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Abstract. The problem considered in this paper is how to recognize ob-
jects that are qualitatively but not necessarily spatially near each other.
The term qualitatively near is used here to mean closeness of descriptions
or distinctive characteristics of objects. The solution to this problem is
inspired by the work of Zdzis�law Pawlak during the early 1980s on the
classification of objects by means of their attributes. In working toward a
solution of the problem of the approximation of sets that are qualitatively
near each other, this article considers an extension of the basic model
for approximation spaces. The basic approach to object recognition is
to consider the degree of overlap between families of perceptual neigh-
bourhoods and a set of objects representing a standard. The proposed
approach to object recognition includes a refinement of the generalized
model for approximation spaces. This is a natural extension of recent
work on nearness of objects. A byproduct of the proposed object recog-
nition method is what we call a near set. The contribution of this article
is an approximation space-based approach to object recognition formu-
lated in the context of near sets.

Keywords: Approximation space, feature, near set, object recognition,
perceptual neighborhood.

An approximation space ... serves as a formal
counterpart of perception ability or observation.

– Ewa Orlowska, March, 1982.

1 Introduction

The problem considered in this paper is how to recognize objects that are qual-
itatively but not necessarily spatially near each other. The term qualitatively
near is used here to mean closeness of descriptions or distinctive characteristics
of objects. The term object denotes something perceptible. If we choose shad-
ing as a feature and let Bshading(x) = {y | shading(x) = shading(y)}, then
the objects in Fig. 1 can be partitioned, where the objects in Bshading(x), i.e.,
equivalence class containing objects that are descriptively indiscernible from x,
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are not adjacent to each other (see, e.g., Bshading(x1) = {x1, x11, x15, x16} in
Fig. 1.2 or Bshading(g1) = {g1, g2, g3} in Fig. 1.1).

1.1: Hexagonal Objects 1.2: Pixel Neighborhoods

Fig. 1. Non-Adjacent Objects with Matching Descriptions

The solution to this problem is inspired by the work of Zdzis�law Pawlak during
the early 1980s on the classification of objects [22] and elaborated in [25,26,27].
In working toward a solution of the problem of the approximation of sets that
are qualitatively near each other, this article considers an extension of the ba-
sic model for approximation spaces. The basic approach is to consider families
of perceptual neighborhoods containing objects with matching descriptions that
are possibly space-independent. A perceptual neighborhood is an equivalence class
containing observed sample objects with matching descriptions. The proposed
approach to object recognition is a straightforward extension of the rough set
approach, where approximation can be considered as formal counterpart of per-
ception [18] in the context of families of perception granules (neighborhoods).
The term perception granule comes from [48]. A byproduct of the proposed ap-
proximation method is what we call a near set.

The approach to classifying objects such as those in Fig. 1.2 contrasts sharply
with the approach to defining neighborhoods with an Adjacency relation in [7].
For example, the hexagons with mesh interiors (g1, g2, g3) in Fig. 1.1 are descrip-
tively near each other but spatially non-adjacent. The refinement of approxima-
tion spaces in [28] is close to what is known as a nearness space [11,48] with the
exception of the distinction between attributes and features as well as covering
F (family of neighborhoods) that underly the approach to approximation spaces
in this article. In addition, the proposed approach of nearness of objects [28] is
not restricted to the neighborhood of a point x and x ε Cl(A) (closure of A)
as in [48], since we consider the nearness of objects that are not points. The
contribution of this article is an approach to approximating a set based on the
union of families of sets of objects with matching descriptions, which provides a
foundation for near sets.

This article is organized as follows. The distinction between features and attr-
ibutes is explored in Sect. 2. An approach to pattern recognition is brieflypresented
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in Sect. 3. A refinement of the generalized approximation space model is given in
Sect. 4. Sample near sets extracted from ethogram tables are presented in Sect. 5.

2 Features and Measurements

Underlying the study of near sets is an interest in classifying sample objects
by means of probe functions associated with object features. The term feature
was originally identified with the cast of a face [14]. More recently, the term
feature is defined as the make, form, fashion or shape (of an object) [19]. This
term comes from the Latin term factura, i.e., facture, which means the action or
process of making an object or the result of an action or process (e.g., a work
of art, image made with a digital camera). In effect, the term feature charac-
terizes some aspect of the makeup of an object. From a philosophical perspec-
tive that can be traced back to Kant [15], features highlight an interest in the
appearances of objects rather than calling attention to the properties or quali-
ties that are somehow inherent in objects. The term feature is commonly used
in pattern recognition theory [21], statistical learning theory [45], reinforcement
learning [34], neural computing [4], science (e.g., ethology [16,33,35]), image pro-
cessing [13,5], biotechnology, industrial inspection, the internet, radar, sonar, and
speech recognition [9]. More recently, the term feature has been used in rough
set theory [5,33,34,35,28,30].

Historically, semantically, and philosophically, there is a distinction between
the terms feature and attribute. An attribute is a quality regarded as characteristic
or inherent in an object [19]. In philosophy, an attribute is a property of an object
(e.g., spatial extension of a piece of wax). The term attribute is commonly used
in database theory [44], data mining [47], and philosophy [12]. In rough set
theory [25], an attribute is treated as a partial function, which is a relation that
associates each element of a set of objects (domain) with at most one element
of a value set (codomain) [49].

It was Zdzis�law Pawlak who proposed classifying objects by means of their at-
tributes considered in the context of an approximation space [22]. The proposed
approach to classifying objects can also be explained in terms of features. Implicit
in the original work of Pawlak is a distinction between features (makeup, appear-
ance) of objects and knowledge about objects. The knowledge about an object
is represented by a measurement associated with each feature of an object. It
can observed that a feature is an invariant characteristic of objects belonging to
a class [46]. The distinction between features and corresponding measurements
associated with features is usually made in the study of pattern recognition (see,
e.g., [17,21]). Let A denote a set of features for objects in a set X . For each
a ∈ A, we associate a function fa that maps X to some set Vfa (range of fa).
The value of fa(x) is a measurement associated with feature a of an object
x ∈ X . The function fa is called a probe [21]. By InfB(x), where B ⊆ A and
x ∈ U we denote the signature of x, i.e., the set {(a, fa(x)) : a ∈ B}. If the set
B = {a1, . . . , am}, then InfB is identified with a vector (fa1(x), . . . , fam(x)) of
probe function values for features in B.
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2.1: Prototype Image 2.2: Sample Image

Fig. 2. Image Patterns

3 Approach to Pattern Recognition

The problem considered here is to determine whether there is a correspondence
between an object in a prototype image I (e.g., cup in Fig. 2.1) and an object in
a sample image I1 (e.g., fire hydrant in Fig. 2.2). By way of illustration, consider
contour as a helpful feature in considering the form of various objects. Let I1, I, f
denote sample image, prototype image, probe function associated with contour,
respectively. Then, following the approach suggested in [21], pattern recognition
is defined for real-valued probe functions in

I ≈ (I1)T ⇔ ∀f.|f(I) − f(I1)| < ε, ε ∈ [0, 1],

where I is approximately the same as I1 after some transformation T iff the
differences between pairs of probe function values is less than some threshold.

4 Approximation Spaces and Object Recognition

This section introduces a view of approximation spaces defined in a slightly mod-
ified manner in comparison with the original definition in [38]. Any generalized
approximation space (GAS) is a tuple

GAS = (U, A, Nr, νB),

where U is a universe of objects, A, a set of probe functions, Nr, a neighbourhood
family function and νB is an overlap function defined by

νB : P(U) × P(U) −→ [0, 1],
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where P(U) is the powerset of U . νB maps a pair of sets to a number in [0, 1]
representing the degree of overlap between the sets of objects with features
defined by B, and P(U) is the powerset of U [39]. For each subset B ⊆ A
of probe functions, define the binary relation ∼B= {(x, x′) ∈ U × U : ∀f ∈
B, f(x) = f(x′)}. Since each ∼B is, in fact, the usual IndB (indiscernibility)
relation, for B ⊂ F and x ∈ U , let [x]B denote the equivalence class containing
x, i.e.,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′), then x and x′ are said to be indiscernible
with respect to all feature probe functions in B, or simply, B-indiscernible. Then
define a family of neighborhoods Nr(A), where

Nr(A) =
⋃

B⊆Pr(A)

[x]B,

where Pr(A) = {B ⊆ A | |B| = r} for any r such that 1 ≤ r ≤ |A|. That is, r
denotes the number of features used to construct families of neighborhoods. For
the sake of clarity, we sometimes write [x]Br to specify that the equivalence class
represents a neighborhood formed using r features from B. Families of neigh-
borhoods are constructed for each combination of probe functions in B using(|B|

r

)
, i.e., |B| probe functions taken r at a time. Information about a sample

X ⊆ U can be approximated from information contained in B by constructing
a Nr(B)-lower approximation

Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br ,

and a Nr(B)-upper approximation

Nr(B)∗X =
⋃

x:[x]Br∩X �=∅
[x]Br .

Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BNDNr(B)(X) between
upper and lower approximations of a set X is defined to be the complement of
Nr(B)∗X , i.e.

BNDNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

Remark 1. What is a Near Set? A set X is termed a “near set” relative to
a chosen family of neighborhoods Nr(B) iff |BNDNr(B)(X)| ≥ 0. This means
every rough set is a near set but not every near set is a rough set. Object recogni-
tion and the problem of the nearness of objects have motivated the introduction
of near sets (see, e.g., [28,29]).
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4.1 Object Recognition

It is now possible to formulate a basis for object recognition, which parallels
the traditional formulation of pattern recognition. Assume Nr(B)∗X defines a
standard for classifying perceived objects. The notation Bj(x) denotes a member
of the family of neighborhoods in Nr(B), where j ∈ B. Put

νj(Bj(x), Nr(B)∗X) =
|Bj(x) ∩ Nr(B)∗X |

|Nr(B)∗X | ,

(called lower rough coverage) where νj is defined to be 1, if Nr(B)∗X = ∅. Let
O, Oid denote sample object and standard object, respectively. Then recognition
of sample objects that are approximately the same as Oid is defined by comparing
overlap function values in

O ≈ (Oid)T ⇔ |νj(O, Nr(B)∗X) − νB(Oid, Nr(B)∗X | < ε,

where ε ∈ [0, 1]. The sample object O is approximately the same as Oid after
some transformation T iff the difference in coverage values is less than some
threshold. An image-based model for object recognition is given in [10].

4.2 Percepts and Perception

The set Nr(B) contains a set of percepts. A percept is a byproduct of perception,
i.e., something that has been observed [19]. For example, a member of Nr(B)
represents what has been perceived about objects belonging to a neighborhood,
i.e., observed objects with matching probe function values. Collectively, Nr(B)
represents a perception, a product of perceiving. Perception is defined as the
extraction and use of information about one’s environment [1]. This is basic idea
is represented in the sample objects, perceptual neighborhoods and judgemental
percepts columns in Fig. 3. In this article, we are focusing on the perception of
acceptable objects.

4.3 Sensing, Classifying, and Peceptual Judgement

Sensing provides a basis for probe function measurements commonly associated
with features such as colour, contour, shape, arrangement, entropy, and so on. A
probe function can be thought of as a model for a sensor. Classification combines
evaluation of a disposition of sensor measurements with judgement (apprehend-
ing the significance of a vector of probe measurements for an observed object).
The result is a higher level percept, which has been traditionally called a deci-
sion. In the context of percepts, the term judgement means a conclusion about an
object’s measurements rather than an abstract idea. This form of judgement is
considered perceptual. Perceptual judgements provide a basis for the formulation
of abstract ideas (models of perception, rules) about a class (type) of object. Let
D denote a feature called decision with a probe dB : X ×B −→ {0, 1}, where X
denotes a set of sample objects; B, a set of probe functions; 0, “reject perceived
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object” and 1, “accept perceived object”. A set of objects d with matching
perceptual judgements (e.g., dB(x) = 1, x ∈ X for an acceptable object) is a
mathematical model representing the abstract notion acceptable.

5 Near Sets From Ethograms

This section briefly considers particular near sets derived from an ethogram. An
ethogram is a set of descriptions of behaviour patterns of a species [2], which
is fundamental in ethology [43]. In this work, an ethogram is represented by
a decision system that provides a record of observations of episodic behaviour
of a swarm. The form of ethogram in Table 1 was introduced in [33,35] and
elaborated in [31,34]. An episode is a sequence of states that terminates. During
a swarm episode, an ethogram table is constructed, which provides the basis for
an approximation space such as the one represented in Fig. 3.

Fig. 3. Approximate Adaptive Learning Cycle

Let s, a, p(s, a), r denote the state, action, action preference and reward as-
sociated with a previous action by an observed organism. Define a behaviour
to be a collection (s, a, p(s, a), r) at any one time t, and let d denote a deci-
sion (1 = choose action, 0 = reject action) for acceptance of a behaviour. Let
Ubeh = {x0, x1, x2, . . .} denote a set of behaviours. Decisions to accept or reject
an action are made by the actor during the learning process; let d denote a de-
cision (0=reject, 1=accept). Often ethograms also exclude p(s, a) or include a
column for “proximate cause” (see [43]). Let S = {k, �} be the collection of two
states, and let A = {i, j, k} be the set of possible actions, with A(k) = {h, i},
A(�) = {i, j}.

The calculations are performed on the feature values shown in the first four
columns of Table 1. Put B = {s, a, p(s, a), r}. Let Ubeh = {x0, x1, . . . , x9} and
let D = {x ∈ U : d(x) = 1} = {x0, x3, x4, x6, x8} be the decision class. Then
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Table 1. Sample Ethogram

xi s a p(s, a) r d

x0 k h 0.0 0.75 1
x1 k i 0.0 0.75 0
x2 � i 0.0 0.1 0
x3 � j 0.0 0.1 1
x4 k h 0.0 0.75 1
x5 k i 0.0 0.75 0
x6 � i 0.010 0.9 1
x7 � j 0.025 0.9 0
x8 k h 0.01 0.75 1
x9 k i 0.056 0.75 0

Case 1. N1, 1-Feature Neighborhoods
Let D = {x ∈ Object | d(x) = 1} = {x0, x3, x4, x6, x8}, B = {s, a, p(s, a), r},
and observe
Bsk

(x0) = {x0, x1, x4, x5, x8, x9}, Bs�
(x2) = {x2, x3, x6, x7},

Bah
(x0) = {x0, x4, x8}, Bai(x1) = {x1, x2, x5, x6, x9}, Baj (x3) = {x3, x7},

Bp0.0(x0) = {x0, x1, x2, x3, x4, x5},
Bp0.01(x6) = {x6, x8}, Bp0.025(x7) = {x7}, Bp0.056(x9) = {x9}
Br0.1(x2) = {x2, x3}, Br0.75(x0) = {x0, x1, x4, x5, x8, x9}, Br0.9(x6) = {x6, x7},

(N1(B))∗D = Bah(x0) ∪ Bp0.01(x6) = {x0, x4, x6, x8},
(N1(B))∗D = Bsk (x0)∪Bs� (x2)∪Bah(x0)∪Bai(x1)∪Baj (x3)∪Bp0.0(x0)∪Bp0.01 (x6)∪
Bp0.75(x0) ∪ Br0.1(x2) ∪ Br0.9(x6) = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9},
BNDN1(B)D = {x1, x2, x5, x7, x9}.

Using (N1(B))∗D together with each block Bfv (x), f ∈ B, f(x) = v, we obtain

νsk(Bsk (x0), (N1(B))∗D) = 3
4 , νs�(Bs(x2), (N1(B))∗D) = 1

4 ,
νah

(Bah
(x0), (N1(B))∗D) = 3

4 , νai(Bai(x1), (N1(B))∗D) = 1
4 ,

νaj (Baj (x3), (N1(B))∗D) = 0,
νp0.0(Bp0.0(x0), (N1(B))∗D) = 1

2 , νp0.01(Bp0.01(x6), (N1(B))∗D) = 1
2 ,

νp0.025(Bp0.025 (x7), (N1(B))∗D) = 0, νp0.056 (Bp0.056(x9), (N1(B))∗D) = 0,
νr0.1(Br0.1(x2), (N1(B))∗D) = 0, νr0.75(Br0.75(x0), (N1(B))∗D) = 3

4 ,
νr0.9(Br0.9(x6), (N1(B))∗D) = 1

4 .

Recently, we have found that lower coverage obtained in this manner has proved
to be useful in solving image pattern recognition problems (see, e.g., [10]). Next,
we obtain the average lower coverage for each feature, which indicates that fea-
tures a and r are more important than s and p(s, a) (it happens that this matches
our tuition about the content of an ethogram, where actions and rewards have
greater weight).

νs =
3
4+ 1

4
2 = 1, νa =

3
4+ 1

4+0
3 = 0.3, νp =

1
2+ 1

2+0+0
4 = 0.25 νr = 0+ 3

4+ 1
4

3 = 0.3.

In sum, notice that all of the features are used to construct families of neigh-
borhoods, but not in the usual way, since features are considered separately to
construct feature-based neighborhoods. The lower and upper approximations are
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obtained by taking into account feature-based families of neighborhoods. The set
D is both a near set as well as a rough set. This does not always happen. Aver-
age lower coverage has proved to be useful in reinforcement learning (see, e.g.,
[34,31]). In the remaining cases, only the approximation sets and boundary set
are given.

Remark 2. Significance of the Lower Approximation
This goes back to Archimedes, who suggested approximating the unknown area
of a bounded region in the plane by summing the areas of all of the small rect-
angles entirely contained inside the bounded region. Each rectangle inside the
bounded region is well-understood, since we know that it is inside the bounded
region, i.e., there is no part of an inner rectangle that is outside the bounded
region (we know an inner rectangle belongs entirely inside the bounded re-
gion). Also notice that the bounded region provides a basis for evaluating all
rectangles, those inside, overlapping or entirely outside the bounded region.
Analogously, each perceptual neighborhood Bj(x) contained in the lower ap-
proximation of a set D is well-understood because the objects in Bj(x) are
entirely contained inside the set of perceptual judgements D, assuming that
D = {x | d(x) = 1, i.e., accept behaviour associated with x}. That is, based on
knowledge represented by Bj(x), the sample objects in Bj(x) ⊆ D are known to
have acceptable behaviours. For this reason, (N1(B))∗D can be used as a norm
or standard in evaluating all of the perceptual neighbourhoods gathered together
during an episode. That is, we can measure the extent that the objects in each
perceptual neighbourhood overlap with the acceptable objects in (N1(B))∗D.

Case 2. N2, 2-Feature Neighborhoods
(N2(B))∗D =
Bsa(x0)∪Bsp(x6)∪Bsp(x8)∪Bap(x0)∪Bap(x3)∪Bap(x6)∪Bap(x8)∪Bpr(x6)∪Bpr(x8) =
{x0, x3, x4, x6, x8},
(N2(B))∗D =
Bsa(x2)∪Bsa(x3)∪Bsp(x0)∪Bsp(x2)∪Bpr(x0)∪Bpr(x2)∪Bsr(x0)∪Bsr(x2)∪Bsr(x6)∪
Bsr(x8) = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9},
BNDN2(B)D = {x1, x2, x5, x7, x9}.

Case 3. N3, 3-Feature Neighborhoods
(N3(B))∗D =
Bsap(x0)∪Bsap(x3)∪Bsap(x6)∪Bsap(x8)∪Bapr(x0)∪Bapr(x3)∪Bapr(x6)∪Bapr(x8)∪
Bspr(x0) ∪ Bspr(x3) ∪ Bspr(x6) ∪ Bspr(x8) ∪ Bsar(x0) ∪ Bsar(x3) ∪ Bsar(x6) =
{x0, x3, x4, x6, x8},
(N3(B))∗D = {x0, x1, x2, x3, x4, x5, x6, x8},
BNDN3(B)D = {x1, x2, x5}.

Case 4. N4, 4-Feature Neighborhoods
(N4(B))∗D = (N4(B))∗D =
B(x0) ∪ B(x3) ∪ B(x6) ∪ B(x8) = {x0, x3, x4, x6, x8},
BNDN4(B)D = ∅.

This case is interesting because D is a near set but not a rough set.
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In sum, D is a near set as well as a rough set in cases 1, 2 and 3. D is
a near set but not a rough set in case 4 and 4 (quadruple feature families
of neighborhoods). The lower approximation in several cases equals D, which
means the objects in D are known with certainty for certain but not all feature
combinations.

6 Conclusion

It is Zdzis�law Pawlak’s original 1981 paper on classification of objects by means
of attributes that has led to the introduction of near sets and the proposed
approach to object recognition. In this approach, the focus is on the compar-
ison between families of perceptual neighborhoods containing observed sample
objects with matching descriptions and perception granules representing a stan-
dard. The standard we have in mind is the lower approximation of a set of sample
objects representing perceptual judgements, i.e., objects judged to be acceptable.
This has led to a refinement of the generalized approximation space model to
include families of neighborhoods. Object recognition is defined in terms of a
measure of the degree of overlap between perceptual neighborhoods and a set of
objects constituting a standard. The feature identification and feature extraction
are currently the subject of intense research in connection with solving object
recognition, ethology and reinforcement learning problems. It is conjectured that
near sets will be useful in solving a number of object recognition problems.
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