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Abstract. A new evolution strategy based on clustering and local search
scheme is proposed for some kind of large-scale travelling salesman prob-
lems in this paper. First, the problem is divided into several subproblems
with smaller sizes by clustering, then the optimal or the approximate op-
timal tour for each subproblem is searched by a local search technique.
Moreover, these tours obtained for the subproblems are properly con-
nected to form a feasible tour based on a specifically-designed connec-
tion scheme. Furthermore, a new mutation operator is designed and used
to improve each connected feasible tour further. The global convergence
of the proposed algorithm is proved. At last, the simulations are made
for several problems and the results indicate the proposed algorithm is
effective.
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1 Introduction

The traveling salesman problem (TSP) is one of the most famous combinatorial
optimization problems. Given n cities and a distance matrix D = [dij ], where
dij is the distance between city i and city j, TSP requires finding a tour ( i.e.,
a permutation of cities) through all of the cities, visiting each exactly once,
and returning to the originating city such that the total distance traveled is
minimized.

In this paper we consider the two-dimensional (2-D) Euclidean TSP, in which
the cities lie in R2 and the distance between two cities is calculated by Euclidean
distance. The 2-D Euclidean TSP is known to be NP -hard ([1],[2],[3]). It was
proven that there is no polynomial-time approximation scheme for TSP unless
P = NP ([4]). However, the TSP and its variants have a diverse practical ap-
plications. More than 1700 related papers have been published during the past
five years (see the INSPEC database: http://www.inspec.org). They are one of
the most actively studied topics in the evolutionary computation community,
too. Many papers have published in this field (e.g., [5]∼ [10]). One of the most
successful evolutionary algorithms (EAs) for TSP is the hybrid EAs (or memetic
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EAs)that incorporate local search scheme into EAs (e.g., [7],[8],[9]). To the best
of our knowledge, Freisleben and Merz’s hybrid EA ([8],[9]) with powerful Lin-
Kernighhan (LK) local search algorithm ([10]) is in practice one of the best EAs
for TSP among the published algorithms. However, LK local search algorithm
needs a lot of computation and can not be applied to general large scale prob-
lems. For some special kind of TSP problems, it is possible to design effective
evolutionary algorithms.

In this paper, we focus our attention on some special TSP problems, i.e.,
the problems in which the cities can be classified into several groups, and in
each group the cities crowd together, and try to design an effective evolutionary
algorithm. To do so, we first divided cities into several groups by using clustering
technique. Second, we look for the optimal or approximate optimal tour for each
group by a local search technique. Third, we connect the tours found for these
groups to form a feasible tour based on a specifically-designed connection scheme.
Fourth, we design a new mutation operator and use it to improve the feasible
tour. Based on these, a novel evolution strategy based on clustering and local
search is proposed for this kind of TSP problems. At last, the simulations are
made and the results demonstarte the effectiveness of the proposed algorithm.

2 Classification of All Cities into Several Groups by
Clustering

For traveling salesman problems in which the cities can be classified into several
groups, and in each group the cities crowd together, it seems that the salesman
should go through all cities in best way in one group, then move to some other
group and also go through all cities in this group in optimal way. Repeat this
process until he goes through all groups and returns the starting city. Based on
this idea, we have to classify all cities into several groups. In this paper we use
the following clustering algorithm: K-mean clustering ([11]).

Algorithm 1

1. Randomly choose k cities as the initial centers of k clusters, where k is a
parameter. Let t = 0.

2. Calculate the distance between each city and each center of the clusters.
Classify the city into a cluster in which the distance between the city and
the center of the cluster is the shortest.

3. Re-compute the center for each cluster. Let t = t + 1.
4. If the center for every cluster is the same as the center for this cluster in

previous iteration t − 1, then stop; otherwise, go to step 2.

3 Local Search

For each cluster, a local search algorithm, 2−opt algorithm, is used to search high
quality tour. To explain the idea of 2 − opt algorithm clearly, we first introduce
the following definitions.
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Definition 1. For a given tour P , if λ links (edges) of tour P are replaced by
other λ links and the resulted graph is also a feasible tour, then the operation
of exchanging λ links is called a λ-exchange, and the resulted tour is called a
λ-exchange tour.

Definition 2. A tour is said to be λ-optimal (or simply λ−opt) if it is impossible
to obtain a shorter tour by replacing any λ of its links (edges) by any other set
of λ links.

The following is a local search algorithm for each cluster of cities.

Algorithm 2 (Local search heuristics based on λ-exchange)

1. Set Lopt = M , where M is a large enough positive number and Popt = ∅.
Let t1 = 0.

2. Arbitrarily take a feasible tour P .
3. Check whether there is a λ-exchange tour Pλ−ex which is better than current

tour P . If there is such a tour, let P = Pλ−ex. Go to step 3; otherwise, go
to step 4.

4. Tour P is the λ-optimal tour for the initial tour, let P1 = P . Let L1 is the
length of tour P1.

5. If t1 < 2, go to step 6; otherwise, Popt is an approximate optimal tour.
6. If L1 < Lopt, let Lopt = L1, Popt = P1, go to step 2; otherwise, let t1 = t1+1,

go to step 2.

In our simulation we take λ = 2. Note that for a given tour there are total
n(n−3)

2 λ-exchange tours.

4 Scheme for Connecting Clusters

In the previous two sections, all cities of a special kind of TSP problems are
divided into several clusters, and for the cities contained in each cluster an
optimal or approximate optimal tour is found. To get a high quality tour for
all cities it is necessary to design an effective connection scheme to connect all
these tours. Our motivation is that the connection is made in such a way that
the connected tour is as short as possible. The detail is as follows.

Algorithm 3 (Connection Scheme)

1. Let k denotes the number of clusters and let �L = 2.
2. Choose two clusters whose centers are the nearest. Their corresponding tours

are denoted as T 1 and T 2, respectively.
3. Choose an edge A1B1 ∈ T 1 and an edge A2B2 ∈ T 2 satisfying

|A1A2|+|B1B2|−|A1B1|−|A2B2| = min{|C1C2|+|D1D2|−|C1D1|−|C2D2|},

where edge C1D1 ∈ T 1 and edge C2D2 ∈ T 2, respectively, and |A1A2|
denotes the length of edge A1A2.
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4. Connect A1 and A2 (i.e., add edge A1A2), and B1 and B2. Remove edges
A1B1 and A2B2, respectively. Then a new tour T through all cities of two
chosen clusters is formed by connecting T 1 and T 2, and a new cluster is
formed by the union of these two chosen clusters.

5. If �L < k, then let �L = �L + 1, go to step 2; otherwise tour T is a feasible tour
through all cities. Stop.

5 Mutation Operator

To further improve the quality of the tours obtained by section 4, we design a
mutation operator and use it to each tour obtained. The detail is as follows.

Algorithm 4 (Mutation Operator)

1. For each tour i1i2 · · · in obtained by section 4, where i1i2 · · · in is a permu-
tation of 1, 2, · · · , n.

2. For q = 1, 2, · · · , n, randomly change iq into any element, denoted by jq, in
{1, 2, · · · , n}/{j1, j2, · · · , jq−1} with equal probability, where

{1, 2, · · · , n}/{j1, j2, · · · , jq−1}

represents a set whose elements belong to set {1, 2, · · · , n} but do not to set
{j1, j2, · · · , jq−1}.

3. Tour j1j2 · · · jn is the offspring of tour i1i2 · · · in.

It can be seen from this mutation operator that, for any feasible tours i1i2 · · · in
and j1j2 · · · jn, the probability of generating j1j2 · · · jn via i1i2 · · · in by mutation
operator is 1

n > 0.

6 The Proposed Algorithm

Based on algorithms in the previous four sections, the proposed evolution strat-
egy can be described as follows:

Algorithm 5 (A Memetic-Clustering-Based Evolution Strategy)

1. (Initialization) Given population size N , maximum generations gmax, and
N positive integers k1, k2, · · · , kN . For each ki for i = 1, 2, · · · , N , do the
following:
– Generate ki clusters by algorithm 1, and generate a tour for each cluster

by using Algorithm 2.
– Connect all these tours for clusters into one feasible tour for all cities by

using Algorithm 3.
All these N feasible tours constitute the initial population P (0), Let t = 0.
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2. (Mutation)For each individual

Tr = i1i2 · · · in ∈ P (t),

generate an offspring
Or = j1j2 · · · jn,

r = 1, 2, · · · , N . The set of all offspring is denoted as O(t).
3. (Selection) Select best N individuals from P (t)∪O(t) as the next generation

population P (t + 1).
4. (Stop Criterions) If t > gmax and the best tour obtained can not improved

in successive 10 generations, then stop; otherwise, let t = t + 1, go to step 2.

7 Global Convergence

First, we introduce the concept of the global convergence as follows.

Definition 3. Let a∗ ∈ A denote the chromosome which corresponds to an op-
timal tour. If

prob{ lim
t→∞ a∗ ∈ P (t)} = 1,

then the proposed genetic algorithm is called to converge to the global optimal
solution with probability one, where prob{} represents the probability of random
event {}.

For any feasible tours i1i2 · · · in and j1j2 · · · jn, note that

prob{M(i1i2 · · · in) = j1j2 · · · jn} =
1
n

> 0,

and the best tour found so far will be kept by the selection process, where
M(i1i2 · · · in) represents the offspring of i1i2 · · · in by mutation. It can be proved
by making use of the conclusions in [12] that the proposed algorithm has the
following property of the global convergence.

Theorem 1. The proposed evolution strategy (Algorithm 5) converges to the
global optimal solution with probability one.

8 Simulations

8.1 Test Problems

In the simulations, We execute the proposed algorithm to solve six standard
benchmark problems: nrw1379, a 1379-city problem, rL1889, a 1889-city prob-
lem u2319, a 2319-city problem, pr2392, a 2392-city problem, pcb3038, a
3038-city problem, and rL5915, a 5915-city problem. These problems are avail-
able from TSPLIB at http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/
TSPLIB95/TSPLIB.html
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8.2 Parameter Values

We adopt the following parameter values: N = 20, k1 = · · · = kN = s, and s =
5, 8, 10 respectively for problems with fewer than 3000 cities, and s = 5, 8, 10 and
15 respectively for problems with more than 3000 cities. gmax = 300 for problems
with fewer than 3000 cities and 500 for problems with more than 3000 cities.

8.3 Results

The simulations are carried out on a AthlonXP1800+512M PC and we program
the proposed algorithm in Matlab language. For each benchmark problem, we
perform 20 independent executions. We record the following data:

– The best, the average and the worst lengths over 20 runs, denote them by
Best, Mean and Worst, respectively.

– Average CPU time over 20 runs, denoted by CPU.
– Percentage of the amount the best tour found surpasses the optimal tour

over the optimal tour, denoted by %.

Table 1. Results obtained by proposed algorithm, where Opt − tour represents the
length of the optimal tour, and K is the number of clusters used

TSP Opt-tour K Best Mean Worst CPU %
5 59770 60236 61069 65.3 5.5

nrw1379 56638 8 59922 60177 60353 57.6 5.8
10 59981 60389 60873 65.6 5.9
5 342447 347407 353226 147.7 8.2

rL1889 316536 8 344107 350777 358637 135.4 8.7
10 344513 349777 355378 130.5 8.8
5 243379 243997 244465 227.7 3.9

u2319 234256 8 243167 243843 245016 216.1 3.8
10 242677 243243 243829 209.8 3.6
5 389288 394309 396554 246.8 2.9

pr2392 378032 8 394863 398895 404705 232.1 4.4
10 398937 402243 405692 225.6 5.5
5 148031 149461 150881 433.0 7.5

pcb3038 137694 8 149209 150126 151309 410.4 8.3
10 148867 149681 150905 408.7 8.1
15 148326 149853 151286 398.1 7.7
5 625686 629688 638488 2229.8 10.6

rL5915 565530 8 613469 625109 635527 2040.0 8.5
10 617823 627439 637816 1828.7 9.2
15 624123 633052 655479 1965.5 10.3

The results are given in Table 1. It can be seen from Table 1 that the percentage
of the amount the best tour found surpasses the optimal tour over the optimal
tour is relatively small although the proposed algorithm has not found the optimal
tours for these problems. This indicates the proposed algorithm is effective.
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9 Conclusions

In this paper we deal with some special TSP problems, i.e., the problems in
which the cities can be classified into several groups, and within each group
the cities crowd together. We designed an effective and globally convergent evo-
lutionary algorithm for this kind of problems. The proposed algorithm has the
ability of finding close-to-optimal solutions with high speed and a relatively small
amount of computation. The simulation results demonstrate the effectiveness of
the proposed algorithm.
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