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Abstract. A family of overlapping granules can be formed by granu-
lating a finite universe under a binary relation in a set-theoretic setting.
In this paper, we granulate a universe by a binary relation and obtain
a granular universe. And then we define two kinds of operators between
these two universes, study properties of them. By combining these two
kinds of operators, we get two pairs of approximation operators. It is
proved that one kind of combination operators is just the approximation
operators under a generalized approximation space defined according to
Pawlak’s rough set theory.

Keywords: Generalized approximation space, L−lower approximation
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1 Introduction

Granular computing is a label of theories, methodologies, techniques, and tools
that makes use of granules, i.e., groups, classes, or clusters of a universe, in the
process of problem solving [10, 14, 16]. Since Pawlak introduced the theory of
rough sets [7,8], it has made granular computing popular . Hobbs [2] introduced
the concepts of granularity in 1985. Later the concept “granular computing”
was suggested by Zadeh [15, 16] for the first time in 1996. The basic ideas of
information granulation have been explored in many fields, such as rough sets,
fuzzy sets, cluster analysis, database, machine learning, data -mining, and so on.
There is a renewed and fast growing interest in the study of granular computing
[3, 4, 10, 13].

As a concrete theory of granular computing, rough set model enables us to
precisely define and analyze many notions of granular computing. The results
provide an in-depth understanding of granular computing. Many models of gran-
ular computing have been proposed and studied [16, 11]. However, there are
many fundamental issues in granular computing, such as granulation of the uni-
verse, description of granules, relationships between granules, and computing
with granules.
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Yao [12] proposed a concrete model of granular computing based on a simple
granulation structure, namely, a partition of a universe. Results from rough sets,
quotient space theory, belief functions, and power algebra are reformulated, re-
interpreted, and combined for granular computing. For the universe and the
coarse-grained universe induced by an equivalence relation, two basic operation
called zooming-out and zooming-in operations are introduced. And Computa-
tions in these universes can be connected through the two operations.

Because the equivalence relation in [12] is too strong to be obtained in general,
we only consider a reflexive relation on a universe which is easy to obtain usually.
Then a covering model can be obtained by granulating a finite set of a universe
based on the reflexive relation [6]. And we cited definitions of zooming-out and
zooming-in operations in [12] and discussed the covering model of granular com-
puting [6]. However, relationships between subsets of a coarse-grained universe
would not hold in the universe. Furthermore, although rough set approximations
of a classical subset of a universe in a generalized approximation space [17] can
be obtained by a combination of these operations, the duality may not hold.

In this paper, we first granulate a finite set of a universe into a family of over-
lapping granules based on a general binary relation. We introduce two kinds of
operators between a universe and the granulated universe, and study their prop-
erties. Then we combine them to two pairs of approximation operators, which
are used to study connections between computations in the two universes. It is
also proved that approximation representations of a generalized approximation
space can be obtained by combining them, and the duality always holds for the
different combinations.

This paper is organized as follows. Section 2 introduces two kinds of operators
between a universe and a granulated universe, and studies their properties. Sec-
tion 3 shows new operations formed by different combining the two operations,
investigates their properties, and discusses connections between computations in
the two universes. Finally, Section 4 concludes the paper.

2 Preliminaries

Let U be a finite and nonempty set called a universe, and r ⊆ U × U a binary
relation on the universe U . For any x ∈ U , the set r(x) = {y ∈ U ; (x, y) ∈ r}
is called the successor neighborhood of x. The relation r is referred to as serial
if for any x ∈ U , there exists y ∈ U such that y ∈ r(x). r is referred to as
reflexive if for all x ∈ U, x ∈ r(x); r is referred to as symmetric if for all
x, y ∈ U, x ∈ r(y) implies y ∈ r(x); r is referred to as transitive if for all
x, y, z ∈ U, x ∈ r(y) and y ∈ r(z) implies x ∈ r(z); r is referred to as Euclidean
if for all x, y, z ∈ U, y ∈ r(x) and z ∈ r(x) implies z ∈ r(y) [9,17]. Furthermore,
r is referred to as a similarity relation on U if it is reflexive and transitive; r
is referred to as a tolerance relation on U if it is reflexive and symmetric. For
any binary relation r ⊆ U × U , the pair (U, r) is referred to as a generalized
approximation space.
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For a generalized approximation space (U, r), the family of all successor neigh-
borhood, denoted by A = {r(x); x ∈ U}, is commonly knows as the granulated
set. If r is reflexive, it forms a covering of U , namely, a family of overlapping
subsets whose union is U . For any x ∈ U , the successor neighborhood r(x) is
considered as a whole granule instead of many individuals [12]. It is a subset of
U and an element of A. We use |r(x)| to denote the whole granule r(x), and call
A = {|r(x)|; x ∈ U} a granulated universe. We denote by 2U the power set of
the universe U , and by c the set complement operator.

Definition 1. Let (U, r) be a generalized approximation space. For any B ⊆ A,
the mapping f : 2A → 2U is given by

f(B) = {x ∈ U ; |r(x)| ∈ B}.

Then we can get the following properties: for any B, C ⊆ A,
(1) f(∅) = ∅;
(1) f(A) = U ;
(2) f(B ∪ C) = f(B) ∪ f(C);
(3) f(B ∩ C) = f(B) ∩ f(C);
(4) f(Bc) = f(B)c;
(5) B ⊆ C ⇔ f(B) ⊆ f(C).

Definition 2. Let (U, r) be a generalized approximation space and X ⊆ U . A
pair (L, H) of mappings L, H : 2U → 2A is defined as follows:

L(X) = {|r(x)|; r(x) ⊆ X},
H(X) = {|r(x)|; r(x) ∩ X 	= ∅}.

They are called L−lower and H−upper approximation of X, respectively.

By Definition 2 we can easily get that for a generalized approximation space
(U, r), X, Y ⊆ U ,

(LH1) H(∅) = ∅;
(LH2) L(U) = A;
(LH3) L(Xc) = H(X)c, H(Xc) = L(X)c;
(LH4) L(X ∩ Y ) = L(X) ∩ L(Y ), H(X ∩ Y ) ⊆ H(X) ∩ H(Y );
(LH5) L(X ∪ Y ) ⊇ L(X) ∪ L(Y ), H(X ∪ Y ) = H(X) ∪ H(Y );
(LH6) X ⊆ Y ⇒ L(X) ⊆ L(Y ), H(X) ⊆ H(Y );
(LH7) Let Bn(X) = H(X) − L(X), then Bn(Xc) = Bn(X).
If r is serial, we have L(X) ⊆ H(X), L(∅) = ∅ and H(U) = A.

Remark 1. In fact, there exists X ⊆ U and X 	= ∅ such that L(X) = ∅; and
there is X 	= U such that H(X) = A.

In general, the following formulas may not hold:

H(X ∩ Y ) = H(X) ∩ H(Y ),
L(X ∪ Y ) = L(X) ∪ L(Y ).
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Example 1. Suppose U = {x1, x2, x3, x4, x5}, and r ⊆ U ×U be a binary relation
on U satisfying: r(x1) = {x3, x4}, r(x2) = {x1, x2, x4}, r(x3) = {x3}, r(x4) =
{x4}, r(x5) = {x2, x5}.

(1) Take X = {x3, x4} and Y = {x2, x3}. Then X ∩ Y = {x3} and H(X ∩
Y ) = {|r(x1)|, |r(x3)|}, but H(X) ∩ H(Y ) = {|r(x1)|, |r(x2)|, |r(x3)|, |r(x4)|} ∩
{|r(x1)|, |r(x2)|, |r(x3)|, |r(x5)|} = {|r(x1)|, |r(x2)|, |r(x3)|}. Hence H(X ∩ Y ) ⊂
H(X) ∩ H(Y ).

(2) Take X = {x1, x2} and Y = {x3}. Then X ∪ Y = {x1, x2, x3} and L(X∪
Y ) = {|r(x3)|, |r(x5)|}, however L(X)∪L(Y ) = ∅ ∪ {|r(x3)|} = {|r(x3)|}. Hence
L(X) ∪ L(Y ) ⊂ L(X ∪ Y ).

Proposition 1. Let (U, r) be a generalized approximation space and X, Y ⊆ U .
Note that Z(X, Y ) = {|r(x)|; r(x) ⊆ X ∪ Y, |r(x)| ∈ Bn(X) ∩ Bn(Y )}. Then

L(X ∪ Y ) = L(X) ∪ L(Y ) ∪ Z(X, Y ).

Proof. It is easy to see that L(X) ∪ L(Y ) ⊆ L(X ∪ Y ). Then |r(x)| ∈ L(X ∪
Y ) − L(X) ∪ L(Y ) if and only if r(x) ⊆ X ∪ Y , r(x) 	⊆ X and r(x) 	⊆ Y .
Then |r(x)| ∈ L(X ∪ Y ) − L(X) ∪ L(Y ) if and only if r(x) ⊆ X ∪ Y , and
|r(x)| ∈ Bn(X)∩Bn(Y ). That is L(X ∪Y )−L(X)∪L(Y ) = Z(X, Y ). Therefore
L(X ∪ Y ) = L(X) ∪ L(Y ) ∪ Z(X, Y ).

Proposition 2. Let (U, r) be a generalized approximation space and X, Y ⊆ U .
Note that Z(X, Y ) = {|r(x)|; r(x) ∩ (X ∩ Y ) = ∅, |r(x)| ∈ Bn(X) ∩ Bn(Y )}.
Then

H(X ∩ Y ) = H(X) ∩ H(Y ) − Z(X, Y ).

Proof. By (LH5) we can get that H(X ∩ Y ) ⊆ H(X) ∩ H(Y ). Then |r(x)| ∈
H(X) ∩ H(Y ) − H(X ∩ Y ) if and only if r(x) ∩ X 	= ∅, r(x) ∩ Y 	= ∅ and
r(x) ∩ (X ∩ Y ) = ∅. Then |r(x)| ∈ H(X) ∩ H(Y ) − H(X ∩ Y ) if and only if
|r(x)| ∈ Bn(X) ∩ Bn(Y ), and r(x) ∩ (X ∩ Y ) = ∅. Therefore H(X) ∩ H(Y ) −
H(X ∩ Y ) = Z(X, Y ). Thus H(X ∩ Y ) = H(X) ∩ H(Y ) − Z(X, Y ).

Fig. 1. Z(X, Y ) Fig. 2. Z(X, Y )

3 Rough Approximation Representations on U and A

Pawlak’s classical rough set theory shows that lower and upper approximations
of a classical set are also subsets of the same universe. From Definition 1 and
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Definition 2 we can combine these operators f and (L, H), and get some new
operators on a same universe.

By Definitions 1 and 2, one can easily obtain lower and upper approximations
of a classical subset of the generalized approximation space by performing a
combination of (L, H) and f as follows:

fL(X) = f({|r(x)|; r(x) ⊆ X}) = {x; r(x) ⊆ X},
fH(X) = f({|r(x)|; r(x) ∩ X 	= ∅}) = {x; r(x) ∩ X 	= ∅}.

Then fL, fH : 2U → 2U are called fL−lower and fH−upper approximation
operators, respectively.

Since we have studied properties of f and (L, H), we can easily get the fol-
lowing properties for any X, Y ⊆ U :

(fLH1) fH(∅) = ∅;
(fLH2) fL(U) = U ;
(fLH3) fL(Xc) = fH(X)c, fH(Xc) = fL(X)c;
(fLH4) fL(X ∩ Y ) = fL(X) ∩ fL(Y ),

fH(X ∩ Y ) ⊆ fH(X) ∩ fH(Y );
(fLH5) fL(X ∪ Y ) ⊇ fL(X) ∪ fL(Y ),

fH(X ∪ Y ) = fH(X) ∪ fH(Y );
(fLH6) X ⊆ Y ⇒ fL(X) ⊆ fL(Y ), fH(X) ⊆ fH(Y );
(fLH7) Let B1(X) = fH(X) − fL(X), then B1(Xc) = B1(X).
Note that (fLH7) means simply that if we cannot decide when an object is in

X , we obviously cannot decide whether it is in Xc either. (fLH3) shows that fL
and fH are the dual approximation operators.

If r is reflexive, then fL(X) ⊆ X ⊆ f(H(X), fL(∅) = ∅,fH(U) = U .

Proposition 3. Let (U, r) be a generalized approximation space. If r is reflexive
and Euclidean, for any X ⊆ U , we have

(1) fH(X) = fL(fH(X));
(2) fL(X) = fH(fL(X)).

Proof. Since r is reflexive, we have fL(fH(X)) ⊆ fH(X). Take x ∈ fH(X).
Then r(x)∩X 	= ∅. For any y ∈ r(x), we have r(x) ⊆ r(y) because r is Euclidean.
Hence r(y)∩X 	= ∅ and y ∈ fH(X). By the arbitrariness of y we can get r(x) ⊆
fH(X) which leads to x ∈ fL(fH(X)). Therefore fL(fH(X)) = fH(X). By
(1) and (fLH3) we can easily get (2).

According to Propositions 1 and 2 we can get:

Proposition 4. Let (U, r) be a generalized approximation space. Then for any
X, Y ⊆ U , we have

(1) fL(X ∪ Y ) = fL(X) ∪ fL(Y ) ∪ Z1(X, Y ), where
Z1(X, Y ) = {x ∈ U ; r(x) ⊆ X ∪ Y, r(x) ⊆ B1(X) ∩ B1(Y )}.

(2) fH(X ∩ Y ) = fH(X) ∩ fH(Y ) − Z1(X, Y ), where
Z1(X, Y ) = {x ∈ U ; r(x) ∩ (X ∩ Y ) = ∅, r(x) ⊆ B1(X) ∩ B1(Y )}.
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For a subset B ⊆ A we can obtain a subset f(B) ⊆ U , and then obtain a pair
of subsets Lf(B) and Hf(B) as follows:

Lf(B) = {|r(x)|; r(x) ⊆ f(B)} = {|r(x)|; r(x) ⊆ {y; |r(y)| ∈ B}},

Hf(B)) = {|r(x)|; r(x) ∩ f(B) 	= ∅} = {|r(x)|; ∃y ∈ r(x), |r(y)| ∈ B}.

Then Lf, Hf : 2A → 2A are called Lf−lower and Hf−upper approximation
operators, respectively. And these two approximation operators give out the
approximation representations of B in the granulated universe A.

So for any B, C ⊆ A we have the following properties:
(LHf1) Hf(∅) = ∅;
(LHf2) Lf(A) = A;
(LHf3) Lf(Bc) = (Hf(B))c, Hf(Bc) = (Lf(B))c;
(LHf4) Lf(B ∩ C) = Lf(B) ∩ Lf(C),

Hf(B ∩ C) ⊆ Hf(B) ∩ Hf(C);
(LHf5) Lf(B ∪ C) ⊇ Lf(B) ∪ Lf(C),

Hf(B ∪ C) = Hf(B) ∪ Hf(C);
(LHf6) B ⊆ C ⇒ Lf(B) ⊆ Lf(C), Hf(B) ⊆ Hf(C);
(LHf7) Let B2(B) = Hf(B) − Lf(B), then B2(Bc) = B2(B).
If r is serial, Lf(∅) = ∅ and Hf(A) = A; if r is reflexive, we have Lf(B) ⊆

B ⊆ Hf(B).
For any X ⊆ U and B ⊆ A, by the different combinations of f and (L, H) we

can get
fL(f(B)) = f(Lf(B)),

Lf(L(X)) = L(fL(X)).

Therefore, we can easily get

Lemma 1. Let (U, r) be a generalized approximation space. If r is a similarity
relation, for any X ⊆ U we have

(1) L(fL(X)) = L(X);
(2) H(fH(X)) = H(X).

Proof. Since r is reflexive, L(fL(X)) ⊆ L(X). Conversely, take |r(x)| ∈ L(X).
Then r(x) ⊆ X . Since r is transitive, for any y ∈ r(x) we have r(y) ⊆ r(x).
Therefore |r(y)| ∈ L(X) and y ∈ fL(X). By the arbitrariness of y we can get
r(x) ⊆ fL(X). Hence |r(x)| ∈ L(fL(X)), and L(X) ⊆ L(fL(X)). From which
we get L(fL(X)) = L(X). By (LHf3) we can prove (2).

However, the following formulae may not hold:

fL(f(B)) = f(B),

fH(f(B)) = f(B).

Example 2. Suppose U = {x1, x2, x3, x4, x5}, and r is a similarity relation on U
satisfying: r(x1) = {x1, x3, x4}, r(x2) = {x2}, r(x3) = {x3, x4}, r(x4) = {x4},
r(x5) = {x2, x5}. Then A = {|r(x1)|, |r(x2)|, |r(x3)|, |r(x4)|, |r(x5)|}.
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(1) Take B = {|r(x1)|, |r(x3)|}, then f(B) = {x1, x3}, and L(f(B)) =
L({x1, x3}) = ∅. But fL(f(B)) = f(∅) = ∅ 	= f(B).
(2) Take B = {|r(x4)|, |r(x5)|}, then f(B) = {x4, x5}, and H(f(B)) = {|r(x1)|,
|r(x3)|, |r(x4)|, |r(x5)|}. However fH(f(B)) = f({|r(x1)|, |r(x3)|, |r(x4)|,
|r(x5)|}) = {x1, x3, x4, x5} 	= f(B).

Proposition 5. Let (U, r) be a generalized approximation space. If r is a simi-
larity relation, then for any B ⊆ A we have

(1) Lf(Lf(B)) = Lf(B);
(2) Hf(Hf(B)) = Hf(B).

In addition, according to Propositions 1, 2 and properties of f we can get:

Proposition 6. Let (U, r) be a generalized approximation space. If r is reflexive,
then for any B, C ⊆ A,

(1) Lf(B ∪ C) = Lf(B) ∪ Lf(C) ∪ Z2(B, C); where
Z2(B, C) = {|r(x)|; r(x) ⊆ f(B ∪ C), r(x) ⊆ B2(B) ∩ B2(C)}.

(2) Hf(B ∩ C) = Hf(B) ∩ Hf(C) − Z2(B, C); where
Z2(B, C) = {|r(x)|; r(x) ∩ f(B ∩ C) = ∅, r(x) ⊆ B2(B) ∩ B2(C)}.

Literatures [7, 17] define lower and upper approximation operators for a gen-
eralized approximation space (U, R) with R being a binary relation on U as
follows:

R(X) = {x ∈ U ; Rs(x) ⊆ X},
R(X) = {x ∈ U ; Rs(x) ∩ X 	= ∅},

where Rs(x) denotes the successor neighborhood of x. Obviously, for a general-
ized approximation space (U, r), fL(X) = r(X) and fH(X) = r(X). Since we
have studied properties of operators f and (L, H), we can easily get properties
of (r(X), r(X)).

4 Conclusion

Granular computing is a way of thinking that relies in our ability to perceive the
real world under various grain sizes, to abstract and consider only those things
that serve our present interest, and to switch among different granularities. In
this paper, two kinds of operators have been introduced between a universe and a
granulated universe based on a generalized binary relation. Connections between
the elements of a universe and the elements of a granulated universe, as well as
connections between computations in the two universes are investigated by two
pairs of combination operators.
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