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Abstract. A pulping process is studied to illustrate a new methodology in the 
field of decision engineering, which relies on the Dominance Rough-Set-based 
Approach (DRSA) to determine the optimal operating region. The DRSA 
performs a rough approximation of preferences on a small set of Pareto-optimal 
experimental points to infer the decision rules with and without considering 
thresholds of indifference with respect each attribute in the decision table. With 
thresholds of indifference, each rule can be represented by three discrete values 
(i.e. 0; 0.5; 1). A value of (1) indicates the first point, in a pair wise comparison, 
is strictly preferred to the second point from the Pareto domain. A value of (0) 
indicates the opposite relation whereas a value of (0.5) indicates that the two 
points are equivalent from an engineering point of view. These decision rules 
are then applied to the entire set of points representing the Pareto domain. The 
results show that the rules obtained with the indifference thresholds improve the 
quality of approximation. 
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1   Introduction 

During the operation of an industrial process, the operator should ideally select values 
of input parameters/variables from a performance criterion point of view. The main 
problem facing the decision maker is that the range of parameter/variable values is 
usually very large and the number of their combinations is even larger such that a 
decision aid methodology is required to assist the decision maker in the judicious 
selection of all values of the process parameter/variables that lead to the best 
compromise solution in the eyes of the expert that has a profound knowledge of the 
process. This is at the core of a new decision engineering methodology, which mainly 
consists of three steps: 

1. Process modelling, 
2. Determination of the Pareto domain defined in terms of input parameters, and  
3. Pareto Set ranking by the Rough Set Method. 
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The rough set method allows capturing relatively easily valuable, at time 
unconscious, information, from an expert that a profound knowledge about the 
operation for the process in other to establish a ranking method that will be used to 
rank the entire Pareto domain. 

2   Process Modelling 

This methodology will be illustrated using a pulping process example. In the pulping 
process it is necessary to choose, using an appropriate multicriteria methodology, the 
set of operating conditions that will give the optimal quality of the pulp and the 
resulting paper sheet. The pulping process is a very complex nonlinear process for 
which a model is not readily available. It is therefore desired to have a model that can 
predict the various quality characteristics of the final product. To derive this model, a 
series of experiments were conducted by Lanouette et al. [4] in a pilot-scale pulp 
processing plant located in the Pulp and Paper Research Centre at Université du 
Québec à Trois-Rivières. 

Among the numerous performance criteria, four objective criteria were retained as 
the most important ones for this process (see Thibault et al. [7] and Renaud et al. [6] 
for a more complete description of the process). The aim in this process is to 
maximize both the ISO brightness (Y1) and the rupture length (Y4) of the resulting 
paper sheet, while reducing the specific refining energy requirement (Y2) and the 
extractive contents (Y3). The experimental design that was used to perform the 
experiment is a D-Optimal design where seven input variables were considered. A D-
Optimal design consists of a group of design points chosen to maximize the 
determinant of the Fisher information matrix (X’X). To model each of the four 
performance criteria of the process, stacked feedforward neural networks were used. 
Each neural network used the seven input process variables. 

3   Determination of the Pareto Domain 

The next step of the methodology consists of determining the region circumscribing 
all feasible solutions of the input variables represented by a large number of data 
points. An extension of the traditional genetic algorithm is suggested to deal with 
discretized data by introducing the dominance concept (see [3]). The procedure to 
obtain a good approximation of the Pareto domain is relatively simple. The n points 
randomly chosen initialize the search algorithm. For each point, the performance 
criteria are evaluated. A pair wise comparison of all points approximating the Pareto 
domain is performed. Then a dominance function, consisting of counting the number 
of times a given point is dominated by the other points, is calculated. A fraction of the 
dominated points corresponding to those most dominated is discarded. The non-
dominated and the least dominated points are retained and recombined to replace the 
most dominated ones that were discarded. The recombination procedure is applied 
until all points are non-dominated. In the case of the pulping process, the Pareto 
domain defined in terms of input variables is represented by 6000 points. This number 
of points is too numerous to allow the decision-maker to easily select the zone of 
optimal conditions. For this reason it is necessary to use a ranking algorithm to 
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establish the optimal region of operation. The next step of this overall methodology 
deals with this problem. The particular method used in this investigation is the Rough 
Set Method which is based on the Dominance Rough-Set-Based Approach (DRSA) 
(see [1]). 

4   Ranking the Entire Pareto Set Using the Rough Set Method  

The Rough Set Method is used to rank a large number of non-dominated points 
approximating the Pareto domain. The implementation of this ranking scheme is 
based on the Rough Set theory suggested by Pawlak [5], and developed by  Greco  
et al. [1-2,7]  and Zaras  [9], a method known as the Dominance Rough-Set–based 
Approach (DRSA).  

The procedure of this ranking method can be summarized as follows (see Thibault 
et al. [8]). First, a handful of points, usually (4-7), from different regions of the Pareto 
domain are selected and presented to a human expert who has a profound knowledge 
of the process. The expert is given the task of ordering the subset of points from the 
most preferred to the least preferred (Table 1). After creating the ranked subset, the 
expert specifies the indifference threshold for each criterion. The indifference 
threshold corresponds to measurement error as well as possible limits in the human 
detection of differences in a given criterion. Especially, the indifference threshold for 
a particular criterion is defined as the difference between two values of that criterion 
that is not considered significant enough to rank one value as preferred over another 
(Table 2).  

Table 1. Subset of points from the Pareto domain ranked by the expert 

Point  Y1 Y2 Y3 Y4 

16 66.95 7.04 0.311 4.07 

271 69.49 7.64 0.218 3.76 

223 68.82 7.26 0.166 3.54 

4671 69.46 7.91 0.222 3.89 

12 66.99 7.25 0.526 4.14 

2 68.68 6.29 0.469 2.55 

1 67.85 6.53 0.273 1.94 

The next step is to establish a set of rules that are based on the expert’s ranked 
subset and indifference thresholds. Here, each point in the ranked subset is compared 
to every other point within that set in order to define “rules of preference” and “rules 
of non-preference”. Each rule can be represented by a vector containing two (i.e. 0; 1, 
see Table 3) or three values (i.e. 0; 0,5; 1, see Table 4) depending if the comparison is 
performed without or with indifference thresholds. The dimension of each vector is 
equal to the number of attributes. In the case without thresholds a value of (1) for a 



 Ranking by Rough Approximation of Preferences 145 

given criterion indicates the first point of the compared pair is preferred to the second 
point whereas a value of (0) indicates the criterion of the second point is preferred to 
the first point. However, it is not known if the point is weakly or strongly preferred 
for that particular criterion. In the case with thresholds of indifference, a value of (1) 
indicates the first point of the compared pair is strictly preferred to the second point 
from the Pareto domain, a value of (0) indicates the opposite relation and (0.5) 
indicates the indifference because the gap between the two values of the criterion is 
not sufficient to allow choosing one point over the other. The conjunctions (0.5 ∨ 1) 
and (0 ∨ 0.5) indicate the weak preference and the weak non-preference, respectively. 
These decision rules are then applied to the whole set of points approximating the 
Pareto domain where all pairs of points are compared to determine if they satisfy a 
preference or a non-preference rule. 

Table 2. Indifference thresholds for each criterion 

Criterion Description Threshold 

Y1 ISO Brightness 0.50 

Y2 Refining Energy 0.40 

Y3 Extractives Content 0.05 

Y4 Rupture Length 0.30 

Table 3. Set of rules for the ranked set without indifference thresholds 

Preference rules Non-preference rules 

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 

0 0 1 1 1 1 0 0 

1 1 0 1 0 0 1 0 

The quality of the approximation expresses the ratio of all pairs of points in the 
ranked subset correctly ordered by “rules of preference” and “rules of non-
preference” to the number of all the pairs of points in the ranked subset.  The quality 
of approximation in the case without thresholds is equal to 0.38. 

The quality of the approximation in the case with thresholds is equal to 0.57, which 
indicates that the quality of the approximation with the thresholds is significantly 
improved. 

The last step of the Rough Set method is to perform a pair wise comparison of all 
6000 points of the Pareto domain to determine if a preference or non-preference rule 
applies.  If a preference rule is determined, the score of the first point is incremented 
by one and the score of the second point is decreased by one. The opposite operation 
is performed if a non-preference rule is identified. The scores of all Pareto-optimal 
points were initially set to zero. When all points are compared, the point that has the 
highest score is considered to be the optimal point. It is however preferable to 
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examine the zone of the Pareto domain where a given percentage of the best points 
are located rather than considering an individual point. The Rough Set Method 
provides a clear recommendation as to the optimal zone of operation. 

Table 4. Set of rules for the ranked set with indifference thresholds 

Preference rules Non-preference rules 

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 

- - 0.5 1 - - 0.5 0 

- 1 - 0.5 ∨ 1 - 0 - 0.5 ∨  0

0.5 0.5 1 0.5 0.5 0.5 0 0.5 

1 0.5 0 0.5 1 0 0 0 

5   Results and Conclusions 

Results obtained using the Rough Set Method (RSM) are presented in Fig. 1 without 
thresholds and in Fig. 2 with thresholds. Two-dimensional graphical projections show 
the results for both cases of the ranking the 6000 points of the Pareto front. The first 
10% corresponding to the highly-ranked points are plotted using dark points.   

 

             

Fig. 1. Graph of the Pareto Front ranked by RSM without thresholds 

The optimal region satisfies very well three of the four criteria. The choice of the 
expert is very clear, he can sacrifice having a higher specific refining energy (Y2 
being highest in the optimal region when it should be lowest) to have all the other 
criteria (Y1, Y3 and Y4) being satisfied extremely well. In RSM, there is always at 
least one criterion that has to be sacrificed because a preference rule cannot contain all 
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ones. Indeed, if a rule contained all ones this would mean that one of the two points 
that led to that rule would dominate the other point.  

In this paper, two Dominance Rough–Set-based Approaches have been compared 
based on the extraction of rules from a subset of Pareto-optimal points ranked by a 
DM with and without indifference thresholds. The comparison of the quality of 
approximation indicates that the quality performance is improved with using the 
thresholds. However, the improved quality doesn’t reduce the region of highly-ranked 
points. On the contrary, we can see on the graphical projections of the Pareto Front 
that this region is getting larger. There seems to have more nuance in the choice of the 
decision maker. 

The introduction of indifference thresholds to the Dominance Rough-Set-based 
Approach (DRSA) also allows to make a difference between weaker and strict partial 
preferences with respect to each criterion for each decision rule.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graph of the Pareto Front ranked by RSM with thresholds 
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