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Abstract. This paper is devoted to the discussion of transitive uncer-
tainty mapping in general approximation space. It is proved that the best
low-approximation mapping exist if the uncertainty mapping is transi-
tive. Furthermore, the best low-approximation mapping is defined and
its properties are discussed.
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1 Introduction

Rough set theory(RST), proposed by Pawlak [2], [3], is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. It provides a systematic approach for the study of indiscernibility of
objects. Typically, indiscernibility is described using equivalent relations. When
objects of a universe are described by a set of attributes, one may define the in-
discernibility of objects based on their attribute values. When two objects have
the same value over a certain group of attributes, we say they are indiscernible
with respect to this group of attributes, or have the same description with re-
spect to the indiscernibility relation. Objects of the same description consist of
an equivalence class and all the equivalence classes form a partition of the uni-
verse. With this partition, rough set theory approximates any subset of objects
of the universe by two sets, called the lower and upper approximations. They
can be formally described by a pair of unary set-theoretic operators. It is noticed
that equivalence relation or partition, as the indiscernibility relation in Pawlak’s
original rough set theory, is restrictive for many applications. To address this
issue, several interesting and meaningful extensions to equivalent relation have
been proposed in the past, such as tolerance relation [4,12], similarity relation
[13], and others [14,15,16,17]. This leads to various approximation operators. By
adopting the notion of neighborhood systems from topological space, Lin[6,7]
proposed a more general framework for the study of approximation operators.
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Zakowski [20] have used coverings of a universe for establishing the covering
generalized rough set theory and an extensive body of research works have been
developed [2,3,11]. A. Gomolinska [5] provided a new approach for the study of
rough approximations where the starting point is a generalized approximation
space. The rough approximation operator was regarded as set-valued mapping,
called approximation mapping. Two pairs of basic approximation mappings were
defined typically and generalized approximation mappings were constructed by
the compositions of these basic approximation mappings. Some axioms for ap-
proximation mappings were proposed. Based on these axioms, the best low-
approximation mapping was studied.

This paper is devoted to the discussion of transitive uncertainty mapping. The
motivation is to construct the best, in accordance with Gomolinska’s axioms,
approximation operators in general approximation space. It is proved that the
best low-approximation mapping exist if the uncertainty mapping is transitive.
Furthermore, the best low-approximation mapping is defined and its properties
are discussed.

2 Preliminaries

This section presents a review of some fundamental notions of Pawlak’s rough
sets. We refer to [2,9,10] for details.

Let U be a finite set, the universe of discourse, and R an equivalence relation
on U , called an indiscernibility relation. The pair (U, R) is called a Pawlak ap-
proximation space. R will generate a partition U/R = {[x]R; x ∈ U} on U , where
[x]R is the equivalence class with respect to R containing x. For each X ⊆ U ,
the upper approximation R(X) and lower approximation R(X) of X are defined
as [9,10]

R(X) = {x; [x]R ∩ X �= ∅}, (1)

R(X) = {x; [x]R ⊆ X}. (2)

Alternatively, in terms of equivalence classes of R, the pair of lower and upper
approximation can be defined by

R(X) = ∪{[x]R; [x]R ∩ X �= ∅}, (3)

R(X) = ∪{[x]R; [x]R ⊆ X}. (4)

Let ∅ be the empty set and ∼ X the complement of X in U , the following
conclusions have been established for Pawlak’s rough sets:

(1)R(U) = U = R(U).
(2)R(∅) = ∅ = R(∅).
(3)R(X) ⊆ X ⊆ R(X).
(4)R(X ∩ Y ) = R(X) ∩ R(X), R(X ∪ Y ) = R(X) ∪ R(Y ).
(5)R(R(X)) = R(X), R(R(X)) = R(X).



44 B. Jiang, K. Qin, and Z. Pei

(6)R(X) =∼ R(∼ X), R(X) =∼ R(∼ X).
(7)X ⊆ Y ⇒ R(X) ⊆ R(Y ), R(X) ⊆ R(Y ).
(8)R(∼ R(X)) =∼ R(X), R(∼ R(X)) =∼ R(X).
(9)R(R(X)) ⊆ X ⊆ R(R(X)).

It has been shown that (3), (4) and (8) are the characteristic properties of the
lower and upper approximations [8,23,18].

3 A General Notion of Rough Approximation Mapping

A general approximation space is a triple A = (U, I, k), where U is a non-
empty set called the universe, I : U → P (U) is an uncertainty mapping, and
k : P (U) × P (U) → [0, 1] is a rough inclusion function.

In general approximation space A = (U, I, k), w ∈ I(u) is understood as w is
in some sense similar to u and it is reasonable to assume that u ∈ I(u) for every
u ∈ U . Then {I(u); u ∈ U} forms a covering of the universe U . The role of the
uncertainty mapping may be played by a binary relation on U .

We consider mappings f : P (U) → P (U). We can define a partial ordering
relation, ≤, on the set of all such mappings as follows: f ≤ g if and only if
∀ ⊆ U(f(x) ⊆ g(x)), for every f, g : P (U) → P (U). By id we denote the identity
mapping on P (U). g ◦ f : P (U) → P (U) defined by g ◦ f(x) = g(f(x)) for every
x ⊆ U , is the composition of f and g. We call g dual to f , written g = fd, if
g(x) =∼ f(∼ x). The mapping f is monotone if and only if for every x, y ⊆ U ,
x ⊆ y implies f(x) ⊆ f(y).

3.1 Axioms for Rough Approximation Mappings

Theoretically speaking, every rough approximation operator is a mapping from
P (U) to P (U), we call it approximation mapping. [5] proposed some fundamental
properties that any reasonable rough approximation mapping f : P (U) → P (U)
should possibly possess. They are the following axioms:

(a1) Every low-mapping f is decreasing, i.e., f ≤ id.
(a2) Every upp-mapping f is increasing, i.e., id ≤ f .
(a3) If f is a low-mapping, then (∗)∀x ⊆ U∀u ∈ f(x)(I(u) ⊆ x).
(a4) If f is a upp-mapping, then (∗∗)∀x ⊆ U∀u ∈ f(x)(I(u) ∩ x �= ∅).
(a5) For each x ⊆ U , f(x) is definable in A, i.e., there exists y ⊆ U such that

f(x) = ∪{I(u); u ∈ y}.
(a6) For each x ⊆ U definable in A, f(x) = x.
The motivation behind these axioms was analyzed in[5]. Also, it is noticed

that finding appropriate candidates for low- and upp-mappings satisfying these
axioms is not an easy matter in general case.

3.2 The Structure of Rough Approximation Mappings

Let A = (U, I, k) be a general approximation space. The approximation map-
pings f0, f1 : P (U) → P (U) were defined as[5]: for every x ⊆ U ,

f0(x) =
⋃

{I(u); u ∈ x}, (5)
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f1(x) = {u; I(u) ∩ x �= ∅}. (6)

Observe that fd
0 and fd

1 satisfy:

fd
0 (x) = {u; ∀w(u ∈ I(w) ⇒ w ∈ x)}, (7)

fd
1 (x) = {u; I(u) ⊆ x}. (8)

If {I(u); u ∈ U} is a partition of U , then f0 = f1, fd
0 = fd

1 and they are the
classical rough approximation operators.

Based on f0, f1 and their dual mappings, several approximation mappings
were defined[5] by means of operations of composition and duality as follows: for
every x ⊆ U ,

f2
.= f0 ◦ fd

1 : i.e., f2(x) =
⋃

{I(u); I(u) ⊆ x},
f3

.= f0 ◦ f1 : i.e., f3(x) =
⋃

{I(u); I(u) ∩ x �= ∅},
f4

.= fd
0 ◦ f1 = fd

2 : i.e., f4(x) = {u; ∀w(u ∈ I(w) ⇒ I(w) ∩ x �= ∅)},
f5

.= fd
0 ◦ fd

1 = fd
3 : i.e., f5(x) = {u; ∀w(u ∈ I(w) ⇒ I(w) ⊆ x)},

f6
.= fd

1 ◦ fd
1 : i.e., f6(x) = {u; ∀w(w ∈ I(u) ⇒ I(w) ⊆ x)},

f7
.= f0 ◦ f6 = f0 ◦ fd

1 ◦ fd
1 = f2 ◦ fd

1 : i.e., f7(x) =
⋃

{I(u); ∀w(w ∈ I(u) ⇒
I(w) ⊆ x)},

f8
.= fd

1 ◦ f1 : i.e., f8(x) = {u; ∀w(w ∈ I(u) ⇒ I(w) ∩ x �= ∅)},
f9

.= f0 ◦ f8 = f0 ◦ fd
1 ◦ f1 = f2 ◦ f1 : i.e., f9(x) =

⋃
{I(u); ∀w(w ∈ I(u) ⇒

I(w) ∩ x �= ∅)}.

Theorem 1. [5] Consider any f : P (U) → P (U).
(1) f(x) is definable for any x ⊆ U iff there is a mapping g : P (U) → P (U)

such that f = f0 ◦ g.
(2) The condition (∗) is satisfied iff f ≤ fd

1 .
(3) The condition (∗∗) is satisfied iff f ≤ f1.

Theorem 2. [5] For any sets x, y ⊆ U , we have that:
(1) fi(∅) = ∅ and fi(U) = U for i = 0, 1, · · · , 9. fd

i (∅) = ∅ and fd
i (U) = U for

i = 0, 1.
(2) fi and fd

j are monotone for i = 0, 1, · · · , 9 and j = 0, 1.
(3) fi(x ∪ y) = fi(x) ∪ fi(y) for i = 0, 1, 3.
(4) fi(x ∩ y) = fi(x) ∩ fi(y) and fd

j (x ∩ y) = fd
j (x) ∩ fd

j (y) for i = 5, 6 and
j = 0, 1.

Theorem 3. [5] For any sets x, y ⊆ U , we have that:
(1) f5 ≤ fd

1 ≤ f2 ≤ id ≤ f4 ≤ f1 ≤ f3.
(2) f5 ≤ fd

0 ≤ id ≤ f0 ≤ f3.
(3) f6 ≤ f7 ≤ fd

1 .
(4) f8 ≤ f9 ≤ f1.
(5) fi ◦ fi = fi for i = 2, 4.

In view of the previous results and in accordance with the axioms, any low- or
upp-mapping should have the form f0 ◦ g, where g : P (U) → P (U) satisfies
f0 ◦ g ◦ f0 = f0 and, moreover, f0 ◦ g ≤ fd

1 in the lower case, while id ≤
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f0 ◦ g ≤ f1 in the upper case[5]. Clearly, ≤ −maximal among the low-mappings
and ≤ −minimal among the upp-mappings would be the best approximation
operators. The greatest element among the low-mappings just described is the
mapping h : P (U) → P (U) where for any x ⊆ U ,

h(x) = ∪{(f0 ◦ g)(x); g : P (U) → P (U) ∧ f0 ◦ g ◦ f0 = f0 ∧ f0 ◦ g ≤ fd
1 }. (9)

It is noticed that an analogous construction, using ∩, does not provide us with
the least element of the family of upp-mappings[5].

4 The Best Approximation Operators

In this section, we discuss the condition with which the approximation mapping
h exist. We noticed that (9) make sense provided S �= ∅ where

S = {g; g : P (U) → P (U), f0 ◦ g ◦ f0 = f0, f0 ◦ g ≤ fd
1 }.

Theorem 4. [5] Consider any f : P (U) → P (U). f satisfies (a5) and (a6) if
and only if there is a mapping g : P (U) → P (U) such that f = f0 ◦ g and
f0 ◦ g ◦ f0 = f0.

Proof. (⇒) Assume f satisfies (a5) and (a6). By Theorem 1, there is a mapping
g : P (U) → P (U) such that f = f0 ◦ g. Consider any x ⊆ U , by definability of
f0(x), we have f0 ◦ g ◦ f0(x) = f(f0(x)) = f0(x). Hence f0 ◦ g ◦ f0 = f0.

(⇐) Assume f = f0 ◦ g and f0 ◦ g ◦ f0 = f0 for some g : P (U) → P (U). By
Theorem 1, f satisfies (a5). If x ⊆ U is definable, then there is y ⊆ U such that
x = ∪{I(u); u ∈ y} = f0(y). Consequently f(x) = f0 ◦ g(x) = f0 ◦ g(f0(y)) =
f0(y) = x. Hence f satisfies (a6).

Theorem 5. If S �= ∅,then h = f0 ◦ G is the greatest element among the low-
mappings which satisfies (a1), (a3), (a5) and (a6), where G : P (U) → P (U)
satisfies: for every x ⊆ U ,

G(x) = ∪{g(x); g ∈ S}.

The proof of this theorem is trivial.

Theorem 6. If

∀u ∈ U∀v ∈ U(u ∈ I(v) ⇒ I(u) ⊆ I(v)) (10)

is satisfied, then
(1) f0 ◦ fd

1 = fd
1 ,

(2) fd
1 ◦ f0 = f0.

Proof. Assume (10). Consider any x ⊆ U and u ∈ U .
(1) If u ∈ f0 ◦ fd

1 (x) = ∪{I(v); v ∈ fd
1 (x)}, then there exist v ∈ fd

1 (x) such
that u ∈ I(v). Hence I(u) ⊆ I(v) ⊆ x. By definition, u ∈ fd

1 (x) and f0 ◦fd
1 ≤ fd

1 .
It follows that f0 ◦ fd

1 = fd
1 by f0 ≥ id.

(2) If u ∈ f0(x), then there exist v ∈ x such that u ∈ I(v). Hence I(u) ⊆
I(v) ⊆ f0(x) and u ∈ fd

1 ◦ f0(x). In other words, fd
1 ◦ f0 ≥ f0. It follows that

fd
1 ◦ f0 = f0.
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Theorem 7. S �= ∅ if and only if (10) is satisfied.

Proof. Suppose that S �= ∅. It follows that there exists g : P (U) → P (U) such
that f0 ◦ g ◦ f0 = f0 and f0 ◦ g ≤ fd

1 . By

f0 = f0 ◦ g ◦ f0 ≤ fd
1 ◦ f0 ≤ f0,

fd
1 ◦ f0 = f0 followed. For every u, v ∈ U with u ∈ I(v), by

I(v) = f0({v}) = fd
1 ◦ f0({v}) = fd

1 (I(v)) = {w; I(w) ⊆ I(v)},

it follows that I(u) ⊆ I(v).
Conversely, assume (10). By Theorem 6,

f0 ◦ fd
1 ◦ f0 = (f0 ◦ fd

1 ) ◦ f0 = fd
1 ◦ f0 = f0,

f0 ◦ fd
1 ≤ fd

1 .

Hence fd
1 ∈ S and S �= ∅.

By Theorem 6 and Theorem 7, if (10) is satisfied, fd
1 is ≤ −maximal among

the low-mappings which satisfy (a1), (a3), (a5) and (a6). Hence fd
1 is the best

low-approximation mapping.

5 The Transitive Uncertainty Mapping

In view of the previous results, the condition (10) plays a central role in general
approximation spaces. It is just the transitivity of uncertainty mapping. In this
section, we will concentrate on properties specific for this kind of uncertainty
mapping.

Theorem 8. Assume (10). For any sets x, y ⊆ U , we have that:
(1) fi ◦ fi = fi for i = 0, 1.
(2)f2 = f6 = f7 = fd

1 .
(3) f4 = f1.
(4) f8 = f9.

Proof. Consider any x ⊆ U and u ∈ U .
(1) If u ∈ f1 ◦ f1(x) = {v; I(v) ∩ f1(x) �= ∅}, then I(u) ∩ f1(x) �= ∅. It follows

that there exists v ∈ I(u) such that I(v) ∩ x �= ∅. By I(v) ⊆ I(u), I(u) ∩ x �= ∅
followed. By the definition, u ∈ f1(x). In other words, f1◦f1 ≤ f1. Consequently,
f1 ◦ f1 = f1 by f1 ≥ id.

If u ∈ f0 ◦ f0(x) = ∪{I(v); v ∈ f0(x)}, then there exists v ∈ U such that
v ∈ f0(x) and u ∈ I(v). By the definition, there is w ∈ x such that v ∈ I(w).
Consequently, u ∈ I(v) ⊆ I(w) and u ∈ f0(x). In other words, f0 ◦ f0 ≤ f0 and
f0 ◦ f0 = f0 followed by f0 ≥ id.

(2) By Theorem 6, f7 = f0 ◦ fd
1 ◦ fd

1 = (f0 ◦ fd
1 ) ◦ fd

1 = fd
1 ◦ fd

1 = f6,
f6 = fd

1 ◦ fd
1 = (f1 ◦ f1)d = fd

1 , f2 = f0 ◦ fd
1 = fd

1 .
(3) and (4) can be proved similarly.
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By (1) of Theorem 8, f0 ◦ id ◦ f0 = f0 ◦ f0 = f0 and f0 = f0 ◦ id, it follows
that f0 satisfies axiom (a6). We summarize the approximation mappings and
satisfiability of the axioms in Table 1. By + (resp., −) we denote that a condition
is (is not) satisfied, while ⊥ denotes that the result does not count. From the
Table we know that fd

1 is the best low-approximation mapping since it satisfies
all axioms and f0 is in our opinion the best candidate for a upp-mapping since
it satisfies three axioms (a1), (a5) and (a6).

Table 1. Approximation mappings and satisfiability of the axioms if (10) holds

f Form status a1 a2 a3 a4 a5 a6
f0 upp ⊥ + ⊥ − + +
f1 = f4 upp ⊥ + ⊥ + − −
fd
0 low + ⊥ − ⊥ − −

fd
1 = f2 = f6 = f7 low + ⊥ + ⊥ + +

f3 f0 ◦ f1 upp ⊥ + ⊥ − + −
f5 fd

0 ◦ fd
1 low + ⊥ + ⊥ − −

f8 = f9 fd
1 ◦ f1 upp ⊥ − ⊥ + − −
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