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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to generalize classical rough set approach when consideration
of monotonicity between degrees of membership to considered concepts
has to be taken into account. This is typical for data describing vari-
ous phenomena, e.g., “the larger the mass and the smaller the distance,
the larger the gravity”, or “the more a tomato is red, the more it is
ripe”. These monotonicity relationships are fundamental in rough set
approach to multiple criteria decision analysis. In this paper, we propose
a Bayesian decision procedure for DRSA. Our approach permits to take
into account costs of misclassification in fixing parameters of the Variable
Consistency DRSA (VC-DRSA), being a probabilistic model of DRSA.

Keywords: Bayesian Decision Theory, Dominance, Rough Set Theory,
Variable Consistency, Cost of Misclassification.

1 Introduction

Rough set theory has been proposed by Pawlak in the early 80s [5,6] as a tool for
reasoning about data in terms of granules of knowledge. While the original rough
set idea is very useful for classification support, it is not handling a background
knowledge about monotonic relationship between evaluation of objects on con-
dition attributes and their evaluation on decision attributes. Such a knowledge
is typical for data describing various phenomena and for data describing mul-
tiple criteria decision problems. E.g., “the larger the mass and the smaller the
distance, the larger the gravity”, “the more a tomato is red, the more it is ripe”
or “the better the school marks of a pupil, the better his overall classification”.
The monotonic relationships within multiple criteria decision problems follow
from preferential ordering of value sets of attributes (scales of criteria), as well
as preferential ordering of decision classes. In order to handle these monotonic
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relationships between conditions and decisions, Greco, Matarazzo and S�lowiński
[2,3,7] proposed to substitute the indiscernibility relation for a dominance rela-
tion. Dominance-based Rough Set Approach (DRSA) permits approximation of
ordered sets. When dealing with preferences, monotonicity is expressed through
the following relationship: “the better is an object with respect to (w.r.t.) con-
sidered points of view (criteria), the more it is appreciated”. The definitions
of rough approximations originally introduced in DRSA are based on a strict
application of the dominance principle. However, when defining non-ambiguous
objects, it is reasonable to accept a limited proportion of negative examples, par-
ticularly for large data tables. Such extended version of DRSA is called Variable
Consistency DRSA model (VC-DRSA) [4] being a probabilistic model of DRSA.
The focus of this paper is on extending the Bayesian decision theoretic frame-
work [1], already introduced in case of classical rough set approach [8], to the
VC-DRSA model. The paper is organized as follows. In the next section, the gen-
eral principle of DRSA are recalled, together with a presentation of VC-DRSA.
In the third section, a Bayesian decision procedure for DRSA is presented. The
last sections contains conclusions.

2 Dominance-Based Rough Set Approach

In data analysis, information about objects can be represented in the form of an
information table. The rows of the table are labelled by objects, whereas columns
are labelled by attributes and entries of the table are attribute-values. Formally,
by an information table we understand the 4-tuple S =< U, Q, V, f >, where U
is a finite set of objects, Q is a finite set of attributes, V =

⋃
q∈Q Vq, where Vq is

a value set of the attribute q, and f : U × Q → V is a total function such that
f(x, q) → Vq for every q ∈ Q, x ∈ U , called an information function [6]. The set
Q is, in general, divided into set C of condition attributes and set D of decision
attributes. Assuming that all condition attributes q ∈ C are criteria, let �q be
a weak preference relation on U w.r.t. criterion q such that x �q y means “x
is at least as good as y w.r.t. criterion q”. We suppose that �q is a complete
preorder, i.e. a strongly complete and transitive binary relation, defined on U
on the basis of evaluations f(·, q). Without loss of generality, we can assume
that for all x, y ∈ U , x �q y iff f(x, q) ≥ f(y, q). Furthermore, let us assume
that the set of decision attributes D (possibly a singleton {d}) makes a partition
of U into a finite number of decision classes Cl = {Clt, t ∈ T }, T = {1, ..., n},
such that each x ∈ U belongs to one and only one class Clt ∈ Cl. We suppose
that the classes are preference-ordered, i.e. for all r, s ∈ T , such that r > s, the
objects from Clr are preferred to the objects from Cls. More formally, if � is
a comprehensive weak preference relation on U , i.e. if for all x, y ∈ U , x � y
means “x is at least as good as y”, we suppose:

[x ∈ Clr, y ∈ Cls, r > s] ⇒ [x � y and not y � x].

The above assumptions are typical for consideration of a multiple-criteria sorting
problem. The sets to be approximated are called upward union and downward
union of classes, respectively:
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Cl≥t =
⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls, t = 1, ..., n.

The statement x ∈ Cl≥t means “x belongs to at least class Cl t”, while x ∈ Cl≤t
means “x belongs to at most class Cl t”. Let us remark that Cl≥1 = Cl≤n = U ,
Cl≥n =Cln and Cl≤1 =Cl1. Furthermore, for t=2,...,n, we have:

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

The key idea of rough sets is approximation of one knowledge by another
knowledge. In classical rough set approach (CRSA) [6], the knowledge approxi-
mated is a partition of U into classes generated by a set of decision attributes;
the knowledge used for approximation is a partition of U into elementary sets of
objects that are indiscernible with respect to a set of condition attributes. The
elementary sets are seen as “granules of knowledge”. In DRSA [2,3,7], where
condition attributes are criteria and classes are preference-ordered, the knowl-
edge approximated is a collection of upward and downward unions of classes
and the “granules of knowledge” are sets of objects defined using a dominance
relation, instead of an indiscernibility relation used in CRSA. This is the main
difference between CRSA and DRSA. In the following, in order to gain some
more flexibility, we use the variable consistency DRSA model [4] which has its
counterpart within the CRSA in the variable precision rough set approach [9,10].
Let us define now the dominance relation. We say that “x dominates y w.r.t.
P ⊆ C, denoted by xDP y, if x �q y for all q ∈ P .

Given a set of criteria P ⊆ C and x ∈ U , the “granules of knowledge” used
for approximation in DRSA are:

– a set of objects dominating x, called P -dominating set,

D+
P (x) = {y ∈ U : yDP x},

– a set of objects dominated by x, called P -dominated set,

D−
P (x) = {y ∈ U : xDP y}.

For any P ⊆ C we say that x ∈ U belongs to Cl≥t with no ambiguity at con-
sistency level l ∈ (0, 1], if x ∈ Cl≥t and at least l × 100% of all objects y ∈ U

dominating x w.r.t. P also belong to Cl≥t , i.e.

|D+
P (x) ∩ Cl≥t |
|D+

P (x)|
≥ l (i)

where, for any set A, |A| denotes its cardinality.
In this case, we say that x is a non-ambiguous object at consistency level l w.r.t.
the upward union Cl≥t (t = 2, ..., n). Otherwise, we say that x is an ambiguous
object at consistency level l w.r.t. the upward union Cl≥t (t = 2, ..., n).
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Let us remark that |D+
P (x)∩Cl≥t |
|D+

P (x)| can be interpreted as an estimation of the prob-

ability P (y ∈ Cl≥t |yDP x) in the data table and thus (i) can be rewritten as

P (y ∈ Cl≥t |yDP x) ≥ l.

The level l is called consistency level because it controls the degree of consistency
between objects qualified as belonging to Cl≥t without any ambiguity. In other
words, if l < 1, then no more than (1− l)×100% of all objects y ∈ U dominating
x w.r.t. P do not belong to Cl≥t and thus contradict the inclusion of x in Cl≥t .
Analogously, for any P ⊆ C we say that x ∈ U belongs to Cl≤t with no ambiguity
at consistency level l ∈ (0, 1], if x ∈ Cl≤t and at least l × 100% of all objects
y ∈ U dominated by x w.r.t. P also belong to Cl≤t , i.e.

|D−
P (x) ∩ Cl≤t |
|D−

P (x)|
≥ l. (ii)

In this case, we say that x is a non-ambiguous object at consistency level l w.r.t.
the downward union Cl≤t (t = 1, ..., n−1). Otherwise, we say that x is an ambigu-
ous object at consistency level l w.r.t. the downward union Cl≤t (t = 1, ..., n−1).

Let us remark that |D−
P (x)∩Cl≤t |
|D−

P (x)| can be interpreted as an estimation of the prob-

ability P (y ∈ Cl≤t |xDP y) in the data table and thus (ii) can be rewritten as

P (y ∈ Cl≤t |xDP y) ≥ l.

The concept of non-ambiguous objects at some consistency level l leads naturally
to the definition of P -lower approximations of the unions of classes Cl≥t and Cl≤t
, denoted by P l(Cl≥t ) and P l(Cl≤t ), respectively:

P l(Cl≥t ) =

{

x ∈ Cl≥t :
|D+

P (x) ∩ Cl≥t |
|D+

P (x)|
≥ l

}

,

P l(Cl≤t ) =

{

x ∈ Cl≤t :
|D−

P (x) ∩ Cl≤t |
|D−

P (x)|
≥ l

}

.

P -lower approximations of the unions of classes Cl≥t and Cl≤t can also be for-
mulated in terms of conditional probabilities as follows:

P l(Cl≥t ) =
{
x ∈ Cl≥t : P (y ∈ Cl≥t |yDP x) ≥ l

}
,

P l(Cl≤t ) =
{
x ∈ Cl≤t : P (y ∈ Cl≤t |xDP y) ≥ l

}
.

Given P ⊆ C and consistency level l ∈ (0, 1], we can define the P -upper approxi-
mations of Cl≥t and Cl≤t , denoted by P

l
(Cl≥t ) and P

l
(Cl≤t ), by complementarity

of P l(Cl≥t ) and P l(Cl≤t ) w.r.t. U :

P
l
(Cl≥t ) = U − P l(Cl≤t−1), t = 2, ..., n,
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P
l
(Cl≤t ) = U − P l(Cl≥t+1), t = 1, ..., n − 1.

P
l
(Cl≥t ) can be interpreted as the set of all the objects belonging to Cl≥t , possibly

ambiguous at consistency level l. Analogously, P
l
(Cl≤t ) can be interpreted as the

set of all the objects belonging to Cl≤t , possibly ambiguous at consistency level
l. The P -boundaries (P -doubtful regions) of Cl≥t and Cl≤t are defined as:

Bnl
P (Cl≥t ) = P

l
(Cl≥t ) − P l(Cl≥t ),

Bnl
P (Cl≤t ) = P

l
(Cl≤t ) − P l(Cl≤t ).

The variable consistency model of the dominance-based rough set approach
provides some degree of flexibility in assigning objects to lower and upper ap-
proximations of the unions of decision classes. It can easily be shown that for
0 < l′ < l ≤ 1,

P l(Cl≥t ) ⊆ P l′(Cl≥t ), P
l
(Cl≥t ) ⊇ P

l′

(Cl≥t ), t = 2, ..., n,

P l(Cl≤t ) ⊆ P l′(Cl≤t ), P
l
(Cl≤t ) ⊇ P

l′

(Cl≤t ), t = 1, ..., n − 1.

The dominance-based rough approximations of upward and downward unions
of classes can serve to induce a generalized description of objects contained in
the information table in terms of “if..., then...” decision rules. The following
two basic types of variable-consistency decision rules can be induced from lower
approximations of upward and downward unions of classes:

1. D≥-decision rules with the following syntax:
“if f(x, q1) ≥ rq1 and f(x, q2) ≥ rq2 and ... f(x, qp) ≥ rqp, then x ∈ Cl≥t ”
in α% of cases, where t = 2, ..., n, P = {q1, ..., qp} ⊆ C,
(rq1,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp.

2. D≤-decision rules with the following syntax:
“if f(x, q1) ≤ rq1 and f(x, q2) ≤ rq2 and ... f(x, qp) ≤ rqp, then x ∈ Cl≤t ”
in α% of cases, where t = 1, ..., n − 1, P = {q1, ..., qp} ⊆ C,
(rq1,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp.

3 The Bayesian Decision Procedure for DRSA

Let P (y ∈ Cl≥t |yDP x) be the probability of an object y ∈ U to belong to
Cl≥t given yDP x, that is the probability that y belongs to a class of at least
level t, given that y dominates x w.r.t. set of criteria P ⊆ C. Analogously, let
P (y ∈ Cl≤t |xDP y) be the probability of an object y ∈ U to belong to Cl≤t
given xDP y, that is the probability that x belongs to a class of at most level
t, given that y is dominated by x w.r.t. set of criteria P ⊆ C. One can also
consider probabilities P (y ∈ Cl≤t−1|yDP x) and P (y ∈ Cl≥t+1|xDP y). Obviously,
we have that P (y ∈ Cl≤t−1|yDP x) = 1 − P (y ∈ Cl≥t |yDP x), t = 2, ...., n, and
P (y ∈ Cl≥t+1|xDP y) = 1 − P (y ∈ Cl≤t |xDP y), t = 1, ...., n − 1.
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Let λ(z ∈ Cl≥t |z ∈ Cl≥t ) denote the loss for assigning an object z ∈ U to Cl≥t
when this is true, i.e. when condition z ∈ Cl≥t holds, t = 2, ...., n. Analogously,

– λ(z ∈ Cl≥t |z ∈ Cl≤t−1) denotes the loss for assigning an object z ∈ U to Cl≥t
when this is false, i.e. when condition z ∈ Cl≤t−1 holds, t = 2, ...., n,

– λ(z ∈ Cl≤t |z ∈ Cl≤t ) denotes the loss for assigning an object z ∈ U to Cl≤t
when this is true, i.e. when condition z ∈ Cl≤t holds, t = 1, ...., n − 1,

– λ(z ∈ Cl≤t |z ∈ Cl≥t+1) denotes the loss for assigning an object z ∈ U to Cl≤t
when this is false, i.e. when condition z ∈ Cl≥t+1 holds, t = 1, ...., n − 1.

In the following, we suppose for simplicity that the above losses are indepen-
dent from object z.

Given an object y ∈ U , such that yDP x, the expected losses R(y ∈ Cl≥t |yDP x)
and R(y ∈ Cl≤t−1|yDP x) associated with assigning y to Cl≥t and Cl≤t−1, t =
2, ..., n, respectively, can be expressed as:

R(y ∈ Cl≥t |yDP x) = λ(y ∈ Cl≥t |y ∈ Cl≥t )P (y ∈ Cl≥t |yDP x)+

λ(y ∈ Cl≥t |y ∈ Cl≤t−1)P (y ∈ Cl≤t−1|yDP x),

R(y ∈ Cl≤t−1|yDP x) = λ(y ∈ Cl≤t−1|y ∈ Cl≥t )P (y ∈ Cl≥t |yDP x)+

λ(y ∈ Cl≤t−1|y ∈ Cl≤t−1)P (y ∈ Cl≤t−1|yDP x).

By applying the Bayesian decision procedure, we obtain the followingminimum-
risk decision rules:

– assign y to Cl≥t if R(y ∈ Cl≥t |yDP x) ≥ R(y ∈ Cl≤t−1|yDP x),

– assign y to Cl≤t−1 if R(y ∈ Cl≥t |yDP x) < R(y ∈ Cl≤t−1|yDP x).

It is quite natural to assume that

λ(z ∈ Cl≥t |z ∈ Cl≥t ) < λ(z ∈ Cl≤t−1|z ∈ Cl≥t ) and

λ(z ∈ Cl≤t−1|z ∈ Cl≤t−1) < λ(z ∈ Cl≥t |z ∈ Cl≤t−1).

That is, the loss of classifying an object belonging to Cl≥t into the correct
class Cl≥t is smaller than the loss of classifying it into the incorrect class Cl≤t−1;
whereas the loss of classifying an object not belonging to Cl≥t into the class
Cl≥t is greater than the loss of classifying it into the class Cl≤t−1. With this loss
function and the fact that P (y ∈ Cl≥t |yDP x) + P (y ∈ Cl≤t−1|yDP x) = 1, the
above decision rules can be expressed as:

– assign y to Cl≥t if P (y ∈ Cl≥t |yDP x) ≥ αt,

– assign y to Cl≤t−1 if P (y ∈ Cl≥t |yDP x) < αt,
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where αt =
λ(z ∈ Cl≥t |z ∈ Cl≤t−1) − λ(z ∈ Cl≤t−1|z ∈ Cl≤t−1)

Λ≥ , and

Λ≥ = λ(z ∈ Cl≥t |z ∈ Cl≤t−1) + λ(z ∈ Cl≤t−1|z ∈ Cl≥t )−

λ(z ∈ Cl≤t−1|z ∈ Cl≤t−1) − λ(z ∈ Cl≥t |z ∈ Cl≥t ).

Given an object y ∈ U , such that xDP y, the expected losses R(y ∈ Cl≤t |xDP y)
and R(y ∈ Cl≥t+1|xDP y) associated with assigning y to Cl≤t and Cl≥t+1, respec-
tively, can be expressed as:

R(y ∈ Cl≤t |xDP y) = λ(y ∈ Cl≤t |y ∈ Cl≤t )P (y ∈ Cl≤t |xDP y)+

λ(y ∈ Cl≤t |y ∈ Cl≥t+1)P (y ∈ Cl≥t+1|xDP y),

R(y ∈ Cl≥t+1|xDP y) = λ(y ∈ Cl≥t+1|y ∈ Cl≤t )P (y ∈ Cl≤t |xDP y)+

λ(y ∈ Cl≥t+1|y ∈ Cl≥t+1)P (y ∈ Cl≥t+1|xDP y).

By applying the Bayesian decision procedure, we obtain the followingminimum-
risk decision rules:

– assign y to Cl≤t if R(y ∈ Cl≤t |xDP y) ≥ R(y ∈ Cl≥t+1|xDP y),

– assign y to Cl≥t+1 if R(y ∈ Cl≤t |xDP y) < R(y ∈ Cl≥t+1|xDP y).

It is quite natural to assume that

λ(z ∈ Cl≤t |z ∈ Cl≤t ) < λ(z ∈ Cl≥t+1|z ∈ Cl≤t ) and

λ(z ∈ Cl≥t+1|z ∈ Cl≥t+1) < λ(z ∈ Cl≤t |z ∈ Cl≥t+1).

That is, the loss of classifying an object belonging to Cl≤t into the correct
class Cl≤t is smaller than the loss of classifying it into the incorrect class Cl≥t+1;
whereas the loss of classifying an object not belonging to Cl≤t into the class
Cl≤t is greater than the loss of classifying it into the class Cl≥t+1. With this loss
function and the fact that P (y ∈ Cl≤t |xDP y) + P (y ∈ Cl≥t+1|xDP y) = 1, the
above decision rules can be expressed as:

– assign y to Cl≤t if P (y ∈ Cl≤t |xDP y) ≥ βt,

– assign y to Cl≤t+1 if P (y ∈ Cl≤t |xDP y) < βt,

where βt =
λ(z ∈ Cl≥t+1|z ∈ Cl≥t+1) − λ(z ∈ Cl≥t+1|z ∈ Cl≤t )

Λ≤ , and

Λ≤ = λ(z ∈ Cl≤t |z ∈ Cl≥t+1) + λ(z ∈ Cl≥t+1|z ∈ Cl≤t )−

λ(z ∈ Cl≥t+1|z ∈ Cl≥t+1) − λ(z ∈ Cl≤t |z ∈ Cl≤t ).
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Using the values of parameters αt and βt obtained using the Bayesian decision
procedure, we can redefine the P -lower approximations of the unions of classes
Cl≥t and Cl≤t , denoted by Pαt(Cl≥t ) and P βt(Cl≤t ), as follows:

Pαt(Cl≥t ) =

{

x ∈ Cl≥t :
|D+

P (x) ∩ Cl≥t |
|D+

P (x)|
≥ αt

}

,

P βt(Cl≤t ) =

{

x ∈ Cl≤t :
|D−

P (x) ∩ Cl≤t |
|D−

P (x)|
≥ βt

}

.

4 Conclusions

In this paper, we proposed a Bayesian decision procedure for DRSA that per-
mits to take into account costs of misclassification in fixing parameters of the
probabilistic model of DRSA, i.e. VC-DRSA. Future research will focus on in-
vestigation of the formal properties of the proposed model and on comparison
of its performance with competitive models in data analysis.
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