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Abstract. This paper is devoted to the discussion of extended covering
rough set models. Based on the notion of neighborhood, five pairs of dual
covering approximation operators were defined with their properties be-
ing discussed. The relationships among these operators were investigated.
The main results are conditions with which these covering approximation
operators are identical.
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1 Introduction

Rough set theory(RST), proposed by Pawlak [2], [3], is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. It provides a systematic approach for the study of indiscernibility of
objects. Typically, indiscernibility is described using equivalent relations. When
objects of a universe are described by a set of attributes, one may define the indis-
cernibility of objects based on their attribute values. When two objects have the
same value over a certain group of attributes, we say they are indiscernible with
respect to this group of attributes, or have the same description with respect to the
indiscernibility relation. Objects of the same description consist of an equivalence
class and all the equivalence classes form a partition of the universe. With this par-
tition, rough set theory approximates any subset of objects of the universe by two
sets, called the lower and upper approximations. They can be formally described
by a pair of unary set-theoretic operators. It is noticed that equivalence relation
or partition, as the indiscernibility relation in Pawlak’s original rough set theory,
is restrictive for many applications. To address this issue, several interesting and
meaningful extensions to equivalent relation have been proposed in the past, such
as tolerance relation [4,12], similarity relation [13], and others [14,15,16,17]. This
leads to various approximation operators. By adopting the notion of neighbor-
hood systems from topological space, Lin[6,7] proposed a more general framework
for the study of approximation operators. Zakowski [20] have used coverings of a
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universe for establishing the covering generalized rough set theory and an exten-
sive body of research works have been developed [2,3,11]. In [22], the concept of
reducts of coverings is introduced and the conditions for two coverings to gener-
ate the same covering lower approximation or the same covering upper approxi-
mation were given. In[5], the indiscernibility relation is generalized to any binary
reflexive relation and some generalized approximation operators were introduced.
The following problems worth paying attention to. Some important properties of
Pawlak’s lower and upper approximation do not hold for the covering lower and
upper approximation, such as Duality, Multiplication and Addition [22]. For cov-
ering upper approximation, even Monotonicity does not hold.

This paper is devoted to the discussion of extended covering rough set models.
Based on the concept of neighborhood, five pairs of dual covering approximation
operators were defined with their properties being discussed. The relationship
among these operators were investigated. Some equivalent conditions for covering
approximation operators coinciding with each other were given. Furthermore, if
each element of the universe is a representative element [2], the Multiplication
for Zakowski’s lower approximation operator holds.

2 Preliminaries

This section presents a review of some fundamental notions of Pawlak’s rough
sets and covering rough sets. We refer to [2,9,10] for details.

2.1 Fundamentals of Pawlak’s Rough Sets

Let U be a finite set, the universe of discourse, and R an equivalence relation on
U , called an indiscernibility relation. The pair (U, R) is called a Pawlak approx-
imation space. R will generate a partition U/R = {[x]R; x ∈ U} on U , where
[x]R is the equivalence class with respect to R containing x. ∀X ⊆ U , the upper
approximation R(X) and lower approximation R(X) of X are defined as [9,10]
R(X) = {x; [x]R ∩ X �= ∅}, R(X) = {x; [x]R ⊆ X} Alternatively, in terms
of equivalence classes of R, the pair of lower and upper approximation can be
defined by R(X) = ∪{[x]R; [x]R ∩ X �= ∅}, R(X) = ∪{[x]R; [x]R ⊆ X}. Let
∅ be the empty set and ∼ X the complement of X in U , the following con-
clusions have been established for Pawlak’s rough sets: (1)R(U) = U = R(U).
(2)R(∅) = ∅ = R(∅). (3)R(X) ⊆ X ⊆ R(X). (4)R(X ∩ Y ) = R(X) ∩ R(X),
R(X∪Y ) = R(X)∪R(Y ). (5)R(R(X)) = R(X), R(R(X)) = R(X). (6)R(X) =∼

R(∼ X), R(X) =∼ R(∼ X). (7)X ⊆ Y ⇒ R(X) ⊆ R(Y ), R(X) ⊆ R(Y ).
(8)R(∼ R(X)) =∼ R(X), R(∼ R(X)) =∼ R(X). (9)R(R(X)) ⊆ X ⊆ R(R(X)).

It has been shown that (3), (4) and (8) are the characteristic properties of the
lower and upper approximations [8,23,18].

2.2 Concepts and Properties of Covering Rough Sets

Definition 1. Let U be a universe of discourse, C a family of subsets of U . If
no subsets in C is empty, and ∪C = U , C is called a covering of U .
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It is clear that a partition of U is a covering of U , so the concept of a covering
is an extension of the concept of a partition. In the following discussion, the
universe of discourse U is considered to be finite. We will list some definitions
and results about covering rough set.

Definition 2. [2] Let U be a non-empty set, C a covering of U . The pair (U, C)
is called a covering approximation space.

Definition 3. [2] Let (U, C) be a covering approximation space and x ∈ U . The
family of sets Md(x) = {K ∈ C; x ∈ K ∧ (∀S ∈ C)(x ∈ S ∧ S ⊆ K ⇒ K = S)}
is called the minimal description of x.

Definition 4. [2] Let (U, C) be a covering approximation space and X ⊆ U .
The family C∗(X) = {K ∈ C; K ⊆ X} is called the covering lower approxi-
mation set of X. Set X∗ = ∪C∗(X) is called the covering lower approximation
of X. Set X∗

∗ = X − X∗ is called the covering boundary of X. The family
Bn(X) = ∪{Md(x); x ∈ X∗

∗} is called the covering boundary approximation set
family of X. The family C∗(X) = C∗(X) ∪ Bn(X) is called the covering upper
approximation family of X. Set X∗ = ∪C∗(X) is called the covering upper ap-
proximation of X. If C∗(X) = C∗(X), X is said to be exact, otherwise inexact.

Theorem 1. [2] Let (U, C) be a covering approximation space, then ∀X, Y ⊆ U
and ∀x ∈ U , (1) C∗(∅) = C∗(∅) = ∅, C∗(U) = C∗(U) = C. (2) C∗(X) ⊆ C∗(X).
(3) C∗(X∗) = C∗(X) = C∗(X∗). (4) X ⊆ Y ⇒ C∗(X) ⊆ C∗(Y ), X ⊆ Y ⇒
X∗ ⊆ Y∗. (5) C∗(X∗)∗ = ∅. (6) C∗({x}) �= ∅ ⇔ {x} ∈ C. (7) C∗({x}) = Md(x).
(8) ∩Md(x) = ∩{K ∈ C; x ∈ K}.

Theorem 2. [2] Let (U, C) be a covering approximation space and X, Y ⊆ U ,
then (1) U∗ = U = U∗. (2) ∅∗ = ∅ = ∅∗. (3) X∗ ⊆ X ⊆ X∗. (4) (X∗)∗ = X∗,
(X∗)∗ = X∗.

By providing some examples, Zhu [22] shown that the following properties do not
hold for the covering lower and upper approximations: (1) (X ∩ Y )∗ = X∗ ∩ Y∗,
(X ∪ Y )∗ = X∗ ∪ Y ∗. (2) X∗ =∼ (∼ X)∗, X∗ =∼ (∼ X)∗. (3) X ⊆ Y ⇒ X∗ ⊆
Y ∗. (4) (∼ X∗)∗ =∼ X∗, (∼ X∗)∗ =∼ X∗.

3 The Extension of the Covering Approximation
Operators

Let (U, C) be a covering approximation space. For each x ∈ U , N(x) = ∩{K ∈
C; x ∈ K} is called the neighborhood of x. By (8) of Theorem 1, N(x) =
∩Md(x). We know that Pawlak’s approximation operators can be defined in
two different, but equivalent, ways. Similarly, we consider five pairs of dual ap-
proximation operators defined by means of neighborhoods as follows: for each
X ⊆ U , (I1) C1(X) = X∗ = ∪{K ∈ C; K ⊆ X}, C1(X) =∼ C1(∼ X) = ∩{∼

K; K ∈ C, K ∩ X = ∅}. (I2) C2(X) = {x ∈ U ; N(x) ⊆ X}, C2(X) = {x ∈
U ; N(x) ∩ X �= ∅}. (I3) C3(X) = {x ∈ U ; ∃u(u ∈ N(x) ∧ N(u) ⊆ X)}, C3(X) =
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{x ∈ U ; ∀u(u ∈ N(x) → N(u)∩X �= ∅)}. (I4) C4(X) = ∪{N(x); N(x)∩X �= ∅},
C4(X) = {x ∈ U ; ∀u(x ∈ N(u) → N(u) ⊆ X)}. (I5) C5(X) = ∪{N(x); x ∈ X},
C5(X) = {x ∈ U ; ∀u(x ∈ N(u) → u ∈ X)}.

Remark 1. The operator C1 is just Zakowski’s lower approximation[20] and is
studied in [2,3,11]. C5 is Zhu’s upper approximation operator[22].

3.1 On Approximation Operators (I1)

By the definition, C1(X) = X∗ for any X ⊆ U . Consequently, by Theorem 1,
Theorem 2 and the duality of C1 and C1, we have:

Theorem 3. Let (U, C) be a covering approximation space and X, Y ⊆ U , then
(1) C1(U) = U = C1(U), C1(∅) = ∅ = C1(∅). (2) C1(X) ⊆ X ⊆ C1(X).
(3) X ⊆ Y ⇒ C1(X) ⊆ C1(Y ) ∧ C1(X) ⊆ C1(Y ). (4)C1(C1(X)) = C1(X),
C1(C1(X)) = C1(X) .

Definition 5. [2] Let (U, C) be a covering approximation space and K ∈ C, x ∈
K. x is called a representative element of K if ∀S ∈ C(x ∈ S ⇒ K ⊆ S).

By Fact 7 in [2], x is a representative element of K if and only if Md(x) = {K},
and if and only if N(x) = K. We denote by C0 the set of all representative
elements of sets of the covering C, that is C0 = {x ∈ U ; ∃K ∈ C(x ∈ K ∧ ∀S ∈
C(x ∈ S ⇒ K ⊆ S))}.

Lemma 1. Let (U, C) be a covering approximation space and x ∈ U . Then,
x ∈ C0 if and only if |Md(x)| = 1.

Proof. Assume that x ∈ C0. It follows that Md(x) = {N(x)} and |Md(x)| = 1.
Conversely, assume that |Md(x)| = 1. We suppose that Md(x) = {K}, this
means that K is the unique minimal element of {S ∈ C; x ∈ S} and x is a
representative element of K, and consequently x ∈ C0.

Theorem 4. Let (U, C) be a covering approximation space. Then, C0 = U if
and only if for any X, Y ⊆ U , C1(X ∩ Y ) = C1(X) ∩ C1(Y ).

Proof. (⇒) Suppose that C0 = U . For each X, Y ⊆ U and x ∈ C1(X) ∩ C1(Y ),
there exist K1, K2 ∈ C such that x ∈ K1, K1 ⊆ X and x ∈ K2, K2 ⊆ Y . By
C0 = U , there exist K ∈ C such that x is a representative element of K, it
follows that K ⊆ K1, K ⊆ K2 and hence x ∈ K ⊆ K1 ∩ K2 ⊆ X ∩ Y, that
is x ∈ C1(X ∩ Y ). It follows that C1(X ∩ Y ) ⊇ C1(X) ∩ C1(Y ), and hence
C1(X ∩ Y ) = C1(X) ∩ C1(Y ) by (3) of Theorem 4. Conversely, if C0 �= U , then
there exists x ∈ U such that x /∈ C0. It follows that |Md(x)| > 1. Suppose that
K1, K2 ∈ Md(x) and K1 �= K2, it follows that x ∈ K1 ∩K2 = C1(K1)∩C1(K2).
On the other hand, for each K ∈ C such that K ⊆ K1 ∩ K2, x /∈ K and hence
x /∈ ∪{K ∈ C; K ⊆ K1 ∩ K2} = C1(K1 ∩ K2), this contradicts C1(K1 ∩ K2) =
C1(K1) ∩ C1(K2).
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By the duality, we have the following corollary:

Corollary 1. Let (U, C) be a covering approximation space. The following con-
ditions are equivalent: (1) C0 = U . (2)For each X, Y ⊆ U , C1(X ∪ Y ) =
C1(X) ∪ C1(Y ).

Theorem 5. Let (U, C) be a covering approximation space such that C0 = U .
Then for each X ⊆ U , C1(X) = C2(X), C1(X) = C2(X). This means that
approximation operators (I1) and (I2) are equivalent, when C0 = U .

Proof. By the duality, we need only to prove C1(X) = C2(X). If x ∈ C1(X), then
there exists K ∈ C such that K ⊆ X and x ∈ K, it follows that N(x) ⊆ K ⊆ X
and hence x ∈ C2(X). Conversely, if x ∈ C2(X), then N(x) ⊆ X , suppose that
x is a representative element of S, it follows that S = N(x) ⊆ X and hence
x ∈ C1(X) by x ∈ S.

3.2 On Approximation Operators (I2∼I5)

By Theorem 4.4 of [5], we have

Theorem 6. Let (U, C) be a covering approximation space and X, Y ⊆ U , then
(1) Ci(U) = U = Ci(U), Ci(∅) = ∅ = Ci(∅) for i = 2, 3, 4, 5. (2) Ci(X) ⊆
X ⊆ Ci(X) for i = 2, 4, 5. (3) X ⊆ Y ⇒ Ci(X) ⊆ Ci(Y ) ∧ Ci(X) ⊆ Ci(Y ) for
i = 2, 3, 4, 5. (4)Ci(X ∩ Y ) = Ci(X) ∩ Ci(Y ), Ci(X ∪ Y ) = Ci(X) ∪ Ci(Y ) for
i = 2, 4, 5.

Theorem 7. Let (U, C) be a covering approximation space and X ⊆ U , then
(1) Ci(Ci(X)) = Ci(X), Ci(Ci(X)) = Ci(X) for i = 2, 5. (2) X ⊆ C4(C4(X)),
C4(C4(X)) ⊆ X.

Proof. We only prove (1) for i = 2. By (2) of Theorem 6 , C2(C2(X)) ⊆ C2(X).
Conversely, suppose that x ∈ C2(X). It follows that N(x) ⊆ X . Consequently,
N(y) ⊆ N(x) ⊆ X for any y ∈ N(x), that is y ∈ C2(X) and hence N(x) ⊆
C2(X), x ∈ C2(C2(X)).

The following properties do not hold in general: (1) X ⊆ C2(C2(X)). (2) X ⊆
C5(C5(X)). (3) C4(C4(X)) = C4(X), C4(C4(X)) = C4(X). (4) C3(X) ⊆ X ⊆
C3(X).

Example 1. Let U = {x, y, z}, K1 = {x, y}, K2 = {y, z}, C = {K1, K2}. Clearly,
C is a covering of U , N(x) = {x, y},N(y) = {y}, N(z) = {y, z}. (1) For X = {x},
C4(X) = ∪{N(u); x ∈ N(u)} = N(x) = {x, y}, C4(C4(X)) = C4({x, y}) =
N(x) ∪ N(y) ∪ N(z) = U. (2) For X = {y}, C5(C5(X)) = C5(N(y)) = (∼
N(x)) ∩ (∼ N(z)) = ∅. C3(X) = {v ∈ U ; ∃u(u ∈ N(v) ∧ N(u) ⊆ X)} = U. (3)
For X = {z}, C2(C2(X)) = C2({z}) = ∅.
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4 Connections of Covering Approximation Operators

Theorem 8. Let (U, C) be a covering approximation space. For each X ⊆ U ,
(1) C4(X) ⊆ C2(X). (2) C2(X) ⊆ C3(X). (3) C4(X) ⊆ C5(X).

Proof. (1)Suppose that x ∈ C4(X). By the definition, for every u ∈ U such
that x ∈ N(u), N(u) ⊆ X followed. Consequently, N(x) ⊆ X and x ∈ C2(X).
(2)Suppose that x ∈ C2(X). It follows that N(x) ⊆ X . Hence x ∈ C3(X) by
x ∈ N(x). (3)can be proved similarly.

Corollary 2. Let (U, C) be a covering approximation space. For each X ⊆ U ,
(1) C4(X) ⊆ C2(X) ⊆ X ⊆ C2(X) ⊆ C4(X). (2) C4(X) ⊆ C5(X) ⊆ X ⊆
C5(X) ⊆ C4(X). (3)C4(X) ⊆ C2(X) ⊆ C3(X), C3(X) ⊆ C2(X) ⊆ C4(X).

Generally, we cannot substitute = for ⊆ due to the following example.

Example 2. Let U = {x, y, z}, K1 = {x, y}, K2 = {y, z}, C = {K1, K2}. Clearly,
C is a covering of U , N(x) = {x, y},N(y) = {y}, N(z) = {y, z}. For X = {y},
C4(X) = ∩{∼ N(u); N(u) � X} = (∼ N(x)) ∩ (∼ N(z)) = ∅, C2(X) =
{u; N(u) ⊆ X} = {y}. C3(X) = {v ∈ U ; ∃u(u ∈ N(v) ∧ N(u) ⊆ X)} = U.
For X = {x, z}, C4(X) = ∩{∼ N(u); N(u) � X} = (∼ N(x)) ∩ (∼ N(y)) ∩ (∼
N(z)) = ∅, C5(X) = ∩{∼ N(u); u ∈ (∼ X)} =∼ N(y) = {x, z}, C2(X) =
{u; N(u) ⊆ X} = ∅. C3(X) = {v ∈ U ; ∃u(u ∈ N(v) ∧ N(u) ⊆ X)} = ∅.

Lemma 2. Let (U, C) be a covering approximation space. Then, {N(x); x ∈ U}
forms a partition of U if and only if for each x, y ∈ U , x ∈ N(y) ⇒ y ∈ N(x).

Proof. Suppose that {N(x); x ∈ U} forms a partition of U . For each x, y ∈ U ,
if x ∈ N(y), then N(x) ⊆ N(y), and N(x) ∩ N(y) = N(x) �= ∅, it follows that
N(x) = N(y) and y ∈ N(y) = N(x). Conversely, suppose that x ∈ N(y) ⇒ y ∈
N(x) for each x, y ∈ U . If N(x) ∩ N(y) �= ∅, then there exist z ∈ U such that
z ∈ N(x) and z ∈ N(y), it follows that x ∈ N(z) and y ∈ N(z), consequently,
N(x) = N(z), N(y) = N(z), and N(x) = N(y). That is to say, {N(x); x ∈ U}
forms a partition of U .

Theorem 9. Let (U, C) be a covering approximation space. Then, {N(x); x ∈
U} forms a partition of U if and only if for each X ⊆ U , C4(X) = C2(X).

Proof. Suppose that {N(x); x ∈ U} forms a partition of U , X ⊆ U and x ∈ U .
If x ∈ C2(X), then N(x) ⊆ X . For each y ∈ U such that x ∈ N(y), y ∈ N(x)
followed and hence N(y) = N(x) ⊆ X . By the definition, x ∈ C4(X). This means
C4(X) ⊇ C2(X) and hence C4(X) = C2(X) by (1) of Theorem 8. Conversely,
suppose that C4(X) = C2(X) for each X ⊆ U . For each x, y ∈ U such that x ∈
N(y), by x ∈ C2(N(x)) = C4(N(x)) = {v ∈ U ; ∀u(v ∈ N(u) → N(u) ⊆ N(x))},
it follows that N(y) ⊆ N(x) and hence y ∈ N(x). By Lemma 2, {N(x); x ∈ U}
forms a partition of U .

Theorem 10. Let (U, C) be a covering approximation space. Then, {N(x); x ∈
U} forms a partition of U if and only if for each X ⊆ U , C4(X) = C5(X).
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Proof. Suppose that {N(x); x ∈ U} forms a partition of U , X ⊆ U and x ∈ U . If
x ∈ C4(X) = ∪{N(y); N(y)∩X �= ∅}, then there exists y ∈ U such that x ∈ N(y)
and N(y) ∩ X �= ∅. Let z ∈ N(y) ∩ X , it follows that z ∈ X and z ∈ N(y).
Consequently, y ∈ N(z), N(y) ⊆ N(z) and x ∈ N(z), that is x ∈ ∪{N(u); u ∈
X} = C5(X), and C4(X) ⊆ C5(X). By (2) of Theorem 8, C4(X) = C5(X).
Conversely, suppose that for each X ⊆ U , C4(X) = C5(X). For each x, y ∈ U
such that x ∈ N(y), by y ∈ N(y), it follows that y ∈ ∪{N(z); N(z)∩{x} �= ∅} =
C4({x}), and hence y ∈ C5({x}) = N(x). This means {N(x); x ∈ U} forms a
partition of U .

Theorem 11. Let (U, C) be a covering approximation space, then (1) {N(x); x
∈ U} forms a partition of U if and only if for each X ⊆ U , C4(X) = C3(X).
(2) {N(x); x ∈ U} forms a partition of U if and only if for each X ⊆ U ,
C2(X) = C3(X). (3) {N(x); x ∈ U} forms a partition of U if and only if for
each X ⊆ U , C5(X) = C3(X). (4) {N(x); x ∈ U} forms a partition of U if and
only if for each X ⊆ U , C2(X) = C5(X).

By Theorem 9, 10 and 11, if any two pairs of operators are identical, then they
are all identical.

5 Conclusions

In this paper, five pairs of dual covering approximation operators were defined
and their properties have been discussed. Some equivalent conditions about these
operators were given. For a covering approximation space (U, C), define a binary
relation R on U as follows: for each x, y ∈ U , (x, y) ∈ R if and only if ∀K ∈ C(x ∈
K → y ∈ K). It is trivial to verify that the successor of an element with respect to
R coincides with its neighborhood, that is Rs(x) = {y ∈ U ; (x, y) ∈ R} = N(x).
With this definition, binary relation based covering rough set can be constructed.
We will discuss this problem in our future work.
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