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Abstract. A novel algorithm for finding algebraic base of singular sub-
space for signal information system is presented. It is based on Best
Rank One Matrix (BROM) approximation for matrix representation of
information system and on its subsequent matrix residua. From alge-
braic point of view BROM is a kind of power method for singular value
problem. By attribute centering it can be used to determine principal
subspace of signal information system and for this goal it is more accu-
rate and faster than Oja’s neural algorithm for PCA while preserving its
adaptivity to signal change in time and space. The concept is illustrated
by an exemplary application from image processing area: adaptive com-
puting of image energy singular trajectory which could be used for image
replicas detection.
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1 Introduction

Signal information system is a special kind of information system in Pawlak’s
sense [I] in which objects are certain signal (multimedia) objects such as images,
audio tracks, video sequences while attributes are determined by certain discrete
elements drawn from spatial, temporal, or transform domain of signal objects.

For instance the Discrete Cosine Transform frequency channel represents a
DCT coefficient which specifies a share of such frequency in the whole signal
object.

Having n signal objects and m DCT frequency channels we get an information
system which can be represented by a matrix A € R"*™. In case of Discrete
Fourier Transform the matrix has complex elements and A € C"™*™.

The columns of A € R™*™ define n attributes A = [a4, ..., a,] and they can
be considered as elements of m dimensional vector space: a; € R™, 1 =1,...,n.

In order to use algebraic properties of the vectorial space the attributes should
have common physical units or they should be made unit-less, for instance by
an affine transform, such as attribute centering and scaling.

Having attributes in the vectorial space we can define their dependence by the
concept of linear combinations and by the related concepts of linear independence
and linear subspace.
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In such approach we start from the subspace span(A) which includes all finite
linear combinations of columns of A, i.e. attributes aq,...,a,. If the dimension
of span(A) equals to r, i.e. if rank(A) = r then we can find a nested sequence of
r+1 linear subspaces of increasing dimensionality starting from the null subspace
Sp :={0,,} and ending at S, :=span(A) :

ScS c---CcS.1CS,

In the infinite number of nested subspace sequences for the given matrix A,
there is a specific class of singular subspaces defined for A by the condition of
minimum projection error. Namely, let Psa be the orthogonal projection of a
onto the subspace S. Then the singular subspace S, of dimension ¢ <rank(A)
minimizes the following squared projection error in norm Is :

Sy = argdmr{un Z la; — Psa;l|3 .

The unit vector u spanning S is called the singular direction. We say that
the attributes a1, ..., a, are centered if their mean is zero vector, i.e. Z _a; =
0,,. In case of centered attributes the singular subspace is called the principal
subspace and the singular direction is called the principal direction.

In practice the singular subspace of matrix A is found from Singular Value
Decomposition (SVD) of matrix A to orthogonal matrices U,V and diagonal
matrix X :

A= UZVt, U S Rmxr, UtU = dpxr
Y =diag(oy,...,0.), VERY" VIV =1, .

Namely, the first ¢ columns of U = [u, ..., u,] span the singular subspace S; =
span(uy, ..., u,).

Traditionally principal subspaces are obtained from Eigenvector Decomposi-
tion (EVD) of the outer product of centered matrix A :

AAY =UAU?

This procedure is known as Principal Component Analysis (PCA) — one of the
most famous transformations in signal theory [2]. The traditional approach,
though very efficient, is not adaptive to change of matrix A. In case of PCA
there is also well known Oja neural scheme [3] which stochastically approxi-
mates the principal direction. However, it can be used to centered data only and
therefore is not applicable to the general case of singular direction. In this paper
another adaptive scheme is presented. It is based on analysis of rank one matrix
approximations of the information system.

2 BROM Algorithm for Singular Subspace

Let us consider a signal information system with m objects and n real valued at-
tributes. Then it is represented by a matrix A = [a1,...,a,] € R™*" a; € R™.
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If the linear subspace spanned by attributes a; has the dimension r, i.e. if
rank(A) = r, then for any ¢ < r we consider the following problem: Find a
matrix X € R™*™ of rank q which is the best approximation of A in Frobenius
norm, i.e. it minimizes |A — X||p. We call this problem as best rank g matriz
and in particular for ¢ = 1 we have BROM problem, i.e. best rank one matrix
problem.

It appears that it is enough to know an algorithm for BROM problem, in
order to get incrementally the solution X, for any ¢ < :

Xo = Omxn; for g=1,...,rank(A)—1: X, := X;_1 +BROM(A—X,_1); (1)

On the other hand the matrix X of rank one has a shorter nonlinear parametriza-
tion with m + n variables. Namely the following property is true: The matriz
X € R™*™ 4s of rank one if and only if there exist vectors u € R™, v € R™,
u#0,v#0, such that X = uvt. Therefore we can state the following optimiza-
tion goal function e of two vectorial parameters u, v :

e(u,v) := |A —wo'||%, u €R™, v € R" (2)

It is easy to find a necessary and sufficient condition for the stationary points of
e, i.e. the zero gradient points of e(u, v) :

B Aty B Av 3)
T a2 T ol

Moreover, at fixed u (v) the actual minimum of e can be explicitly found:

— At fixed u € R™,u # 0 the optimal v,y € R™ minimizing e(u,v) has the
form: ,
Vopt = @H“g, e(u, vopt) < e(u,v), Yv € R" )
e(u, vopt) = |AlI% — lull3llvopt 13
— At fixed v € R™, v # 0 the optimal uep, € R™ minimizing e(u,v) is of the
form: "
Uopt = ”vﬁ)fz, e(Uopt,v) < e(u,v), Vu € R™ %)
e(topt, v) = [|All% — lluopel3lI]13
The algorithm BROM looks for the best rank one matrix uv? of the matrix A
by the following locally optimal steps for i =0,1,---:

1. for u; determine the optimal v;11;
2. for v;41 determine the optimal ;4.

Using the explicit formulas for u,p: and v,y we get the following iterative scheme:

up := nonzero column of A 6)
L Atwy . Avi -
Vil 2= )20 Wit = oggq )20 © 7 0,1,2,...

For practical use the following form of BROM has been elaborated which returns
the singular direction in vector wu.
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algorithm [u,v] := brom(A)
u := the first nonzero column of A
if v = 0 then return endif
do

L Alu . Av
U= ufzs Y= )2

until (||ul - ||v| stabilizes)
vi= vk full; wi=u/lluf
endalgorithm

Since at the exit of BROM we have v = Atu, the coordinate of column a; w.r.t.
to the vector u is v;, ¢ = 1,...,n. It is interesting that when a symmetric matrix
A is input of the BROM, the algorithm produces as u the eigenvector correspond-
ing to the eigenvalue \,,q, of maximum absolute value and A\yqe = u!Au. This
follows from the observation that modulo a scaling factor, the BROM algorithm
performs iterations of the power method for the matrix A% which has the same
eigenvectors as A, but for squared eigenvalues. Since the power method com-
putes the maximal eigenvalue for A2 then for A it corresponds to the maximum
absolute eigenvalue.

3 Outline of BROM’s Convergence Analysis

The strict proof of convergence for BROM has been recently developed by the
author, but the limit of pages for this paper allows only for an outline of BROM’s
convergence analysis.

We analyze the sequences defined by (). The first observation concerns the
behavior of norms for the sequences. Namely, the norms of vectorial sequences
u; and v; satisfy the following inequalities for ¢ = 1,2, - :

[uil[l[oil| < [[Allr
lilllloill < Nwillllvieall < lwirallvi |
luill < flwipall, 1< fJosll < floiga ]

Hence, the norms of the sequences are bounded and monotonic. Thus the
sequences of norms ||u;||, ||v;|| are convergent.

Let A be an eigenvalue of the matrix B. Then we denote by W(B,\) the
subspace of all eigenvectors defined by eigenvalue A :

W(B, ) :={u: Bu= \u}

The remaining convergence analysis can be summarized in six properties
which are stated in the following theorem.

Theorem 1 (on convergence of BROM).

1. The wvectorial sequence u; is convergent in ly to an eigenvector u, of the
matriz AA corresponding to the largest eigenvalue \ for which the initial
vector ug is not perpendicular to the eigenvector subspace W (AA!, N).
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2. The vectorial sequence v; is convergent in ly to the vector v, = Alu./||u.|/?.

3. The vector u/||u.|| is the singular direction with the singular value VA and
the singular coordinates v/ v, /||vs]|.

4. The matrix sequence uivf is convergent in Frobenius norm to the matriz u,vt
which is the stationary point of the objective function e(u,v).

5. If ug is not perpendicular to the eigenvector subspace W (AA®, \paz) for
the mazimal eigenvalue of the matriz AA* then the matriz sequence u;v!
is convergent w.r.t. Frobenius norm to the matriz u,v. which is the global
minimum of the objective function e(u,v) and e(u.,v) = ||A|% — Anaz-

6. The stop condition for BROM algorithm selected in the form:

lwirallllvipall = lJuslllloill <€
implies the stabilization of the objective function: e(u;, v;)—e(uiy1, Vit1) < €.

The above theorem explains why in the stop condition we can replace the original
requirement for w;v! stabilization by less costly condition of stabilization for
the norm product ||u;|/||vi]|. Namely, the convergence of the matrix sequence
u;v! enables observing of this convergence indirectly in the range of the error
function e(u;, v;). But from the last property of the theorem we have seen that
the convergence of e(u;, v;) can be detected from the convergence of the sequence

[[il[[[oi]]-

4 Application: Image Energy Singular Trajectory

In many applications images are decomposed into small size blocks in order
to make local analysis which is more efficient or more problem relevant. The
blocks of the decomposition can be disjoint or overlapping. For instance in JPEG
compression [4] the blocks are of size 8 x 8 and they are not overlapping. In some
applications the order of blocks is irrelevant while in some their relative locations
in the sequence is important.

Having a fixed ordering of blocks, for instance according the raster scan or
along the Hilbert curve, we can introduce a concept of signal energy trajectory
for the given image. Namely, each image block is characterized by the signal
energy measured by the sum of squared pixel intensities.

The signal energy as a block feature is not invariant to most image processing
operations. However, if we consider the fractional distribution of the energy in
singular channels defined by singular directions of image blocks, the situation is
much better and such features can be used for instance to image replica detection
[5] even if replica have been invisibly processed to cheat web robots.

Let us define the image energy singular trajectory of rank r more formally. Let
f1,..., fr be the sequence of pixel blocks drawn from the image f. It means that
Ji :== flp, for a rectangular sub-domain D; of the image domain D. Performing
the singular decomposition of the matrix f;, we consider only  dominant singular
values 0;(1),...,0:(r).
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It is well known that the signal energy of block f; is decomposed into the sum
of all squared singular values of f; :

I =3t 3
; ||f,

The image energy singular trajectory of rank r is defined as the sequence of
points in r dimensional unit cube [0, 1]"
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Fig. 1. Dependence of energy distribution in singular channels for various JPEG com-
pression quality. For bottom graphs lower curves correspond to higher index of energy
channel while for the right upper graph to the higher quality index.

The rationale for this novel concept is getting a fine characterization of signal
energy distribution with its spatial coherency to be represented by trajectory
concept. Since trajectories can be normalized by its re-sampling to a standard
discrete interval, changes of image resolutions, cutting of windows, and local
affine image transformations could be detected in trajectory segments by point
proximity analysis for trajectories in time-energy space.
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If small rank trajectories are enough for a particular application then we
expect that BROM algorithm can be recommended in place of standard SVD
algorithm. In the remaining part of this section few such practical cases are
analyzed.

JPEG quality measure. In image compression the quality is usually measured by
error image global analysis. The error image is the difference between decoder’s
output image and encoder’s input image computed pixel-wise.

The most popular image fidelity measures are based on mean squared error
(MSE) which is a scaled version of squared Frobenius norm for the error im-
age. More subtle fidelity measures have vectorial character such as SVD based
measures [6].

We analyze the distribution of compression error energy for an image of ar-
chitectural scenes. Let JPEG quality index be from the set:

Q = {1,2,5,10, 20, 30, 40, 50, 60, 70, 80, 100} .

Then for the image of Fig. [[] the average distribution of energy in error images
for those quality indexes w.r.t. all eight singular directions is presented. We see
that most of energy is included in the first three singular directions (so called the
energy channels) — from 95% for low quality images down to 80% for high quality
image. We observe that the proposed measure is uncorrelated with human eye
sensitivity: the highest drop of energy corresponds to best visual quality interval
[70,100]. This is very desirable property for image replica detection.

FLOPS for BROM and SVD
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Fig. 2. Number of floating point operation at computing image energy singular trajec-
tory by BROM and SVD (horizontal line) as function of singular subspace dimension

Trajectory complexity for BROM and SVD. It is interesting to compare the
computational efficiency of using BROM to find the image energy singular tra-
jectory w.r.t. the classical approach using Singular Value Decomposition for im-
age blocks. Since SVD returns all singular values of image blocks it seems that
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BROM should be much faster. The expectation is confirmed up to rank » = 3
(cf. Fig. B)) at the arithmetic precision 10710 for singular values.

For this kind of applications when signal information systems are relatively
small the adaptivity of BROM results in less than 5% reducing of complexity.

At comparison, the SVD complexity has been evaluated on the basis of the
formulas given in [7]. Other experiments show that BROM algorithm is more
accurate and faster than Oja algorithm [3] when applied for centered data to
find the principal direction.
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Fig. 3. Dependence of energy distribution in singular channels for various image
contrasting and brightening operations

Energy distribution at image contrasting and brightening. In this experiment we
change the image contrast and its brightness using scaling parameter s € (0, 1) :

fs ::(175)'f+3'fmam

where fq. is the maximum value of image f. This kind of image processing
operations in the same time reduces contrast by factor (1 — s) and in a sense
compensates this by increase of brightness to preserve the maximum value of
image intensity. For small s the processing effect is invisible, but the change in
the signal energy is significant.

Figure Blshows two processed versions of image from Fig.[Il The left image is
processed with s = 0.05 and the right one with s = 0.4.

Experiments show that the error in image energy distribution slightly depends
on s and for singular channels with indices higher than three (lower curves on
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the left graph of Fig. Bl) is marginal (less than 0.04%). The maximum change
is observed for the dominant singular subspace (top curve) but even for max-
imal s = 0.4 the change of energy share for this channel is less than 0.4%. It
means that the energy distribution is a good invariant for image contrasting and
brightening operations and it in this context is useful for image replica detection.
The right graph on Fig. Bl confirms the rule of three observed in context of
JPEG image quality: the most of change in image energy distribution is observed
in the first three singular channels. The curves in this graph are indexed by the
parameter s with s = 0.05 for the bottom curve and s = 0.4 for the top one.

5 Conclusions

BROM algorithm is a practical alternative for SVD in finding algebraic base of
singular subspace for signal information systems.

From algebraic point of view BROM is a kind of power method applied for
singular value problem and it can be specialized to be a novel power method for
eigenvalue problem.

By attribute centering it can be used to determine principal subspace of signal
information system and for this goal it is more accurate and faster than Oja’s
neural algorithm for PCA while preserving its adaptivity to signal change in
time and space.

In exemplary application computing image energy singular trajectory it ap-
pears faster than SVD for rank less than four. The trajectory approach is the
useful tool applicable to image replica detection.
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