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Abstract. To reduce the time complexity of attribute reduction algorithm based 
on discernibility matrix, a simplified decision table is first introduced, and an 
algorithm with time complexity (| || |)O C U  is designed for calculating the 
simplified decision table. And then, a new measure of the significance of an 
attribute is defined for reducing the search space of simplified decision table. A 
recursive algorithm is proposed for computing the attribute significance that its 
time complexity is of (| / |)O U C . Finally, an efficient attribute reduction 
algorithm is developed based on the attribute significance. This algorithm is 
equal to existing algorithms in performance and its time complexity is 

(| || |)O C U  2(| | | / |)O C U C+ . 
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1   Introduction 

Recently, some efforts on attribute reduction have focused on dealing with 
inconsistency in decision information systems. Since Pawlak proposed the attribute 
reduction based on positive region [1], there has been some work developed for 
improving the efficiency of the attribute reduction based on positive region [2,3]. 
Latter, Skowron and Hu proposed the attribute reduction based on discernibility 
matrix [4,5]. There have been also other types of knowledge reduction [6,7]. 

In this paper, we study the attribute reduction based on discernibility matrix and to 
design correspondence attribute reduction algorithm. The attribute reduction 
algorithm based on discernibility matrix given in [8-14] starts with an empty set of 
attributes and heuristically adds new attributes one by one, in a greedy way, until a 
super reduction is constructed. In each loop, if the attribute ak frequently occurs in the 
discernibility matrix, it will be added. This is equivalent to choosing the attribute that 
‘discerns’ the largest number of pairs of objects with different decisions. Full details 
of the algorithm can be found in [8-14]. In these algorithms, the elements of 
discernibility matrix are used as the heuristic information. So it must be first to 
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calculate the discernibility matrix. The time complexity and space complexity are 
both 2(| || | )O C U , where C and U are attributes set and objects set of a decision table, 
respectively. The time complexity of these algorithms proposed by authors in [8-10] 
is 2 2(| | | | )O C U . The time complexity of these algorithms proposed by authors in  

[11-14] is cut down to 2((| | log | |) | | )O C U U+ . Hence if the elements of discernibility 
matrix are used as the heuristic information to design attribute reduction algorithm, 
the best time complexity of this kind of algorithm is not lower than 2(| || | )O C U . On 
the other hand, it needs large space to store the discernibility matrix. When the data 
set is very large, algorithm is difficult to operate.  

To lower the time complexity of attribute reduction algorithm based on 
discernibility matrix, we design an algorithm based on the significance of attribute 
and its time complexity is 2(| || |) (| | | / |)O C U O C U C+ . 

The rest of this paper is as follows. In Section 2, we introduce some basic concepts. 
We present our algorithm in Section 3 and illustrate the use of the algorithm with an 
example in Section 4. We summarize this paper in Section 5. 

2   Concepts and Definitions 

In this section, we introduce the basic concepts and correspondence definitions. 

Definition 1. A decision table is defined as ( , , , , )S U C D V f= , where 1 2{ , ,U x x=  

, }nxL  is the set of objects, 1 2{ , , , }rC c c c= L  is the set of condition attributes, D is the 

set of decision attributes, and C D∩ = ∅ ; a
a C D

V V
∈ ∪

= ∪ , where aV  is the value range of 

attribute a. :f U C D V× ∪ →  is an information function, in which an information 

value for each attribute of an object, i.e., , , ( , ) aa C D x U f x a V∀ ∈ ∪ ∈ ∈ . Every 

attribute subset ( )P C D⊆ ∪  determines a binary indiscernibility relation ( )IND P : 

( ) {( , ) | , ( , ) ( , )}IND P x y U U a P f x a f y a= ∈ × ∀ ∈ =  

( )IND P  determines a partition of U, which is denoted by / ( )U IND P  (in short U/P). 
Any element , ( , ) ( , )}[ ] { |P P f x a f y ax y a == ∀ ∈  in U/P is called equivalent class. 

Definition 2. For a decision table ( , , , , )S U C D V f= , let 1 2/ { , , , }kU D D D D= L be the 

partition of D to U, and 1 2/ { , , , }mU C C C C= L  be the partition of C to U, where 

( 1,2, , )iC i m= L  is basic block, then 
/

( ) ( )
i

C i
D U D

POS D C D−∈
= ∪  is called positive region of 

C on D. If ( )CPOS D U= , then the decision table is called consistent, else it is called 

inconsistent. 

Theorem 1. For a decision table ( , , , , )S U C D V f= , there is 

/ , ( , ) ( , )
( )C X U C x y X f x D f y D

P O S D X
∈ ∧ ∀ ∈ ⇒ =

= ∪  

Proof: According to the definition of positive region of C for D, it is easy to know the 
proposition is right. 
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According to Theorem 1, we have the following definition of simplicity decision 
table. 

Definition 3. For a decision table ( , , , , )S U C D V f= , let 1 2/ {[ ] ,[ ] , ,[ ] }C C m CU C x x x′ ′ ′= L  

and 1 2{ , , , }mU x x x′ ′ ′ ′= L . For the definition of positive region, there is 
1

( ) [ ]C i CPOS D x′= ∪  

2
[ ] [ ]

ti C i Cx x′ ′∪ ∪L , where 
1 2

{ , , , }
ti i ix x x U′ ′ ′ ′⊆L  and , [ ]

si Cx y x′∀ ∈  ( 1,2, , )s t= L , there are 

( , ) ( , )f x D f y D= ; let 
1 2

{ , , , }
tpos i i iU x x x′ ′ ′ ′= L  and neg posU U U′ ′ ′= − . It is said that the 5-tuple 

( , , , , )S U C D V f′ ′=  is a simplicity decision table. 

Definition 4.  For a decision table ( , , , , )S U C D V f= , we define discernibility matrix 
( )i jM m= , whose elements are defined as follow: 

, ( , ) ( , ), ( , ) ( , )}{ | j i jk k k ki
ij

C f x f x f x D f x D
m

c c c c⎧ ∈ ≠ ≠⎪
⎨
⎪⎩

=
∅ el se

 

where 1,2,...,k r= . 

Definition 5. For a decision table ( , , , , )S U C D V f= , ( )ijM m=  is discernibility 

matrix, B C∀ ⊆ , if B satisfies: (1) ijm M∀ ∅ ≠ ∈ , such that ijB m∩ ≠ ∅ ; 

(2) b B∀ ∈ , { }B b−  is not satisfied (1), then B is called the attribute reduction of C for 
D based on discernibility matrix. 

In next section, we would define a new reasonable formula for measuring the 
significance of attribute to reduce the search space of simplified decision table.  

3   The Significance of Attribute 

In these old algorithm based on discernibility matrix, it was first to calculate the 
discernibility matrix, so the time complexity of the algorithm is not lower than 

2(| || | )O C U . To cut down the time complexity of the attribute reduction, we designed 
a new and reasonable formula for measuring the significance of attribute to reduce the 
search space of the simplicity decision table. In order to propose the significance of 
attribute, we first introduce the follow proposition. 

Definition 6. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its 
simplicity decision table. B C∀ ⊆ , we define knowledge of the attribute set B for D as 
follow: 

/ ( ) | / | 1 / ( ) | / | 1
( ) { } { }

pos neg
D

X U B X U X D X U B X U X C
Sig B X X

′ ′ ′ ′∈ ∧ ⊆ ∧ = ∈ ∧ ⊆ ∧ =
= ∪ ∪ ∪ . 

where we consider ( )DSig ∅ = ∅ . We can easily know ( )DSig C U ′= . 

Theorem 2. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′= is its simplicity 
decision table, ( )i jM m= is the deiscernibility matrix of the old decision 

table. B C∀ ⊆ , if ( ) ( )D DSig B Sig C= , there is ijm M∀∅ ≠ ∈ such that ijB m∩ ≠ ∅ . 
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Theorem 3. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its simplicity 
decision table, and ( )i jM m= is the discernibility matrix of the old decision 

table. B C∀ ⊆ , if ijm M∀∅ ≠ ∈ such that ijB m∩ ≠ ∅ , there has ( ) ( )D DSig B Sig C= . 

Theorem 4. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its simplicity 
decision table, and ( )i jM m=  is the discernibility matrix of the old decision 

table. B C∀ ⊆ , if ( ) ( )D DSig B Sig C≠ , there must exist 
0 0i jm M∅ ≠ ∈ such that 

0 0i jB m∩ = ∅ . 

Theorem 5. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′= is its simplicity 
decision table. B C∀ ⊆ , if ( ) ( )D DSig B Sig C=  and b B∀ ∈  there is 

( { }) ( )D DSig B b Sig C− ≠ , then B is an attribute reduction C for D based on the 

discernibility matrix. 

Definition 7. (The significance of attribute) For a decision table ( , , , , )S U C D V f= , 
( , , , , )S U C D V f′ ′=  is its simplicity decision table. For P C⊆ , the significance of 

arbitrary attribute a ( ( )a C P∈ − ) to attribute set P is defined as follow: 

( ) ( { }) ( )p D DI a Sig P a Sig P= ∪ − . 

Theorem 6[3]. For a decision table ( , , , , )S U C D V f= , to , ( )P C a C P∀ ⊆ ∀ ∈ − , there is 

/
/( { }) ( /{ })

X U P
U P a X a

∈
∪ = ∪ . 

Theorem 7. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its simplicity 
decision table. For , ( )P C a C P⊆ ∀ ∈ − , there is  

/
/( { }) ( /{ })

X U P
U P a X a

′∈
′ ∪ = ∪ . 

Theorem 8. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′= is its simplicity 
decision table. For , ( )P C a C P⊆ ∀ ∈ − , there is 

( ) ( { }) ( )p D DI a Sig P a Sig P= ∪ −  

/ ( ) /{ } | / | 1
{ }

pos neg posX U P X U X U Y X a Y U Y D
Y

∈ ∧ ⊄ ∧ ⊄ ∧ ∈ ∧ ⊆ ∧ =′ ′ ′ ′
∪U

/ | / | 1 / { } | / | 1
| { }

p o sX U P X U X D Y X a Y D
Y

∈ ∧ ⊆ ∧ ≠ ∧ ∈ ∧ =′ ′
= ∪   

/ ( ) /{ } | / | 1
{ }

pos neg negX U P X U X U Y X a Y U Y C
Y

∈ ∧ ⊄ ∧ ⊄ ∧ ∈ ∧ ⊆ ∧ =′ ′ ′ ′
∪U  

/ | / | 1 /{ } | / | 1
{ }|

negX U P X U X C Y X a Y C
Y

∈ ∧ ⊆ ∧ ≠ ∧ ∈ ∧ =′ ′
∪U . 

4   Algorithm for Calculating the Significance of Attribute 

According to Definition 6, it is first to calculate the simplified decision table before 
calculating the significance of attribute. So we first propose an efficient algorithm for 



 Efficient Attribute Reduction Based on Discernibility Matrix 17 

calculating the simplified decision table. Calculating the simplified decision table is in 
fact to calculate the IND(C). To our best knowledge, the best algorithm for computing 
IND(C) is the algorithm of [3] with the time complexity (| || | log | |)O C U U  at present. 
So we used radix sorting to design a good algorithm for computing IND(C). And its 
time complexity is cut down to (| || |)O C U . 

Algorithm 1. Computing the simplicity decision table 

Input: Decision table ( , , , , )S U C D V f= , 1 2{ , , , }nU x x x= L  , 1 2{ , , , }rC c c c= L  

Output: , ,pos negU U U′ ′ ′ , , (1 )i iM m i s≤ ≤ . 

1. To each ( 1,2, , )ic i r= L , calculate the maximum and minimum of ( , )j if x c  

( 1,2, , )j n= L and denote iM and im  respectively; 

2.  use state list to store the objects 1 2, , , nx x xL  in turn ; let the head pointer of the  

list point to 1x ; 

3.  for (i=1;i<r+1;i++) 
3.1  the ith “distribution”: construct Mi-mi+1 empty queues, let kfront  and 

kend  (k=0,1,…, Mi-mi ) be the head pointer and tail pointer of the kth 

queue respectively. Distribute the object x of the list U to the 
( , )i if x c m− th queue according to the elements order of list U. 

3.2 the ith “collection”: the head pointer of the list points to the head pointer 
of the first nonempty queue, modify the tail pointer of each nonempty 
and let it point to the head object of the next nonempty queue. In this 
way, recombine 1i iM m− +  queues to a new list; 

4.    Let the objects sequence of list from Step 3 be 1 2, , , nx x x′ ′ ′L ; 

t=1; 1{ }tB x′= ; 

for (j=2;j<n+1;j++) 
if any ( 1,2, , )ic C i r∈ = L  there is 1( , ) ( , )j i j if x c f x c−′ ′= ,  

then { }t t jB B x′= ∪ ; 

else {   t=t+1;  { }t jB x′= ;   } 

5.    ; ;pos negU U′ ′= ∅ = ∅  

for ( i=1;i<t+1;i++) 
if any x,y∈ iB  there is ( , ) ( , )f x D f y D= , then we take out the first 

object of iB  to posU ′ ; Else we take out the first object of iB  to negU ′ ; 

      pos negU U U′ ′ ′= ∪ ; 

Complexity analyze of Algorithm 1. the time complexity for the first step of 
algorithm is (| || |)O C U ; the time complexity for the second step is (| |)O U ; the time 
complexity for Step 3.1 is (| | 1)i iO U M m+ − + , the time complexity for Step 3.2 

is ( 1)i iO M m− + , so the time complexity for Step 3 is 
1

(| || | ( 1))
r

i i
i

O C U M m
=

+ − +∑ ; the 

time complexity for Step 4 is (| || |)O C U ; the time complexity for Step 5 is 
(| || |)O D U (the decision attribution usually is only one). Hence the time complexity of 
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algorithm is 
1

(| || | ( 1))
r

i i
i

O C U M m
=

+ − +∑ . In most condition, especially to the large-

scale decision table, there is often 
1
max( 1) | |i ii s

M m U
≤ ≤

− + ≤   ( for example, the 

mushroom in UCI mushroom, it has more 8000 objects and 22 attributions, but these 
attribution values are single letter, so there is at most 26 kinds difference values in 

each attribution.) ,hence (| || |C U +  
1

( 1))
r

i i
i

M m
=

− +∑  | || | | || |C U C U≤ + , therefore the 

time complexity of Algorithm 1 is (| || |)O C U . It is easily to know that the space 
complexity of Algorithm 1 is (| |)O U . 

According to Theorems 7 and 8, we can design the following efficient algorithm 
for calculating the significance of attribute. 

Algorithm 2. compute ( )pI a  

Input：  { | / ((P pos negS X X U P X U X U′ ′ ′= ∈ ∧ ⊄ ∧ ⊄ ) 

( | / | 1) ( | / | 1))}pos negX U X D X U X C′ ′∨ ⊆ ∧ ≠ ∨ ⊆ ∧ ≠ , aM , am ; 

Output： { } { | /( { }) (( )P a pos negS X X U P a X U X U∪ ′ ′ ′= ∈ ∪ ∧ ⊄ ∧ ⊄  

( | / | 1) ( | / | 1))}pos negX U X D X U X C′ ′∨ ⊆ ∧ ≠ ∨ ⊆ ∧ ≠ ； ( )pI a ； 

1.    for (j=1; j<| PS |+1; j++)   jx X∀ ∈ , let .x flag j= ;  // j PX S∈  

2. Let 1 2 | | 1 2{ , , , }
PS zT X X X x x x= ∪ ∪ ∪ =L L ; where ( 1,2, ,| |)j P PX S j S∈ = L ; 

3. use state list to store the objects 1 2, , , zx x xL  in turn ;  

4. construct Ma-ma+1 empty queues, let kfront  and kend  (k=0,1,…, Ma-ma ) be 

the head pointer and tail pointer of the kth queue respectively. Distribute the 
object x∈T of the list to the ( , ) af x a m− th queue according to the elements 

order of list.   //where ,a aM m  are the maximal value and the minimal value of 

the attribute a in the old decision table. 
5. ( ) 0pI a = ; { }P aS ∪ = ∅ ; 

6. It deals with the each not empty queue 1 2{ , , , }hCol y y y= L  as follow acquired 

from the four step; 
t=1; 1{ }tB y= ; 

for (j=2;j<h+1;j++) 
{  if  ( 1. . )j jy flag y flag−==    

{ }t t jB B y= ∪ ; 

else  {  t=t+1; { }t jB y= ;  }; 

} 
           for (i=1;j<t+1;i++) 

if  ( | / | 1i pos iB U B D′⊆ ∧ = )         ( ) ( ) | |p p iI a I a B= ∪ ; 

else    if  ( | / | 1i neg iB U B C′⊆ ∧ = )          

  ( ) ( ) | |p p iI a I a B= ∪ ; 

            else  { } { } { }P a P a iS S B∪ ∪= ∪ ; 
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Complexity analyses of Algorithm 2. The time complexity of the first step is 
(| |)O T ; The time complexity of the fourth step is (| |)O T ; The time complexity of the 

first for cycle of the sixth step is (| |)O Col . The time complexity of the second for 
cycle is also (| |)O Col . So the time complexity of the sixth step is (| |)O T . Therefore, 
the time complexity of Algorithm 2 is (| |)O T . Because of (| |)O T ≤ (| |)O U ′ , the worst 
time complexity of Algorithm 2 is (| |)O U ′ . The space complexity is (| |)O T . For the 
same reason, the worst space complexity of the algorithm is (| |)O U ′ . 

5   Attribute Reduction Algorithm Based on Discernibility Matrix 

According to Algorithms 1 and 2, we now can design an efficient attribute reduction 
algorithm based on discernibility matrix. 

Algorithm 3. Attribute reduction algorithm based on discernibility matrix 

Input: decision table ( , , , , )S U C D V f= , 1 2{ , , , }nU x x x= L , 1 2{ , , , }sC c c c= L ; 

Output: attribute reduction R; 
1. It uses the algorithm 1 to calculate 1 2{ , , , },mU u u u′ = L , ( 1,2, , )i im M i s= L , 

posU ′ , negU ′ ; 

2. let R = ∅ ; 1 2{{ , , , }}R mS u u u= L ; // When algorithm begins, input set S is the 

only one equivalence, i.e. U ′ ; 
3. To each attribute ic C R∈ − , calculating ( )R iI c ;Denote ( )R kI c = max ( )

i
R i

c C R
I c

∈ −
; If 

the attribute like that is not only one, we arbitrary select one； 
4.  If { }kR cS ∪ is an empty set, then stop the algorithm, output the attribute 

reduction { }kR c∪ ；// { }kR cS ∪ is the corresponding output set to calculate 

( )R kI C . 

5. If { }kR cS ∪ ≠ ∅ , then { };kR R c= ∪ The algorithm will turn to step 3; 

The complexity of Algorithm 3. It can be known from Algorithm 1 that the time and 
space complexities of the first step are (| || |)O C U  and (| |)O U  respectively. The worst 
time and space complexity third step are (| |) (| / |)O U O U C′ = from analyzing of 
Algorithm 2. So the worst time and space complexities of the third step are 

(| / || |)O U C C R−  and (| / || |)O U C C R−  respectively. The worst time complexity of 
the third step to the fifth is (| / || |) (| / || 1 |) (| / |)O U C C O U C C O U C+ − + +L   

2(| / || | )O U C C= . The worst space complexity of the third step to the fifth is 
(| / || |)O U C C . Therefore the worst time and space complexities of Algorithm 3 are 

2( (| || |) (| | | / |)O C U O C U C+  and (| |) (| || / |)O U O C U C+  respectively.  

6   Conclusion  

At present, the elements of discernibility matrix are used as the heuristic information 
by all the existing attribute reduction algorithms based on discernibility matrix. In 
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these algorithms, it is first to calculate the discernibility matrix. Because it must be 
first to calculate the Skowron’s discenibility matrix in this kind of attribute reduction 
algorithm, the best time complexity of this kind algorithm is not lower than 

2(| || | )O C U . On the other hand, it needs the large space to store the discernibility 
matrix. Once the data set is very large, algorithm is difficult to operate. To lower the 
time complexity of attribute reduction algorithm based on discernibility matrix, 
firstly, the simplified decision table and the significance  of attribute are introduced. 
Then an efficient attribute reduction based on the significance of attribute is proposed. 
And And it is proved that our algorithm is equivalent to existing algorithms in 
performance and the time complexity is (| || |)O C U  2(| | | / |)O C U C+ .  
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