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Abstract. Prediction of MHC (Major Histocompatibility Complex) binding 
peptides is prerequisite for understanding the specificity of T-cell mediated 
immunity. Most prediction methods hardly acquire understandable knowledge. 
However, comprehensibility is one of the important requirements of reliable 
prediction systems of MHC binding peptides. Thereupon, SRIA (Sequential 
Rule Induction Algorithm) based on rough set was proposed to acquire under-
standable rules. SRIA comprises CARIE (Complete Information-Entropy-based 
Attribute Reduction algorithm) and ROAVRA (Renovated Orderly Attribute 
Value Reduction algorithm). In an application example, SRIA, CRIA (Conven-
tional Rule Induction Algorithm) and BPNN (Back Propagation Neural Net-
works) were applied to predict the peptides that bind to HLA-DR4(B1*0401). 
The results show the rules generated with SRIA are better than those with CRIA 
in prediction performance. Meanwhile, SRIA, which is comparable with BPNN 
in prediction accuracy, is superior to BPNN in understandability. 

1   Introduction 

T lymphocytes play a key role in the induction and regulation of immune responses 
and in the execution of immunological effector functions [1]. Binding of peptides to 
MHC (Major Histocompatibility Complex) molecules conveys critical information 
about the cellular milieu to immune system T cells. Different MHC molecules bind 
distinct sets of peptides, and only one in 100 to 200 potential binders actually binds to 
a certain MHC molecules. And it is difficult to obtain sufficient experimental binding 
data for each human MHC molecule. Therefore, computational modeling of predict-
ing which peptides can bind to a specific MHC molecule is necessary for understand-
ing the specificity of T-cell mediated immunity and identifying candidates for the 
design of vaccines.  

Recently, many methods have been introduced to predict MHC binding peptides. 
They could be classified as 4 categories: 1) Prediction method based on motif [2]; 2) 
Prediction method based on quantitative matrices [3]; 3) Prediction method based on 
structure [4]; 4) Prediction method based on machine learning [5]. Because the meth-
ods in category 4 consider the interactive effect among amino acids in all positions of 
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the peptide, their prediction performance has been improved a lot. The involved ma-
chine learning approaches are mainly from ANNs (artificial neural networks) and 
HMMs (Hidden Markov Models). Brusic et al. proposed PERUN method, which 
combines the expert knowledge of primary anchor positions with an EA (evolutionary 
algorithm) and ANNs, for prediction of peptides binding to HLA-DRB1*0401 [5]. 

Category 4 has better prediction performance than other categories when much 
structure information cannot be obtained since category 4 owns the strongest non-
linearity processing capability and generalization ability and self-organization spe-
cialty among the four categories. However, category 4 has been mainly focused on the 
application of ANNs so far. Meanwhile, it is very hard to understand the weights in 
ANNs and it is very difficult to provide the rules for the experts to review and modify 
so as to aid them to understand the reasoning processes in another way. 

Rough set theory (RS), which was advocated by Pawlak Z. [6] in 1982, gives an 
approach to automatic rule acquisition, i.e., one might use RS to find the rules de-
scribing dependencies of attributes in database-like information systems, such as a 
decision table. The basic idea of RS used for rule acquisition is to derive the corre-
sponding decision or classification rules through data reduction (attribute reduction 
and attribution value reduction) in a decision table under the condition of keeping the 
discernibility unchanged. 

The rest of the paper is organized as follows: Section 2 proposes the methodology 
for prediction of MHC II-binding peptides, which consists of two subparts: peptide 
pre-processing and the SRIA (Sequential Rule Induction Algorithm) algorithm based 
on rough set theory. Section 3 describes and discusses the comparable experiment 
results of various algorithms. Section 4 summarizes the paper. 

2   Methodology 

The process of prediction of MHC II-binding peptides is composed of two phases: 1) 
an immunological question is converted into a computational problem with peptide 
pre-processing, 2) SRIA, which consists of Complete Information-Entropy-based 
Attribute Reduction sub-algorithm (CARIE) and Renovated Orderly Attribute Value 
Reduction sub-algorithm (ROAVRA), is advocated to acquire sequential rules from 
pre-processed peptides. 

2.1   Peptide Pre-processing 

MHC class II molecules bind peptides with a core region of 13 amino acids contain-
ing a primary anchor residue. Analysis of binding motifs suggests that only a core of 
nine amino acids within a peptide is essential for peptide/MHC binding [7]. It was 
found that certain peptide residues in anchor positions are highly conserved, and con-
tributed significantly to the binding by their optimal fit to residues in the MHC bind-
ing groove [8]. Moreover, evidence further shows that MHC class II-binding peptides 
contain a single primary anchor, which is necessary for binding, and several secon-
dary anchors that affect binding [5,7]. Thereupon, all peptides with the variable 
lengths could be reduced to putative binding nonamer cores (core sequences of nine 
amino acids) or non-binding nonamers.  
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In terms of domain knowledge about primary anchor positions in reported binding 
motifs [7], position one (1) in each nonamer corresponds to the primary anchor. Each 
non-binder is resolved into as many putative non-binder nonamers as its first position 
is occupied by primary anchor residue. And for binders, after the position one (1) as 
primary anchor residue is fixed, each binder yields many putative nonamer subse-
quences. Among these subsequences, the highest scoring nonamer subsequence 
scored by the optimized alignment matrix is regarded as pre-processed result of the 
corresponding binding peptide. Here, just like the description in the paper [5], an EA 
is utilized to obtain the optimized alignment matrix. In this way, the problem of pre-
dicting MHC class II-binding peptides is converted into the classification problem. 
The detailed description of peptide pre-processing is shown in paper [5]. 

With the pre-processed peptides (nonamers), we can form a decision table where 
every object represents a nonamer and the numbers of decision attributes and condi-
tion attributes respectively are one and 180 (nine positions by 20 possible amino acids 
at each position, i.e., amino acids are represented as binary strings of length 20, of 19 
zeros and a unique position set to one). The values of condition attributes are }1,0{  

and the values of the decision attribute are }1,0{ , which corresponds to peptide 

classes (0: non-binders; 1: binders). 

2.2   Sequential Rule Induction Algorithm 

Complete Information-Entropy-Based Attribute Reduction Sub-algorithm 
Here, we proposed CARIE. It can acquire an attribute reduct only comprising the es-
sential condition attributes with higher importance measured by the information en-
tropy, while the algorithm in [9] could obtain an attribute subset with redundancy.  

Given a decision table T=(U, A, C, D) and a partition of U with classes Xi, 
ni ≤≤1 . Here, C, D ⊂ A be two subsets of attributes A, called condition and decision 

attributes respectively. We define the entropy of attributes B as in formula (1) [9]:  
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where ||/||)|( iijij XXYXYp I= , ni ≤≤1 , mj ≤≤1 .  

The relative importance degree of an attribute a for a condition attribute set B 
( CB ⊆ ) is defined as in formula (3): 

}){|()|(),,( aBDHBDHDBaSgf U−=  (3) 
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For a given decision table T=(U, A, C, D), the detailed steps of the CARIE sub-
algorithm are as follows: 

(1)   Calculate the conditional entropy )|( CDH . 

(2)   Compute the RDCT, which was detailed in paper [10]. Here, assume the 
RDCT be DD, and let R be an attribute reduct of the decision table T. 

(3)   All of the columns of DD are summed transversely and the result is CC. 
(4)   Among the rows of DD, find out the rows of },,,{ 21 krrr L  corresponding to 

the rows of the locations of the minimal elements among CC. 
(5)   If the minimal element among CC is one, find out the columns 

},,,{
21 krrr

ccc L  where the element 1s in the rows },,,{ 21 krrr L  are located 

and initialize R be the attribute set responding to the columns 

},,,{
21 krrr

ccc L . Otherwise, initialize R be empty.  

(6)   Compute the conditional entropy )|( RDH . Here, if R is empty, 

)()|( DHRDH = . 

(7)   Judge if )|( RDH is equal to )|( CDH ; if not, repeat the steps i~iii till 

)|()|( CDHRDH = . 

i. ;RCE −=   
ii. For every attribute a )( Ea ∈ , compute the relative importance degree of 

a for R ),,( DRaSGF  according to formula (3). 

iii. Find out maximum ),,( DRaSGF , let }{aRR U= . 

(8)    Call the RJ algorithm in paper [10], and decide whether R is a reduct or not. 
(9)    If so, the attribute reduct is R. STOP. 

(10)    If not, obtain the possibly redundant attributes with RJ algorithm, and delete  
the condition attributes with the least ),,( DRaSGF  among them one by one 

till R is an attribute reduct. STOP. 

Here, RJ algorithm is the complete algorithm for judgment of attribute reduct in paper 
[10], which can be used to completely and correctly judge whether an attribute subset 
is an attribute reduct or not. Paper [10] gives the detailed steps and proof about RJ 
algorithm. 

Renovated Orderly Attribute Value Reduction Sub-algorithm 
In order to more efficiently acquire the rule set with the stronger generalization capa-
bility, we advocate ROAVRA, which combines OAVRA [10] with domain knowl-
edge of the primary anchor positions.  

In ROAVRA, firstly, one object in a decision table is taken out in a certain se-
quence one at a time, and the current object’s attribute value is classified. Secondly, a 
rule is generated according to the classification result. Finally the objects that are 
consistent with the current rule in the decision table are deleted. The above steps re-
peat until the decision table is empty. Thus, compared with OAVRA, ROAVRA need 
not classify the attribute values of the objects consistent with obtained rules so that it 
can reduce the scanning costs to a great extent. 

The description of ROAVRA is as follows: 
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(1) Select an object in the decision table in a certain sequence one at a time. 
Here, we adopted a random sequence. 

(2) For the selected object, classify the attribute value as three classes. 
(3) According to the classification results for the selected object, judge whether 

the first-class attribute values are enough to constitute a correct rule. If not, one at a 
time precedently choose the second-class attribute value correspond-ing to an amino 
acid on the primary anchor position. If all attribute values of the second class have 
used to compose a rule and a correct rule can’t be formed yet, one at a time prece-
dently choose the attribute value corresponding to an amino acid on the primary an-
chor position among the third class until a correct rule can be generated. Save the 
obtained rule in the rule set. 

(4) Delete all the objects that are consistent with the current rule in the decision 
table. The rest of the decision table is saved as the decision table. 

(5) Repeat step (1) – (4) until the decision table is empty. STOP. 

The obtained rules are sequential and have the priority order, i.e. the rule generated 
earlier has the higher priority order. When the rule set is used to make a decision for 
an unseen instance, the rules must be used in the same sequence as they were pro-
duced. If a rule is qualified to making a decision, the others with the lower priority 
order than its need not to be used. 

3   Experiment Results and Discussions 

The data set is composed of 650 peptides to bind or not bind to HLA-DR4 (B1*0401), 
which is provided by Dr. Vladimir Brusic. The lengths of peptides are variable from 9 
to 27 amino acids. With the help of SYFPEITHI software [3], the primary anchor of 
peptides binding to HLA-DR(B1*0401) can be obtained. The alignment matrix [5] is 
used to score each nonamer within the initial peptide after fixing the first position into 
any one among F, Y, W, I, L, V or M. The highest scoring nonamer sequence is seen 
as pre-processed results of the corresponding peptide.  

Here, 915 pre-processed nonamers are obtained. There are some nonamers with 
unknown affinity and some inconsistence nonamers (i.e. the same nonamers have 
different binding affinity) among the 915 nonamers. After removing the inconsistent 
and unknown nonamers from 915 pre-processed peptides, we have 853 nonamers 
remained to analyze. The decision table is composed of 853 nonamers (553 non-
binders, 300 binders). The numbers of condition attributes and decision attributes are 
180 and one respectively. 

In the experiment, the decision table is divided into two parts by a 4-fold stratified 
cross-validation sample method. The following experimentation consists of eight 4-
fold stratified cross-validations. 

CARIE sub-algorithm is called to compute an attribute reduct. According to the re-
sulting attribution reduct, ROAVRA is used to acquire sequential rules. The rules 
have been examined and the results are shown in Table 1.  

For comparison purposes, two different algorithms are utilized to process the same 
decision table. The first is CRIA consisting of attribute reduction sub-algorithm [11] 
and attribute value reduction sub-algorithm [12]. The second is BPNN. 
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Table 1. Test Results with SRIA 

No. of Test sensitivity (%) specificity (%) precision (%) accuracy (%) 
1 81.333 88.788 81.879 86.166 
2 81.000 90.054 83.219 86.870 
3 81.000 88.969 82.373 86.166 
4 80.667 89.693 81.757 86.518 
5 79.667 87.884 81.293 84.994 
6 78.667 88.427 81.661 84.994 
7 78.667 90.235 82.517 86.166 
8 78.667 90.958 83.688 86.635 
Average (%) 79.959 89.376 82.298 86.064 

Table 2. Test Results with CRIA 

No. of Test sensitivity (%) specificity (%) precision (%) accuracy (%) 
1 62.333 76.130 83.111 71.278 
2 63.667 76.492 80.591 71.981 
3 64.000 79.566 82.759 74.091 
4 64.667 76.673 79.835 72.450 
5 65.333 76.673 86.344 72.685 
6 65.667 74.503 82.083 71.395 
7 65.667 75.226 82.427 71.864 
8 65.667 74.684 78.800 71.512 
Average (%) 64.625 76.243 81.994 72.157 

Table 3. Test Results with BPNN 

No. of Test sensitivity (%) specificity (%) precision (%) accuracy (%) 
1 79.667 91.682 83.860 87.456 
2 84.667 91.501 84.385 89.097 
3 83.000 91.139 83.557 88.277 
4 78.333 90.958 82.456 86.518 
5 77.000 92.224 84.307 86.870 
6 78.667 89.512 80.272 85.698 
7 80.333 92.405 85.159 88.159 
8 80.333 92.405 85.159 88.159 
Average (%) 80.250 91.478 83.644 87.530 

With the help of CRIA, the rules have been acquired with the training part and ex-
amined with the test part. The results are shown in Table 2. 

The structure of ANNs is 180-4-1 style, i.e., the input layer and hidden layer con-
sist of 180 nodes and 4 nodes respectively, and output layer with a single node. The 
learning procedure is error back-propagation, with a sigmoid activation function. 
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Values for learning rate and momentum are 0.2 and 0.9 respectively. The prediction 
performance of ANNs is shown in Table 3. 

From comparisons of the test results listed in table 1, 2 and 3, we can see that the 
sensitivity, specificity, precision and accuracy with SRIA are much higher than those 
with CRIA, and very close to those with BPNN. This suggests that SRIA is much 
better than CRIA in the generalization capability of induced rules though the both 
algorithms can obtain the plain and understandable rules. In addition, compared with 
BPNN, SRIA can provide the comprehensible rules that can help experts to under-
stand the basis of immunity. 

Table 4 shows a part of rules generated from SRIA in the experimentation. 

Table 4. A part of rules generated with SRIA 

Rule 
No. Antecedents 

Conse-
quent 

1 

1L(1)&2A(0)&2L(0)&2R(0)&2T(0)&3Q(1)&4M(0)&4Q(0)&4V(0)&5A
(0)&5L(0)&6A(0)&6S(0)&6T(0)&7L(0)&7P(0)&8L(0)&8R(0)&8S(0)&
9A(0)&9G(0)&9S(0)&9V(0)&9W(0) 0 

2 
1F(1)&2A(0)&2R(0)&4M(0)&4Q(0)&4V(0)&5A(0)&5L(0)&6A(0)&6T
(0)&7L(1)&8R(0)&9A(0)&9G(0)&9S(0)&9V(0) 0 

3 2R(0)&6A(1)&8R(0)&9V(1) 1 

Here, we can write the third rule in table 4 as  “2R(0)&6A(1)&8R(0)&9V(1)  1”, 
i.e., if amino acid code “R” does not appear in the second position of a nonamer and 
“A” appears in the sixth position and “R” does not appear in the eighth position and 
“V” appears in the ninth position, the nonamer is classified into “binders”. 

4   Conclusions 

In order to minimize the number of peptides required to be synthesized and assayed 
and to advance the understanding for the immune response, people have presented 
many computational models mainly based on ANNs to predict which peptides can 
bind to a specific MHC molecule. Although the models work well in prediction per-
formance, knowledge existing in the models is very hard to understand because of the 
inherent “black-box” nature of ANNs and the difficulty of extraction for the symbolic 
rules from trained ANNs. In fact, comprehensibility is one of the very important  
requirements of reliable prediction systems of MHC binding peptides. 

Thus, SRIA based on RS theory is proposed to acquire the plain and understand-
able rules. The CARIE algorithm, which is adopted as a sub-algorithm of SRIA, could 
compute an attribute reduct only comprising essential and relatively important condi-
tion attributes in a decision table composed of 180 condition attributes. The 
ROAVRA in SRIA is used to extract sequential rules from the reduced decision table 
based on the attribute reduct. Experimental results suggest SRIA is comparable to the 
conventional computational model based on BPNN and is obviously superior to CRIA 
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in prediction performance. Moreover, the SRIA algorithm can extract plain rules that 
help experts to understand the basis of immunity while BPNN cannot. 
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