
A Batch Rival Penalized EM Algorithm for
Gaussian Mixture Clustering with Automatic

Model Selection

Dan Zhang1 and Yiu-ming Cheung2

1 Faculty of Mathematics and Computer Science
HuBei University, WuHan, China

mathzhang52@yahoo.com.cn
2 Department of Computer Science

Hong Kong Baptist University, Hong Kong SAR, China
ymc@comp.hkbu.edu.hk

Abstract. Cheung [2] has recently proposed a general learning frame-
work, namely Maximum Weighted Likelihood (MWL), in which an adap-
tive Rival Penalized EM (RPEM) algorithm has been successfully
developed for density mixture clustering with automatic model selec-
tion. Nevertheless, its convergence speed relies on the value of learning
rate. In general, selection of an appropriate learning rate is a nontrivial
task. To circumvent such a selection, this paper further studies the MWL
learning framework, and develops a batch RPEM algorithm accordingly
provided that all observations are available before the learning process.
Compared to the adaptive RPEM algorithm, this batch RPEM need not
assign the learning rate analogous to the EM, but still preserve the ca-
pability of automatic model selection. Further, the convergence speed of
this batch RPEM is faster than the EM and the adaptive RPEM. The
experiments show the efficacy of the proposed algorithm.

Keywords: Maximum Weighted Likelihood, Rival Penalized Expec-
tation-Maximization Algorithm, Learning Rate.

1 Introduction

As a typical statistical technique, clustering analysis has been widely applied
to a variety of scientific areas such as data mining, vector quantization, image
processing, and so forth. In general, one kind of clustering analysis can be formu-
lated as a density mixture clustering problem, in which each mixture component
represents the probability density distribution of a corresponding data cluster.
Subsequently, the task of clustering analysis is to identify the dense regions of
the input (also called observation interchangeably) densities in a mixture.

In general, the Expectation-Maximum (EM) algorithm [3] provides an effi-
cient way to estimate the parameters in a density mixture model. Nevertheless,
it needs to pre-assign a correct number of clusters. Otherwise, it will almost al-
ways lead to a poor estimate result. Unfortunately, from the practical viewpoint,

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 252–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering 253

it is hard or even impossible to know the exact cluster number in advance. In the
literature, one promising way is to develop a clustering algorithm that is able
to perform a correct clustering without pre-assigning the exact number of clus-
ters. Such algorithms include the RPCL algorithm [4] and its improved version,
namely RPCCL[1]. More recently, Cheung [2] has proposed a general learning
framework, namely Maximum Weighted Likelihood (MWL), through which an
adaptive Rival Penalized EM (RPEM) algorithm has been proposed for density
mixture clustering. The RPEM learns the density parameters by making mixture
component compete each other at each time step. Not only are the associated
parameters of the winning density component updated to adapt to an input, but
also all rivals’ parameters are penalized with the strength proportional to the
corresponding posterior density probabilities. Subsequently, this intrinsic rival
penalization mechanism enables the RPEM to automatically select an appropri-
ate number of densities by fading out the redundant densities from a density
mixture. The numerical results have shown its outstanding performance on both
of synthetic and real-life data. Furthermore, a simplified version of RPEM has
included RPCL and RPCCL as its special cases with some new extensions.

In the papers [2], the RPEM algorithm learns the parameters via a stochastic
gradient ascending method, i.e., we update the parameters immediately and
adaptively once the current observation is available. In general, the adaptiveness
of the RPEM makes it more applicable to the environment changed over time.
Nevertheless, the convergence speed of the RPEM relies on the value of learning
rate. Often, by a rule of thumb, we arbitrarily set the learning rate at a small
positive constant. If the value of learning rate is assigned too small, the algorithm
will converge at a very slow speed. On the contrary, if it is too large, the algorithm
may even diverge. In general, it is a nontrivial task to assign an appropriate value
to the learning rate, although we can pay extra efforts to make the learning rate
dynamically changed over time, e.g. see [5].

In this paper, we further study the MWL learning framework, and develop a
batch RPEM algorithm accordingly provided that all observations are available
before the learning process. Compared to the adaptive RPEM, this batch one
need not assign the learning rate analogous to the EM, but still preserve the
capability of automatic model selection. Further, the convergence speed of this
batch RPEM is faster than the EM and the adaptive RPEM. The experiments
have shown the efficacy of the proposed algorithm.

2 Overview of Maximum Weighted Likelihood (MWL)
Learning Framework

Suppose an input x comes from the following density mixture model:

P (x|Θ) =
k∑

j=1

αjp(x|θj),
k∑

j=1

αj = 1, αj > 0, ∀1 ≤ j ≤ k, (1)

where Θ is the parameter set of {αj , θj}k
j=1. Furthermore, k is the number of

components, αj is the mixture proportion of the jth component, and p(x|θj) is

254 D. Zhang and Y.-m. Cheung

a multivariate probability density function (pdf) of x parameterized by θj . In
the MWL learning framework, the parameter set Θ is learned via maximizing
the following Weighted Likelihood (WL) cost function:

l(θ) =
∫ k∑

j=1

g(j|x, Θ) ln[αjp(x|θj)]dF (x) −
∫ k∑

j=1

g(j|x, Θ) ln h(j|x, Θ)dF (x),

(2)
with

h(j|x, Θ) =
αjp(x|θj)
P (x|Θ)

(3)

to be the posterior probability of x coming from the jth density as given x, where
g(j|x, Θ)s are the designable weights satisfying the two conditions:

(Condition 1)
∑k

j=1 g(j|x, Θ) = 1, and
(Condition 2) ∀j, g(j|x, Θ) = 0 if h(j|x, Θ) = 0.

Suppose a set of N observations, denoted as χ = {x1,x2, . . . ,xN}, comes
from the density mixture model in Eq.(1), the empirical WL function of Eq.(2),
written as Υ (Θ; χ), can be further expanded as:

Υ (Θ; χ)=
1
N

N∑

t=1

k∑

j=1

g(j|xt,Θ) ln[αjp(xt|θj)]−
1
N

N∑

t=1

k∑

j=1

g(j|xt, Θ) ln h(j|xt, Θ).

(4)
In [2], the weights g(j|xt, Θ) have been generally designed as:

g(j|xt, Θ) = (1 + εt)I(j|xt, Θ) − εth(j|xt, Θ) (5)

where εt is a coefficient varying with the time step t. Please note that g(j|xt, Θ)
in Eq.(5) can be negative as well as positive. For simplicity, we hereinafter set
εt as a constant, denoted as ε. Furthermore, I(j|xt, Θ) is an indicator function
with

I(j|xt, Θ) =
{

1, if j = c = arg max1≤i≤k h(j|xt, Θ);
0, otherwise. (6)

Subsequently, the earlier work [2] has presented the adaptive RPEM to learn
Θ via maximizing the WL function of Eq.(4) using a stochastic gradient ascent
method. Interested readers may refer to the paper [2] for more details. In the
following, we just summarize the main steps of the adaptive RPEM as follows:

Step 1. Given the current input xt and the parameter estimate, written as
Θ(n), we compute h(j|xt, Θ

(n)) and g(j|xt, Θ
(n)) via Eq.(3) and

Eq.(5), respectively.
Step 2. Given h(j|xt, Θ

(n)) and g(j|xt, Θ
(n)), we update Θ by

Θ(n+1) = Θ(n) + η
qt(Θ;xt)

Θ
|Θ(n) , (7)

A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering 255

with

qt(Θ;xt) =
k∑

j=1

g(j|xt, Θ) ln[αjp(xt|θj)], (8)

where η is a small positive learning rate.
Step 3. Let n = n + 1, and go to Step 1 for the next iteration until Θ is

converged.

The experiments have shown the superior performance of the adaptive RPEM,
in particular the capability of automatic model selection. Nevertheless, the con-
vergence speed of this adaptive algorithm relies on the value of learning rate.
Under the circumstances, we will present a batch version without the learning
rate in the next section.

3 Batch RPEM Algorithm

3.1 Algorithm

As shown in Step 2 of Section 2, we actually update the parameters via max-
imizing the first term of Eq.(4), whereas the second term is just a conditional
entropy of the densities and can be regarded as the constant when updating the
parameters. In the following, we denote the first term of Eq.(4) as:

ζ(Θ; χ) =
1
N

N∑

t=1

k∑

j=1

g(j|xt, Θ) ln[αjp(xt|θj)]. (9)

Hence, we need to solve the following nonlinear optimization problem:

Θ̃ = arg max
Θ

{ζ(Θ; χ)} (10)

subject to the constraints as shown in Eq.(1). To solve this optimal problem
with equality constraint, we adopt Lagrange method analogous to the EM by
introducing a Lagrange multiplier λ into the Lagrange function. Subsequently,
we have:

F (Θ, λ) = ζ(Θ; χ) + λ(
k∑

j=1

αj − 1) (11)

with Θ = (αj , θj)k
j=1.

In this paper, we concentrate on the Gaussian mixture model only, i.e., each
component p(j(x|θj) in Eq.(1) is a Gaussian density. We then have

p(j|xt, θj) =
1

(2π)d/2|Σ|1/2 exp[−1
2
(xt − mj)T Σ−1

j (xt − mj)], (12)

where θj = (mj , Σj), mj and Σj are the mean (also called seed points inter-
changeably) and the covariance of jth density, respectively.

Through optimizing Eq.(11), we then finally obtain the batch RPEM algo-
rithm as follows:

256 D. Zhang and Y.-m. Cheung

Step 1. Given Θ(n), we compute h(j|xt, Θ
(n))s and g(j|xt, Θ

(n))s for all xts
via Eq.(3) and Eq.(5), respectively.

Step 2. Given h(j|xt, Θ
(n))s and g(j|xt, Θ

(n))s computed in Step 1, we
update Θ by

α
(n+1)
j = ℵ(n)

j /

k∑

j=1

ℵ(n)
j , m(n+1)

j =
1

ℵ(n)
j

N∑

t=1

xtg(j|xt, θ
(n))

Σ
(n+1)
j =

1

ℵ(n)
j

N∑

t=1

g(j|xt, θ
(n))(xt − m(n)

j)(xt − m(n)
j)T , (13)

where ℵ(n)
j =

∑N
t=1 g(j|xt, θ

(n)). If the covariance matrix Σ
(n+1)
j is

singular, it indicates that the corresponding jth density component is
degenerated and can be simply discarded without being learned any
more in the subsequent iterations. In this case, we have to normalize
those remaining α

(n+1)
j s so that their sum is always kept to be 1.

Step 3. Let n = n + 1, and go to Step 1 for the next iteration until Θ is
converged.

In the above batch RPEM, we need to assign a value to ε in the weight design
as shown in Eq.(5). A new question is how to assign an appropriate value of ε?
The next sub-section will answer this question.

3.2 How to Assign Parameter ε?

We rewrite Eq.(5) as the following form:

g(j|xt, Θ) =
{

h(j|xt, Θ) + (1 + ε)(1 − h(j|xt, Θ)), if j = c
h(j|xt, Θ) − (1 + ε)h(j|xt, Θ), otherwise, (14)

where the term (1 + ε)(1 − h(j|xt, Θ)) is the award of the winning density
component (i.e. the cth density with I(c|xt, Θ) = 1), and meanwhile the term
−(1 + ε)h(j|xt, Θ) is the penalty of the rival components (i.e., those densities
with I(j|xt, Θ) = 0). Intuitively, it is expected that the award is positive and
the penalty is negative, i.e., ε should be greater than −1. Otherwise, as ε < −1,
we will meet an awkward situation: the amount of award is negative and the
penalty one becomes positive. This implies that we will penalize the winner
and award the rivals, which evidently violates our expectations. Furthermore,
as ε = −1, both of the award and penalty amount becomes zero. In this special
case, the batch RPEM is actually degenerated into the EM without the property
of automatic model selection.

In addition, it is noticed that the larger the ε, the stronger the award and
penalty are. This property makes the algorithm converge faster with a larger
value of ε, but the algorithm is more prone to a sub-optimal solution. Our em-
pirical studies have shown that the covariance matrix of a rival density is prone
to singular if ε is too large. Hence, an appropriate selection of ε in the batch

A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering 257

RPEM would be a negative value. Further, our empirical studies have found
that the algorithm has a poor capability of automatic model selection if ε is
close to zero. As we can see, the smaller the |ε|, the smaller difference among the
rival densities is. For example, if we set |ε| = 0, we get g(j|xt, Θ) = I(j|xt, Θ).
Subsequently, the batch RPEM degenerates to the hard-cut EM without the ca-
pability of automatic model selection. Hence, by a rule of thumb, an appropriate
selection of ε should be within the range of (−1, −0.4). In the next section, we
will arbitrarily set ε at −0.5.

4 Experimental Results

Because of the space limitation, we will conduct two experiments only to demon-
strate the performance of the batch RPEM. In these two experiments, we used
the same 1, 000 observations that were generated from a mixture of three bivari-
ate Gaussian distributions, whose true parameters were:

α∗
1 = 0.3, α∗

2 = 0.4, α∗
3 = 0.3

m∗
1 = [1.0, 1.0]T , m∗

2 = [1.0, 2.5]T , m∗
3 = [2.5, 2.5]T

Σ∗
1 =

(
0.20, 0.05
0.05, 0.30

)
, Σ∗

2 =
(

0.2 0.0
0.0 0.20

)
, Σ∗

3 =
(

0.2 −0.1
−0.1 0.2

)
. (15)

4.1 Experiment 1

This experiment was to investigate the convergence speed of the batch RPEM
algorithm. We set k = 3, and the three seed points were randomly allocated in
the observation space. Furthermore, all αjs and Σjs were initialized at 1

k and the
identity matrix, respectively. For comparison, we also implemented the EM under
the same experimental environment. After all parameters were converged, both
of the batch RPEM and EM gave the correct parameter estimates. Nevertheless,
as shown in Fig. 1(a) and (b), the batch RPEM converges at 25 epochs while the
EM needs 60 epochs. That is, the convergence speed of the former is significantly
faster than the latter. This indicates that the intrinsic rival-penalization scheme
of the batch RPEM, analogous to the RPCL [4], RPCCL [1] and the adaptive
RPEM [2], is able to drive away the rival seed points so that they can be more
quickly towards the other cluster centers. As a result, the batch RPEM converges
much faster than the EM. Furthermore, we also compared it with the adaptive
RPEM, in which we set the learning rate η = 0.001. Fig. 1(c) shows that the
adaptive RPEM converges at 40 epochs, slower than the proposed batch version.

4.2 Experiment 2

This experiment was to investigate the capability of the batch RPEM on model
selection. We set k = 10, and randomly allocated the 10 seed points, m1, m2, . . .,
m10 into the observation space as shown in Fig. 2(a). During the learning process,
we discarded those densities whose covariance matrices Σjs were singular. After

258 D. Zhang and Y.-m. Cheung

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Learning Curve of Parameter m
j
s

No. of data points scanned (x 103)

(a)

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Learning Curve of Parameter m
j
s

No. of data points scanned (x 103)

(b)

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Learning Curve of Parameter m
j
s

No. of data points scanned (x 103)

(c)

Fig. 1. Learning curves of mjs by (a) EM, (b) Batch RPEM, and (c) Adaptive RPEM,
respectively

90 epochs, we found that 5 out of 10 density components have been discarded.
The mixture proportions of the remaining components were converged to α1 =
0.0061, α2 = 0.3508, α3 = 0.3222, α4 = 0.3161, α5 = 0.0048. Furthermore, the
corresponding mjs and Σjs were:

m1 = [3.1292, 1.3460]T ,m2 = [0.9462, 2.5030]T ,m3 = [1.0190, 0.9788]T ,

m4 = [2.5089, 2.5286]T ,m5 = [1.8122, 1.8955]T

Σ1 =
(

0.1920, 0.0310
0.0310, 0.0088

)
, Σ2 =

(
0.1708, 0.0170
0.0170, 0.1489

)
, Σ3 =

(
0.1894, 0.0461
0.0461, 0.2892

)
,

Σ4 =
(

0.2155, −0.1101
−0.1101, 0.2116

)
, Σ5 =

(
0.0027, −0.0053

−0.0053, 0.0213

)
. (16)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

Initial Positions of Parameter m
j
s in Input Space

(a) The initial seed positions
marked by ‘*’, where seed points
are those data points to be learned
towards the cluster centers in the
observation space.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

Positions of Last Learning Parameter m
j
s in Input Space

(b) The converged seed positions
learned by the batch RPEM algo-
rithm

Fig. 2. The Results of the Batch RPEM Algorithm

A Batch Rival Penalized EM Algorithm for Gaussian Mixture Clustering 259

It can be seen that the three seed points m2,m3,m4 together with the cor-
responding proportions α2, α3, α4 have provided a good estimate of the true
parameters as shown in Fig. 2(b), where m2, m3, m4 are stabled at the center
of the clusters. In contrast, m1 and m5 have been driven away and located at the
boundary of the clusters with a very small mixture proportions: α1 = 0.0061 and
α5 = 0.0048. Actually, the 1st and 5th density components have been gradually
faded out from the mixture.

5 Conclusion

In this paper, we have developed a batch RPEM algorithm based on MWL
learning framework for Gaussian mixture clustering. Compared to the adaptive
RPEM, this new one need not select the value of learning rate. As a result, it
can learn faster in general and still preserve the capability of automatic model
selection analogous to the adaptive one. The numerical results have shown the
efficacy of the proposed algorithm.

Acknowledgment

This work was fully supported by the grants from the Research Grant Council
of the Hong Kong SAR with the Project Codes: HKBU 2156/04E and HKBU
210306.

References

1. Cheung Y.M.: Rival Penalized Controlled Competitive Learning for Data Clustering
with Unknown Cluster Number. Proceedings of Ninth International Conference on
Neural Information Processing (ICONIP’02), Paper ID: 1983 in CD-ROM Proceed-
ing (2002)

2. Cheung Y.M.: Maximum Weighted Likelihood via Rival Penalized EM for Density
Mixture Clustering with Automatic Model Selection. IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 17, No. 6 (2005) 750–761

3. Dempster A. Laird N. and Rubin D.: Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of Royal Statistical Society, Vol. 39, No. 1 (1977)
1–38

4. Xu L., Krzyżak A. and Oja E.: Rival Penalized Competive Learning for Clustering
Analysis, RBF Net, and Curve Detection. IEEE Transactions on Neural Networks,
Vol. 4, (1993) 636–648

5. Zhao X.M., Cheung Y.M., Chen L. and Aihara K.: A New Technique for Adjusting
the Learning Rate of RPEM Algorithm Automatically. to appear in the Proceedings
of The Twelfth International Symposium on Artificial Life and Robotics, Japan
(2007)

	Introduction
	Overview of Maximum Weighted Likelihood (MWL) Learning Framework
	Batch RPEM Algorithm
	Algorithm
	How to Assign Parameter ε?

	Experimental Results
	Experiment 1
	Experiment 2

	Conclusion

