine the dynamics of the strategies explained and validate the theoretical
analysis, a range of experiments were conducted by simulation. Each simulation
run consists of a set of a fixed number of model iterations, where agents follow the
Iterated RFP protocol explained in section 2, for solving a number of different
tasks that change sequentially after a fixed number of games.

In order to visualize the relationships established between agents in the ex-
periments, we used Pajek [3]. Graph figures represent the relationships created
between agents throughout a series of games of one or more experiments. Each
node is an agent, and a link represents a collaboration that existed when the
coalition was evaluated in a certain game. Agents collaborate when they are to-
gether in a competent coalition. In this way, a coalition is represented by a clique
of connections amongst the agents in the coalition. In order to ease the visual
analysis edges are colored depending on the frequency of the relationship; the
more often a collaboration happens, the darker the line appears. The graph is
represented using Kamada-Kawai algorithm implemented in Pajek that places
nodes in a close position when they are connected with links of relative high
value. In our case, agents appear close to each other when they have had fre-
quent relationships. Throughout the rest of the paper, these graphs are named
collaboration graphs.

5.1 Experimental Set-Up

A variety of configurations and parameterizations have been used in order to be
able to check the statistical validity of outcomes. The underlying configuration
for the experiments was:

– A static population of 100 agents, with abilities randomly distributed across
10 different skills. Each skill of an agent is assigned a positive integer score or
zero. Agents are each assigned 200 skill points randomly distributed across
their skills.

– A set of 100 different Tasks. Each one requiring a total of 100 skill points
distributed randomly across the same 10 different skills.

– Each task is issued during 1000 games. And each game picks 25 agents at
random to make a choice on their coalition preference (and hence poten-
tially adapt their coalition according to the schemes defined in the previous
section).



Agent Compatibility and Coalition Formation 83

– Every competent coalition is subsequently ranked and rewarded according
to function 4. The concrete MaxAmount value used for this function is 100.
This represents the total amount that will be spread in each game amongst
the competent coalitions.

Collaboration Graphs are used to monitor each relationship established at the
end of every round. The payoff data for each one of the agents, as well as the
coalition sizes are also monitored and analysed.

5.2 Competitive Behavior Experiments

A population of 100 agents following the Competitive behavior strategy have
been used. Figure 1(a) shows the collaboration graph of the population in just
one experiment, and figure 1(b) represents the aggregated results amongst the
set of 100 experiments with different tasks to fulfil. In the first figure we can
appreciate 30 vertices out of the existing 100, this is because the algorithm
places vertices close to each other when relationships between them are very
strong (in our case, strength values means frequent relationships), that means
that some coalitions of agents repeat very frequently over time. In the same
figure, a few residual low frequency relationships of some agents with some of
other clusters can be appreciated. Those two facts verify the analysis performed
in section 4.1. Concretely, the experiments verify that a population of agents
using Competitive strategy converges to a stable state where at a certain point
of the process, there is no movement of agents between coalitions. Those clusters
of nodes in the graph that repeat very frequently are the structures created after
the optimization process has finished. Residual relationships (relationship with
low frequency) belong to the period in which the experiment is not stable yet.

The experiments also reveal another fact that validates the theoretical analy-
sis. The size of coalitions tends to be equal to the number of requested skills by
the task, having normally an expert agent on charge of every skill.

The second figure shows us that even when different tasks are used in the
same experiment, the aggregated collaboration graph still reveals clear clusters
of frequent collaboration. This is explained by the following fact: Competitive
agents create coalitions that maximize the value of all the skills requested by a
task. In order to do that, they create coalitions as big as necessary, having an
expert agent for each requested skill, i.e. an agent which only contribution is to
have the biggest value in the coalition for an specific skill. The only difference
in coalitions created for different tasks is in the exclusion or inclusion of expert
agents for skills that in some tasks are requested and in others are not. This way
a substantial part of a coalition remains static from task to task, as in average,
tasks issued usually have no more than 2 non-required skills (that vary from task
to task) out of 10 skill.

5.3 Conservative Behavior Experiments

In these experiments, we use a population of 100 agents following the con-
servative behavior strategy. Figure 1(c) shows the collaboration graph of the
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(a) 1 Experiment Result pure competitive
population.

(b) 100 Experiments Result pure competi-
tive population.

(c) 1 Experiment Result pure conservative
population.

(d) 100 Experiments Results pure conser-
vative population.

(e) 1 Experiment Result mixed population. (f) 100 Experiments Results mixed popu-
lation.

Fig. 1. Collaboration Graphs for different populations settings
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population of just one experiment, and figure 1(d) represents the aggregated
results amongst the set of 100 experiments with different tasks to fulfil.

In the first figure we can appreciate how collaboration is not concentrated
in clusters, instead it is spread in many different combinations of agents. This
suggests the correctness of the analysis performed in section 4.2, where it was
stated that a conservative population does not necessarily converge into an stable
state. This way agents move from coalition to coalition during the experiment,
and the collaboration graph reflects that behavior by not showing any particular
frequent cluster of agents, instead, the graph shows a cloud of sparse collabora-
tions between the agents. Conservative agents optimise the ratio payoff/members
keeping low the size of coalitions. The experiments reflect an average size of 2.3.
The small size of coalitions, is a destabilisation fact that make them have similar
scores. When coalitions have similar scores a single movement of an agent can
change the whole payment scenario. However, some nodes in the center of the
graph show slightly more frequent connections between them. This suggests that
even though the system does not converge, there are successful agents that have
some preferential attachments with other nodes with which they can create small
coalitions with good scores, and so, it happens that in a dynamically changing
environment they meet each other more frequently.

By observing figure 1(d) representing the aggregation of the data obtained
across all the experiments, we can see that it keeps the same concentric structure,
indicating that successful properties of central agents are kept. By the dark
color in the edges, we can see that although conservative agents spread their
collaboration, they usually cooperate with the same wide range of agents.

5.4 Mixed Strategies Dynamics Experiments

In these experiments, we mix 50 agents using the competitive strategy with 50
agents using conservative strategy. In order to create comparable results when
playing two populations together, we create a symmetric population of 50 dupli-
cated skills vectors. Figure 1(e) shows the collaboration graphs of the population
in just one experiment. Figure 1(f) on the right hand side represents the results

Fig. 2. Payoff gained by each population throughout 100 different tasks
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amongst the set of 100 experiments with different tasks to fulfil. To differentiate
members of each population in the graph, nodes representing conservative agents
are in black color, and nodes representing competitive agents are in white color.

In the first graph we can see how a group with a majority of competitive
agents establishes itself in the experiment, and show almost pure endogamic
relationships. Apart from this, we observe that the rest of agents spread their
collaboration with many different members of any population type. The average
coalition size in this experiment is 5.9. This indicates that competitive agents
boost the competitivity in the games, and large coalitions created by those agents
become attractive also to conservative agents, as once the coalition has a certain
competitive degree it becomes more profitable than small coalitions created by
other conservative agents.

The figure showing results throughout the 100 experiments 1(f) reflects a very
similar situation as in the one experiment graph 1(e). Both figures have a shape
that reflects the mixture between clustering into frequent groups and spreading
among many different ones. It is possible to appreciate a cluster of competitive
agents, and very close to that cluster, reflecting frequent collaboration with the
elements of the cluster, there is a set of conservative agents. Those agents do not
stay in the cluster coalitions as frequently as competitive agents, because they are
probably tempted by other coalitions offering less score and higher payoff, but they
are probably good enough to be accepted in the coalitions when those coalitions
become the most profitable option for a conservative agent at a certain time.

In terms of profit, as we can see in figure 2, the competitive population clearly
outperforms conservative population. This is explained by the fact that competi-
tive agents are the founder creators of the most competitive coalitions and remain
on it as they cannot find any incentive to leave it. On the other hand, conserva-
tive agents that get attracted by a successful high score coalition might join it if
its payout/members ratio is good enough, but they might eventually leave it seek-
ing apparent opportunities in the market of smaller coalitions with higher bene-
fits. This often turns out to be the wrong decision as smaller coalitions are more
dynamic and subject to change (see section 4.2 for an explanation of this fact).

6 Related Work

There is other relevant work in literature that tackles heterogeneity of popula-
tions as a key point of the research. The most representative is [5] which studies
how diversity within the agent population impacts on the quality of the coali-
tions that emerge. Conforth et. al. create a dynamic organization framework in
which heterogeneity turns out to be a crucial element for problem solving tasks.
In this work, heterogeneity is represented upon different initial values of agent’s
parameters such as their connectivity (interaction links), trading strategies and
initialization states. In the present model, all agents know each other but are dis-
tinguished by different values in a fixed set of skills. This fact characterizes every
individual by intrinsic properties that can be complementary, and lead to the
system to have different dynamics from those showed in the cited work. Apart
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from using heterogeneity in the intrinsic properties of the agent, the presented
model contemplates different strategic behavior for agents.

Another interesting example on the use of heterogeneity in coalition formation
processes is the modelling of heterogeneous preferences. Some examples of this
are [2] which models different preferences between leisure and work, and [4] which
provides a method that considers the possibility of different evaluation functions
to coalition structures.

From the point of view of the protocol used (RFP), the work presented is
related to [11]. However, Kraus et. al. have radical differences in its use. Firstly,
in their model, a number of tasks are issued and agents propose coalitions (from
scratch) that are accepted or rejected by the affected members. In order to
motivate agents to form a coalition, a discount factor is used. In the model
presented here, there is just one Task at a time for which all the population
compete for, but not only one coalition gets priced. Agents do not propose entire
structures, instead they construct them by individual movements. In order to
motivate agents to form good coalitions, the motivation instrument is the use of
a decreasing payment function.

The presented model shares many characteristics with economic models, such
as [2]. Some important characteristics are: the iterative nature of the processes,
the episodical evaluation of the structures, and similar type of rational behavior
in the agents, however there is an important difference that is the evaluation
function. The evaluation function applied by Axtell et. al. (Cobb-Douglass) re-
wards a coalition (or a firm) independently of the rest of existing coalitions. In
our case the reward of a coalition is partly dependant on its score, and on the
score of the rest of the existent coalitions.

Traditionally Coalition Formation problems have been tackled as a ”one off”
event. In the present work we seek to go beyond this to consider what may hap-
pen in environments over time. Other important work in the same line includes
[9,10,1].

7 Conclusions

From the analytical and experimental work presented, the following conclusions,
applicable to the Iterative RFP domain, are drawn:

– Competitive strategies (score maximizing) outperforms conservative strate-
gies (payoff maximizing) when symetric populations are played against one
another. This provides a hint as to why competitivity emerges in certain
societies to dominate other conservative behaviours.

– A pure population of agents running the competitive strategy for a give task,
converges to a Nash equilibrium state in which no agent has motivation to
move elsewhere given the coalitional structure created.

– A pure population of agents running the competitive strategy tend to create
coalitions of size equal to the number of requested skills.

– A pure population of agents running the conservative strategy tend to create
small size coalitions.
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– In a pure population of agents running the conservative strategy, there is
a inversely proportional relationship between the size of coalitions and the
degree of dynamism.

Lastly, the long term aim of this work is to analyse the clustering structure
of agents within an RFP population - and investigate how this affects perfor-
mance. To this end, Collaboration Graph representation seems to present a useful
method to analyze properties of the Coalition Formation process in such long
running scenarios.

8 Ongoing and Future Work

Ongoing and future work includes a deeper research on the conditions under
which competitivity dominates conservative strategies.

Other planned work includes study of individual characteristics that make
agents extraordinary, and extract the important patterns that are exploitable
with certain strategies such as those shown in the current paper.

It will be also of significant value to study the stability of results from a for-
mal game theoretic perspective, as well as the game theoretic properties of the
strategies we study.

Finally, we are investigating the use of other large scale network analysis tech-
niques to have a deeper understanding of our domain. Such techniques include
Clique Overlapping, and t-core distribution.
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Abstract. In this game, agents will face-off against each other in the
ultra-competitive real estate market. Each competitor will act as a real
estate agent, working on behalf of clients who need to move into new
homes. These clients need to buy a new home as well as sell their current
home. The game will test competitors’ technology in two main research
areas: preference elicitation and multi-issue negotiation. Each time an
agent acquires a new client, it must query the client about its various
preferences (e.g. price range, number of bedrooms, etc.) for their new
home. Agents then search the listings of the other agents, seeking a
possible match. Once found, the agent then engages in negotiations with
the selling agent, haggling over various aspects of the deal. Once a house
has been purchased, the client’s old house needs to be sold. The objective
of the game is to earn the most money. Selling agents earn commissions
from sales. Buying agents do not earn commissions, but instead need to
maximize the utility of their clients by obtaining a good deal. Satisfied
clients are more likely to keep their agent to sell their old house.

1 Introduction

Research in automated negotiation and preference elicitation has been gaining
momentum in recent years. While the traditional storefront e-commerce model
with take-it-or-leave-it pricing has been the norm because of its relative ease,
in purchase scenarios where several attributes related to the transaction (other
than just price) need to be decided upon, a one-size-fits-all method of determin-
ing such values becomes too restrictive. Attributes must instead be tailored to
the needs of the customer as well as to the availability of the seller. In such sit-
uations, negotiation becomes a valuable tool for searching the space of possible
agreements for a mutually acceptable transaction. Given the speed with which
transactions can be negotiated and executed through various electronic services
today, research in intelligent agent technology has been focusing increasingly on
automated negotiation [3,5,6]. Two of the main focuses of research in automated
negotiation include the specification of protocols (i.e. the set of rules that the
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agents must follow during negotiation), and the construction of effective strate-
gies (i.e. the rules agents use to determine how to operate within the protocols
to achieve a successful or satisfactory outcome).

In order to construct an effective strategy, an agent must have a utility model
over the set of possible outcomes of the negotiation. That is, the agent must
have an idea as to the degree of preference over outcomes, so that it can work
toward achieving an outcome that is highly preferred. If an agent is working on
behalf of a human user (which is most often the case in electronic commerce),
then it must have some idea of the user’s preferences. Preference elicitation
(also referred to as utility elicitation here) [2] is the field of research dedicated
to studying the problem of effectively extracting these preferences or utilities
from the user. The main issues here involve determining how to query the user,
how to infer information from responses to queries, and how to determine when
sufficient information has been elicited.

The Trading Agent Competition (TAC) [9] is an international competition
where players submit autonomous trading agents that participate in a simulated
market. In the original version of the game, referred to as “TAC Classic”, agents
participate in auctions to purchase components of potential vacation packages.
Each agent works on behalf of several clients who have utilities for various travel
packages. Agents attempt to satisfy their clients as much as possible while min-
imizing costs.

In 2003 the Supply Chain Management game (TAC-SCM) [1] was developed
and added to the TAC event. In this game, agents procure computer components
from suppliers, assemble the computers and sell them to customers. Supplier
prices are set according to supply and demand, and computers are sold via
auctions. The object of this game is to make the most money.

In this paper, we propose a new game to the series referred to as the Real
Estate Market game (TAC-REM). In this game, agents work on behalf of clients
to buy and sell houses. To determine which houses may be potential matches
for their clients, or what transaction conditions may or may not be acceptable,
agents must elicit their clients’ preferences. Once a potential match is found,
agents representing the potential buyer and seller enter into negotiations in order
to find a mutually acceptable agreement. Commissions are earned on houses sold.
The winner at the end of a game is the agent with the most money. While the
first two TAC installments focused on auction and supply-chain technology, this
new game will capitalize on agents’ capabilities in preference elicitation and
automated negotiation.

In addition to a new TAC game, the ideas given here have the potential to
break new ground in the real estate business. Such technology can help pave the
way for real estate companies and agents to explore the use of information tech-
nology and electronic commerce. Gibler and Nelson’s [4] demonstration of the
descriptive theories of how home buyers make choices shows that there is a gap
between decision making in practice, and the more normative theory of choice
as dictated by the axioms of utility theory [7]. This is largely because of the high
complexity of quantifying a buyer’s preference over the large number of attribute
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values that need to be considered when comparing houses. Instead, buyers of-
ten take an “elimination by aspects” approach [8]. Here, the most important
attribute is chosen (in this case usually price), and an acceptable range of values
is chosen. All alternatives falling outside of this range are then eliminated. Next
the second-most important attribute is chosen, and so on. The decision-maker
may iterate through this process several times, adjusting these ranges each time
until a suitably-sized set of alternatives is found. Naturally, this decision-making
strategy can provide sub-optimal results. By using our proposed system as sim-
ulation software, a real-estate agent can devise and test new intelligent methods
for eliciting preference information from a client, and for using that information
to make better decisions on which homes will make better matches.

In this preliminary paper, we present a general description of the game in sec-
tion 2, followed by the game specification in section 3. This section gives details
on such matters as daily activities, preference elicitation rules and procedures,
utility functions and negotiation protocols, among others. Section 4 discusses a
few issues that need to be resolved during the implementation and testing phases
of the game production. In section 5 we close the paper with some final remarks.

2 Game Overview

The environment in which the agents compete is a typical real estate market.
Each agent represents several clients, some of which are buyers and some of which
are sellers. Buyers have preferences over the various attributes associated with
potential houses. Such attributes include the number of bedrooms, number of
bathrooms, square footage, type of neighbourhood, and whether or not it has a
garage. Preferences for the combinations of various attribute values are modeled
by a multi-attribute utility function. The agent representing the buyer must
attempt to determine this utility function as accurately as possible by asking
elicitation queries. There is little time to spend with clients, and each agent will
likely have multiple clients, so the number of queries that can be made is limited.
The agent must then find houses for sale that best meet the client’s preferences.

Each selling client has a house for sale which is described using the values of
the house attributes given above, with the addition that a price range is given as
well. Each day, agents publish a listing of all of their clients’ houses, accessible
to all other agents.

A transaction is also made up of several attributes, including price, closing
date, whether or not landscaping work will be done, whether or not maintenance
will be performed on the heating/cooling system, and whether or not plumbing
work will be done.

When an agent finds a house for sale that it believes will satisfy one of its buy-
ers, it sets up a “showing”. At this point, the client observes the attributes of
the house and, based on its satisfaction with the house, computes and reveals its
multi-attribute utility for the house, and indicates how likely it is that a poten-
tial transaction will meet or exceed its utility acceptability threshold. The seller
of the house also has such a utility function and utility threshold for the various
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potential agreements. The two agents then enter into negotiations. Negotiations
are bilateral where participants take turns exchanging one offer at a time, starting
with the buyer. Each time an offer is received, the receiving agent can choose to
either accept the offer, reject and counteroffer, or reject and quit.

If the agents are successful in achieving a deal, the transaction is made with
the selling agent receiving a commission on the purchase price. The selling client
then happily disappears from the market, and the agent representing the seller
takes on a new buyer client. The client that bought the house now needs to
sells its current home, and thus becomes a seller. It may or may not, however,
retain the services of its current real estate agent. The client will choose to
leave the agent with some probability depending on its utility of the negotiated
transaction. The higher the utility, the higher the probability that it will stay
with the current agent. If it chooses to leave the agent, it will choose another
agent in the game randomly with uniform probability.

The objective of the game is to earn the most money. Money can only be
earned through commission on selling houses. The exact percentage of the com-
mission is computed based on how well the various aspects of the eventual deal
satisfy the client. Thus the selling agents have an incentive to find acceptable
deals not only with high prices, but also with other attribute values that will sat-
isfy its client. Buyer agents receive no commission from transactions, but rather
retain the buyer as a client based on the client’s satisfaction. If the buyer is
retained then it becomes a seller, making it a potential money-maker. So there
is an incentive for buyer agents to find deals that satisfy their clients as well.

3 Game Specifications

3.1 Initial Setup

Six agents compete in a game. Initially each agent has 20 clients: 10 buyers and
10 sellers. Each buyer owns a home and wants to purchase a new one. Each seller
simply has a home for sale (and presumably another one that they live in, but
not for sale).

3.2 Summary of Daily Activities

1. Obtaining new clients. Each day begins with the registration of new clients.
An agent receives new buyer clients in one of two ways: 1) by selling houses:
each agent obtains a number of new buyer clients equal to the number of
houses sold the previous day (i.e. each satisfied seller is replaced with a new
buyer the next day), and 2) by obtaining other agents’ unsatisfied buyer
clients who were unable to buy a home after 14 days. An agent obtains new
seller clients in one of three ways: 1) by purchasing a house for a buyer the
previous day and convincing it to stay on as a seller client, 2) by obtaining
other agents’ buyer clients who left them after buying a home the previous
day, and 3) by obtaining other agents’ unsatisfied seller clients who were
unable to sell their home after 14 days. See section 3.9 for more specific
details.
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2. Update Listings. Agents send the specifications of the houses that their clients
have for sale to the central Multiple Listing Service. The central listing is
updated once daily, early in the day. Entries can be submitted at any time,
but those not submitted in time for the update will not appear until the
next day. See section 3.3 for more specific details.

3. Utility Elicitation. Throughout the remainder of the day, agents can elicit
utility information from their buyer clients to determine their preferences
for different types of houses. Queries can ask about house and transaction
preferences, and can offer two possible responses (e.g. “Would you prefer A
or B’?”). To further ascertain utility, standard gambles may be included in
the queries (e.g. “Would you prefer house type A or a gamble where you
would receive house type B with 0.6 likelihood or house type C with 0.4
likelihood?”). See section 3.6 for more specific details.

4. Showings. A “showing” takes place when an agent allows a buyer client
to assess its utility for a house that is for sale. At this point the client
reveals its utility for the house (with average utilities used for the transaction
attributes), and indicates the likelihood of being interested in buying the
house, given its preferences for the likely transaction outcomes. An agent
may choose to show its client a house belonging to one of its own selling
clients, however the agent will incur penalties if it ultimately represents both
clients in a transaction. See section 3.7 for more specific details.

5. Negotiation. If, after a showing, it is determined that there is an acceptable
likelihood that an agreement on a transaction can be reached, then the agent
may choose to enter in negotiations with the selling agent. Negotiations are
bilateral, with the agent representing the buyer making the first offer. Each
offer consists of a value for each transaction attribute. Negotiation continues
until an agreement is reached or one of the agents quits. See section 3.8 for
more specific details.

6. Client Shuffle. A client will find a new agent to work with if they are un-
satisfied with their current one. Buyers and seller clients will stay with an
agent for a maximum of two weeks (14 days). If the current agent has been
unsuccessful in selling their current home or buying them a new one, they
will leave the agent and enlist with a new one (randomly chosen uniformly).
Also, a buyer client may leave its agent immediately after buying a new
home, if it is somewhat unsatisfied with the purchase. The higher the utility
of the purchase, the higher the probability that it will stay with its current
agent. If it leaves, it will randomly choose a new agent. This shuffle phase
takes place at the end of each day. No more of the above activities will take
place once this phase begins. See section 3.9 for more specific details.

3.3 House Attributes, Listings

The house attributes are the attributes of a house that are non-negotiable, such
as the size or the number of bedrooms. The house attributes and their domains
are given in Table 1.
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Table 1. Attributes and domains for houses

Attribute Domain

House type 1-story, 2-story, split-level
Number of bedrooms integer 1-5
Number of bathrooms integer 1-4
Size 1000, 1500, 2000, 2500, 3000, 4000 sq ft
Neighbourhood type urban, suburban, rural
Garage? yes, no

The Multiple Listing Service (MLS) provides a public directory of all houses
up for sale. In addition to the attribute values of each house, the listing provides
information on the selling agent, the number of days on the market, and the
price range. Example entries in the listing are given in Table 2.

Table 2. Example listing of available houses

Listing Agent Attributes Price Range Days on Market

0881 1 232421 [225000, 250000] 4
1021 6 343511 [250000, 275000] 2
1088 5 122230 [150000, 175000] 1

For example, the first entry indicates there is a house for sale with refer-
ence number 0881, agent number 1 is the selling agent, and the values for the
attributes are as follows: the first attribute (type) has value 2 (2-story), the sec-
ond attribute (# of bedrooms) has value 3 (3 bedrooms), the third attribute (#
of bathrooms) has value 2 (2 bathrooms), the fourth attribute (size) has value
4 (2500 square feet), the fifth attribute (neighbourhood type) has value 2 (sub-
urban) and the sixth attribute (garage?) has value 1 (yes). The price range is
225,000 - 250,000, and it has been on the market for 4 days. Note that all price
ranges have size 25,000 with upper- and lower-limits being multiples of 25,000.

3.4 Transaction Attributes

The transaction attributes are those negotiable issues and conditions pertaining
to the agreement of a sale, such as the price or whether landscaping work will

Table 3. Attributes and domains for transactions

Attribute Domain

Price integer 100000-500000
Preferred closing date buyer’s, seller’s
Landscaping? yes, no
Heating system maintenance? yes, no
Plumbing maintenance? yes, no
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be done by the current owners as a condition of sale. The transaction attributes
and their domains are given in Table 3.

3.5 Utility Functions

Each buyer client b has a utility function ub for each house and transaction
attribute. These utility functions are additively used to make up a buyer’s mul-
tiattribute utility function that assigns a utility to each potential combination
of house and transaction attribute values:

ub(house, transaction) =
∑

a∈H∪T

wb
aub

a(xa) (1)

where H ∪ T holds the house and transaction attributes, wb
a is the weight of

attribute a, ub
a is the utility function for a, and xa is the value for a given the

house and transaction.
During the house-hunting process, a buyer’s utility for a house is computed

using the average utility for each transaction attribute, since the transaction at-
tribute values are unknown and do not yet come into play. The particular values
for these attributes are then used during the negotiation phase to determine the
buyer’s overall utility of a deal.

Each seller client s has a utility function us for each transaction attribute.
These utility functions are additively used to make up a seller’s multiattribute
utility function that assigns a utility to each potential combination of transaction
attribute values:

us(transaction) =
∑

a∈T

ws
aus

a(xa) (2)

where T holds the transaction attributes, ws
a is the weight of attribute a, us

a is
the utility function for a, and xa is the value for a given the transaction.

For each type of client, the range of utilities for each attribute is [0,1], with
the most favourable value yielding a utility of 1 and the least favourable yielding
a utility of 0. All weights sum to 1, and thus the multiattribute utilities lie in the
[0,1] range. When a represents price, ua is not necessarily linear, but can rather
be shaped to model the client’s marginally decreasing (or increasing) utility.

Many attributes have a natural ordering in the preference of their values. For
example, buyers always prefer smaller values for price while sellers always prefer
larger values. As another example, buyers always prefer larger values for size than
smaller values. It may be the case that buyers with limited funds prefer houses
of smaller size, but this is likely because smaller houses are usually cheaper. All
things being equal, a buyer will prefer a larger house to a smaller one. Values for
other attributes such as neighborhood type do not have such a natural ordering.
Some buyers may prefer urban living, while others prefer rural. Table 4 gives a
summary of the orientation of each attribute.
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Table 4. Orientation of attribute values

Attribute Orientation

House type none
Number of bedrooms buyer prefers more
Number of bathrooms buyer prefers more
Size buyer prefers more
Neighbourhood type none
Garage? buyer prefers yes
Price buyer prefers less, seller prefers more
Preferred closing date each prefer their own
Landscaping? buyer prefers yes, seller prefers no
Heating system maintenance? buyer prefers yes, seller prefers no
Plumbing maintenance? buyer prefers yes, seller prefers no

3.6 Preference Elicitation

In each elicitation query, the agent asks for the client’s preference over two
standard gambles g1 and g2. Each gamble gi involves two potential deals di

and d′i, each made up of values for the house and transaction attributes, and
a probability pi. The uncertain outcome of gi is di with probability pi or d′i
with probability 1 − pi. So the query asks the following: “Would you prefer
to take gamble g1 where you would receive deal d1 with probability p1 or d′i
with probability 1− pi, or would you prefer to take gamble g2 where you would
receive deal d2 with probability p2 or d′2 with probability 1 − p2?” Values for
all attributes are not required in the descriptions of d1 and d2; attributes with
missing values will be ignored by the client. Agents can query about preferences
over deals rather than gambles simply by making p = 1 and leaving d′ blank.

Another type of query is an acceptability query. This is used when an agent
wants to know whether a proposed agreement meets or exceeds the client’s ac-
ceptability threshold. Such queries will typically be made during a negotiation.
Here, the agent simply leaves g2 blank. If the client indicates that the offer (or
gamble) given in g1 is preferred, then this means that g1 is deemed acceptable
to the client.

Table 5 shows how to formulate queries to elicit particular types of informa-
tion, other than the general query for the client’s preference over two standard
gambles.

To determine a response to the query, the client uses its own secret utility
function (described above) to compute the utility of each gamble:

u(gi) = u(di)pi + u(d′i)(1 − pi) (3)

where u(di) is computed using equation 1 for buyers and equation 2 for sellers.
The client then indicates which of the two gambles has higher utility. In the case
of a tie, g1 is selected.

When an attribute value is missing, the client computes the overall utility of
a deal using the average utility over all possible values for this attribute. When
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Table 5. Formulation of query types (where d+ and d− are known to be the most and
least preferred deals, respectively)

Query Type g1 g2

d1 d′
1 p1 d2 d′

2 p2

Determine whether utility of deal d is > or < u d+ d− u d - -
Determine which of deals dA and dB is preferred dA - 1 dB - 1
Determine whether deal d is acceptable d - - - - -

querying about specific houses, the agent can enter the house reference number
instead of entering all of the attribute values into the query.

3.7 Showings

When an agent believes that a house is a potential match for a buyer client, it
may choose to “show” the house to the client. At this point, the client reveals its
utility for the house (with average utilities used for the transaction attributes),
and indicates the likelihood of being interested in buying the house. This like-
lihood is computed as the number of joint outcomes for transaction attribute
values that meet its acceptability threshold (given the utilities of the house at-
tribute values), divided by the total number of joint outcomes for transaction
attribute values. Given this likelihood, the agent can decide whether to put in
an offer (i.e. enter into negotiations with the seller agent), or to keep looking.

It may be the case from time to time that the best match for a buyer is a
house that is being sold by a client represented by the same agent. An agent
may represent both the buyer and the seller in a transaction, but will incur the
following penalties:

1. 50% the commission earned from the sale
2. The buyer will leave the agent and choose to sell with another agent with

100% certainty

Thus such transactions are permissible but discouraged, and are likely only
favourable as a last resort.

As showings take valuable time, each agent may show no more than 5 houses
in a day, regardless of the number of clients it has.

3.8 Negotiating

A negotiation session begins with an agent representing a buyer sending an of-
fer on a house to an agent representing the seller of that house. Each message in
the negotiation consists of a house (given by the reference number), the intended
buyer (given by the buyer number), and values for all transaction attributes. Each
time an offer is received, the receiving agent may 1) accept, 2) reject and send a
counteroffer or 3) reject and quit. An offer is valid for a fixed length of time.

Each time an offer is sent, the agent must first ensure that the client’s utility
for the offer meets or exceeds its acceptability threshold. This can be done using
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an acceptability query, or else can be concluded using past information, since a
client’s preferences do not change over time. If an agent ever accepts an offer
that does not meet its client’s acceptability threshold, or submits such an offer
which is subsequently accepted, this agreement is still binding. The offending
agent(s) in such a situation is (are) penalized an amount equal to the amount
of money that could be offered to the client to make the deal acceptable. For
example, consider an agent who agrees on a purchase of a house with price
200,000 on behalf of a buyer client with acceptability threshold u′. If the deal
has utility for the buyer less than u′, but a price of 190,000 (all else equal)
would raise the utility of the purchase to u′, then the buyer would be penalized
200, 000−190, 000 = 10, 000. The same holds true for sellers. In this case, sellers
could effectively forgo some of their commission in order to help a client sell
their house. Agents may have negative balances.

Since accepted offers are considered binding agreements, an agent may make
only one offer at a time for any given client. That is, a seller agent may make
an offer to only one potential buyer for a house that it is selling. No other of-
fers may be made for that house until 1) the first offer expires, or 2) the agent
that received the first offer rejects it or submits a counteroffer. The agent may
entertain several offers from buyers for a house, thus effectively participating
in several simultaneous negotiations for the house, but may only have one out-
standing offer from itself at any given time. The same goes for buyer agents who
represent a client that is interested in more than one house. At any time, the
agent may submit at most one offer on behalf of the buyer. Naturally, an agent
can represent several buyers that are interested in the same house.

3.9 Obtaining/Losing Clients

Each time an agent successfully sells a house for a selling client, that client
disappears from the game, and the agent receives a newly-produced buyer client
the next day. When an agent successfully purchases a house for a buyer client,
that client turns into a seller client the next day. However, if the client was not
particularly satisfied, it may choose to leave the agent and find a new one. Let u′

be the minimum utility deemed acceptable by the client and u(d) be the utility
achieved by the sale given by d. If u(d) = u′ (the worst case), the agent has a
50% chance of losing the client. If u(d) = 1 (the best case), the agent has a 0%
chance of losing the client. The probability for all other u(d) is computed by
equation 4. The function from equation 4 is depicted in Figure 1. Note that u(d)
will never really be less than u′. Whenever an agent makes a deal where this is
the case, the agent is penalized the amount that effectively brings u(d) up to u′.

p(lose) =
(u(d)−u′

1−u′ − 1)2

2
(4)

Using this type of function (as opposed to a more linear function) ensures that
the probability of losing a client is relatively low in most cases, but increases
sharply if the agent exerts minimal effort and barely satisfies the client. This
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Fig. 1. Probability of a buyer client leaving its agent

discourages the agent to simply agree to the first acceptable offer so it will have
time to move on to other tasks.

Both buyer and seller clients will stay with the same agent for a maximum of
14 days. At the end of the 14th day, if the agent has not either purchased (in
the case of the buyer) or sold (in the case of the seller) a house for the client,
the client will leave the agent. A client that leaves an agent will enlist with a
randomly chosen agent at the beginning of the next day. This client retains its
original preferences, and thus the client’s former agent may retain information
learned about these preferences for possible later use. After an additional 14
days, if the client has still not completed a transaction, it is deemed to be
not satisfiable and is removed from the system. It is then replaced with a new
client of the same type and is assigned to an agent (possibly the current one)
randomly.

When a buyer converts to a seller and stays with the same agent, this day
counter is reset, with the next day (the first day that the agent can sell for them)
being day 1.

3.10 Commission

The selling agent receives a commission from each sale. This is the only way to
earn money in the game. The seller earns a base commission of 5% of the sale
price for making the sale, plus a bonus of up to 5% more based on client satis-
faction. The total commission c earned for deal d with sale price s is computed
by

c = (0.05 + 0.05(
u(d) − u′

1 − u′
))s (5)

where u′ is the minimum utility deemed acceptable by the client and u(d) is the
client’s utility for d.

3.11 Duration

The game lasts 365 days. At the end the winner is chosen to be the agent that
made the most money.
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4 Future Work

At this point in the game development, there are several issues that remain un-
resolved. For the most part, such resolutions can reasonably be made only after
implementation and experimentation. We mention some of these issues here.

– Creating clients. New clients are created randomly, but must be done so as
to ensure fairness among the competitors. Clearly certain agents will have
an advantage if they always receiver buyer clients that are easy to please
and seller clients with premium houses.

– Reputation. Under the current game specification, when a client leaves an
agent it selects a new agent randomly with uniform probability. To make the
game more realistic, we hope to introduce the concept of reputation. Agents’
reputations will be based on how well they are able to satisfy their clients.
Those agents with high reputation would then be more likely to land new
clients.

– Running time. The game should not run longer than 60 to 70 minutes, which
is comparable to the TAC Classic and TAC-SCM games. Otherwise it will
be impractical to run in a competition setting. The length of a day would
then be 1/365 of the game time.

– Number of queries per day. In order to be more realistic, and encourage
the use of intelligent methods for determining optimal queries and inferring
information from query responses, the number of times an agent is allowed to
query a client should be limited. It may be the case that number of possible
queries is limited by the short time that is available for doing so each day.
Otherwise a hard cap of, say two queries per day per client, may have to be
imposed.

– Stages for each activity. It may be best that each of the major activities
that take place during the course of a day are divided into stages. For ex-
ample, the day could begin with the listing stage, followed by the elicitation
stage, followed by the showing stage, followed by the negotiation stage. Only
the specified activity can be done during each stage. This will likely make
things easier from an implementation perspective, while imposing a reason-
able workflow on the agents’ daily activities.

– Offer expiry. Offers cannot be valid indefinitely. An agent might not get an
immediate response from the receiver of the offer, and cannot be expected
to wait very long before looking elsewhere. This issue will be best resolved
during the testing phase of the project.

5 Final Remarks

This paper gives a proposal for a third edition to the TAC series, called the
Real Estate Market game (TAC-REM). Agents work on behalf of clients to
buy and sell houses. To determine which houses may be potential matches for
their clients, or what transaction conditions may or not be acceptable, agents
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must elicit their clients’ preferences. Once a potential match is found, agents
representing the potential buyer and seller enter into negotiations in order to
find a mutually acceptable agreement. Commissions are earned on houses sold.
The objective of the game is to make the most money over a 365-day period.

This paper serves as an invitation to the TAC community to consider the game
presented in this paper, and provide us with feedback and suggestions on how
to improve it. The game should provide an excellent forum for researchers in the
areas of automated negotiation and preference elicitation to test their techniques
and solutions. It may also pave the way for real-world real estate companies to
explore the use of information technology and electronic commerce to conduct
business. Above all, the game promises to be interesting and engaging, and
thus has high potential to promote research in these areas by attracting and
encouraging new researchers and students to participate.
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Abstract. In this paper, we investigate the effectiveness of different
types of bidding behaviour for trading agents in the Continuous Dou-
ble Auction (CDA). Specifically, we consider behavioural types that are
neutral (expected profit maximising), passive (targeting a higher profit
than neutral) and aggressive (trading off profit for a better chance of
transacting). For these types, we employ an evolutionary game-theoretic
analysis to determine the population dynamics of agents that use them
in different types of environments, including dynamic ones with market
shocks. From this analysis, we find that given a symmetric demand and
supply, agents are most likely to adopt neutral behaviour in static en-
vironments, while there tends to be more passive than neutral agents
in dynamic ones. Furthermore, when we have asymmetric demand and
supply, agents invariably adopt passive behaviour in both static and dy-
namic environments, though the gain in so doing is considerably smaller
than in the symmetric case.

1 Introduction

The last decade has seen a significant change in the nature of electronic com-
merce with the emergence of trading agents [6], software that is capable of au-
tonomous and flexible action to achieve its objectives and that is endowed with
sophisticated strategies for maximising profit in different types of market mech-
anisms. Now, one of the most important such mechanisms is the Continuous
Double Auction (CDA) [4], a symmetric auction with multiple buyers and sell-
ers. CDAs are so important because they are the principal financial institution
for trading securities and financial instruments (e.g. the NYSE and the NAS-
DAQ both run variants of the CDA institution). However, developing agents
that can participate in the CDA is difficult because it is not amenable to a
game-theoretic analysis and there is no known optimal strategy [4]. Therefore,
a number of heuristic strategies have been proposed [12,11,14], each of which
has a particular behaviour in the market. Given this, in this paper, we are not
concerned with developing yet another strategy, but rather we are interested in
how a particular characteristic of such strategies impacts upon their behaviour
and their effectiveness. The characteristic in question is the aggressiveness of
the bidding behaviour, here defined as how eager an agent is to transact. We
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focus on aggressiveness in particular because we believe it is a key determinant
of success in the market. In particular, we consider three behavioural types1:

1. The neutral agent always submits the quote (a bid or an ask) that maximises
its expected profit. This is the most common type of behaviour and is one
that is often hardwired into various strategies.

2. The passive buyer (seller) submits a lower (higher) quote than its neutral
counterpart in order to try and obtain a more profitable transaction. Thus if
it does transact, it makes more money because it pays less (if it is a buyer)
or receives more (if it is a seller).

3. The aggressive buyer (seller) submits a higher (lower) quote than its neutral
counterpart in order to try and improve its chances of transacting as it offers
more (if it is a buyer) or asks for less (if it is a seller) with the aim of making
sure that it can trade.

At this time, comparatively few researchers have considered the issue of vary-
ing aggressiveness in a market context. Abreu et al. [1] describe the evolutionary
stability of behaviours in a reputational model of bargaining, and how players
can be more profitable when adopting passive or aggressive behaviour. Thus,
while they show that this attitude can have a significant effect on the outcomes
experienced, they do not consider the CDA. Walsh et al. do consider the CDA
and they use an evolutionary game-theoretic (EGT) analysis to examine the in-
teraction of a number of common strategies [15,16]. Thus, their analysis provides
an insight on the population proportion that will adopt each strategy. But, while
they restrict their analysis to a particular set of well-known strategies, we are
more interested in whether a particular strategy can perform better if it is pas-
sive, neutral or aggressive. Phelps et al. [9] also use an EGT analysis, but they
compare two double auction mechanisms, the call and continuous, given that
similar strategies are available for both mechanisms. Thus, they are interested
in the performance of double auction mechanisms given particular strategies
(including one that is evolved using a GA).

Against this background, we believe this study of behavioural types is impor-
tant because it provides an insight into how this fundamental aspect of bidding
behaviour affects the system’s performance. Thus, these results apply to any
CDA strategy that is capable of adjusting its behaviour along this dimension
(e.g. GD [5], ZIP [3] or RB [14]). Such insights are important because if an agent
can be more profitable by deviating to another behaviour, then it will do so.
However, with every agent in the market doing this, the population distribution
of types can change significantly. Now, an effective trading agent can use knowl-
edge of such dynamics to decide on what behavioural type to adopt given the

1 The nomenclature for the different behaviours varies over the literature, with some
like Abreu et al. [1] considering passive and aggressive behaviours and others like
Byde [2] considering the behaviour of different risk attitudes. However, they all
refer to some similar behaviour. For example, a risk-averse agent adopts aggressive
behaviour to improve its chance of winning, while a risk-seeking agent adopts passive
behaviour to target higher profits. The risk neutral agent adopts a neutral behaviour.
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particular population distribution of types. Furthermore, because behavioural
aggressiveness is usually an endogeneous aspect of a strategy, such an analy-
sis can assist the strategy designer when assessing the effectiveness of various
strategies. To perform our analysis, we adopt a similar EGT approach to that
of Walsh et al and we choose EGT because it allows us to study the dynam-
ics of the CDA when agents are allowed to evolve in terms of the behaviour
they adopt. To do this, however, we need to describe the model in a form that
abstracts the complex bidding that the CDA mechanism entails, into a simple
normal-form game. By so doing, the CDA then becomes amenable to such an
analysis. In particular, we develop a set of strategies that vary only in terms of
their different behavioural types.

In Section 2, we formally define the CDA mechanism we use in this work and
then in Section 3 we describe how we model the behavioural type of a strategy.
In Section 4, we detail the model we use for our EGT analysis and in Section 5
we provide our actual analysis. Section 6 concludes.

2 The Continuous Double Auction

The CDA mechanism allows agents to submit quotes at any time during the
auction, and a transaction can occur whenever a buyer’s bid and a seller’s ask
can be matched. We conform to previous studies on the CDA in terms of our
experimental setup [10,12]. In particular, a set of limit prices is endowed to
buyers and sellers and these determine the market demand and supply. Thus,
a desired demand and supply can be induced with the appropriate endowment
to get the desired environment. Furthermore, the CDA consists of a number of
fixed-duration trading periods (or trading days) at the beginning of which an
agent is given an endowment to buy or sell. The CDA protocol includes the
NYSE spread-improvement rule requiring that any bid (ask) submitted must be
higher (lower) than the outstanding bid2 (ask). Because of the non-deterministic
nature of the CDA, payoffs to trading agents are averaged over a sufficient num-
ber of simulations to obtain statistically significant results, as computed by the
Wilcoxon rank sum test (see Section 5).

3 Modelling the Behavioural Types

Software trading agents are usually designed to employ neutral bidding strate-
gies. However, as discussed in Section 1, we are interested in the effect on the
market if trading agents are also designed to be non-neutral and instead have
passive or aggressive bidding behaviour. To this end, we model such behaviours
by modifying the widely used GD strategy [5]. We choose this strategy out of
all those available [12,3,14] because it is one of the most efficient [12] and it can
readily be extended to incorporate different bidding behaviours. However, we
2 The outstanding bid, obid, is the current highest bid and the outstanding ask, oask,

is the lowest ask in the market.



106 P. Vytelingum, D. Cliff, and N.R. Jennings

could equally well have chosen any CDA strategy that can be suitably adjusted
to model passive or aggressive behaviour, and our results generalise to these
cases (not shown due to space restrictions).

Now, in the original GD strategy, while all GD agents have the same belief
about the market, they form a neutral expected utility-maximising quote based
on their own private preferences. In this section, therefore, we detail the GD
strategy and how we modify it to be either passive or aggressive (in addition to
its standard neutral perspective).

In more detail, the GD agent has a belief that its quote to buy or sell will
be accepted in the market. The agent then submits the price that maximises
its expected utility. The utility of a quote is the profit associated with such a
quote given the agent’s private preferences (limit price, �). The GD agent forms
its belief on the basis of observed market information, HM , that includes the
frequencies of accepted quotes (transactions) and rejected quotes. Furthermore,
the belief encompasses some form of recency so that only the most recent quotes
during the past L transactions are considered. We now formally state the buyer’s
belief, q̂(b), associated with a bid b, and seller’s belief, p̂(a), associated with an
ask a:

Fig. 1. (a) Seller’s belief, p̂(a), that an ask a will be accepted in the market. (b) Buyer’s
belief, q̂(b), that a bid b will be accepted in the market.

Definition 1. Bid Frequencies: D is the set of all permissible quotes in the
market. ∀d ∈ D, B(d) is the total number of bid quotes made at price d, TB(d)
is the frequency of accepted bids at d, and RB(d) the frequency of rejected bids
at d.

Definition 2. Ask Frequencies: D is the set of all permissible quotes in the
market. ∀d ∈ D, A(d) is the total number of ask quotes made at price d, TA(d)
is the frequency of accepted asks at d, and RA(d) the frequency of rejected asks
at d.

q̂(b) =

∑
d≤b TB(d) +

∑
d≤a A(d)

∑
d≤a TB(d) +

∑
d≤a A(d) +

∑
d≥a RB(d)

(1)
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p̂(a) =

∑
d≥a TA(d) +

∑
d≥a B(d)

∑
d≥a TA(d) +

∑
d≥a B(d) +

∑
d≤a RA(d)

(2)

We use a cubic spline interpolation to calculate the belief at prices that are
not registered in HM (see [5] for further details). The seller’s belief function
is then modified to satisfy the NYSE spread-improvement rule (see Section 2).
Thus, for any ask that is higher than the current outstanding ask, the belief
function is set to 0. Similarly for the buyer, the belief that any bid below the
outstanding bid is accepted is 0. An example of a buyer’s and a seller’s belief
function is shown in Figure 1.

Given its belief function and neutral behaviour, the GD agent forms a quote
that maximises its expected utility. In particular, the buyer’s utility, Ub(b), for a
bid b is given in Equation 3 and the seller’s utility, Us(a), for an ask a in Equation
4. In both cases, the expected utility is the product of the belief function and
the utility function, and the bid b∗ or ask a∗ to submit is computed as the price
that maximises the expected utility, as shown in Equation 5.

Ub(b) =
{

0 if b ≤ �
(� − b) otherwise (3)

Us(a) =
{

0 if a ≤ �
(a − �) otherwise (4)

b∗ = argmaxb∈(oask,obid) [Ub(b)q̂(b)]
a∗ = arg maxa∈(oask,obid) [Us(a)p̂(a)] . (5)

To modify the GD strategy so that it embodies the other behavioural types,
we alter the agent’s utility as a function of its limit price, �, and some scalar pa-
rameter, θ, that represents its aggressiveness in the market. The new aggression-
sensitive utility functions, Ũb(b) and Ũs(a) for buyers and sellers respectively, are
given in Equations 6 and 7. Here, we vary θ from negative to positive to describe
passive to aggressive behaviour, with θ = 0 describing neutral behaviour. By
way of an illustration, Figure 2 shows the different utility functions for passive
(θ = −1), neutral (θ = 0) and aggressive behaviour (θ = 1) for the buyer and
the seller.

Ũb(b) =
{

0 if b ≤ �

(� − b)e
θb
� otherwise

(6)

Ũs(a) =

⎧
⎨

⎩

0 if a ≤ �
1 if a > amax

(a − �)e
θ(amax−a)

amax−� otherwise
(7)

Before we proceed to our EGT study of behaviours, we evaluate our new
space of GD strategies to ensure that they remain reasonably efficient compared
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Fig. 2. (a) Seller’s utility Us(a) for an ask a and � = 2.0. (b) Buyer’s utility Us(b) for
a bid b and � = 4.0. The utility is given as a function of the agent’s limit price, �, and
the aggressiveness in bidding behaviour. θ = −1 describes passive behaviour, θ = 0
neutral behaviour, and θ = 1 aggressive behaviour.

to their neutral counterpart. We do so in a homogeneous environment with
a typical symmetric demand and supply. Specifically, we examine the market
efficiency3 of the CDA with a 10-buyer and 10-seller homogeneous population
with similar behaviour. To this end, Figure 3 gives the market efficiency over the
aggressiveness parameter θ and different numbers of allocations to buy or sell.
The latter gives an insight on how efficiency changes as the number of expected
transactions in the market increases with larger allocations given to the traders.
As can be seen, as the market size increases with the number of tradeable units,
the market efficiency increases for all behaviours. However, all agents adopting
neutral behaviour does indeed maximise market efficiency in all cases. Passive
behaviour is slightly less profitable while aggressive behaviour performs worst.
Thus, Gjerstad and Dickhaut’s decision to make GD neutral is validated in such
a homogeneous environment (and indeed this is the result that they report in
[5]). However, we cannot assume that all agents will remain neutral, as if it
profits an agent to deviate to another behaviour, it will do so.

Given this, the question that naturally follows is whether an agent can in-
deed improve its performance by adopting a different behavioural type. Now, to
answer that question, we use an evolutionary game-theoretic analysis, which we
describe in the next section.

4 An Evolutionary Game-Theoretic Model

Evolutionary game-theory has traditionally been used to analyse simple games
(such as the Prisoner’s Dilemma) in terms of the dynamics of the population of
learning agents playing different strategies [17]. Here, however, we are interested
in a much more complex game and so a slightly different model is needed. In
particular, as explained in Section 1, we use Walsh et al.’s model which involves

3 The market efficiency is the ratio of actual total profit of all agents to the maximum
profit that could be extracted in the market.
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Fig. 3. Market efficiency given a homogeneous population of agents with similar be-
havioural type. We consider 3 different set of experiments with agents allocated 1, 5
and 10 limit prices.

considering the action of an agent as playing its bidding strategy during a game
(lasting several trading days) and the payoff as being the total profit at the
end of the game. Furthermore, they describe these payoffs as being heuristic
because they are the output of a mapping of the strategies through a complex,
non-deterministic interaction of the trading agents.

Given this, we first describe how we compute the heuristic payoff table that
details the expected payoff to each agent (as a function of the S strategies that
agents are allowed to play, and the combination of the A agents playing those
strategies). We then describe how we use this table to compute the mixed Nash
equilibrium of the game and the well-documented replicator dynamics model [17]
(which is a standard way of representing the population distribution changes).

4.1 Computing the Heuristic Payoff Table

With the heuristic payoff table, we are interested in the expected payoff of a
player playing a strategy, j, given the strategies adopted by the other (A − 1)
players. Now, because of the non-deterministic and complex nature of the CDA
game, some simplifications are required:

1. The payoff of a strategy is the average payoff of an agent playing that strategy
in the CDA game, given the different strategies all the A agents are playing
in that game.

2. All agents have the same set of strategies to play, andhave the samepayoffwhen
playing the samestrategy.Thus, asdescribed in [16],wecanrestrictouranalysis
to symmetric games [17], and significantly reduce the complexity of the prob-
lem. Rather than having a table of size SA, we reduce it to

(
A+S−1

A

)
entries.
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Given these, we build our heuristic payoff table4 by considering the exhaus-
tive set of strategies the A agents can play, and the number of agents playing
each strategy (rather than considering which strategy each of the A agents is
playing). Now, because payoff in the CDA game is non-deterministic, we require
a significant number of independent simulations for each table entry to ensure
that these are statistically significant. Thus, for each entry, we run a number of
CDA games (typically 1000) with A agents, each assigned a strategy and a type
(buyer or seller) to play, ensuring there is an equal number of buyers and sellers,
with a probability of 0.5 that there will be an additional buyer or seller if A is
odd.

Given our payoff table, we can now proceed with an EGT analysis as we would
with a normal-form game.

4.2 Computing the Equilibrium

Here, we describe how to compute the mixed Nash equilibrium of the CDA
game. An agent i chooses the strategy it plays according to its mixed-strategy,
p̂i = (p̂i,1, ..., p̂i,S) and

∑S
j=1 p̂i,j = 1, where p̂i,j represents the probability that

agent i plays strategy j. At the equilibrium, p̂∗i , an agent i cannot receive a
higher payoff by unilaterally deviating to another mixed-strategy, assuming that
the other agents do not change their strategies [17]. Now, because we assume a
symmetric game, all agents have the same mixed-strategy and the same mixed
Nash equilibrium. Furthermore, because we are considering a very large popula-
tion, we can validate that p is equal to the mixed-strategy. Given this, we denote
both the population distribution and the mixed-strategy as p = (p1, ..., pS), and
the mixed Nash equilibrium as p∗ hereafter.

In our EGT analysis, we denote the expected payoff of an agent playing a strat-
egy j, given the mixed-strategy p, as u(ej , p). To compute u(ej , p), we consider
the results from a large number of CDA games with an agent playing strategy j
and (A − 1) agents selected from the population, with a mixed-strategy p. For
each game and every strategy, we average5 the individual payoffs (obtained from
our heuristic-payoff table) of agents using strategy j. The mixed Nash equilib-
rium is then formulated as the argument to the minimisation problem given in
Equations 8 and 9. Specifically, p∗ is a mixed Nash equilibrium if and only if it is
a global minimum of v(p) [16,8], and we can validate that p is a global minimum
if v(p) = 0.

v(p) =
S∑

j=1

(
max

[
u(ej, p) − u(p, p), 0

])2
(8)

4 A table entry for a 20-player game with 3 strategies would be (|S1|, |S2|, |S3|,
U1, U2, U3) where Sj is the set of agents playing strategy j, |Sj | is the number of
agents playing strategy j, and Uj is the average payoff of an agent playing strategy
j. Note

∑3
j=1 |Sj | = 20 and we have 231 entries.

5 In effect, here, we are not running the CDA game for every simulation, but only
selecting the appropriate payoff from our heuristic payoff table each time.
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where u(p, p) =
∑S

j=1 u(ej , p)pj is the average payoff of an agent in a population
with distribution p.

p∗ = arg min
p∈Δ

[v(p)] (9)

Solving such a non-linear minimisation problem is non-trivial and computa-
tionally demanding. Thus, we use a method provided by the Matlab optimization
toolbox based on the Nelder-Mead method to find the zero-points of the func-
tion v. Because the algorithm used is a non-linear local minimiser, we restart
the algorithm repeatedly at random points within the unit-simplex until no new
equilibria are found for 20 runs.

Now, while the mixed Nash equilibrium gives a theoretical and static per-
spective of our simplified CDA game, the dynamics of the game and how the
equilibria are reached often provide more insight. Given this, we turn to the
replicator dynamics which have been shown to be a good model for a common
kind of agent learning (namely Reinforcement Learning) [13] and describes how
agents learn to reach the equilibrium.

4.3 Computing the Replicator Dynamics

The replicator dynamics, ṗ = (ṗ1, ..., ṗS), describe how the population distribu-
tion p (where p = (p1, p2, ..., pS), p ∈ Δ is an element of a unit-simplex, Δ, and
∑S

j=1 pj = 1) changes. This approach assumes that an agent deviates to another
strategy that appears to be receiving a higher payoff. Specifically, ṗ is a vector
given as follows:

ṗj =
[
u(ej, p) − u(p, p)

]
pj (10)

The replicator dynamics show us the strategy trajectories and how they con-
verge to an equilibrium, though they do not necessarily settle at a fixed point (see
[17]). In this context, an equilibrium to which trajectories converge, and settle, is
known as an attractor, while a saddle point is an unstable equilibrium at which
trajectories do not settle. The region within which all trajectories converge to
a particular equilibrium is known as the basin of attraction of that equilibrium.
The basin is a very useful measure of the adoption of the attractor equilibrium
and how likely the population is to converge to that equilibrium.

Here, we compute ṗ by starting at different population distributions p inside
the unit-simplex and following the trajectory given by Equation 10.

5 An Empirical Analysis of the Behavioural Types

In these experiments, we compute the heuristic-payoff table for a 20-agent CDA
game with 3 strategies and lasting 10 trading days. At the beginning of each
day, buyers and sellers are each endowed with a single limit price drawn from
uniform distributions Ub and Us respectively. For the purposes of this paper, we
consider different uniform distributions to model representative (symmetric and
asymmetric) small markets (similar to those considered in previous studies on
the CDA [5,3,14]):
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– Market 1: Ub = U(1.5, 4.5) and Us = U(1.5, 4.5). This is a symmetric market
that has an expected equilibrium at 3.0.

– Market 2: Ub = U(2.5, 5.5) and Us = U(2.5, 5.5). This is a symmetric market
that has an expected equilibrium at 4.0.

– Market 3: Ub = U(1.5, 4.5) and Us = U(2.8, 3.2). This is an asymmetric
market in which the slope of the supply curve is greatly reduced (compared
to market 1). The equilibrium is expected at 3.0.

We model a market shock by changing the demand and supply on trading day
6 (and the new demand and supply then remain the same for the ensuing trading
days). In particular, we consider two market shocks, MS12 where demand and
supply changes from Market 1 to 2 and MS13 where it goes from Market 1 to 3.
The former is a market shock that simply results in an increase in equilibrium
price, but produces no change in the symmetry of market. The latter is a more
complex shock as the structure of the demand and supply changes, though the
equilibrium price does not.

We split our analysis into static and dynamic environments to compare our
interpretations of their dynamics. For the former, we consider one symmetric
market (1) (the results are similar for Market 2) and the asymmetric market (3).
For the latter, we consider both types of market shocks. We validate our result
by running a Wilcoxon rank sum test [7] on randomly selected entries covering
10% of our heuristic payoff table in order to ensure statistical significance of
our data. In some experiments where the change across the heuristic payoff
table is particularly small (e.g. in Market 3), 2000 simulations were required for
significance.

Now, because we are considering only 3 strategies (each corresponding to
a behavioural type), the population distribution space is a unit-simplex in a
three-dimensional space. Thus, we can visualise the replicator dynamics ṗ and
the equilibria p∗ by projecting the simplex onto a two-dimensional space [17].
The contour shading in our simplex is proportional to the magnitude of ṗ.

5.1 Static Environments

We first analyse behaviours in the CDA when there are no market shocks. In Mar-
ket 1, we have 2 attractors at A and C and a saddle point at B (see Figure 4). As
can be seen, the basin of attraction of C is considerably larger than that of A.
This means the majority of the trajectories converge to neutral behaviour, with a
non-significant proportion settling at passive. We can see that neutral behaviour
is evolutionarily stable in symmetric markets and so most agents are likely to grav-
itate towards it. Thus, as a designer in such situations, the best thing is to do is
make your agent neutral.

Now, when we consider the dynamics in asymmetric Market 3, we find a single
attractor at A (see Figure 5). Thus, all trajectories converge towards passive
behaviour. However, we note that the magnitude of the dynamics is considerably
smaller compared to that in Market 1. This reflects the comparatively small
gain that the agent achieves in Market 3 as it slowly adopts the evolutionary
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Fig. 4. The replicator dynamics of a CDA game in Market 1. Here, we have 3 equilibria
with attractors at A=(1, 0, 0) and C=(0, 1, 0) and a saddle point at B=(0.95, 0.05, 0).

stable passive behaviour. Here, we can interpret the small gain as follows. At a
particular population distribution, the agent might intend to deviate in opposing
directions from a buyer’s and a seller’s perspective, particularly because of the
asymmetry in the market. Because an agent can be either a buyer or a seller
with the same behavioural type, the deviation is a composite of the buyer’s
and seller’s intentions, which explains the small gain as the dynamics converge.
Having said this, however, it is still more profitable for an agent to be passive
in asymmetric markets, and it should be designed as such.

5.2 Dynamic Environments

The neutral GD strategy has been shown to react well to simple symmetric mar-
ket shocks [5] in a homogeneous environment. Here, however, we are interested
to see whether agents will still adopt neutral behaviour in the presence of market
shocks, or whether there are behaviours that are more profitable in such dynamic
environments.

With market shock MS12, we have 2 attractors at A and C, and a saddle point
at B (see Figure 6), with a relatively larger basin of attraction for equilibrium
A. Here, there are more agents that are likely to be passive than neutral, though
they might all adopt neutral behaviour if there are insufficient passive agents in
the market. Thus, it can be more profitable not to be neutral all the time when
there are simple market shocks. The strategy designer can use the knowledge
of how the dynamics reach the equilibrium to decide what strategy the agent
should adapt given the population distribution of behaviours.
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Fig. 5. The replicator dynamics of a CDA game in Market 3. Here, we have an attractor
equilibria at A=(1, 0, 0) and C=(0, 0.29, 0.71) and a saddle point at D=(0, 0.51, 0.49).
Note that the magnitude of the replicator dynamics is very small compared to that of
Market 1.

Fig. 6. The replicator dynamics of a CDA game and market shock MS12. Here, we
have an attractor equilibrium at A=(0.56, 0.44, 0) and C=(0, 1, 0), and a saddle point
at B=(0.16, 0.84, 0).
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Fig. 7. The replicator dynamics of a CDA game and market shock MS13. Here, we
have an attractor equilibrium at A=(1, 0, 0).

With market shock MS13, we have a single attractor at A. Here, all the agents
very slowly, but eventually, adopt passive behaviour. However, there is compar-
atively little to be gained in moving towards the evolutionary stable passive be-
haviour (for the same reasons we outlined in our discussion of Market 3).

6 Conclusions and Future Work

As electronic marketplaces become ever more common, we believe software
agents will increasingly come to dominate the trading landscape. Their ability to
quickly make informed decisions, based on the available data, make them ideal
candidates for automated trading. To this end, analysing the impact of varying
one of the fundamental characteristics of their bidding behaviour in a range of
market situations is an important step. In particular, in this paper, we show
that in a symmetric market, an agent is more likely to adopt an evolutionary
stable neutral behaviour. However, when there are market shocks that increase
the equilibrium price but maintain the symmetry of the market (meaning agents
have to update their beliefs of the market) neutral is no longer the behaviour
agents are most likely to adopt. In this case, more agents change to being pas-
sive. We also observe that changing behaviour is not particularly profitable for
an agent in an asymmetric market.

For future work, we intend to look at other types of symmetric and asymmet-
ric demand and supply, and other types of market shock in order to obtain fur-
ther insights into how a trader’s behaviour changes in yet other types of market.
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For completeness, we also aim to address the limitation of our model where
an agent has the same behavioural type when it is both a buyer and a seller.
In particular, we believe that separately analysing these two roles can be more
insightful, particular in asymmetric markets, where we do not expect the same
behaviour from them.
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Abstract. In this paper, we consider the problem of a shop agent ne-
gotiating bilaterally with many customers about a bundle of goods or
services together with a price. To facilitate the shop agent’s search for
mutually beneficial alternative bundles, we develop a method for online
learning customers’ preferences, while respecting their privacy. By intro-
ducing additional parameters, we represent customers’ highly nonlinear
preferences as a linear model. We develop a method for learning the un-
derlying stochastic process of these parameters online. As the conducted
computer experiments show, the developed method has a number of ad-
vantages: it scales well, the acquired knowledge is robust towards changes
in the shop’s pricing strategy, and it performs well even if customers be-
have strategically.

1 Introduction

Combining two or more items and selling them as one good, a practice called
bundling, can be a very effective strategy for reducing the costs of produc-
ing, marketing, and selling products. In addition, and maybe more importantly,
bundling can stimulate demand for (other) goods or services [1]. To stimulate de-
mand by offering bundles of goods, requires knowledge of customer preferences.
Traditionally, firms first acquire such aggregate knowledge about customer pref-
erences, for example through market research or sales data, and then use this
knowledge to determine which bundle-price combinations they should offer. Es-
pecially for online shops, an appealing alternative approach would be to negotiate
bundle-price combinations with customers: in that case, aggregate knowledge can
be used to facilitate an interactive search for the desired bundle and price. Due
to the inherently interactive characteristics of negotiation, such an approach can
very effectively adapt the configuration of a bundle to the preferences of a cus-
tomer. A high degree of bundle customization can increase customer satisfaction,
which may lead to an increase in the demand for future goods or services.

In this paper, we consider the problem of a shop agent negotiating bilaterally
with many customers about selecting a subset from a collection of goods or
services, viz. the bundle, together with a price for that bundle. Thus, the bundle
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configuration—an array of bits, representing the presence or absence of each
of the shop’s goods and services in the bundle—together with a price for the
bundle, form the negotiation issues. Like the work of [5,6,3,9,2,7], the techniques
developed in this paper try to benefit from the so-called win-win opportunities,
by finding mutually beneficial alternative bundles during negotiations.

The methods proposed in Faratin et al. [3], Coehoorn and Jennings [2] are
geared towards finding win-win opportunities through modeling the preferences
of the negotiation partner, for issues with independent valuations. This paper
follows a similar approach; like our earlier work [9,7] and Klein et al. [6], we
consider interdependencies between issues, however, which make the problem
considerably harder. The novelty of our current approach lies in the introduc-
tion of a new scalable and very fast method for online learning these complex
customer preferences, while respecting their privacy. To respect customers’ pri-
vacy, the method as developed only uses anonymous data on passed negotiations:
i.e., the shop cannot determine whether he dealt with a customer in the past. As
the conducted computer experiments show, the necessary aggregate information,
to significantly facilitate the search for mutually beneficial alternative bundles
in future bilateral negotiations, is learned quickly for relatively large problems.

The next Section provides a high-level overview of the interaction between
shop and a customer; moreover it specifies the recommendation mechanism
(which is a simplified version of the mechanism we developed in [9]). In order for
this recommendation mechanism to work well, it requires aggregate (anonymous)
knowledge about customer preferences. Section 3 discusses the learning problem
of obtaining the necessary knowledge. Section 4 introduces the online method
for solving the learning problem. Section 5 presents the conducted computer
experiments and discusses the results. Conclusions follow in Section 6.

2 Negotiation Process

Section 2.1 gives an overview of the interaction between the shop and a customer,
as they try to negotiate an agreement about the price and the composition of a
bundle of goods. Section 2.2, describes a simplified version of the advising mech-
anism we introduced earlier (cf. [9]). The shop uses this advising mechanism to
suggest alternative bundles to his customers. As an input, this advising mech-
anism requires knowledge of how customer preferences are distributed. Section
4 introduces an online mechanism for learning this distribution. Note that the
shop cannot use these two mechanisms simultaneously; per customer he decides
whether to exploit his current knowledge (i.e., use the advising mechanism) or
explore a bit about the current customer’s preferences (i.e., use the online learn-
ing mechanism to update his knowledge).

2.1 Interaction Shop and Customer

The shop sells a total of n goods, each of which may be either absent or present
in a bundle, so that there are 2n − 1 distinct bundle-configurations containing
at least 1 good. In the current paper, we use n = 20. A negotiation concerns a
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Fig. 1. A flowchart giving a high level overview of the interaction

bundle (configuration), together with a price for that bundle, and it is conducted
in an alternating exchange of offers and counter offers [8], typically initiated by
a customer. An example of such a practice may involve the sales of bundles of
news items in categories like politics, finance, economy, sports, arts, etc.

During the negotiation process, the shop will suggest (a limited number of)
alternative bundles. The hope is that these suggestions will lead to the bargainers
finding mutually beneficial alternative bundles. More technically, such a mutually
beneficial alternative bundle represents a Pareto improvement because switching
to that bundle makes one bargainer better off without making the other worse
off. Ideally, the shop will eventually find a bundle for which no more Pareto
improvements exits: such a bundle is called a Pareto efficient bundle. To ease the
description of our model and solutions, customers specify the bundle content for
the opening offer, and thereafter only the shop can change the bundle content of
an offer. The possibility of customers explicitly rejecting or changing the bundle
content can be easily incorporated in our model and solutions, however.

Figure 1 provides a high-level overview of the interaction between a shop and
a customer. The shaded elements are part of the actual negotiation—the ex-
change of offers. The process starts with the customer indicating her interests,
by specifying b, the bundle they will initially negotiate over. After that, they
enter into a loop (indicated by the dotted line) which ends only when a deal is
made, or with a 2% exogenous probability. (We do not model bargainers’ im-
patience explicitly; therefore we need an exogenous stopping condition, which
specifies the chance of bargaining breakdown.) In the loop, customer and shop
agent negotiate in an alternating exchange of offers and counter offers. At the
beginning of the negotiation the shop will construct an “advice set,” which con-
tains all the bundles that lie in the neighborhood of the initial bundle b; the
shop agent will use this set to search for Pareto improvements. Whenever it is
the shop agent’s turn, it removes the most promising bundles, say b′, form the
advice set and submits a counter offer containing the most promising bundle,
b′. Whenever the advice set turns out empty, the shop agent will thereafter only
negotiate over the bundle that in the performed local search turned out to be the
“best bundle.” Moreover, under certain conditions bundles may also be added
to the advice set. Section 2.2 gives the details of the advising mechanism.
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2.2 Advising Mechanism

The idea is to device a mechanism that tells the seller what to recommend given
the current state of the ongoing negotiation process. Ideally, this mechanism will
lead to the shop and a customer ending up negotiating over a Pareto efficient
bundle. Whether a bundle is Pareto efficient depends on the shop and customer’s
preferences. We assume that all customers and the shop order bundles based on
their net monetary value; the bundle with the highest net monetary value is the
most preferred bundle. A customer’s net monetary value of a bundle is equal to
the customer’s valuation of the bundle (expressed in money) minus the bundle
price and the shop’s net monetary value is equal to the bundle price minus
the shop’s bundle valuation (also expressed in money). In this situation, the
gains from trade are defined as the difference between the customer and seller’s
valuation.

Given the above assumption and the assumption that a customer wants to
buy at most one bundle (within a given time period), it is straightforward to
show that a bundle is Pareto efficient if and only if it results in the highest
gains from trade (cf. [9] for a formal proof). Suppose customers’ valuation for a
bundle is randomly distributed and more importantly, the shop has learned this
distribution. Then faced with the problem of recommending one bundle out of
a collection of bundles, the shop will recommend the bundle that is most likely
to result in higher gains from trade.

A customer initiates the negotiation process by proposing an initial bundle b
and offering an opening price. The shop stores the bundle proposed by the cus-
tomer as (his assessment or estimation of) the customer’s “interest bundle,” in
the neighborhood of which the shop searches for promising alternative bundles
to recommend. This neighborhood of bundle b, Ng(b), is defined as the bundles
which, in binary representation, have a Hamming distance to b of 1. The advan-
tage of advising bundles within the neighborhood of b is that the advice is less
likely to appear haphazard.

Having defined a bundle’s neighborhood, let the ordered set Adv denote the
so-called “recommendation set,” obtained by ordering the neighborhood Ng(b)
on the basis of the estimated probability that switching from bundle b to a
bundle b′ within b’s neighborhood result in higher gains from trade.

To recommend a bundle bk (the kth recommendation, with k ≥ 1), the mech-
anism removes the first bundle from Adv, adds a price to it and proposes it
as part of the shop’s next offer. Depending on the customer’s counter offer for
bundle bk, the current advice set may be replaced: if the customer’s response
is very promising (to be defined below) Adv will be emptied, bundle bk will be
taken as the customer’s new interest bundle (in the neighborhood of which the
search continues), and the bundles in the neighborhood of bk are added to Adv.

A bundle bk is very promising, if its estimated gains from trade—defined as
customers current price minus the shop’s reservation value for that bundle—
exceed the highest estimated gains from trade for the current interest bundle.
In that case, the shop’s current assessment of the customer’s interest bundle is
updated to bk: the customer’s response is promising enough to divert the search
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towards the neighborhood of bk. That is, the first element of Adv becomes
the bundle with the highest estimated probability that switching to this bundle
results in higher gains from trade, the second element of Adv becomes the bundle
with the second highest estimated probability, and so on.

In case customer’s response is not promising enough, the shop will make the
next recommendation. Before the shop makes the next recommendation however,
he checks if the negotiation is currently about the interest bundle. If this is not
the case, he will first make an offer containing the interest bundle. Whenever
the customer does not accept this offer, the shop will make the next recom-
mendation in the following round. Consequently, we have the property that a
recommendation is always preceded by an offer containing the interest bundle.
(That is, the best estimation of the interest bundle’s gains from trade is updated
frequently, making a change of interest bundle, merely because the customer uses
an ascending offer strategy, less likely.)

The search for Pareto improvements terminates whenever all the bundles in
the search set have been considered and none turned out promising enough.
After the search ends the shop agent continues negotiating about the interest
bundle (which is most likely to represent a Pareto efficient bundle) until a deal
is reached.

3 Problem Statement

3.1 Customer Preferences

There are n individual goods from which customers can compile the bundle they
wish to purchase. The column vector b = [b(1), . . . , b(n)]T denotes the binary
representation of a bundle (i.e., b(i) = 1 if and only if good i is part of the
bundle). Due to the possibilities of synergy effects (either positive or negative),
it does not suffices to compute customer c’s monetary valuation for bundle b
by just adding up the value of the individual goods. These synergy effects may
occur because two, three, up to n goods are bought at the same time. In other
words, a customer’s monetary valuation for bundle b, is obtained by adding up
the values for all individual goods that constitute the bundle b and the synergy
effects of all possible subsets of bundle b, with more than one good.

More formally, let ai denote a customer’s valuation for obtaining good i in-
dividually and ai,j , ai,j,l, etc denote the synergy effects exclusively caused by
obtaining a subset of goods {i, j}, {i, j, l}, etc: e.g., aij is equal to the cus-
tomer’s valuation for bundle {i, j} minus the valuation for obtaining the goods
individually. There are

(
n
1

)
parameters of the type ai,

(
n
2

)
parameters of the type

aij , and so on; thus there are in total at most k =
∑n

i=1

(
n
i

)
= 2n−1 parameters.

Clearly, dealing with 2n − 1 parameters becomes already impractical whenever
n is not a relatively small number, say n > 10. In the experiments, we will con-
sider problems where n = 20. To make the number of parameters manageable
we will then assume that beyond subsets of size 3 the synergy effect are always
zero: i.e., there are only k =

(
n
1

)
+

(
n
2

)
+

(
n
3

)
number of parameters. (This does not
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mean, the absence of nonlinearities for larger sized bundle; these nonlinearities
are just caused by lower ordered synergy effects.) For now it suffices to assume
that k has a manageable size.

Given some (arbitrary but) fixed encoding, denoted by < · >, we can map
all these k-parameters into the (k-dimensional) vector a. We can now define the
customer’s monetary valuation for bundle b, vc

a(b), as follows:

vc
a(b) =

n∑

i=1

a<i>b(i) +
n∑

i=1

n∑

j=i+1

a<i,j>b(i)b(j) + . . .

+a<1,...,n>b(1)b(2) . . . b(n). (1)

3.2 Learning Problem

Based on Eq. (1) and the encoding < · >, we can conclude that there exist a
mapping f : {0, 1}n �→ {0, 1}k—which is known by the seller—such that for all
customers, their monetary valuation for any bundle can be expressed as a linear
function of the values of their k-parameters: i.e., va

c(b) = f(b)T a, for any bundle
b and f(b)T is the transpose of the k dimensional column vector generated by
f(b). For example, if there are only 3 goods—good 1,2, and 3—then b = (1, 1, 0)
could (dependable on the encoding) give f(b) = (1, 1, 0, 1, 0, 0, 0). Irrespective of
the encoding, f(1, 1, 0) should contain three 1’s and four 0’s: i.e. the parameters
a1, a2, and a<1,2> contribute to the valuation of bundle (1, 1, 0).

In the absence of strategic behavior and no deviations in customer preferences,
a is the same for all customers. The seller can then just obtain a by solving a
system of linear equations. For example, suppose for i = 1, . . . , t the seller has
the observations vi and bi, where vi denotes customers’ valuations for bundle
bi. Then

v = Ba (2)

with v = [v1, . . . , vt]T and B = [f(b1), . . . , f(bt)]T (thus B is a t × k matrix).
Since the seller also knows f , he knows both v and B. Now if the rank of matrix B
is equal to k, then the (Moore-Penrose) generalized matrix inverse of B, denoted
by B+, can be used to compute a: i.e., a = B+v, where B+v is the least square
(LS) solution of the systems of linear equations described by Eq.(2) (cf. [4]).

Generally, customer preferences differ from one customer to the next; con-
sequently, the vector a, which completely describes customer’s preferences, will
also differ. That is, a becomes a random vector; we assume it is normally dis-
tributed with a vector of means μa and covariance matrix Σa. In that case, Eq.
(2) becomes

v = Bμa + ε, (3)

with ε = [ε1, . . . , εt]T and εi denotes the disturbance at observation i; εi is nor-
mally distributed with mean zero and variance f(b)T Σaf(b) (for i = 1, . . . , t).
Thus the disturbance variance is not a constant across observations: i.e., het-
eroscedasticity occurs. Consequently, we can now no longer apply LS in order
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to find a “good” estimation of μa. (By a good estimation, we will just mean
maximum likelihood estimation.)

Performing simple LS in case of hetroscedasticity means among other things
that you will not obtain a maximum likelihood estimation of μa (cf. [4] for a
detailed discussion). With hetroscedasticity, one often resorts to general least
square (GLS), but then we at least need to have some idea of how the vari-
ous disturbances are related. In this case, the disturbance εi depends on the
bundle content xi, which is observed. We may be able to use this knowledge
to design a GLS estimator. Important drawbacks are however that this GLS
estimator cannot be performed online and it does not scale well: in total 2n

different bundle contents are possible, hence knowing that there is a relation
between bundle content and disturbance is not very helpful for large
n’s.

Remember, the shop negotiates with customers over the various bundle and
price combinations. Consequently, the shop can influence the quality of the
anonymous data on past negotiations. We will show that by a clever manip-
ulation of this data the shop can reduce the problem specified in Eq. (3) to a
straightforward maximum likelihood problem, avoiding hetroscedasticity alto-
gether. In the absence of strategic behavior we get very accurate estimations of
μa and Σa with this procedure. Whenever customers behave strategically this
is generally not possible, however.

With strategic behavior, the seller does not directly observe v. Instead, he
observes p = [p1, . . . , pt] which denotes the sequence of bids submitted by the
customers. We have that

p = v + s, (4)

where s = [s1, . . . , st]T and si (for i = 1, . . . , t) denotes the extra distur-
bance caused by strategic behavior. Generally, the disturbance si has a mean
greater or equal than zero. We will show that by a clever preprocessing of
the data p, the shop can nevertheless eradicate a sufficient amount of the
noise caused by strategic behavior. As a result, the shop can learn enough
about customers’ preferences to facilitate the search for Pareto efficient bundles,
significantly.

4 Learning Method

The method we develop, for learning (more about) customer preferences, con-
tains (a) a sub method for learning customer preferences in the absence of
strategic behavior and (b) a sub method for preprocessing the negotiation data.
First method (b) is applied to the data such that a sufficient amount of the
noise caused by strategic behavior is removed. Next method (a) is applied to
the preprocessed data. In Section 4.1 and 4.2 we discuss method (a) and (b),
respectively.
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4.1 Estimating Mean and Covariance Matrix

As was discussed in Section 3, per customer we have an instance of the ran-
dom vector a, which completely specifies her preferences. For a customer c, let
ac denote such an instance. Suppose the seller would negotiate for a very long
time with this customer c, while constantly suggesting different bundles. In the
absence of strategic behavior, eventually the seller would have collected the ne-
gotiation data vc = [vc1, . . . , vct]T , and Bc = [f(bc1), . . . , f(bct)]T such that Bc

has rank k. Analogue to Eq. (2) (see Section 3.2), the seller can then just obtain
ac by solving vc = Bcac: i.e., ac = B+

c vc, where B+
c is again the generalized

matrix inverse of Bc and B+
c vc is the LS solution of the linear system.

It becomes rather straightforward to obtain good estimations of a’s vector
of means (μa) and covariance matrix (Σa), if the seller could directly obtain
the vector ac from all or most customers he negotiates with (by just computing
ac = B+

c v). Clearly, for large k bargainers will break off the negotiations or
reach a deal, before the matrix Bc, grows into a rank k matrix. Consequently, it
is very unlikely that the seller will be able to obtain ac for even one customer.
Nevertheless, the seller can use this idea of obtaining a solvable system of linear
equations to at least partly reveal ac, for most customers.

To obtain such a solvable system, the seller suggests a sequence of bundles such
that the union of the goods contained in these bundles has strictly less goods
than is possible. (In the experiments, 4, 5, or at most 6 individual goods are
being considered.) In that case, relative to k the matrix Bc contains only a few
nonzero columns. Whenever k′, the rank of the matrix Bc, equals the number of
nonzero columns, we can obtain a′c—the k′ dimensional vector containing all the
identifiable parameters of ac—by solving vc = B′ca′c (i.e., a′c = B′+c vb); we get
the matrix B′c by removing all zero columns from Bc. Alg. (1) gives the pseudo
code for computing a′c. Based on these newly computed parameter values, Alg.
(2) updates their sum and sum of squares. It is now rather straightforward to
obtain estimations of μa, the mean, and Σa, the covariance matrix (see also the
comment on line 9 and 10 of Alg. (2)).

Algorithm 1. Pseudo code for computing a′c, the values of the identifiable
parameters of ac, and A, the ordered set such that its ith element (A(i)) identifies
the element in ac to which a′c(i) corresponds.
After t consecutive rounds negotiating with customer c, we have Bc and vc.
1. A := ∅
2. For (1 ≤ i ≤ t)
3. if (column i of B does not only contain 0’s){A := A ∪ i}
4. For (1 ≤ i ≤ t)
5. if (i not in A){remove column i from B}
6. if (rank Bc equals |A|)
7. a′

c := B+
c v //B+

c is the generalized matrix inverse of Bc

8. return a′
c and A



126 D.J.A. Somefun and J.A. La Poutré

Algorithm 2. Pseudo code for updating the sum and sum of squares of the
identifiable parameter values of a; based on these values we can easily compute
μe

a and Σe
a the current estimation of the mean (μa) and covariance matrix (Σa).

Given is a′
c and A.

1. For (1 ≤ i ≤ |A|){
2. i′ := A(i)//A(i) is the ith element of A
3. sumai′ := sumai′ + a′

c(i)
4. sumi′ := sumi′ + 1
5. For (i ≤ j ≤ |A|){
6. j′ := A(j)//A(j) is the jth element of A
7. sumSquareai′aj′ := sumSquareai′aj′ + a′

c(i′)a′
c(j′)

8. sumi′j′ := sumi′j′ + 1} }
9.//Note, for 1 ≤ i, j ≤ k, µe

a(i) := sumai/sumi and

10.//Σe
a(i, j) = Σe

a(j, i) :=
sumSquareaiaj

sumij
− µe

a(i)µe
a(j)

4.2 Preprocessing Negotiation Data

With strategic behavior the seller does not observe vc = [vc1, . . . , vct]T . Instead
he observes pc = [pc1, . . . , pct], the sequence of bids submitted by the customers,
where there is generally a difference between pci and vci (see also Eq. (4)). To
deal with strategic behavior requires some implicit or explicit model of cus-
tomers’ bidding strategy. For example, in [9,2] they learn more about customer
preferences based on the difference between two consecutive bids. This implies
some implicit model of a customer’s bidding behavior, however. We want to
make this model explicit such that we can check whether the model is consistent
with a customer’s bidding behavior.

Strategic behavior of customers can roughly be split into a fixed and variable
component. The fixed component specifies how much a customer c is at most
willing to bid for a bundle b worth f(b)T ac, irrespective of the current state
of the negotiation; the variable component specifies how a customer concedes
through time. The seller can use the gathered negotiation data with customer c
(Bc and pc) to eradicated as much noise as possible.

The idea is that at the end of a negotiation process the seller will use some of
the gathered negotiation data to model how the opponent concedes trough time;
the rest of the data can then be used to check whether the developed model
correctly predicts how a customer concedes through time. It is very unlikely
that such a test is passed incorrectly (error of the first kind) because both the
correctness of the estimated values for the identifiable parameters (a′c) and the
concession model are tested jointly. Moreover, if by chance this type of error oc-
curs the resulting noise in the estimated values of a′c will generally be unbiased.
The other possibility, of incorrectly rejecting all available models for a partic-
ular negotiation is even less problematic. The seller can just simple ignore this
negotiation data. In real world applications the seller could have a collection of
typical models and could check which of the models fits the data of a particular
negotiation best. Consequently, enough negotiation data can be preprocessed
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and fed to the online learning algorithm (developed in Section 4.1) to ensure
accurate estimation of the a’s vector of means and covariance matrix.

Filtering out the fixed component of a customer’s bargaining strategy is im-
possible. Moreover, this type of behavior leads to biased estimation errors. In
the conducted experiments we therefore focus on assessing the robustness of
the developed advising mechanism to inaccuracies in the estimated vector of
means (μa) and covariance matrix (Σa), due to this type of strategic behav-
ior. To further streamline the experiments, the seller uses a concession model of
the opponent, which (given all data available at termination of a negotiation)
is accurate enough to eradicate most of the noise caused by a customer conced-
ing through time. (Due to space limitations, we have to leave out the details,
however.)

5 Numerical Experiments

5.1 Experimental Design

Customer Preferences Revisited. In Section 3.1 we already discussed the
general preference model. In the experiments, we consider the highly nonlinear
case of (direct) synergy effect between subsets of size 3 and less. That is, the k-
dimensional random vector a contains k =

(
n
1

)
+

(
n
2

)
+

(
n
3

)
parameters. In the

experiments n = 20 (i.e., there are 20 individual goods) thus k = 1350. For a cus-
tomer c, ac is randomly drawn from the normal distribution N [μa,Σa]. The vector
μa and the matrix Σa = [σa(i, j)] denote the means and (co)variances of the dis-
tribution. We assume that the parameters are uncorrelated: i.e., σa(i, j) = 0 for
all i �= j.

Modeling Negotiations. In the experiments, we assume that a customer is
at most willing to pay x% of their true valuation for the queried bundles; for
each customer x is randomly drawn between 85% and 95%. The shop is willing
to drop to the reservation value. Moreover, both customer and shop use time-
dependent bidding strategies: the offer submitted by the customer (shop) is
monotonically increasing (decreasing) in both the number of bidding rounds
and the valuation. More specifically, a bidding strategy is characterized by the
gap the customer leaves between the initial offer and the maximum price, and
by the speed with which it closes this gap: i.e., p(t) = (1− gap(t))x · v(b), where
x · v(b) denotes the maximum price a customer is willing to pay for bundle b.
The gap is specified as a fraction of the maximum price and it decreases over
time as gap(t) = gapinit · exp(−δt), so over time, the customer’s bids approach
the maximum price of the bundle it is currently negotiating over. Note that
changes in the gap are time-dependent, but not bundle-dependent! Almost the
same holds for the shop’s bidding strategy, mutatis mutandis. The initial gap,
gapinit, is uniformly drawn between 0.4 and 0.6, for the proxy agent and it is
set at −0.5 for the shop. Moreover we uniformly draw δ between 0.02 and 0.04
for the proxy agent and δ is fixed to 0.03 for the shop.
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Experimental Setup. In the computer experiments reported in this paper,
we compare our new approach of having no a priori information and learning
customer preferences online (as discussed in Section 4), to the one where—for
example because of expert knowledge—the shop already knows the underlying
joint probability distribution of all bundle valuations (see Section 3.1 and 5.1).
Besides comparing our new online procedure (referred to as ML) with the above
method (called S), we also assess the relative performance of the system by per-
forming the same series of experiments with a benchmark procedure (called B),
which simply recommends a random bundle from the current bundle’s neighbor-
hood. That is, the benchmark does not base the order in which it recommends
the next bundle on the estimated likelihood of higher gains from trade, as our
system does.

In the experiments, the shop’s bundle valuations are determined by applying
a nonlinear bundle reduction. This means that the bundle price is generally less
than the sum of the individual goods comprising the bundle. In order to prevent
the trivial problem of customers wanting to buy all goods, the bundle reduction
becomes 0 for bundles which contain more than 3 goods. Moreover, whenever
the shop employs the ML-system, he uses slightly different settings for δ and
gapinit in the exploration phase: i.e., δ = 0.015 and gapinit = −3.0. Thus, in
order to allow for enough search, the shop has a higher initial ask price and
concedes slower through time, in the exploration phase of the ML-system.

There are 20 individual goods. To mirror more realistic settings where there
are only synergy effect for a limited number of goods, we randomly assign 80 two
or three size bundles to have synergy effects. All the other nonlinear parameters
have zero mean and variance. We randomly generate the means of all the nonzero
parameters in two distinct ways: the mean of parameters referring to individual
goods are uniformly drawn between 0 and 250; to allow for negative synergy
effect, the mean of parameters referring to synergy effect are uniformly drawn
between minus and plus 250. To ensure enough volatility, we set the variance
of the parameters equal to their means. (Without volatility all that matters is
the mean and the problem becomes rather easy.) To test the robustness of our
procedure to quantitative changes in the underlying distributions, we conducted
a series of experiments with 30 different distributions. For each of these settings
we simulated negotiations between the shop, with randomly drawn valuations,
which were kept constant across negotiations with 5, 000 customers, each with
her valuations drawn randomly from the particular distribution used.

Customers initiate the negotiation by submitting an offer containing an initial
bundle binit . To give the shop some room for improvement, we initialize the
customer’s initial bundle by randomly selecting a bundle b which, in binary
representation, has a Hamming distance of 5 to the bundle b∗ that is associated
with the highest gains from trade.

5.2 Results

The overall results of our experiments are listed in Table 1. The numbers are
averages over 5, 000 customers drawn from each distribution of valuations, and
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Table 1. Comparison of the different methods ML, S, and B. Figures are averages
across 30 runs with different random seeds, and 5, 000 customers per run. Standard
deviations are given between brackets.

Performance

Methods max. gains min. gains gains binit gains bfinal perc. rel. perc. rounds deals

ML

386.37
(144.20)

−8411.59
(685.36)

−891.27
(141.46)

202.93 0.98 0.84 35.71 3134
(121) (0.00) (0.02) (10.6) (436)

S 245.97 0.98 0.88 35.01 3134
(133) (0.00) (0.02) (10.9) (437)

B −153.27 0.94 0.56 81.51 1884
(72.20) (0.01) (0.04) (12.08) (381.7)
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Fig. 2. Relative percentage and the number of rounds to reach a deal (on the left and
right). A round constitutes an offer and accept/reject by the opponent. (Both graphs
show the 100-step moving averages.)

over 30 different randomly generated distributions; standard deviations (across
averages from the 30 distributions) are listed between brackets. The maximum
and minimum attainable gains from trade are determined by the current random
distribution of valuations; they do not depend on the chosen method. (We find
these values by exhaustively searching the bundle space.) Likewise, the bundle
a customer wants to start negotiating about does not depend on the chosen
method. Therefore, the average of these figures represented in the first 3 columns
are identical across all experiments—for each shop-customer interaction these
figures are known even before the negotiation commences.

The remainder of the results is measured at the end of each shop-customer
interaction, and subsequently averaged over all 30 ·5, 000 customers. The column
labeled ‘gains bfinal’ gives the gains from trade associated with the bundle that
the shop and the customer were actually negotiating about at the end of the
simulation, irrespective of whether that end was caused by the 98% exogenous
break-up probability, or by the fact that a deal was reached in the negotiation.
(The negative gains bfinal for the B-system means that it often finds a bundle the
customer is not willing to buy; this also partly explains the low average number of
deals.) The columns for ‘percentage’ and ‘rel(ative) percentage’ present the same
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results in a different way: ‘percentage’ shows the shop’s performance relative to
the maximum attainable:

percentage =
(gains bfinal − min. gains)
(max. gains− min. gains)

,

whereas ‘relative percentage’ takes into account the starting bundle binit:

relative percentage =
(gains bfinal − gains binit)
(max. gains− gains binit)

.

In both these columns, as in all the columns more generally, the S-system only
slightly outperforms the ML-system, which beats the B-system, but bear in
mind the challenge for the ML-system, as compared to the S-system, in terms of
(dealing with the lack of) available prior information about customer preferences.
The columns labeled ‘rounds’ and ‘deals’ give the average number of rounds it
took to reach a deal (whenever a deal was reached) and the average number of
deals reached. Note the significant standard deviation of maximum and minimum
attainable gains from trade. This indicate a significant difference between the
30 problem instances. Nevertheless, the standard deviations of key performance
indicators are small, indicating that our results are relatively robust to changes
in the problem instances.

To illustrate how well the ML-system performs, figure 2 shows the relative
gains from trade and the number of rounds within which a deal is reached (if a
deal is reached in the first place) per customer. These are two key performance
indicators. To simplify the comparison we hard wired the ML-system to stop
the exploration phase after 500 customers. (Please remember that learning is
completely online, however.) In the exploitation phase of the ML-system, the two
systems generate virtually the same performance. Figure 2 illustrates the great
advantage of using negotiation data. In the exploration phase 500 customers
suffices for the ML-system, because per customers the system obtains roughly
55 high quality data points. (55 is roughly the average number of rounds in the
exploration phase.)

6 Conclusions

We consider the problem of a shop agent negotiating bilaterally with a customer
about a bundle of goods or services together with a price. To facilitate the shop
agent’s search for mutually beneficial alternative bundles, we develop a method
for online learning customers’ preferences, while respecting their privacy. We
conduct computer experiments with simulated customers that have highly non-
linear preferences and are interested in bundles containing up to 20 individual
goods.

We compare our new method of having no a priori information and learn-
ing about customer preferences online, to the one where—for example because
of expert knowledge—the shop already knows the underlying joint probability
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distribution, according to which customers’ preferences are generated. Both ap-
proaches use the same advising mechanism to search for mutually beneficial
tradeoffs. Our experiments show how, after 500 customers, the two approaches
have virtually the same performance. The learning method needs only 500 cus-
tomers because it does not have to learn the underlying stochastic model com-
pletely. It suffices to learn enough to have the advising mechanism almost always
suggest the most promising alternative bundle first, second most promising bun-
dle second, and so on. Moreover, whenever the advising mechanism does make a
mistake in the ordering it is robust enough to quickly correct the mistake, based
on a customer’s feedback.

Both methods significantly increase the speed with which deals are reached,
as well as the number and the Pareto efficiency of the deals reached, as compared
to a benchmark. Moreover, the experiments show that the developed learning
method is able to learn the necessary information online, irrespective of the fact
that due to strategic behavior customers’ best offer is significantly les than their
reservation value.
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Adaptive Pricing for Customers with

Probabilistic Valuations

Michael Benisch, James Andrews, and Norman Sadeh
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Abstract. In this paper, we examine the problem of choosing discrimi-
natory prices for customers with probabilistic valuations and a seller with
indistinguishable copies of a good. We show that under certain assump-
tions this problem can be reduced to the continuous knapsack problem
(CKP). We present a new fast ε-optimal algorithm for solving CKP in-
stances with asymmetric concave reward functions. We also show that
our algorithm can be extended beyond the CKP setting to handle pricing
problems with overlapping goods (e.g.goods with common components
or common resource requirements), rather than indistinguishable goods.

We provide a framework for learning distributions over customer val-
uations from historical data that are accurate and compatible with our
CKP algorithm, and we validate our techniques with experiments on
pricing instances derived from the Trading Agent Competition in Sup-
ply Chain Management (TAC SCM). Our results confirm that our algo-
rithm converges to an ε-optimal solution more quickly in practice than
an adaptation of a previously proposed greedy heuristic.

1 Introduction

In this paper we study a ubiquitous pricing problem: a seller with finite, indistin-
guishable copies of a good attempts to optimize profit in choosing discriminatory,
take-it-or-leave-it offers for a set of customers. Each customer draws a valuation
from some probability distribution known to the seller, and decides whether or
not they will accept the seller’s offers (we will refer to this as a probabilistic
pricing problem for short). This setting characterizes existing electronic markets
built around supply chains for goods or services. In such markets, sellers can
build probabilistic valuation models for their customers, e.g.to capture uncer-
tainty about prices offered by competitors, or to reflect the demand of their own
customers.

We show that this pricing problem is equivalent to a continuous knapsack
problem (CKP) (i. e. the pricing problem can be reduced to the knapsack prob-
lem and vice versa) under two reasonable assumptions: i.) that probabilistic
demand is equivalent to actual demand, and ii.) that the seller does not wish
to over promise goods in expectation. The CKP asks: given a knapsack with a
weight limit and a set of weighted items – each with its value defined as a func-
tion of the fraction possessed – fill the knapsack with fractions of those items to
maximize the knapsack’s value. In the equivalent pricing problem, the items are
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the customer demand curves. The weight limit is the supply of the seller. The
value of a fraction of an item is the expected value of that customer demand
curve. The expected value is defined as the probability with which the customer
is expected to accept the corresponding offer times the offer price.

Studies of CKPs in Artificial Intelligence (AI) and Operations Research (OR)
most often focus on classes involving only linear and quadratic reward func-
tions [11]. We present a fast algorithm for finding ε-optimal solutions to CKPs
with arbitrary concave differentiable reward functions. The class of pricing prob-
lems that reduce to CKPs with such reward functions involve customers with
valuation distributions that satisfy the diminishing returns (DMR) property. We
further augment our CKP algorithm by providing a framework for learning ac-
curate customer valuation distributions that satisfy this property from historical
pricing data.

We also discuss extending our algorithm to solve pricing problems that involve
sellers with distinguishable goods that require some indistinguishable shared re-
sources (for example common components or shared assembly capacity). Such
problems more accurately represent the movement from make-to-stock produc-
tion to assemble-to-order and make-to-order production, but involve constraints
that are too complex for traditional CKP algorithms.

The rest of this paper is structured as follows: In Section 2 we discuss re-
lated work on the probabilistic pricing and continuous knapsack problems. In
Section 3 we present the pricing problem and its equivalence to continuous
knapsack. In Section 4 we present our ε-optimal binary search algorithm for
concave differentiable CKPs. Section 5 presents the framework for learning cus-
tomer valuation functions. In Section 6 we validate our algorithm and framework
empirically on instances derived from the Trading Agent Competition in Supply
Chain Management (TAC SCM).

2 Background

2.1 Related Work on Pricing Problems

The pricing problem we study captures many real world settings, it is also the
basis of interactions between customers and agents in the Trading Agent Compe-
tition in Supply Chain Management. TAC SCM is an international competition
that revolves around a game featuring six competing agents each entered by a
different team. In TAC SCM simulated customers submit requests for quotes
(RFQs) which include a PC type, a quantity, a delivery date, a reserve price,
and a tardiness penalty incurred for missing the requested delivery date. Agents
can respond to RFQs with price quotes, or bids, and the agent that offers the
lowest bid on an RFQ is rewarded with a contractual order (the reader is referred
to [3] for the full game specification).

Other entrants from TAC SCM have published techniques that can be adapted
to the setting we study. Pardoe and Stone proposed a heuristic algorithm with
motivations similar to ours [9]. The algorithm greedily allocates resources to cus-
tomers with the largest increase in price per additional unit sold. Benisch et. al.
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suggested discretizing the space of prices and using Mixed Integer Programming
to determine offers [1], however this technique requires a fairly coarse discretiza-
tion on large-scale problems.

Sandholm and Suri provide research on the closely related setting of demand
curve pricing. The work in [12] investigates the problem of a limited supply seller
choosing discriminatory prices with respect to a set of demand curves. Under the
assumptions we make, the optimal polynomial time pricing algorithm presented
in [12] translates directly to the case when all customers have uniform valua-
tion distributions. Additionally, the result that non-continuous demand func-
tions are NP-Complete to price optimally in [12], implies the same is true of
non-continuous valuation distributions.

2.2 Related Work on Knapsack Problems

The traditional integer knapsack problem (where the amount of an item included
in the knapsack must be an integer) has been well studied from an algorithmic
perspective, and been shown to result from reductions of many types of prob-
lems in OR and AI [6]. There have been several algorithms developed for solving
certain classes of continuous knapsack problems. When rewards are linear func-
tions of the included fractions of items, it is well known that a greedy algorithm
provides an optimal solution in polynomial time.1 CKP instances with concave
quadratic reward functions can be solved with standard quadratic programming
solvers [11], or the algorithm provided by Sandholm and Suri. The only technique
that generalizes beyond quadratic reward functions was presented by Melman
and Rabinowitz in [8]. The technique in that paper provides a numerical solution
to symmetric CKP instances where all reward functions are concave and iden-
tical.2 However, this technique involves solving a difficult root finding problem,
and its computational costs have not been fully explored.

2.3 Related Work on Learning Valuations

The third group of relevant work involves learning techniques for distributions
over customer valuations. Relevant work on automated valuation profiling has fo-
cused primarily on first price sealed bid (FPSB) reverse auction settings. Reverse
auctions refer to scenarioswhere several sellers are bidding for the business of a sin-
gle customer. In the FPSB variant customers collect bids from all potential sellers
and pay the price associated with the lowest bid to the lowest bidder. Predicting
the winning bid in a first price reverse auction amounts to finding the largest price
a seller could have offered the customer and still won. From the point of view of a
seller, this price is equivalent to the customer’s valuation for the good.

Pardoe and Stone provide a technique for learning distributions over FPSB
reverse auctions in TAC SCM [9]. The technique involves discretizing the range

1 Linear reward functions for CKP would result from a pricing problem where all
customers have fixed valuations.

2 Identical reward functions for CKP would result from a pricing problem where all
customers draw valuations from the same distribution.
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of possible customer valuations, and training a regression from historical data
at each discrete valuation. The regression is used to predict the probability that
a customer’s valuation is less than or equal to the discrete point it is associated
with. Similar techniques have been used to predict FPSB auction prices for IBM
PCs [7], PDA’s on eBay [5], and airline tickets [4].

3 Market Model

3.1 P3ID

We define the Probabilistic Pricing Problem with Indistinguishable Goods (P3ID)
as follows: A seller has k indistinguishable units of a good to sell. There are n cus-
tomers that demand different quantities of the good. Each customer has a private
valuation for the entirety of her demand, and the seller has a probabilistic model
of this valuation. Formally the seller has the following inputs:

– k: the number of indistinguishable goods available to sell.
– n: the number of customers that have expressed demand for the good.
– qi: the number of units demanded by the ith customer.
– Gi(vi): a cumulative density function indicating the probability that the

ith customer draws a valuation below vi. Consequently, 1 − Gi(p) is the
probability that the customer will be willing to purchase her demand at
price p.

The seller wishes to make optimal discriminatory take-it-or-leave-it offers to all
customers simultaneously. We make the following two assumptions as part of the
P3ID to simplify the problem of choosing prices:

– Continuous Probabilistic Demand (CPD) Assumption: For markets
involving a large number of customers, we can assume that the customer
cumulative probability curves can be treated as continuous demand curves.
In other words if a customer draws a valuation greater than or equal to
$1000 with probability 1

2 , we assume the customer demands 1
2 of her actual

demand at that price. This is formally modeled by the probabilistic demand
of customer i at price p, qi ∗ (1 − Gi(p)).

– Expected Supply (ESY) Assumption: We assume that the seller main-
tains a strict policy against over-offering supply in expectation by limiting
the number of goods sold to k (the supply). Note that k is not necessarily
the entirety of the seller’s inventory.

Under these assumptions, the goal of the seller is to choose a price to offer each
customer, pi, that maximizes the expected total revenue function, F (p):

F (p) =
∑

i

(1 − Gi(pi)) ∗ qi ∗ pi (1)

Subject to the ESY constraint that supply is not exceeded in expectation:
∑

i

(1 − Gi(pi)) ∗ qi ≤ k (2)
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3.2 P3ID and CKP Equivalence

To demonstrate the equivalence between the P3ID and CKP we will show that
an instance of either can easily be reduced to an instance of the other. CKP
instances involve a knapsack with a finite capacity, k, and a set of n items. Each
item has a reward function, fi(x), and a weight wi. Including a fraction xi of
item i in the knapsack yields a reward of fi(xi) and consumes wi ∗ xi of the
capacity.

We can easily reduce a P3ID instance to a CKP instance using the following
conversion:

– Set the knapsack capacity to the seller’s capacity in the P3ID instance.

kCKP = kP3ID

– Include one item in the CKP instance for each of the n customers in the
P3ID instance.

– Set the weight of the ith item to the customer’s demanded quantity in the
P3ID instances.

wi = qi

– Set the reward function of the ith item to be the inverse of the seller’s
expected revenue from customer i.

fi(x) = G−1
i (1 − x) ∗ x ∗ qi

The fraction of each item included in the optimal solution to this CKP instance,
x∗i , can be converted to an optimal price in the P3ID instance, p∗i , using the
inverse of the CDF function over customer valuations,

p∗i = G−1
i (1 − x∗i )

To reduce a CKP instance to a P3ID instance we can reverse this reduction. The
CDF function for the new P3ID instance is defined as,

Gi(p) = 1 − f−1
i (p)
p ∗ qi

Once found, the optimal price for a customer, p∗i , can be translated to the optimal
fraction to include, x∗i , using this CDF function,

x∗i = Gi(p∗i )

This equivalence does not hold if either the CDF over customer valuations in
the P3ID instance, or the reward function in the CKP instance is not invertible.
However, if the inverse exists but is difficult to compute numerically, it can be
approximated to arbitrary precision by precomputing a mapping from inputs to
outputs.
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3.3 Example Problem

We provide this simple example to illustrate the kind of pricing problem we
address in this paper, and its reduction to a CKP instance. Our example involves
a PC Manufacturer with k = 5 finished PCs of the same type. Two customers
have submitted requests for prices on different quantities of PCs3 Customer A
demands 3 PCs and Customer B demands 4 PCs. Each customer has a private
valuation, if the manufacturer’s offer price is less than or equal to this valuation
the customer will purchase the PCs.

Based on public attributes that the Customers have revealed, the seller is
able to determine that Customer A has a normal unit-valuation (price per unit)
distribution with a mean of $1500 and a standard deviation of $300, gA =
N (1500, 300), and Customer B has a normal unit-valuation distribution with
mean of $1200, and a standard deviation of $100, gB = N (1200, 100). Figure 1(a)
shows the expected revenue gained by the seller from each customer as a function
of the offer price according to these valuation distributions. Figure 1(b) shows
the reward functions for the corresponding CKP instance as a function of the
fraction of the customer’s demand included in the knapsack.
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Fig. 1. The expected customer revenue and corresponding reward for the example
problem in Section 3.3

Note that in this example, as the price offered to Customer A (or Customer B)
increases the probability (or Customer B) accepting it decreases, and hence so does
the expected number of PCs sold to that customer. The manufacturer wishes to
choose prices to offer each customer to maximize his overall expected revenue, and
sell less than or equal to 5 PCs in expectation. In the following Section we will
show how the optimal pricing solution to problems of this form can be computed.
3 Although we have previously indicated that the CPD assumption made in our pricing

formulation tends to hold only in large markets (i.e. more than 2 customers) our
example is intentionally smaller for explanatory purposes.
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In this example it turns out that the optimal solution is for the manufacturer to
offer a unit price of $1413 to Customer A, which has about a 58% chance of being
accepted, and a price of $1112 to Customer B which has about an 81% chance of
being accepted. The total expected revenue of this solution is about $1212 per unit
and it sells exactly 5 units in expectation.

4 Asymmetric Concave CKPs

4.1 Characterizing an Optimal Solution

The main idea behind our algorithm for solving asymmetric CKPs is to add
items to the knapsack according to the rate, or first derivative, of their reward
functions. We will show that, if all reward functions are strictly concave,4 and
differentiable they share a unique first derivative value in an optimal solution.
Finding the optimal solution amounts to searching for this first derivative value.
To formalize and prove this proposition we introduce the following notations,

– Let φi(x) = f ′
i(x) 1

wi
, be the first derivative of the i’th item’s unit reward

function. Item i’s unit reward function is its reward per weight unit.
– Let φ−1

i (Δ), be the inverse of the first derivative of i’th item’s unit reward
function. In other words, it returns the fraction of the i’th item where its
unit reward is changing at the rate Δ.

Proposition 1. Given a CKP instance, K, if all fi in K are strictly concave
and differentiable over the interval [0, 1], then there exists a unique Δ∗ such that,
x∗i = φ−1

i (Δ∗), where x∗i is the fraction of the i’th item in an optimal solution
to K.

Proof. First we will prove that φi(x) is invertible, and that φ−1
i (Δ∗) is unique

for all i. The reward functions and unit reward functions (since these are simply
scaled versions of the originals) in the CKP instance are strictly concave and
differentiable on the interval [0, 1], by the predicate of our proposition. In other
words, the first derivative of each unit reward function, φi(x), is decreasing and
unique on the interval [0, 1]. Because each unit reward function’s first derivative
is continuous, decreasing, and unique, it is invertible, and its inverse, φ−1

i (Δ), is
unique.5

We will now prove that the unit reward functions of any two items, i and j,
must share the same first derivative value in the optimal solution. To do this we
introduce the following Lemma,

Lemma 1. If fi is strictly concave over the interval [0, 1], φ−1
i (Δ) increases as

Δ decreases from φi(0) to 0.
4 Section 5.1 explains why we can reasonably restrict our consideration to concave

reward functions in reductions from P3ID instances.
5 This inverse may be difficult to characterize numerically. However, the precomputa-

tion technique suggested for approximating the inverse of Gi or fi applies to φi as
well.
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Fig. 2. Initial values for Δ+ and Δ− are computed from the even CKP solution for the
example problem in Section 3.3

Essentially the Lemma states that as the derivative of item i’s unit reward
function increases, the fraction of the item included in the knapsack shrinks.
This is true because, as we have shown, the derivative is decreasing and unique.

For the remainder of the proof there are two cases we must consider:

Case 1: the knapsack is not full in the optimal solution. In this case the unit
reward functions will all have derivatives of 0, since every item is included up to
the point where its reward begins to decrease.6

Case 2: the knapsack is full in the optimal solution. In this case we will
assume that fi and fj do not share the same derivative value, and show this
assumption leads to a contradiction. Specifically, we can assume, without loss of
generality, that the reward function of item i has a larger first derivative than
j, i.e. φi(x∗i ) > φj(x∗j ). Therefore, there must exist some ε, such that adding it
to item j’s unit reward derivative maintains the inequality, φi(x∗i ) > φj(x∗j ) + ε.
We can then construct an alternative solution to K as follows:

– Set xj in our alternative solution to be the fraction of item j that provides
its original derivative plus ε,

x′j = φ−1
j (φj(x∗j ) + ε)

6 We assume that all reward functions have derivatives ≤ 0 when an item is entirely
included in the knapsack, since the item cannot possibly provide any additional
reward.
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– By Lemma 1 we know that x′j < x∗j , which provides some excess space, α,
in the knapsack, α = wj(x∗j − x′j). We can fill the empty space with item i,
up to the point where the knapsack is full, or its derivative decreases by ε,

x′i = min
(

x∗i +
α

wi
, φ−1

i (φi(x∗i ) − ε)
)

It must be that x′i > x∗i . Either all of the knapsack space from item j was
added, in which case the fraction of item i clearly increased. Otherwise, its
derivative value decreased by ε, which, by Lemma 1, must have increased its
included fraction. If φi(x′i) decreased by ε before the knapsack filled up, we
can reallocate the excess space to j,

x′j = (k − xi)
1
wj

Notice that we have constructed our alternate solution by moving the same
number of knapsack units from item j to item i. In our construction we guar-
anteed that item i was gaining more reward per unit during the entire transfer.
Therefore, the knapsack space is more valuable in the alternate solution. This
contradicts our assumption that x∗i and x∗j were part of an optimal solution.

We have shown that any two unit reward functions must share the same
derivative value, Δ∗, in an optimal solution. This implies that all unit reward
functions must share the derivative value in an optimal solution (since no two
can differ).

4.2 Finding Δ∗

In our proof of Proposition 1 we showed that Δ∗ ≥ 0. We also showed that
as Δ increases, the fraction of each item in the knapsack decreases. Thus, one
method for finding Δ∗ would be to begin with Δ = 0 and increment by ε until
the resulting solution is feasible (fits in the knapsack). However, much of this
search effort can be reduced by employing a binary search technique.

Figure 3 presents pseudo-code for a binary search algorithm that finds solu-
tions provably within ε of an optimal reward value. The algorithm recursively
refines its upper and lower bounds on Δ∗, Δ+ and Δ−, until the reward difference
between solutions defined by the bounds is less than or equal to ε.

The initial bounds, shown in Figure 2, are derived from a simple feasible
solution where the same fraction of each item is included in the knapsack (see
even CKP in Figure 3). The largest derivative value in this solution provides the
upper bound, Δ+. This is because we can reduce the included fractions of each
item to the point where all of their derivatives equal Δ+, and guarantee the
solution is still feasible. By the same reasoning, the smallest derivative value in
the simple solution provides a lower bound Δ−. Figure 2 shows how initial values
of Δ+ and Δ− are computed from the even solution on the Example problem
from Section 3.3.
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procedure ε-opt CKP(K)

x ← even CKP(K)

Δ+ ← maxi φ−1
i (xi)

Δ− ← mini φ−1
i (xi)

return binary search(Δ+, Δ−, K)

procedure binary search(Δ+, Δ−, K)

if converged(Δ+ , Δ−, K) then
x+ ← {φ−1

1 (Δ+), . . . , φ−1
n (Δ+)}

return x+

end if
δ ← Δ+

−Δ−

2

if feasible({φ−1
1 (δ), . . . , φ−1

n (δ)}, K) then
return binary search(δ, Δ−, K)

else
return binary search(Δ+, δ, K)

end if

procedure even CKP(K)

ŵ ←
P

i
wi

return { k
ŵ

, . . . , k
ŵ
}

procedure feasible(x, K)

return
P

i
wixi ≤ k

procedure converged(Δ+ , Δ−, K)

x+ ← {φ−1
1 (Δ+), . . . , φ−1

n (Δ+)}
x− ← {φ−1

1 (Δ−), . . . , φ−1
n (Δ−)}

return
P

i
fi(x

+) − fi(x
−) ≤ ε

Fig. 3. Pseudo-code for an ε-optimal concave CKP binary search algorithm

During each iteration, a new candidate bound, δ, is computed by halving the
space between the prior bounds. The process continues recursively: if the new
bound defines a feasible solution it replaces the old upper bound, otherwise (if
it is not a valid upper bound), it replaces the old lower bound.

When the algorithm converges the solution defined by Δ+ is guaranteed to
be feasible and within ε of the optimal solution. Convergence is guaranteed since
we have proved that Δ∗ exists, and the bounds get tighter after each iteration.
It is difficult to provide theoretical guarantees about the number of iterations,
since convergence is defined in terms of the instance-specific reward functions.
However, the empirical results in Section 6 show that the algorithm typically
converges exponentially fast in the number of feasibility checks.

4.3 Shared Resource Extension

Our ε-optimal binary search algorithm can be extended to solve problems in-
volving more complex resource constraints than typically associated with CKPs.
In particular, the algorithm can be generalized to solve reductions of Probabilis-
tic Pricing Problems with Shared Resources (P3SR). P3SR instances involve
sellers with multiple distinguishable goods for sale. Each good in a P3SR con-
sumes some amount of finite shared resources, such as components or assembly
time. This model allows for techniques capable of supporting the movement from
make-to-stock practices to assemble-to-order or make-to-order practices.

By applying the reduction described in Section 3.2, a P3SR instance can be
converted to a problem similar to a CKP instance. However, the resource con-
straint in the resulting problem is more complex than ensuring that a knapsack
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contains less than its weight limit. It could involve determining the feasibility of
a potentially NP-Hard scheduling problem, in the case of a shared assembly line
and customer demands with deadlines. Clearly, this would require, among other
things, changing the feasibility checking procedure (see feasible() in Figure 3),
and could make each check substantially more expensive.

5 Customer Valuations

5.1 Diminishing Returns Property

Our algorithm was designed to solve CKP reductions of P3ID instances. Re-
call that it applies only when the reward functions are concave over the in-
terval [0, 1]. This is not a particularly restrictive requirement. In fact, this is
what economists typically refer to as the Diminishing Returns7 (DMR) property.
This property is generally accepted as characterizing many real-world economic
processes [2].

Definition: The DMR property is satisfied for a P3ID instance when, for a given
increase in any customer’s filled demand, the increase in the seller’s expected rev-
enue is less per unit than it was for any previous increase in satisfaction that
customer’s demand.

Note that our market model also captures the setting where customer valua-
tions are determined by bids from competing sellers. In this setting normally
distributed competing bid prices can also be shown to result in concave re-
ward functions. This situation is representative of environments where mar-
ket transparency leads sellers to submit bids that hover around a common
price.

5.2 Normal Distribution Trees

We consider a technique which a seller may use to model a customer’s valua-
tion distribution. It will use a normal distribution to ensure our model satisfies
the desired DMR property. We assume that customers have some public at-
tributes, and the seller has historical data associating attributes vectors with
valuations.

Our technique trains a regression tree to predict a customer’s valuation from
the historical pricing data. A regression tree splits attributes at internal nodes,
and builds a linear regression that best fits the training data at each leaf. When
a valuation distribution for a new customer needs to be created, the customer
is associated with a leaf node by traversing the tree according to her attributes.
The prediction from the linear model at the leaf node is used as the mean of a
normal valuation distribution, and the standard deviation of the distribution is
taken from training data that generated the leaf.

7 This is also occasionally referred to as the Decreasing Marginal Returns property.
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Formally the regression tree learning algorithm receives as input,

– n: the number of training examples.
– ai: the attribute vector of the i’th training example.
– vi: the valuation associated with the i’th training example.

A regression tree learning algorithm, such as the M5 algorithm [10], can be used
to learn a tree, T , from the training examples. After the construction of T ,
the j’th leaf of the tree contains a linear regression over attributes, yj(a). The
regression is constructed to best fit the training data associated with the leaf.
The leaf also contains the average error over this data, sj .

The regression tree, T , is converted to a distribution tree by replacing the
regression at each node with a normal distribution. The mean of the normal
distribution at the j’th leaf is set to the prediction of the regression, μj = yj(a).
The standard deviation of the distribution at the j’th leaf is set to the average
error over training examples at the leaf, σj = sj . Figure 4 shows an example of
this kind of normal distribution tree.

Fig. 4. An example Normal Distribution Tree

5.3 Learning Customer Valuations in TAC

TAC SCM provides an ideal setting to evaluate the distribution tree technique
described in the previous section. Each customer request in TAC SCM can be
associated with several attributes. The attributes include characterizations of the
request, such as its due date, PC type, and quantity. The attributes also include
high and low selling prices for the requested PC type from previous simulation
days. Upon the completion of a game, the price at which each customer request
was filled is made available to agents. This data can be used with the technique
described in the previous section to train a normal distribution tree. The tree
can then be used in subsequent games to construct valuation distributions from
request attributes.
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Fig. 5. The accuracy curve of an M5 normal distribution tree as the number of training
instances increases

Figure 5.3 shows the accuracy curve of a normal distribution tree trained on
historical data with an M5 learning algorithm. Training instances were drawn
randomly from customer requests in the 2005 Semi-Final round of TAC SCM
and testing instances were drawn from the Finals. The attributes selected to
characterize each request included: the due date, PC type, quantity, reserve price,
penalty, day on which the request was placed, and the high and low selling prices
of the requested PC type from the previous 5 game days.

The error of the distribution was measured in the following way: starting at
p = .1, and increasing to p = .9, the trained distribution was asked to supply
a price for all test instances that would fall below the actual closing price (be
a winning bid) with probability p. The average absolute difference between p
and the actual percentage of test instances won was considered the error of
the distribution. The experiments were repeated with 10 different training and
testing sets. The results show that normal distribution trees can be used to
predict distributions over customer valuations in TAC SCM with about 95%,
accuracy after about 25,000 training examples.

6 Empirical Evaluation

6.1 Empirical Setup

Our experiments were designed to investigate the convergence rate of the
ε-optimal binary search algorithm. We generated 100 CKP instances from P3ID
instances based on the pricing problem faced by agents in TAC SCM. The P3ID
instances were generated by randomly selecting customer requests from the fi-
nal round of the 2005 TAC SCM. Each customer request in TAC SCM has a
quantity randomly chosen uniformly between 1 and 20 units. Normal probabil-
ity distributions were generated to approximate the customer valuations of each
customer using the technique described in Section 5 with an M5 Regression Tree
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procedure greedy CKP(K)

converged ← ⊥
while ¬converged and

P
i xi < n do

i∗ ← argmaxi unit reward increase (i, xi, K)
δ∗ ← best increase(i∗, xi∗ , K)
if feasible(xi∗ + δ∗, K) then

xi∗ ← xi∗ + δ∗

else
xi∗ ← xi∗ + 1

wi

`
k −

P
i
xiwi

´

converged ← �
end if

end while
return {x1, . . . , xn}

procedure unit reward increase(i, xi, δ, K)

δ∗ ← best increase(i, xi, K)
return 1

wiδ∗
(fi(xi + δ∗) − fi(xi))

procedure best increase(i, xi, K)

return argmaxδ
fi(xi+δ)−fi(xi)

δ

Fig. 6. Pseudo-code for the greedy heuristic algorithm used by the 2005 first placed
agent, TacTex

learning algorithm. The learning algorithm was given 50,000 training instances
from the 2005 TAC SCM Semi-Final rounds.

We tested our algorithm against the even solution, which allocates equal re-
sources to each customer, and the greedy heuristic algorithm used by the first
place agent, TacTex [9]. Figure 6.1 provides pseudo-code adapting the TacTex
algorithm to solve the P3ID reductions. It greedily adds fractions of items to the
knapsack that result in the largest increases in expected unit-revenue.

We performed three sets of experiments. The first set of experiments provided
each algorithm with 20 PCs to sell in expectation, and the same 200 customer
requests (this represents a pricing instance of a TAC SCM agent operating un-
der a make-to-stock policy). Figure 7(a) shows each algorithm’s percentage of
an optimal expected revenue after each feasibility check. For the second set of
experiments, the algorithms were given 200 customer requests, and their PC
supply was varied by 10 from k = 10, to k = 100. Figure 7(b) shows the num-
ber of feasibility checks needed by the binary search and greedy algorithms to
reach solutions within 1% of optimal. The last set of experiments fixed k = 20
and varied n by 100 from n = 200 to n = 1000. Figure 7(c) shows the number
of feasibility checks needed by each algorithm to reach a solution within 1% of
optimal as n increased.

6.2 Empirical Results

The results presented in Figure 7 compare the optimality of the CKP algorithms
to the number of feasibility checks performed. This comparison is important to
investigate for two reasons, i.) because it captures the convergence rate of the
algorithms, and ii.) because these algorithms are designed to be extended to



146 M. Benisch, J. Andrews, and N. Sadeh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

%
 O

pt
im

al
 R

ev
en

ue

Number of Feasibility Checks

% Optimality Versus Number of Feasibility Checks

ε-opt_CKP
greedy_CKP

even_CKP Baseline

(a) This graph shows how the optimality of each algo-
rithm improves with each feasibility check it uses.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 F

ea
si

bi
lit

y 
C

he
ck

s

Knapsack Capacity, k

Number of Feasibility Checks Versus k

ε-opt_CKP
greedy_CKP

(b) The number of feasibility checks needed to reach a
solution within 1% of optimal as k increases.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  100  200  300  400  500  600  700  800  900 1000

N
um

be
r 

of
 F

ea
si

bi
lit

y 
C

he
ck

s

Number of Items, n

Number of Feasibility Checks Versus n

ε-opt_CKP
greedy_CKP

(c) The number of feasibility checks needed to reach a
solution withing 1% of optimal as n increases.

Fig. 7. Performance of CKP algorithms on instances reduced from TAC SCM pricing
problems. Unless otherwise specified, results are averaged over 100 CKP instances with
n = 200 and k = 20.



Adaptive Pricing for Customers with Probabilistic Valuations 147

shared resource settings discussed in Section 4.3 where each feasibility check
involves solving (or approximating) an NP-Hard scheduling problem.

The first set of results, shown in Figure 7(a), confirms that the ε-optimal
binary search algorithm converges exponentially fast in the number of consis-
tency checks. In addition, the results confirm the intuition of Pardoe and Stone
in [9] that the greedy heuristic finds near optimal solutions on CKP instances
generated from TAC SCM. However, the results also show that it has a linear,
rather than exponential, convergence rate in terms of consistency checks. This
indicates that our binary search algorithm scales much better than the greedy
technique. Finally, the first set of results shows that the even solution, which
does not use consistency checks, provides solutions to TAC SCM instances that
are about 80% optimal on average.

Figures 7(b) and 7(c) investigate how the number of feasibility checks needed
to find near (within 99% of) optimal solutions changes as the supply and number
of customers increase. The even solution is not included in these results because it
does not produce near optimal solutions. The results shown in Figure 7(b) show
that the number of consistency checks used by the greedy algorithm increases
linearly with the size of the knapsack, whereas the convergence rate of the binary
search algorithm does not change. The results shown in Figure 7(c) show that
the number of consistency checks used by both algorithms does not significantly
increase with the number of customers.

7 Conclusion

In this paper we presented a model for the problems faced by sellers that have
multiples copies of an indistinguishable good to sell to multiple customers. We
have modeled this problem as a Probabilistic Pricing Problem with Indistin-
guishable Goods (P3ID) and formally shown its equivalence the Continuous
Knapsack Problem (CKP). We showed that P3ID instances with customer val-
uation distributions that satisfy the DMR property reduce to CKP instances
with arbitrary concave reward functions. Prior work had not addressed CKP
instances with asymmetric nonlinear concave reward functions. To address this
gap, we provided a new ε-optimal algorithm for such CKP instances. We showed
that this algorithm converges exponentially fast in practice. We also provide
a technique for learning normal distributions of customer valuations from his-
torical data, by extending existing regression tree learning algorithms. We val-
idated our distribution learning technique and our binary search technique for
the P3ID on data from 2005 TAC SCM. Our results showed that our learn-
ing technique achieves about 95% accuracy in this setting, indicating that TAC
SCM is a good environment in which to apply our P3ID model. Our results
further showed that our binary search algorithm for the P3ID scales substan-
tially better than a technique adapted from the winner of the 2005 TAC SCM
competition.
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Abstract. In this article we present an agent-based simulation envi-
ronment for task scheduling in a grid-like computer system. The sched-
uler allows to one simultaneously allocate resources such as CPU time,
communication bandwidth, volatile and non-volatile memory by employ-
ing a combinatorial resource allocation mechanism. The allocation is
performed by an iterative combinatorial auction in which proxy-bidding
agents try to acquire their desired resource allocation profiles with re-
spect to limited monetary budget endowments. To achieve an efficient
allocation process, the auctioneer provides resource price information to
the bidders. We use a pricing mechanism based on shadow prices in a
closed loop system in which the agents use monetary units awarded for
the resources they provide to the system for the acquisition of comple-
mentary capacity. Our objective is to identify optimal bidding strategies
in the multi-agent setting with respect to varying preferences in terms
of resource quantity and waiting time for the resources. Based on a util-
ity function we characterize two types of agents: a quantity maximizing
agent with a low preference for fast bid acceptance and an impatient
bidding agent with a high valuation of fast access to the resources. By
evaluating different strategies with varying initial bid pricing and price
increments, it turns out that for quantity maximizing agents patience
and low initial bids pay off, whereas impatient agents should avoid high
initial bid prices.

1 Introduction

The agent-based simulation environment for resource allocation in grid-like sys-
tems presented here employs a combinatorial task scheduler that enables the
simultaneous allocation of resources like CPU time, communication bandwidth,
volatile and non-volatile memory. In contrast to traditional grid allocation ap-
proaches, our allocation process considers production complementarities and
substitutionalities for these resources making the resulting resource usage much
more efficient. The central scheduling instance of our system is comparable to
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an auctioneer that performs an iterative combinatorial auction in which proxy-
agents try to acquire the resources needed in computational tasks for the pro-
vision of information services and information production (ISIP) by submitting
package bids for the resource combinations. The proxy-agents’ willingness-to-pay
(W2P) for these bundles is constrained by limited budgets of the virtual currency
they are endowed with. The allocation system simulates a closed loop grid econ-
omy in which the agents gain monetary units for resources they provide to other
grid system participants via the auctioneer. The virtual currency earned can
be used for the acquisition of complementary resource capacity. The simulation
environment allows the utilization and benchmarking of different proxy-bidding
strategies in various situations. Two main bidding strategies are compared here:

– An impatient bidding agent that tries to achieve a quick acceptance of bids
by using a fast inclining bid price in the subsequent rounds.

– A quantity maximizing agent that submits bid bundles at low initial prices
and waits for bid acceptance, while slowly increasing the price in the follow-
ing round in case of bid rejection.

The bidding strategies are compared under changing resource availability sit-
uations with respect to the resulting allocation quality that is measured in terms
of received utility, defined by a utility function that allows one to represent the
different preferences of the agents.

2 Combinatorial Auctions in Grid Environments

The use of the computing power provided by distributed computer infrastructure,
such as the grid, is of increasing interest for information technology infrastructure
and service providers [1]. The simultaneous use of network resources and comput-
ing capacity to enable web-based video conference and peer-to-peer telecommuni-
cation services between corporations is an example of such a business-to-business

Memory

Network

Disk

CPU

Allocation?

IT-Resources

IT-Services

Video Conference

Database Job

Fig. 1. Scenario for the allocation of resources in a distributed IT infrastructure
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related application of ISIP tasks [2]. An exemplary scenario for the allocation of
IT services to distributed IT resources is depicted in figure 1.

Requests for the resources that are necessary to provide services like a video
conference or database processing job have to be allocated to various networked
PC systems including different resource types. Searching for usable economically
inspired mechanisms for the price controlled resource allocation (PCRA) auctions
seem to be a good candidate [3]. While using this mechanism the preferences of
the users and their W2P play an important role: whereas the data processing
service might not be very time critical for the user, the video conference is.
Accordingly, the video conference users should be willing to pay more for the
immediate availability of the resources than the user of the database service. The
transfer of a considerable amount of data that is collected during daily business
activities, in times of low infrastructure resource load, could be seen as a further
instance of an IT task that has no high time criticality and where a PCRA is
valuable for the users and the service providers [4,5].

CA are a suitable tool for allocating interdependent resources according to the
W2P of the participants. The ISIP process of our example in figure 1 comprises
an allocation problem with strong complementarities. For example, if the video
conference service via the web in our scenario is processed on different comput-
ers and acquires CPU time without obtaining communication network capacity
between these computers at the same time, the acquired CPU time is worthless.
The application of CAs for resource allocation in distributed computer systems
is still in its infancy despite its excellent applicability to grid computing. Recent
approaches make use of a periodically performed CA with very simple allocation
mechanisms to achieve sufficient real time performance [6,7]. The use of a budget
of a virtual currency available for the bidders for task procurement purposes is
often used to constrain the liquidity in these allocation systems [8]. Neumann
et al. [9] include quality attributes in the combinatorial allocation process for
a grid system which is close to our approach. However, most proposed systems
either suffer from performance problems or have to accept severe constraints for
the formulation of resource bundles in the grid.

3 An Agent-Based Simulation Environment for
Combinatorial Resource Allocation in Grid Systems

The combination of grid and multi-agent technology seems to be a viable ap-
proach in the application context described above [10]. Our combinatorial grid
scheduling environment is therefore based on the agent workbench JADE 3.3. It
goes beyond the recent research approaches in several points:

– The system allows the use of several winner determination algorithms such as
greedy, simulated annealing, genetic programming, and integer programming
methods according to the users’ requirements in terms of allocation quality
and computation time [11].

– The simulator provides tools to investigate various bidding behaviors on the
part of the proxy-agents. We will concentrate on this aspect in this paper.
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– The framework can simulate changing resource capacities to test the grid
scheduler’s reaction with respect to allocation efficiency and system
stability.

3.1 Scenario for a PCRA in a Combinatorial Grid System

This section gives a brief overview of the resource allocation scenario for ISIP
provision used in our work. The scenario includes four resource types:

– Central processing units (CPU) that are mainly responsible for the process-
ing of the data in the ISIP processes.

– Volatile memory capacity (MEM) which is necessary to store short-term
processing data for the central processing units.

– Non-volatile storage capacity (DSK) which is necessary to keep mass data
and to provide program codes for the execution of the ISIP processes.

– Network bandwidth (NET) that is required for the data interchange between
different computer units.1

(Distributed-)

Market

Mediator(s)

Task

Agent 1

Task

Agent 4

Task

Agent 3

Task

Agent 2

MEM CPU NET DSK MEM CPU NET DSK MEM CPU NET DSK MEM CPU NET DSK

Resource

Agent 1

Resource

Agent 4

Resource

Agent 3

Resource

Agent 2

MEM CPU NET DSK MEM CPU NET DSK MEM CPU NET DSK MEM CPU NET DSK

Fig. 2. Scenario for the allocation of ISIP resources

The scenario for our combinatorial grid simulator is constructed as follows:

– Task agents are engaged in acquiring the resources needed to process the
ISIP task in the distributed computer system on behalf of real world clients.
They do this by bidding for the required resource combination via the
auctioneer.

– A mediating agent (auctioneer) receives the resource bids and calculates an
allocation profile for the available resources managed by the resource agents
according to the allocation mechanism. After a successful auction, process
bidders are informed about the acceptance of their bids.

1 Considering the fact that network connections themselves exhibit complementarities,
connections should be treated as additional resources, one for each connection pair.
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– Resource agents collect information about available resources on their par-
ticular host IT systems through a network of distributed computers and
provide this information to the market mediator. The resource agents offer
the available capacities to the task agents via the mediating agent. If a bid
is accepted via the auctioneer, the resources thus acquired are reserved for
the corresponding winning agent in advance.

Figure 2 depicts the ISIP allocation scenario. Resource agents administer
available MEM, CPU, NET, and DSK capacities on their particular host com-
puter systems on the supply side. On the demand side task agents collect the
required resource combinations, including MEM, CPU, NET, and DSK capacity,
needed to accomplish their production tasks. Between resource and task agents
there is a market mediator that allocates the resources employing a combinatorial
auction. For the formal representation of the bids, a two-dimensional bid-matrix
(BM) is used. One dimension of the BM describes the time t ∈ {1, . . . , T} at
which the resource is required within the request period. The other dimension
r ∈ {1, . . . , R} denotes the resource types MEM, CPU, NET, DSK. The request
for a quantity of an individual resource r at time t is then denoted by a matrix
element qi,j(r, t). A price pi,j is assigned to each BM expressing the agent’s W2P
for the resource bundle. Indices i and j identify a specific bid matrix.

Table 1. Example of a bid matrix BM submitted by a task agent

Time Slot t
resource 1 2 3 4 5 6 7 8
1 2 2 3 3 3 3
2 1 1 1
3 2 2 1 1 1 1
4 3 3 2 2

The value qbmax denotes the maximum resource load that can be requested
by a bidder for a single BM element qi,j(r, t). These elements are supplied with
time slot occupation probability ptso. In addition to the BM, two other matrices
play a role within our grid simulation framework:

– The allocation matrix (AM ) describes the currently awarded allocation q(r, t)
for resources r and time slots t within the following ISIP provision period T .

– The constraint matrix (CM ) expresses the maximum quantity qmax(r, t) of
resource r the auctioneer can assign to the task agents at time t. The max-
imum possible resource load of the CM represents the aggregated resource
availability for the following time slots.

3.2 The Combinatorial Scheduling Auction

Following the description of the scenario, figure 3 illustrates the course of action
of the system. The AUML sequence diagram depicts the message flow based on
the FIPA definition of the English auction protocol.2

2 www.fipa.org/specifications/fipa00031D

www.fipa.org/specifications/fipa00031D
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Fig. 3. FIPA AUML diagram for the iterative combinatorial scheduling auction

While in our closed economy each bidder has two roles (as provider and user of
resources), figure 3 separately depicts both roles (resource agent and task agent)
to provide a greater generalization and better readability. Each step is marked
by a �-symbol and detailed in the corresponding paragraph:

1. The auctioneer requests the resource agents to evaluate the available resource
capacities and informs the bidders about the bidding terms. Then he awards
an initial budget to the task agents and announces the start of the auction.

2. Following the auctioneer’s call for proposals, the task agents create their
bids according to the desired resource combination. Bidders compute the
associated bid price, dependent on their actual pricing policy, their budget
level, and the latest resource prices, if applicable.

3. The auctioneer receives the bids and calculates the return-maximizing com-
binatorial allocation. He informs the task agents about bid acceptance/
rejection and requests the resource agents to reserve the resources awarded.

4. Resource agents inform the auctioneer about the status of the task execution.
5. The auctioneer distributes task status information to the task agents and

debits the bid price for the awarded bids from their accounts, followed by a
call for proposals for the next round.
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6. Task agents can renew their bids in the next round in case of non-acceptance
or non-execution. The agents’ bid pricing rules are defined in paragraph 3.5.

7. The process is repeated until the auctioneer announces the end of auction.

In the following we describe the elements of the combinatorial grid sched-
uler: the budget management, the auctioneer and the task agents’ bidding
behavior.

3.3 The System’s Budget Management Mechanism

Each task agent holds a monetary budget that is initialized with a fixed amount
BGini of monetary units (MUs) when the negotiations begin. At the beginning
of each round k, the task agents’ budgets are refreshed (see figure 3 - �1) with
an amount of MUs enabling the agents to acquire the resource bundles required
for their ISIP provision task. In order to avoid the expiry of the agents’ bud-
gets during the iterative auctioning process, the agents are integrated into a
monetary circuit in the closed-loop grid economy regarded in this work. Task
and resource agents act as a unit of consumer and producer both owning the
resources of their peer system. This means a task and a resource agent reside
simultaneously on each computer in the grid. The resource agent does the re-
porting of resource usage and provisioning for the task agent owning the peer
computer resources (see figure 3 - �1, and �4). The agents on the peer com-
puter are compensated for the resources provided to the system. Starting with
the initial budgets BGini the amount of MUs circulating in the system is kept
constant for the closed grid economy. The accounting of the agents’ budgets
in the grid system is done by the combinatorial auctioneer (see figure 3 - �1,
and �5).

3.4 The Combinatorial Auctioneer

The combinatorial auctioneer controls the iterative allocation process of the grid
system. For this purpose the auctioneer awaits the bids that have been submit-
ted by the task agents for the current round. The bids that are submitted in
the form of j XOR-bundled BMs in bid i are shown in table 1 and represent
the task agents’ requested capacity qi,j(r, t) of the resources r at a particular
point of time t. After having received all alternative BMs submitted by the task
agents, the auctioneer has to solve the combinatorial auction problem (CAP)
which is NP-hard [12,13]. The CAP is often denoted as the winner determina-
tion problem (WDP), according to the traditional auctioneer’s task of identifying
the winner. While the number of resources is R ∈ N, the number of time slots
is T ∈ N, the number of bid bundles is I ∈ N and the number of XOR-bids in
the bundles is Ji ∈ N, the formal description of the CAP could be considered
as a special variant of the weighted set packing problem (WSPP) [14] and is
formulated as:
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max
∑I

i=1

∑Ji

j=1
pi,j xi,j

s. t. q(r, t) =
∑I

i=1

∑Ji

j=1
qi,j(r, t) xi,j ≤ qmax(r, t),

∀r∈{1,...,R},t∈{1,...,T} and
∑Ji

j=1
xi,j ≤ 1, ∀i∈{1,...,I}.

(1)

Price of XOR-bundle j of bid i: pi,j ∈ R
+

Acceptance variable: xi,j ∈ {0; 1}
Resource requests: qi,j(r, t) ∈ N

The auctioneer’s primary goal is to maximize the income received under the
limitation of the available resources and a maximum of one accepted bid per
agent (equation 1). In order to accelerate the price-finding process, the auctioneer
provides feedback on resource availability to the bidders to adjust their W2Ps
pi,j for bids that have not been accepted in the previous rounds. As mentioned
above, it is not always possible to calculate unambiguous prices (anonymous
prices) for the individual resources in a combinatorial auction. In many cases,
explicit resource prices can only be calculated for each individual bid. Kwasnica
et al. [15] describe a pricing scheme for all individual goods in a combinatorial
auction by approximating the prices in a divisible case based on an LP approach
first proposed by Rassenti et al. [16]. As in a similar approach by Bjorndal and
Jornsten [17] they employ the dual solution of the relaxed WDP to calculate the
shadow prices. In the simulation model presented here, the dual LP approach of
Kwasnica et al.[15] is adopted:3

min z =
∑R

r=1

∑T

t=1
qmax(r, t) · spr,t (2)

s.t.

R∑

r=1

T∑

t=1

qi,j(r, t) · spr,t + (1 − xi,j) · δi,j = pi,j (3)

Reduced cost: δi,j ∈ R
+
0

Shadow price of one element: spr,t ∈ R
+
0

The proposed SP calculation uses the primal solution for the LP problem
delivered from open source LP solver LPSOLVE 5.5 4 for the determination of
accepted bids [18]. As described above, each resource r has T available time
slots per round. The SPs are weighted by the resource usage and grouped to

3 The result of the following formula is denoted as reduced SPs. Omitting the rejected
bids in the calculation of dual prices yields a higher result [17].

4 http://www.geocities.com/lpsolve/

http://www.geocities.com/lpsolve/
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shadow prices for each resource. Now the market value of a resource unit can be
calculated while using the shadow prices and summarizing the utilized capacity
of each resource r for all accepted bids:

vr =
∑T

t=1 spr,t · q(r, t)
∑T

t=1 q(r, t)
∀r∈{1,...,R} (4)

Market value of a resource unit: vr ∈ R
+
0

In general bid prices are not assumed to be linear in this framework. This
means that shadow prices spr,t cannot be calculated by the auctioneer for each
round, i.e. there is no solution of the LP problem [17]. In such cases the auctioneer
relies on an approximation of the market values based on historic data Hsp(r)
which contains the market values calculated in the last n rounds:

v̂r =

∑
hsp∈Hsp(r) hsp

|Hsp(r)| ∀r∈{1,...,R} (5)

Approximated market value: v̂r ∈ R
+
0

Unfortunately, the shadow price calculation is computationally expensive. If
the variation of required resources in the bid or the number of bids increase, the
required time may exclude shadow price approximation as an alternative.

3.5 The Task Agents’ Bidding Model

Based on the market values of resources vr the task agents in the combinatorial
simulation model try to acquire the resources needed for ISIP provision. Besides
the market values of resources, the task agents’ bidding behavior is determined
by their budget and by an associated bidding strategy. The major goal of the
task agents is to receive as many resource units as possible that are required
for the performance of their ISIP processes at the lowest possible amount of
MUs. The general bidding behavior of the task agents is similar for both pricing
information methods, scarcity and shadow prices as well:

– In each round k the task agents generate M new bids. The task agents submit
several bids as exclusively eligible bundles (OR-of-XOR). If the budget of
a task agent is exhausted due to the continued acceptance of bids by the
auctioneer, no further bids are submitted until the budget has recovered.

– The task agents repeat bidding for rejected bids in the following round while
modifying the W2P with respect to the current pricing information.

Depending on the market value vr of the resources required for the ISIP
provision process, task agents have to formulate their W2P for the bids. To
calculate the bundle prices, two cases must be considered:

pi,j(k) =

⎧
⎨

⎩

BGini/ (L · M · J) if k = 1
R∑

r=1

T∑

t=1
vr · qi,j(r, t) · pinc

i if k > 1
(6)
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– In the first round, a market value of the resources is not provided to the
bidders. Therefore, bidder agents have to formulate the W2P for their initial
bids with respect to the start-up budget BGini and their bidding strategy.
This is done by calculating a mean bid price that guarantees that the task
agents’ budget will last for the next L rounds if M · J new sets of XOR-bids
are added (cp. line 1 of formula 6).

– In the following rounds, the task agents employ the market values vr of
the resources to determine their W2P. The requested amount of capacity is
multiplied by the relevant market value and if the bid is initialized, a factor
pini is included in the calculation so that initial bids may start below or
above the current price level of the resource market.

If a bid is rejected, the corresponding W2P is adapted by

pinc
i = pini + (li · Δp) , (7)

Round of bid i: li ∈ N

Multiplier increment: Δp ∈ R
+

resulting in the above mentioned value of pini in round 1 (cp. line 2 of formula
6). To control the price adaption process, an additional price acceleration fac-
tor pinc

i is introduced. At each round, P inc is incremented by a constant ΔP .
Recalculating the price based on the actual market value vr results in a faster
adoption process. In fact the system quickly reaches a stable state when using
this pricing method [19].

Rejected bids are repeated with an updated W2P until the bid is accepted, but
only for a limited number of rounds. Bids are discarded if they are not accepted
after L rounds. Furthermore, the task agents’ bidding behavior is limited by
their budgets. When an agent’s budget is exhausted, it formulates no new bids
until the budget is refreshed in the next round k + 1.5

4 Testing Bidding Strategies

This section goes into the details of the agents’ bidding strategies and their eco-
nomic motivation. In our simulations we try to find the utility maximizing strat-
egy for the different agent types. The utility function of an agent is defined by:

Ua =

(∑
(i,j)∈Ba

xi,j ·
∑R

r=1

∑T
t=1 qi,j(r, t)

)α

(
l̄a
)β (8)

5 One might consider letting bidding agents get into debt for further bidding or to
go finally bankrupt if their debt exceeds a given limit to introduce more realistic
behavior, however, this would introduce a new dimension of complexity into the
system which is not justified by the gain in ‘model realism’.
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Utility function of agent a: Ua ∈ R
+

Bids of agent a: Ba ∈ {(i, j) | i, j ∈ N}
Accepted bid’s time index of agent a: l̄a ∈ R

+

Parameters of the utility function: α & β ∈ R
+

While the amount of acquired ISIP resources has a positive impact but dimin-
ishing marginal impact on the agent’s utility, the number of periods an agent
waits until its bids are accepted has a negative impact. To calculate the decreas-
ing impact of the waiting time, we use a time index l̄a (the averaged number of
periods an agent bids until it has placed a successful bid) and β to adjust the
force of the waiting time’s impact. The force of the impact of the quantity is
defined by α with 0 < α ≤ 1.6

Using the utility function we introduce two different agent types: (1) the
quantity maximizer with α = 0.5 and β = 0.01 and (2) the impatient bidder
with α = 0.5 and β = 1.0.

– A quantity maximizer tries to acquire a high amount of resource capacity.
The hypothesis is that this agent follows the strategy of only increasing the
bid prices slowly. The economic rationale for this type of proxy agent strat-
egy could be the fact, that it bids for resources required for the fulfillment of
an ISIP task that is not time-critical. Referring to the example in section 2,
this may be the computation of large time-consuming database jobs on the
grid system, that have to be done in a very relaxed time window. A plausible
strategy for the bidders is then trying to acquire the required resource ca-
pacity bundles at low market values using bids with slightly increasing W2P.

– An impatient bidder suffers if he can not use the resources instantaneously
and will use an aggressive bidding strategy. This agent has to submit high ini-
tial prices, but overpaying will reduce the quantity he can acquire. Moreover,
we analyze if a fast inclining pricing strategy can help to further increase
the utility of this agent. The economic motivation of this behavior can be
a proxy agent that bids for the execution of time-critical tasks in an ISIP
provisioning system. A good example for this is the performance of a video
conference in the distributed computer system. The conference is scheduled
for a narrow time window. The proxy agents have to bid for prompt fulfill-
ment of the resource usage tasks. Therefore it is useful for proxy agents to
quickly raise their bids to market level.

The objective of the experiments is to find out the test agent’s optimal bidding
strategy in competition with the remaining default bidding agents given the
two types of utility function (quantity maximizer, impatient bidder) as defined
above. Except Δp and pini, all agents show the same behavior: Beginning with
three bundles containing three XOR bids in the first round, both agent types
generated three additional bid bundles at each further round k. The task agents
6 Within this paper the value remains constant α = 0.5. We assume a varying impact

of the waiting time, which depends on the kind of tasks an agent has to fulfill. See
section 2 for examples of these task types.
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Fig. 4. Mean acceptance time and quantity of resource units for the test bidder with
varying price increment Δp and initial price pini

increase the W2P of rejected bids by a Δp over a maximum of L = 5 rounds.
The pattern of newly generated bids is identical to the structured BM type
described in table 1 (qbmax = 3, ptso = 0.333, tmax = 4). The auctioneer was able
to allocate a maximum load of qmax = 8 per resource while T was eight units
for the CM . The initial budget was set to BGini = 200MUs for each agent.7

For the evaluation of our model we set the number of agents to 4 and the
number of bids per agent (M) to 3 (this set results in I = 12 bids per round).
Three agents use a default bidding behavior with constant values of Δp = 0.2
and pini = 0.5. The value of Δp has to be sufficiently high to guarantee fast price
adaptation in the case of resource failures, while a high value of pini leads to
overpaying in the case of low demand.8 Additionally, a test agent with a varying
bidding strategy between Δp = 0.1 . . .1.5 and pini = 0.4 . . . 1.0 is introduced.
Table 2 shows the resulting utility of the test agents. Figure 4 shows the resource
units acquired by the test agent and the averaged bid acceptance time l̄a of 50
simulation runs for each Δp, pini combination (steps of 0.1). All task agents
within our closed loop economy receive the same budget in each round. Figure 4
illustrates that for small Δp and pini the highest amount of resource units can be
acquired by the test agent. An aggressive strategy with high Δp and pini leads to
a declining amount of acquired resources. While a reduction in acceptance time
is mainly achieved by high pini, increasing Δp only has an impact on average
acceptance time if pini is low. The test agent’s utility values (cp. equation 8)
are calculated based on the data shown in figure 4. Figure 4 depicts the utility
resulting from varying price increment Δp and initial pricing pini. In the case

7 The initial budget normally influences the system behavior; however, experiments
showed that within certain bounds liquidity does not play a major role due to the
price adaption process.

8 The high variance in the demands of the agents results in a large amount of capacity
that could be acquired cheaply. Thus starting with the market price (which is an
averaged value) let agents overpay those capacities that have low demand.
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Table 2. Utility of the test bidder for quantity maximizing preference β = 0.01 (upper
table) and impatient bidding behavior β = 1.0 (lower table) for determination of the
optimal bidding strategy under varying price increment Δp and initial pricing pini

Δp
pini

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.4 53.05 51.41 50.22 49.14 48.45 47.42 46.47 45.85 45.00 44.09 43.58 42.72 41.79 41.50 40.79
0.5 53.36 52.03 50.84 50.09 49.16 48.45 47.67 46.95 46.20 45.59 44.89 44.23 43.71 42.96 42.56
0.6 53.34 52.46 51.57 50.81 50.22 49.57 48.98 48.32 47.82 47.30 46.71 46.27 45.78 45.24 44.84
0.7 51.93 51.53 50.72 50.30 50.18 49.71 49.36 49.10 48.76 48.09 47.99 47.63 47.36 46.91 46.51
0.8 48.81 48.66 48.69 48.36 48.28 48.10 48.10 47.97 47.68 47.80 47.26 47.29 47.23 46.98 46.87
0.9 45.96 46.08 46.06 46.13 46.02 45.84 45.83 45.85 45.76 45.69 45.69 45.80 45.65 45.56 45.52
1.0 43.80 44.25 43.64 43.68 43.93 43.79 43.85 43.71 43.65 43.81 43.71 43.59 43.57 43.39 43.63

Δp
pini

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.4 21.08 21.48 21.96 22.73 22.85 22.42 21.60 21.38 20.30 19.30 18.84 17.84 17.45 16.86 16.64
0.5 23.34 23.91 24.57 25.65 25.72 26.25 26.33 25.67 25.03 24.59 24.04 23.17 22.33 21.49 20.98
0.6 27.73 28.01 28.88 29.80 30.38 30.81 31.43 30.78 30.92 30.74 30.02 30.23 29.36 28.43 28.04
0.7 34.74 34.30 34.10 35.56 36.06 36.06 36.98 37.36 37.56 36.72 36.89 36.56 36.72 36.14 35.57
0.8 39.69 38.95 39.44 40.13 40.56 40.81 40.78 41.51 41.01 41.43 40.24 40.99 40.97 41.15 40.78
0.9 41.77 41.95 41.12 42.13 42.65 41.70 41.96 42.31 42.43 42.34 42.20 42.66 42.39 42.35 42.64
1.0 41.15 42.28 41.50 42.14 41.50 41.49 42.10 41.71 41.97 42.05 41.93 41.93 42.33 41.44 41.83
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Fig. 5. Utility of the test bidder for quantity maximizing preference β = 0.01 (left) and
impatient bidding behavior β = 1.0 (right) for determination of the optimal bidding
strategy under varying price increment Δp and initial pricing behavior pini

of a quantity maximizing preference (β = 0.01), the test agent’s utility is high
for small initial bids and small price increments with a maximum utility value
of Ua = 53.36 at pini = 0.5 and Δp = 0.1 (see table 2 upper part).

It pays off for the quantity maximizer to wait to see if its bids fit into the cur-
rent allocation at a low price (low increment and initial price). By contrast, the
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impatient bidder gains low utility from such a strategy (figure 4 right side). The
impatient bidder receives the highest utilities by using an initial bid price close
to the market value of the resources (pini = 0.9). The price increment in the fol-
lowing round does not have much impact on the acceptance time and the utility
of the impatient bidder (see table 2 lower part). For bids exactly at market value
utility declines sharply, signaling ‘overbidding’, which means paying too much for
the resources. In the context of the scenario in section 2, this underlines the im-
portance of market value information for achieving good allocations. Our shadow
price controlled combinatorial grid provides such information and enables users
to acquire resources according to their utility function via proxy-agents. Of cause
the impact of the competitors’ behavior has to be investigated further.

5 Conclusion

We have presented a simulation environment that enables users to simultaneously
allocate resources in a grid-like computer system via proxy-agents. The
economically inspired approach uses proxy-agents that try to acquire resource
bundles under budget constraints via a mediator that performs a combinatorial
auction. Besides solving the winner determination problem by integer programing,
this auctioneer also provides resource value information based on shadow prices.

Starting with these prerequisites, various bidding strategies are evaluated
while introducing a class of utility functions that is able to express the different
levels of time and quantity preferences on the part of the bidders. Two charac-
teristic bidders are investigated: A quantity maximizer with low preference for
fast bid acceptance and an impatient bidder which draws a high utility from
fast allocation of the requested resources. While searching for utility maximizing
strategies by varying the bidding behavior of the proxy-agents in terms of initial
bid price and price increment for rejected bids, two main bidding strategies have
been identified. For the quantity maximizing agent it is profitable be patient and
to start with low bids, whereas the impatient bidder should avoid ‘overbidding’
in its tendency to accelerate the resource procurement process.

Two points seem to be important for further research in our combinatorial
grid. Firstly, the agents should be able to change their strategies by using learning
to explore a wider strategy space. Secondly, individual production functions
should be introduced for the agents to come closer to a realistic grid scenario,
where the budget received in each round depends on the agents’ strategy.
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Abstract. Sequential and simultaneous auctions are two important mechanisms
for buying/selling multiple objects. These two mechanisms yield different out-
comes (i.e., different revenues and also different profits to the winning bidders).
Hence, both the auctioneer and the bidding agents want to know which mecha-
nism is better for them. Given this, we compare the outcomes for these mecha-
nisms for the following scenario. There are multiple similar objects for sale, each
object is sold in a separate auction, and each bidder needs only one object. We use
English auction rules and first determine equilibrium bidding strategies for each
individual auction for the simultaneous and sequential cases. We do this for both
common and private value objects by treating a bidder’s information about these
values as uncertain. We then consider the case where the private and common
values have a uniform distribution and compare the two mechanisms in terms of
three key properties: a bidder’s ex-ante expected profit, the auctioneer’s expected
cumulative revenue, and the total expected surplus. For both common and private
value objects, our study shows the following result. The expected cumulative
revenue and the expected total surplus is higher for the sequential mechanism.
However, a bidder’s exante expected profit depends on the number of objects be-
ing auctioned and the number of participating bidders, and it is sometimes higher
for the sequential mechanism and sometimes for the simultaneous one.

1 Introduction

Auctions are now being widely used for buying/selling goods on the web. Now, in many
cases, there are multiple objects for sale. Multiple objects can be auctioned using a num-
ber of mechanisms. Moreover, the bidding behaviour is different for different mecha-
nisms [11]. Hence, the outcome of such auctions (i.e., who wins and at what price) is
also different for different mechanisms. Hence, the auctioneer and the bidding agents
want to know which mechanism will be the most beneficial to them. Furthermore, the
efficiency (i.e., the surplus) is also different for different mechanisms. So it is desir-
able to find mechanisms that are efficient. However, it is not always possible to have
an efficient1 mechanism. Given this, a key problem in the area of multi-object auctions
is to study ad hoc mechanisms and compare them in terms of their solution properties
(i.e., revenue, winner’s profit, and efficiency). To this end, we study and compare two
different mechanisms: sequential and simultaneous [11]. To date, considerable research
effort has been devoted to the study of these mechanisms. But the main limitation of

1 Auctions for common value objects have been shown to be inefficient [10,7,6].

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 164–177, 2007.
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existing work is that it has studied sequential and simultaneous auctions in isolation and
so far there has been very little work on the comparison of these two mechanisms in
terms of their outcomes (see Section 5 for details). Our objective is therefore to provide
a comparative analysis of sequential (SEQ) and simultaneous (SIM) auctions in an in-
complete information setting. We do this for both common value (CV) and private value
(PV) objects. This study is important because agents need to decide which of the two
mechanisms is better for them. So we compare the mechanisms from the perspective of
both the auctioneer and the bidding agents, and also from a global perspective (i.e., in
terms of surplus/efficiency).

We use the following setting. There are multiple objects for sale and each bidder
needs only one object. Each bidder’s valuations (for both CVs and PVs) are identically
distributed across the objects to be auctioned but are not perfectly correlated. We first
determine equilibrium bidding strategies for each individual auction for the simultane-
ous and sequential cases by treating each bidder’s information about the CVs and PVs
as uncertain. We do this using the English auction rules. We then consider the case
where the private and common values have a uniform distribution and compare the two
mechanisms in terms of a bidder’s ex-ante expected profit, the seller’s expected cumu-
lative revenue, and the expected cumulative surplus. For both CV and PV objects, our
study shows the following result. The expected cumulative surplus and the auctioneer’s
cumulative revenue is higher for the SEQ mechanism. However, the mechanism that
generates a higher ex-ante expected profit for the bidders depends on the number of
objects being auctioned and the number of participating bidders, and it is sometimes
higher for SEQ mechanism and sometimes for the SIM one.

The remainder of the paper is organised as follows. Section 2 describes the auction
setting. Section 3 finds the equilibrium strategies for the SEQ and SIM mechanisms.
Section 4 compares the two mechanisms for the case where the private and common
values have a uniform distribution. Section 5 discusses related literature and Section 6
concludes.

2 The Auction Setting

Single object auctions with both CV and PV elements have been studied in [7]. By
changing appropriate parameters, this model can be used to analyse objects which are
exclusively CV and those which are exclusively PV. We therefore adopt this basic model
and extend it for multiple objects. We begin with a brief overview of the basic model.

Single object. A single object auction is modelled in [7] as follows. There are n ≥ 3
risk neutral bidders and the object for sale has both CV and PV features. The CV (V1)
of the object to the n bidders is equal, but initially the bidders do not know this value.
However, each bidder receives a signal that gives an estimate of this CV. Bidder i draws
an estimate (vi1) of the object’s true value (V1) from the probability distribution func-
tion F with support [vL, vH ]. Although different bidders may have different estimates,
the true value (V1) is the same for all the bidders and is modelled as the average of the
bidders’signals: V1 = 1

n

∑n
i=1 vi1. Also, each bidder has a cost (which is different for

different bidders) and this cost is its private value. Let ci1 denote bidder i’s signal for its
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private value which is drawn from the distribution function G(c) with support [cL, cH ]
where cL ≥ 0 and vL ≥ cH . Cost and value signals are independently and identically
distributed across bidders. The term value refers to CV and cost to PV.

If bidder i wins and pays b, its utility is V1 − ci1 − b, where V1 − ci1 is i’s surplus.
Each bidder bids so as to maximize its utility. Note that i receives two signals (vi and
ci) but its bid has to be a single number. Hence, in order to determine their bids, bidders
need to combine the two signals into a summary statistic. This is done as follows. For
bidder i, a one-dimensional summary signal, called i’s surplus2, is Si1 = vi1/n − ci1.
This allows i’s optimal bids to be determined in terms of Si1 (see [7] for details about
the problems with two signals and why a one-dimensional surplus is required).

For exclusively CV objects, ci1 = 0, so i’s surplus is Si1 = vi1/n. For exclu-
sively PV objects, the equilibrium bids are defined in terms of the PVs (which are in-
dependently and identically distributed across F ). Note that for the PV case, F denotes
the distribution function for PVs. We now extend this single object model to m > 1
objects.

Multiple objects. There are m > 1 similar objects and n > m bidders (Section 3.2
considers the case n ≤ m). Each bidder needs only one object. Since the m objects
are similar, there is a single distribution function (F ) for the CV/PV of each object. We
now describe the bidders’ signals for the CV and PV cases for the two mechanisms.
First consider the CV case. For this case, for the SEQ mechanism, each bidder receives
its value signal for an auction just before that auction begins. The signal for the jth
object is received only after the (j − 1) previous auctions have been conducted. Con-
sequently, although the bidders know the distribution functions from which the signals
are drawn, they do not know the actual signals for the jth object until the previous
(j − 1) auctions are over3. Our model is therefore more relevant to those scenarios
where the objects are physically distinct but still good substitutes. The m objects are
sold in m SEQ auctions conducted using English auction rules. Furthermore, each bid-
der can win at most one object. The winner for the jth object does not participate in the
remaining m − j auctions. Thus, if n agents participate in the first auction, the num-
ber of agents for the jth auction is (n − j + 1). For objects 1 ≤ j ≤ m and bidders
1 ≤ i ≤ n, let vij denote the CV for the jth object for bidder i. The true CV of the jth
object is: Vj = 1

n−j+1

∑n−j+1
i=1 vij Also, let Sij denote i’s surplus for object j where

Sij = vij/(n − j + 1).
Note that, the CVs of the objects are not correlated. Such correlations occur, if for a

bidder (say i) the CV of objects 2 ≤ j ≤ m can be determined on the basis of i’s value
signal for the first object.

For the SIM mechanism, the m CV objects are sold in m independent English auc-
tions conducted simultaneously. Each bidder goes to only one auction and receives its
value signal just before that auction begins (Section 3.3 provides details).

2 Note that i’s true surplus is V1 − ci1 which is equal to vi1/n − ci1 +
∑

j �=i vj1/n. But since
vi1/n − ci1 depends on i’s signals while

∑
j �=i vj1/n depends on the other bidders’ signals,

the term ‘i’s surplus’ is also used to mean vi1/n − ci1.
3 This model is an extension of [1]: [1] analyses a sequence of two PV auctions while we analyse
n ≥ 2 auctions for CVs and PVs.
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For the PV case, the SEQ and SIM auctions are similar to the CV case except that F
now denotes the probability distribution function for the bidders’ PVs (instead of CVs).

3 Equilibrium Bidding Strategies

Equilibrium bidding strategies for a single object of the type described in Section 2
have been obtained in [7]. We therefore briefly summarize these strategies and then
determine the equilibrium for our m objects case.

3.1 Single Object

We first describe the CV case. For a single object with CV V1, the equilibrium obtained
in [7] is as follows. A bidder’s strategy is described in terms of its surplus and indicates
how high the bidder should go before dropping out. Since n ≥ 3, the prices at which
some bidders drop out convey information (about the CV) to those who remain active.
Suppose k bidders have dropped out at bid levels b1 ≤ . . . ≤ bk. A bidder’s (say i’s)
strategy is described by functions Bk(xi; b1 . . . bk), which specify how high it must bid
given that k bidders have dropped out at levels b1 . . . bk and given that its surplus is
Si = xi. The n-tuple of strategies (B(·), . . . , B(·)) with B(·) defined in Equation 1,
constitutes a symmetric equilibrium of the English auction.

B0(xi) = E(vi|Si = xi)

Bk(xi; b1 . . . bk) =
n − k

n
E(vi|Si = xi) +

1
n

k−1∑

j=0

E(vi|Bj(xi; b1, . . . , bj) = bj+1)

(1)

The intuition for Equation 1 is as follows. Given its surplus and the information con-
veyed in others’ drop out levels, the highest a bidder is willing to go is the expected
value of the object, assuming that all other active bidders have the same surplus.

Let fn denote the first order statistic of the surplus for the n bidders and sn the
second order statistic. For the above equilibrium, the bidder with the highest surplus
wins and the winner’s expected profit (EPw(n)) is [7]:

EPw(n) = E(fn) − E(sn) (2)

The expected surplus (ES(n)) is the surplus4 that gets split between the auctioneer and
the winning bidder and is:

ES(n) = E(V1) (3)

Finally, the difference between ES(n) and EPw(n) is the expected revenue (ER(n)):

ER(n) = ES(n) − EPw(n) (4)

4 Note that this surplus is different from the surplus Sij defined earlier in Section 2. In what
follows, the actual meaning of term will be evident from the context in which it is used.
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On the other hand, for PV objects, the winner’s expected profit (EPw(n)) is [18] :

EPw(n) = E(f
n
) − E(sn) (5)

The expected surplus (ES(n)) and the seller’s expected revenue (ER(n)) are:

ES(n) = E(f
n
) (6)

ER(n) = E(sn) (7)

where f
n

and sn denote the first and second order statistic for the private value of the
object. Both f

n
and sn are obtained from the probability distribution function F . Note

that in the context of exclusively CV objects, F represents the probability distribution
function for CVs, while in the context of exclusively PV objects it represents the prob-
ability distribution function for PVs. On the basis of the equilibrium for a single object,
we determine equilibrium for multiple objects.

3.2 Multiple Sequential Auctions

The m objects are sold in m separate English auctions conducted sequentially one after
another. Each bidder needs only one object and draws its CV/PV for an auction just
before that auction begins. Since a bidder needs only one object, it participates in the
series of auctions until it wins an object. After that, it does not take part in any of the
remaining auctions. The English auction rules are as follows. The auctioneer continu-
ously raises the price, and bidders publicly reveal when they withdraw from the auction.
Bidders who drop out from an auction cannot re-enter that auction. A bidder’s strategy
for the jth (for 1 ≤ j ≤ m−1) auction depends on its expected profit from the (m− j)
future auctions. Since the mth auction is the last one, a bidder’s strategy for this auction
is the same as the single object case. But the bidding behaviour for the first (m − 1)
auctions is different from the single object case.

We first obtain the equilibrium bids for CV objects and then extend it to PVs. For the
former case, a bidder’s strategy for an individual auction depends on its probability of
winning any one of the remaining auctions that are yet to be conducted. If the number
of bidders for the first auction is n, then let β(y, j, m, n) denote a bidder’s ex-ante
probability of winning the yth (for j ≤ y ≤ m) auction in the series from the jth to the
mth auction before the jth one begins. For instance, consider β(1, 1, m, n), which is the
probability of winning the first auction in the series from the first to the mth auction.
Since β(1, 1, m, n) is the ex-ante probability (i.e., before the bidders draw their CVs for
the first auction), each bidder has equal chances of winning it (i.e., β(1, 1, m, n) = 1/n)
If a bidder wins the first auction then it does not participate in the remaining auctions.
Now consider β(2, 1, m, n), which is the ex-ante probability that a bidder wins the
second auction in the series from the first to the mth auction where β(2, 1, m, n) =
(1 − 1/n)(1/(n − 1)). This is because a bidder can win the second auction if it loses
the first one. If it wins the second, then it does not participate in the remaining auctions.
In the same way we get β(y, 1, m, n) and β(y, j, m, n) as:

β(y, 1, m, n) = [Πy−1
k=1 (1 − 1/(n − y + k + 1))](1/(n − y + 1))
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β(y, j, m, n) = [Πy−1
k=j (1 − 1/(n − y + k + 1))](1/(n − y + 1))

Since m > 1, the bids for an auction depend not only on that auction but also on a
bidder’s expected profit from winning one of the future auctions. For CV objects, let
EPw(j, m, n) denote the winner’s expected profit for the jth auction in a series of m
auctions with n bidders for the first one. Also, let α(j, m, n) denote a bidder’s ex-ante
expected profit for winning any one auction in the series from the jth (for 1 ≤ j ≤ m)
to the mth auction where

α(j, m, n) = Σm
y=jβ(y, j, m, n)EPw(y, m, n)

A definition for EPw(y, m, n) will be given in Theorem 2. Note that EPw with three
parameters is used for multiple objects while EPw with a single parameter for a single
object (see Equation 2). Also, note that since there are m objects, α(m + 1, m, n) = 0.
The equilibrium bids for CV objects depend on α. Theorem 1 characterises the equi-
librium for m > 1 CV objects. Before presenting the theorem, we introduce some
notation. We will denote the first and second order statistic of the surplus for the jth CV
auction as fn−j+1 and sn−j+1 respectively.

Theorem 1. For CV objects, the n-tuple of strategies (B(·), . . . , B(·)) with B(·) de-
fined in Equation 8 constitutes a symmetric equilibrium for the jth (for 1 ≤ j < m)
auction at a stage where k bidders have dropped out:

Bj
0(xij) = E(vij |Sij = xij) − α(j + 1, m, n)

Bj
k(xij ; b1, . . . , bk) =

n − j + 1 − k

n − j + 1
E(vij |Sij = xij)

+
1

n − j + 1
∑k−1

y=0 E(vij |By(xij ; b1, . . . , by) = by+1) − α(j + 1, m, n) (8)

where xij is bidder i’s surplus for the jth object. For the last auction, the equilibrium
is as given in Equation 1 with n replaced with (n − m + 1).

Proof. We consider each of the m auctions by starting with the last auction and rea-
soning backwards.

– mth auction. For this auction, there are (n − m + 1) bidders. Since this is the
last auction, an agent’s bids are the same as that for the single object case. Hence,
the equilibrium for this auction is the same as that in Equation 1 with n replaced
with (n − m + 1). Recall that although the bidders know the distribution (from
which the values are drawn) before the first auction begins, they draw the signals
for the jth auction only after the (j − 1) earlier auctions end. Hence, for the series
from the jth to the mth auction, a bidder’s ex-ante expected profit (i.e., the profit
computed before the bidders draw their signals for the jth auction), is the same for
all participating bidders. Hence from Equation 2 we get:

α(m, m, n) =
1

n − m + 1
(E(fn−m+1) − E(sn−m+1))

This is because all the (n−m+1) agents have ex-ante identical chances of winning.
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– (m − 1)th auction. For this auction, a bidder bids b if (Vm−1 − b ≥ α(m, m, n))
or b ≤ Vm−1 − α(m, m, n). Hence, an equilibrium for the (m − 1)th auction is
obtained by substituting j = m− 1 in Equation 8. The difference between the bids
for the single object case and the (m − 1)th auction is α (see Equations 1 and 8).
Since the bids decrease by α(j + 1, m, n), the winner’s profit now increases to:

EPw(m − 1, m, n) = E(fn−m+2) − E(sn−m+2) + α(m, m, n)

– First (m − 2) auctions. Generalising Equation 9 to the first (m − 1) auctions, we
get the winner’s expected profit (EPw(j, m, n)) as:

EPw(j, m, n) = E(fn−j+1) − E(sn−j+1) + α(j + 1, m, n)

Consequently, a bidder’s equilibrium bid for the jth auction is obtained by dis-
counting the single object bid by α(j + 1, m, n). Hence, we get the equilibrium
bids of Equation 8. �

Let ER(j, m, n) denote the expected revenue from the jth auction in a series of m
CV auctions with n bidders for the first one. Also, let ES(j, m, n) denote the expected
surplus for the jth auction. The following theorem characterises the outcome for CV
auctions.

Theorem 2. For the jth (for 1 ≤ j ≤ m) auction, the winner’s expected profit (EPw

(j, m, n)), the expected surplus (ES(j, m, n)), and the expected revenue (ER(j, m, n))
are:

∀m−1
j=1 EPw(j, m, n) = E(fn−j+1) − E(sn−j+1) + α(j + 1, m, n)

EPw(m, m, n) = E(fn−m+1) − E(sn−m+1)
∀m

j=1ES(j, m, n) = E(Vj)
∀m

j=1ER(j, m, n) = ES(j, m, n) − EPw(j, m, n) (9)

Proof. For the jth (1 ≤ j < m) auction, the bids in Theorem 1 are similar to those
in Equation 1 (for the single object case), except that each bid in the former case is
obtained from the corresponding bid in the latter by shifting the latter by the constant
α(j + 1, m, n). Since α(j + 1, m, n) is the same for all participating bidders, the rel-
ative positions of bidders for each of the m auctions remains the same as that for the
corresponding single object case. Also, since the bids are discounted by α(j +1, m, n),
the winner’s expected profit increases by the same amount. So we get:

EPw(j, m, n) = E(fn−j+1) − E(sn−j+1) + α(j + 1, m, n)

For the last auction, the winner’s profit is the same as the single object case. The sur-
plus (ES(j, m, n)) that gets split between the auctioneer and the winning bidder is
obtained from Equation 3 as ES(j, m, n) = E(Vj). The revenue for the jth auction is
the difference between ES(j, m, n)) and EPw(j, m, n):

∀m
j=1ER(j, m, n) = ES(j, m, n) − EPw(j, m, n) (10)

�
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We now find the cumulative revenue, the cumulative surplus, and a bidder’s ex-ante
expected profit from all the m auctions. For (n > m), let Xseq(m, n) denote the cu-
mulative revenue and Yseq(m, n) a bidder’s exante profit from all the m auctions where
Xseq(m, n) = Σm

j=1ER(j, m, n) and Yseq(m, n) = α(1, m, n). In general (i.e., for
n > m or n ≤ m), the cumulative revenue (ECRseq(m, n)) is:

ECRseq(m, n) =

⎧
⎨

⎩

0 if m = 0, n = 0, or n = 1
Xseq(m, n) if n > m
Xseq(n − 1, n) if n ≤ m

This is because if n ≤ m, then the number of bidders for the first n − 1 auctions is
at least 2. For the nth auction there is only one bidder and so it wins the object for
nothing resulting in a revenue of zero. For all the remaining m − n auctions, there are
no bidders and so the revenue is zero again. Also, let EEPseq(m, n) denote a bidder’s
ex-ante expected profit for all the m auctions where

EEPseq(m, n) =

⎧
⎨

⎩

E(V ) if n = 1
Yseq(m, n) if n > m
Yseq(n − 1, n) + β(n, 1, n, n)E(V ) if n ≤ m

This is because if (n ≤ m) for the first n−1 auctions there are at least two bidders. But
for the nth auction, since there is only one bidder, it gets the object for nothing. For this
auction, the winner’s expected profit is the expectation of the CV. Since the CVs of all
the objects are drawn from a single distribution function (F ), we drop the subscript in
E(V ). Finally, the expected cumulative surplus is:

ECSseq(m, n) =
{

mE(V ) if n ≥ m
nE(V ) if n < m

We now turn to PV objects. For these objects, we denote the first and second order

statistic of the PV for the jth auction as f
n−j+1

and sn−j+1 respectively. For these
objects, a bidder’s bid for an auction is obtained by subtracting its ex-ante expected
profit for the future auctions from its bid for the current one (this is similar to the CV
case analysed in Theorem 1). Hence, for the jth auction, the winner’s expected profit
(denoted EPw(j, m, n)) is:

∀m−1
j=1 EPw(j, m, n) = E(f

n−j+1
) − E(sn−j+1) + α(j + 1, m, n) (11)

EPw(m, m, n) = E(f
n−m+1

) − E(sn−m+1) (12)

where α(j, m, n) is a bidder’s ex-ante expected profit for winning any one auction in
the series from the jth (for 1 ≤ j ≤ m) to the mth auction and is:

α(j, m, n) = Σm
y=jβ(y, j, m, n)EPw(y, m, n)

The expected revenue (ER(j, m, n)) and the expected surplus (ES(j, m, n)) are:

∀m−1
j=1 ER(j, m, n) = E(sn−j+1) − α(j + 1, m, n) (13)

ER(m, m, n) = E(sn−m+1) (14)

∀m
j=1ES(j, m, n) = ER(j, m, n) + EPw(j, m, n) (15)
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For n > m, let Xseq(m, n) denote the expected cumulative revenue for all the m
objects and Y seq(m, n) a bidder’s ex-ante expected profit from all the m auctions where
Xseq(m, n) = Σm

j=1ER(j, m, n) and Y seq(m, n) = α(1, m, n). In general, (i.e., for
n > m or n ≤ m), the cumulative revenue (ECRseq(m, n)) is:

ECRseq(m, n) =

⎧
⎨

⎩

0 if m = 0, n = 0, or n = 1
Xseq(m, n) if n > m

Xseq(n − 1, n) if n ≤ m

and a bidder’s ex-ante expected profit (EEP seq(m, n)) is:

EEP seq(m, n) =

⎧
⎪⎨

⎪⎩

E(f
1
) if n = 1

Y seq(m, n) if n > m

Y seq(n − 1, n) + β(n, 1, n, n)E(f
1
) if n ≤ m

Finally, the expected cumulative surplus is:

ECSseq(m, n) =

{∑m
j=1 E(f

n−j+1
) if n ≥ m

∑n
j=1 E(f

n−j+1
) if n < m

3.3 Multiple Simultaneous Auctions

As before, we have m > 1 similar objects, n risk-neutral bidders, and each bidder needs
only one object. Given this, the SIM auctions game is played as follows. The m objects
are sold in m different auctions conducted simultaneously and independently of each
other. Each bidder randomly selects one of the m auctions and bids in it. It is obvious
that after a bidder selects an auction, its equilibrium bids are the same as that for the
single object scenario of Section 3.1. This game has been analysed in [17] for private
value objects for the limiting case where both m and n tend to infinity. The analysis
is done by assuming complete information. Here, we extend this analysis to a more
realistic case where both m and n are finite, the objects are either CV or PV, and there
is uncertainty about these values. For this SIM auctions game, the equilibrium outcome
depends on how the n bidders arrive at the m auctions. We let T n

m denote the number
of different ways in which n bidders can be distributed between m auctions where

T n
m =

⎧
⎨

⎩

1 if n = 0 or m = 1
Σn

k=0C(n, k) if m = 2
Σn

k=0C(n, k)T n−k
m−1 if m > 2

For m SIM auctions, the probability that k bidders arrive at an auction (P (m, k)) is:

P (m, k) = (C(n, k)T n−k
m−1)/T n

m

Consider any one auction. The number of bidders for this auction can vary between
0 and n. If no bidders arrive at the auction, the object remains unsold. If only one
bidder arrives, it gets the object for nothing. If k ≥ 2 bidders arrive, then the expected
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revenue is greater than zero. Consider first CV objects. For these objects, the expected
cumulative revenue from all the m auctions (ECRsim(m, n)) is:

ECRsim(m, n) = Σn
k=0P (m, k)[ER(k) + ECRsim(m − 1, n − k)]

Also, for an individual auction, the winner’s expected profit is:

EPw(m, n) = P (m, 1)[E(V )] + Σn
k=2P (m, k)[E(fk) − E(sk)]

and hence a bidder’s ex-ante expected profit (EEPsim(m, n)) is:

EEPsim(m, n) = P (m, 1)[E(V )] + Σn
k=2P (m, k)(1/k)[E(fk) − E(sk)]

Finally, the total expected surplus (denoted ECSsim(m, n)) is:

ECSsim(m, n) = Σn
k=1P (m, k)[ES(k) + ECSsim(m − 1, n − k)]

Now consider PV objects. For these objects, the expected cumulative revenue is:

ECRsim(m, n) = Σn
k=0P (m, k)[ER(k) + ECRsim(m − 1, n − k)]

Also, for an auction, the winner’s expected profit is:

EPw(m, n) = P (m, 1)[E(f
1
)] + Σn

k=2P (m, k)[E(f
k
) − E(sk)]

and hence a bidder’s ex-ante expected profit (denoted EEP sim(m, n)) is:

EEP sim(m, n) = P (m, 1)[E(f
1
)] + Σn

k=2P (m, k)(1/k)[E(f
k
) − E(sk)]

Finally, the total expected surplus (denoted ECSsim(m, n)) is:

ECSsim(m, n) = Σn
k=1P (m, k)[ES(k) + ECSsim(m − 1, n − k)]

4 A Comparison of the Two Auction Mechanisms

We now compare the two mechanisms in terms of three key properties: the expected
cumulative revenue, the expected cumulative surplus, and a bidder’s ex-ante expected
profit. To do this, we consider the uniform distribution function for both PVs and CVs.
Recall that the m objects are similar. Hence we have a single probability density func-
tion (pdf) for the values of all the m objects. We first describe the experimental setting
for the CV case and then for PVs. For the CV case, we let f(x) and g(x) denote the pdfs
for value and surplus respectively where f(x) is uniformly distributed over [100, 200]:

f(x) =
{

1/100 if 100 ≤ x ≤ 200
0 otherwise

Thus the cumulative distribution function (cdf) for the CVs is F (x) = x
100−1 for 100 ≤

x ≤ 200. Consequently, for n bidders, the pdf for surplus is uniformly distributed as:

g(x) =
{

n/100 if 100
n ≤ x ≤ 200

n
0 otherwise
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The cdf for the surplus is therefore G(x) = nx
100 − 1 for 100

n ≤ x ≤ 200
n . For the PV

case, f(x) is the pdf for the PV of each of the m objects.
For this setting, we find the cumulative revenue, the cumulative surplus, and a bid-

der’s ex-ante expected profit for the SEQ and SIM mechanisms. In order to do this, we
find the first and second order statistics for F (x) and G(x) as follows. From a distri-
bution with cdf G(x), if n random samples are drawn, then the expectation of the first
and second highest order statistic (denoted E(fn) and E(sn) respectively) of these,
between limits x and x, is [4]:

E(fn) = n

∫ x̄

x

xG(x)n−1g(x)dx (16)

E(sn) = n(n − 1)
∫ x̄

x

xG(x)n−2[1 − G(x)]g(x)dx (17)

Hence, E(f
n
) and E(sn) are obtained by replacing G and g in Equations 16 and

17 with F and f respectively. Using these equations, we first study the relation be-
tween the expected cumulative revenues for the two mechanisms by varying the num-
ber of bidders (n) and the number of objects (m). Figures 1(a) and 1(b) depict the
relation for CV and PV objects respectively, for m = 3, m = 4, and m = 5. We then
study the relation between the expected cumulative surplus for the two mechanisms
(see Figures 2(a) and 2(b)). Finally, we study the relation between a bidder’s ex-ante ex-
pected profit for the two mechanisms (see Figures 3(a) and 3(b)). As seen in the figures,
for both CV and PV objects, the expected cumulative revenue and the expected cumu-
lative surplus is higher for the SEQ mechanism than the SIM one. However, a bidder’s
ex-ante expected profit is sometimes higher for the SEQ mechanism and sometimes for
the SIM one. For 5 < m ≤ 50, the SEQ mechanism generated a higher cumulative
revenue, a higher cumulative surplus, and also a higher exante expected profit for the
bidders. Furthermore, for both CV and PV objects, as m increased beyond 5, the three
differences (i.e., ECRseq −ECRsim, ECSseq − ECSsim, and EEPseq − EEPsim)
were not only positive but increased with m.
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Fig. 1. Difference between the expected cumulative revenues for the two mechanisms
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Fig. 2. Difference between the expected cumulative surplus for the two mecahnisms
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Fig. 3. Difference between a bidder’s ex-ante expected profit for the two mecahnisms

In summary, from an auctioneer’s perspective, the SEQ mechanism is better because
it generates a higher revenue. From a global perspective too, the SEQ mechanism is
better (because it generates a higher expected cumuative surplus). However, from a
bidder’s perspective, the ex-ante expected profit depends on the number of participating
bidders and the number of objects being auctioned, and it is sometimes higher for the
SEQ mechanism and sometimes for the SIM one.

5 Related Work

Although there has been much work on SEQ auctions [14,19,13,12,1,6], there has been
relatively less work on the comparison of different auction mechanisms using a game
theoretic approach5. For instance, [15] provided a comparison of the revenues generated
by two multi-object mechanisms: one offers each object in a separate ascending bid
auction and the other offers the bundle of objects as a single item in an ascending bid
auction. The key conclusion of this work is that the mechanism that gives a higher

5 Some work on the comparison of auction mechanisms has been done using other approaches.
For example, [2] uses an evolutionary approach while [16] uses an approach based on learning.
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revenue depends on the number of bidders. [9] compared SEQ and SIM auctions for
two PV objects using first-price sealed bid rules. In this model, each bidder draws its
signals for both objects before the first auction begins. For the SEQ case, the bids for
the first auction are submitted. These bids are then unsealed and the price is publicly
announced. Then bidders submit bids for the second auction. For the SIM case, all the
objects are sold in a lot and all the bids on all the objects are submitted before any
are unsealed and publicly announced. The key result is that, depending on the pdf for
the signals, the revenue is sometimes higher for SEQ sale and sometimes it is higher
for SIM sale. This work also shows that if the revenue is higher for the SEQ (SIM)
case, then a bidder’s ex-ante profit is lower for the SEQ (SIM) case. So the seller and
the bidders have conflicting preferences over their choice of a mechanism. The key
differences between this work and ours are as follows. The first difference is in terms
of the number and type of objects. We consider m ≥ 2 CV and PV objects while
[9] considers two PV objects. Second, in [9], the bidders receive their signals for both
objects before the first auction begins. In our model, there is a single pdf for the CVs
and PVs of all the objects and each bidder receives its signals for an object before the
auction for that object begins (like in [14,1]). Our model is therefore more relevant to
those scenarios where the objects are physically distinct but still good substitutes. The
final difference is in terms of results. Our analysis shows that the auctioneer and the
bidders may have similar or conflicting preferences over their choice of a mechanism,
while [9] shows that their preferences always conflict.

Other work on comparison includes [8,5]. [8] study heuristic bidding strategies and
show that such strategies are optimal for SEQ auctions but not for SIM ones. [5] is
more akin to our work and provides a comparative study of the SEQ and SIM auctions
described here. However, the key difference between [5] and our present work is that,
for the former, each object has both common and private value elements, while the latter
considers objects that either exclusively CV or exclusively PV.

Finally, FCC auctions are known to be more efficient than SEQ auctions [3]. A key
difference between the FCC auctions (which are SIM ascending auctions) and the SIM
auctions we analyse is that, for the latter, there is a separate auction for each object and
the bidders are randomly spilt across these auctions. But for the former, all the objects
are sold in a lot in which all the bidders participate. Our work shows that although
having a separate auction for each object and splitting the bidders across them reduces
both revenue and auction efficiency, it can increase a bidder’s ex-ante expected profit.

6 Conclusions and Future Work

This paper analyses two key auction mechanisms for multiple objects: sequential and
the simultaneous. This analysis is done for both common and private value objects by
treating a bidder’s information about these values as uncertain. We used the English
auction rules and determined equilibrium for the two mechanisms. We then considered
the case where the private and common values have a uniform distribution and com-
pared the mechanisms in terms of their expected cumulative revenues, their expected
cumulative surplus, and a bidder’s ex-ante expected payoff. For both common and pri-
vate values, our study shows that, the sequential mechanism is better both from the
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auctioneer’s and also from a global perspective. However, from a bidder’s perspective,
the choice of a mechanism depends on the number of objects and the number of bidders.

In future, we will extend our analysis to the case where each bidder needs multi-
ple objects. Also, we modelled a bidder’s uncertainty about the CVs and PVs with the
uniform distribution. In future, we will generalise our results to other types of distribu-
tions. Finally, we compared the SEQ mechanism with one specific SIM mechanism –
the one in which each bidder bids in a single randomly chosen auction. In future, we
will extend the comparison to a SIM mechanism in which the bidders bid in a randomly
chosen subset of auctions since doing so increases their chances of winning an object.
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Abstract. We propose a novel method to characterize the performance
of autonomous agents in the Trading Agent Competition for Supply
Chain Management (TAC-SCM). We create a suite of testing tools that
reduce the variability of TAC-SCM games, make them replayable, and
generate specific market conditions under which autonomous trading
agents can be tested. Using these tools, we show how developers can
inspect their agents to reveal and correct undesirable behaviors that
might otherwise have gone undiscovered. We also discuss how these
tools can be used to improve overall trading agent performance in future
competitions.

1 Introduction

One of the most prominent proving grounds for current research in autonomous
trading agents is the Trading Agent Competition for Supply Chain Management
(TAC-SCM) [1]. In this yearly international event, autonomous agents battle for
supremacy in a simulation where the highest profit-earning agent wins. In TAC-
SCM, agents make all the decisions to run a virtual computer-manufacturing
operation. They negotiate to purchase parts from suppliers, optimize their as-
sembly lines, and sell by auction their products to customers. They manage parts
and product inventories, minimize costs, optimize revenue, and try to out-earn
their competitors.

Agents compete against 5 other adversaries in each game. Different combina-
tions of competitors, in addition to the randomness in the game, cause different
market conditions to arise. An agent must perform well under many different
market conditions to succeed.

This paper describes one of several tools that our research team created to
improve the TAC-SCM agent software developer’s ability to test and evaluate
their software. Our goal in this work is to provide methods for developers to
test whether the modifications they make to their agents will improve their
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agent’s chance of success in the TAC-SCM competition. We explored two key
facets of testing: (1) variability reduction, and (2) manipulation of the market
characteristics.

We modified the TAC-SCM server to give a developer the ability to control the
extent of the randomness in the suppliers and the customers. We also generated
a limited replay capability so different combinations of agents could experience
the identical sequence of random processes in the suppliers and customers in
successive trials.

To manipulate the environment, we developed a pair of benchmark agents
that control market conditions to simulate specific levels of supply and demand
in the market. Any team wishing to evaluate their agent can use these stand-
alone market manipulator agents to create a configureable level of pressure in the
marketplace. The benchmark agents do not require alteration of the game server
or the agent being examined. They control the supply and demand characteristics
of a game by buying parts and selling computers at prices that generate the
desired demand and supply in the marketplace.

The remainder of this paper is organized as follows. In section 2 we describe
other research efforts in this area. Then we discuss some of the challenges we
face and provide an explanation of our approach in section 3 and our experi-
ments in section 4. Section 5 and 6 provide our conclusions and plans for future
work.

2 Related Work

TAC-SCM allows research teams to develop trading agents and compare
their relative performance in a complex, standardized environment [1]. Several
teams developed methods of analyzing agent performance. The University of
Southampton team examined running variations of their competitive agent with
different risk strategies for customer pricing [2] to show that their competitive
agent made the highest profit among the variations. They also developed a set
of controlled experiments for measuring the relative performance of several vari-
ations of procurement strategies [3], including Short Term Planning, Long Term
Planning, and Mixed strategy. The University of Michigan team analyzed post-
competition performance of the TAC-SCM 2004 finalists and explored relation-
ships between total profit and other measurements of performance [4]. The team
at the University of Texas at Austin focused on comparing relative performance
of variations of their TacTex [5], [6], [7] agent. Their baseline for each suite of
controlled tests was a consistent set of other competitor agents downloaded from
the SICS agent repository1.

While each of these teams compared relative agent performance no one de-
veloped a stable, universal benchmarking environment in which to characterize
agent performance against a standard reference. We felt in order for the field to
advance, we must explore this region of performance analysis.

1 http://www.sics.se/tac/showagents.php
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3 Approach

There are two key challenges in testing TAC-SCM agents. The first is that after
a team makes a slight modification or change of parameters, due to the inherent
randomness in the game, the team must run a significant number of simulations
to determine statistically whether or not the changes have improved the agent
and ensure that no undesired side effects have been introduced. The second
challenge is that outside of an actual competition, it is hard to recreate the
competitive effects of multiple agent interactions on the market. We explore these
two challenges in two separate approaches: (1) reducing the variability of the
gamespace and (2) generating specific market conditions for focused observation
of agent behavior.

3.1 Reducing Variability of the Gamespace

In an environment such as the trading agent competition, there are many vari-
ables which can influence total performance of a given agent. These include the
random variables such as the daily capacity of the suppliers and the demand of
the customers, as well as the effects that other agents playing in the game have
on the environment.

Since each game simulation takes an hour of real time (and usually 7 processors
to run 6 agents and the server), running a large number of games after each
minor change to the agent code may be unfeasible. The approach we use in this
research allows us to perform a small number of tests to indicate whether the
agent is behaving as desired before the large battery of tests is run. While the
approach may be statistically inconclusive for determining absolute performance
improvement, the additional variability reduction that these methods provide
will improve the accuracy of the regression test process.

We explored two methods of variability reduction: 1.) minimizing the random-
ness; and 2.) controlling the random number generator seed to enable repeatable
games. While we employed some of the variability reduction techniques described
below to facilitate our market manipulation experiments, a full treatment of vari-
ability reduction techniques will be presented in a future paper.

In our first set of experiments, we wanted to reduce the effect of random vari-
ables in the game. To minimize the randomness of a given game, we altered the
minimum and maximum intervals of the random variables in the TAC server
configuration file. In our experiments, we chose to lock the normally random
variables into neutral values representing the default values for each of the char-
acteristics (as listed in [1]). To do this, we altered the minimum and maximum
intervals that variables were allowed to hold in the server configuration files. We
set default values for all [min, max] intervals that are configurable within the
server. Thus our new settings for each interval are [x, x] where x = (min+max)

2 .
These changes allow us to observe two important aspects of our agent’s per-

formance at the locked default server values for supplier and customer behavior.
First, since we know the exact supply and demand levels in the game, we can
estimate how much of that demand our agent should be attempting to meet,
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and we can determine if the agent is functioning properly under steady-state
conditions. Second, by locking the game’s random variables on the customer
and supplier side, we can observe steady state performance differences between
different versions of our agent during the development cycle. This facilitates the
regression test process for the agent.

While the variability reduction method discussed above does allow us con-
trolled observations of the steady-state performance of an agent, it does not
allow an agent to experience and respond to the ebb and flow of supply and
demand that would normally occur in a supply chain marketplace. The second
method we explored to reduce variability preserves some of the fluctuating as-
pects of the marketplace while still allowing a strongly-controlled environment
for testing agent performance.

In the second method we created a system that allows the exact sequence
of supplier and consumer random variables in a game to be replayed. First,
we identified and separated the usages of the TAC servers’ random number
generator into two categories: server-side independent random processes and
server-side tie breaking. Our goal was to control the order of the random numbers
generated on server-side random processes without changing the behavior of the
client agents. We modified the server by disconnecting the server side random
processes and running them with their own configurable random seeds. Doing
this ensured game repeatability for the random processes used by the server
while still maintaining a separate true random number generation capability for
agent behavior.

3.2 Controlling the Market Conditions

The main focus of this paper is to discuss the techniques we used to test an agent
experiencing the potential competitive pressure of yet-to-be-seen competitors. To
generate various competitive effects we developed two new agents, the Market
Relief or “do nothing” agent, and the Market Pressure agent. The Market Relief
Agent occupies one or more of the 6 slots in a TAC simulation without making
any financial transactions. This agent provides relief to the market from the
perspective of the other agents in two ways. First, it reduces demand on the
suppliers which leads to a lowering of supplier prices. Second, it reduces available
supply for the customers which causes customers to pay more for computers from
other agents.

Designing the Market Relief Agent was relatively simple. We used the exam-
ple agent code available for download from the Swedish Institute of Computer
Science (SICS) Trading Agent Competition website.2 We modified several ar-
eas in the code where it made decisions regarding which customers’ request for
quotes (RFQs) the agent should make offers on. By setting those decisions to
never bid on RFQs, we effectively disabled the agent. Since it never made any
bids to customers and it was designed as a build-to-order agent, it never ordered
any supplies. When used in a testing environment with other agents, this agent
reduces demand on the suppliers and reduces available supply of products for
2 http://www.sics.se/tac/page.php?id=16
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Fig. 1. Market Pressure Effects on MinneTAC and Available Market Share

the customers. Both of these actions are equivalent to reducing competition and
pressure in the marketplace.

The configurable Market Pressure Agent does the opposite: it increases avail-
able supply to customers, allowing them to pay less for computers while simulta-
neously putting more demand on suppliers, encouraging them to increase their
prices. Our Market Pressure Agent operates by continually adjusting its cus-
tomer offer prices to achieve a desired market share. In our experiments we set
the market pressure agent to achieve a certain market share across all customer
market sectors uniformly, but the agent could be configured to achieve any arbi-
trary level of the customer market in each sector independently. Since the agent
is a build-to-order agent, it purchases parts to build the computers ordered, and
the market share achieved on the customer side is reflected on the supplier side.
This agent can capture market share on the interval 0% to 100%3 because it has
an unlimited line of credit and has no concern for its own profit-earning capa-
bility. When the Market Pressure Agent captures the desired customer market
share, no other agent(s) can use that portion of the customer market: the Market
Pressure Agent creates pressure in the marketplace.

By using combinations of Market Relief and Market Pressure Agents, devel-
opers can control the market environment. Figure 1 shows how the setting of
Market Pressure affects remaining available market share as well as market share

3 Note that in TAC-SCM, an agent can bid on and win a customer order without
actually fulfilling the order. In this way, a single Market Pressure Agent is capable
of absorbing 100% of the customer market share even though it could not actually
fill these orders due to capacity constraints.
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actually obtained by an agent under observation4. When a developer makes al-
terations to a competitive agent they wish to observe, they can use these tools in
concert with the repeatable-game server to benchmark and compare the change
in performance of their alteration.

4 Experiments

Using our Market Pressure Agent and a server set for locked-default values of
the customer and supplier random variables5, we examine what happens to an
agent when we alter the levels of customer demand available in the marketplace.
Figure 2, shows a composite response of the MinneTAC [8] agent over 12 locked-
default games against a Market Pressure agent with various settings for customer
market share absorbed. MinneTAC earns a relatively constant profit (the height
of the middle band) until the Market Pressure Agent absorbs a very large portion
of the market share6 and begins to compete with MinneTAC for customers.
At this point, MinneTAC loses market share because of the smaller available
customer base. While this general behavior is to be expected in any marketplace,
knowing the specific actions an agent will take in a competitive environment is
very important when trying to diagnose if the agent is making correct decisions.
We next examine several underlying indicators of specific behavior with respect
to market pressure: revenue, profit, and cost.

In Figure 2 we depict the key profit components, measured at 12 different lev-
els of available market customer orders. Here we notice some interesting trends:
while the revenue is lower when there is less customer demand, our aggregate
costs are also higher (because of competition with the Market Pressure Agent)
which further exacerbates a decline in profit. When we look at the costs per-
product in Figure 3 we can see exactly how much of our potential profit is
consumed by these costs.

Developers can use a detailed performance analysis such as this to uncover
undesirable behaviors in their agents. One behavior that we discovered while
evaluating MinneTAC was that as customer demand decreased, the amount Min-
neTAC spent on storage fees7 per order increased 20-fold, as shown in Figure 4.
In fact, as a fraction of total costs, storage costs range from approximately 1.5%

4 This graph was generated from a server using locked-default values for all random
variables for the customers and suppliers.

5 Recall that for this method, we set default values for all [min, max] intervals that
were configureable within the server. Thus our new settings for each interval are
[x, x] where x = (min+max)

2
.

6 We measure market share using the CMieux Analysis and Instrumentation Toolkit
for TAC SCM software [9] developed at the Carnegie Melon University. This software
is available at http://www.cs.cmu.edu/˜mbenisch/ait/ or in the 3rd party software
section of the SICS TAC-SCM website.

7 In a standard TAC-SCM competition, the storage rates are randomly determined
constants on the interval [25%, 50%] The storage rate that will be used for an entire
game is selected at random and broadcast to all agents at the start of the game.
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Fig. 2. Market Pressure Effects on MinneTAC Revenue

Fig. 3. Market Pressure Effects on MinneTAC Revenue (per product unit)

of the total costs under low pressure markets to over 12% of the total cost in
high pressure markets. After investigating the problem, the code developers dis-
covered that the agent was not considering storage costs in the profit function
being optimized. If the profit function had included the storage costs in the cal-
culation, it probably would have purchased and held fewer components or sold
computers at a more competitive price to avoid excessive storage fees.
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Fig. 4. Market Pressure Effects on MinneTAC Storage Costs

For our next experiment, we wanted to compare the performance of several
agents under various market conditions: the winning agent in the TAC-SCM
2005 competition, TacTex (University of Texas at Austin); the 3rd place final-
ist, Mertacor (Aristotle University of Thessaloniki, Greece); and MinneTAC, our
agent that took 5th place in the finals. Since we wanted to see how these agents
would behave under various market conditions during games with unlocked ran-
dom variables, we decided to replay the same full-random game for each agent,
with the only variation being what competitor was selected, and what the pres-
sure setting on the Market Pressure Agent was. We set the server to use our
repeatable mode8 and examined the performance of these agents individually
under various market pressure conditions.

We used unmet demand (the amount of unfulfilled customer orders as a frac-
tion of the total number of customer orders) as a measure of market pressure. The
fewer the number of unmet customer orders, the more downward product-price
pressure there is amongst competing manufacturers. Figure 5 shows the perfor-
mance of the three agents at various levels of unmet customer orders. Notice
that TacTex outperforms the other two agents by a wide margin ($20M in this
game) until there are very few unmet customer orders remaining (approximately

8 Recall that repeatable mode uses the modified server set with the identical initial
random seeds for controlling the consumer and supplier random variables generated
for every game. This allows independent control of the sequence of random numbers
generated for the server processes, tie-breaking, and agent behavior.
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Fig. 5. Comparison of Agent Performance. In this figure, the closed circles represent
actual values for TacTex, the x’s represent actual values for MinneTAC and the +’s
represent actual values for Mertacor. The lines represent the best-fit polynomial curves
for each agent’s data.

7% or about 1800 orders in this game). At this point, TacTex performance drops
significantly, and the other two agents perform better. Interestingly, in the 2005
TAC-SCM finals games, the unmet customer demand varied from 7% to 27%
across all games. As seen in the figure, in this region of unmet demand, TacTex
has the best performance of the three agents we tested.

If we consider the area under each competitor’s profit curve as another indi-
cation of agent performance, we can determine not only at which unmet demand
levels does an agent do well, but also how well the agent will perform under a
spectrum of market conditions. By making changes that increase the area un-
der the profit curve, developers can improve their agent’s performance against
yet-to-be-seen competitors.

5 Conclusion

We developed a framework of tools to control the TAC-SCM simulation envi-
ronment and measure the performance of trading agents under various market
conditions. Since we are likely to see high market pressures exhibited by competi-
tors in actual competitions, we can use these market pressure tools to simulate
various market pressure levels and discover undesirable agent behavior before
the agent is used in competition. Furthermore, teams can now evaluate their
agents in a variety of market environments that were previously unable to be
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simulated with combinations of existing past competitors. Finally, these tools al-
low research teams to better understand how individual changes to their agents
affect performance in various market conditions. We believe that agents opti-
mized with the market pressure tools will perform better in actual competition.

6 Future Work

While we’ve provided a benchmark framework and a set of tools that will allow
developers to characterize the performance of their agents against a standard
reference, there are many areas in the framework that need refining.

For example, while our current Market Pressure Agent has complete control
over how many bids it generates for customer RFQs, it has only a limited influ-
ence over the pressure it creates in the supply-side chain. While it is clear how to
capture an arbitrary percentage of the customer market, it remains unclear what
the corresponding meaning of market share is on the supplier side since supplier
side contracts have an additional dimension (delivery time) that must be consid-
ered. When a new customer order arrives, the Market Pressure Agent purchases
parts immediately in high quantities with an as-soon-as-possible delivery date.
But because other agents compete for parts in 3 dimensions (quantity, price, and
delivery date), and the Market Pressure Agent only operates in the quantity and
price dimensions, the Market Pressure Agent is unable to create pressure against
future purchases of parts the other agents make. As a result, our agent tightly
controls market share in the product market, but it only loosely influences the
parts market. Resolving this problem is a topic for future research.

A second area of future work is to develop a variable-pressure agent. Instead
of trying to achieve a fixed pressure level for the entire game, this new agent
could achieve different market pressures for pre-determined intervals throughout
the game. We could then examine the ability of an observed agent to react to
the change in market pressure to measure its level of adaptability.
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Abstract. In this paper, we consider competition between sellers offer-
ing similar items in concurrent online auctions, where each seller must set
its individual auction parameters (such as the reserve price) in such a way
as to attract buyers. We show that in the case of two sellers with asym-
metric production costs, there exists a pure Nash equilibrium in which
both sellers set reserve prices above their production costs. In addition,
we show that, rather than setting a reserve price, a seller can further im-
prove its utility by shill bidding (i.e., pretending to be a buyer in order
to bid in its own auction). But, through the use of an evolutionary simu-
lation, we show that this shill bidding introduces inefficiences within the
market. However, we then go on to show that these inefficiences can be
reduced when the mediating auction institution uses appropriate auction
fees that deter sellers from submitting shill bids. Specifically, we compare
two types of auction fees and show that, in this respect, those based on
the difference between the closing price and the reserve price are more
effective than the commonly used fees that are based on closing price
alone.

1 Introduction

Online markets are becoming increasingly prevalent and extend to a wide variety
of areas such as e-commerce, Grid computing, recommender systems, and sensor
networks [2,5,12]. To date, much of the existing research has focused on the de-
sign and operation of individual auctions or exchanges for allocating goods and
services. In practice, however, similar items are typically offered by multiple in-
dependent sellers that compete for buyers and set their own terms and conditions
(such as their reserve price and the type and duration of the auction) within an
institution that mediates between buyers and sellers. Examples of such institu-
tions include eBay, Amazon and Yahoo!, where at any point in time multiple con-
current auctions with different settings are selling similar objects, often resulting
in strong competition1. Given this competition, a key research question is how
� This research was undertaken as part of the EPSRC funded project on Market-Based

Control (GR/T10664/01).
1 To illustrate the scale of this competition, within eBay alone close to a thousand auc-

tions for selling Apple’s iPod nano were running worldwide at the time of writing.

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 189–203, 2007.
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a seller should select their auction settings in order to best attract buyers and
so increase their expected profits. In this paper, we consider this issue in terms
of setting the seller’s reserve price (since the role of the reserve price has received
attention in both competitive and non-competitive settings). In particular, we ex-
tend the existing analysis by considering how sellers may improve their profit by
shill bidding (i.e. bidding within their own auction as a means of setting an im-
plicit reserve price), and moreover, we investigate how the institution can deter
this undesirable shill bidding through the use of appropriate auction fees.

In more detail, the existing literature on competing sellers (see section 5) has
shown that setting a reserve price has two opposing effects on the seller’s profit.
On the one hand, it increases the expected profit by guaranteeing a minimum
price in the case that the item is sold. On the other hand, it deters potential
buyers from participating, and thus decreases the expected profits. However, this
analysis neglects the possibility that sellers may avoid the latter by shill bidding
(i.e., by covertly bidding within their own auction) and announcing a low reserve
price, thereby overcoming the disadvantage of deterring bidders and, at the same
time, ensuring that the item is not sold at too low a price. However, shill bidding
undermines buyers’ trust and has an adverse effect on market efficiency, since
setting a reserve price allows the bidders to make informed decisions of which
auction to attend. For these reasons, shill bidding is illegal in many countries.
Nevertheless it is one of the most common forms of internet auction fraud [8,13],
and is often hard to detect in online auctions, where participants are relatively
anonymous. To this end, in this paper, in addition to the above issues, we inves-
tigate how auction fees (i.e. the payments made by the seller to the institution
for its services as a mediator) can be used by an institution to reduce the incen-
tive for shill bidding within a setting of competing sellers. More specifically, we
make the following contributions:

– We analytically describe the seller’s equilibrium strategies for setting reserve
prices for the two-seller case, and we advance the current state-of-the-art by
finding Nash equilibria by iteratively discretising the search space. We show
that, although no pure strategies exist when the sellers are symmetric, these
can be found if production costs differ sufficiently between the two sellers.

– For the first time, we investigate shill bidding within a setting of competing
sellers. To this end, we derive analytical expressions for the seller’s expected
utility when sellers shill bid. Using these expressions, we show that, without
auction fees, a seller can considerably benefit by shill bidding when faced
with competition.

– We compare various types of auction fees, and evaluate their ability to deter
shill bidding and their impact on market efficiency. Since the efficiency and
the sellers’ equilibrium strategies in case of auction fees cannot be calculated
analytically, we introduce an evolutionary simulation that allows us to sim-
ulate the market environment, and learn the seller’s strategies when auction
fees are applied. Using this simulation, we show that, by setting appropri-
ate auction fees, an institution can both deter shill bidding and increase
efficiency. This analysis is novel for a market with competing sellers.
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The remainder of the paper is organised as follows. Section 2 describes the
model of competing markets in detail. Section 3 analyses the buyer and seller
strategies, and identifies the cases for which a pure Nash equilibrium exists.
Section 4 compares the analytical results to the outcomes using the evolutionary
simulation, and extends the results by introducing auction fees and measuring
market efficiency. An overview of the related work is given in section 5 and
section 6 concludes.

2 Model of Competing Sellers

The model of competing markets consists of buyers, sellers, and a mediator. Each
seller is associated with a separate auction. The mediator is an institution such
as eBay or Yahoo! that runs the actual auctions and acts as a broker between
the buyers and the sellers. The competing sellers game consists of four stages
and proceeds as follows (details are given below). In the first stage, the mediator
announces the auction fees to the sellers. After observing the fees, the sellers
simultaneously post their reserve prices in the second stage. In the third stage,
the buyers simultaneously select an auction (or, equivalently, a seller) based on
the observed reserve prices. In the final stage, the buyers submit their bids and
the auctions are executed concurrently. In addition, a seller can also participate
in the final stage by placing a shill bid.

In line with existing research on competing markets, we assume each bidder
selects at most one auction [3,7,10]. This assumption is reasonable when items are
complete substitutes and a buyer requires only one item. Although the model
can be extended to allow for complementarities and participation in multiple
markets, this introduces additional challenges for the analysis of bidder and
seller strategies, and thus, here, we seek to understand the canonical behaviour.

2.1 The Mediator

The mediator decides on the auction fees and determines the market rules or
mechanism to be used in the auctions. In our current model, we use a second-
price sealed bid (or Vickrey) auction, in which the highest bidder wins but pays
the price of the second-highest bidder. This mechanism was chosen because:
(i) it requires little communication and is fast to execute, and (ii) it requires
minimal reasoning on the part of the buyers since bidding the true value is a
weakly dominant strategy [9]. Moreover, previous research has shown that, for
the single-unit auction setting described above, the second-price auction is an
equilibrium strategy in the competing sellers game in which a seller can select
any direct mechanism [10]. Although many other equilibria exist, the expected
revenue for the buyer is equivalent and thus does not affect the buyer’s decision
of seller. Therefore, the results presented here are not limited to the second-price
auction, but generalise to any other mechanism that allocates the good to the
buyer with the highest valuation (provided this valuation exceeds the reserve
price), such as the English and the first-price auction.
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In this work, we consider the following two types of commission fees:2

– Closing Price (CP). This fee is paid by the seller only if the item is sold,
and is a fraction β of the closing price, where β is the CP commission rate.

– Reserve-Difference (RD). This variant of the first fee is calculated as
a fraction δ of the difference between the selling price and the seller’s de-
clared reserve price, where δ is the RD commission rate. Note that this fee
is essentially a combination of a CP fee and a negative RD fee.

The first type of fee is the most common in online auctions such as eBay, Ya-
hoo! and Amazon. In practice the rate is often not a constant, but depends on
factors such as the domain (books, cd’s, computers, etc.) and the price range.
However, since here we investigate a general model and abstract away from any
specific domain, we assume a constant rate. The second type of fee is introduced
in previous literature, where it is called the commision fee and is shown to pre-
vent shilling for particular bidder valuation distributions in a single multi-stage
auction [13]. Similarly, our aim is to apply auction fees in order to reduce the
incentive of a seller to shill bid. However, in addition, we are concerned with
how efficiency can be improved using such fees. To this end, we compare the
effectiveness of this fee with the more established CP commission fee.

2.2 The Sellers

A seller has the option to openly declare a minimum or reserve price. In addition,
the seller is able to shill bid. If the shill bid wins the auction, effectively no sale
is made. However, a seller is still required to pay the auction fees.

2.3 The Buyers

A buyer first selects a single auction based on the announced reserve price, and
then bids in the selected auction. The bidding is not affected by the reserve price;
it is a weakly dominant strategy to bid the true value [9]. On the other hand,
the reserve price is an important factor in determining which auction the buyer
should choose. To this end, the buyer’s equilibrium strategies for selecting an
auction are detailed in the next section.

3 Analysis

We now analyse the bidder and seller strategies for the above model. A complete
analysis of the players’ equilibrium behaviour and of the market efficiency for the
2 Other common types of fees in online auctions are the Listing Fee and the Reserve

Price Fee. The former is an upfront fixed payment for listing the item. Because the fee
is payed irrespective of the outcome or the reserve price, it does not affect a seller’s
behaviour, and so we do not consider it here [13]. The latter is a fraction of the
declared reserve price, and is also paid upfront. We do not consider this fee because,
when it is positive, it has an adverse effect and actually provides an additional
incentive for the seller to shill (this is then called reserve price shilling [8]).
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above model is intractable [10]. Therefore, in this section, we analyse a simplified
version with two sellers and without auction fees (the complete model with
auction fees and the market efficiency are then investigated using a simulation
approach in section 4). Here, we extend the analysis in [3] by locating pure
seller Nash equilibria for cases in which there is and there is not shill bidding.
Following [3,7,10], we assume that each buyer only requires one item, each seller
offers one item for sale, and all items are perfect substitutes (i.e., the buyer’s
choice of seller is based on the declared reserve prices only). As mentioned earlier,
each buyer can attend at most one auction. Furthermore, all buyer and seller
preferences are described by von Neumann and Morgenstern utility functions,
and players are assumed to be risk neutral.

We use the following notation. Seller i’s reserve price and shill bid are denoted
by ri and si resp. Without loss of generality, we assume rj ≥ ri if j > i. Each
seller has production costs xi. A buyer’s valuation is denoted by v, and N is
the total number of buyers. The buyer valuations are independently drawn from
the set [0, 1] according to a commonly known cumulative distribution F with a
density f and support [0, 1].

3.1 Buyer Equilibrium Behaviour

The buyer policy for two sellers has been analysed in [3], and has been extended
for multiple sellers in [7]. Clearly, a rational buyer with valuation v < r1 will
not attend any auction. Furthermore, if r1 < v < r2, the buyer will always
go to seller 1. The interesting case occurs when v > r2. In a symmetric Nash
equilibrium, there is a unique cut-off point 1 ≥ w ≥ r2 where buyers with v < w
will always go to seller 1, and buyers with v ≥ w will randomize between the two
auctions with equal probability. The cut-off point w is exactly where a buyer’s
expected utility is equal for both auctions, and is thus found by solving the
following equation (for proof see [3]):

r1F(r1, w)N−1 + (N − 1)
∫ w

r1

yF(y, w)N−2dF (y) = r2F(w, w)N−1 (1)

where F(y, w) = F (y) + [1 − F (w)]/2. When r2 is close to 1, for some values of
r1 equation 1 never holds, and thus, w = 1 (i.e., auction 1 is always better, and
thus all buyers go to this auction). Given the buyers’ cut-off point, we can now
calculate the expected revenue for the sellers.

3.2 Seller Equilibrium Behaviour

In order to calculate the equilibrium behaviour of the sellers, we first derive
a general expression for the sellers’ expected utility. We then apply this result
to three different cases: (i) where both sellers declare public reserve prices, (ii)
where one seller declares a public reserve price and the other submits a shill bid,
and (iii) where both sellers submit shill bids. When a seller decides to shill bid,
the declared reserve price does not offer any additional benefit. We therefore
assume in the following that a seller that shills declares no reserve price (or,
equivalently, a zero reserve price).
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Sellers’ Expected Utility. The utility of a seller in any auction is calculated
by considering the probability of one of three events occurring: (i) no bidders
having valuations above the reserve price and the item does not sell, (ii) only
one bidder having a valuation above the reserve price and the item sells at the
reserve price, or (iii) two or more bidders having valuations above the reserve
price and the item sells at a price equal to the second highest valuation. Thus,
the expected utility of seller i, assuming that they have a production cost of xi

and set a reserve price of ri is given by:

Ui(ri, xi) = N(ri − xi)G(ri)(1 − G(ri))N−1

+ N(N − 1)
∫ 1

r1

(xi − y)G′(y)G(y)(1 − G(y))N−2dy (2)

where G(y) denotes the probability that any bidder is present in the auction and
that this bidder has a valuation greater than y.

Now, in the standard auction with no competing sellers, we have the standard
result that G(y) = 1− F (y) and G′(y) = −f(y) (see [9], Ch. 2). However, in the
case of two competing sellers, we must modify this expression for G(y) to account
for the fact that the number and valuation of the bidders that attend each of the
auctions is determined by the bidders’ cut-off point w. Thus, for sellers 1 and 2
(where seller 1 has the lower reserve price), G1 and G2 are given by:

G1(y) =

{
1+F (w)

2 − F (y) y < w
1−F (y)

2 y ≥ w
G2(y) =

{
1−F (w)

2 y < w
1−F (y)

2 y ≥ w
(3)

These expressions show that the expected utility of each seller is determined, not
just by the reserve price that they themselves set, but also by the reserve price set
by the competing seller (since, both these values determine the bidders’ cut-off
point, w, and thus the number and valuation of bidders who attend each auction).
Thus the equilibrium behaviour of the sellers is complex, and we consider each
of the three cases discussed earlier separately.

Both Sellers Announce Public Reserve Prices. When both sellers an-
nounce public reserve prices, the equilibrium strategy of each seller will be given
by a Nash equilibrium, at which each seller’s reserve price is a utility maximising
best response to the reserve price of the competing seller. In the case of symmet-
rical sellers, where x1 = x2, it is known that no pure strategy Nash equilibrium
exists. Since each seller can maximise their expected utility by setting a reserve
price marginally below that of the competing seller, a mixed strategy equilibrium
results [3]. However, where the sellers have production costs that are sufficiently
different from one another, this is not the case. Whilst undercutting the compet-
ing seller still yields some benefit, it is more advantageous to announce a higher
reserve price that attracts less bidders but generates greater revenue. Thus, a
pure Nash equilibrium exists where the reserve price of both sellers is higher
than their production costs.
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Fig. 1. (a) The grey area shows the combinations of production costs for which a
pure Nash equilibrium exists (N = 10 and buyer valuations are distributed uniformly).
(b) Example demonstrating the effect of shill bidding on the expected utility of sellers 1
and 2 (N = 10, x1 = 0.25, and x2 = 0.5).

Although we find a complete characterisation of this equilibrium solution in-
tractable, we are able to find pure strategy Nash equilibria for specific cases by
iteratively discretising the space of possible reserve prices. That is, for all possi-
ble values of r1 and r2 that satisfy the conditions x1 ≤ r1 ≤ 1 and r1 ≤ r2 ≤ 1,
we calculate w and hence the expected utility of the two sellers. We then search
these reserve price combinations to find the values of r∗1 and r∗2 that represents
the utility maximising best responses to one another. By iterating the process
and using a finer discretisation at each stage, we are able to calculate the Nash
equilibrium to any degree of precision, and we can confirm that this is indeed the
pure Nash equilibrium by checking that the utility of seller 2 cannot be further
improved by undercutting seller 1 (i.e. U2(r2, x2) < U2(r∗2 , x2) ∀ r2 < r∗1). Fig-
ure 1a shows a plot indicating the range of asymmetric cases (i.e., cases where
x1 �= x2) in which we find a pure strategy Nash equilibrium. As can be seen, the
symmetric case is very much a special case, and the majority of possible pro-
duction cost combinations yield unique pure strategy Nash equilibria, at which
we can calculate the seller’s expected utility.

One Seller Shill Bids. Rather than announce a public reserve price, either of
the sellers may choose to announce a reserve price of zero to attract bidders, and
then submit a shill bid to prevent the item from selling at too low a price. Thus
at this equilibrium, we must determine the value of the shill bid submitted and
the value of the reserve price set by the seller who does not shill bid. However,
since the value of the shill bid does not affect the revenue of the other seller, we
are not looking for a Nash equilibrium, but can consider each seller individually.

Thus, the seller who does not shill bid (seller 2 since r2 will be greater than r1)
should declare a reserve price that is a best response to the zero reserve price an-
nounced by the bidder who does shill bid. This reserve price is simply given by the
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value of r2 that maximises U2(r2, x2), given that we calculate G2(y) as in equation
3 and taking r1 = 0 in order to calculate w.

Given the best response reserve price of seller 2, and the resulting value of w,
we can also calculate the shill bid that seller 1 should submit in order to maximise
its own expected utility. By substituting s1 for r1 in equation 2, and using G1(y)
as given in equation 3, we find the shill bid that maximises U1(s1, x1).

Both Sellers Shill Bid. Finally, we consider the case that both sellers choose
to declare a zero reserve price and both submit shill bids. In this case, the bidders
will randomise equally between attending either auction, since there is no reserve
price information to guide their decision. Thus we can find the equilibrium shill
bids of both sellers, by again substituting si for ri in equation 2 and hence finding
the value of si that maximises Ui(si, xi) when w = 0.

Figure 1b shows a typical example of the four resulting strategy combinations
displayed as a normal form game. Note that in this example, both sellers have a
dominant strategy to submit shill bids, and thus this result is a Nash equilibrium
(this result holds in general in the absence of auction fees). At this equilibrium
seller 2 achieves its maximum possible utility. However, seller 1 receives less
utility at this equilibrium than in the case when neither seller shill bids. Thus,
seller 1 is better off with a mechanism that deters all parties from submitting
shill bids, and we now consider how this can be achieved through the use of
appropriate auction fees.

4 Auction Fees and Market Efficiency

So far, we have ignored auction fees and market efficiency in the analysis of the
competing sellers game. In this section we compare the different types of auction
fees described in section 2.1, and consider which is most effective at deterring
shill bidding. Furthermore, we investigate to what extent the market is efficient
and how auction fees and shill bidding by the seller affect this efficiency. As
discussed previously, efficiency is a desirable property since an efficient market
extracts the maximum surplus that is available. It is therefore important to take
efficiency into consideration when finding appropriate auction fees.

However, the presence of auction fees adds considerable complexity to the
analysis of the competing sellers game. Without them, we can reasonably assume
that a seller declares a zero reserve price in combination with a shill bid. With
them, on the other hand, this is not necessarily a utility-maximising strategy (i.e.,
a seller may benefit by having both a shill bid and setting a non-zero reserve
price). Thus, the dimensionality of the strategy space is significantly increased.

In view of the above, we use a simulation based on evolutionary algorithms
(EAs) to investigate the competing sellers game with auction fees and the effi-
ciency of the market. EAs are chosen because they provide a powerful metaphor
for learning in economics. In addition, they have been successfully applied in the
past to settings where game-theoretic solutions are not available [1,2,6].

In the following, we first describe the evolutionary simulation (section 4.1).
We then evaluate the simulation by using analytical outcomes as a benchmark
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in section 4.2. In section 4.3 we investigate the efficiency of the competing sellers
game with and without shill bidding. Lastly, we show the results using auction
fees and how these affect shill bidding and efficiency.

4.1 Evolutionary Simulation

The simulation evolves a population of seller strategies using an EA. Here, a
seller strategy consists of both the declared reserve price and a shill bid, and is
encoded on the so-called chromosome using real values.3 We allow each seller to
be of a different type, where this type is determined by its production costs. In
case the types differ (i.e., the sellers are asymmetric), the chromosome contains
a separate reserve price and shill bid for each type. The fitness or performance
of each strategy is evaluated by executing the competing sellers game with M
sellers as described in section 2, and works as follows. First, M seller individuals
are randomly selected from the population and compete in a number of con-
secutive games. In these games, each seller sets the reserve price and shill bid
according to its strategy. The bidder strategies are calculated numerically by
solving equation 1. The fitness values of the individuals are then calculated by
taking the average obtained utility by each seller. In case a strategy represents
several types of players, the strategies are evaluated several times with different
roles for the seller in each evaluation. In other words, the sellers are assigned a
different type in each evaluation to obtain a good estimate of the performance
of the entire chromosome. The process of selecting and evaluating individuals is
repeated until all the individuals of the population are evaluated.

The fittest seller individuals survive and are transferred to the next generation,
whereas poor performing individuals are removed from the population. New
strategies are also explored by slightly modifying existing individuals using a
mutation operator. This evolutionary process is repeated for a fixed number of
iterations.

Note that the EA is not simply used to find an optimal solution for a static
problem, as the optimal strategy depends on the strategies of other individuals
in the population, resulting in complex dynamics. Furthermore, although we
apply the simulation to the case of two sellers in this paper (thus enabling us
to compare simulation results with the analytical results derived in section 3),
it is in no way restricted to this case. Increasing the number of sellers does not
require any change in methodology, although it does increase the complexity of
the search task.

The general settings used for all experiments reported in this paper are as
follows: the number of sellers M = 2, the population size is 30, and the evolu-
tionary results are obtained after 1000 generations. Each strategy is evaluated
by playing 1000 competing sellers games with randomly generated buyers. The
buyer valuations are selected from a uniform distribution with support [0, 1].
In order to obtain statistically significant results, we report average results and
3 A class of EAs called Evolution Strategies are most appropriate where strategies are

encoded using real values, and thus we use them here. For more details, see [6], where
a very similar methodology was used for bilateral negotiation.
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Fig. 2. Plots showing agreement between analytical Nash equilibrium (shown as con-
tinuous curves) and evolutionary results (shown as error-bars representing the standard
deviation) for the competing sellers game with varying number of buyers for the cases
where no seller shill bids (a), one of the sellers shill bids (b and c), and both sellers
shill bid (d). Production costs are set to x1 = 0.25 and x2 = 0.50.

standard deviations of 30 runs of the simulation using the same settings but with
different random seeds.

4.2 Evolutionary vs. Analytical Results

We first apply the analytical results from section 3.2 as a benchmark to evaluate
the evolutionary simulation. To this end, figure 2 shows both the Nash equi-
librium solutions (calculated as described in section 3.2) and the evolutionary
results for cases with and without shill bidding. In these experiments, seller 1
and 2’s production costs are set to 0.25 and 0.5 respectively. These settings were
chosen to illustrate representative outcomes when both sellers have non-zero
and asymmetric production costs. As can be seen from figure 2, the results show
a perfect match. We also experimented with other combinations of production
costs in the range between 0 and 0.5, and for cases where both sellers shill bid and



Competing Sellers in Online Markets 199

no seller shill bids, resulting in an equally good match between game-theoretic
and evolutionary outcomes (results are not shown due to space limitations).

4.3 Efficiency

Efficiency is generally a desirable property of a market since it extracts the max-
imum surplus available. It is therefore important to investigate how shill bidding
and auction fees affect efficiency. Here, we consider allocative efficiency, which is
achieved when the item is awarded to the buyer with the highest valuation, or to
no buyer if the highest valuation is below the production costs. More formally,
we define allocative efficiency as follows:

Definition 1. Efficient Allocation. An efficient allocation is given by:

K∗ = arg max
K∈K

(
N∑

i=1

vi(K) −
M∑

i=1

xi(K)

)

,

where K denotes all possible allocations, vi(K) denotes bidder i’s utility for a
given allocation K, and xi(K) seller i’s production costs for a given allocation.
We measure the relative efficiency η of a given allocation K̂ as follows:4

η =

N∑

i=1

vi(K̂) +
M∑

i=1

(xi − xi(K̂))

N∑

i=1

vi(K∗) +
M∑

i=1

(xi − xi(K∗))

(4)

Now, a certain amount of inefficiency is inherent to the competing sellers game
as a result of the buyers randomising over sellers. For example, if two buyers
with the highest valuation both happen to choose seller 1, only one of them
is allocated the item and allocative efficiency is not reached. In addition, shill
bidding can lower the efficiency. This is in the first place because shill bidding
enables a seller to hide production costs and therefore attract buyers that have
no chance of winning. A second source of inefficiency arises because a declared
reserve price is usually low due to competition. An optimal shill bid, on the other
hand, is higher than a declared reserve price (and higher than production costs),
resulting in less sales, and therefore a lower efficiency.

We are able to quantify this degree of inefficiency using the evolutionary
simulation. In detail, for N = 10, x1 = 0.25, and x2 = 0.5, the average relative
efficiency η when the sellers neither shill bid nor declare a reserve price is 0.948±
0.000, and is 0.946 ± 0.002 with reserve prices (in equilibrium). Clearly, the
efficiency in these two cases is very similar. This is because the reserve prices
in equilibrium are relatively low due to competition. With shill bidding, on the
other hand, η is much lower and equals 0.910±0.004 on average for these settings.
Qualitatively similar results are obtained in other settings.
4 Note that in order to prevent a negative value for η, we add production costs xi in

both the denominator and the numerator.



200 E.H. Gerding et al.

0 0.1 0.2 0.3 0.4 0.5
0.9

0.91

0.92

0.93

0.94

0.95
Relative Efficiency

Commission Rate

CP
RD

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Fraction of Shill−Bid Wins

Commission Rate

CP
RD

Fig. 3. Average relative efficiency η and fraction of shill-bid wins for two types of
auction fees and various levels of commission rates, for N = 10 and x1 = x2 = 0. The
error-bars indicate the standard deviation.

4.4 Auction Fees

In order to reduce the incentive for sellers to shill bid, and to increase the relative
efficiency η, we introduce auction fees as described in section 2.1. Specifically, us-
ing the evolutionary simulation, we compare the effectiveness of the closing price
(CP) commission fee and the reserve-difference (RD) commission fee (see sec-
tion 2.1). Here, the effectiveness of a fee is measured by the relative efficiency η,
as defined in section 4.3, and by the fraction of shill-bid wins (i.e., the fraction
of auctions that result in a shill bid being the highest bid).

Thus, in order to directly compare the auction fees, we first consider the case
without production costs. To this end, figure 3 compares the relative efficiency
and fraction of shill-bid wins for the two types of auction fees. These results show
that the RD fee is better able to reduce shill bidding for this setting. However,
in case of high commission rates, a higher efficiency is obtained using the CP
fee. This is because, as the RD commission fee is effectively a combination of a
CP fee and a negative RD fee (see section 2.1), it rewards a high reserve price. If
the commission rate is sufficiently high, the reserve price is set higher compared
to the equilibrium price in absence of any auction fees, resulting in relatively
inefficient outcomes. The CP commission fee, on the other hand, is neutral with
regard to the reserve price.

In case of production costs we find similar results. However, if both production
costs and CP commission rates are very high (e.g. both above 30%), a sharp
decline in efficiency is observed using the CP fee. A seller will then set a very
high reserve price to prevent making a loss in case it sells, and, as a result,
efficiency becomes very low. Using the RD commission fee, on the other hand,
efficiency does not decrease because sellers never make a loss as long as they
report a reserve price above their production costs. The latter type of fee is
therefore more robust to high production costs.

Another advantage of the RD auction fee is that sellers pay less fees on av-
erage, while obtaining the same efficiency gain. This is relevant because, if fees
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become too high, sellers will go to another mediator to sell their goods. Thus, an
important goal of the mediator is to deter shill bidding and, at the same time,
maintain reasonable rates. This goal is best achieved by the RD auction fee.

To conclude, the experiments show that in most cases highest efficiency is
obtained by the commonly applied CP auction fees. The RD auction scheme,
however, is more effective in deterring shill bidding and is also more robust
to high production costs. This is consistent with earlier results showing that
RD auction fees can deter shill bidding for isolated auctions [13]. However, our
results show, for the first time, that these fees are also effective for a setting
where sellers compete and in case of production costs. Moreover, we see that,
when using the RD fee, sellers pay much less to the mediator overall compared
to CP auction fees. The latter is especially important in a larger setting where
multiple mediating institutions compete to attract sellers.

5 Related Work

McAfee [10] was the first to deal with mechanism design and reserve prices in the
context of competing sellers. In his paper, sellers can choose any direct mecha-
nism and these mechanisms are conducted for multiple periods with discounted
payoffs for future periods. However, he assumed that (i) a seller ignores his in-
fluence on the profits offered to buyers by other sellers, and (ii) that expected
profits associated with future profits are invariant to deviation of a seller in the
current period. As McAfee notes, these assumptions are only reasonable in case
of infinitely many players. This contrasts with our work, where we focus on the
more realistic finite case with small numbers of buyers and sellers, where strate-
gic considerations become important. Subsequent papers have relaxed some of
the strong assumptions. In [3], a unique equilibrium strategy for the buyers in
the two-seller case is derived (see also section 3.1). In addition, they show that
in the seller’s game there always exists an equilibrium, but it cannot be a sym-
metric one in pure strategies. They are unable to fully characterize the mixed
equilibrium, but argue that sellers set a reserve price above their own valuation
of the item. This analysis is generalised for a large number of sellers in [7], where
it is shown that reserve prices tend to production costs in the limit case for
asymmetric sellers. In this paper we extend the models in the above papers in
two ways. Firstly, we introduce a mediator that charges commission fees to the
seller for running the auction, and, secondly, we allow sellers to shill bid. Our
extended model better reflects online markets, where commission fees and shill
bidding are a common occurrence. Moreover, we are able to locate pure Nash
equilibria for the asymmetric seller setting, and, for the first time, we measure
the efficiency of the market with competing sellers using a simulation approach.

Our work is also closely related to recent research on simultaneous auctions.
In [1,4] four types of auctions are considered: first-price sealed bid, second-price
sealed bid, English, and Dutch auction. Due to the complexity of their frame-
work, however, the proposed bidding strategies are based on heuristic approx-
imations. In this paper, in contrast, results are grounded in a game-theoretic
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analysis with which we are able to calculate optimal seller reserve price settings.
Furthermore, we argue that sellers compete with one another and need to ad-
just their reserve prices in order to attract bidders. This issue is not considered
in [1,4], where auction parameter settings are a given.

Another related area is concerned with shill bidding. So far, shill bidding
has been researched within isolated multi-stage auctions (such as the English
auction [13,8]). Our paper, however, is the first one that considers shill bidding
as a result of sellers having to compete. Moreover, we investigate what type
of auction fees can best be used in order to reduce a seller’s incentive to shill
bid. This is important because shill bidding is often hard to detect. Apart from
our work, the only paper that deals with preventing shill bidding is [13], where
the RD fee is used. Although their paper indeed shows that this type of fee can
prevent shilling, it does not consider competing sellers, production costs, and the
efficiency of the market. By contrast, here we investigate these issues in detail
and also compare the RD fee with the more established CP fee.

6 Conclusions

Traditionally, competition among sellers has been ignored when designing auc-
tions and setting auction parameters. However, in this paper, we have shown
that auction parameters (such as a reserve price) play an important role in de-
termining the number and type of buyers that are attracted to an auction when
faced with competition. We have also shown that such competition provides an
incentive for sellers to shill bid, but this can be avoided by a mediator that
applies appropriate auction fees. Now, these results become particularly rele-
vant for online markets and multi-agent systems in which competition is rapidly
growing due to the ease with which a buyer and/or a software agent can search
for particular goods. Thus, in these settings, our results can be used by sellers
seeking to maximise their profit, or alternatively, by the auction institution it-
self, who wishes to use appropriate auction fees to deter shill bidding and thus
increase the efficiency of the market as a whole.

Research on competing sellers is a relatively young field and there are still
a large number of challenges remaining. In future work, we intend to extend
the analysis and the simulation results for shill bidding and auction fees be-
yond the case of two sellers. Since competition increases with more sellers, the
incentive for sellers to shill bid and maintain a low reserve price becomes even
stronger. As a result, we expect that setting appropriate auction fees to deter
shill bidding will then become increasingly important. In addition, we intend to
investigate the case where buyers require multiple items and can participate in
multiple concurrent auctions. Ultimately, we would like to extend the concept of
competition to the institutions themselves, and consider a model in which the
actual institutions attempt to attract both sellers and buyers, whilst seeking to
maximise revenue through their auction fees.



Competing Sellers in Online Markets 203

References

1. P. Anthony and N.R. Jennings. Developing a bidding agent for multiple heteroge-
neous auctions. ACM Trans. on Internet Technology, 3(3):185–217, 2003.

2. S. Bohte, E. Gerding, and H. La Poutré. Market-based recommendation: Agents
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Abstract. Online reputation mechanisms need honest feedback to func-
tion effectively. Self interested agents report the truth only when explicit
rewards offset the cost of reporting and the potential gains that can be
obtained from lying. Payment schemes (monetary rewards for submit-
ted feedback) can make truth-telling rational based on the correlation
between the reports of different clients.

In this paper we use the idea of automated mechanism design to con-
struct the best (i.e., budget minimizing) incentive-compatible payments
that are also robust to some degree of private information.

1 Introduction

Online buyers increasingly resort to reputation forums for obtaining informa-
tion about the products or services they intend to purchase. The testimonies of
previous buyers disclose hidden, experience-related [13], product attributes (e.g.,
quality, reliability, ease of use, etc.) that can only be observed after the purchase.
This previously unavailable information allows buyers to take better decisions.

Quality-based differentiation of products is also beneficial for the sellers. High
quality, when recognizable by the buyers, brings higher revenues. Manufacturers
can therefore optimally plan the investment in their products, such that the
difference between the higher revenues of a better product, and the higher cost
demanded by the improved quality, is maximized. Honest reputation feedback is
thus essential for establishing an efficient market.

Human users exhibit high levels of honest behavior (and truthful sharing of
information) without explicit incentives. However, in a future e-commerce envi-
ronment dominated by rational agents acting to maximize their revenues, repu-
tation mechanism designers need to make sure that sharing truthful information
is in the best interest of the reporter.

Two factors make this task difficult. First, feedback reporting is usually costly.
Users need to understand the rating scale, must fill in feedback forms and super-
vise the submission of the report. All these require the time and the conscious
effort of the reporters. As feedback reporting does not bring direct benefits (the
information is valuable only to subsequent buyers), rational agents are better off
not to report at all.

M. Fasli and O. Shehory (Eds.): TADA/AMEC 2006, LNAI 4452, pp. 204–218, 2007.
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Second, truth-telling is not always in the best interest of the reporter. In some
settings, for instance, false denigration decreases the reputation of a product and
allows the reporter to make a future purchase for a lower price. In other contexts,
providers can offer monetary compensations in exchange for favorable feedback:
e.g., doctors get gifts for recommending new drugs, authors ask their friends to
write positive reviews about their latest book [6,16]. One way or another, external
benefits can be obtained from lying and selfish agents will exploit them.

Both problems can be addressed by a payment scheme that explicitly rewards
honest feedback by a sufficient amount Δ to offset both the cost of reporting and
the gains that could be obtained through lying. Seminal work in the mechanism
design literature [5,4] shows that side payments can be designed to create the
incentive for agents to report their private opinions truthfully, a property called
incentive compatibility. The best such payment schemes have been constructed
based on “proper scoring rules” [11,7,2], and exploit the correlation between the
observations of different buyers about the same good.

Miller, Resnick and Zeckhauser [12] adapt these results to online feedback
forums. A central processing facility (the reputation mechanism) “scores” every
submitted feedback by comparing it with another report (called the reference
report) about the same good. They prove the existence of general incentive-
compatible payment mechanisms where the return when reporting honestly is
better by at least an arbitrary margin, Δ.

Jurca and Faltings [10] use an identical setting to apply automated mecha-
nism design [3,15]. Incentive-compatible payments are computed by solving an
optimization problem with the objective of minimizing the required budget. The
simplicity of specifying payments through closed-form scoring rules is sacrificed
for significant gains in efficiency.

Intuitively, payment mechanisms encourage truth-telling because reporters
expect to get paid according to how well their feedback improves the current
predictor of the reference report. Every feedback report modifies the reputation
information, which acts as a predictor for future observations. The payment
received by the reporter reflects the quality of the updated predictor, tested
against the reference report. Assuming that the reference report is truthful, every
agent naturally has the incentive to update the current reputation such that it
mirrors her subjective beliefs. Thus agents report honestly, and truth-telling is
a Nash equilibrium.

One key assumption behind such mechanisms is that the reputation mech-
anism and the reporters share the same prior information regarding the “rep-
utation” of the rated product. Only in this case the honest report aligns the
posterior reputation (as computed by the reputation mechanism) with the pri-
vate posterior beliefs of the agent. When reporters have private prior information
unknown to the reputation mechanism, it may be possible that some lying report
maximizes the expected gain.

In this paper, we investigate feedback payment mechanisms that are incentive
compatible even when reporters have some private information that is unknown
to the reputation mechanism. Section 2 formally describes our setting. Section 3
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describes the algorithm for computing the optimal incentive compatible pay-
ments with public prior information. Section 4 exemplifies what can go wrong if
the reputation mechanism does not accurately know the beliefs of the reporters,
followed by an algorithm, in Section 5, for computing incentive-compatible pay-
ments that are robust against a range of private beliefs. Finally we present future
work and conclude.

2 The Setting

We consider an online market where a number of rational clients (or “agents”)
purchase the same product. The quality of the product remains fixed, and defines
the product’s (unknown) type. Let Θ be the finite set of possible types, and θ ∈ Θ
be a member of this set. Θ is common knowledge, and we assume that all clients
share a common belief1 regarding the prior probability Pr[θ], that the product
is of type θ.

∑
θ∈Θ Pr[θ] = 1.

Having purchased the product, clients perceive a noisy signal about the quality
(i.e., true type) of the product. Let Oi denote the random signal observed by
agent i, and let S = {s1, s2, . . . sM} denote the set of possible values for Oi. The
observations of different buyers are conditionally independent, given the type of
the product. Let f(sj |θ) = Pr[Oi = sj |θ] be the probability that a buyer observes
the signal sj when the true type of the product is θ. f(·|·) is assumed common
knowledge, and

∑M
j=1 f(sj|θ) = 1 for all θ ∈ Θ. We assume that different types

generate different probability distributions for observable signals.
A central reputation mechanism asks each client to submit feedback. Let

ai = (ai
1, . . . , a

i
M ) denote the reporting strategy of agent i, such that the agent

will announce ai
j ∈ S when her observed signal is sj . The honest reporting

strategy is denoted by ā = (s1, . . . , sM ), when the agent truthfully announces
her observed signal.

The reputation mechanism pays clients for submitting feedback. The payment
received by client i is computed by taking into account the signal announced by
i, and the signal announced by another client, r(i), called the reference reporter
of i. Let τ(ai

j , a
r(i)
k ) be the payment received by agent i when she announces the

signal ai
j and r(i) announces the signal a

r(i)
k . The expected payment of agent i

depends on the prior belief, on her observation Oi = sj , and on the reporting
strategies ai and ar(i):

V (ai, ar(i)|sj) = Esk∈S
[
τ (ai

j, a
r(i)
k )

]
=

M∑

k=1

Pr[Or(i) = sk|Oi = sj ]τ (ai
j , a

r(i)
k ); (1)

The conditional probability distribution for the signal observed by the client
r(i) can be computed as:

Pr[sk|sj ] =
∑

θ∈Θ

f(sk|θ)Pr[θ|sj ]; (2)

1 This assumption is relaxed in Section 4.
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Fig. 1. Reporting feedback. Choices and Payoffs.

where Pr[θ|sj ] is the posterior probability of the type θ given the observation
sj , as given by Bayes’ Law:

Pr[θ|sj ] =
f(sj |θ)Pr[θ]

Pr[sj ]
; Pr[sj ] =

∑

θ∈Θ

f(sj |θ)Pr[θ]; (3)

All agents, as well as the reputation mechanism, compute these conditional
probabilities in the same way.

Reporting feedback is expensive. Let Ci be the cost incurred by agent i for
acquiring and reporting the observed signal. This cost is assumed independent
of the beliefs and observations of the agent. Different agents can have different
reporting costs; however, the variations are sufficiently small such that the upper
bound, C = maxi Ci, is finite and not “too far” from individual costs.

Agents can also obtain direct benefits from lying. Let Δi(sj , a
i
j) be the external

benefit agent i could obtain from reporting the signal ai
j instead of sj . As with the

reporting cost, we assume there is an upper bound Δ(sj , sk) = maxi Δi(sj , sk)
for the external benefit any agent could obtain by falsely reporting the signal sk

instead of sj . For all signals sj �= sk ∈ S, Δ(sj , sj) = 0 and Δ(sj , sk) ≥ 0.

3 Optimal Incentive Compatible Feedback Payments

Let us consider an agent i that purchases the product and observes the quality
signal Oi = sj . When asked by the reputation mechanism to submit feedback,
the agent can choose: (a) to honestly report sj , (b) to report another signal
ai

j �= sj ∈ S or (c) not to report at all. Figure 1 presents the agent’s expected
payoff for each of these cases, given the payment scheme τ(·, ·) and the reporting
strategy ar(i) of the reference reporter.

Truthful reporting is a Nash equilibrium (NEQ) if agent i finds it optimal
to announce the true signal when the reference reporter also reports the truth.
Formally, the honest reporting strategy ā is a NEQ if and only if:

V (ā, ā|sj) ≥ V (a∗, ā|sj) + Δ(sj , a
∗
j );

V (ā, ā|sj) ≥ C;

for all signals sj ∈ S, and all reporting strategies a∗ �= ā. When the inequalities
are strict, honest reporting is a strict NEQ.
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For any observed signal Oi = sj ∈ S, there are M − 1 different dishonest
reporting strategies a∗ �= ā that agent i can use: i.e., a∗j ∈ S \ {sj}. Using (1) to
expand the expected payment of a client, the NEQ conditions become:

M∑

k=1

Pr[sk|sj ]
(
τ (sj , sk) − τ (sh, sk)

)
> Δ(sj , sh); ∀sj �= sh ∈ S

M∑

k=1

Pr[sk|sj ]τ (sj , sk) > C; ∀sj �= sh ∈ S
(4)

Any payment scheme τ(·, ·) satisfying the conditions in (4) is incentive-
compatible. [12] proves that such schemes exist.

Given the incentive-compatible payment scheme τ(·, ·), the expected payment
to an honest reporter is:

W = Esj∈S
[
V (ā, ā|sj)

]
=

M∑

j=1

Pr[sj ]
( M∑

k=1

Pr[sk|sj ]τ (sj , sk)
)
;

The optimal payment scheme minimizes the budget required by the reputa-
tion mechanism, and therefore solves the following linear program (i.e., linear
optimization problem):

LP 1

min W =

M∑

j=1

Pr[sj ]
( M∑

k=1

Pr[sk|sj ]τ (sj , sk)
)

s.t.
M∑

k=1

Pr[sk|sj ]
(
τ (sj , sk) − τ (sh, sk)

)
> Δ(sj , sh); ∀sj �= sh ∈ S ;

M∑

k=1

Pr[sk|sj ]τ (sj , sk) > C; ∀sj ∈ S

τ (sj, sk) ≥ 0;∀sj , sk ∈ S

The payment scheme τ(·, ·) solving LP 1 depends on the cost of reporting, on
the external benefits from lying, and on the prior belief about the type of the
product. To illustrate these payments, let us consider a simple example.

Assume that the product purchased by the clients can be either Good (G) or
Bad (B) (i.e., Θ = {G, B}). The prior belief of the clients assigns the proba-
bilities 0.8 and 0.2 to the product being good, respectively bad (i.e., Pr[G] =
0.8, P r[B] = 0.2.). Clients perceive a binary quality signal (either high or low
quality) once they purchase the product, such that f(h|G) = 1 − f(l|G) = 0.9
and f(h|B) = 1−f(l|B) = 0.2. The probability that the next buyer experiences a
high quality product is: Pr[h] = 1−Pr[l] = f(h|G)Pr[G]+f(h|B)Pr[B] = 0.76.

The conditional probability distribution Pr[Or(i)|Oi] for the reference report
follows from Bayes’ law: Pr[h|h] = 1−Pr[l|h] = 0.86 and Pr[h|l] = 1−Pr[l|l] =
0.43. We take the reporting cost C = 0.01 (i.e., 1% of the normalized cost of
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Table 1. Example. Pr[G] = 0.8, Pr[h|h] = 0.86 and Pr[h|l] = 0.43.

τ (h, h) τ (h, l) τ (l, h) τ (l, l)

min 0.65 0.11 0.10 0.14

s.t. 0.86 0.14 -0.86 -0.14 > 0.05
0.86 0.14 > 0.01
-0.43 -0.57 0.43 0.57 > 0.05

0.43 0.57 > 0.01

≥ 0 ≥ 0 ≥ 0 ≥ 0

Sol. 0.083 0 0 0.15

the product) and the external benefits from lying Δ(l, h) = Δ(h, l) = 0.05. The
optimization problem LP 1 is presented in Table 1, and defines the optimal
payments: τ(h, h) = 0.083, τ(l, l) = 0.15, τ(h, l) = τ(l, h) = 0. The expected
cost for the reputation mechanism (i.e., the expected payment to one agent) is
0.07 (i.e., 7% of the price of the product).

In [10] we show how to extend LP 1 in order to compute the optimal incentive
compatible payments when:

– the available budget is fixed and the margins for truth-telling are maximized;
– the reputation mechanism can use several reference reports;
– the reputation mechanism may filter out some of the reports.

All resulting optimization problems are linear, and can be solved by polyno-
mial2 time algorithms. The resulting payments may decrease the budget required
by the reputation mechanism up to one order of magnitude.

4 Honest Reporting with Unknown Beliefs

The optimal incentive-compatible payments computed in Section 3 rely on the
posterior beliefs (i.e., the probabilities Pr[sk|sj ]) of the reporters regarding the
value of the reference reports. These can be computed by the reputation mech-
anism from:

– the prior belief, Pr[θ], that the product is of type θ,
– the conditional probabilities, f(sj |θ), that a product of type θ generates the

signal sj ,

using Bayes’ Law as shown in the Eq. (2) and (3).
However, when the reporters have different beliefs regarding the values of the

reference reports, the constraints in LP 1 do not accurately reflect the deci-
sion problem of the agents, and therefore, do not always guarantee an honest
equilibrium.

Let us reconsider the example from Section 3, and the corresponding payments
from Table 1. Assume an agent whose prior belief differs only slightly from that of
2 In the size of the payment mechanism.
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the reputation mechanism: e.g., Pr[G], the probability that the product is Good,
is 0.82 instead of 0.8, while other values remain the same. If the agent purchases
a product of low quality, her private belief regarding the quality observed by
the next buyer is Pr∗[h|l] = 1 − Pr∗[l|l] = 0.45 (instead of Pr[h|l] = 0.43
considered by the reputation mechanism). Simple arithmetics reveals that the
agent is better off by reporting high instead of low quality: the expected gain
from lying is 0.45 ·0.083+0.55 ·0+Δ(l, h) = 0.087, while honest reporting brings
only 0.45 · 0 + 0.55 · 0.15 = 0.082.

4.1 Declaration of Private Information

To eliminate lying incentives, Miller et al. suggest that reporters should also
declare their prior beliefs before submitting feedback [12]. The reputation mech-
anism could then use the extra information to compute the payments that makes
truth-telling rational for every agent.

Unfortunately, suchamechanismcanbe exploitedby self-interestedagentswhen
external benefits from lying are positive. Consider the same example as above: the
agent has a prior belief which assigns probability 0.82 to the product being Good.

If the agent truthfully declares her prior belief, the reputation mechanism
computes the optimal payments: τ(h, h) = 0.0841, τ(l, l) = 0.1598, τ(h, l) =
τ(l, h) = 0, by solving LP 1. A truthful report following a negative experience
(i.e., the agent observes and declares the signal l), is rewarded by an expected
revenue equal to: 0.45 · 0 + 0.55 · 0.1598 = 0.0879.

The agent can, however, declare the prior belief: Pr[G] = 1 − Pr[B] = 0.11.
In this case, the payment scheme computed by the reputation mechanism will
be: τ(h, h) = 0.2792, τ(l, l) = 0.1375, τ(h, l) = τ(l, h) = 0, and the optimal
strategy for the client is to declare the signal h. The client’s expected feedback
payment thus becomes : 0.45 ·0.2792+0.55 ·0+Δ(l, h) = 0.1756 > 0.0879, where
Δ(l, h) = 0.05 is the external revenue the agent can obtain by falsely declaring
h instead of l.

The example provided above is, unfortunately, not unique. Profitable lying is
possible because agents can find false prior beliefs that determine the reputation
mechanism to compute feedback payments that make lying optimal. Thus, the
agent obtains both the optimal feedback payment, and the external benefit from
lying.

The false prior beliefs that make lying profitable can be easily computed
based on the following intuition. The payment scheme defined by LP 1 makes
it optimal for the agents to reveal their true posterior belief regarding the type
of the product. When the prior belief is known, only the truly observed quality
signal “aligns” the posterior belief of the reputation mechanism with that of the
agent. However, when the prior belief must also be revealed, several combinations
of prior belief and reported signal, can lead to the same posterior belief. Hence,
the agent is free to chose the combination that brings the best external reward.

The false prior belief (Pr[θ])θ∈Θ and the false signal sh that lead to the same
posterior belief (Pr[θ|sj ])θ∈Θ, can be computed by solving the following system
of linear equations:
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Pr[θ|sh] =
f(sh|θ)Pr[θ]

∑
t∈Θ f(sh|t)Pr[t]

=
f(sj |θ)Pr[θ]

∑
t∈Θ f(sj |t)Pr[t]

= Pr[θ|sj ]; ∀θ ∈ Θ; (5)

The system has |Θ| equations and |Θ|+1 variables (i.e., the probabilities Pr[θ]
and the signal sh); therefore, there will generally be several solutions that make
lying profitable. The agent may choose the one that maximizes her expected
payment by solving the following nested linear problem:

max Δ(sj , sh) +
M∑

k=1

Pr[sk|sj ]τ (sh, sk)

s.t. P r[θ|sh] = Pr[θ|sj ]; ∀θ ∈ Θ;

τ (·, ·) solves LP 1 for the prior beliefs Pr[θ]

To enforce truth-telling, Prelec [14] suggests payments that also depend on
the declared priors. Agents are required to declare both the observed signal,
and a prediction of the signals observed by the other agents (which indirectly
reflects the agent’s private information). The proposed “truth serum” consists
of two additive payments: an information payment that rewards the submitted
report, and a prediction payment that rewards the declared private information.
Prelec shows that honesty is the highest paying Nash equilibrium. Nonetheless,
his results rely on the assumption that a prior probability distribution over all
possible private beliefs (not the belief itself) is common knowledge.

Another solution has been suggested by Miler et al. in [12]. Miss-reporting
incentives can be eliminated if agents declare their prior beliefs before the actual
interaction takes place. As posteriors are not available yet, the agent cannot
manipulate the declared prior belief in order to avoid the penalty from lying.
However, such a process has several practical limitations.

First, the enforcement of prior belief declaration before the interaction can
only be done if a central authority acts as an intermediary between the buyer
and the seller. The central proxy may become a bottleneck and adds to the trans-
action cost. Second, the declaration of prior beliefs could significantly delay the
access to the desired good. Finally, the reporting of priors adds to the report-
ing cost (reporting probability distributions is much more costly than reporting
observed signals) and greatly increases the budget required by an incentive-
compatible mechanism.

5 Robust Incentive Compatible Payments

In this paper we pursue an alternative solution for dealing with unknown beliefs.
We start from the assumption that the private beliefs of most rational agents
will not differ significantly from those of the reputation mechanism. The beliefs
of the reputation mechanism, as reflected in the publicly available reputation in-
formation, have been constructed by aggregating all feedback reports submitted
by all previous users. Assuming that agents trust the reputation mechanism to
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publish truthful information, their private information will trigger only marginal
changes to the beliefs. Thus, rather than build a system that can accommodate
all private beliefs, we focus on mechanisms that are incentive-compatible for
most priors, i.e., the priors within certain bounds from those of the reputation
mechanism.

Let (Pr[θ])θ∈Θ characterize the prior belief of the reputation mechanism and
let (Pr∗[θ] = Pr[θ]+εθ)θ∈Θ be the range of private beliefs the clients might have,
where:

∑
θ∈Θ εθ = 0, and max(−ε,−Pr[θ]) ≤ εθ ≤ min(ε, 1 − Pr[θ]), ε > 0.

Replacing the private beliefs in (2) and (3), the conditional probabilities for
the reference rater’s signals become:

Pr∗[sk|sj ] =

∑
θ∈Θ f(sk|θ)f(sj |θ)(Pr[θ] + εθ)
∑

θ∈Θ f(sj |θ)(Pr[θ] + εθ)
; (6)

Let Pr∗m[sk|sj] and Pr∗M [sk|sj ] be the minimum, respectively the maximum
values of Pr∗[sk|sj ] as the variables (εθ)θ∈Θ take values within the acceptable
bounds. If we modify LP 1 such that the constraints on the optimal payments
are satisfied for all acceptable values of Pr∗[sk|sj ], we obtain a payment scheme
that is incentive compatible for all private beliefs that are not too far from the
belief of the reputation mechanism.

Representing linear constraints for a continuous range of parameters is not
accepted by linear solvers. The constraint:

M∑

k=1

Pr∗[sk|sj ]
(
τ (sj, sk) − τ (sh, sk)

)
> Δ(sj , sh); (7)

is satisfied for all possible values of Pr∗[sk|sj ] ∈
[
Pr∗m[sk|sj ], P r∗M [sk|sj ]

]
, only

when:

min
Pr∗[sk|sj ]

(
M∑

k=1

Pr∗[sk|sj ]
(
τ (sj , sk) − τ (sh, sk)

)
)

> Δ(sj , sh); (8)

If the probabilities Pr∗[sk|sj ] were independent,3 the minimum would be
given by one of the combinations of extreme values: i.e., Pr∗[sk|sj ] equal either
Pr∗m[sk|sj ] or Pr∗M [sk|sj ]. Therefore, by replacing every constraint (7), with 2M

linear constraints, one for every combination of extreme values of Pr∗[sk|sj ],
we impose stricter condition than (8). The optimization problem defining the
payment scheme is similar to LP 1, where every constraint has been replaced by
2M linear constraints, one for every combination of extreme values of Pr∗[sk|sj ].

We evaluated experimentally the effect of private beliefs on the expected cost
of the incentive-compatible mechanism. For that purpose, we generated 2000
random problems as described in Appendix A. For each problem, we took dif-
ferent tolerance levels to private beliefs (i.e., ε = {0, 0.02, 0.05, 0.07, 0.1}) and
solved the linear optimization problem that defines the robust, incentive com-
patible payments. We used average hardware (e.g., Pentium Centrino 1.6MHz,

3 They are not, because they are connected through the same variables (εθ).
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agent for different tolerance levels of pri-
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Table 2. Average CPU time (and stan-
dard deviation) for computing the opti-
mal payment scheme with private beliefs

M CPU time [ms] Std. dev. [ms]

2 14.117 4.9307
3 38.386 4.1765
4 485.33 50.546
5 798.28 722.5

1Gb RAM, WinXP) and the CPLEX4 linear solver. Table 2 presents the average
CPU time required for computing the payments. Due to the exponential number
of constraints, the time required to compute the optimal payments increases ex-
ponentially with the number of signals, M . For M = 6 signals, the computation
already takes more than one second.

Figure 2 presents the average cost of an incentive-compatible payment scheme
that tolerates private beliefs. We plot the average expected payment to one agent
for different number of signals, and different tolerance levels for private beliefs. The
cost of the mechanism increases quickly with ε, the tolerated range of beliefs. For
beliefs within ±10% of those of the reputation mechanism, the cost of the mecha-
nism increases one order of magnitude. Note, however, that the constraints defin-
ing the payment scheme are stricter than necessary. As future research, we intend
to define non-linear algorithms that can approach the truly optimal payments.

5.1 General Tolerance Intervals for Private Information

Instead of modeling private information as small perturbations to the prior belief
regarding the true type of the product, we consider in this section a more general
case, where the conditional probabilities Pr[sk|sj ] that parameterize LP 1 are
allowed to vary within certain limits. Such variations can account for various
sources of private information: e.g., private beliefs regarding the true type of the
product, private information regarding the conditional distribution of signals, or
even small changes to the true type of the product. This approach is similar to
the work of Zohar and Rosenschein [17].

Without modeling the real source of private information, we assume that the
conditional probability distributions Pr∗[·|sj ] (for all sj) are not too far from
the probability distributions Pr[·|sj ] computed by the reputation mechanism.
We will use the L2 norm for computing the distance, and assume that:

4 www.ilog.com
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M∑

k=1

(
Pr∗[sk|sj ] − Pr[sk|sj ]

)2

≤ ε2; ∀sj ∈ S ; (9)

for some positive bound ε. The incentive-compatibility constraints must enforce
that for any value of the probabilities Pr∗[·|·], honesty gives the highest payoff.
Formally,

min
Pr∗[·|·]

(
M∑

k=1

Pr∗[sk|sj ]
(
τ (sj , sk) − τ (sh, sk)

)
)

> Δ(sj , sh); ∀sj �= sh ∈ S ;

s.t.
M∑

k=1

(
Pr∗[sk|sj ] − Pr[sk|sj ]

)2

≤ ε2;

This optimization problem can be solved analytically by writing the Lagrangian
and enforcing the first order optimality conditions. We thus obtain:

min

(
M∑

k=1

Pr∗[sk|sj ]
(
τ (sj , sk) − τ (sh, sk)

)
)

=

M∑

k=1

Pr[sk|sj ]
(
τ (sj , sk) − τ (sh, sk)

)
− ε

√
√
√
√

M∑

k=1

(
τ (sj, sk) − τ (sh, sk)

)2

;

and the best (i.e., cheapest) incentive compatible payments that are robust to
private information (i.e., have robustness level ε2) are obtained by solving the
conic optimization problem:

CP 1

min W =
M∑

j=1

Pr[sj ]
( M∑

k=1

Pr[sk|sj ]τ (sj , sk)
)

s.t.

M∑

k=1

Pr[sk|sj ]
(
τ (sj, sk)−τ (sh, sk)

)
−ε

√
√
√
√

M∑

k=1

(
τ (sj , sk)−τ (sh, sk)

)2

>Δ(sj , sh);

M∑

k=1

Pr[sk|sj ]τ (sj , sk) − ε

√
√
√
√

M∑

k=1

τ (sj, sk)2 > C;

∀sj �= sh ∈ S ; τ (sj, sk) ≥ 0; ∀sj , sk ∈ S

where Pr[·|·] are the probabilities computed by the reputation mechanism. Such
problems can be solved by polynomial time algorithms.

We evaluated experimentally the cost of general private information as re-
flected on the expected payment to one reporter. As in the previous section,
we generated 2000 random problems (details in Appendix A) and for different
levels of robustness, we solved CP 1 to obtain the robust incentive compati-
ble payments. Table 3 presents the average CPU time required to compute the
payments. As expected, the values are much smaller than those of Table 2.
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Table 3. Average CPU time (and stan-
dard deviation) for computing the opti-
mal payment scheme with general private
information

M CPU time [ms] Std. dev. [ms]

2 3.46 24.40
3 7.31 9.04
4 16.05 8.07
5 44.89 15.74

Figure 3 plots the average expected payment to one agent for different number
of signals, and different tolerance levels to private information. Like in Figure 2,
the cost of the mechanism increases exponentially with the robustness level, ε2.

One important remark about the results of this section is that agents trust
the reputation mechanism to publish truthful information. Only in this case
agents are likely to adopt (with marginal changes) the beliefs of the reputation
mechanism, and have incentives to report honestly. While the trustworthy of
the reputation mechanism is an interesting topic on its own, let us note that
agents can verify5 whether or not the payments advertised by the reputation
mechanism actually “match” the beliefs and the robustness bound published by
the reputation mechanism. On the other hand, the payments that match the true
beliefs of the reputation mechanism are the smallest possible, as guaranteed by
the corresponding optimization problems.

However, understanding exactly what the reputation mechanism can do in
order to manipulate reputation information without being detected, while still
providing decent honest reporting incentives requires further work.

6 Discussion

We have assumed in our paper that the true quality of the product (i.e., the
true type) is fixed. In real settings, however, quality does change either because
the technology evolves, or because initial defects get identified and corrected.
Under such circumstances, it becomes even more important to design payments
that are robust to a wide range of private beliefs: incremental changes in the
true quality will fall within the tolerance levels of the payment scheme and do
not shift reporting incentives. However, smarter payments may be capable of
modeling quality change, and factor it appropriately in reporting incentives.
This remains as future work.
5 By checking that the payments τ (·, ·) solve the optimization problems LP 1 or CP 1.
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The reporting and honesty costs enclose a powerful framework for treating
the collusion between buyers an product manufacturers. Dishonest feedback from
clients usually creates advantages for product manufacturers (false positive feed-
back is beneficial for the product’s owner, false negative feedback benefits the
competitors). The collusion between clients and providers becomes interesting
when the benefit obtained by providers from a false report offsets the payment
returned to the client in exchange for lying. The feedback payments presented
in this paper make sure that no provider can afford to buy false reports; the
collusion thus becomes irrational.

The honest reporting Nash Equilibrium is unfortunately not unique. Other
lying equilibria exist, and some of them generate higher expected payoffs for
reporters than the truthful one. In a previous result, [8] we show that a small
number of trusted reports (i.e., feedback reports that are true with high prob-
ability) can eliminate (or render unattractive) lying Nash equilibria. As future
work, we intend to extend the presented framework to also account for multiple
equilibria.

Collusion between clients remains a problem for this class of incentive com-
patible mechanisms. Agents can synchronize their possibly false reports in order
to increase their revenue. Choosing randomly the reference report for every sub-
mitted feedback can help eliminate small coalitions: only large coalitions are
rational, such that the probability of having a reference report from the same
coalition is big enough. Another safeguard against reporting coalitions is to use
trusted reports. In some settings [9], a small number of trusted reports can make
collusion irrational.

One interesting direction for future research is to design mechanisms that can
better tolerate private beliefs. As discussed in Section 4, our algorithms generate
payments that increase exponentially with the range of tolerated private infor-
mation. However, using a combination of different techniques (e.g., the payments
also depend on declared priors, priors may be discounted as they diverge from
the belief of the reputation mechanism) may result in cheaper mechanism.

7 Conclusion

Honest feedback is essential for the effectiveness of online reputation mechanisms.
When feedback reporters are self-interested, explicit payments can make truthful
reporting rational. Most of the existing incentive-compatible payment schemes
are constructed based on proper scoring rules. Lately, computational techniques
based on the idea of automated mechanism design have made it possible to
significantly decrease the cost of incentive-compatibility by computing the best
payment scheme for each context.

In the current paper we extent this line of research, by studying incentive-
compatible payments that are also robust to some degree of private information.
We show how the smallest amount of private information (possessed by the
agents, and unknown to the reputation mechanism) can disrupt the truth-telling
incentives provided by traditional payment mechanisms. As a consequence, we
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suggest the automated design of robust payments that are incentive-compatible
for a range of beliefs. The resulting optimization problems are more complex,
but can still be solved efficiently for practical settings.
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A Generating Random Settings

We consider settings where M possible product types are characterized each by
one quality signal: i.e., the sets S and Θ have the same number of elements, and
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every type θj ∈ Θ is characterized by one quality signal sj ∈ S. The conditional
probability distribution for the signals observed by the buyers is computed as:

f(sk|θj) =

{
1 − ε if k = j;
ε/(M − 1) if k �= j;

where ε is the probability that a client misinterprets the true quality of the
product (all mistakes are equally likely). We take ε = 10%.

The prior belief is randomly generated in the following way: for every θj ∈ Θ,
p(θj) is a random number, uniformly distributed between 0 and 1. The prob-
ability distribution over types is then computed by normalizing these random
numbers: Pr[θj ] = p(θj)∑

θ∈Θ p(θ) ; The external benefits from lying are randomly
uniformly distributed between 0 and 1.
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Abstract. The Trading Agent Competition (TAC) is an international forum 
which promotes high quality research regarding the trading agent problem. One 
of the TAC competitive scenarios is Supply Chain Management (SCM) where 
six agents compete by buying components, assembling PCs from these compo-
nents and selling the assembled PCs to customers. In this paper, we describe the 
strategies implemented in the CrocodileAgent, our entry in 2005 TAC SCM. 
We describe the structure and functionalities of the CrocodileAgent, the imple-
mentation of the basic agent tasks, and algorithms for ordering components and 
determining the profit margin. The agent’s performances in the 2005 TAC SCM 
competition, as well as in a series of controlled experiments, are discussed. 

1   Introduction 

The advent of the Internet enabled proliferation of the electronic commerce  
(e-commerce), what has made an immense effect on the manner in which both the 
businesses and the consumers buy and sell goods. While the initial architecture of the 
Web was geared towards delivering information visually to humans, currently we are 
witnessing a transformation of the Internet into environment filled with goal directed 
applications that intelligibly and adaptively coordinate information exchanges and 
actions (Web 2.0 and Web 3.0) [1]. Consequently, the Internet becomes an enabler of 
the digital economy, which provides a new level and form of connectivity among 
multiple heterogeneous entities, giving rise to a vast new range of business 
combinations [2]. Additionally, by utilizing the technology of intelligent software 
agents [1, 3, 4, 5], the digital economy automates business transactions.  

Supply chain management (SCM) coordinates planning and organizing activities 
across the multiple entities involved in the manufacturing and delivering a product or 
creating and provisioning a service. These activities generally include procurement of 
needed resources, their transformation into intermediate subassemblies or final 
products/services and delivery/provisioning to consumers. As today’s global economy 
gears towards outsourcing, efficient SCM mechanisms become essential for 
enhancing businesses’ agility [6]. Global competition in real-world markets creates 
great pressure on businesses to continuously reduce operating expenses and increase 
profitability, while enhancing consumer responsiveness and shortening lead-times. 
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In the paper we describe the CrocodileAgent 2005, an intelligent agent we 
developed to participate in 2005 TAC SCM (Trading Agent Competition Supply 
Chain Management) competition. The paper is organized as follows. Section 2 briefly 
presents the TAC SCM game. An overview of the CrocodileAgent’s architecture and 
functionalities is given in Section 3. Section 4 comments the agent’s ranking in the 
2005 TAC SCM competition. Section 5 elaborates the results of an experiment we 
conducted in our laboratory and includes a detailed analysis of the results. In Section 
6 the directions for future work are briefly proposed. 

2   The TAC SCM Game 

The Trading Agent Competition is an international forum that promotes high-quality 
research on the trading agent problem. One of its game scenarios is Supply Chain 
Management, which is presented in the Figure 1. In the TAC SCM game [7, 8], each 
of the six agents included in the game has its own personal computer (PC) 
manufacturing company. During the 220 TAC days, agents compete in two different 
markets. In B2B market, TAC SCM Agents compete in buying resources necessary to 
produce PCs. Participants in this market are six agents and eight suppliers which 
produce four types of components (CPUs, motherboards, memory, hard drives) with 
different performances. In its factory, an agent can manufacture 16 different types of 
PCs divided into three market segments. In the B2C market, TAC SCM Agents try to 
sell all the PCs they produced to customers and, at the same time, earn as much 
money as possible. Participants in this market are six agents and hundreds of 
customers with varying demand and reserve prices they are willing to pay for the PCs.  

The aim of the TAC SCM game is to explore how to maximize the profit in the 
stochastic environment of volatile market conditions. Therefore, it is important to 
develop an agent capable of reacting quickly to changes taking place during the game. 
Furthermore, it is critical to implement predictive mechanisms which enable an 
agent’s proactive behaviour. The idea is to build a robust, highly-adaptable and eas-
ily-configurable mechanism for efficiently dealing with all SCM facets, from resource 
procurement and inventory management to goods production and deliv-
ery/provisioning [9]. The key element in creating a profitable SCM strategy is to 
achieve successful balancing of reliable consumer delivery with manufacturing and 
inventory management costs [7]. The greatest challenges which are put in front of 
SCM strategy designers are problem complexity, environment stochasticity and com-
petitive ambient. Problem complexity derives from the vast number of actors that 
continuously request or provide various artefacts, thus creating numerous possible 
business combinations in the time-restricted environment. Stochasticity is conse-
quence of fact that TAC SCM Agents have access only to incomplete and imperfect 
information. Competitive ambient is a result of the fact that all the e-commerce actors 
want to maximize their utility functions. 

The TAC SCM system constitutes an environment suitable for testing various 
strategies for ensuring efficient, flexible and dynamic SCM, which is vital for the 
competitiveness of manufacturing enterprises as it directly impacts their ability to 
meet changing market demands in a timely and cost effective manner [10]. TAC SCM 
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Fig. 1. The relationships in the TAC SCM system 

tournaments also provide an opportunity to analyze effects common in real-world 
business transacting, such as the bullwhip effect, and its relationship with company 
profits [11]. Furthermore, the tournament can help in developing methods for identi-
fying the current economic regime and forecasting market changes [12]. 

3   The CrocodileAgent 

The CrocodileAgent [4, 13] is an intelligent agent developed at the Department of 
Telecommunications, Faculty of Electrical Engineering and Computing, University of 
Zagreb, Croatia. Designing the CrocodileAgent was an extension of a project that 
started in 2004 when we developed the KrokodilAgent [14] and for the first time 
joined the TAC SCM competition.The CrocodileAgent was developed directly from 
the KrokodilAgent by performing iterative changes. Results of these changes and the 
interdependence of all the implemented algorithms were carefully monitored after 
each iteration. At the end of the development process, a new agent was created.  

The CrocodileAgent inherited the basic architecture from its forerunner. This is 
understandable since it was developed by evolving the KrokodilAgent. Figure 2 
shows the basic agent architecture. In order to enable easier development and trans-
parent implementation of agent functionalities, the CrocodileAgent was divided into 
five logical parts: CustomerImpl, FactoryImpl, InventoryImpl, SupplierImpl and 
ZTELAgent. The central component of the agent is the ZTELAgent which inherits the  
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Fig. 2. The CrocodileAgent’s architecture 

SCMAgent class. The SCMAgent is an abstract class which defines all the methods 
that an agent needs to support in order to participate in the TAC SCM game. The 
ZTELAgent coordinates collaboration between all the other Agent components; it is 
responsible for the simulation status, the start and the end of the game. 

The CustomerImpl is responsible for the agent’s interaction with customers. The 
InventoryImpl’s task is to provide enough components so that PC production can go 
on without any disturbances. Furthermore, the InventoryImpl keeps track of compo-
nent prices. The SupplierImpl sends orders to the suppliers and takes care of delivered 
components. The agent’s daily responsibilities are: negotiating supply contracts, bid-
ding for customers’ orders, managing daily assembly activities and shipping com-
pleted orders to customers. These tasks will to be described in the following sections. 

3.1   Negotiation of Supply Contracts  

There are two basic supply tactics: day-0 component procurement and ordering  
components during the game. In other words, the agent ordered a large number of 
components on day-0, and then if the need for components occurred during the game, 
additional components were ordered. This combination was very successful in the 
2004 TAC SCM competition. The agent bought cheap components because there was 
no prior component demand.  

The first step in the development of the CrocodileAgent was to modify the supply 
procurement mechanism. The reason for this was a change in the game rules regard-
ing the suppliers and the way they calculate component prices. The CrocodileAgent 
was modified to send two RFQs (Requests for Quotes) requesting the complete 
amount of the needed component and accept only the cheaper one. In such a manner a 
very flexible mechanism for supply procurement was created and, with smaller  
adjustments, was held until the end of the competition. A description of the Croco-
dileAgent’s supply tactics follows. 

3.1.1   Day-0 Procurement 
The agent sends RFQs with the following delivery dates: 3, 9, 17, 27 and 69. The 
reserve prices the agent is willing to pay for the components are 102%, 107%, 92%, 
82% and 77% of the nominal price on the respective delivery dates. The referred 
parameters were determined after conducting a series of experiments. The requested 
quantities are smaller in short-term RFQs and larger in long-term RFQs. In case that a 
certain component is produced by two suppliers, RFQs are always sent to both  
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suppliers that produce the needed component. The agent’s strategy of accepting the 
cheaper offer causes no permanent damage, just a temporary droop of the agent’s 
reputation in the eyes of the supplier whose offer was not accepted. Since the re-
quested quantities are not high, the agent’s reputation fully recovers in 20-30 days.  

Unfavourable situation happens when the chosen supplier can not deliver the re-
quested quantity on time. In that case the agent accepts partial offers. This way, the 
agent gets a smaller amount of components than planed. To avoid potential compo-
nent shortage caused by the supplier’s cancellation, the agent modifies the quantities 
and reserve prices for more aggressive purchasing in the near future. 

3.1.2   Component Purchase During the Game 
Some of the parameters used in component purchase are: 

Nmin – the minimal quantity of components required to be in storage, 
Nmax – the maximal quantity of components allowed in storage, 
Nord – the maximal amount of components that can be ordered each day, 
Ntdy – the quantity of a certain component used in PC production per day, 
Ninv – the number of components currently stored in the warehouse. 

As the end of the game approaches, values of the parameters Nmin, Nmax and Nord  
are lowered accordingly. At the beginning of each day, the agent calculates the com-
ponent quantity ordered, but not delivered, up to that moment for each component 
separately. Since the components with an earlier delivery date have higher priority, 
the agent’s ordered quantities of components are multiplied with a distance factor. 
The distance factor is a value between 0 and 1; the factor shrinks from 1 to 0 as the 
delivery date grows. When the delivery date reaches 30 days (from the current day) 
the distance factor becomes 0. The parameter obtained by performing this calculation 
is referred to as the evaluatedQuantity. Similarly, we calculate the evaluatedLong-
TermQuantity which represents the quantity of all the ordered components that have a 
delivery date higher than 33 days.  

For each component, the agent checks to see if the following condition fulfilled:  

Ninv + evaluatedQuantity ≥ Nmax . (1) 

The components are not ordered if condition (1) is fulfilled. The agent counts the 
number of days in a row that the component is not ordered. In the first part of the 
game, if the component purchase is inactive for 5 days in a row and if the evaluated-
LongTermQuantity is lower than its upper limit in spite of condition (1), the agent 
sends long-term RFQs to ensure cheap components for the second part of the game. If 
condition (1) is not fulfilled, the following condition is considered: 

Ninv + Ntdy > Nmin . (2) 

If condition (2) is not fulfilled the agent purchases components more aggressively 
with the purpose of getting the number of components in the warehouse above Nmin as 
soon as possible. Otherwise, he sends three RFQs with the purpose of maintaining the 
present quantity of components in the warehouse. Regardless of condition (2), the 
agent sends two long-term RFQs to ensure long-term occupancy of the warehouse. It 
is important to point out that these are only the main characteristics of the algorithm. 
Additionally, there are special mechanisms which calculate the reserve prices and 
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exact quantities that need to be ordered. A simplified description of some of these 
mechanisms follows: 

− The lowComponentAlarm contains several levels and marks the very low quantity 
of a certain component in the warehouse. In case the alarm is set, the agent is al-
lowed to pay a higher price than usual for the component. Different components 
have different prices so the maximal reserve price for processors it is 115% of their 
nominal price while for other components it is 130% of their nominal price. 

− The demandPurchaseQuantityFactor is modified only according to customer de-
mand. Sometimes during the game, the customer demand rises rapidly. When this 
happens the agent uses more components to produce more PCs, so the parameter is 
increased to ensure that the agent does not run out of components and even more 
important, looses potentially profitable PC orders. 

− The componentsInInventoryShortageFactor measures the successfulness of the 
day-0 purchase. If the purchase was not successful for a certain component, the 
agent is allowed to order larger quantities in the first phase of the game. The influ-
ence of this factor fully disappears after day 50. 

Special attention was paid to the end of the game. The intention was to maintain a 
low level of all components in the warehouse until the game ended to enable the agent 
to send offers to customers for as long as possible. It is important to allow the agent to 
make short-term procurement of any type of component to prevent the situation were 
a large quantity of one component is left over because the agent had spent all the 
other components needed to produce a certain type of PC. 

3.2   Bidding for Customer Orders  

In the first version, the CrocodileAgent sent an offer only if he had enough compo-
nents to produce all the PCs that were requested in the RFQ. This tactic is good be-
cause it prevents the situation where the agent has to pay penalties for delivering PCs 
late or not delivering them at all. The agent can also send offers for RFQs with short 
delivery dates because the factory can produce the PCs the following day. This tactic, 
however, has its disadvantages. Since the agent does not get orders for all the offers 
sent, a part of the agent’s factory capacities remain unutilized and some of the com-
ponents stay unused for some time. This problem was solved by sending more offers 
than before. The number of sent offers was carefully calculated based on the number 
of components in the warehouse and current customer demand.  

After analyzing the TAC SCM 2005 competition we established that the agent’s 
selling side was actually its weaker side. One of the most important reasons is the fact 
that the CrocodileAgent does not use any prediction methods when selling PCs. Most 
of its decisions are based on the past and present state of the PC market. 

3.2.1   An Algorithm for Sending Offers 
We now describe the main features of the agent’s algorithm for sending offers to 
customers. The agent gives each RFQ a grade from 1 to 10, where a higher grade 
marks more profitable RFQs; within those grades the RFQs are sorted in chronologi-
cal order of their delivery dates. The grade is determined by the difference between 
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the customer’s reserve price and the agent’s cost of producing that PC. After grading 
and sorting the RFQs the agent starts to send offers if two conditions are fulfilled: 

− There are enough components to produce the requested PCs. Note, however, that 
the number of offered PCs is actually a little bit higher than the number of PCs that 
the agent can produce from components located in the warehouse - recall that the 
number of PCs that are offered is carefully calculated, 

− The agent’s PC production cost is lower than the customer’s reserve PC price. 

In case one of these two conditions is not fulfilled, the agent checks if the requested 
PCs can be delivered form the reserve PCs stored in the warehouse.  

This algorithm comes in three versions: handleCustomerRFQsNormal, handleCus-
tomerRFQsHighDemand and handleCustomerRFQsEndGame. The version that is 
active on a certain day is determined depending on the number of production cycles 
needed to produce all the active orders and the algorithm that was used the day before 
and the stage of the game (beginning, middle, end). The most important difference 
between these three algorithms is the agent’s method for calculating the PC offer 
prices. Since handleCustomerRFQsHighDemand and handleCustomerRFQsEndGame 
algorithms are designed for special cases, most of the time during game the agent uses 
handleCustomerRFQsNormal algorithm. It determines the offer price in two ways: 

− The offer price is slightly under the customer’s reserve price in case the agent of-
fers PCs that are already produced and stored in the warehouse. 

− In case the agent has to manufacture the PCs first, the offer price is calculated as 
the basic PC price (sum of the average prices of all the components incorporated in 
the PC) increased by the agent’s desired profit.  

When there is a very high customer demand for PCs agents usually do not send of-
fers for all the RFQs received. After analyzing the RFQs that did not get any offers, we 
noticed that some of them were very profitable. As a result, we decided to send offers 
for them but with high offer prices. In this case the agent uses the handleCus-
tomerRFQsHighDemand algorithm. It is a “greedy” algorithm since the offer prices for 
the PCs are always just slightly under the customer’s reserve price. This algorithm is 
also used at times when the agent’s factory does not have much free capacity for the 
next few days. This happens when the agent receives a lot of orders. By sending offers 
with very high offer prices, the agent will not get many orders. This prevents the situa-
tion in which the agent has to pay penalties because he cannot deliver all the ordered 
PCs. At the same time, a high profit is achieved with the few orders the agent wins. 

For the last ten days of the game the agent uses the handleCustomerRFQsEnd-
Game algorithm. Unlike the other two algorithms, it only sorts RFQs in increasing 
order of their corresponding penalties. The main purpose of this algorithm is to sell 
out the whole inventory in the warehouse so the profit that the agent adds to the basic 
PC price is minimal.  

All the selling algorithms implement a mechanism used to preventing late deliver-
ies and keep the agent from paying penalties. Each day, the agent monitors its obliga-
tions to customers by calculating the number of factory cycles needed to fulfill its 
existing orders for each delivery date. After analyzing these numbers, the agent calcu-
lates the earliest delivery date for sending new PC offers. This way the agent is  
prevented from sending offers that cannot be delivered by the requested delivery date. 
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3.2.2   Calculating Component Prices  
The basic PC price is calculated by summing the average prices of each component 
incorporated in the PC. Each day the agent calculates the average component price for 
each component type that is in its warehouse. If some component type is not used in 
PC production for several days in a row, which usually means that it was purchased at 
a high price which is no longer concurrent on the market. As a result, the agent puts a 
discount on it. This way the agent prevents a further blockade of selling PCs which 
contain the expensive component. The discount grows as the period of component 
inactivity is longer.  

The agent also gives a discount on components at the end of the game. A discount 
for the certain component is approved if the current supply of that component is 
higher than the calculated optimal for that day. The component supplies are checked 
on the following days: 170, 180, 190, 200, 210 and 215. The purpose of giving dis-
counts at the end of the game is to sell out the components that are still in the ware-
house. The leftover components represent a direct loss of money since they were paid 
upon delivery. 

3.2.3   Calculating the Profit Margin 
Some of the parameters used to calculate the profit margin are listed below. 

− The acceptedOfferPercentage describes how many of the agent’s offers resulted in 
customer orders, 

− The ourPriceToHigh and ourPriceToLow parameters are set depending on the ratio 
of the agent’s offer prices and the offer prices of opposing agents. If the agent’s  
offer prices are mostly higher than the offer prices of other agents, then the our-
PriceToHigh flag is set. In case the agent’s prices are slightly lower, the ourPrice-
ToLow flag is set, 

− The cyclesReservedForActiveOrders parameter measures the number of factory 
cycles needed to produce all the currently active orders, 

− The factoryUtilizationAverage describes the average factory utilization in the last 
week, 

− The profitDayFactor is modified depending on the current customer PC demand. If 
customer demand rises, the profitDayFactor increases. 

If the acceptedOfferPercentage and cyclesReservedForActiveOrders parameters 
are decreasing, the profit margin also decreases and vice-versa. After this, the profit 
margin is increased if the ourPriceToLow flag is active, or decreased if the ourPrice-
ToHigh flag is active. The profit margin calculation is then corrected depending on 
the due date listed in the offer, current customer PC demand and the current factory 
utilization. The sooner the due date, the higher the profit. Finally, if there is low de-
mand in the market segment the PC belongs to, the profit is decreased. 

3.3   Managing Daily Assembly Activities and Shipping Completed Orders to 
Customers  

Innitially, the CrocodileAgent produced PCs only after receiving customer orders, i.e. 
the PCs were not manufactured in advance. Later, we added the possibility of produc-
ing PCs even if nobody ordered them. Due to the stochastic nature of the TAC SCM 
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game customer demand varies during the game. If the agent does not produce PCs and 
there is low demand on the PC market, a large part of the agent’s factory capacities 
stay unutilized. If the agent produces PC stocks during a period of low PC demand, its 
factory will be utilized and everything will be prepared for a period of high PC de-
mand. In some cases, the agent can produce more PCs than can be sold by the end of 
the game since it can not be know for sure what the future demand is going to be. We 
tried to lower this risk by introducing quantity limits which represent the maximum 
number of PCs which can be available in stock. These limits are modified during of 
the game. As the end of the game approaches, they are lowered accordingly. The 
limits also differ for each PC market segment. For example, if we predict that the 
demand for Mid Range PCs will to be high, we increase the limits for the PCs in that 
range. The list of active orders is sorted in chronological order of the delivery dates 
and then a simplified algorithm for PC production and delivery to customers is exe-
cuted. The algorithm runs as follows: 

− If there are enough PCs in the warehouse to fulfill the order, they are reserved and 
added to the delivery schedule. If there are not enough PCs, but there are enough 
components to produce the requested PCs, the components are reserved and the 
agent tries to add them to the production schedule. The production demand will be 
successfully fulfilled only if there is enough free factory capacity available for the 
next day, 

− After analyzing all the active orders, the agent makes plans for creating PC stocks. 
In order to create the PC stocks the agent checks the amount of free capacity avail-
able for the following day, are there enough components to produce the PCs and 
which PC types can be produced without creating a larger stock. 

4   TAC SCM 2005 Competition  

The 2005 TAC SCM competition was divided into three parts: qualifying round held 
from June 13th-24th, seeding rounds held from July 11th -22nd and final round held 
from August 1st-3rd. There were 32 teams competing in the qualifying and 25 teams in 
the seeding rounds. 24 teams competed in the finals. 

During the qualifying round, the CrocodileAgent was in an intermediate phase of 
development. In the first week, the agent played with a slightly modified component 
procurement algorithm with respect that used by the KrokodilAgent. After perceiving 
that last year’s algorithm was no longer good enough, the team started improving it. 
Although a slight improvement was already visible in the second week, the algorithm 
was finally finished in time for the seeding rounds with only minor modifications 
were added for the final rounds. The CrocodileAgent’s final score after the qualifying 
round was 13.79M which was enough to place the agent in 16th place.  

After the qualifying round, a considerable number of improvements were made on 
the CrocodileAgent. We completed the supply side of the agent and introduced the 
possibility of producing PCs for stocking in case the factory had a lot of free capacity 
available. Finally, the agent’s customer side was modified with the functionalities 
described earlier. At the beginning of the seeding rounds, the agent had some  
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problems with penalties. That was successfully solved by implementing a mechanism 
for preventing the agent from sending offers which he would not be able to fulfill. 
The CrocodileAgent ended the seeding rounds at 12th place with an average score of 
8.48M.  

Before the quarterfinals, final changes on the agent were made. While analyzing 
the games played in the seeding rounds, we noticed that the agent was not functioning 
the way we wanted it to in the low demand games. In case of low customer demand, 
the agent had long periods of very low factory utilization and was practically inactive. 
PCs were not sold since the offer prices were too high compared to those of other 
agents. In prior competitions, the agents were very focused on getting enough compo-
nents due to the problem mentioned in Section 3.1 that caused by day-0 component 
orders. Thus, they paid less attention to customers. For the TAC SCM 2005, the prob-
lem with suppliers was solved by the new supply procurement model. As a result, the 
agents had enough components to produce PCs and could therefore turn to customers 
and improve their selling tactics. The CrocodileAgent took 4th place in the quarterfi-
nals with an average score of 11.64M and ended its participation in 2005 TAC SCM. 

5   Controlled Experiments 

To evaluate the performance of our agent, we held a competition with some of the 
best agents from the TAC SCM 2005 competition. The chosen opponents were: Tac-
Tex [15], Mertacor [9], DeepMaize [16], MinneTAC and PhantAgent. All the agents 
were downloaded from the official TAC web page (http://www.sics.se/tac). The com-
petition was held in our laboratory and consisted of 20 games. The final ranking is 
shown in Table 1. After the competition finished, we conducted a detailed analysis of 
the games played. The majority of the analysis was done with the CMieux Analysis 
and Instrumentation Toolkit for TAC SCM [17]. 

The first task was to analyze component purchases. After gathering information re-
garding the prices the agents paid for each type of component and the quantities they 
purchased, we calculated the average prices.  

The average prices the agents paid for the components are shown in Figure 3. 
Components marked with ID 1xx are CPUs, 2xx are motherboards, 3xx are memory 
and 4xx are hard disks. 

Table 1. Competition results at server mobility3.labs.tel.fer.hr 

Position Agent Score Games Played Zero Games 
1 TacTex 5 638 295.70 20 0 
2 DeepMaize 4 581 805.20 20 0 
3 Mertacor 1 364 353.85 20 0 
4 PhantAgent 976 780.00 20 0 
5 MinneTAC -426 722.20 20 0 
6 CrocodileAgent -1 243 212.45 20 0 
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Fig. 3. Average component prices 

It is very important to purchase cheap CPUs since the price of a CPU accounts for 
more than 50 % of the PC price. We can see from Figure 3 that DeepMaize paid the 
highest prices for CPUs while TacTex bought some of the cheapest CPUs. The 
CrocodileAgent bought the third cheapest CPUs. This is interesting since the Croco-
dileAgent does not have a sophisticated algorithm with supplier capacity estimations 
and customer demand predictions to determine component prices and required quanti-
ties. The situation is different with other components. Also, we can see that Mertacor 
bought the cheapest motherboards and memory, while the CrocodileAgent bought the 
cheapest hard disks. MinneTAC’s purchase algorithm could also be improved since it 
bought the most expensive motherboards, memory and hard disks. 

Furthermore, we analyzed the quantity of components bought during the game. 
From Figure 4, we can see that TacTex, DeepMaize and the CrocodileAgent bought 
larger amounts then the other three agents. We can also see the average minimal num-
ber of components that stayed in the agents’ warehouses. The maximum number of 
PCs that can be assembled is equal to the minimal amount of a certain component 
type since all four component types are needed to produce a PC.  

The leftover components represent a direct loss of money since they were paid for 
upon delivery. The best results regarding leftover component management were ob-
tained by the PhantAgent and DeepMaize. The majority of their leftover components 
were memory. This is desirable since memory is the cheapest component type. The 
Mertacor agent also had a relatively small number of leftover components, but they 
were mostly CPUs.  This is not as good since CPUs are at least ten times more expen-
sive than memory. All three agents had between 500 and 800 leftover components. 

Two agents had more than 2600 leftover components on average. These agents 
were TacTex and MinneTAC. The difference is that half of TacTex’s leftover compo-
nents were CPUs, while half of MinneTAC’s leftover components were memory. The 
CrocodileAgent was in the middle with an average of 1250 leftover components.  

This is a direct consequence of the ordering algorithm that does not compare the 
total number of ordered components of each component type. The total quantity of 
sold PCs is directly linked to the quantities of components bought and thus will not be 
discussed in detail. 
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Fig. 4. Total quantity of bought components 

The quantities of sold PCs are shown in Figure 5. We can see that all the agents 
sold more Mid Range PCs than any other type. The reason is very simple. Namely, 
out of the 16 PC types available, there are 6 PCs classified as Mid Range PCs while 
the remaining 10 are equally divided into Low and High Range PCs. We can also see 
that all the agents tried to sell all PCs types but, surprisingly, only MinneTAC sold 
more High Range than the Low Range PCs.  

 

Fig. 5. Total quantity of sold PCs 
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The CrocodileAgent sold an equal number of Low and High Range PCs, while the 
other agents sold significantly larger quantities of Low Range than High Range PCs. 
There are several explanations for this. First of all, the demand for Low Range PCs 
was slightly higher than the demand for High Range PCs. Also, the penalties for Low 
Range PCs were lower and thus posed a lower potential risk if the order could not be 
delivered. The agents assumed that other agents were going to focus on selling High 
and Mid Range PCs since they are supposed to bring higher profits. 

If we look at the average PC selling prices in Figure 6, we can see the obvious rea-
son for the CrocodileAgent placing last in this competition. Namely, it sold cheapest 
PCs. The reason for this lies in the logic of the PC selling algorithm, particularly in 
the way the agent determines his desired profit. Further proof that the profit determin-
ing mechanism did not function well is the fact the CrocodileAgent had the highest 
average price of its loosing offers. If we look at the selling algorithm in Section 3.2, it 
seems logical but the main disadvantage of the algorithm is its lack of a winning price 
prediction mechanism that was used by the other agents. DeepMaize certainly has one 
of the best prediction mechanisms and thus achieved the highest average PC selling 
prices for Low and Mid Range PCs and the second highest average PC selling price 
for High Range PCs. Another agent with a successful selling algorithm is the Min-
neTAC agent which achieved the highest average PC selling price for High Range 
PCs. Here, we can see MinneTAC’s orientation towards the High Range PC market. 

To conclude, we can say that TacTex won the competition due to its highly effi-
cient component procurement algorithm and a good PC selling algorithm. The large 
number of components bought and PCs sold only contributed to the victory. 

DeepMaize lost first place due to its very high component purchase prices, espe-
cially CPUs. Mertacor performed best between the three agents which sell smaller 
amounts of components. It bought rather expensive CPUs but some of the cheapest 
motherboards, memory and hard disks. Its PC selling prices were average and that 
was enough for it to place third in the competition.  

 

Fig. 6. Average PC selling prices 
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Still, the difference between the first two agents and the Mertacor agent is signifi-
cant. The reason lies in the big difference in the number of PCs sold and the smaller 
profit made by Mertacor per PC. 

The PhantAgent bought rather cheap components but also sold some of the cheap-
est PCs. When combined with the small amount of PCs sold, the final score of the 
PhantAgent put it in fourth place. The MinneTAC agent performed best in selling 
large quantities of High Range PCs at very high prices. In spite of that, MinneTAC 
finished in fifth place. Some of the reasons include very high component purchase 
prices and a small total number of PCs sold. 

6   Conclusions and Future Work 

In this paper, presented is the CrocodileAgent which is a trading agent that partici-
pated in TAC SCM 2005. After a short game description, we listed the basic agent 
tasks and explained how they were implemented in the CrocodileAgent. We described 
its strategy of day-0 component procurement combined with ordering components 
during the game. We then presented an algorithm for selling PCs where special atten-
tion is paid to determining the desired profit. The description of CrocodileAgent’s 
algorithms was concluded with a list of improvements that were made in the produc-
tion and delivery mechanisms. We added the option of producing stocks of PCs to the 
already existing mechanism of producing PCs after customer orders arrive. 

We briefly presented the results of the CrocodileAgent in the TAC SCM 2005. In or-
der to improve the functionalities of the agent, we held a competition with some of the 
best agents in TAC SCM 2005. We figured that this was a good way to determine the 
agent’s soft spots. A thorough analysis of the competition was conducted. The results 
were a little discouraging since the CrocodileAgent placed last, but a lot was learned. The 
main reason for the CrocodileAgent’s results lies in its reactive algorithm for selling PCs. 
This algorithm does not predict the fluctuation of prices on the PC market. Instead, it 
only reacts to the current state of the PC market and regulates its desired profit per PC. 
The component purchase algorithm functions quite well, but there is always room for 
improvement, particularly regarding motherboard and memory components. 

The changes of the component purchase rules introduced in TAC SCM 2005 re-
quired a lot of work on the component purchase algorithm. Since there are no major 
changes in TAC SCM 2006, the CrocodileAgent represents a good basis for further 
development. Special attention needs to be dedicated to the PC selling algorithm with 
an emphasis on customer demand prediction and the prediction of winning PC prices. 
At this time, we are conducting some experiments which introduce fuzzy logic into 
the agent to help improve some of its functionalities. 
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Abstract. This paper presents a fuzzy constraint based model for bilat-
eral multi-attribute agent purchase negotiations in competitive trading
environments. Fuzzy constraints are used to capture requirements and to
express proposals. The proposed interaction protocol is a dialogue game
protocol where argumentation is used as a key mechanism to improve
agreements in contrast to other fuzzy constraint based models which are
limited to quantitative offers and counter-offers. A set of locutions and
decision mechanisms which fire them are fully specified, so that each
agent may decide its degree of cooperation and its degree of expressive-
ness, which in turn may have effects on the quality of the agreement. The
notions of similarity and expected valuations of products are used in or-
der to design efficient decision mechanisms. An example of a purchase
scenario and a summary of statistical tests are presented to demonstrate
the proposed model.

1 Introduction

Many approaches to automated negotiation in e-business have been proposed,
covering different areas such as game theory, evolutionary computation and dis-
tributed artificial intelligence. In [1] are identified the main parameters on which
any automatic negotiation depends, and a classification schema is used to cat-
egorize the different negotiation scenarios. Fuzzy constraints have been used in
several models and approaches to multi-attribute agent negotiation [2,3,4]. As
Luo et al. declare in [2], there are several reasons which make very convenient
the use of fuzzy constraints as the core of a negotiation model: it is an efficient
way of capturing requirements [5]; fuzzy constraints are capable of representing
trade-offs between the different possible values for attributes; and, using con-
straints to express offers in turns means that the solution space can be explored
in a given exchange and so means that the search for an agreement is more
efficient. Luo et al. [2] developed a fuzzy constraint based model for bilateral,
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multi-issue negotiations in semi-competitive environments. In their model the
buyer’s preferences are captured through prioritized fuzzy constraints [6]. The
problem with this approach is that the ability of the seller agent to express its
needs is limited, and so the joint decision process is not balanced. In [3] a general
problem-solving framework for modelling multi-issue multilateral agent negoti-
ation using fuzzy constraints is presented. In this model all parties model their
preferences as fuzzy constraints, and a meta-strategy based on a concession and
a trade-off strategies is presented to evaluate existing alternatives. However, the
proposals are not expressed as constraints but as concrete offers, and prefer-
ences are not explicitly propagated. Faratin et al. [7] developed a similar model
for performing trade-offs in automated negotiations but where fuzzy constraints
are not used.

Our research focuses on multi-attribute bilateral negotiation using fuzzy con-
straints in competitive environments. We present a negotiation model where the
buyer’s demands are expressed as fuzzy constraints and the sellers have a set
of products which are characterized as a vector of attributes and a profit. Our
approach lets the buyer agent value the degree of importance that each submit-
ted constraint has, and lets the seller agent inform how constraints should be
relaxed, so what we do is to argue proposals or offers by means of qualifications.1

We propose a general framework for these mechanisms which is based on a mea-
sure of similarity between each product in the catalogue and the constraints
received from the buyer agent, the beliefs about the valuation the buyer agent
gives to the products, and the associated profit. We will show how the possibility
of reaching an agreement which is more favorable for both parties is increased.

The remainder of this paper is organized as follows. Section 2 recalls the most
relevant concepts our research is based on, and presents some preliminaries.
Section 3 details the interaction protocol, while Section 4 presents the decision
mechanisms and Section 5 describes the transition rules. Section 6 presents an
example of purchase scenario and an experimental analysis. Finally, Section 7
presents the conclusions and future work.

2 Preliminaries

2.1 The Fuzzy Constraint Satisfaction Problems (FCSPs)
Framework

In this subsection we recall the necessary concepts related to FCSPs [2,11,12].
A fuzzy constraint satisfaction problem (FCSP) is a 3-tuple

(
X, D, Cf

)
, where

X = {xi| = 1, ..., n} is a finite set of variables, D = {di| = 1, ..., n} is the set
of domains, and Cf = {Rf

i|Rf
i ⊆ Πxj∈var(Rf

i)
dj , i = 1, ..., m} is a set of fuzzy

constraints, where var(Rf
i) denotes the set of variables associated with each

constraint Rf
i. The function that indicates how well a given constraint is satisfied

is the satisfaction degree function μRf
i

:
(
Πxj∈var(Rf

i)
dj

)
→ [0, 1] , i = 1, ..., m,

1 Argumentation has been recognized as a key tool in negotiation protocols [8,9,10].
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where 1 indicates completely satisfied and 0 indicates not satisfied at all. Using a
cut-set technique a fuzzy constraint can induce a crisp constraint. Given the cut
level σ ∈ [0, 1], the induced crisp constraint of a fuzzy constraint Rf is defined
as Rc. Finally, the overall (or global) satisfaction degree of a potential solution
vX is α(vX) = ⊕{μRf(vX)|Rf ∈ Cf

}
, where ⊕ is an aggregation2 from [0, 1]m to

[0, 1].

2.2 Domain Knowledge of the Buyer Agent

Let Breq = (X, D, Cf, Nb) be the requirement model of the buyer agent, which
is defined as a FCSP F = (X, D, Cf) which expresses the requirements on the
attributes; and a negotiation profile Nb = {ξ, η}, where ξ ∈ {0, 1} controls the
use of purchase requirement valuations, and η ∈ [0, 1] modulates the buyer’s
attitude regarding a relax requirement.

Definition 1. (Purchase Requirement) Let R
c(σi)
i be a crisp constraint in-

duced from Rf
i at a cut level σi, a purchase requirement is defined as λBreq =

⋂{
R

c(σi)
i

}
. A purchase requirement may be formed by a subset of the fuzzy con-

straints in Cf , where cons(λBreq ) denotes the set of constraints included in a
λBreq .

Definition 2. (Potential Overall Satisfaction Degree) Given a purchase
requirement, the potential overall satisfaction degree (posd) the buyer may get if
the requirement is met is αλBreq = ⊕{σi|i = 1, ..., m)}, where σi represents the
cut level applied to constraint Rf

i, and the cut level applied to constraints not
included in the purchase requirement takes value 1.

One of the key decision mechanisms of the buyer agent is related to defining a
strategy to generate a purchase requirement.3

Definition 3. (Concession Strategy) Given a purchase requirement λk
Breq

submitted at instant k, a concession strategy may be defined as a mechanism
which generates a new λk+1

Breq
such that α

λk+1
Breq < α

λk
Breq , where α

λk
Breq − α

λk+1
Breq is

minimized.

Definition 4. (Trade-off Strategy) Given a purchase requirement λk
Breq

sub-
mitted at instant k, a trade-off strategy may be defined as a mechanism which gen-
erates a new requirement λk+1

Breq
such that α

λk+1
Breq ≥ α

λk
Breq and λk+1

Breq
�= λj

Breq
|∀j <

k + 1.

Definition 5. (Purchase Requirement Valuation) Given a purchase re-
quirement λk

Breq
, a purchase requirement valuation is defined as a set υBreq =

{vi|vi ∈ [0, 1], i ∈ cons(λBreq)}, where vi is the degree of importance that the
constraint i has for the buyer agent.
2 The choice of an appropriate aggregation operator depends on the context of the

negotiation and is directly related to the negotiators attitudes.
3 This strategy has been commonly defined as a meta-strategy based on concession

and trade-off strategies.
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2.3 Domain Knowledge of the Seller Agent

Let Sreq = (S, Ns) be the requirement model of the seller agent, which is
defined by the set of products the seller holds, S = {sj|sj = (pj , uj), pj =
(aj1, ..., ajn), 0 ≤ j ≤ k}, where pj is the vector of attributes, uj is the profit,
and k is the total number of products in the catalogue; and a negotiation pro-
file Ns = {ψ, β, Δk}, where ψ ∈ {0, 1} controls whether the seller agent ex-
presses its preferences for a specific relaxation of the previous buyer’s demands,
β ∈ [0, 1] modulates the seller’s attitude regarding a purchase requirement, and
Δk = {(δk

i , γk
i ), i = 1, ..., m} defines a dynamic set of beliefs, where δk

i represents
the beliefs about the relaxation strategy used by the buyer agent at instant k
and for constraint i, and γk

i is the degree of certainty.4

Definition 6. (Sale Offer) A sale offer is defined by a product pj.

Definition 7. (Relax Requirement) A relax requirement is defined as a set
ρBreq = {ri|ri ∈ [0, 1], i ∈ cons(λBreq )}, where ri is the preference for constraint
i to be relaxed.

3 A Purchase Negotiation Dialogue

In [9] McBurney et al. introduced a framework for automating purchase negoti-
ations.5 Our purchase negotiation dialogue is built upon this framework, and is
defined as a four stage sequence: open dialogue (L1-2), negotiate (L3-8), confirm
(L9-10) and close dialogue (L11).

L1: open dialogue(Pb, Ps, θ) Pb suggests the opening of a purchase dialogue to
a seller participant Ps on product category θ. Ps agent wishing to participate
must respond with enter dialogue(.).

L2: enter dialogue(Ps, Pb, θ) Ps indicates a willingness to join a purchase di-
alogue with participant Pb. Within the dialogue, a participant Pb must have
uttered the locution open dialogue(.).

L3: willing to sell(Ps, Pb, pj) Ps indicates to the buyer Pb a willingness to
sell a product pj . A buyer Pb must have uttered a desire to buy(.) or a
prefer to buy(.) locution.

L4: desire to buy(Pb, Ps, λBreq) Pb, speaking to the seller Ps, requests to pur-
chase a product which satisfies the purchase requirement λBreq .

L5: prefer to sell(Ps, Pb, λBreq , ρBreq) Ps, speaking to the buyer Pb, requests
to relax the purchase requirement λBreq , and expresses which constraints are
preferred to be relaxed, by means of the relax requirement ρBreq .

4 The degree of certainty does not have a probabilistic interpretation.
5 Their work is concerned with the locutions and interaction protocols, but less con-

cerned with the decision mechanisms. Nevertheless, this framework provides a solid
characterization of complex dialogues.
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L6: prefer to buy(Pb, Ps, λ
k
Breq

, υBreq) Pb, speaking to the seller Ps, requests
to purchase a product which satisfies the purchase requirement λk

Breq
, and ex-

presses its preferences for the different constraints by means of the purchase
requirement valuation υBreq .

L7: refuse to buy(Pb, Ps, pj) The buyer agent expresses a refusal to purchase
a product pj . This locution cannot be uttered following a valid utterance of
agree to buy(.).

L8: refuse to sell(Ps, Pb, pj|λBreq) The seller agent expresses a refusal to sell
a product pj , or it expresses a refusal to sell products which satisfy the
purchase requirement λBreq . This locution cannot be uttered following a valid
utterance of agree to sell(.).

L9: agree to buy(Pb, Ps, pj) Buyer agent Pb speaking to Ps commits to buy
the product pj . A locution of the form willing to sell(.) must have been
uttered.

L10: agree to sell(Ps, Pb, pj) Seller agent Ps speaking to buyer agent Pb com-
mits to sell the product pj . A locution of the form agree to buy(.) must
have been uttered.

L11: withdraw dialogue(Px, Py, θ) For Px and Py participants with different
roles (i.e. sellers and buyers). Px announces to agent Py the withdrawal from
the dialogue.

Next step is to specify the mechanisms which will invoke particular locutions in
the course of a dialogue.

4 The Decision Mechanisms

The following mechanisms are grouped according to the type of participants:
Buyers (B) or Sellers (S). Now, we present the buyer’s mechanisms.

B1: Recognize Need enables the buyer agent to recognize a need for a pur-
chase. A user who wants to buy a product initiates a purchase dialogue by
means of a user interface. Outputs: have need(θ).

B2: Generate Purchase Requirement enables the buyer agent to generate
a new purchase requirement to include in the desire to buy() or the pre-
fer to buy() locutions. Outputs: empty set ∅, λk

Breq
.

There are two basic sub-mechanisms to generate a new purchase requirement:
(a) add a new constraint, when the buyer agent is preparing the first pur-
chase requirement, or when a sale offer received from the seller agent cannot
be accepted (and new constraints exist); and (b), relax the current purchase
requirement applying when possible the trade-off strategy, and otherwise the
concession one.6 If the buyer agent receives the prefer to sell() locution instead

6 With this approach, the loss of posd is minimized. There is no reason for the buyer
agent to deviate from this strategy when the only available criterium is the local
utility.
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of the refuse to sell() locution, a variation to this strategy can be applied which
takes into account the relax requirement ρBreq . We call this, the cooperative pur-
chase requirement relaxation strategy which is defined below. An empty set ∅ is
generated if sub-mechanisms (a) or (b) cannot be used.

Definition 8. (Cooperative Purchase Requirement Relaxation Strat-
egy) Given a relax requirement ρk

Breq
as a response to a purchase requirement

λk
Breq

, a cooperative purchase requirement relaxation strategy is defined as a mech-
anism which generates a new purchase requirement λk+1

Breqcooperative as a function
of ρk

Breq
and λk

Breq
, which must integrate the demands of the seller agent.

The relax requirement acts as an argument which explains why a purchase re-
quirement has not been accepted, so it allows seller agent to explicitly influence
buyer’s preferences during negotiation. Finally, we propose the following algo-
rithm to implement a generalized purchase requirement strategy:

Algorithm 1: (1) Given λk
Breq

obtain the set {αλk+1
Breq

Rf
i

|∀i ∈ cons(λk+1
Breq

)}, where

α
λk+1
Breq

Ri
represents the posd if constraintRf

i is relaxed. (2)Computeα
λk+1
Breqcooperative =

�({αλk+1
Breq

Rf
i

|∀i ∈ cons(λk+1
Breq

)}), where � is an aggregation operator. This value will
serve as a threshold in order to determine which constraints can be relaxed attend-

ing to overall satisfaction degree criteria. (3) Select from {αλk+1
Breq

Rf
i

|∀i ∈ cons(λk+1
Breq

)}

those elements such that α
λk+1
Breq

Rf
i

≥ α
λk+1
Breqcooperative , and let {λk+1

Breq
}feasible be the set

with the elements satisfying the inequality. (4) Let ρk
Breqfeasible be the subset of ρk

Breq

which includes the information regarding the constraints contained in
{λk+1
Breq

}feasible, then apply the constraint selection function csf which is defined as:

csf : ({λk+1
Breq

}feasible, ρ
k
Breqfeasible, η) → Cf .

In our experiments7 csf = arg(max{λk+1
Breq
}feasible

α
λk+1
Breq

Rf
i

+ ri ∗ η).

B3: Generate Purchase Requirement Valuation enables the buyer agent
to obtain the valuation of a purchase requirement. Outputs: empty set ∅,
υBreq .

If ξ = 0 this mechanism returns an empty set ∅. If ξ = 1 this mechanism generates
the valuation of a purchase requirement. The valuation is based on the calculus
of the posd the buyer agent gets if a constraint is relaxed. Summarizing, a high
valuation implies that the buyer agent prefers not to relax the constraint.

7 csf searches the constraint that when relaxed, maximizes the weighted sum of the
posd and the relax requirement received from the seller agent. We can see how the
η parameter modulates the buyer’s attitude regarding the relax requirement.
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Algorithm 2: (1) Given a purchase requirement λk+1
Breq

then obtain a vector with
the posd for all the possible purchase requirements (i.e. what would happen in the
next round of negotiation with the overall satisfaction degree if a constraint is re-

laxed): {αλk+2
Breq

Rf
i

|∀i ∈ cons(λk+2
Breq

)}. (2) Apply the purchase requirement valuation

function prvf : ({αλk+2
Breq

Rf
i

|∀i ∈ cons(λk+2
Breq

)}) → υBreq . This function represents a

general framework to obtain the valuation of a purchase requirement.8

B4: Consider Offers decides at a particular time whether to: (a) accept an
offer if α(pj) ≥ α

λk
Breq ; (b) reject the offer if for some reason it does not

fall within a previously submitted purchase requirement; or (c) generate
a new purchase requirement if the sale offer does not equal or exceed the
actual posd. Outputs: accept offer(pj), reject offer(pj), generate purchase
requirement(pj),

B5: Consider Withdrawal generates the withdraw(θ) output when invoked.
Outputs: withdraw(θ).

Now we describe the seller’s mechanisms:

S1: Recognize Category assesses whether the seller has products to sell in
the category. Outputs: enter(θ), not to enter(θ).

S2: Assess Purchase Requirement assesses whether a proposed purchase
requirement can be satisfied. Outputs: empty set ∅, λk

Breq
, sale offer(pj).

Algorithm 3: (1) The seller agent searches for products which satisfy the pur-
chase requirement. (2) If the purchase requirement cannot be satisfied and pa-
rameter ψ = 0, an empty set ∅ is returned. (3) If the purchase requirement
cannot be satisfied and parameter ψ = 1, the purchase requirement λk

Breq
is

returned. (4) From the products which satisfy the buyer’s requirement, choose
those with the highest utility and return the product pj which has been a sale
offer a minimum number of times.

S3: Generate Potential Sale Offers makes a selection of products which the
seller agent considers as good candidates for a sale offer. Outputs: set Sp

of products.

If a seller agent cannot satisfy a purchase requirement, it may encourage the
buyer agent to change its proposals. A good alternative to promote a convergence
in the negotiation is to express how the purchase requirement should be relaxed.9

We plan to do this by means of a relax requirement. The mechanism considers the
8 In our experiments we have defined prvf as a linear function, where those constraints

that when relaxed generate a low posd are more valued than constraints which
generate a higher posd.

9 A seller agent is not interested in sending an explicit sale offer unless this offer matches
the purchase requirement (a premature offer may imply a loss of opportunity).
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first task in this process: the selection of candidates for a future sale offer. We
have identified two main aspects when making this selection: the local utility,
which depends on the uj parameter (i.e. the profit), and the viability, which
depends on the similarity between the pj candidate and the purchase requirement
λk
Breq

, as well as on the expected buyer’s valuation. A seller agent may give more
or less importance to each aspect by means of the β ∈ [0, 1] parameter. The
function prefer estimates the goodness of a potential sale offer in terms of
utility and viability:

prefer(pj) = β ∗ uj + (1 − β) ∗ ˆviability(pj , λ
k
Breq

, υBreq) ,

where ˆviability = ˆsim(pj , λ
k
Breq

)  Êbv(pj , λ
k
Breq

, υBreq). The first term in this
function represents the similarity between a product and a purchase require-
ment, and it is defined as 1− ˆdist(pj , λ

k
Breq

). The second term is the estimate of
the product buyer’s valuation. Having defined a general framework to assign a
preference value to a potential sale offer, now we propose the following estimates
for the ˆsim and Êbv functions, and for the  operator. For simplicity, we limit
the proposal to FCSPs where only one variable per constraint is defined, so the
distance between a potential sale offer and a purchase requirement may be com-
puted in a per-constraint basis as ˆdist(pj , λ

k
Breq

) = sqrt(
∑z

i=1
ˆdist(ai, λ

k,i
Breq

)2/z),

where ˆdist(ai, λ
k,i
Breq

) estimates the distance from the attribute ai to crisp con-
straint Rc

i in the purchase requirement λk
Breq

. We compute the distance as a
function of the beliefs about the relaxation strategy δk

i , the degrees of certainty
γk

i , and the distance from the nearest boundary of constraint i to the attribute
ai. A belief δk

i is a pair (ares
i , τi), where ares

i defines the expected reservation
value10 for attribute ai, and τi ∈ (0,∞) weights the concession strategy used by
the buyer agent. If the seller agent assumes a monotonic decreasing function for
the relaxation of ai, then:

dist(ai, λ
k,i
Breq

) =

⎧
⎪⎪⎨

⎪⎪⎩

0 ∀ai > λk,i
Breq

1 ∀ai < ares
i

(abs(
ai−λk,i

Breq

ares
i −λk,i

Breq

)1/τi − 1) ∗ γk
i + 1 otherwise

.

The Êbv estimate is defined in a similar way:

Êbv(pj , λ
k
Breq

, υBreq) =
{{∑z

i=1 Êbv(ai, λ
k,i
Breq

, vi)}/z if υBreq �= φ

1 otherwise
,

where Êbv(ai, λ
k,i
Breq

, vi) = (1 − ˆdist(ai, λ
k,i
Breq

)) ∗ vi.
In our experiments we have defined  as the mean value. Now we describe the

algorithm which selects the potential sale offers:

10 This reservation value must be interpreted as an independent value which is not
related to the reservation values of other attributes.
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Algorithm 4: (1) Take all the products in the catalogue and compute the func-
tion prefer. (2) Fix a threshold11 and select those products with a prefer value
exceeding this threshold. This is the set Sp.

S4: Generate Relax Requirement obtains the relax requirement ρBreq to
submit to the buyer agent. Outputs: ρBreq .

Given a set of potential sale offers Sp, this mechanism generates a relax require-
ment in order to encourage the buyer agent to buy one of the products contained
in Sp. The following algorithm is proposed:
Algorithm 5: (1) For each potential sale offer see which constraints from the
purchase requirement are not satisfied. (2) Generate ρBreq , where ri = 1 if con-
straint Rf

i in λk
Breq

has not been satisfied for any product, and otherwise ri = 0.

S5: Accept or Reject Offer decides at a particular time whether to accept or
reject an agree to buy() locution made by a buyer agent. It returns accept(pj)
if the sale offer accepted by the buyer agent still exists. Otherwise returns
reject(pj). Outputs: accept(pj), reject(pj).

S6: Consider Withdrawal decides to withdraw from the dialogue. It gener-
ates the withdraw(θ) output when invoked. Outputs: withdraw(θ).

5 Operational Semantics

Operational semantics provides a formal linkage between the dialogue locutions
and the semantic mechanisms previously defined [9]. We use the notation in [9]
which defines the 3-tuple 〈Px, K, s〉 to denote the mechanism with number K
and with output s of agent Px. The notation is self-explanatory, so we describe
in detail only the first transition rules:

TR1: 〈Pb,B1, have need(θ)〉L1−→〈Ps,S1, .〉 indicates that a buyer agent with a
current need for a product will initiate a purchase negotiation dialogue by
means of locution L1.

TR2: 〈Ps,S1, not to enter(θ)〉 → 〈Ps,S1, .〉 indicates that a seller agent does
not wish to enter a dialogue at this time, but will review the situation after
some time.

TR3: 〈Ps,S1, enter(θ)〉L2−→〈Pb,B2, .〉 says that a seller agent which wish to en-
ter a dialogue at this time will do so by means of an utterance of locution
L2, i.e. enter dialogue(). This utterance will lead the buyer agent to execute
mechanism B2: Generate Purchase Requirement.

TR4: 〈Pb,B2, ∅〉 → 〈Pb,B5, .〉 says that when mechanism B2: Generate Pur-
chase Requirement leads to an output of an empty set ∅ in a buyer agent,
the B5:Consider Withdrawal mechanism is invoked.

11 We have fixed this value to the maximum value of prefer. The threshold influences
the number of elements of Sp. A high threshold implies a more selective criterium
to generate relax requirements.
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TR5: 〈Pb,B5, withdraw(θ)〉L11−−→〈Ps,S6, .〉
TR6: 〈Ps,S6, withdraw(θ)〉L11−−→〈Pb,B5, .〉
TR7:

〈
Pb,B2, λk

Breq

〉
→ 〈Pb,B3, .〉

TR8: 〈Pb,B3, ∅〉L4−→〈Ps,S2, .〉
TR9:

〈
Pb,B3, υBreq

〉
L6−→〈Ps,S2, .〉

TR10: 〈Ps,S2, ∅〉L8−→〈Pb,B2, .〉
TR11: 〈Ps,S2, saleoffer(pj)〉L3−→〈Pb,B4, .〉
TR12:

〈
Ps,S2, purchasereq(λk

Breq
)
〉
→ 〈Ps,S3, .〉

TR13: 〈Ps,S3, Sp〉 → 〈Ps,S4, .〉
TR14:

〈
Ps,S4, ρBreq

〉
L5−→〈Pb,B2, .〉

TR15: 〈Pb,B4, generatepurchasereq(pj)〉 → 〈Pb,B2, .〉
TR16: 〈Pb,B4, acceptoffer(pj)〉L9−→〈Ps,S5, .〉
TR17: 〈Pb,B4, rejectoffer(pj)〉L7−→〈Ps,S2, .〉
TR18: 〈Ps,S5, accept(pj)〉L10−−→〈Pb,B5, .〉
TR19: 〈Ps,S5, reject(pj)〉L8−→〈Pb,B2, .〉
The dialogue game framework and the semantic mechanisms we have presented
generate dialogues automatically.12

6 A Purchase Scenario

A buyer desires to buy a product of category θ where: Xθ = {price, brand} and
Dθ = {[0, 30000], {A, ..., J}}. The requirements on the attributes are defined
in Table 1. The overall satisfaction degree is computed by means of the min
operator. In the inexpressive profile Nb = {ξ = 0, η = φ}, so the buyer agent

Table 1. Requirements on Price and Brand

Price μRf
1

Brand μRf
2

Price μRf
1

Brand μRf
2

¡6000 1 J 1 [16000, 18000) 0.4 D 0.4
[6000, 8000) 0.9 I 0.9 [18000, 20000) 0.3 C 0.3
[8000, 10000) 0.8 H 0.8 [20000, 22000) 0.2 B 0.2
[10000, 12000) 0.7 G 0.7 [22000, 24000] 0.1 A 0.1
[12000, 14000) 0.6 F 0.6 ¿24000 0
[14000, 16000) 0.5 E 0.5

will use the desire to buy() locution to express the purchase requirements. In the
expressive profile Nb = {ξ = 1, η = 1}. In words, the prefer to buy() locution
will be used to express the purchase requirements, and the buyer will attend
12 To prove this, we need to demonstrate that: every locution can be invoked by one

or more semantic mechanisms, and every execution of each of these mechanisms
ultimately invokes a locution. We refer to [9] for a detailed example of demonstration.
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Table 2. Catalogue of Products

i Product Profit i Product Profit

1 {11000, A} 1 7 {21000, I} 0.1
2 {13000, C} 0.1 8 {25000, J} 0.5
3 {15000, D} 1 9 {25000, G} 0.5
4 {17000, E} 0.1 10 {23000, E} 0.5
5 {19000, G} 1 11 {21000, C} 0.5
6 {19000, H} 0.1 12 {19000, A} 0.5

the relax requirements as much as possible. The seller agent owns a catalogue of
products which is defined in Table 2. If the seller agent decides to negotiate with
an inexpressive profile, Ns = {ψ = 0, β = φ, Δk = φ}, so the seller agent does not
use explicit relax requirements, and the refuse to sell() locution is used to request
the relaxation of purchase requirements. In the expressive profile, Ns = {ψ =
1, β = 0.5, Δk = (δk

1 = (30000, 1), δk
2 = (null, null)), (γk

1 = 1, γk
2 = 0))}, so the

seller agent uses the prefer to sell() locution to request the relaxation of purchase
requirements. While it has a high degree of certainty regarding the beliefs about
the price (reservation value of 30000 and linear estimate of distance), it knows
nothing about the brand attribute. These parameters are assumed not to change
over time. Table 3 shows the ending of the purchase negotiation dialogues for
the expressive and inexpressive profiles. The progress of the negotiation in the
first steps is similar because all the potential sale offers are far from the buyer
requirements. However, when λBreq is near to (17000, E) and (15000, D), the
seller agent indicates that the brand constraint should be relaxed (stages S11-
12 ).13 The aggregated utility of the outcome is 1.4, while in the inexpressive
profiles is 0.5.

In order to test the efficiency of the proposed model, we have developed the
following tests which compare the expressive and inexpressive approaches. We
assume a static scenario where both the buyer and seller agents are risk averse,
and so they try to reach an agreement as soon as possible. This assumption
is necessary in order to justify the use of the expressive strategy by the buyer
agent.

Each product in the seller’s catalogue has 10 attributes, while the FCSP of the
buyer agent is defined as a set of 10 fuzzy constraints, where a fuzzy constraint
is assigned to each attribute. Each fuzzy constraint has 11 cut levels, all of them
equally spaced. In the expressive profile the buyer agent defines Nb = {ξ =
1, η = 1}, and the seller agent Ns = {ψ = 1, β = 0.5, Δk = (δk

i = (ares
i , 1)|i =

1...10, γk
i = 1|i = 1...10)}. The set of beliefs state that the certainty degree about

all the attribute estimates is 1. The distance estimates are modelled as linear
functions, while the reservation value estimates are fixed around the boundaries
of the crisp constraints induced at the lowest cut levels. The different experiments
are designed varying the seller’s catalogue. Each catalogue is an aggregation of

13 When using the inexpressive negotiation profiles the buyer agent submits de-
sire to buy([¡=18000] & {E-J}), so the outcome is (17000,E) instead of (15000,D).
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Table 3. Purchase Negotiation Dialogues

Expressive Inexpressive

prefer to buy(λBreq ) (υBreq ) ⇒ Bx desire to buy(λBreq )

prefer to sell(λBreq ) (ρBreq ) ⇒ Sx refuse to sell(λBreq )

... ... ...

prefer to buy([<=12000]) & {H-J}) ([0.5,0.5])⇒ B8 desire to buy([<=12000]) & {H-J})⇒

prefer(pi)={0 0.18039 0.61665 0.14906 0.57807

0.12807 0.10422 0.25 0.25 0.27805 0.30422 0.32807}

prefer to sell([<=12000] & {G-J}) ([1,1])⇒ S8 refuse to sell([<=12000] & {G-J})⇒

prefer to buy([<=14000]) & {G-J}) ([0.55556,0.44444])⇒ B9 desire to buy([<=14000]) & {G-J})⇒

prefer(pi)={0 0.19267 0.63563 0.16727 0.5937

0.1437 0.11572 0.25 0.25 0.28422 0.31572 0.3437}

prefer to sell([<=14000] & {G-J}) ([1,1])⇒ S9 refuse to sell([<=14000] & {G-J})⇒

prefer to buy([<=14000]) & {F-J}) ([0.5,0.5])⇒ B10 desire to buy([<=14000]) & {F-J})⇒

prefer(pi)={0 0.18572 0.62931 0.16222 0.58991

0.13991 0.11319 0.25 0.25 0.28296 0.31319 0.33991}

prefer to sell([<=14000] & {F-J}) ([1,1])⇒ S10 refuse to sell([<=14000] & {F-J})⇒

prefer to buy([<=16000]) & {F-J}) ([0.54545,0.45455])⇒ B11 desire to buy([<=16000]) & {F-J})⇒

prefer(pi)={0 0.1914 0.6414 0.18274 0.60912

0.15912 0.12808 0.25 0.25 0.2912 0.32808 0.35912}

prefer to sell([<=16000] & {F-J}) ([0,1])⇒ S11 refuse to sell([<=16000] & {F-J})⇒

prefer to buy([<=16000]) & {E-J}) ([0.5,0.5])⇒ B12 desire to buy([<=16000]) & {E-J}) ⇒

prefer(pi)={0 0.18572 0.63572 0.17769 0.60533

0.15533 0.12555 0.25 0.25 0.28994 0.32555 0.35533}

prefer to sell([<=16000] & {E-J}) ([0,1])⇒ S12 refuse to sell([<=16000] & {E-J})⇒

prefer to buy([<=16000]) & {D-J}) ([0.46154,0.53846])⇒ B13 desire to buy([<=18000]) & {E-J})⇒

willing to sell(15000,D)⇒ S13 willing to sell(17000,E)⇒

agree to buy(15000,D)⇒ B14 agree to buy(17000,E)⇒

agree to sell(15000,D)⇒ S14 agree to sell(17000,E)⇒

a feasible set and a noise set. The feasible set is the set of products which can
be the outcome of a purchase negotiation, while the rest of the catalogue is the
noise set. If we assume a min operator for the calculus of the overall satisfaction
degree, the feasible set will be formed by the set of products with the highest
utility for the buyer agent.14 We have developed two sets of experiments, with
empty and non-empty noise sets. In both cases we have defined feasible sets with
different lengths: 2, 5, 10, 25 and 50 products. Given a feasible set, next step is
to assign a profit ui to each product in the set. These values have been generated
by means of a uniform distribution with parameters 0 and 0.89. Finally we take
one of these products and change its profit to 0.9, so this would be the preferred
outcome. The noise sets are randomly generated and restricted to products with
a lower utility for the buyer agent. Table 4 shows the results of the tests. Each

14 Note that the buyer agent minimizes the loss of potential overall satisfaction degree
when it relaxes a purchase requirement, and the seller agent never delay a sale offer
waiting for a better agreement.
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Table 4. Summary results for the inexpressive and expressive profiles

Inexpressive

Feasible set length Success (%) CI (%) Median CI

2 69 [58.97, 77.87] 0.9 [0.8731, 0.9]

5 26 [17.74, 35.73] 0.5970 [0.491, 0.703]

10 15 [8.65, 23.53] 0.5497 [0.4644, 0.6351]

25 3 [0.62, 8.52] 0.5515 [0.499, 0.6039]

50 8 [3.52, 15.16] 0.5418 [0.4702, 0.6133]

Expressive without Noise

Feasible set length Success (%) CI (%) Median CI

2 98 [92.96, 99.76] 0.9 [0.9, 0.9]

5 77 [67.51, 84.83] 0.9 [0.9, 0.9]

10 55 [44.73, 64.97] 0.9 [0.8347 ,0.9]

25 28 [19.48, 37.87] 0.7769 [0.7072, 0.8467]

50 24 [16.02, 33.57] 0.7792 [0.7022, 0.8561]

Expressive with Noise

Feasible+Noise set lengths Success (%) CI (%) Median CI

2+100 91 [83.60, 95.80] 0.9 [0.9, 0.9]

5+100 46 [35.98, 56.26] 0.8635 [0.7955, 0.9]

10+100 37 [27.56, 47.24] 0.7484 [0.6735, 0.8232]

25+100 35 [25.73, 45.18] 0.6902 [0.6066, 0.7738]

50+100 9 [4.2, 16.4] 0.5819 [0.5144, 0.6494]

test is defined by the use of the expressive or the inexpressive profiles and the
length of the feasible and noise sets. For each combination of parameters (profile
and lengths), our test system randomly generates 100 different catalogues in
order to carry out 100 different negotiations. Then we compute the success rate
and the median of the seller’s profit, together with their confidence intervals for
a confidence level of 95%. We mean with success that the seller agent obtains a
profit of 0.9. We can see how the use of expressive profiles significatively improves
the results.

7 Conclusions and Future Work

This paper has presented a model to support automated bilateral purchase ne-
gotiations using fuzzy constraints. All the internal decision mechanisms, and the
rules which govern interactions have been defined. In contrast to other fuzzy
constraint models, in ours: (1) A buyer agent attends the seller’s requirements
in order to select the alternative from the set of trade-off proposals that is likely
to benefit both agents. (2) Constraints can be valued in order to help the seller
agent to make a more effective search. The purpose of this search is to select
the most convenient potential sale offers in order to generate a balanced relax
requirement. (3) Different attitudes for the seller and buyer agents can be easily
modelled by means of the negotiation profiles.
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While this approach has yielded some promising results, considerable work
remains to be done. We should identify which are the best strategies to apply
under different purchase scenarios. Moreover, the decision mechanisms must be
extended in order to cover fuzzy constraints which depend on multiple vari-
ables. The future work will also include a deep analysis of the privacy issues,
computational efficiency and the robustness of our model.
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