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Abstract. In the paper, we present a novel method for handling incom-
plete information systems. By the proposed method we can transform
an incomplete information system into a complete set-value information
system without loss any information, and we discuss the relationship
between the reducts of incomplete information system and the reducts
of it’s complements. For incomplete decision tables, we introduce two
complete methods according to different criterions of certain factor of
decision rules, i.e., maximal sum complement and maximal conjunction
complement of certain factor of decision rules.
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1 Introduction

Rough sets theory, introduced by Pawlak [1], has been conceived as a tool to
conceptualize and analyze various types of data, in particular, has important
applications to artificial intelligence and cognitive sciences, as a tool for dealing
with vagueness and uncertainty of facts, and in classification [2,3,4,5].

A concept related to rough set is information system (attribute-value system).
According to whether or not there are missing data (null values), information
system can be classified into two categories: complete and incomplete. A incom-
plete information system contains null value for at last one attribute, a null value
may be some value in the domain of the corresponding attribute, however, it is
unknown. Here we consider the case in which a null value means an applica-
ble value. Some important results have recently been obtained for incomplete
information system by knowledge acquisition methodologies [3,5,6,7,8,9].

There are several ways in which null value may be handled in [10,11,12]. The
simplest method to hand null value is to remove objects with unknown values or
replace null values with most common values [10] in the original system. More
complex approaches which provide strategies to deal with null values in terms of
statistics are studied [13], in which it is suggested to predict the null values on
the basis of values of other attributes of an object and relevant class information.
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The problem of rules extraction from incomplete information system was dis-
cussed in the context of the Rough Sets [3,6,7,10,14]. Modeling uncertainty
caused by the appearance of unknown values by means of fuzzy sets was de-
scribed in [3]; A methodology of rules generation from original incomplete sys-
tems was discussed in [6,7]; A learning algorithm is proposed [14], which can
simultaneously derive rules from incomplete system and estimate the missing
values in the learning process.

In the paper,we describe a newmethod for handling incomplete information sys-
tem. By the proposed method we can transform an incomplete information system
into a complete set-value information system.Fordecision tables,we showtwo com-
plete methods according to different criterions of certain factor of decision rules,
i.e., maximal sum complement of certain factor and maximal conjunction comple-
ment of certain factor. The relationship between the reducts of incomplete infor-
mation system and the reducts of it’s complements are also discussed in details.

2 Incomplete Information Systems

An information system (IS) is an ordered triplet I = (U, AT, f), where U is a
finite nonempty set of objects and AT is a finite nonempty set of attributes,
fa : U → Va for any a ∈ AT , where Va is the domain of attribute a.

It may happen that some of attribute values for objects are missing. To in-
dicate such a situation a distinguished value, so-called null value, is usually
assigned to those attributes. We denote special symbol ∗ to indicate that the
value of an attribute is unknown. Here, we assume that an object x ∈ U pos-
sesses only one value for an attribute a (a ∈ AT ). Thus, if the value of an
attribute a is missing, then the real value must be one of value of Va. An IS in
which values of all attributes for all objects from U are known is called complete,
it is called incomplete otherwise.

Example 1. An incomplete IS I = (U, AT, f) is presented in Table 1.

Table 1. An incomplete IS

U a1 a2 a3

x1 1 1 1
x2 1 * 1
x3 2 1 1
x4 1 2 *
x5 1 * 1
x6 2 2 2
x7 1 1 1

From Table 1, we have a set-value IS IF = (U, AT, F ), see Table 2, where
F = {Fa : U → P(Va)| a ∈ AT },

Fa(x) =
{

{fa(x)} fa(x) �= ∗,
Va fa(x) = ∗.
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Table 2. The set-value IS IF

U a1 a2 a3

x1 {1} {1} {1}
x2 {1} {1,2} {1}
x3 {2} {1} {1}
x4 {1} {2} {1,2}
x5 {1} {1,2} {1}
x6 {2} {2} {2}
x7 {1} {1} {1}

In the following, we only consider the set-value IS that derived from incom-
plete IS.

Let IF = (U, AT, F ) be a set-value IS and A ⊆ AT . Let

R∗
A = {(x, y) ∈ U × U | ∀ a ∈ A, Fa(x) ∩ Fa(y) �= ∅},

we denote [x]∗A = {y ∈ U |(x, y) ∈ R∗
A}. In general, U/R∗

A do not constitute a
partition of U , they may overlap.

Let A ⊆ AT , we say A is a reduct of IF , if R∗
A = R∗

AT and R∗
A−{a} �=

R∗
AT (∀ a ∈ A).

Definition 1. Let IF = (U, AT, F ) be a set-value IS, X ⊆ U, A ⊆ AT , a pair
of lower and upper approximations, A(X) and A(X), is defined by

A(X) = {x ∈ U | [x]∗A ⊆ X}, A(X) = {x ∈ U | [x]∗A ∩ X �= ∅}.

Theorem 1. Let IF = (U, AT, F ) be a set-value IS, X, Y ⊆ U, A ⊆ B ⊆ AT ,
then

(1) A(∅) = A(∅) = ∅, A(U) = A(U) = U ;
(2) A(X ∩ Y ) ⊆ A(X) ∩ A(Y ), A(X ∪ Y ) ⊇ A(X) ∪ A(Y );
(3) X ⊆ Y ⇒ A(X) ⊆ A(Y ), X ⊆ Y ⇒ A(X) ⊆ A(Y );
(4) A(X ∪ Y ) ⊇ A(X) ∪ A(Y ), A(X ∩ Y ) ⊆ A(X) ∩ A(Y );
(5) AX ⊆ X ⊆ AX;
(6) AX ⊆ BX, AX ⊇ BX.

Proof. It immediately follows from Definition 1.

Definition 2. Let IF = (U, AT, F ) be a set-value IS. We denote

D(x, y) = {a ∈ AT | Fa(x) ∩ Fa(y) = ∅ (x, y ∈ U)},

then D(x, y) is called discernibility attribute set of IF , and D = (D(x, y) : x, y ∈
U) is called discernibility matrix of IF .

Theorem 2. Let IF = (U, AT, F ) be a set-value IS and A ⊆ AT , then R∗
A =

R∗
AT iff A ∩ D(x, y) �= ∅ (∀D(x, y) �= ∅, x, y ∈ U).
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Proof. Suppose that A ∩ D(x, y) �= ∅ (∀D(x, y) �= ∅, x, y ∈ U), then ∃ a ∈ A,
such that a ∈ D(x, y), which implies Fa(x) ∩ Fa(y) = ∅, i.e. (x, y) �∈ R∗

A. Thus,
R∗

A ⊆ R∗
AT . On the other hand, it is evident that R∗

AT ⊆ R∗
A. Therefore, R∗

A =
R∗

AT .
Conversely, assume that R∗

A = R∗
AT , then [x]∗A = [x]∗AT (∀ x ∈ U). If y �∈ [x]∗AT ,

then y �∈ [x]∗A. Thus ∃ a ∈ A, such that Fa(x) ∩ Fa(y) = ∅, which implies
a ∈ D(x, y). Therefore, A ∩ D(x, y) �= ∅ (∀D(x, y) �= ∅).

We denote
� =

∧
(x,y)∈ U×U

∨
D(x, y),

then �’s prime implications determine reducts uniquely for set-value IS ( see
[15]).

Example 2. Table 3 is the discernibility matrix of Table 2, where, values of
D(xi, xj) for any pair (xi, xj) of objets from U are placed.

Table 3. The discernibility matrix of IF

x/y x1 x2 x3 x4 x5 x6 x7

x1 a1 a2 a1a2a3

x2 a1 a1a3

x3 a1 a1 a1a2 a1 a2a3 a1

x4 a1 a1a2 a1 a2

x5 a1 a1a3

x6 a1a2a3 a1a3 a2a3 a1 a1a3 a1a2a3

x7 a1 a2 a1a2a3

From the Table 3, we have

� = a1 ∧ a2 ∧ (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a3) ∧ (a1 ∨ a2) ∧ (a2 ∨ a3) = a1 ∧ a2.

Thus, {a1, a2} is the unique reduct of set-value IS.

Let IF = (U, AT, F ) be a set-value IS. We denote

f
′
= {f

′

a : U → Va, f
′

a(x) ∈ Fa(x), (a ∈ AT, x ∈ U)},

then f
′
is called a selection of F .

It is easy to see that If ′ = (U, AT, f
′
) is a complement of the original incom-

plete IS. Let F ∗ denotes the set of all selections of F . Then, SF = {(U, AT, f
′
) :

f
′ ∈ F ∗} is the set of all the complements of the original incomplete IS.

Example 3. Table 4 is a selection of set-value IS IF = (U, AT, F ) presented in
Table 2.
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Table 4. A selection If
′ = (U, AT, f

′
)

U a1 a2 a3

x1 1 1 1
x2 1 2 1
x3 2 1 1
x4 1 2 2
x5 1 1 1
x6 2 2 2
x7 1 1 1

Let I = (U, AT, f) be an incomplete IS. We denote

Y ∗ = {(x, a)| x ∈ U, a ∈ AT, fa(x) = ∗}, B∗ = {a ∈ AT | ∃ x ∈ U, fa(x) = ∗}.

The number of all the complement of I is
∏

(x,a)∈Y ∗
|Va|, i.e., |SF | =

∏
(x,a)∈Y ∗

|Va|,

where | · | denotes the cardinal of a set. We can select a complement from SF

according to different criterions.

Example 4. In Example 1, since Y ∗ = {(x2, a2), (x4, a3), (x5, a2)}, then∏
(x,a)∈Y ∗

|Va| = 2 × 2 × 2 = 8.

Theorem 3. Let If ′ ∈ SF , A ⊆ AT . We denote Rf
′

A = {(x, y) ∈ U × U | ∀ a ∈
A, f

′

a(x) = f
′

a(y)}, then R∗
A =

⋃
f ′∈ F ∗

Rf
′

A .

Proof. For any f
′ ∈ F ∗, we have Rf

′

A ⊆ R∗
A. Thus

⋃
f ′∈F ∗

Rf
′

A ⊆ R∗
A. On the

other hand, for any (x, y) ∈ R∗
A, we can easily conclude that Fa(x) ∩ Fa(y) �=

∅ (∀ a ∈ A). Hence ∃ f
′ ∈ F ∗, such that f

′

a(x) = f
′

a(y) (∀ a ∈ AT ), which

implies (x, y) ∈ Rf
′

A . Therefore, R∗
A ⊆

⋃
f ′∈ F ∗

Rf
′

A .

We denote [x]f
′

A = {y ∈ U | (x, y) ∈ Rf
′

A }, by Theorem 3 we have [x]∗A =⋃
f ′∈ F ∗

[x]f
′

A .

Theorem 4. Let If ′ ∈ SF and A ⊆ AT , if ∀ f
′ ∈ F ∗, Rf

′

A = Rf
′

AT , then
R∗

A = R∗
AT .

Proof. It is immediately from Theorem 3.

Theorem 5. Let IF = (U, AT, F ) be a set-value IS and B∗ ⊆ A ⊆ AT , then

R∗
A = R∗

AT iff Rf
′

A = Rf
′

AT , ∀ f
′ ∈ F ∗.
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Proof. It is evident that Rf
′

AT ⊆ Rf
′

A (∀ f
′ ∈ F ∗), and we only need to prove

that Rf
′

A ⊆ Rf
′

AT . For any (x, y) ∈ Rf
′

A , by Theorem 3 we have (x, y) ∈ R∗
A. Since

R∗
A = R∗

AT , then ∃ Rf1

AT ∈ R∗
AT such that (x, y) ∈ Rf1

AT , i.e. f1
a (x) = f1

a (y) (∀ a ∈
AT ). It is easy to see that ∀ f1, f2 ∈ F ∗ there always are

f1
a (x) = f2

a (x), (∀ a ∈ AT − B∗, ∀ x ∈ U).

Therefore,
f

′

a(x) = f
′

a(y) (∀ a ∈ AT − B∗). (1)

On the other hand, since (x, y) ∈ Rf
′

A , then

f
′

a(x) = f
′

a(y) (∀ a ∈ A). (2)

By Eq. (1) (2), we have f
′

a(x) = f
′

a(y) (∀ a ∈ AT ), i.e., (x, y) ∈ Rf
′

AT . Therefore,

Rf
′

A ⊆ Rf
′

AT .

Conversely, it follows immediately from Theorem 4.

Theorem 6. Let IF = (U, AT, F ) be a set-value IS, A is a reduct of IF . We

denote C = A ∪ B∗, then Rf
′

C = Rf
′

AT , ∀ f
′ ∈ F ∗.

Proof. Since R∗
A = R∗

AT and A ⊆ C, then R∗
C = R∗

AT ; on the other hand, since

B∗ ⊆ C, by Theorem 5 we have that Rf
′

C = Rf
′

AT , (∀ f
′ ∈ F ∗).

Theorem 7. Let If ′ = (U, AT, f
′
) ∈ SF , A is a reduct of If ′ and A ∩ B∗ = ∅.

We denote C = A ∪ B∗, then Rf
′

C = Rf
′

AT , ∀ f
′ ∈ F ∗.

Proof. It is similar to the proof of Theorem 5.

3 Incomplete Decision Tables

A decision table (DT) is an IS I = (U, AT ∪{d}, f), where d (d �∈ AT and ∗ �∈ Vd)
is a distinguished attribute called the decision, and the element of AT are called
conditions. A DT is called complete, if it is a complete IS; it is incomplete
otherwise.

Example 5. An incomplete DT is presented in Table 5, similar to incomplete IS,
from Table 5, we have a set-value DT IF = (U, AT ∪ {d}, F ), see Table 6.

In the following, we only consider the set-value DT derived from incomplete DT.
Let IF = (U, AT ∪ {d}, F ) be a set-value DT, we denote

f
′
= {f

′

a : U → Va, f
′

a(x) ∈ Fa(x) and f
′

d(x) = Fd(x), (a ∈ AT, x ∈ U)},

then f
′
is called a selection of F .
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Table 5. An incomplete DT I = (U, AT ∪ {d}, f)

U a1 a2 a3 d
x1 1 1 1 1
x2 2 * 2 2
x3 1 2 1 2
x4 1 1 * 1
x5 2 2 2 1
x6 1 1 1 2
x7 1 * 1 1
x8 2 1 2 1

Table 6. A set-value DT IF = (U,AT ∪ {d}, F )

U a1 a2 a3 d
x1 {1} {1} {1} 1
x2 {2} {1,2} {2} 2
x3 {1} {2} {1} 2
x4 {1} {1} {1,2} 1
x5 {2} {2} {2} 1
x6 {1} {1} {1} 2
x7 {1} {1,2} {1} 1
x8 {2} {1} {2} 1

Similar to incomplete IS, we can compute the set of all the complements of
the original incomplete DT.

In set-value DT, R∗
AT is defined as in set-value IS, we denote

Rd = {(x, y) ∈ U × U | Fd(x) = Fd(y)},

then IF is called consistent, if R∗
AT ⊆ Rd; it is inconsistent otherwise.

Let IF be a consistent DT and A ⊆ AT , A is called a reduct of DT, if R∗
A ⊆ Rd

and R∗
B �⊆ Rd (∀ B ⊂ A).

Let IF = (U, AT ∪ {d}, F ) be a consistent set-value DT. We denote

Dd(x, y) =
{{a ∈ AT : Fa(x) ∩ Fa(y) = ∅}, Fd(x) �= Fd(y),

∅, Fd(x) = Fd(y).

then Dd(x, y) is called discernibility attribute set of DT, and Dd = (Dd(x, y) :
x, y ∈ U) is called discernibility matrix of DT.

We denote
� =

∧
(x,y)∈ U×U

∨
Dd(x, y),

then � determine reducts uniquely for consistent set-value DT.
Knowledge hidden in data contained in decision tables may be discovered and

expressed in the form of decision rule t → s, where

t = ∧(c, v), c ∈ AT, v ∈ Vc\{∗} and s = ∨(d, w), w ∈ Vd.
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We denote

||t|| = {x ∈ U | fa(x) = v, (a, v) ∈ t}, ||s|| = {x ∈ U | fd(x) = w, (d, w) ∈ s},

where ||t|| be the set of objects of property ∧(c, v) (c ∈ AT, v ∈ Vc), and ||s|| be
the set of objects of property ∨(d, w) (w ∈ Vd), then

||t ∨ s|| = ||t|| ∨ ||s||, ||t ∧ s|| = ||t|| ∧ ||s||.

Let r : ∧(c, v) → ∨(d, w) be a decision rule, we denote

cerIF (s → t) =
card(||s ∧ t||)

card(||s||) ,

then cerIF (s → t) is called the certainty factor of rule r.
Let If ′ = (U, AT ∪ {d}, f

′
) ∈ SF and U/Rd = {D1, D2, · · · , Dn}. A member-

ship distribution function μf
′

A : U → [0, 1]n is defined as follows [16]:

μf
′

A (x) = (D(D1/[x]f
′

A , . . . , D(Dn/[x]f
′

A )), x ∈ U

where

D(Di/[x]f
′

A ) =
|Di

⋂
[x]f

′

A |
[x]f

′

A

.

It is evident that D(Di/[x]f
′

A ) is the certainty factor of the rule
∧
a∈A

(a, f
′

a(x)) → (d, f
′

d(Di)).

Let x ∈ U , we denote

mf
′

A (x) = max{D(Di/[x]f
′

A ) : i ≤ n} = D(Dj/[x]A);

ηf
′

A (x) = {Dj : mf
′

A (x) = D(Dj/[x]f
′

A )}.

Let Dj ∈ ηf
′

A (x), then D(Di/[x]f
′

A ) ≤ D(Dj/[x]f
′

A ) (∀ Di ∈ U/Rd), i.e.,
the certainty factor of rule

∧
a∈A

(a, f
′

a(x)) → (d, f
′

d(Dj)) is maximal in all the

rules supported by object x. Rule
∧

a∈A

(a, f
′

a(x)) → (d, f
′

d(Dj)) is called maximal

confidence rule supported by object x.
We denote

Mf
′

A =
∑

[x]A∈ U/RA

mf
′

A (x), mf
′

A =
∧

[x]A∈ U/RA

mf
′

A (x).

Let
Mf1

A = max{Mf
A : f ∈ F ∗}, mf2

A = max{mf
A : f ∈ F ∗},
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then f1 is called maximal sum selection of certainty factor, and f2 is called
maximal conjunction selection of certainty factor.

Let IF = (U, AT ∪{d}, F ) be a set-value DT, we select f1, f2 ∈ F ∗ such that

Mf1

A = max{Mf
′

A : f
′
∈ F ∗}, mf2

A = max{mf
′

A : f
′
∈ F ∗},

then we have the two complete DT

(U, AT ∪ {d}, f1), (U, AT ∪ {d}, f2).

In all the selection of F , the sum of certainty factor of rules hidden in (U, AT ∪
{d}, f1) is maximal, the conjunction of certainty factor of rules hidden in
(U, AT ∪ {d}, f2) is maximal.

Example 6. In Example 5, from Table 6, we select If1 ∈ SF (see Table 7).

Table 7. DT If1 = (U, AT ∪ {d}, f1)

U a1 a2 a3 d
x1 1 1 1 1
x2 2 1 2 2
x3 1 2 1 2
x4 1 1 2 1
x5 2 2 2 1
x6 1 1 1 2
x7 1 1 1 1
x8 2 1 2 1

It can be easily checked that Mf
′

AT ≤ Mf1

AT , mf
′

AT ≤ mf1

AT (∀ f
′ ∈ F ∗). Therefore,

f1 not only is a maximal sum selection of certainty factor, but also a maximal
conjunction selection of certainty factor.

4 Conclusions

In the paper, a new method is proposed to handling incomplete information sys-
tems. By the proposed method we transform an incomplete information system
into a complete set-value information system, in which we discussed the problems
of set approximation and attribute reduction. For incomplete decision tables, we
introduce two complete methods according to different criterions of certain factor
of decision rules, i.e., maximal sum complement and maximal conjunction com-
plement of certain factor of decision rules. The relationship between the reducts
of incomplete information system and the reducts of it’s complements are also
discussed in details. This paper may provide a new, different understanding and
representations to incomplete information systems.
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