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Abstract. In this paper we investigate the dynamic characteristics in
an incomplete decision system while information is increasing. We modify
the definition of reduction of condition attributes in this case, and present
algorithms of reduction in order to deal with increase information.
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1 Introduction

When collecting information about a given topic in a certain moment in time, it
may happen that we do not exactly know all the details of the issue in question.
This lack of knowledge leads to an incomplete information system. Rough set
theory is a valid mathematical tool, which deals with imprecise, vague and incom-
plete information[10,11,12]. In general, rough set theory deals with information
in complete information systems. But in recent years, there are many people,
who disposed incomplete information with rough set theory, and presented sev-
eral methods of dealing with missing attribute values[3]. M.Kryszkiewicz[1,2]
proposed a tolerance relation between objects, which is reflexive, symmetric but
not transitive. J.Stefanowskis’ model[6,7] is based on similarity relation, which
is reflexive, transitive, but not symmetric. J.W.Grzymala-Busse’s model[4,5] is
based on characteristic relation, which is only reflexive. S.Greco’s model[8] is
based on similarity relation, which is transitive, but not reflexive or symmetric.
G.Y.Wang[9] extended M.Kryszkiewicz’s model so that his model fits real world
more. But all of indiscernibility relations in these models are static, and they
could not fit the case of increase information in incomplete information system.
In the paper we consider the case of incomplete decision systems with increase
information based on M.Kryszkiewicz’s model. We investigate its dynamic prop-
erties and present new algorithms to get reducts while information is increasing.
The method of reduction preserves their positive regions as well as other impor-
tant information in these incomplete information systems such that the reducts
are not put at a disadvantage when information is increasing.

The rest of the paper is organized as follows. In section 2 we introduce the
basic concepts of incomplete information systems. In section 3 we investigate
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their dynamic properties. In section 4 we present new algorithms of dynamic
reduction. In section 5 an example is given to show the ideas of new algorithms.
At last, we draw a conclusion in section 6.

2 Information Systems

An information system is a pair IS = (U, A), where U is the universe of discourse
with a finite number of objects(or entities), A is a set of attributes defined on
U . Each a ∈ A corresponds to the function a : U → Va, where Va is called the
value set of a. Elements of U are called situation, objects or rows, interpreted
as, e.g., cases, states.

With any subset of attributes B ⊆ A, we associate the information set for
any object x ∈ U by

InfB(x) = {(a, a(x)) : a ∈ B}

An equivalence relation called B-indiscernible relation is defined by

IND(B) = {(x, y) ∈ U × U : InfB(x) = InfB(y)}

Two objects x, y satisfying the relation IND(B) are indiscernible by attributes
from B. [x]B is referred to as the equivalence class of IND(B) defined by x. The
equivalence classes of IND(B) are denoted by

U/B = {[x]B : x ∈ U}.

A minimal subset B of A such that IND(B) = IND(A) is called a reduct of IS.
Suppose IS = (U, A) is an information system, B ⊆ A is a subset of attributes,

and X ⊆ U is a subset of discourse, the sets

B(X) = {x ∈ U : [x]B ⊆ X}, B(X) = {x ∈ U : [x]B
⋂

X �= φ}

are called B-lower approximation and B-upper approximation respectively. The
lower approximation is also called positive region, denoted by POSB(X).

A special type of information system is called decision system DS = (U, A ∪
{d}), where {d}∩A = φ, A is a set of condition attributes, and d is a distinguished
attribute called conclusion attribute. In a decision system the positive region of
the decision attribute corresponding to the condition attributes is denoted by
POSA(d):

POSA(d) =
⋃

Yi∈U/{d}
(POSA(Yi))

It may happen that some values of attributes for objects in information sys-
tems are missing. These information systems are called incomplete information
systems. The missing values are called null values, which are denoted by *.
Therefore, a similarity relation could be defined as follows[1,2]:

SIM(B) = {(x, y) ∈ U × U : ∀a ∈ B(a(x) = a(y) or a(x) = ∗ or a(y) = ∗)}



78 D. Deng and H. Huang

Let SB(x) denotes the object set {y ∈ U : (x, y) ∈ SIM(B)}, where B ⊆ A.
The lower and upper approximation of a concept X ⊆ U are defined as follows
respectively:

B(X) = {x ∈ U : SB(x) ⊆ X)}

B(X) = {x ∈ U : SB(x)
⋂

X �= ∅}

If there is not confusion, we will also denote the set of tolerance classes SB(x)
by U/B, and the B-lower approximation of X is also called the positive region,
denoted by POSB(X).

For B ⊆ A, C ⊆ A, we call the cover of U/B is finer than that of U/C,
denoted by U/B ⊆ U/C, if for any tolerance class SB(x) in U/B there exists a
tolerance class SC(x) in U/C such that SB(x) ⊆ SC(x).

In incomplete decision systems, we assume that values of conclusion attributes
are usually complete in the sequel.

3 Incomplete Systems with a Monotonic Increase of
Information

In [13] G.Cattaneo and D.Ciucci defined three ways of increasing the knowledge
in incomplete information systems. In this paper we are only dealing with the
first case. Its definition is formalized in the following way.

Definition 1. Let IS(ti) = (Ui, Ai) and DS(ti+1) = (Ui+1, Ai+1), with ti,
ti+1∈ R, ti ≤ ti+1 be two incomplete information systems, where Ui = Ui+1.
The attributes in Ai are the same as that in Ai+1. We will say that there is a
monotonic increase of information in the information system IS: For ∀x ∈ Ui

and ∀ati ∈ Ai, ati(x) �= ∗ implies ati(x) = ati+1(x). In such a case, we will
denote by IS(ti) �1 IS(ti+1).

IS(ti) �1 IS(ti+1) means that, in the information system IS the universe of
discourse and the attributes do not change, but the values of attributes may be
changed from unknown to known. Because we only investigate this case, we will
denote Ui by U in the sequel.

Definition 2. Let IS(ti) = (U, Ai)(ti ∈ R) be a series of incomplete information
systems with a monotonic increase of information, i.e. IS(ti) �1 IS(ti+1). We say
the information system IS is a complete information system if it satisfies the
condition:

IS = lim
i→∞

IS(ti)

From definition 2, there are two types of complete information systems cor-
responding to a series of incomplete information systems with a monotonic in-
crease of information(complete information systems, in short): (1) All of values
of attributes are known. (2) Some values of attributes will be unknown forever.
Without generality we assume that all of values of attributes are known in com-
plete information systems.
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We will investigate properties of incomplete information systems with a mono-
tonic increase of information in the sequel.

Proposition 1. Suppose IS(ti) = (U, Ai)�1 IS(ti+1) = (U, Ai+1), with ti, ti+1∈
R, ti ≤ ti+1 be two incomplete information systems, Then for ∀a ∈ Ai and
∀x ∈ U , we have

S
ti+1

{a} (x) ⊆ Sti

{a}(x)

Proof. In terms of the definition S{a}(x) = {y ∈ U : (x, y) ∈ SIM({a})}, we
have ∀y(y ∈ S

ti+1

{a} (x) ⇒ y ∈ Sti

{a}(x)). Therefore S
ti+1

{a} (x) ⊆ Sti

{a}(x).

Corollary 1. Suppose IS(ti) = (U, Ai)�1IS(ti+1) = (U, Ai+1), with ti, ti+1∈ R,
ti ≤ ti+1 be two incomplete information systems, then U/Bi+1 ⊆ U/Bi for
B ⊆ A.

Corollary 2. Suppose IS(ti) = (U, Ai)�1IS(ti+1) = (U, Ai+1), with ti, ti+1∈ R,
ti ≤ ti+1 be two incomplete information systems, IS = (U, A) their correspond-
ing complete information system and X ⊆ U a concept. Then

Bi(X) ⊆ Bi+1(X) ⊆ B(X)

B(X) ⊆ Bi+1(X) ⊆ Bi(X)

for ∀B ⊆ A.

Theorem 1. Suppose DS(ti) = (U, Ai

⋃
{d})�1DS(ti+1) = (U, Ai+1

⋃
{d}), with

ti, ti+1∈ R, ti ≤ ti+1, be two incomplete decision systems, Then

POSBi({d}) ⊆ POSBi+1({d})

for B ⊆ A.

Proof. It can be got directly from Corollary 2.

Corollary 3. Suppose DS(ti) = (U, Ai

⋃
{d}) is an incomplete decision system,

DS = (U, A
⋃

{d}) is its corresponding complete decision system, Then

POSBi({d}) ⊆ POSB({d})

for B ⊆ A.

From the above propositions, the positive regions in incomplete decision systems
are increasing with increasing information in them. We should not delete any
of condition attributes unless these condition attributes are confirmed not to
influence the positive regions in the series of incomplete decision systems. In the
next section we will investigate reduction of condition attributes in incomplete
decision systems.
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4 Dynamic Reduction

In decision systems with missing values almost all of existed methods are to get
reducts in the criterion of the positive regions preserved, these methods don’t
consider dynamic increase of information. In this section we will investigate
reduction in this case. The criterion of reduction, except for preserved positive
region, is to delete condition attributes in which there are no null values in the
negative positive region, i.e. all of elements with missing value are in the positive
region. It is easy to prove that these deleted condition attributes are irrelative to
the positive regions in incomplete decision systems with increase information in
terms of above propositions. In terms of the criteria, the algorithm of reduction
in an incomplete decision system is presented as follows:

Algorithm 1: Static reduction of incomplete decision system(SRIDS, In short).

Input: An incomplete decision system DS(ti) = (U, Ai

⋃
{d})

Output: A reduct of DS(ti) = (U, Ai

⋃
{d})

Step1: U1 = POSAi({d}), B = Ai

Step2: U2 = U − U1
Step3: For j=1 to |Ai|

{ flag = 1;
For k=1 to |U2|

If aj(xk) = ∗ Then flag = 0;
If flag and POSB−{aj}({d}) = U1

Then B = B − {aj}; }
Step4: Output the reduct B

In algorithm 1, DS(ti) represents the state of the decision system DS at ti. The
symbol flag is to decide whether any elements in U2(it stands for the negative
positive region) are missing values, if flag = 1 then there are no null values in
the negative positive region, or else there are some null values. | • | denotes the
cardinality of the set, and xk is an element of U2.

The difference between algorithm 1 and other classical algorithms is whether
the missing values in the negative positive region should be considered when con-
dition attributes are reduced. The former considers the null values of condition
attributes in order to avoid a disadvantage for the reduced condition attributes
to the positive region in the future. The later only consider the positive region
at a moment.

The time complexity of algorithm 1 is decided by that of counting positive
region. Suppose we utilize the algorithm in literature [14] to compute positive re-
gion, whose time complexity is O(|Ai||U |log|U |). Therefore, the time complexity
of algorithm 1 is O(|Ai|2|U |log|U |).

Suppose the incomplete decision system DS(ti) = (U, Ai

⋃
{d}) is dynamically

increasing its information, i.e. DS(ti) �1 DS(ti+1), with ti, ti+1∈ R, ti ≤ ti+1,
and the maximum of i is equal to n. In this case we could call the above algorithm
iteratively. The algorithm of reduction with respect to the dynamical incomplete
decision system DS(ti) is presented as follows:
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Algorithm 2: Dynamical reduction of an incomplete decision system with in-
crease information

Input: An incomplete decision system DS(ti) = (U, Ai

⋃
{d}) with increase

information.
Output: A dynamic reduct with respect to the incomplete decision system

DS
For i=1 to n
{ SRIDS(DS(ti));
DS(ti) = (U, B);

}

B denotes a reduct of the incomplete decision system DS at ti. Because
the time complexity of algorithm 1 is O(|Ai|2|U |log|U |), the time complexity of
algorithm 2 is O(n|Ai|2|U |log|U |). The Algorithm 2 counts the positive region
iteratively. We could improve it by avoiding the iterative workload. The improved
algorithm is presented as follows:

Algorithm 3: Improved dynamic reduction of an incomplete decision system.

Input: An incomplete decision system DS(ti) = (U, Ai

⋃
{d}) with increase

information.
Output: A dynamic reduct with respect to the incomplete decision system

DS
Step 1: B = A; U1 = ∅;
Step 2: U2 = U ;
Step 3: For i=1 to n

{U3 = POSB({d});
U1 = U1

⋃
U3;

U2 = U2 − U3;
C = B;
For j=1 to |B|
{ flag = 1;
For k=1 to |U2|

If aj(xk) = ∗ then flag = 0;
If flag and U1 = POSC−{aj}({d}) then C = C − {aj};

} //End for j
Output C;
B=C;
} // End for i

In algorithm 3, U1 denotes positive region of the incomplete decision system,
U2 negative positive region, U3 the incremental positive region in the rest of
the incomplete decision system, POSB({d}) the positive region of incomplete
decision system DS′ = (U2, B

⋃
{d}), and POSC−{aj}({d}) the positive region
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of incomplete decision system DS′′ = (U, (C −{aj})
⋃

{d}). The output value of
C is a reduct at ti. The rest of symbols are the same as that of algorithm 1.

The algorithm 3 could reduce the the iterative workload of computing posi-
tive region. In algorithm 3 we could only compute the additive positive region
POSB({d}), not the whole positive region of the decision system, although the
time complexity of algorithm 3 is the same as that of algorithm 2.

5 Example

Suppose the incomplete decision system DS(ti) = (U, Ai

⋃
{d}) is dynamically

increasing its information, where DS(t1) is denoted by Table 1, DS(t2) is denoted
by Table 2, and DS(t1) �1 DS(t2), A = {a1, a2, a3}. In DS(t1) a1(x3) = ∗, but
a1(x3) = 2 in DS(t2). In terms of Algorithm 1 we could get the reduct {a1, a2}
at t1. In table 1, although the attributes a1 and a3 could be deleted if we only
preserve the positive region, there are some missing values of a1 in the negative
positive region, while there are no missing values of a3 in the negative positive
region. At t2 we could get more elements in the positive region. For example, the
element x3 is not in the positive region at t1, but it is in the positive region at t2. It
is easy to know the reduct of incomplete information DS at t2 is also {a1, a2} from
table 2 in term of algorithm 1. That is to say, the condition attribute a1 should
not be reduced at t1 in the incomplete decision system with increase information.

Table 1. Incomplete Decision system DS at t1

U a1 a2 a3 d
x1 0 0 1 1
x2 1 1 * 1
x3 * 0 1 0
x4 0 2 1 0
x5 0 0 1 1
x6 3 1 * 1
x7 3 2 1 0
x8 * 2 1 0

Table 2. Incomplete Decision system DS at t2

U a1 a2 a3 d
x1 0 0 1 1
x2 1 1 * 1
x3 2 0 1 0
x4 0 2 1 0
x5 0 0 1 1
x6 3 1 * 1
x7 3 2 1 0
x8 * 2 1 0
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6 Conclusion

In the paper we investigate some properties of incomplete decision systems with
increase information, and the reduction of condition attributes in this case. A
new method of reduction is presented, in which we not only consider positive re-
gion in an incomplete decision system but also its potential influence on positive
region in the future.
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