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Abstract. The paper proposes a new iris coding method based on Zak-
Gabor wavelet packets. Details of the Zak-Gabor-based coding are pre-
sented in the paper, and the method of adaptation the transformation
parameters is described. The methodology may be of particular help
in development mobile iris systems, where the iris capture devices may
present a limited quality. The method was evaluated and presents very
favorable results.
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1 Iris Measurement and Preprocessing

Biometric authentication starts from acquisition of appropriate biological data
characteristic of an individual. We use a dedicated hardware designed and con-
structed to capture the iris from a convenient distance, with the desired speed
and a minimal user cooperation. To illuminate iris we apply a near infrared 850
nm light that meets the ISO recommendations [1]. The system uses the pupil
position estimated in real time to guide a person to position the eye, and to
release the image capturing process. In this process several frames are captured
at varying focal lengths, and the sharpest frame is selected for further analysis.
The latter procedure compensates a small depths-of-field typical in iris imaging.

The raw images contain the iris and its surroundings. The iris must be first
localized. To detect a boundary between the pupil and the iris, we propose a
method which is sensitive to circular dark shapes, and unresponsive to other dark
areas as well as light circles, such as specular reflections. This may be achieved by
a modified Hough transform that uses the directional image to employ the image
gradient, rather than the edge image, which neglects the gradient direction. A
boundary between the iris and the sclera may be approximated by a circle. To
determine this boundary, we independently apply Daugman’s integro-differential
operator [2] to two opposite horizontally placed angular sectors, 45◦ each, since
the entire circular iris boundary may be partially disturbed by eyelids. The two
radii of the resulting arcs are averaged to construct a circle approximating the
outer iris boundary.
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The iris ring limited by the two circular boundaries may still be disrupted
by irregular objects like reflections or eyelashes. It is desirable to use occlusion
detection that does not assume any particular occlusion shape. We localize non-
uniformity points within the iris ring and then construct an occlusion map.
First, we calculate the sample variances of the iris image intensity for a set of
radial sectors. These variances are compared to the maximum allowed variance
obtained for directions in which the probability of iris occlusion is minimal.
Those directions in which the calculated variance exceeds the threshold value
is marked as an occlusion direction, and the appropriate occlusion radius is
stored.

Based on the localized occlusions, we select two opposite 90◦ wide angular
iris sectors. Each iris sector is then transformed by resampling and smoothing
to a P × R rectangle, where P = 512 and R = 16. The rows f� of these two
rectangles will be further referred to as the iris stripes. The experiments (see
also [2]) revealed much higher correlation of the iris image in the radial direc-
tion, i.e. along the iris stripes, as compared to the angular direction, across the
stripes. Figure 1 illustrates the preprocessed iris image and the corresponding
iris stripes.

Fig. 1. Left: raw camera image processed by our system. The eyelids were automatically
detected, and the sectors free of occlusions (marked as white full circles) are selected.
Star-like shapes on the pupil are reflections of the illumination NIR diodes, and the
’+’ marks represent the pupil and the iris centers. Right: iris stripes automatically
determined for the image shown on the left.

2 Database of Iris Images

Calculations in this work are employing our proprietary database of 720 iris im-
ages. The data was collected for 180 different eyes, with 4 images of each eye. We
used 3 images of each eye in the estimation stage to calculate the iris templates,
and the remaining single image of each eye in the verification stage. Typically,
in iris capturing systems with one-eye capture optics, the images taken may be
mutually rotated. Thus the mutual rotation of images used in the estimation
stage was corrected using the correlation between images. The remaining fourth
image was not altered.
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3 Iris Features

3.1 Choice of Features

It is often convenient to characterize a discrete-time signal in the frequency
domain, thus describing stationary energy distribution. For non-stationary sig-
nals, it might be worthwhile to characterize the frequencies locally, and to find
the distribution of signal energy in local (possibly overlapping) time segments
by application of time-frequency or time-scale analysis. Similarly, any constant
(time-independent) space-homogeneous 1D or 2D pattern can be characterized
in a 1D or 2D frequency domain. If a pattern is not space-homogeneous, its spa-
tial frequency contents may be analyzed locally, with the use of space-frequency
or space-scale analysis. Although the iris texture makes a 2D pattern, we sim-
plify it to a set of 1D patterns with a certain loss of information and apply the
space-frequency analysis locally to the iris circular sectors to describe their local
features and to construct a compact iris features set.

There exist various tools to represent the signal in the mixed space-frequency
domain. A family of Windowed Fourier Transforms apply Fourier Transform
to windowed signals in time or space. The Gabor transform belongs to this
family, and uses a Gaussian window characterized by its width. The window
width significantly influences the resulting iris features and must be carefully
chosen. We use the space-frequency analysis that employs waveforms indexed
by space, scale and frequency simultaneously, what results in a larger set of
possible tilling in the space-frequency plane, possibly redundant. This directs
our methodology toward a wavelet packet analysis. There is a need to select
appropriate frequencies and scales simultaneously to make the transformation
sensitive to individual features existing in the iris image. In this paper we propose
a systematic selection of appropriate scales and frequencies of the iris coding.
This approach enables our method to be applied for databases of images of
various resolution.

3.2 Application of Zak’s Transform

Gaussian-shaped windows are not orthogonal, i.e., the inner product of any two
windows is nonzero, therefore Gabor’s expansion coefficients cannot be deter-
mined in a simple way. The fastest method of Gabor’s expansion coefficients
determination consists of application of Zak’s transform [3] and is often referred
to as Zak-Gabor’s transform. We outline briefly Zak-Gabor’s transform for a
single iris stripe and a fixed window width.

Denote by gs a one-dimensional Gaussian elementary function of the width
index s, sampled at points 0, . . . , P − 1, namely

gs(p) = e−π
(
(p+ 1

2 )/2s
)2

, p = 0, . . . , P − 1 (1)

where s = 2, . . . , S, and for the stripe length P = 512 we set S = 8. If P is
(typically) chosen to be even, the 1

2 term in (1) makes gs to be an even function.
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Let M be the number of possible translations of gs, and K be the number
of frequency shifts, where, following Bastiaans [3], we always take M = P/K.
A shifted and modulated version gmk;s of the elementary function gs can be
constructed, namely

gmk;s(p) = gs(p − mK)eikp2π/K , p = 0 . . . P − 1 (2)

where m = 0, . . . , M − 1 and k = 0, . . . , K − 1 denote the space and frequency
shifts, respectively, and gs is wrapped around in the P -point domain. The finite
discrete Gabor transform of the iris stripe f� is defined as a set of complex
coefficients amk;s� that satisfy the Gabor signal expansion relationship, namely

f�(p) =
M−1∑

m=0

K−1∑

k=0

amk;s�gmk;s(p), p = 0 . . . P − 1 (3)

Following Bastiaans [3], we further set K = 2s. Note that once the frequency
index k is kept constant, gmk;s may be localized in frequency by a modification
of s. This is done identically as the scaling in a wavelet analysis, hence we call
s the scale index. The number of Gabor expansion coefficients amk;s� may be
interpreted as the signal’s number of degrees of freedom. Note that the number
S of scales together with the stripe size P determine both M and K.

The discrete finite Zak transform Z f�(ρ, φ; K, M) of a signal f� sampled
equidistantly at P points is defined as the one-dimensional discrete Fourier trans-
form of the sequence f�(ρ + jK), j = 0, . . . , M − 1, namely [3]

Z f�(ρ, φ; K, M) =
M−1∑

j=0

f�(ρ + jK)e−ijφ2π/M (4)

where M = P/K. Discrete Zak’s transform is periodic both in frequency φ
(with the period 2π/M) and location ρ (with the period K). We choose φ and
ρ within the fundamental Zak interval [3], namely φ = 0, 1, . . . , M − 1 and
ρ = 0, 1, . . . , K − 1.

Application of the discrete Zak transform to both sides of (3) and rearranging
the factors yields

Z f�(ρ, φ; K, M) =
M−1∑

j

[
M−1∑

m

K−1∑

k

amk;s�gs(ρ + jK − mK)eikρ2π/K

]

e−ijφ2π/M

=

[
M−1∑

m=0

K−1∑

k=0

amk;s�e
−i2π(mφ/M−kρ/K)

][
M−1∑

j=0

gs

(
ρ + jK

)
e−i2πjφ/M

]

(5)

= Fas�(ρ, φ; K, M)Z gs(ρ, φ; K, M)

where Fas�[ρ, φ; K, M ] denotes the discrete 2D Fourier transform of an array of
as� that represents Gabor’s expansion coefficients determined for the iris stripe
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f� and scale s, and Z gs[ρ, φ; K, M ] is discrete Zak’s transform of the elementary
function gs. This shows that Gabor’s expansion coefficients can be recovered from
the product form (5). Once K and M are chosen to be powers of 2 (making also
the signal length P to be a power of 2), the calculation of both Z f [ρ, φ; K, M ]
and Z g[ρ, φ; K, M ], and inversion of 2D Fourier series can employ Fast Fourier
Transform thus yielding computation times proportional to those in the FFT.

3.3 Definition of Iris Features

Calculation of Gabor’s transform for all iris stripes and for all scales results in a
set of coefficients a indexed by the quadruple: within-stripe position, frequency
index, scale and stripe index (m, k, s, �). Inspired by Daugman’s work [2], we
define the signs of the real and imaginary parts of Zak-Gabor coefficients as the
feature set B, namely

B = {sgn(�(amk;s�)), sgn(�(amk;s�))} (6)

where m = 0, . . . , M − 1, k = 0, . . . , K − 1, � = 0, . . . , 2R − 1 and s = 2, . . . , S.
Since Fourier’s transform is symmetrical for real signals, for each position m the
coefficients with the frequency index k > K/2 can be ignored. Since M = P/K,
for each s there are (N−1)P/2 coefficients to be determined. Taking into account
that this analysis is carried out for all iris stripes, and remembering that R =
16, S = 8 and P = 512, the total number of coefficients calculated for the iris
image is R(S−1)P = 57, 344. Both real and imaginary parts are coded separately
by one bit, hence N = |B| = 114, 688 features may be achieved, where | · | denotes
the number of elements in a finite set. The features, positioned identically for
each iris, may thus form a binary vector. Thus, matching two features requires
only a single XOR operation, and the Hamming distance can be applied to
calculate the score.

We stress that B should not be confused with the so called iriscodeTM invented
by Daugman. The latter one is a result of an iris image filtering, while B is
constructed with Gabor expansion coefficients.

3.4 Features Selection

The feature set B selected so far is oversized and only its certain subset will be
included into the final feature set. All elements of B will thus be considered the
candidate features. We propose a two-stage method that selects Zak-Gabor coef-
ficients. We further consider partitions of all candidate features B onto candidate
feature families Bk,s, which represent all candidate features that are labeled by
the same scale k and frequency s, and differ by space indices m and �, namely

Bk,s = {sgn(�(amk;s�)), sgn(�(amk;s�)) : m = 0, . . . , M − 1, � = 0, . . . , 2R − 1}

Stage one: selection of useful features. The first selection stage consists of choos-
ing a subset B

0 of candidate features B, called here the useful features. To de-
termine B

0, we analyze a variability of candidate features. For each feature b
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we calculate the within-eye sum of squares SSW (b), and the between-eye sum
of squares SSB(b). We categorize the features to maximize SSB and minimize
SSW . We tried several methods to solve this multicriteria maximization prob-
lem. The best results were obtained when we minimized the distance from the
most desired point on SSW ×SSB plane. This point was set as

(
minb∈B SSW (b),

maxb∈B SSB(b)
)
, Fig. 2 (left).

We use the order introduced by the above procedure in the set of candidate
features B in a procedure removing a high correlation of candidate features to
increase an ‘information density’. We include k-th candidate feature into the set
B

0 only if it is not strongly correlated with all the features already selected.
We base our useful feature definition on the decidability coefficient d′ [2] cal-

culated for a given feature subset. We calculate the decidability coefficient for
each set of candidate features included into B

0. The decidability varies with
the number of candidate features included: it first grows to reach the maximum
and then decreases. Experiments show that the decidability d′ is highest for
the correlation threshold around 0.3, Fig. 2 (right). For this solution there is
no between-eye – within-eye overlap of sample distributions, i.e., there are no
false matches and no false non-match examples in the estimation data set. The
resulting 324 useful features pass to the second feature selection stage. We may
add that our procedure included only such features for which SSW < SSB.

The higher is the number ν(k, s) of useful features in the candidate features
family Bk,s, the more important is (k, s) in iris recognition. This enables to
categorize these families in the next stage of our selection procedure.

Stage two: selection of feature families Bk,s. To finally decide for the best fre-
quencies k and scales s, independently for real or imaginary parts of the Zak-
Gabor coefficients, we sort Bk,s by decreasing ν(k, s) separately for real and
imaginary parts of coefficients. This procedure prioritizes the families that are

Fig. 2. Left: within-eye sum of squares vs. between-eye sum of squares and the area of
useful features. Right: the decidability coefficient vs. number of useful features selected
for a few correlation thresholds allowed within the useful features set.
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most frequently ‘populated’ by the useful features. Such candidate feature fam-
ilies resulting in maximum d′ are selected to the final feature set. This finally
produces the iris feature set of 1024 bits (128 bytes), containing only four fami-
lies. For this final feature set, we achieved the maximum decidability d′ and no
sample verification errors.

3.5 Features Personalization

Once the optimal feature families, namely the best scale-frequency pairs indexed
by s and k, are selected, the iris features set is calculated for those chosen s and
k and all m = 1, . . . , M − 1, and � = 0, . . . , 2R − 1. Each Zak-Gabor coeffi-
cient can ‘measure’ the correlation between the modulated Gaussian elementary
function gmk;s and the corresponding stripe. The question arises how ‘robust’
are the consecutive Zak-Gabor coefficients against noise, and iris tissue elastic
constrictions and dilations.

Due to a significant variability of the iris tissue, some gmk;s may not conform
with the iris body, resulting in small coefficients. Such a situation is dangerous,
since once the coefficients are close to zero, their signs may depend mostly on a
camera noise, and consequently may weaken the final code. This motivates per-
sonalization of the iris feature sets that employ only those Zak-Gabor coefficients
that exceed experimentally determined threshold, for which the decidability was
maximal. Experiments show a far better discrimination between the irises if the
personalized coding is employed.

3.6 Template Creation and Verification

Typically, more than one iris image is available for enrollment. For a given eye,
a distance is calculated between a feature set of each image and the feature sets
calculated for the remaining enrollment images. As the iris template we select
this feature set, for which this distance is minimal.

Small eyeball rotations in consecutive images may lead to considerable de-
terioration of within-eye comparison scores. This rotation can be corrected by
maximizing the correlation within the images enrolled. Since during verification
the iris image corresponding to the template is unavailable, another methodol-
ogy must be applied. We use an iterative minimization of the comparison score
between Zak-Gabor-based features determined for a set of small artificial shifts
of the iris stripes being verified.

4 System Evaluation and Summary

Figure 3 shows a sample distributions of genuine and impostor comparison scores
achieved for theproposed coding.No sample errorswere observed (FRR=FAR=0%)
for the database used. However, the results must be taken with care since we used
various images of the same eyes for estimation as well as for verification. Consider-
ing statistical guarantees and assuming 95% confidence level for the results
obtained we expect FRR < 0.017 and FAR ∈ 〈0.000093, 0.03〉 in this approach.
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Fig. 3. Sample distributions of genuine and impostor comparison scores in the verifica-
tion stage achieved for Zak-Gabor-based personalized coding with iterative eye rotation
correction. No sample errors were encountered.

The Zak-Gabor coding was used in a number of applications, for instance
in remote access scenario [4], in BioSec European project for the purpose of
the biometric smart card development and it is also an element of the original
iris recognition system prototype with eye aliveness detection [5]. Our feature
selection procedure can be applied also to other iris coding methods.
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