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Abstract. Information system is one of the important mathematical
models in the field of artificial intelligence. The concept of homomor-
phism is very useful to study the communication between two infor-
mation systems. In this paper, some properties of relation information
systems under homomorphisms are investigated. The concept of a rela-
tion mapping between two universes is proposed in order to construct
a binary relation on one universe according to the given binary relation
on the other universe. The main properties of the mapping are studied.
Furthermore, the notion of homomorphism of information systems based
on arbitrary binary relations is proposed, and it is proved that the re-
ductions of the original system and image system are equivalent to each
other under the condition of homomorphism.

Keywords: Consistent functions, relation mappings, relation informa-
tion systems, homomorphism, reduction.

1 Introduction

Rough set theory [7], proposed by Pawlak, is an excellent tool for data analysis
with important applications in data mining and knowledge discovery. A concept
related to rough set is information system. In fact, most applications based on
rough set theory, such as classification, decision support and knowledge discovery
problems, can fall into the knowledge representation model, i.e. an information
system. In recent years, many topics on information systems have been widely
investigated by many scholars [1-6,9-11].

The theory of rough sets deals with the approximation of an arbitrary sub-
set of a universe by two definable or observable subset called lower and upper
approximations. However, lower and upper approximations are not primitive no-
tions. They are constructed from other concepts, such as binary relations on a
universe, partitions and coverings of a universe, and approximation space. For
an information system, it can be seen as a composition of some approxima-
tion spaces on the same universe. The communication between two information
systems is a very important topic in the field of artificial intelligence. In math-
ematics, it can be explained as a mapping between two information systems.
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The notion of homomorphism on information systems as a kind of tool to study
the relationship between two information systems was introduced by Grzymala
Busse in [1,2]. A homomorphism can be regarded as a special communication
between two information systems. Image system is seen as an explanation system
of the original system. A homomorphism on information systems is very useful
for aggregating sets of objects, attributes, and descriptors of the original system.
The notions of superfluousness and reducts of an information system are cen-
tral notions in decision making, data analysis, reasoning about data and other
subfields of artificial intelligence[2-4,6,8,10,11]. In [2], the authors depicted the
conditions which make an information system to be selective in terms of endo-
morphism of the system. In [4], with algebraic approach, the authors discussed
the features of superfuousness and reducts of an information system under some
homomorphisms. .

However, the requirement of an indiscernibilty relation or a partition in rough
set theory is a condition that limits the application domain of rough set theory.
So several important generalizations were proposed to solve this problem. One of
these generalizations is to relax an equivalence relation to general binary relation
[5]. The work in our paper represents a new contribution to the development of
the theory of homomorphism between information systems. We develop a method
for defining an arbitrary binary on a universe according to a relation on another
universe. In this sense, our method is a mechanism for communicating between
two information systems. We define the concept of homomorphism between two
information systems based on arbitrary binary relations. Under the condition of
the homomorphism, some characters of relation operations in the original system
and some structure features of the original system are guaranteed in explanation
system.

2 Consistent Function and Its Properties

Let U and V be finite and nonempty universes. The class of all binary relations
on U (respectively, on V ) will be denoted by � (U) (respectively, by � (V )).
Let R ∈ � (U), the successor neighborhood of x ∈ U with respect to R will be
denoted by Rs(x), that is, Rs(x) = {y ∈ U : xRy}. In this section, we introduce
the concepts of consistent functions and investigate their main properties which
will be used in the following sections.

Definition 2.1. Let U and V be finite and nonempty universes, f : U → V a
mapping from U to V , and R a binary relation on U . Let

[x]f = {y ∈ U : f (y) = f (x)} , [x]R = {y ∈ U : Rs (y) = Rs (x)} .

Then both of
{

[x]f : x ∈ U
}

and {[x]R : x ∈ U} are partitions on U . If [x]f ⊆
Rs (y) or [x]f ∩ Rs (y) = ∅ for any x, y ∈ U , then f is called a type-1 consistent
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function with respect to R on U . If [x]f ⊆ [x]R for any x ∈ U , then f is called
a type-2 consistent function with respect to R on U .

From definition 2.1, an injection is trivially both a type-1 and a type-2 consistent
function.

Theorem 2.2. Let f : U → V, R ∈ � (U). If f is a type-1 consistent function
with respect to R on U , then ∀x ∈ U, f−1 (f (Rs (x))) = Rs (x).

Proof. Because f−1 (f (Rs (x))) ⊇ Rs (x) for any x ∈ U is always true, we only
need to prove that f−1 (f (Rs (x))) ⊆ Rs (x) , ∀x ∈ U.

For any x1 ∈ f−1 (f (Rs (x))) , we have f (x1) ∈ f (Rs (x)), which implies
∃x2 ∈ Rs (x) such that f (x1) = f (x2). Since [x2]f = {y ∈ U : f (y) = f (x2)} ,
thus, x2 ∈ [x1]f , which implies [x1]f ∩ Rs (x) �= ∅. Since f is a type-1 consistent
function with respect to R on U , we must have x1 ∈ [x2]f ⊆ Rs (x). Thus
f−1 (f (Rs (x))) ⊆ Rs (x). Therefore f−1 (f (Rs (x))) = Rs (x) , ∀x ∈ U .

Corollary 2.3. Let f : U → V, R1, R2, · · · , Rn ∈ � (U). If f is a type-1
consistent function with respect to each relation Ri (i ≤ n) on U , then ∀x ∈

U, f−1
(

f

(
n⋂

i=1
(Ri)s (x)

))
=

n⋂
i=1

(Ri)s (x).

Proof. It is similar to the proof Theorem 2.2.

Theorem 2.4. Let f : U → V, R1, R2 ∈ � (U). If f is a type-1 consistent
function with respect to R1 and R2 on U , then ∀x ∈ U, f ((R1 ∩ R2)s (x)) =
f ((R1)s (x)) ∩ f ((R2)s (x)).

Proof. Since f ((R1 ∩ R2)s (x)) ⊆ f ((R1)s (x)) ∩ f ((R2)s (x)) for any x ∈ U is
always true, we only need to prove the inverse inclusion for any x ∈ U .

For any y ∈ f((R1)s(x))∩f((R2)s (x)), we have y ∈ f ((R1)s (x)) and y ∈ f
((R2)s (x)). Thus f−1 (y)⊆f−1 (f ((R1)s (x))) and f−1 (y)⊆f−1 (f ((R2)s (x))).
Since f is a type-1 consistent function with respect to R1 and R2 on U , by
Theorem 2.2, f−1 (y) ⊆ (R1)s (x) and f−1 (y) ⊆ (R2)s (x). Hence

f−1 (y) ⊆ (R1)s (x) ∩ (R2)s (x) = (R1 ∩ R2)s (x)

This implies y ∈ f((R1∩R2)s(x)). Therefore f((R1∩R2)s(x)) ⊇ f ((R1)s(x)) ∩ f
((R2)s (x)). It follows that∀x∈U, f((R1∩R2)s(x)) = f ((R1)s (x))∩f ((R2)s (x)).

By Corollary 2.3 and Theorem 2.4, we directly get the following corollary.

Corollary 2.5. Let f : U → V, R1, R2,· · ·, Rn ∈�(U). If f is a type-1 consistent

function with respect to each relation Ri on U , then ∀x ∈ U , f

(
n⋂

i=1
(Ri)s (x)

)
=

n⋂
i=1

f ((Ri)s (x)).
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3 Relation Mapping and Its Properties

In this section, we define the notions of relation mappings and study their main
properties.

Definition 3.1. Let f : U → V, x| → f (x) ∈ V, x ∈ U . f can induce a mapping
from � (U) to � (V ) and a mapping from � (V ) to � (U), that is,

f̂ : � (U) → � (V ) , R| → f̂ (R) ∈ � (V ) , ∀R ∈ � (U);

f̂ (R) =
⋃

x∈U

{f (x) × f (Rs (x))}.

f̂−1 : � (V ) → � (U) , T | → f̂−1 (T ) ∈ � (U) , ∀T ∈ � (V );

f̂−1 (T ) =
⋃

y∈V

{
f−1 (y) × f−1 (Ts (y))

}
.

Then f̂ and f̂−1 are called relation mapping and inverse relation mapping in-
duced by f respectively; f̂ (R) and f̂−1 (T ) are called binary relations induced
by f on V and U respectively. In the subsequent discussion, we simply denote
f̂ and f̂−1 by f and f−1 respectively.

Theorem 3.2. Let f : U → V, R1, R2 ∈ � (U). If f is both type-1 and type-2
consistent with respect to R1 and R2, then f (R1 ∩ R2) = f (R1) ∩ f (R2).

Proof.

f (R1 ∩ R2) =
⋃

x∈U

{f (x) × f ((R1 ∩ R2)s (x))}

⊆
⋃

x∈U

{f (x) × (f ((R1)s (x)) ∩ f ((R2)s (x)))}

=
⋃

x∈U

{f (x) × f ((R1)s (x)) ∩ f (x) × f ((R2)s (x))}

⊆
( ⋃

x∈U

{f (x) × f ((R1)s (x))}
)

∩
( ⋃

x∈U

{f (x) × f ((R2)s (x))}
)

= f (R1) ∩ f (R2) .

Next, we are to prove the inverse inclusion.
Let (y1, y2) ∈ f (R1) ∩ f (R2). Then (y1, y2) ∈ f (R1) and (y1, y2) ∈ f (R2).

By the definition of f (R1), there exists x1 ∈ U such that (y1, y2) ∈ f (x1) ×
f ((R1)s (x1)), which implies y1 = f (x1) and y2 ∈ f ((R1)s (x1)). Similarly, there
exists x2 ∈ U such that (y1, y2) ∈ f (x2) × f ((R2)s (x2)), which implies y1 =
f (x2) and y2 ∈ f ((R2)s (x2)). Thus f (x1) = f (x2) and y2 ∈ f ((R1)s (x1)) ∩
f ((R2)s (x2)). Since f is a type-2 consistent function with respect to R1 and
R2, we have (R1)s (x1) = (R1)s (x2) and (R2)s (x1) = (R2)s (x2). Hence by The-
orem 2.4, y2 ∈ f ((R1)s (x2)) ∩ f ((R2)s (x2)) = f ((R1)s (x2) ∩ (R2)s (x2)) =
f ((R1 ∩ R2)s (x2)). Then we can conclude that (y1, y2) = (f (x2) , y2) ∈ f (x2)×
f ((R1 ∩ R2)s (x2)) ⊆ f (R1 ∩ R2). Thus f (R1 ∩ R2) ⊇ f (R1) ∩ f (R2). There-
fore f (R1 ∩ R2) = f (R1) ∩ f (R2).
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Corollary 3.3. Let f : U → V, R1, R2, · · · , Rn ∈ � (U). If f is both type-1 and

type-2 consistent with respect to each relation Ri (i ≤ n), then f

(
n⋂

i=1
Ri

)
=

n⋂
i=1

f (Ri).

Proof. It is similar to the proof of Theorem 3.2.

Theorem 3.4. Let f : U → V, R ∈ � (U). If f is both type-1 and type-2
consistent with respect to R, then f−1 (f (R)) = R.

Proof. Let (x1, x2) ∈ R, namely, x2 ∈ Rs (x1). Thus f (x2) ∈ f (Rs (x1)). By
the definition of f (R), we have that (f (x1) , f (x2)) ∈ f (R). Let y1 = f (x1)
and y2 = f (x2), then y2 ∈ f (R)s (y1). Thus f−1 (y2) ⊆ f−1 (f (R)s (y1)). It
follows that f−1 (y1) × f−1 (y2) ⊆ f−1 (y1) × f−1 (f (R)s (y1)) ⊆ f−1 (f (R)),
which implies (x1, x2) ∈ f−1 (f (R)) . Therefore f−1 (f (R)) ⊇ R. Next, we are
to prove that f−1 (f (R)) ⊆ R.

Let (x1, x2)∈f−1(f(R)), then there exists y1 ∈V such that (x1, x2)∈f−1(y1)×
f−1 ((f (R))s (y1)). This implies x1 ∈ f−1 (y1) and x2 ∈ f−1 ((f (R))s (y1)).
Hence y1 = f (x1) and f (x2) ∈ (f (R))s (y1). Let y2 = f (x2), then (y1, y2) ∈
f (R) . By the definition of f (R), there exists x3 ∈ U such that (y1, y2) ∈ f (x3)×
f (Rs (x3)). This implies y1 = f (x3) and y2 ∈ f (Rs (x3)). Hence f (x1) = f (x3)
and f (x2) ∈ f (Rs (x3)). Since f is type-2 consistent with respect to R, we
have Rs (x3) = Rs (x1) and f (x2) ∈ f (Rs (x1)). Hence x2 ∈ f−1 (f (Rs (x1))).
Again, since f is type-1 consistent with respect to R, by Theorem 2.2, x2 ∈
f−1 (f (Rs (x1))) = Rs (x1). Thus (x1, x2) ∈ R. It follows that f−1 (f (R)) ⊆ R.
Therefore f−1 (f (R)) = R.

Corollary 3.5. Let f : U → V, R1, R2, · · · , Rn ∈ � (U). If f is both type-1 and
type-2 consistent with respect to each relation Ri (i ≤ n), then

f−1
(

f

(
n⋂

i=1
Ri

))
=

(
n⋂

i=1
Ri

)
.

Proof. It is similar to the proof of Theorem 3.4.

4 Homomorphism Between Relation Information
Systems and Its Properties

By means of the results of the above sections, we introduce the notion of a
homomorphism between two information systems and show that reductions of
the original system and image system are equivalent to each other.

Definition 4.1. Let U and V be finite universes, f : U → V a mapping
from U to V , and R = {R1, R2, · · · , Rn} a family of binary relations on U ,
let f (R) = {f (R1) , f (R2) , · · · , f (Rn)}. Then the pair (U,R) is referred to as
a relation information system, and the pair (V, f (R)) is referred to as a f−
induced relation information system of (U,R).
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By Theorem 3.2, we can introduce the following concept.

Definition 4.2. Let (U,R) be a relation information system and (V, f (R)) a
f− induced relation information system of (U,R). If ∀Ri ∈ R, f is both type-
1 and type-2 consistent with respect to Ri on U , then f is referred to as a
homomorphism from (U,R) to (V, f (R)).

Remark. After the notion of homomorphism is introduced, all the theorems and
corollaries in the above sections may be seen as the properties of homomorphism.

Definition 4.3. Let (U,R) be a relation information system. The subset P ⊆ R
is referred to as a reduct of R if P satisfies the following conditions:

(1) ∩ P = ∩R; (2)∀Ri ∈ P, ∩P ⊂ ∩ (P − Ri).

Theorem 4.4. Let (U,R) be a relation information system, (V, f (R)) a f−
induced relation information system of (U,R), and f a homomorphism from
(U,R) to (V, f (R)). Then P ⊆ R is a reduct of R if and only if f (P) is a
reduct of f (R).

Proof. ⇒ Since P is a reduct of R, we have ∩P = ∩R. Hence f (∩P) =
f (∩R). Since f is a homomorphism from (U,R) to (V, f (R)), by Definition
4.2 and Corollary 3.3, we have ∩f (P) = ∩f (R). Assume that ∃Ri ∈ P such
that ∩ (f (P) − f (Ri)) = ∩f (P). Because f (P) − f (Ri) = f (P − Ri), we
have that ∩ (f (P) − f (Ri)) = ∩f (P − Ri) = ∩f (P) = ∩f (R). Similarly,
by Definition 4.2 and Corollary 3.3, it follows that f (∩ (P − Ri)) = f (∩R).
Thus f−1 (f (∩ (P − Ri))) = f−1 (f (∩R)). By Definition 4.2 and Corollary 3.5,
∩ (P − Ri) = ∩R. This is a contradiction to that P is a reduct of R.

⇐ Let f (P) ⊆ f (R) be a reduct of f (R), then ∩f (P) = ∩f (R). Since f a
homomorphism from (U,R) to (V, f (R)), by Definition 4.2 and Corollary 3.3, we
have f (∩P) = f (∩R). Hence f−1 (f (∩P)) = f−1 (f (∩R)). By Definition 4.2
and Corollary 3.5, ∩P = ∩R. Assume that ∃Ri ∈ P such that ∩ (P − Ri) = ∩R,
then f (∩ (P − Ri)) = f (∩R). Again, by Definition 4.2 and Corollary 3.3, we have
∩f (P − Ri) = ∩f (R) . Hence ∩ (f (P) − f (Ri)) = ∩f (R). This is a contradic-
tion to that f (P) is a reduct of f (R). This completes the proof of this theorem.

By Theorem 4.4, we immediately get the following corollary.

Corollary 4.5. Let (U,R) be a relation information system, (V, f (R)) a f−
induced relation information system of (U,R), and f a homomorphism from
(U,R) to (V, f (R)). Then P ⊆ R is is superfluous in R if and only if f (P) is
superfluous in f (R).

The following example is employed to illustrate our idea in this paper.

Example 4.6. Let (U,R) be a relation information system, where U =
{x1, x2, · · · , x10}, R = {R1, R2, R3} ,

R1 = {(x2, x3) , (x2, x6) , (x5, x2) , (x5, x3) , (x5, x6) , (x5, x8) , (x7, x12),
(x7, x13) , (x7, x14) , (x7, x15) , (x8, x3) , (x8, x6) (x9, x12) , (x9, x13),
(x9, x14) , (x9, x15) , (x10, x12) , (x10, x13) , (x10, x14) , (x10, x15)},
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R2 = (x1, x12) , (x1, x13) , (x1, x14) , (x1, x15) , (x2, x3) , (x2, x6) , (x4, x12),
(x4, x13) , (x4, x14) , (x4, x15) , (x5, x2) , (x5, x8) , (x8, x3) , (x8, x6),
(x11, x12) , (x11, x13) , (x11, x14) , (x11, x15)},

R3 = (x1, x7) , (x1, x9) , (x1, x10) , (x2, x3) , (x2, x6) , (x4, x7) , (x4, x9),
(x4, x10) , (x5, x3) , (x5, x6) , (x8, x3) , (x8, x6) , (x11, x7) , (x11, x9),
(x11, x10) , (x12, x5) , (x13, x5) , (x14, x5) , (x15, x5)}

R1 ∩ R2 ∩ R3 = {(x2, x3) , (x2, x6) , (x8, x3) , (x8, x6)}.

Let V = {y1, y2, y3, y4, y5, y6}. Define a mapping as follows:

x1, x4, x11 x2, x8 x3, x6 x5 x7, x9, x10 x12, x13, x14, x15

y1 y2 y3 y4 y5 y6

Then f (R) = {f (R1) , f (R2) , f (R3)}, where
f (R1) = {(y2, y3) , (y4, y2) , (y4, y3) , (y5, y6)},
f (R2) = {(y1, y6) , (y2, y3) , (y4, y2)},
f (R3) = {(y1, y5) , (y2, y3) , (y4, y3) , (y6, y4)}.
And (V, f (R)) is the f− induced relation information system of (U,R). It is

very easy to verify that f is a homomorphism from (U,R) to (V, f (R)).
We can see that f (R1) is superfluous in f (R) ⇔ R1 is superfluous in R

and that {f (R2) , f (R3)} is a reduct of f (R) ⇔ {R2, R3} is a reduct of R.
Therefore, we can reduce the original system by reducing the image system and
reduce the image system by reducing the original system. That is, the reductions
of the original system and image system are equivalent to each other.

5 Conclusions

In this paper, we point out that a mapping between two universes can induce a
binary relation on one universe according to the given relation on the other uni-
verse. For a relation information system, we can consider it as a composition of
some generalized approximation spaces on the same universe. The mapping be-
tween generalized approximation spaces can be explained as a mapping between
the given relation information systems. A homomorphism is a special mapping
between two relation information systems. Under the condition of homomor-
phism, we discuss the characters of relation information systems, and find out
that the reductions of the original system and image system are equivalent to
each other. These results may have potential applications in knowledge reduc-
tion, decision making and reasoning about data, especially for the case of two
relation information systems. Our results also illustrate that some characters of
a system are guaranteed in explanation system, i.e., a system gain acknowledge-
ment from another system.
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