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Abstract. Decision-theoretic rough set models are a probabilistic exten-
sion of the algebraic rough set model. The required parameters for defin-
ing probabilistic lower and upper approximations are calculated based on
more familiar notions of costs (risks) through the well-known Bayesian
decision procedure. We review and revisit the decision-theoretic models
and present new results. It is shown that we need to consider additional
issues in probabilistic rough set models.
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1 Introduction

Ever since the introduction of rough set theory by Pawlak in 1982 [10,11,13],
many proposals have been made to incorporate probabilistic approaches into
the theory [14,29,30,31]. They include, for example, rough set based probabilistic
classification [24], 0.5 probabilistic rough set model [15], decision-theoretic rough
set models [32,33], variable precision rough set models [6,35], rough membership
functions [12], parameterized rough set models [14,17], and Bayesian rough set
models [2,18,19]. The results of these studies increase our understanding of the
rough set theory and its domain of applications.

The decision-theoretic rough set models [29,32,33] and the variable precision
rough set models [6,35,36] were proposed in the early 1990’s. The two models
are formulated differently in order to generalize the 0.5 probabilistic rough set
model [15]. In fact, they produce the same rough set approximations [29,30].
Their main differences lie in their respective treatment of the required param-
eters used in defining the lower and upper probabilistic approximations. The
decision-theoretic models systematically calculate the parameters based on a
loss function through the Bayesian decision procedure. The physical meaning
of the loss function can be interpreted based on more practical notions of costs
and risks. In contrast, the variable precision models regard the parameters as
primitive notions and a user must supply those parameters. A lack of a system-
atic method for parameter estimation has led researchers to use many ad hoc
methods based on trial and error.

The results and ideas of the decision-theoretic model, based on the well estab-
lished and semantically sound Bayesian decision procedure, have been successfully
applied tomanyfields, suchasdataanalysis anddatamining [3,7,16,21,22,23,25,34]
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information retrieval [8,20], feature selection [27], web-based support systems [26],
and intelligent agents [9]. Some authors have generalized the decision-theoretic
model to multiple regions [1].

The main objective of this paper is to revisit the decision-theoretic rough set
model and to present new results. In order to appreciate the generality and flex-
ibility of the model, we show explicitly the conditions on the loss function under
which other models can be derived, including the standard rough set model, 0.5
probabilistic rough set model, and both symmetric and asymmetric variable pre-
cision rough set models. Furthermore, the decision-theoretic model is extended
from a two-class classification problem into a many-class classification problem.
This enables us to observe that some of the straightforward generalizations of
notions and measures of the algebraic rough set model may not necessarily be
meaningful in the probabilistic models.

2 Algebraic Rough Set Approximations

Let U be a finite and nonempty set and E an equivalence relation on U . The pair
apr = (U, E) is called an approximation space [10,11]. The equivalence relation
E induces a partition of U , denoted by U/E. The equivalence class containing
x is given by [x] = {y | xEy}.

The equivalence classes of E are the basic building blocks to construct al-
gebraic rough set approximations. For a subset A ⊆ U , its lower and upper
approximations are defined by [10,11]:

apr(A) = {x ∈ U | [x] ⊆ A};
apr(A) = {x ∈ U | [x] ∩ A �= ∅}. (1)

The lower and upper approximations, apr, apr : 2U −→ 2U , can be interpreted as
a pair of unary set-theoretic operators [28]. They are dual operators in the sense
that apr(A) = (apr(Ac))c and apr(A) = (apr(Ac))c, where Ac is set complement
of A. Other equivalent definitions and additional properties of approximation
operators can be found in [10,11,28].

Based on the rough set approximations of A, one can divide the universe
U into three disjoint regions, the positive region POS(A), the boundary region
BND(A), and the negative region NEG(A):

POS(A) = apr(A),
BND(A) = apr(A) − apr(A),
NEG(A) = U − POS(A) ∪ BND(A) = U − apr(A) = (apr(A))c. (2)

Some of these regions may be empty. One can say with certainty that any element
x ∈ POS(A) belongs to A, and that any element x ∈ NEG(A) does not belong
to A. One cannot decide with certainty whether or not an element x ∈ BND(A)
belongs to A.

We can easily extend the concepts of rough set approximations and regions
of a single set to a partition of the universe. Consider first a simple case. A set
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∅ �= A �= U induces a partition πA = {A, Ac} of U . The approximations of the
partition πA are defined by:

apr(πA) = (apr(A), apr(Ac)) = (apr(A), (apr(A))c);
apr(πA) = (apr(A), apr(Ac)) = (apr(A), (apr(A))c). (3)

Based on the positive, boundary and negative regions of A and Ac, we have the
corresponding three disjoint regions of πA:

POS(πA) = POS(A) ∪ POS(Ac),
BND(πA) = BND(A) ∪ BND(Ac) = BND(A) = BND(Ac),
NEG(πA) = U − POS(πA) ∪ BND(πA) = ∅. (4)

In general, let π = {A1, A2, . . . , Am} be a partition of the universe U . We have:

apr(π) = (apr(A1), apr(A2), . . . , apr(Am));
apr(π) = (apr(A1), apr(A2), . . . , apr(Am)). (5)

We can extend the notions of three regions to the case of a partition:

POS(π) =
⋃

1≤i≤m

POS(Ai),

BND(π) =
⋃

1≤i≤m

BND(Ai),

NEG(π) = U − POS(π) ∪ BND(π) = ∅. (6)

It can be verified that POS(π) ∩ BND(π) = ∅ and POS(π) ∪ BND(π) = U .
The positive and boundary regions can be used to derive two kinds of rules,

namely, certain and probabilistic rules, or deterministic and non-deterministic
rules [5,11]. More specifically, for [x] ⊆ POS(Ai) and [x′] ⊆ BND(Ai), we have
the two kinds of rules, respectively, as follows:

[x] c=1−→ Ai, [x′] 0<c<1−→ Ai, (7)

where the confidence measure c of a rule is defined by:

c =
|Ai ∩ [x]|

|[x]| , (8)

and | · | is the cardinality of a set. It can be verified that apr(Ai) ∩ apr(Aj) = ∅
for i �= j. An element of U belongs to at most one positive region of Ai’s.
On the other hand, an element may be in more than one boundary region.
Thus, an element may satisfy at most one certain rule, or satisfy more than one
probabilistic rule.

To quantify the degree of dependency of the partition π on the partition
U/E, many authors use only the positive region. For example, Pawlak suggests
the following measure [11]:

r(π|U/E) =
|POS(π)|

|U | . (9)
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This measure only considers the coverage of certain rules. The effects of uncer-
tain rules are not considered. Since NEG(π) = ∅, POS(π) ∩ BND(π) = ∅, and
POS(π)∪BND(π) = U , it may be sufficient to consider only POS(π). As we will
show later, when those notions are generalized into a probabilistic version, it is
necessary to consider all three regions.

3 Probabilistic Rough Set Approximations

The Bayesian decision procedure deals with making decision with minimum risk
based on observed evidence. We present a brief description of the procedure from
the book by Duda and Hart [4], and apply the procedure for the construction of
probabilistic approximations [32,33].

3.1 The Bayesian Decision Procedure

Let Ω = {w1, . . . , ws} be a finite set of s states, and let A = {a1, . . . , am} be a
finite set of m possible actions. Let P (wj |x) be the conditional probability of an
object x being in state wj given that the object is described by x. Let λ(ai|wj)
denote the loss, or cost, for taking action ai when the state is wj . For an object
with description x, suppose action ai is taken. Since P (wj |x) is the probability
that the true state is wj given x, the expected loss associated with taking action
ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|wj)P (wj |x). (10)

The quantity R(ai|x) is also called the conditional risk.
Given a description x, a decision rule is a function τ(x) that specifies which

action to take. That is, for every x, τ(x) takes one of the actions, a1, . . . , am.
The overall risk R is the expected loss associated with a given decision rule.
Since R(τ(x)|x) is the conditional risk associated with action τ(x), the overall
risk is defined by:

R =
∑

x

R(τ(x)|x)P (x), (11)

where the summation is over the set of all possible descriptions of objects. If τ(x)
is chosen so that R(τ(x)|x) is as small as possible for every x, the overall risk
R is minimized. Thus, the Bayesian decision procedure can be formally stated
as follows. For every x, compute the conditional risk R(ai|x) for i = 1, . . . , m
defined by equation (10) and select the action for which the conditional risk is
minimum. If more than one action minimizes R(ai|x), a tie-breaking criterion
can be used.

3.2 Probabilistic Rough Set Approximation Operators

In an approximation space apr = (U, E), an equivalence class [x] is considered to
be the description of x. The partition U/E is the set of all possible descriptions.
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The classification of objects according to approximation operators can be easily
fitted into the Bayesian decision-theoretic framework. The set of states is given
by Ω = {A, Ac} indicating that an element is in A and not in A, respectively.
We use the same symbol to denote both a subset A and the corresponding state.
With respect to the three regions, the set of actions is given by A = {a1, a2, a3},
where a1, a2, and a3 represent the three actions in classifying an object, deciding
POS(A), deciding NEG(A), and deciding BND(A), respectively. Let λ(ai|A)
denote the loss incurred for taking action ai when an object belongs to A, and
let λ(ai|Ac) denote the loss incurred for taking the same action when the object
does not belong to A.

The probabilities P (A|[x]) and P (Ac|[x]) are the probabilities that an object
in the equivalence class [x] belongs to A and Ac, respectively. The expected loss
R(ai|[x]) associated with taking the individual actions can be expressed as:

R(a1|[x]) = λ11P (A|[x]) + λ12P (Ac|[x]),
R(a2|[x]) = λ21P (A|[x]) + λ22P (Ac|[x]),
R(a3|[x]) = λ31P (A|[x]) + λ32P (Ac|[x]), (12)

where λi1 = λ(ai|A), λi2 = λ(ai|Ac), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) If R(a1|[x]) ≤ R(a2|[x]) and R(a1|[x]) ≤ R(a3|[x]), decide POS(A);
(N) If R(a2|[x]) ≤ R(a1|[x]) and R(a2|[x]) ≤ R(a3|[x]), decide NEG(A);
(B) If R(a3|[x]) ≤ R(a1|[x]) and R(a3|[x]) ≤ R(a2|[x]), decide BND(A).

Tie-breaking criteria should be added so that each element is classified into only
one region. Since P (A|[x]) + P (Ac|[x]) = 1, we can simplify the rules to classify
any object in [x] based only on the probabilities P (A|[x]) and the loss function
λij (i = 1, 2, 3; j = 1, 2).

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤
λ32 < λ12. That is, the loss of classifying an object x belonging to A into the
positive region POS(A) is less than or equal to the loss of classifying x into the
boundary region BND(A), and both of these losses are strictly less than the loss
of classifying x into the negative region NEG(A). The reverse order of losses is
used for classifying an object that does not belong to A. For this type of loss
function, the minimum-risk decision rules (P)-(B) can be written as:

(P) If P (A|[x]) ≥ γ and P (A|[x]) ≥ α, decide POS(A);
(N) If P (A|[x]) ≤ β and P (A|[x]) ≤ γ, decide NEG(A);
(B) If β ≤ P (A|[x]) ≤ α, decide BND(A);

where

α =
λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,

γ =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,
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β =
λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
. (13)

By the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that
α ∈ (0, 1], γ ∈ (0, 1), and β ∈ [0, 1).

For a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, more results
about the required parameters α, β and γ are summarized as follows [29]:

1. If a loss function satisfies the condition:

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (14)

then α ≥ γ ≥ β.
2. If a loss function satisfies the condition:

λ12 − λ32 ≥ λ31 − λ11, (15)

then α ≥ 0.5.
3. If a loss function satisfies the conditions,

λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (16)

then α ≥ 0.5 and α ≥ β.
4. If a loss function satisfies the condition:

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31), (17)

then β = 1 − α.
5. If a loss function satisfies the two sets of equivalent conditions,

(i). (λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22),
(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31); (18)

(ii). λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31); (19)

then α = 1 − β ≥ 0.5.

The condition of Case 1 guarantees that the probabilistic lower approximation
of a set is a subset of its probabilistic upper approximation. The condition of
Case 2 ensures that a lower approximation of A consists of those elements whose
majority equivalent elements are in A. The condition of Case 4 results in a pair
of dual lower and upper approximation operators. Case 3 is a combination of
Cases 1 and 2. Case 5 is the combination of Cases 1 and 4 or the combination
of Cases 3 and 4.

When α > β, we have α > γ > β. After tie-breaking, we obtain the decision
rules:

(P1) If P (A|[x]) ≥ α, decide POS(A);
(N1) If P (A|[x]) ≤ β, decide NEG(A);
(B1) If β < P (A|[x]) < α, decide BND(A).
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When α = β, we have α = γ = β. In this case, we use the decision rules:

(P2) If P (A|[x]) > α, decide POS(A);
(N2) If P (A|[x]) < α, decide NEG(A);
(B2) If P (A|[x]) = α, decide BND(A).

For the second set of decision rules, we use a tie-breaking criterion so that the
boundary region may be nonempty.

3.3 Derivations of Other Probabilistic Models

Based on the general decision-theoretic rough set model, it is possible to con-
struct specific models by considering various classes of loss functions. In fact,
many existing models can be explicitly derived.

The standard rough set model [15,24]. Consider a loss function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (20)

There is a unit cost if an object in Ac is classified into the positive region or if
an object in A is classified into the negative region; otherwise there is no cost.
From equation (13), we have α = 1 > β = 0, α = 1 − β, and γ = 0.5. From
decision rules (P1)-(B1), we can compute the approximations as apr

(1,0)
(A) =

POS(1,0)(A) and apr(1,0)(A) = POS(1,0)(A) ∪ BND(1,0)(A). For clarity, we use
the subscript (1, 0) to indicate the parameters used to define lower and upper
approximations. The standard rough set approximations are obtained as [15,24]:

apr
(1,0)

(A) = {x ∈ U | P (A|[x]) = 1},

apr(1,0)(A) = {x ∈ U | P (A|[x]) > 0}, (21)

where P (A|[x]) = |A ∩ [x]|/|[x]|.

The 0.5 probabilistic model [15]. Consider a loss function:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (22)

A unit cost is incurred if an object in Ac is classified into the positive region
or an object in A is classified into the negative region; half of a unit cost is
incurred if any object is classified into the boundary region. For other cases,
there is no cost. By substituting these λij ’s into equation (13), we obtain α =
β = γ = 0.5. By using decision rules (P2)-(B2), we obtain the 0.5 probabilistic
approximations [15]:

apr
(0.5,0.5)

(A) = {x ∈ U | P (A|[x]) > 0.5},

apr(0.5,0.5)(A) = {x ∈ U | P (A|[x]) ≥ 0.5}. (23)

The 0.5 model corresponds to the application of the simple majority rule.
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The symmetric variable precision rough set model [35]. The symmetric
variable precision rough set model corresponds to Case 5 of the decision-theoretic
model discussed in the last subsection. As suggested by many authors [17,35],
the value of α should be in the range (0.5, 1]. This condition can be satisfied by
a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12 and the condition:

λ12 − λ32 > λ31 − λ11. (24)

The condition of symmetry, i.e., β = 1 − α, is guaranteed by the additional
condition:

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31). (25)

By decision rules (P1)-(B1), we obtain the probabilistic approximations of the
symmetric variable precision rough set model [35]:

apr
(α,1−α)

(A) = {x ∈ U | P (A|[x]) ≥ α},

apr(α,1−α)(A) = {x ∈ U | P (A|[x]) > 1 − α}. (26)

They are defined by a single parameter α ∈ (0.5, 1]. The symmetry of parameters
α and β = 1 − α implies the duality of approximations, i.e., apr

(α,1−α)
(A) =

(apr(α,1−α)(A
c))c and apr(α,1−α)(A) = (apr

(α,1−α)
(Ac))c.

As an example, consider a loss function:

λ12 = λ21 = 4, λ31 = λ32 = 1, λ11 = λ22 = 0. (27)

It can be verified that the function satisfies the conditions given by equations (24)
and (25). From equation (13), we have α = 0.75, β = 0.25 and γ = 0.5. By
decision rules (P1)-(B1), we have:

apr
(0.75,0.25)

(A) = {x ∈ U | P (A|[x]) ≥ 0.75},

apr(0.75,0.25)(A) = {x ∈ U | P (A|[x]) > 0.25}. (28)

In general, higher costs of mis-classification, namely, λ12 and λ21, increase the
α value [29].

The asymmetric variable precision rough set model [6]. The asymmetric
variable precision rough set model corresponds to Case 1 of the decision-theoretic
model. The condition on the parameters of the model is given by 0 ≤ β < α ≤ 1.
In addition to λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, a loss function must satisfy
the following conditions:

(λ12 − λ32)(λ21 − λ31) > (λ31 − λ11)(λ32 − λ22). (29)

By decision rules (P1)-(B1), we obtain the probabilistic approximations of the
asymmetric variable precision rough set model [6]:

apr
(α,β)

(A) = {x ∈ U | P (A|[x]) ≥ α},

apr(α,β)(A) = {x ∈ U | P (A|[x]) > β}. (30)
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They are no longer dual operators.
Consider a loss function:

λ12 = 4, λ21 = 2, λ31 = λ32 = 1, λ11 = λ22 = 0. (31)

The function satisfies the conditions given in equation (29). From equation (13),
we have α = 0.75, β = 0.50 and γ = 2/3. By decision rules (P1)-(B1), we have:

apr
(0.75,0.50)

(A) = {x ∈ U | P (A|[x]) ≥ 0.75},

apr(0.75,0.50)(A) = {x ∈ U | P (A|[x]) > 0.50}. (32)

They are not dual operators.

4 Probabilistic Approximations of a Partition

The decision-theoretic rough set model examined in the last section is based on
the two-class classification problem, namely, classifying an object into either A
or Ac. In this section, we extend the formulation to the case of more than two
classes.

Let π = {A1, A2, . . . , Am} be a partition of the universe U , representing m
classes. For this m-class problem, we can solve it in terms of m two-class prob-
lems. For example, for the class Ai, we have A = Ai and Ac = U −Ai =

⋃
i�=j Aj .

For simplicity, we assume the same loss function for all classes Ai’s. Furthermore,
we assume that the loss function satisfies the conditions: (i) λ11 ≤ λ31 < λ21,
(ii) λ22 ≤ λ32 < λ12, and (iii) (λ12 − λ32)(λ21 − λ31) > (λ31 − λ11)(λ32 − λ22).
It follows that α > γ > β. By decision rules (P1)-(B1), we have the positive,
boundary and negative regions:

POS(α,β)(Ai) = {x ∈ U | P (A|[x]) ≥ α},

BND(α,β)(Ai) = {x ∈ U | β < P (A|[x]) < α},

NEG(α,β)(Ai) = {x ∈ U | P (A|[x]) ≤ β}. (33)

The lower and upper approximations are given by:

apr
(α,β)

(Ai) = POS(α,β)(Ai) = {x ∈ U | P (A|[x]) ≥ α},

apr(α,β)(Ai) = POS(α,β)(Ai) ∪ BND(α,β)(Ai) = {x ∈ U | P (A|[x]) > β}.(34)

Similar to the algebraic case, we can define the approximations of a partition
π = {A1, A2, ..., Am} based on those approximations of equivalence classes of π.
For a partition π, the three regions can be defined by:

POS(α,β)(π) =
⋃

1≤i≤m

POS(α,β)(Ai),

BND(α,β)(π) =
⋃

1≤i≤m

BND(α,β)(Ai),

NEG(α,β)(π) = U − POS(α,β)(π) ∪ BND(α,β)(π). (35)
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In contrast to the algebraic case, we have the following different properties of
the three regions:

1. The three regions are not necessarily pairwise disjoint. Nevertheless, the
family {POS(α,β)(π), BND(α,β)(π), NEG(α,β)(π)} is a covering of U .

2. The family of positive regions {POS(α,β)(Ai) | 1 ≤ i ≤ m} does not necessar-
ily contain pairwise disjoint sets. That is, it may happen that POS(α,β)(Ai)∩
POS(α,β)(Aj) �= ∅ for some i �= j.

3. If α > 0.5, the family {POS(α,β)(Ai) | 1 ≤ i ≤ m} contains pairwise disjoint
sets.

4. If β > 0.5, the three regions are pairwise disjoint. That is, {POS(α,β)(π),
BND(α,β)(π), NEG(α,β)(π)} is a partition of U . Furthermore, the family
boundary regions {BND(α,β)(Ai) | 1 ≤ i ≤ m} contains pairwise disjoint
sets.

5. If β = 0, we have NEG(α,β)(π) = ∅.

When generalizing results from the algebraic rough set model, it is necessary to
consider the implications of those properties.

The positive and boundary regions give rise to two kinds of rules. For [x] ⊆
POS(α,β)(Ai) and [x′] ⊆ BND(α,β)(Ai), we have:

[x] c>α−→ Ai, [x′]
β<c<α−→ Ai. (36)

Unlike the algebraic rough set model, the probabilistic positive region may also
produce non-deterministic rules. The negative region NEG(α,β)(π) consists of all
those objects that cannot be classified by the above rules.

In the application of probabilistic rough set models, some authors proposed
straightforward generalizations of the notions of the algebraic rough set model.
For example, the dependency of partition π on U/E is still quantified by using
only the probabilistic positive region. The measure used in the variable precision
model is [35]:

r(α,β)(π|U/E) =
|POS(α,β)(π)|

|U | . (37)

This may not necessarily be meaningful for the following two reasons. First, the
probabilistic positive region may also produce non-deterministic rules. Second,
the negative region is no longer empty. It is therefore necessary to consider the
impact of the negative region. Similar comments can also be made regarding the
generalizations of other measures.

5 Conclusion

A revisit to the decision-theoretic rough set model brings new insights into the
probabilistic approaches to rough sets. Different probabilistic models, proposed
either before or after the decision-theoretic models, can be easily derived from the
decision-theoretic model. More importantly, instead of introducing ad hoc pa-
rameters, the Bayesian decision procedure systematically computes the required
parameters based on a loss function.
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The two-class decision-theoretic model is extended into a many-class model.
The results show that some of the straightforward generalizations of the alge-
braic rough set model may not necessarily be meaningful. From our analysis,
it becomes clear that we need to examine new and different measures for the
probabilistic rough set models. The decision-theoretic rough set model opens
an avenue for future research. A promising direction may be to study various
measures based on the loss function within the decision-theoretic model.
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