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Abstract. Since Pawlak introduced rough set theory in 1982 [1] it has
gained increasing attention. Recently several rough clustering algorithms
have been suggested and successfully applied to real data. Switching re-
gression is closely related to clustering. The main difference is that the
distance of the data objects to regression functions has to be minimized
in contrast to the minimization of the distance of the data objects to clus-
ter representatives in k-means and k-medoids. Therefore we will intro-
duce rough switching regression algorithms which utilizes the concepts
of rough clustering algorithms as introduced by Lingras at al. [2] and
Peters [3].
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1 Introduction

The main objective of cluster analysis is to group similar objects together into
one cluster while dissimilar objects should be separated by putting them in
different clusters.

Besides many classic approaches [4,5] cluster algorithms that utilize soft com-
puting concepts have been suggested, e.g. Bezdek’s fuzzy k-means [6] or Kr-
ishnapuram and Keller’s possibilistic approach [7]. Recently also rough cluster
algorithms have gained increasing attention and have been successfully applied
to real life data [2,8,9,10,11,12,3,13,14].

Switching regression models [15,16] are closely related to cluster algorithms.
However, while cluster algorithms, like the k-means, minimize the cumulated
distance between the means and the associated data objects the objective of
switching regression analysis is to minimize the cumulated distance between
the K regression functions Yk (k = 1, ..., K) and their associated data objects
(Figure 1).

The objective of the paper is to transfer the concepts of rough clustering
algorithms to switching regression models and introduce rough versions. We
also briefly specify possible areas of applications.

The paper is structured as follows. In the following Section we give a short
overview on switching regression models and rough cluster algorithms. In Section
3 we introduce rough switching regression models. In the last Section we give a
brief discussion and conclusion.
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2 Fundamentals: Switching Regression and Rough
Clustering

2.1 Switching Regression Models

Switching regression models were introduced in the fifties of the last century [15].
In the meantime these classic, probabilistic based models have been accompanied
by switching regression models that utilize soft computing concepts like fuzzy
set theory.

Classic Switching Regression Models. Let us consider a simple data con-
stellation as depicted in Figure 1. Obviously two linear regression functions (Y1
and Y2) should adequately represent these data:

Y1(x) = a10 + a11x and Y2(x) = a20 + a21x (1)

Fig. 1. Switching Regression Analysis

The challenge is to determine which of the two regression functions should
represent a certain observation yi:

yi = ̂Y1(xi) = a10 + a11xi + μ1i or yi = ̂Y2(xi) = a20 + a21xi + μ2i

with μ1i and μ2i error terms.
(2)

To solve this problem in switching regression analysis - the estimation of the
parameters a - one can apply Goldfeld and Quandt’s D-method [17].
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Fuzzy Switching Regression Models. Besides classic switching regression
models Hathaway and Bezdek [18] suggested a fuzzy switching regression model
which is closely related to Bezdek’s fuzzy k-means [6]. Jajuga [19] also proposed
a linear switching regression model that consists of a two step process: (1) the
data are clustered with the fuzzy k-means, (2) the obtained membership degrees
are used as weights in weighted regression analysis.

2.2 Rough Clustering Algorithms

Lingras’ Rough k-Means. Lingras et al. rough clustering algorithm belongs
to the branch of rough set theory with a reduced set of properties [20]:

1. A data object belongs to no or one lower approximation.
2. If a data object is no member of any lower approximation it is member of

two or more upper approximations.
3. A lower approximation is a subset of its underlying upper approximation.

The part of an upper approximation that is not covered by a lower approxi-
mation is called boundary area. The means are computed as weighted sums of
the data objects Xn(n = 1, ..., N):

mk =
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⎪
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|Ck| otherwise
(3)

where |Ck| is the number of objects in lower approximation and |CB
k | = |Ck−Ck|

(Ck the upper approximation) in the boundary area of cluster k (k = 1, ..., K).
Then rough cluster algorithm goes as follows:

1. Define the initial parameters: the weights wL and wB , the number of clusters
K and a threshold ε.

2. Randomly assign the data objects to one lower approximation (and per def-
initionem to the corresponding upper approximation).

3. Calculate the means according to Eq (3).
4. For each data object, determine its closest mean. If other means are not

reasonably farer away as the closest mean (defined by ε) assign the data
object to the upper approximations of these close clusters. Otherwise assign
the data object to the lower and the corresponding upper approximation of
the cluster of its closest mean (see Figure 2).

5. Check convergence. If converged: STOP otherwise continue with STEP 3.

Extensions and Variations of the Rough k-Means. Lingras rough k-means
was refined and extended by an evolutionary component. Peters [12,3] presented
a refined version of the rough k-means which improves its performance in the
presence of outliers, its compliance to the classic k-means, its numerical stability
besides others. To initialize the rough k-means one has to select the weights
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Fig. 2. Lingras’ Rough k-Means

of the lower approximation and the boundary area as well as the number of
clusters. Mitra [11] argued that a good initial setting of these parameters is
one of the main challenges in rough set clustering. Therefore she suggested an
evolutionary version of Lingras rough k-means which automates the selection of
the initial parameters. And, recently Mitra et al. [10] introduced a collaborative
rough-fuzzy k-means.

3 Rough Switching Regression Models

The new rough switching regression models utilize the concepts of rough clus-
tering as suggested by Lingras [8] and Peters [3]. First let us define some terms
and abbreviations:

– Data set: Sn = (yn, xn) = (yn, x0n, ..., xMn) for the nth observation and
S = (S1, ..., SN )T with n = 1, ..., N . The variable yn is endogenous while
xn = (x0n, ..., xMn) with m = 0, ..., M (features) and x0n := 1 repre-
sent the exogenous variables.

– Yk the kth function: ŷkn = Yk(xn) =
∑M

m=0 akmxmn for k = 1, ..., K.
– Approximations: Yk is the lower approximation corresponding to the re-

gression function Yk, Yk the upper approximation and Y B
k = Yk − Yk the

boundary area. This implies Yk ⊆ Yk.
– The distance in y between the data object Sn and the regression function

Yk is given by d(Sn, Yk) = |yn − ŷkn|.

3.1 A First Rough Switching Regression Algorithm Based on
Lingras’ k-Means

First we present a rough switching regression model based on Lingras’ k-means.

– Step 0: Initialization
(i) Determine the number K of regression functions.
(ii) Define the weights for the lower approximations and the boundary areas:

wL and wB with wL + wB = 1.
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(iii) Randomly assign each data object Sn to one lower approximation Yk of
the corresponding regression function Yk.

– Step 1: Calculation of the New Regression Coefficients
The new regression coefficients akm are calculated using weighted regression
analysis with weights defined as follows:

wkn =

⎧

⎪

⎨

⎪

⎩

wB for Sn ∈ Y B
k

wL for Sn ∈ Yk

0 else
(4)

– Step 2: Assignment of the Data Objects to the Approximations
(i) For an object Sn determine its closest regression function Yh (Figure 3):

ymin
hn = d(Sn, Yh) = min

k
d(Sn, Yk). (5)

Assign Sn to the upper approximation of the function Yh: Sn ∈ Yh.
(ii) Determine the regression functions Yt that are also close to Sn. They are

not farther away from Sn than d(Sn, Yh) + ε with ε a given threshold:

T = {t : d(Sn, Yk) − d(Sn, Yh) ≤ ε ∧ h �= k}. (6)

• If T �= ∅ (Sn is also close to at least one other regression function
Yt besides Yh)
Then Sn ∈ Yt, ∀t ∈ T .

• Else Sn ∈ Yh.
– Step 3: Checking the Convergence

The algorithms has converged when the assignments of all data objects to
the approximations remain unchanged in the latest iteration i in comparison
to iteration i − 1.

• If the algorithm has not converged Then continue with Step 1.
• Else STOP.

However, the algorithm has similar weaknesses as Lingras’ k-means (see Pe-
ters [3] for a detailed discussion). E.g., please note that the algorithm does not
enforce that each regression function has two or more data objects in its lower
approximation.

3.2 A Rough Switching Regression Algorithm Based on Peters
Rough k-Means

– Step 0: Initialization
(i) Determine the number K of the regression functions which is limited by:

2 ≤ K ≤ N
2 since each regression function should be defined by at least

two data points.
(ii) Randomly assign each data object Sn to one and only one lower approx-

imation Yk of the corresponding regression function Yk so that each re-
gression function has at least two data objects in its lower approximation.
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Fig. 3. Assignment of the Objects to the Approximations

– Step 1: Calculation of the New Regression Coefficients
The new regression coefficients akm are calculated using weighted regression
analysis (see Eq 4). The weights are defined as follows:
(i) A data object Sn in lower approximations of a regression functions k is

weighted by 1: wL = 1.
(ii) A data object Sn that is member of b boundary areas is weighted by

wB = 1
b .

Alternatively the weights of the lower approximation wL and the boundary
area wB can be determined by the user.

– Step 2: Assignment of the Data Objects to the Approximations

(i) Assign the data object that best represents a regression function to its
lower and upper approximation.
(a) Find the minimal distance between all regression functions Yk and

all data objects Sn and assign this data object Sl to lower and upper
approximation of the regression function Yh:

d(Sl, Yh) = min
n,k

d(Sn, Yk) ⇒ Sl ∈ Yk ∧ Sl ∈ Yk. (7)

(b) Exclude Sl. If this is the second data object that has been assigned
to the regression function Yh exclude Yh also. If regression functions
are left - so far, in Step (a) no data object has been assigned to them
- go back to Step (a). Otherwise continue with Step (ii).



298 G. Peters

(ii) For each remaining data points S′
n′ (n′ = 1, ..., N ′, with N ′ = N − 2K)

determine its closest regression function Yh:

ymin
hn′ = d(S′

n′ , Yh) = min
k

d(S′
n′ , Yk). (8)

Assign S′
n′ to the upper approximation of the function h: S′

n′ ∈ Yh.
(iii) Determine the regression functions Yt that are also close to S′

n′ . Take the
relative distance as defined above where ζ is a given relative threshold:

T ′ =
{

t :
d(S′

n′ , Yk)
d(S′

n′ , Yh)
≤ ζ ∧ h �= k

}

. (9)

• If T ′ �= ∅ (S′
n′ is also close to at least one other regression function

Yt besides Yh)
Then S′

n′ ∈ Yt, ∀t ∈ T ′.
• Else S′

n′ ∈ Yh.
– Step 3: Checking the Convergence

The algorithms has converged when the assignments of all data objects to
the approximations remain unchanged in the latest iteration i in comparison
to iteration i − 1.

• If the algorithm has not converged Then continue with Step 1.
• Else STOP.

4 Discussion and Conclusion

In the paper we proposed rough switching regression models which are based on
rough clustering. While classic switching regression models have been extensively
applied in economics (e.g. [21,22]) applications to bioinformatics can hardly be
found. However Qin et al. [23] suggested the related CORM method (Clustering
of Regression Models method) and applied it to gene expression data.

Therefore future work can go in different directions. First, the rough switching
regression model should be applied to real life data and compared to classic
models, especially in the field of economics. Second, the potential of switching
regression (classic, fuzzy, rough) for bioinformatics could be further evaluated.
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