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Abstract. A partitioning approach to the problem of dealing with the
entropy of incomplete information systems is explored. The aim is to
keep into account the incompleteness and at the same time to obtain
a probabilistic partition of the information system. For the resulting
probabilistic partition, measures of entropy and co–entropy are defined,
similarly to the entropies and co–entropies defined for the complete case.
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1 Introduction: Qualitative and Quantitative Valuations
of Roughness for Complete Information Systems

In this work, we discuss the entropy of incomplete information systems as an ex-
tension of the approach based on partitions from complete information systems.
In order to introduce an approach of probability partition from an incomplete
information system, let us first recall how one gets a partition from a complete
information system, and thus how one can apply a measure of rough entropy
when dealing with an information system.

Let us recall that the original Pawlak approach to rough sets is essentially
based on an approximation space, i.e., a pair 〈X, π〉 where X is a (finite) set,
called the universe of objects, and π = {A1, A2, . . . , AN} is a partition of X , in
general induced by the indistinguishability equivalence relation from a complete
information system [1]. The subsets Aj are the elementary sets (or also events),
each of which can be interpreted as a granule of knowledge supported by the
partition. We denote by grπ(x) the granule (equivalence class) from π which
contains the point x ∈ X . In the rough set theory, once fixed a partition π of
X , any of its subsets H can be approximated from the bottom and from the top
by the two lower and upper approximations defined respectively as: lπ(H) :=
∪{Ai ∈ π : Ai ⊆ H} and uπ(H) := ∪{Aj ∈ π : H ∩ Aj �= ∅}, producing the
rough approximation of H defined as the pair rπ(h) = (lπ(H), uπ(H)) (with
trivially lπ(H) ⊆ H ⊆ uπ(H)), see [2] for a complete discussion. We can also
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define the boundary region of H as bπ(H) = u(H) \ l(H), and its external region
as eπ(H) = X \ u(H). Obviously, whatever be the starting original partition π,
for any subset H the triple π(H) = {lπ(H), bπ(H), eπ(H)} is a new partition
of X , which depends from the choice of the subset H .

These considerations can be applied to the case of a complete Information
System (IS), formalized by a triple IS := 〈X, Att, F 〉 consisting of a nonempty
finite set X of objects, a nonempty finite set of attribute Att, and a mapping
F : X × Att → V which assigns to any object x ∈ A the value F (x, a) assumed
by the attribute a ∈ Att [1,3,4]. Indeed, in this IS case the partition generated
by a set of attributes A, denoted by πA(IS), consists of equivalence classes of
indistinguishable objects Ai, i.e., two objects x, y ∈ Ai iff for any attribute a ∈ A,
the condition F (x, a) = F (y, a) holds.

In many applications it is of a certain interest to analyze the variations occur-
ring inside two information systems labelled with two parameters t1 and t2. In
particular, one has to do mainly with the following two cases in both of which
the set of objects remains invariant:

(1) dynamics (see [5]), in which ISt1 = (X, Att1, F1) and ISt2 = (X, Att2, F2)
are under the conditions that Att1 ⊂ Att2 and ∀x ∈ X , ∀a1 ∈ Att1: F2(x, a1) =
F1(x, a1). This situation corresponds to a dynamical increase of knowledge (t1
and t2 are considered as time parameters, with t1 < t2) for instance in a medical
database the increase corresponds to the fact that during the researches on the
disease some symptoms which have been neglected at time t1 become relevant
at time t2 under some new investigations.

(2) reduct, in which ISt1 = (X, Att1, F1) and ISt2 = (X, Att2, F2) are under
the conditions that Att2 ⊂ Att1 and ∀x ∈ X , ∀a2 ∈ Att2: F2(x, a2) = F1(x, a2).
In this case it is of a certain interest to verify if the corresponding partitions are
invariant πAtt2(ISt2) = πAtt1(ISt1), or not.

From the point of view of the rough approximations of subsets Y of the
universe X , both these cases can be treated under a unified formal framework
in which during the time evolution t1 → t2 one try to relate the corresponding
variation of partitions πt1 → πt2 with, for instance, the boundary transformation
bt1(Y ) → bt2(Y ). First of all, as to the partitions of X , whose collection will be
denoted by Π(X), their more interesting structure is the one of complete lattice
(see [6]) with respect to the partially order relation π1 
 π2, which can be
formalized in one of the following mutually equivalent forms: (por1) ∀A ∈ π1,
∃B ∈ π2: A ⊆ B; (por2) ∀B ∈ π2, ∃{Ai1 , Ai2 , . . . , Aih

} ⊆ π1: B = Ai1 ∪ Ai2 ∪
. . . ∪ Aih

; (por3) ∀x ∈ X , grπ1(x) ⊆ grπ2(x) (as shown in [7], an extension
of these three formulations to the case of coverings leads to different binary
relations of quasi–orderings). The lattice Π(X) of all partitions of X is lower
bounded by the least element πd := {{x} : x ∈ X} (the discrete partition)
consisting of all singletons from X , and the greatest element πt := {X} (the
trivial partition) whose unique equivalence class is the whole universe. If π1 
 π2
we say that π1 (resp., π2) is finer (resp., coarser) than π2 (resp., π1). The induced
strict ordering on partition, denoted by π1 ≺ π2, is defined as π1 
 π2 and
π1 �= π2. This means that it must exists at least an equivalence class Bi ∈ π2
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such that its partition with respect to π1 is formed at least of two subsets, i.e.,
∃{Ai1 , Ai2 , . . . , Aip} ⊆ π1, with p ≥ 2, s.t. Bi = Ai1 ∪ Ai2 ∪ . . . ∪ Aip .

Let us note that if π1 
 π2, then the two rough approximations of a given
subset Y , rπi(Y ) = (lπi(Y ), uπi(Y )), for i = 1, 2, are such that lπ2(Y ) ⊆ lπ1(Y ) ⊆
Y ⊆ uπ1(Y ) ⊆ uπ2(Y ), i.e., the rough approximation of Y with respect to the
partition π1 is better than the rough approximation of the same subset with
respect to π2. This leads to a first but only qualitative valuation of the roughness
of a subset Y of the universe expressed by the law: π1 
 π2 implies that for ∀Y ,
bπ1(Y ) ⊆ bπ2(Y ). The delicate point is that the condition of strict ordering π1 ≺
π2 does not assure that for ∀Y , bπ1(Y ) ⊂ bπ2(Y ). It is possible to give some very
simple counter–examples in which notwithstanding π1 ≺ π2 one has that ∃Y0:
bπ1(Y0) = bπ2(Y0) [8,7], and this is not a desirable behavior of such a qualitative
valuation of roughness. On the other hand, in many practical applications (for
instance in the attribute reduction procedure), it is interesting not only to have
a possible qualitative valuation of the roughness of a generic subset Y , but also a
quantitative valuation formalized by a mapping E : Π(X)×2X → [0, 1] assumed
to satisfy (at least) the following two minimal requirements:

(re1) the strict monotonicity condition: for any Y ∈ 2X , π1 ≺ π2 implies
E(π1, Y ) < E(π2, Y );

(re2) the boundary conditions : for ∀Y ∈ 2X , E(πd, Y ) = 0 and E(πt, Y ) = 1.

In the sequel, sometimes we will use the notation Eπ : 2X → [0, 1] to denote
the above mapping in which the partition π ∈ Π(X) is considered fixed once for
all. The interpretation of condition (re2) is possible under the assumption that
a quantitative valuation of the roughness Eπ(Y ) should be directly related to its
boundary by |bπ(Y )|. From this point of view, the value 0 corresponds to the
discrete partition for which the boundary of any subset Y is empty, and so its
rough approximation is rπd

(Y ) = (Y, Y ) with |bπd
(Y )| = 0, i.e., a crisp situation.

On the other hand, the value 1 corresponds to the trivial partition in which the
boundary of any nontrivial subset Y (�= ∅, X) is the whole universe, and so its
rough approximation is rπt(Y ) = (∅, X) with |bπt(Y )| = |X |, i.e., the minimum
of sharpness or maximum of roughness.

This being stated, in literature one can find a lot of quantitative measures of
roughness of Y relatively to a given partition π ∈ Π(X) formalized as mappings
ρπ : 2X → [0, 1]. The accuracy of the set Y with respect to the partition is then
defined as απ(Y ) = 1 − ρπ(Y ). Two of the more interesting roughness measures
are ρ

(P )
π (Y ) := |bπ(Y )|

|uπ(Y )| [3] and ρ
(C)
π (Y ) := |bπ(Y )|

|X| [7]. These roughness measures
satisfy the above “boundary” condition (re2), but their drawback is that the
strict condition on partitions π1 ≺ π2 does not assure a corresponding strict
behavior ∀Y , bπ1(Y ) ⊂ bπ2(Y ), and so also the strict correlation ρπ1(Y ) < ρπ2(Y )
cannot be inferred. In other words, in general a rough measure is monotonic, but
not strictly monotonic, contrary to the above requirement (re1).

This drawback can be overcome according to at least two strategies: either
by some new strictly monotonic roughness measures or maintaining one of the
monotonic roughness measures ρπ and considering a strict monotonic function
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Ω : Π(X) → [0, 1] in such a way that the new mapping E(π, Y ) := ρπ(Y ) · Ω(π)
turns out to be strictly monotonic. In this paper we explore this second possibility
in which, for the sake of simplicity, the required function is not the normalized Ω
but it is given by a co–entropy function (also granularity measure) E : Π(X) →
[0, k], where k is a suitable constant, and from which it is possible to induce the
normalized Ω(Y ) = E(Y )/k. This is discussed in the following section.

2 Global and Pointwise Entropies and Co–entropies from
Partitions

Given a partition π = (A1, A2, . . . , AN ) of the universe X by the elementary
events Ai, one can construct the σ–algebra E(π) of events generated by π con-
sisting of the empty set and all the set theoretic unions of elementary events.
In the measurable space (X, E(π)) the counting measure mπ : E(π) → R+
assigns to any event E the corresponding measure mπ(E) = |E| (its cardi-
nality). In this space with measure (X, E(π), mπ) we can introduce the vec-
tor m(π) = (mπ(A1), mπ(A2), . . . , mπ(AN ), with mπ(Aj) > 0 for every j and
∑N

j=1 mπ(Aj) = |X |, which is a measure of the granulation, called the granu-
larity distribution induced by π. Finally, it is possible to introduce the vector
p(π) := (pπ(A1), pπ(A2), . . . , pπ(AN )), where each pπ(Aj) := |Aj |

|X| represents
the probability of occurrence of the granule Aj . Since for each j we have that
pπ(Aj) > 0 and

∑N
j=1 pπ(Aj) = 1, the vector p(π) constitutes a probability dis-

tribution induced by granulation. This being stated, in this section we consider
the following two quantities depending from the partition π:

E(π) =
1

|X |

N∑

i=1

|Ai| log |Ai| (2.1a)

H(π) := −
N∑

j=1

p(Aj) · log p(Aj) = − 1
|X |

N∑

i=1

|Ai| log
|Ai|
|X | . (2.1b)

Let us note that E(π) depends only from the granularity distribution m(π),
whereas H(π) depends from the probability distribution p(π). In our opinion
this leads to two different semantical interpretations of these quantities. Indeed,
in agreement with the information theory, since the granule Aj has probability
p(Aj), we shall say that the quantity I[p(Aj)] := − log p(Aj) is the uncertainty
associated with the granule Aj . Thus, the quantity H(π), as expectation of
the discrete random variable I[p(Aj)] with probability p(Aj), is the average
uncertainty relatively to the probability distribution p(π), i.e., it measures the
uncertainty of the granulation. According to Shannon [9], H(π) is called the
entropy of the partition π. Besides this entropy, the quantity E(π) can be defined
as co–entropy owing to its complementarity role with respect to the entropy H(π)
formalized by the identity E(π) + H(π) = log |X |, whatever be the partition π.
Let us note that in [10] this quantity has been called measure of the granularity
since it “is basically an expectation of granularity with respect to all subsets in
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a partition”. The following strict monotonic (resp., anti–monotonic) behavior of
co–entropy (resp., entropy) is a standard result (for the entropy see for instance
[11]): π1 ≺ π2 implies E(π1) < E(π2) and H(π2) < H(π1) . Since the trivial
(resp., discrete) partition πt (resp., πd) is the greatest (resp., least) element
of the lattice of all partitions, it is easy to see that for any partition π it is
0 = E(πd) ≤ E(π) ≤ E(πt) = log |X |, according to the fact that “the coarsest
partition πt has the maximum granularity value log |X | and the finest partition
πd has the minimum granularity value 0” [10]. So the required normalized co–
entropy (granular entropy) is Ω(π) := E(π)

log |X| .
Note that in [12] the entropy H(π), with the corresponding anti–monotonic

behavior, has been assumed as a “measure of granularity”, but this (formally
legitimate) choice is in contrast with the strict monotonicity (meta–)requirement
subsumed by E(π, Y ) as “local” (i.e., depending from Y ) measure of roughness.
Further, this choice suffers also of another drawback. As previously underlined,
in information theory the entropy H(π) is interpreted as a measure of the uncer-
tainty of the probability distribution generated by the partition π. In conclusion,
the different behaviors of H(π) and E(π) with respect to the variation of the
partition π lead to different semantics: H(π) can be interpreted as a measure
of the information uncertainty, E(π) as a measure of partition granularity, and
ρπ(Y ) · E(π) as a local measure of rough granularity. The finer is the partition
and the greatest (resp., lower) is the uncertainty (resp., the roughness).

In order to appreciate a possible generalization of these arguments to the
case of incomplete IS, for instance according to the approach of [13], in [7] it
has been introduced also in the partition context the new notions of pointwise
entropy and co–entropy as the two mappings in which the sum involves the
“local” information given by all the equivalence classes gr(x), with corresponding
“probabilities” μπ(x) = |gr(x)|

|X| , for the object x ranging on the universe X :

ELX(π) =
1

|X |
∑

x∈X

|gr(x)| · log |gr(x)| =
1

|X |

N∑

i=1

|Ai|2 · log |Ai| (2.2a)

HLX(π) = −
∑

x∈X

μπ(x) · log μπ(x) = − 1
|X |

N∑

i=1

|Ai|2 · log
|Ai|
|X | (2.2b)

Trivially, ∀π ∈ Π(X), 0 ≤ E(π) ≤ ELX(π). In the sequel, we refer to E(π)
as the global entropy and to ELX(π) as the pointwise one. Moreover, setting
μ(π) :=

∑
x∈X μ(x), one gets that ELX(π) + HLX(π) = log |X | · μ(π), with this

latter depending on the partition π. Note that the probability vector pLX :=
(μπ(x1), μπ(x2), . . . , μπ(x|X|)) is not a probability distribution since the sum
of its components is μ(π) ≥ 1. Notwithstanding this drawback, from (2.2a) it
follows that the strict monotonicity condition holds also for the pointwise co–
entropy: π1 ≺ π2 implies ELX(π1) < ELX(π2) . Of course, in this case one
has that for any π: 0 ≤ ELX(π) ≤ |X | · log |X |, with corresponding normalized
co–entropy (granulation measure) ΩLX(π) := ELX(π)

|X|·log |X| . Unfortunately, HLX

presents neither monotonic nor anti–monotonic behavior.
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3 Incomplete Information Systems and Definition
Domain

An incomplete information system is formalized as a triple 〈X, Att, F 〉 where F
is a mapping partially defined on a subset D(F ) of X × Att under the following
two non–redundancy conditions: (1) about objects: for every object x ∈ X there
exists at least an attribute a ∈ Att such that (x, a) ∈ D(F ); (2) about attributes:
for every attribute a ∈ Att there exists at least an object x ∈ X such that (x, a) ∈
D(F ). In this way also the mapping representation of an attribute a is partially
defined on the definition domain Xa := {x ∈ X : (x, a) ∈ D(F )} of X (which is
nonempty owing to the non–redundancy condition (2) about attributes) as the
surjective mapping fa : Xa �→ val(a), where val(a) := {F (x, a) : x ∈ Xa} is the
set of all possible values of the attribute a. The non–redundancy condition (1)
about objects assures that

⋃
a∈Att Xa = X (covering condition about attribute

definition domains). Adding to val(a) the further null value ∗, we obtain the
new set val∗(a) and it is possible to extend the partially defined mapping fa to
a global defined one, denoted by f∗

a : X �→ val∗(a), which assigns to any object
x ∈ X the value f∗

a (x) = fa(x) if x ∈ Xa, and the value f∗
a (x) = ∗ otherwise.

Also in the case of incomplete information systems, if one fixes an attribute
a and denotes by αi ∈ val(a), the subset of the universe Ai = f−1

a (αi) =
{x ∈ Xa : fa(x) = αi} is the elementary event of all objects for which the
attribute a assumes the value αi. Further, for any family of attributes A one
can construct the “common” definition domain XA =

⋃
a∈A Xa and then it is

possible to consider the multi–attributes mapping fA assigning to any object
x ∈ XA the corresponding collection of values fA(x) = (f∗

a (x))a∈A, obtaining
a mapping fA : XA �→ val∗(A), with val∗(A) ⊆ Πa∈A val∗(a) the range of the
mapping fA. Note that owing to the non–redundancy conditions for any a ∈ Att
at least one of the f∗

a (x) �= ∗, and so val∗(A) excludes the string consisting of
all ∗. In order to extend to an incomplete information system the properties and
considerations about entropy and co–entropy of partitions described at the end
of section (2), we have at least two different possibilities [7].

(i) For any possible “value” α ∈ val∗(A), one can construct the granule
f−1
A (α) = {x ∈ XA : fA(x) = α} of X labelled by α, also denoted by

[A, α]. The family of granules gr(A) = {[A, α] : α ∈ val∗(A)} plus the
null granule [A, ∗] = X \XA (i.e., the collection of the objects in which all
the attributes are unknown) constitutes a partition of the universe X , in
which gr(A) is a partition of the subset XA of X (which can be considered
as a “partial” partition of X).

(ii) Otherwise, we can consider the covering generated by a similarity (re-
flexive and symmetric, but in general nontransitive) relation. In the case
of incompleteness it is often used the following relation [14]: two objects
x, y ∈ X are said to be similar if and only if ∀ai ∈ A ⊆ Att, either
fai(x) = fai(y) or fai(x) = ∗ or fai(y) = ∗ .

The corresponding options are the following two. The first one, related to
the above point (i) and investigated in this paper, involves partial partitions
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(related to “probabilistic partitions”, i.e., partitions with respect to a measure
m on events from X for which m(X \ XA) = 0). The second one, related to the
point (ii), widely treated in literature by almost all the authors devoted to this
argument (see for instance [13,15]), is applied to coverings [7]. The main point
of difference, which gives to the approach (i) a real content of novelty, is that
it is based on a generalization to probability partitions of the more economical
global co–entropy (2.1a), whereas the approach (ii) generalizes the more complex
pointwise co–entropy (2.2a) applied to coverings. Let us recall that in [7] different
attempts has been investigated in order to give a global notion of co–entropy
in the context of coverings, but all these attempts has been failed from the
point of view of the monotonicity requirement. Finally, it is important that the
results about incomplete ISs are not confused with the intrinsic arguments about
complete ISs. These latter (as treated for instance in [16,12,10]), has to do with
a narrow situation whose extension to the incomplete case is not trivial, and
certainly original. This is what we discuss in the remaining part of the paper.

4 Entropies for Incomplete Information Systems

For any subset A of attributes of an incomplete information system, for the sake
of simplicity, let us denote val∗(A) as V ∗

A, for any α ∈ V ∗
A the corresponding

granule f−1
A (α) as Aα and let us set X∗

A = X \ XA. Let us remark that the
following holds: x /∈ XA iff ∀a ∈ A : f∗(x) = ∗. Hence, the complementing
(of XA with respect to X) domain X∗

A is the collection of all states in which
each attribute fa of the family A is not defined (or in the information table the
row corresponding to the object x ∈ X∗

A assumes the value ∗ in correspondence
of any attribute a ∈ A). From now on, if no confusion is likely, we simply use
X∗ instead of X∗

A.
Now, we can define the measures mA(Aα) = |Aα| and mA(X∗) = 0, and

so mA(X) = mA(
⋃

α Aα ∪ X∗) =
∑

α mA(Aα) + mA(X∗) = |XA|, with the
natural extension to the σ–algebra of events EA(X) from X generated by the
elementary events {Aα : α ∈ V ∗

A} ∪ {A∗ ∈ 2X : A∗ ⊆ X∗} (with m(A∗) = 0),
obtaining in this way a finite measure mA : EA(X) → R+ depending from the set
of attributes A. In particular, the measure of the whole universe changes with
the choice of A. The corresponding probabilities are then p(Aα) = mA(Aα)

mA(X) =
|Aα|
|XA| and p(X∗) = 0. According to a widely used terminology, the collection
π(A) = {Aα : α ∈ V ∗

A} is a probability partition in the sense that the following
hold: (1) each p(Aα) > 0; (2) p(

⋃
α Aα) = 1; (3) p(Aα ∩Aβ) = 0 for α �= β.

Also in this case it is possible to define the co–entropy and the entropy of the
probability partition generated by A, similarly to (2.1a) and (2.1b), as follows:

E(A) =
1

mA(X)

∑

α∈V ∗
A

m(Aα) log m(Aα) (4.1a)

H(A) = −
∑

α∈V ∗
A

p(Aα) log p(Aα) = −
∑

α∈V ∗
A

mA(Aα)
mA(X)

log
mA(Aα)
mA(X)

(4.1b)
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Trivially, H(A)+E(A) = log |XA| = log(mA(X)), i.e., the non–negative quantity
E(A) “complements” the entropy H(A) with respect to the value log(mA(X)),
which depends on the attribute collection A. Let us remark that under the order
condition A ⊆ B on attributes we cannot state in general either H(A) ≤ H(B)
or H(A) ≥ H(B) . If for any collection A of attributes one defines the (globally
normalized) probability p∗(Aα) = |Aα|

|X| , then the following definition can be
given.

Definition 4.1. Let 〈X, Att, F 〉 be an incomplete information system, A ⊆ Att
a collection of attributes, XA ⊆ X the corresponding definition domain, and
π(A) the related pseudo–probability partition (pseudo since the condition (2) of
probability partitions must be substituted by p∗(∪αAα) = |XA|/|X | ≤ 1).

Then, we define the following co–entropy and entropy:

Ẽ(A) :=

(
|X| − |XA|

|X|

)

log |X| +
1

|X|
∑

α∈V ∗
A

|Aα | log |Aα | (4.2a)

H̃(A) := −
∑

α∈V ∗
A

p∗(Aα) log p∗(Aα) = − 1
|X|

∑

α∈V ∗
A

|Aα | log |Aα |
|X| (4.2b)

Also in this case we have that H̃(A) + Ẽ(A) = log |X |. The following important
result about monotonicity holds.

Theorem 4.1 (Monotonicity of H̃(A)). Given an incomplete information
system, let A ⊆ B be two collections of attributes, and π(B) and π(A) the cor-
responding probability partitions. Then we have H̃(A) ≤ H̃(B).

Moreover, under the condition |XB| > |XA| the following strict monotonicity
holds: A ⊂ B implies H̃(A) < H̃(B).

As a direct consequence of theorem 4.1, and making use of H̃(A) + Ẽ(A) =
log |X |, we have the following corollary regarding the co–entropy Ẽ(A).

Corollary 4.1 (Anti–monotonicity of Ẽ(A)). Let A, B be two collections of
attributes such that A ⊆ B. Then we have Ẽ(B) ≤ Ẽ(A).

5 Conclusions and Open Problems

We have illustrated a partitioning approach for incomplete information systems
which take into account the incomplete nature producing at the same time
a probability partition from one side (probability p(Aα) = |Aα|/|XA|) and a
pseudo–probability partition on the other side (probability p∗(Aα) = |Aα|/|X |).
We have then presented a definition of entropy and co–entropy for incomplete
information systems based on the described partitioning approach.

We have shown that the entropy behaves monotonically and the co–entropy
anti–monotonically, with respect to the collections of attributes. Let us stress
that both the here defined co–entropies (4.1a) and (4.2a) result to be a general-
ization of the co–entropy (2.1a) of complete information systems.
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The further step in this research will be the application of our co–entropy
to the construction of reducts and rules in “real” information tables and the
comparison, also from a computational point of view, with the “pointwise” co–
entropy based on coverings considered in [7]. Indeed, even if the procedures to
compute the here introduced co-entropy and the “pointwise” one are in the same
complexity class, it can be easily seen that the former one always requires less
operations than the last one.
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