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Reduction by Stages with Topological
Conditions

In this chapter we will use the distribution theoretical approach to formu-
late a reduction by stages theorem that only requires an easily verifiable
point set topological condition. This condition is satisfied by a large class of
Lie groups, for example, compact ones. Notice that this statement could not
have been made had we followed exclusively the purely algebraic approach
in § 5.2. Having said that, we will analyze the relation between the stages
theorem in this chapter and that in the previous one.

12.1 Reduction by Stages III

In this section we will study a very general condition that also implies the
possibility of reducing by stages. We state it in the following result:

12.1.1 Proposition. Let M0 be the connected component of the identity
of M . Suppose that the symplectic manifold (P,Ω) is Lindelöf and para-
compact. Let σ ∈ JM (P ) ⊂ m∗, ν := i∗σ, J−1

M (σ)C be one of the connected
components of J−1

M (σ) included in J−1
N (ν)C , and θ be the map introduced

in (11.3.2). If the orbit M0 · ν ⊂ n∗ is closed as a subset of n∗, then

θ(J−1
M (σ)C) = (JCν )−1(ρ)C . (12.1.1)

Before we proceed with the proof of this proposition we state and prove
an important corollary.

12.1.2 Theorem (Reduction by Stages III). Let M0 be the connected
component of the identity of M . Suppose that the symplectic manifold (P,Ω)
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is Lindelöf and paracompact. Let σ ∈ JM (P ) ⊂ m∗ and ν := i∗σ. Suppose
that the orbit M0 · ν ⊂ n∗ is closed as a subset of n∗. Let J−1

M (σ)C be
one of the connected components of J−1

M (σ) included in J−1
N (ν)C . Then the

symplectic reduced spaces

PCσ := J−1
M (σ)C/MC

σ and (Pν)Cρ := (JCν )−1(ρ)C/(MC
ν /N

C
ν )Cρ

are symplectomorphic.

An important particular case in which the closedness hypothesis on the
orbit M0 ·ν in the previous corollary is always satisfied is when the group M
is compact. Consequently, whenever the manifold P is Lindelöf and para-
compact and the group M is compact, the reduction by stages procedure
is always viable.

The closedness hypothesis of the coadjoint orbits in the statement of
Proposition 12.1.1 is needed in the proof in relation to the existence of the
extensions of certain functions.

Proof of the Theorem. Consider the following variation of the dia-
gram (11.3.2):

J−1
M (σ)C

θ−−−−→ (JCν )−1(ρ)C

πC
σ

⏐
⏐
=

⏐
⏐
=πC

ρ

J−1
M (σ)C/MC

σ
Θ−−−−→ (JCν )−1(ρ)C/(MC

ν /N
C
ν )Cρ ,

where MC
σ is the subgroup of Mσ that leaves the connected component

J−1
M (σ)C invariant, and πσ : J−1

M (σ)C → J−1
M (σ)C/MC

σ is the canonical pro-
jection. The equality θ(J−1

M (σ)C) = (JCν )−1(ρ)C guaranteed by the previous
proposition implies that θ, and consequently Θ, are surjective. Mimicking
the proof of Theorem 11.1.3 it can be shown that Θ is also an injective
symplectic immersion, and therefore a symplectomorphism. �

Proof of Proposition 12.1.1.. We start the proof by stating several
lemmas and propositions. For future reference a standard result in manifold
theory is stated below. For a proof see Theorem 5.5.9 in [MTA].

12.1.3 Proposition. Let P be a paracompact smooth manifold and A ⊂
P be a closed submanifold of P . Any smooth function f ∈ C∞(A) admits
an extension to a smooth function F ∈ C∞(P ).

We now study a distribution that will be of much use.

12.1.4 Lemma. Let D be the generalized distribution on P given by
D = A+EN , where, for any z ∈ P

A(z) = Tz(M · z) = {ξP (z) | ξ ∈ m},



12.1 Reduction by Stages III 411

and
EN (z) = span{Xg◦πN

(z) | g ∈ C∞
c (P/N)},

where πN : P → P/N is the projection onto the orbit space. Then:

(i) If Ft is the flow of the infinitesimal generator vector field ξP , ξ ∈
m, and Gt is the flow of the Hamiltonian vector field Xg◦πN

, g ∈
C∞
c (P/N), then, for any t1, t2 ∈ R, we obtain,

Gt1 ◦ Ft2 = Ft2 ◦Ht1 ,

where Ht is the flow of the Hamiltonian vector field associated to
the function h := g ◦ πN ◦ Ft2 ∈ C∞(P )N that can also be written
as g ◦ F̄t2 ◦ πN . The map F̄t2 is the diffeomorphism of P/N uniquely
determined by the relation πN ◦Ft2 = F̄t2◦πN and g◦F̄t2 ∈ C∞

c (P/N).

(ii) D is integrable.

(iii) The maximal integral leaves of the distribution D are given by the
orbits

GD · z = GA ·GEN
· z = M0 · (J−1

N (ν)C),

where JN (z) = ν, J−1
N (ν)C is the connected component of J−1

N (ν) that
contains z, and M0 is the connected component of the identity of M .

Proof. To prove (i), first note that for any time t ∈ R and any z ∈ P ,
Ft(z) = exp tξ · z. Also, since N is a normal subgroup of M , for any n ∈ N
and z ∈ P there exists an element n′ ∈ N such that Ft(n ·z) = exp tξn ·z =
n′ exp tξ ·z = n′ ·Ft(z). Consequently, the map Ft induces a diffeomorphism
F̄t of P/N uniquely determined by the relation F̄t ◦ πN = πN ◦ Ft. Also,
the function g ◦ πN ◦ Ft ∈ C∞(M) can be written as g ◦ F̄t ◦ πN which
guarantees that it is an element of C∞(M)N and that, by Theorem 11.2.4
(i), the Hamiltonian vector field Xg◦πN◦Ft

= Xg◦F̄t◦πN
is complete. Now,

since the M -action on P is canonical the map Ft is Poisson and therefore

TFt ◦Xg◦πN◦Ft
= Xg◦πN

◦ Ft.

Moreover, if Gt is the flow of Xg◦πN
and Ht that of Xg◦πN◦Ft2

, then it
follows that Gt1 ◦Ft2 = Ft2 ◦Ht1 . Since all the vector fields involved in this
expression are complete, this equality is valid for any t1, t2 ∈ R.

Now we turn to the proof of (ii). According to Theorem 11.2.1 it is
enough to show that the distribution D is invariant under the action of the
diffeomorphisms group GD generated by the family of vector fields that
spans the distribution D, namely,

{ξP | ξ ∈ m} ∪ {Xg◦πN
| g ∈ C∞

c (P/N)}.
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More specifically, we have to show that TzFT (D(z)) = D(FT (z)), for each
FT ∈ GD and any z ∈ P . Actually, it suffices to show the inclusion

TzFT (D(z)) ⊂ D(FT (z)) (12.1.2)

given that since (12.1.2) is valid for any element in GD and any point in
P , we get TFT (z)(FT )−1(D(FT (z))) ⊂ D(z). Applying TzFT to both sides
of this inclusion we obtain that D(FT (z)) ⊂ TzFT (D(z)), as required.

Hence, we now verify that (12.1.2) holds when FT = F 1
t1 ◦ · · · ◦ Fntn with

F iti the flow of a vector field either of the form ξP , with ξ ∈ m, or of the
form Xg◦πN

, with g ∈ C∞
c (P/N). We consider both cases separately.

Firstly, let Ft be the flow of Xg◦πN
, with g ∈ C∞

c (P/N), and Xf◦πN
be

another Hamiltonian vector field with f ∈ C∞
N (P/N). Then, since Ft is a

Poisson map, we see that for any z ∈ P

TzFt(Xf◦πN
(z)) = TzFt(Xf◦πN◦F−t◦Ft

(z))
= Xf◦πN◦F−t

(Ft(z))
= Xf◦F̄−t◦πN

(Ft(z)),

where F̄−t is the diffeomorphism of P/N uniquely determined by the equal-
ity F̄−t ◦ πN = πN ◦ F−t. Given that f ◦ F̄−t ◦ πN ∈ C∞(P )N and
f◦F̄−t ∈ C∞

c (P/N), we obtain Xf◦πN◦F−t
(Ft(z)) ∈ EN (Ft(z)) ⊂ D(Ft(z)).

Secondly, let ξP , be the vector field on P constructed using the infini-
tesimal generators associated to the element ξ ∈ m. The flow of this vector
field is given by the map Gt := Φexp tξ. Consequently,

TzFt(ξP (z)) =
d

ds

∣
∣
∣
∣
s=0

Ft(exp sξ · z) =
d

ds

∣
∣
∣
∣
s=0

exp sξ · F g◦πN◦Φexp sξ

t (z)

= ξP (Ft(z)) +
d

ds

∣
∣
∣
∣
s=0

F
g◦πN◦Φexp sξ

t (z), (12.1.3)

where F g◦πN◦Φexp sξ

t is the flow of Xg◦πN◦Φexp sξ
which, by part (i), is a N -

equivariant vector field. Note that the smooth curve c(s) := F
g◦πN◦Φexp sξ

t (z)
is such that c(0) = Ft(z) and, since g ◦ πN ◦ Φexp sξ ∈ C∞(P )N for all the
values of the parameter s then, by Noether’s Theorem, c(s) ∈ J−1

N (ν) with
ν = JN (z). Therefore,

d

ds

∣
∣
∣
∣
s=0

F
g◦Φexp sξ

t (z) ∈ kerTFt(z)JN = EN (Ft(z))

which, substituted in (12.1.3) allows us to conclude that TzFt(ξP (z)) ∈
D(Ft(z)).

Thirdly, consider the case in which Gt := Φexp tξ is the flow of ξP , ξ ∈ m,
and let η ∈ m be another arbitrary element in the Lie algebra of M . It is
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easy to check that

TzGt(ηP (z)) = ηP (exp tξ · z) +
d

ds

∣
∣
∣
∣
s=0

exp(tAdexp−sη ξ) · z.

Let g(s) = exp(tAdexp−sη ξ). This curve in M is such that g(0) = exp tξ,
hence, there exists some element ρ ∈ m such that TzGt(ηP (z)) = ηP (exp tξ ·
z) + ρP (exp tξ · z) ∈ A(Gt(z)) ⊂ E(Gt(z)), as required.

Finally, let g◦πN ∈ C∞(P )N , g ∈ C∞
c (P/N), with N -equivariant Hamil-

tonian flow Ft. Part (i) allows us to write

TzGt(Xg◦πN
(z)) =

d

ds

∣
∣
∣
∣
s=0

Gt ◦ Fs(z) =
d

ds

∣
∣
∣
∣
s=0

Hs ◦Gt(z),

with Hs the flow of the Hamiltonian vector field associated to the N -
invariant smooth function g ◦ πN ◦ Φexp−tξ, hence

TzGt(Xg◦πN
(z)) = Xg◦πN◦G−t

(Gt(z))
= Xg◦Ḡ−t◦πN

(Gt(z)) ∈ EN (Gt(z)) ⊂ D(Gt(z)).

The four cases studied allow us to conclude that the distribution D is
integrable.

Turning to (iii), the integrability of D proved in the previous point and
the general theory summarized in Theorem 11.2.1 establish that the max-
imal integral leaves of D are given by the GD-orbits. Clearly, GA ·GEN

⊂
GD. Part (i) implies the reverse inclusion and therefore GA · GEN

= GD.
Now, by Theorem 11.2.4, GEN

·z = J−1
N (ν)C , where JN (z) = ν and J−1

N (ν)C
is the connected component of J−1

N (ν) that contains z. Consequently,

GD · z = GA ·GEN
· z = M0 · (J−1

N (ν)C),

as required. �

12.1.5 Lemma. Let ν ∈ n∗ be an element in n∗ and M0 be the connected
component of the identity of M . Suppose that ν is such that the orbit M0 ·
ν ⊂ n∗ is closed as a subset of n∗. Then the set J−1

N (M0 · ν) is a closed
embedded submanifold of P . Moreover, if J−1

N (M0 · ν)C is the connected
component of J−1

N (M0 · ν) that contains J−1
N (ν)C , then

M0 · J−1
N (ν)C = J−1

N (M0 · ν)C . (12.1.4)

Proof. As we already know, since N is a normal subgroup of M , n∗ is a
M -space, therefore a M0-space, and hence the orbit M0 · ν is an immersed
submanifold of n∗. Moreover, we can think of M0 · ν as one of the maximal
integral manifolds of the singular integrable distribution DM0 on n∗ defined
by

DM0(ζ) := {ad∗
ξ ζ | ξ ∈ m}, for all ζ ∈ n∗.
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A standard theorem (see Proposition 2.2 in Dazord [1985]) guarantees that
the closed integral leaves of a generalized distribution are always imbedded.
Therefore, as M0 · ν is closed, it is consequently an embedded submanifold
of n∗. Recall now that since JN is the momentum map associated to a free
canonical action, it is necessarily a submersion and therefore each point of
the orbit M0 · ν is one of its regular values. The Transversal Mapping The-
orem guarantees in these circumstances that J−1

N (M0 · ν) is an embedded
submanifold of P . This result also ensures that, for any z ∈ J−1

N (M0 · ν),

Tz(J−1
N (M0 · ν)) = (TzJN )−1(TJN (z)(M0 · ν)).

The M0-infinitesimal equivariance of JN implies that

TJN (z)(M0 · ν) = {− ad∗
ξ JN (z) | ξ ∈ m}

= {TzJN (ξP (z)) | ξ ∈ m}
= TzJN (Tz(M0 · z)),

and consequently,

Tz(J−1
N (M0 · ν)) = Tz(M0 · z) + kerTzJN = Tz(M · z) + EN (z).

This equality implies that the manifold J−1
N (M0 · ν)C is an integral sub-

manifold of the distribution D introduced in Lemma 12.1.4, everywhere of
maximal dimension. In that result we saw that the maximal integral sub-
manifolds are given by the subsets of the form M0 · (J−1

N (ν)C). It is clear
that M0 · (J−1

N (ν)C) ⊂ J−1
N (M0 · ν)C . The maximality of M0 · (J−1

N (ν)C)
implies equality (12.1.4). �

We are now in the position to state the result on extensions that we will
need in the proof of the proposition.

12.1.6 Proposition. Let ν ∈ n∗ and M0 be the connected component of
the identity of M . Suppose that ν is such that the orbit M0 ·ν ⊂ n∗ is closed
as a subset of n∗. Then, every function f ∈ C∞(J−1

N (ν)C)M
C
ν admits an

extension to a function F ∈ C∞(P )M
0
.

Proof. The natural injection ϕ : J−1
N (ν)C ↪→ M0 · J−1

N (ν)C = J−1
N (M0 ·

ν)C induces a smooth map φ : J−1
N (ν)C/MC

ν → J−1
N (M0 · ν)C/M0 that

makes the following diagram commutative

J−1
N (ν)C

ϕ−−−−→ J−1
N (M0 · ν)C

π
MC

ν

⏐
⏐
=

⏐
⏐
=πM0

J−1
N (ν)C/MC

ν
φ−−−−→ J−1

N (M0 · ν)C/M0.

Since in this case the identity (12.1.4) holds, it is easy to verify that φ is
a bijection. Moreover, it is an immersion, and therefore a diffeomorphism.
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Indeed, let [z]MC
ν
∈ J−1

N (ν)C/MC
ν be arbitrary and vz ∈ TzJ−1

N (ν)C be such
that

T[z]
MC

ν

φ(TzπMC
ν
· vz) = 0.

This can be rewritten as

Tz(φ ◦ πMC
ν

) · vz = Tz(πM0 ◦ ϕ) · vz = TzπM0(Tzϕ · vz) = 0.

The last equality implies the existence of an element ξ ∈ m such that
Tzϕ(vz) = ξP (z), hence vz ∈ Tz(M · z) ∩ Tz(J−1

N (ν)) = T (Mν · z), and
consequently TzπMC

ν
· vz = 0, as required. The equality

Tz(M · z) ∩ Tz(J−1
N (ν)) = T (Mν · z)

follows easily after recalling that if ξP (z) ∈ Tz(M · z) ∩ Tz(J−1
N (ν)), then

TzJN · ξP (z) = − ad∗
ξ ν = 0.

Now take an arbitrary function f ∈ C∞(J−1
N (ν)C)M

C
ν , which induces

a function f̄ ∈ C∞ (
J−1
N (ν)C/MC

ν

)
uniquely determined by the relation

f̄ ◦πMC
ν

= f . Let now ḡ ∈ C∞ (
J−1
N (M0 · ν)C/M0

)
be the smooth function

defined by ḡ = f̄ ◦ φ−1. This function induces a M0 invariant function
g ∈ C∞(J−1

N (M0 · ν)C)M
0

on J−1
N (M0 · ν)C via the equality g = ḡ ◦ πM0 .

Since J−1
N (M0 · ν)C is a closed embedded submanifold of P , the function g

can be extended by Proposition 12.1.3 to a smooth function F ∈ C∞(P ).
The properness of the M0-action and the M0-invariance of the function
g and of the submanifold J−1

N (M0 · ν)C guarantee that F can be chosen
M0 invariant, as required (check for instance with Proposition 2 of Arms,
Cushman, and Gotay [1991]). �

12.1.7 Corollary. Suppose that the coadjoint orbit M0 ·σ ⊂ m∗ is closed
in m∗. Then every function f ∈ C∞(J−1

M (σ))M
C
σ admits an extension to a

function F ∈ C∞(P )M
0
. Also, if the coadjoint orbit M · σ ⊂ m∗ is closed

and embedded in m∗, then every function f ∈ C∞(J−1
M (σ))Mσ admits an

extension to a function F ∈ C∞(P )M .

Proof. For the proof of the first statement just take N = M in the
proof of the previous proposition. As to the second one, erase the symbols
C that refer to connected components and substitute M0 by M . As to
the hypothesis regarding M · σ ⊂ m∗ being embedded in m∗ we need it to
reproduce the argument at the very beginning of the proof of Lemma 12.1.5
where we would show, in our case, that J−1

M (M · σ) is a closed embedded
submanifold of P . �

We are now ready to prove the relation (12.1.1), that is,

θ(J−1
M (σ)C) = (JCν )−1(ρ)C .
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The inclusion θ(J−1
M (σ)C) ⊂ (JCν )−1(ρ)C is already known and is a conse-

quence of (11.3.1). Let πMC
ν /N

C
ν

: PCν → PCν /(M
C
ν /N

C
ν ) be the canonical

projection onto the orbit space. In order to show the equality take an arbi-
trary point πCν (z) ∈ θ(J−1

M (σ)C) ⊂ PCν and consider the maximal integral
leaf of the generalized distribution on PCν defined by

EMC
ν /N

C
ν

=
{
Xf

∣
∣
∣
∣ f ∈ C

∞ (
PCν

)MC
ν /N

C
ν with

f = F ◦ πMC
ν /N

C
ν
, F ∈ C∞

c

(
PCν /(M

C
ν /N

C
ν )
)
}

that goes through πCν (z) which, by Theorem 11.2.4, is the entire (JCν )−1(ρ)C .
If we are able to show that for any FT ∈ GE

MC
ν /NC

ν

, we have

FT (πCν (z)) ∈ θ(J−1
M (σ)C) = πCν (J−1

M (σ)C),

we will have proved the equality. For the sake of simplicity suppose that
FT = Ft, with Ft the Hamiltonian flow associated to the function f ∈
C∞ (

PCν
)MC

ν /N
C
ν . Let f̄ ∈ C∞(J−1

N (ν)C)M
C
ν be the smooth function defined

by f̄ := f ◦ πCν , and let g ∈ C∞(P )M
0

be one of its smooth M0 invariant
extensions to P , whose existence is guaranteed by Proposition 12.1.6. Let
Gt be the Hamiltonian flow associated to the function g. Note that

Ft(πCν (z)) = πCν (Gt(z)).

By Theorem 11.2.4, Gt(z) ∈ J−1
M (σ)C and therefore

FT (πCν (z)) = πCν (Gt(z)) ∈ θ(J−1
M (σ)C),

as required. �

12.2 Relation Between Stages II and III

The reader may be wondering if there is a relation between the versions
II and III of the reduction by stages theorem. Even though it is true that
both results identify sufficient conditions that allow symplectic reduction
in two stages, these conditions seem to be nonequivalent. The following
proposition shows that the closedness hypothesis in the version III needs
to be complemented with an additional condition in order to imply the
stages hypothesis II, and therefore the version II of the reduction by stages
theorem.

12.2.1 Proposition. Suppose that the hypotheses of Proposition 12.1.1
hold and that, additionally, the following condition is satisfied: for any σ′ ∈
m∗ such that ν := i∗σ′, there is at least one connected component J−1

M (σ′)C
of J−1

M (σ′) included in the given connected component J−1
N (ν)C . Then, σ

satisfies stages hypothesis II.
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Proof. Let σ′ ∈ m∗ be such that σ′|n = σ|n = ν and σ′|mC
ν

= σ|mC
ν

. By
hypothesis, there is a connected component J−1

M (σ′)C of J−1
M (σ′) included

in J−1
N (ν)C . Let z ∈ J−1

M (σ′). Then, for any [ξ] ∈ mC
ν /n

C
ν we have

〈JCν (πCν (z)), [ξ]〉 = 〈σ′, ξ〉 − 〈ν̄, ξ〉 = 〈σ, ξ〉 − 〈ν̄, ξ〉 = 〈ρ, [ξ]〉.

Consequently, πCν (z) belongs to the set (JCν )−1(ρ)C which by (12.1.1) equals
θ(J−1

M (σ)C). Hence, there exists z′ ∈ J−1
M (σ)C such that πCν (z) = πCν (z′)

and therefore z′ = n · z for some n ∈ NC
ν ⊂MC

ν,ρ. Applying the map JM to
both sides of this equality we obtain that σ′ = Ad∗

n−1 σ. Hence, σ satisfies
the stages hypothesis II. �

The following example shows that the situation is similar regarding the
reverse implication. More specifically, our example will describe a situation
where the stages hypothesis II holds but not the closedness hypothesis
needed in the version III of the reduction by stages theorem.

Example. Let M be the subgroup of SL(2,R) given by

M =
{[
a b
0 a−1

]∣∣
∣
∣ a > 0, b ∈ R

}
.

Consider now the closed normal subgroup N of M given by

N =
{[

1 c
0 1

]∣∣
∣
∣ c ∈ R

}
.

The Lie algebra m of M is given by the matrices of the form

m =
{[
ξ1 ξ2
0 −ξ1

]∣∣
∣
∣ ξ1, ξ2 ∈ R

}
.

If we choose the matrices

e1 :=
[
1 0
0 −1

]
and e2 :=

[
0 1
0 0

]

as a basis for m, we can write its elements as two–tuples of the form
(ξ1, ξ2) ∈ R

2. In these coordinates, the adjoint action of M on m can be
expressed as

Adg(ξ1, ξ2) = (ξ1,−2abξ1 + a2ξ2),

where

g =
[
a b
0 a−1

]
∈M and (ξ1, ξ2) ∈ m.

If we identify m∗ with m � R
2 via the Euclidean inner product on R

2, the
coadjoint action of M on m∗ takes the following expression

Ad∗
g−1(α1, α2) =

(
α1 +

2b
a
α2,

1
a2
α2

)
, (12.2.1)
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where

g =
[
a b
0 a−1

]
∈M and (α1, α2) ∈ m∗.

Analogously, the inclusion i : n ↪→ m is given by η �−→ (0, η), and the dual
projection i∗ : m∗ → n∗ by (α1, α2) �−→ α2. Moreover, the coadjoint action
of M on n∗ is given by

Ad∗
g−1 α =

1
a2
α, for any g =

[
a b
0 a−1

]
∈M. (12.2.2)

If we visualize m∗ as the (α1, α2)–plane, expression (12.2.1) implies that
the M–coadjoint orbits in m∗ are the open upper and lower half planes
together with the points in the α1–axis. Analogously, by (12.2.2) we can
conclude that the coadjoint action of M on n∗ exhibits three coadjoint
orbits, namely, two open half lines, and the point where they meet. In
conclusion, if α ∈ n∗ is different from zero, its M–orbit is not closed in n∗

and, consequently, the hypothesis of version III of the Stages Theorem is
not satisfied. Nevertheless, we will now consider a free canonical action of
M on a symplectic manifold for which both the Stages Hypotheses I and
II hold.

Consider the lifted action of M on its cotangent bundle T ∗M . If we
trivialize T ∗M using right translations (space coordinates) we have the
following expressions for this canonical action and for its associated M and
N–momentum maps:

g · (h, α) = (gh,Ad∗
g−1 α), JM (g, α) = α, JN (g, α) = α2,

for any g, h ∈M and α = (α1, α2) ∈ m∗. As the level sets of JM and JN are
connected, there is no difference between the versions I and II of the stages
hypothesis. We now verify that this hypothesis holds: first of all notice that
for any α ∈ n∗

Mα =
{
M, if α = 0
N, if α �= 0.

Therefore, if α = 0 the stages hypothesis holds trivially. If α �= 0 and we
have two elements σ, σ′ ∈ m∗ such that σ|n = σ′|n = σ|mα

= σ′|mα
= α

then there exist necessarily β, γ ∈ R such that σ = (β, α) and σ′ = (γ, α),
and consequently:

σ′ = Ad∗
g−1 σ, with g =

⎡

⎢
⎣

1
γ − β

2α

0 1

⎤

⎥
⎦ ∈ Nα = N,

as required. �
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12.3 Connected Components of Reduced
Spaces

A natural question that arises when making the comparison between the
distribution approach to the reduction by stages problem and the one taken
in § 5.2 is how the reduced spaces obtained in both cases are related. In the
following paragraphs we will show that if the coadjoint orbit M ·σ ⊂ m∗ is a
closed and embedded submanifold of m∗, then PCσ is a connected component
of J−1

M (σ)/Mσ. An analogous claim can be made regarding PCν,ρ. We state
all of this in the following proposition.

12.3.1 Proposition. Let M0 be the connected component of the identity
of M . Suppose that the symplectic manifold (P,Ω) is Lindelöf and para-
compact and that the coadjoint orbit M · σ ⊂ m∗ is a closed and embedded
submanifold of m∗. Then PCσ is a connected component of J−1

M (σ)/Mσ. The
same conclusion holds for PCν,ρ whenever the orbit (MC

ν /N
C
ν ) · ρ under the

affine action of (MC
ν /N

C
ν ) on (mC

ν /n
C
ν )∗ is closed in (mC

ν /n
C
ν )∗.

Proof. First of all, notice that since J−1
M (σ)C is connected, so is

J−1
M (σ)C/MC

σ = PCσ

and hence the projection of the inclusion J−1
M (σ)C ↪→ J−1

M (σ) provides us
with an injection

iC : J−1
M (σ)C/MC

σ −→
(
J−1
M (σ)/Mσ

)
C

of J−1
M (σ)C/MC

σ into some connected component
(
J−1
M (σ)/Mσ

)
C

of Pσ.
We will prove that iC is onto. To do this, we will follow a strategy similar
in spirit to the one we used to establish the surjectivity of the map Θ. As(
J−1
M (σ)/Mσ

)
C

is a connected symplectic manifold, any two of its points can
be joined by piecewise Hamiltonian paths or, more explicitly, the maximal
integral leaf of the distribution on

(
J−1
M (σ)/Mσ

)
C

D =
{
Xhσ

| hσ ∈ C∞ ((
J−1
M (σ)/Mσ

)
C

)}

going through any point in
(
J−1
M (σ)/Mσ

)
C

is
(
J−1
M (σ)/Mσ

)
C

itself. We will
show the surjectivity of iC by proving that for any hσ ∈ C∞ ((

J−1
M (σ)/Mσ

)
C

)

with associated Hamiltonian flow F σt , and for any πCσ (z) ∈ PCσ , we get

F σt (iC(πCσ (z))) ∈ iC(PCσ ).

Let h̄σ ∈ C∞ (
J−1
M (σ)/Mσ

)
be an extension of hσ ∈ C∞ ((

J−1
M (σ)/Mσ

)
C

)

and let h ∈ C∞ (
J−1
M (σ)

)Mσ be the function defined by h = h̄σ ◦ πσ. By
Corollary 12.1.7 the function h admits an extension to a function H ∈
C∞(P )M ; let Ft be its associated Hamiltonian flow. Then,

F σt (iC(πCσ (z))) = πσ(Ft(z)).
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By Noether’s Theorem Ft(z) ∈ J−1
M (σ)C and consequently πσ(Ft(z)) ∈

iC(PCσ ), as required. �

Conclusions for Part II

In this part we have given a thorough treatment of the problem of regular
symplectic reduction by stages. There are, however, many things left to do
in this area. Amongst these, there is a need for additional concrete physical
applications. Another is to make use of the stages structures in numerical
applications using, for instance, variational integrators, as in Marsden and
West [2001]. Finally, there is a need for additional functional analytic treat-
ments of infinite dimensional cases, some of which were mentioned in the
introduction and in the text.

Recall from the introduction that there is a parallel theory of Lagrangian
reduction by stages developed in Cendra, Marsden, and Ratiu [2001a]. A
critical difference is that the theory of Lagrangian reduction by stages is
the Lagrangian analog of Poisson reduction in that no imposition of a level
set of the momentum map is made. Nevertheless, there are many strong
connections and parallels between the results in the present work and those
in the theory of Lagrangian reduction by stages. The Lagrangian analog of
point reduction in the symplectic context is that of Routh reduction studied
in Marsden, Ratiu and Scheurle [2000]. Of course developing a reduction
by stages theory in that context would be of interest.

One may also speculate on further relations with group theory along
the lines of the orbit method. After all, the orbit method for semidirect
products is closely related to the method of induced representations of
Mackey. One would imagine that keeping track of representation theory
parallel to reduction by stages would also be interesting.

Another important issue is how to properly generalize things to the multi-
symplectic context (see, for instance Marsden, Patrick, and Shkoller [1998]).
As we have mentioned, in a number of examples in field theory, including
complex fluids, one has a cocycle in the associated Poisson structure (Holm
and Kupershmidt [1982, 1983b]). The structure of those theories strongly
suggests that a reduction by stages approach would be profitable, although
the analog of symplectic reduction in field theories is known to be tricky
as one normally does not impose momentum map constraints until after a
3+1 (space + time) split has been made. This will complicate any eventual
theory. On the other hand, from a Lagrangian reduction by stages stand-
point, some interesting progress has been made in this direction (see Holm
[2002]).




