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Abstract. A general methodology for design of biometric verification sys-
tem is presented. It is based on linear feature discrimination using sequen-
tial compositions of several types of feature vector transformations: data
centering , orthogonal projection onto linear subspace, vector component
scaling, and orthogonal projection onto unit sphere. Projections refer to
subspaces in global, within-class, and between-class error spaces. Twelve
basic discrimination schemes are identified by compositions of subspace
projections interleaved by scaling operations and single projection onto
unit sphere. For the proposed discriminant features, the Euclidean norm
of difference between query and average personal feature vectors is com-
pared with the threshold corresponding to the required false acceptance
rate. Moreover, the aggregation by geometric mean of distances in two
schemes leads to better verification results. The methodology is tested and
illustrated for the verification system based on facial 2D images.

Keywords: biometrics, face verification, discriminant analysis, singular
subspace, within-class errors.

1 Introduction

Biometrics is a research field with a practical goal: create applications for uniquely
recognizing humans based upon one or more intrinsic physical and/or behavioral
traits including facial 2D/3D image, voice, fingerprints, eye retinas and irises, hand
measurements, signature, gait and typing patterns. Biometric verification is one of
three tasks which are usually attributed to pattern recognition: object identifica-
tion, object verification, and similar object searching. However, biometric pattern
verification is conceptually different from traditional class membership verifica-
tion. To understand this point let us consider two pattern verification queries:

1. Given an image of a digit, verify whether the digit is five.
2. Given a facial image and a person identifier, verify whether the image matches

to this id.

To solve the first problem a model for image class five is designed and used
to verify the membership of the input image to the queried class. For instance
symbol images x are mapped into a space of features y = M(x) in which mem-
berships to symbol classes are represented by class c probability distributions
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pc(y) Then the predicate ∀c �= 5, pc(y) < p5(y) could be the basis of the ver-
ification. Moreover, such verification is optimal since it results in minimum of
verification error = false acceptance rate + false rejection rate.

To solve the second problem we may follow the above approach. But then each
new human being h in the system should have a new model ph for his/her facial
images in certain feature space. It means that models built for facial databases
in training stage cannot be directly used in testing and exploiting stages of such
verification system since in practice the sets of training persons and exploiting
persons are different.

From the above examples we see that for the biometric verification we need
such a model training procedure which builds a model with parameters to be
used by testing and exploiting procedures.

Since natural human centered pattern classes cannot be used in person veri-
fication biometric systems, another categorization has to be sought. It appears
that differences of human features for the biometric measurements of the same
person (within-class differences) and for different persons (between-class fea-
tures) create a consistent categorization including two specific classes. The speci-
ficity of this two classes follows from the fact that means of these two classes
are both equal to zero. Moreover, for the within-class feature variation could be
sometimes greater than between-class feature variation, i.e. usually the squared
within-class errors are of the same magnitude as squared between-class errors.

Therefore, it is natural to look for such a linear transformation W : R
N → R

n

of original biometric measurements x ∈ R
N (e.g. vectorized pixel matrix of face

image or its 2D frequency representation) into a target feature vector y = W tx
for which within-class differences are decreased while between-class differences
are increased.

To this goal the class separation measure is defined as the ratio of between-
class variation to within-class variation for vectorial data set {x1, . . . , xL} rep-
resented in columns of matrix X ∈ R

N×L :

vX :=
variationb(X)
variationw(X)

(1)

where the within and between class variations are defined together with total
variation via squared Euclidean distance:

variationw(X) :=
1
J2

J∑

j=1

1
L2

j

∑

i1,i2∈Ij

‖yi1 − yi2‖2

variationb(X) :=
1
J2

∑

j1 �=j2

1
Lj1Lj2

∑

i1∈Ij1 ,i2∈Ij2

‖yi1 − yi2‖2

variationt(X) := variationw(X) + variationb(X) =

1
J2

J∑

j1=1

J∑

j2=1

1
Lj1Lj2

∑

i1∈Ij1 ,i2∈Ij2

‖yi1 − yi2‖2

(2)

where J is the number of classes, Lj is the number of j-th class samples (L =
L1 + · · · + LJ) whose index set is denoted by Ij , j = 1, . . . , J.
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It appears that the class variations are not new concepts as they are scaled
forms of class variances which were introduced by Fisher already in thirties of
twentieth century [1]:

varw(X) := 1
J

∑J
j=1

1
Lj

∑
i∈Ij

‖xi − xj‖2

varb(X) := 1
J

∑J
j=1 ‖xj − x‖2

vart(X) := varw(X) + varb(X) = 1
J

∑J
j=1

1
Lj

∑
i∈Ij

‖xi − x‖2

(3)

where xj is the class mean of all j-th class samples in X and x is the grand mean
of all samples in X.

Namely, the following relations are true for class variations and class variances:

variationw(X) = 2vart(X)
J

variationb(X) = 2
(
varb(X) + J−1

J varw(X)
)

variationt(X) = 2vart(X)

(4)

Hence, the class separation measure vX is the affine form of Fisher separation
measure with coefficients solely dependent on the number of classes J :

vX = JfX + J − 1 (5)

2 Classical Optimization of Fisher Measure

The Fisher class separation measure becomes a goal function w.r.t. transforma-
tion matrix W ∈ R

N×n when the source data matrix X is replaced by feature
data matrix Y := W tX.

The standard approach in optimizing (maximizing) f(W ) := fW tX is replac-
ing the scalar product of two vectors by the trace of their outer product:

atb = tr(abt), ‖a‖2 = tr(aat)

Then we observe that the within and between-class variances are traces of within
and between-class covariance matrices, respectively:

Rw(Y ) := 1
L

∑J
j=1

1
Lj

∑
i∈Ij

(yi − yj)(yi − yj)t = W tRw(X)W

Rb(Y ) = 1
J

∑J
j=1(y

j − y)(yj − y)t = W tRb(X)W

f(W ) = fY = tr(Rb(Y ))
tr(Rw(Y )) = tr(W tRb(X)W )

tr(W tRw(X)W ))

(6)

The results of optimization for f(W ) are traditionally called Linear Discrim-
inant Analysis (LDA). Fisher considered the scalar LDA features, i.e. the case
of n = 1 in which W = w ∈ R

n×1, y = wtx is the scalar and the within and
between-class variances are quadratic forms of vectorial variable w. Then the
Fisher measure transforms to Rayleigh quotient w.r.t. matrices Rb and Rw :

f(w) = fy = fwtX =
wtRb(X)w
wtRw(X)w

(7)
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The standard analysis of stationary points for f(W ), W = [w1, . . . , wn],
wi ∈ R

N , i = 1, . . . , n, leads to conclusion that the maximum is achieved by
eigenvectors wi corresponding to the maximal eigenvalue λmax of the following
generalized eigenvalue problem:

Rb(X)W = λRw(X)W (8)

Therefore the rank of matrix W cannot be higher than the rank of eigenvalue
λmax. In practice this rank equals to one and we get the result equivalent to
scalar case with n = 1. Therefore, the additional requirement should be imposed
onto W : rank(W ) = n.

If the matrix Rw is not singular then the optimal solution (Fukunaga [2]) at
this requirement is achieved from Eigenvalue Decomposition (EVD) of symmet-
ric, semi-definite matrix R′

b := C−1
w RbC

−t
w , where Cw is the Cholesky matrix

([3]) for Rw. Firstly, we look for W of rank N as follows:

RbW = λRwW, Rw = CwCt
w, W ′ = Ct

wW
R′

b = W ′Λ(W ′)t

W = C−t
w W ′

(9)

If columns of W ′ are sorted by decreasing eigenvalues λi then we select from W
the first n columns as the solution. This procedure works only if rank(Rw) = N
and rank(Rb) ≥ n.

In Section 3 we discuss the important case of rank(Rw) < N.

3 Optimization of Fisher Measures by Projections in
Error Spaces

In case of singular matrix Rw a sort of regularization is necessary. There are
known two general approaches to this problem:

1. Regularization of data by mapping to Y = P(X) in order to get nonsingular
Rw(Y ).

2. Regularization of LDA model by imposing an additional constraint on full
rank LDA matrix W = [w1, . . . , wn] – for instance orthogonality to kernel
space of Rw :

wi⊥ker(Rw), i = 1, . . . , n (10)

In this section a novel point of view on LDA regularization is presented
which uses the concept of projections in error subspaces. It unifies in one consis-
tent scheme both approaches and integrates also with Dual Linear Discriminant
Analysis (DLDA) [5].

In the presented discriminant analysis the source data matrix Y0 := X under-
goes up to seven linear transformations before reaching the final matrix of features:

Yt−1 −→ Yt, t = 1, . . . , T ≤ 7
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The j-th class indexes Ij are identified by column indexes of data matrix Yt and
they are not changed at data matrix transformations.

There are three types of errors in our approach. They are defined w.r.t.
any data matrix Y = [y1, . . . , yL] and with the fixed class assignments Ij ,
j = 1, . . . , J :

1. Grand error: the difference of data vector yk and the grand mean vector of
Y. This can be modelled by the global centering operation Cg :

ȳ =
1
L

L∑

i=1

yi, Cg(yk) := yk − ȳ, k = 1, . . . , L (11)

2. Within-class error: the difference of data vector yk, k ∈ Ij and its class mean
ȳ(j):

ȳ(j) =
1
Lj

∑

i∈Ij

yi, Cw(yk) := yk − ȳ(j), k ∈ Ij , j = 1, . . . , J (12)

3. Between-class error: the difference of class mean ȳ(j) and grand mean ȳ :

Cb(ȳ(j)) := ȳ(j) − ȳ, j = 1, . . . , J (13)

The error vectors span error linear subspaces denoted as follows:

Eg(Y ) := span(Cg(Y )), Ew(Y ) := span(Cw(Y )), Eb(Y ) := span(Cb(Y )) (14)

Note that Eg(Y ) is related to famous PCA approach recently linked to rough
set [4] verification, too.

The singular bases U (g), U (w), U (b) of the error linear subspaces are obtained
from Singular Value Decomposition (SVD [3]) for matrices Cg(Y ), Cw(Y ), Cb(Y ),
respectively:

Cg(Y ) = U (g)Σ(g)(V (g))t, Cw(Y ) = U (w)Σ(w)(V (w))t, Cb(Y ) = U (b)Σ(b)(V (b))t

where diagonal squared matrices Σ(·) are of size equal to the rank of centered
data matrix C·(). In case of grand and within-class centering singular values are
ordered from maximal to minimal value while in case of between-class centering
the standard SVD order is inverse – the first element on the diagonal is minimal.

Let Y ∈ R
a×L. Then we identify all singular subspaces of dimension a′ ≤

dim(E(Y )) of error spaces by the projection operators which map the space R
a

onto R
a′

– the space of projection coefficients w.r.t. to the singular base Ua′

restricted to the first a′ vectors:

1. P(g)
a,a′ : projection onto grand error singular subspace of dimension a′;

2. P(w)
a,a′ : projection onto within-class error singular subspace of dimension a′;

3. P(b)
a,a′ : projection onto between-class error singular subspace of dimension a′.
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Additional operation required after projection is component-wise scaling by the
first inverse singular values which create the diagonal matrix Σ−1

a′ :

1. S(g)
a′ : scaling of projected vector in grand error singular subspace of dimen-

sion a′;
2. S(w)

a′ : scaling of projected vector in within-class error singular subspace of
dimension a′;

3. S(b)
a′ : scaling of projected vector in between-class error singular subspace of

dimension a′.

In matrix composition terms the projection and scaling operations have the form:

Pa,a′(x) = U t
a′x, Sa′(y) = Σ−1

a′ y (15)

x1

P(g)
N,N′

��

��
��

��
��

��
x2

N:=N′

��

x3
S(w)

q
�� x4

P(b)
q,n

�� x5 ��

Nn

��

x6

S(b)
n ��

��
��

��
��

x �� x0

Cg

��

�� x2

P(w)
N,q

����������

P(b)
N,q ���

��
��

��
� x6

����������
x7 �� y = W tx

x3
S(b)

q
�� x4

P(w)
q,n

�� x5 ��

Nn

��

x6

S(w)
n

����������

x6

����������

Fig. 1. Diagram of LDA type transformations based on projections onto error singular
subspaces

The last operation we use in definition of LDA transformation is the vector
length normalization Na which can be geometrically interpreted as the projection
on the unit sphere in R

a.

Na(x) :=
x

‖x‖ (16)

Using the above notation the all known to authors LDA transformations can
be defined via the diagram in Fig.1. It defines altogether 12 LDA type trans-
formations. For instance in face verification system the following transformation
path on the diagram gives best results:

��
��

��

��

��

��
��

��
��

�� ��

��

		����
		����

In terms of operation compositions we get the following sequence (denoted
here by DLDA) which includes also optimal weighting for matching:

WDLDA := S(w)
n NnP(w)

q,n S(b)
q P(b)

N,qC(g) (17)
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It is better than more popular LDA scheme improved by centering and nor-
malization operations:

WLDA := S(b)
n NnP(b)

q,nS(w)
q P(w)

N,qC(g) (18)

As a matter of fact the discriminant operation maximizing DLDA class sepa-
ration measure is restricted to the composition P(w)

q,n S(b)
q P(b)

N,qC(g) while the final

two operations S(w)
n Nn are responsible for the optimal thresholding of within-

class error which is selected as the distance function for the person id verification.

4 Experiments for Face Verification

From the previous works described in [5] it is already known that in case of face
verification the optimization of inverse Fisher ratio (DLDA) leads to better re-
sults than the optimization of Fisher ratio (LDA). The final weighting of LDA or
DLDA vector components had been also applied since they follow from Gaussian
model of class errors.

Moreover, it was also observed that the normalization operation Nn improves
significantly the equal error rate and ROC function face verification based on
LDA or DLDA. The reason is explained by weak correlation between within-class
error and between-class error. Therefore despite comparable norm magnitude of

  

  

Fig. 2. Receiver operating characteristics and equal error rate for two facial databases
Feret and Mpeg for DLDA and combined LDA+DLDA in single and multi-image
scenarios



Biometric Verification by Projections in Error Subspaces 173

those errors the projection onto the unit sphere separates them while the final
scaling respects the probability of all errors which are projected onto the same
point of the unit sphere.

In the experiments described here we analyze two problems for face verification:

1. Is there any combination of LDA and DLDA class errors which improves
DLDA?

2. What is the degree of improvement if the verification is based on the several
facial images of the same person instead of the single one?

For the first problem we have found (cf. Fig. 2):

– LDA and DLDA class errors are of comparable magnitude.
– Geometric mean of both errors leads to slight improvements of EER and

ROC w.r.t. DLDA error alone.
– The maximum, the arithmetic mean, and the harmonic mean of LDA and

DLDA class errors give intermediate results between the best DLDA results
and significantly worse LDA results.

For the second problem, experiments prove the significant advantage of the
multi-image approach. Confront Fig. 2 where by Person ROC we mean the id
acceptance if at least half of the query images are accepted. The acceptance by
single image is described by Image ROC.

Conclusions. The general methodology presented for design of biometric veri-
fication system based on linear feature discrimination using sequential composi-
tions of several types of feature vector transformations identifies the 12 basic dis-
crimination schemes. The methodology has been tested for the verification system
based on facial 2D images allowing for the choice of two best schemes which ag-
gregated by geometric mean of distances leads to the best face verification results.
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