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Preface

This volume contains the papers selected for presentation at the International
Conference on Rough Sets and Knowledge Technology (RSKT 2007), a part of
the Joint Rough Set Symposium (JRS 2007) organized by Infobright Inc. and
York University. JRS 2007 was held for the first time during May 14–16, 2007
in MaRS Discovery District, Toronto, Canada. It consisted of two conferences:
RSKT and the 11th International Conference on Rough Sets, Fuzzy Sets, Data
Mining, and Granular Computing (RSFDGrC 2007).

The two conferences that constituted JRS 2007 investigated rough sets as an
emerging methodology established more than 25 years ago by Zdzis�law Pawlak.
Rough set theory has become an integral part of diverse hybrid research streams.
In keeping with this trend, JRS 2007 encompassed rough and fuzzy sets, knowl-
edge technology and discovery, soft and granular computing, data processing and
mining, while maintaining an emphasis on foundations and applications.

The RSKT series was launched in 2006 in Chongqing, China. The RSKT con-
ferences place emphasis on exploring synergies between rough sets and knowledge
discovery, knowledge management, data mining, granular and soft computing as
well as emerging application areas such as biometrics and ubiquitous computing,
both at the level of theoretical foundations and real-life applications.

In RSKT 2007, a special effort was made to include research spanning a broad
range of applications. This was achieved by including in the conference program,
special sessions on multiple criteria decision analysis, biometrics, Kansei engi-
neering, autonomy-oriented computing, soft computing in bioinformatics, as well
as tutorials and sessions related to other application areas.

Overall, we received 319 submissions to the Joint Rough Set Symposium.
Every paper was examined by at least two reviewers. The submission and review
processes were performed jointly for both conferences that together constituted
JRS 2007, i.e., RSFDGrC 2007 and RSKT 2007.

Out of the papers initially selected, some were approved subject to revision
and then additionally evaluated. Finally, 139 papers were accepted for JRS 2007.
This gives an acceptance ratio slightly over 43% for the joint conferences.

Accepted papers were distributed between the two conferences on the basis
of their relevance to the conference themes.

The JRS 2007 conference papers are split into two volumes (LNAI 4481 for
RSKT and LNAI 4482 for RSFDGrC). The regular, invited, and special session
papers selected for presentation at RSKT 2007 are included within 12 chapters
and grouped under specific conference topics.

This volume contains 70 papers, including 3 invited papers presented in Chap.
1. The remaining 67 papers are presented in 11 chapters related to multiple
criteria decision analysis, logical and rough set foundations, biometrics, Kansei
engineering, soft computing in bioinformatics, autonomy-oriented computing,
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ubiquitous computing and networking, rough set algorithms, genetic algorithms,
and rough set applications.

We wish to thank all of the authors who contributed to this volume. We
are very grateful to the chairs, advisory board members, program committee
members, and other reviewers not listed in the conference committee, for their
help in the acceptance process.

We are grateful to our Honorary Chairs, Setsuo Ohsuga and Lotfi Zadeh,
for their support and visionary leadership. We also acknowledge the scientists
who kindly agreed to give the keynote, plenary, and tutorial lectures: Andrzej
Bargiela, Mihir K. Chakraborty, Bernhard Ganter, Sushmita Mitra, Sadaaki
Miyamoto, James F. Peters, Andrzej Skowron, Domenico Talia, Xindong Wu,
Yiyu Yao, Chengqi Zhang, and Wojciech Ziarko. We also wish to express our
deep appreciation to all special session organizers.

We greatly appreciate the co-operation, support, and sponsorship of vari-
ous companies, institutions and organizations, including: Infobright Inc., MaRS
Discovery District, Springer, York University, International Rough Set Society,
International Fuzzy Systems Association, Rough Sets and Soft Computation So-
ciety of the Chinese Association for Artificial Intelligence, and National Research
Council of Canada.

We wish to thank several people whose hard work made the organization
of JRS 2007 possible. In particular, we acknowledge the generous help received
from: Tokuyo Mizuhara, Clara Masaro, Christopher Henry, Julio V. Valdes, April
Dunford, Sandy Hsu, Lora Zuech, Bonnie Barbayanis, and Allen Gelberg.

Last but not least, we are thankful to Alfred Hofmann of Springer for support
and co-operation during preparation of this volume.

May 2007 JingTao Yao
Pawan Lingras

Wei-Zhi Wu
Marcin Szczuka

Nick Cercone
Dominik Ślȩzak
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Robert J. Hilderman



X Table of Contents

Optimized Generalized Decision in Dominance-Based Rough Set
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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Decision-Theoretic Rough Set Models

Yiyu Yao

Department of Computer Science, University of Regina,
Regina, Saskatchewan, Canada S4S 0A2

yyao@cs.uregina.ca

Abstract. Decision-theoretic rough set models are a probabilistic exten-
sion of the algebraic rough set model. The required parameters for defin-
ing probabilistic lower and upper approximations are calculated based on
more familiar notions of costs (risks) through the well-known Bayesian
decision procedure. We review and revisit the decision-theoretic models
and present new results. It is shown that we need to consider additional
issues in probabilistic rough set models.

Keywords: Bayesian decision theory, decision-theoretic rough sets,
probabilistic rough sets, variable precision rough sets.

1 Introduction

Ever since the introduction of rough set theory by Pawlak in 1982 [10,11,13],
many proposals have been made to incorporate probabilistic approaches into
the theory [14,29,30,31]. They include, for example, rough set based probabilistic
classification [24], 0.5 probabilistic rough set model [15], decision-theoretic rough
set models [32,33], variable precision rough set models [6,35], rough membership
functions [12], parameterized rough set models [14,17], and Bayesian rough set
models [2,18,19]. The results of these studies increase our understanding of the
rough set theory and its domain of applications.

The decision-theoretic rough set models [29,32,33] and the variable precision
rough set models [6,35,36] were proposed in the early 1990’s. The two models
are formulated differently in order to generalize the 0.5 probabilistic rough set
model [15]. In fact, they produce the same rough set approximations [29,30].
Their main differences lie in their respective treatment of the required param-
eters used in defining the lower and upper probabilistic approximations. The
decision-theoretic models systematically calculate the parameters based on a
loss function through the Bayesian decision procedure. The physical meaning
of the loss function can be interpreted based on more practical notions of costs
and risks. In contrast, the variable precision models regard the parameters as
primitive notions and a user must supply those parameters. A lack of a system-
atic method for parameter estimation has led researchers to use many ad hoc
methods based on trial and error.

The results and ideas of the decision-theoretic model, based on the well estab-
lished and semantically sound Bayesian decision procedure, have been successfully
applied tomanyfields, suchasdataanalysis anddatamining [3,7,16,21,22,23,25,34]

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 Y. Yao

information retrieval [8,20], feature selection [27], web-based support systems [26],
and intelligent agents [9]. Some authors have generalized the decision-theoretic
model to multiple regions [1].

The main objective of this paper is to revisit the decision-theoretic rough set
model and to present new results. In order to appreciate the generality and flex-
ibility of the model, we show explicitly the conditions on the loss function under
which other models can be derived, including the standard rough set model, 0.5
probabilistic rough set model, and both symmetric and asymmetric variable pre-
cision rough set models. Furthermore, the decision-theoretic model is extended
from a two-class classification problem into a many-class classification problem.
This enables us to observe that some of the straightforward generalizations of
notions and measures of the algebraic rough set model may not necessarily be
meaningful in the probabilistic models.

2 Algebraic Rough Set Approximations

Let U be a finite and nonempty set and E an equivalence relation on U . The pair
apr = (U, E) is called an approximation space [10,11]. The equivalence relation
E induces a partition of U , denoted by U/E. The equivalence class containing
x is given by [x] = {y | xEy}.

The equivalence classes of E are the basic building blocks to construct al-
gebraic rough set approximations. For a subset A ⊆ U , its lower and upper
approximations are defined by [10,11]:

apr(A) = {x ∈ U | [x] ⊆ A};
apr(A) = {x ∈ U | [x] ∩ A �= ∅}. (1)

The lower and upper approximations, apr, apr : 2U −→ 2U , can be interpreted as
a pair of unary set-theoretic operators [28]. They are dual operators in the sense
that apr(A) = (apr(Ac))c and apr(A) = (apr(Ac))c, where Ac is set complement
of A. Other equivalent definitions and additional properties of approximation
operators can be found in [10,11,28].

Based on the rough set approximations of A, one can divide the universe
U into three disjoint regions, the positive region POS(A), the boundary region
BND(A), and the negative region NEG(A):

POS(A) = apr(A),
BND(A) = apr(A) − apr(A),
NEG(A) = U − POS(A) ∪ BND(A) = U − apr(A) = (apr(A))c. (2)

Some of these regions may be empty. One can say with certainty that any element
x ∈ POS(A) belongs to A, and that any element x ∈ NEG(A) does not belong
to A. One cannot decide with certainty whether or not an element x ∈ BND(A)
belongs to A.

We can easily extend the concepts of rough set approximations and regions
of a single set to a partition of the universe. Consider first a simple case. A set
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∅ �= A �= U induces a partition πA = {A, Ac} of U . The approximations of the
partition πA are defined by:

apr(πA) = (apr(A), apr(Ac)) = (apr(A), (apr(A))c);
apr(πA) = (apr(A), apr(Ac)) = (apr(A), (apr(A))c). (3)

Based on the positive, boundary and negative regions of A and Ac, we have the
corresponding three disjoint regions of πA:

POS(πA) = POS(A) ∪ POS(Ac),
BND(πA) = BND(A) ∪ BND(Ac) = BND(A) = BND(Ac),
NEG(πA) = U − POS(πA) ∪ BND(πA) = ∅. (4)

In general, let π = {A1, A2, . . . , Am} be a partition of the universe U . We have:

apr(π) = (apr(A1), apr(A2), . . . , apr(Am));
apr(π) = (apr(A1), apr(A2), . . . , apr(Am)). (5)

We can extend the notions of three regions to the case of a partition:

POS(π) =
⋃

1≤i≤m

POS(Ai),

BND(π) =
⋃

1≤i≤m

BND(Ai),

NEG(π) = U − POS(π) ∪ BND(π) = ∅. (6)

It can be verified that POS(π) ∩ BND(π) = ∅ and POS(π) ∪ BND(π) = U .
The positive and boundary regions can be used to derive two kinds of rules,

namely, certain and probabilistic rules, or deterministic and non-deterministic
rules [5,11]. More specifically, for [x] ⊆ POS(Ai) and [x′] ⊆ BND(Ai), we have
the two kinds of rules, respectively, as follows:

[x] c=1−→ Ai, [x′] 0<c<1−→ Ai, (7)

where the confidence measure c of a rule is defined by:

c =
|Ai ∩ [x]|

|[x]| , (8)

and | · | is the cardinality of a set. It can be verified that apr(Ai) ∩ apr(Aj) = ∅
for i �= j. An element of U belongs to at most one positive region of Ai’s.
On the other hand, an element may be in more than one boundary region.
Thus, an element may satisfy at most one certain rule, or satisfy more than one
probabilistic rule.

To quantify the degree of dependency of the partition π on the partition
U/E, many authors use only the positive region. For example, Pawlak suggests
the following measure [11]:

r(π|U/E) =
|POS(π)|

|U | . (9)
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This measure only considers the coverage of certain rules. The effects of uncer-
tain rules are not considered. Since NEG(π) = ∅, POS(π) ∩ BND(π) = ∅, and
POS(π)∪BND(π) = U , it may be sufficient to consider only POS(π). As we will
show later, when those notions are generalized into a probabilistic version, it is
necessary to consider all three regions.

3 Probabilistic Rough Set Approximations

The Bayesian decision procedure deals with making decision with minimum risk
based on observed evidence. We present a brief description of the procedure from
the book by Duda and Hart [4], and apply the procedure for the construction of
probabilistic approximations [32,33].

3.1 The Bayesian Decision Procedure

Let Ω = {w1, . . . , ws} be a finite set of s states, and let A = {a1, . . . , am} be a
finite set of m possible actions. Let P (wj |x) be the conditional probability of an
object x being in state wj given that the object is described by x. Let λ(ai|wj)
denote the loss, or cost, for taking action ai when the state is wj . For an object
with description x, suppose action ai is taken. Since P (wj |x) is the probability
that the true state is wj given x, the expected loss associated with taking action
ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|wj)P (wj |x). (10)

The quantity R(ai|x) is also called the conditional risk.
Given a description x, a decision rule is a function τ(x) that specifies which

action to take. That is, for every x, τ(x) takes one of the actions, a1, . . . , am.
The overall risk R is the expected loss associated with a given decision rule.
Since R(τ(x)|x) is the conditional risk associated with action τ(x), the overall
risk is defined by:

R =
∑

x

R(τ(x)|x)P (x), (11)

where the summation is over the set of all possible descriptions of objects. If τ(x)
is chosen so that R(τ(x)|x) is as small as possible for every x, the overall risk
R is minimized. Thus, the Bayesian decision procedure can be formally stated
as follows. For every x, compute the conditional risk R(ai|x) for i = 1, . . . , m
defined by equation (10) and select the action for which the conditional risk is
minimum. If more than one action minimizes R(ai|x), a tie-breaking criterion
can be used.

3.2 Probabilistic Rough Set Approximation Operators

In an approximation space apr = (U, E), an equivalence class [x] is considered to
be the description of x. The partition U/E is the set of all possible descriptions.
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The classification of objects according to approximation operators can be easily
fitted into the Bayesian decision-theoretic framework. The set of states is given
by Ω = {A, Ac} indicating that an element is in A and not in A, respectively.
We use the same symbol to denote both a subset A and the corresponding state.
With respect to the three regions, the set of actions is given by A = {a1, a2, a3},
where a1, a2, and a3 represent the three actions in classifying an object, deciding
POS(A), deciding NEG(A), and deciding BND(A), respectively. Let λ(ai|A)
denote the loss incurred for taking action ai when an object belongs to A, and
let λ(ai|Ac) denote the loss incurred for taking the same action when the object
does not belong to A.

The probabilities P (A|[x]) and P (Ac|[x]) are the probabilities that an object
in the equivalence class [x] belongs to A and Ac, respectively. The expected loss
R(ai|[x]) associated with taking the individual actions can be expressed as:

R(a1|[x]) = λ11P (A|[x]) + λ12P (Ac|[x]),
R(a2|[x]) = λ21P (A|[x]) + λ22P (Ac|[x]),
R(a3|[x]) = λ31P (A|[x]) + λ32P (Ac|[x]), (12)

where λi1 = λ(ai|A), λi2 = λ(ai|Ac), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) If R(a1|[x]) ≤ R(a2|[x]) and R(a1|[x]) ≤ R(a3|[x]), decide POS(A);
(N) If R(a2|[x]) ≤ R(a1|[x]) and R(a2|[x]) ≤ R(a3|[x]), decide NEG(A);
(B) If R(a3|[x]) ≤ R(a1|[x]) and R(a3|[x]) ≤ R(a2|[x]), decide BND(A).

Tie-breaking criteria should be added so that each element is classified into only
one region. Since P (A|[x]) + P (Ac|[x]) = 1, we can simplify the rules to classify
any object in [x] based only on the probabilities P (A|[x]) and the loss function
λij (i = 1, 2, 3; j = 1, 2).

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤
λ32 < λ12. That is, the loss of classifying an object x belonging to A into the
positive region POS(A) is less than or equal to the loss of classifying x into the
boundary region BND(A), and both of these losses are strictly less than the loss
of classifying x into the negative region NEG(A). The reverse order of losses is
used for classifying an object that does not belong to A. For this type of loss
function, the minimum-risk decision rules (P)-(B) can be written as:

(P) If P (A|[x]) ≥ γ and P (A|[x]) ≥ α, decide POS(A);
(N) If P (A|[x]) ≤ β and P (A|[x]) ≤ γ, decide NEG(A);
(B) If β ≤ P (A|[x]) ≤ α, decide BND(A);

where

α =
λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,

γ =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,
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β =
λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
. (13)

By the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that
α ∈ (0, 1], γ ∈ (0, 1), and β ∈ [0, 1).

For a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, more results
about the required parameters α, β and γ are summarized as follows [29]:

1. If a loss function satisfies the condition:

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (14)

then α ≥ γ ≥ β.
2. If a loss function satisfies the condition:

λ12 − λ32 ≥ λ31 − λ11, (15)

then α ≥ 0.5.
3. If a loss function satisfies the conditions,

λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (16)

then α ≥ 0.5 and α ≥ β.
4. If a loss function satisfies the condition:

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31), (17)

then β = 1 − α.
5. If a loss function satisfies the two sets of equivalent conditions,

(i). (λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22),
(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31); (18)

(ii). λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31); (19)

then α = 1 − β ≥ 0.5.

The condition of Case 1 guarantees that the probabilistic lower approximation
of a set is a subset of its probabilistic upper approximation. The condition of
Case 2 ensures that a lower approximation of A consists of those elements whose
majority equivalent elements are in A. The condition of Case 4 results in a pair
of dual lower and upper approximation operators. Case 3 is a combination of
Cases 1 and 2. Case 5 is the combination of Cases 1 and 4 or the combination
of Cases 3 and 4.

When α > β, we have α > γ > β. After tie-breaking, we obtain the decision
rules:

(P1) If P (A|[x]) ≥ α, decide POS(A);
(N1) If P (A|[x]) ≤ β, decide NEG(A);
(B1) If β < P (A|[x]) < α, decide BND(A).
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When α = β, we have α = γ = β. In this case, we use the decision rules:

(P2) If P (A|[x]) > α, decide POS(A);
(N2) If P (A|[x]) < α, decide NEG(A);
(B2) If P (A|[x]) = α, decide BND(A).

For the second set of decision rules, we use a tie-breaking criterion so that the
boundary region may be nonempty.

3.3 Derivations of Other Probabilistic Models

Based on the general decision-theoretic rough set model, it is possible to con-
struct specific models by considering various classes of loss functions. In fact,
many existing models can be explicitly derived.

The standard rough set model [15,24]. Consider a loss function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (20)

There is a unit cost if an object in Ac is classified into the positive region or if
an object in A is classified into the negative region; otherwise there is no cost.
From equation (13), we have α = 1 > β = 0, α = 1 − β, and γ = 0.5. From
decision rules (P1)-(B1), we can compute the approximations as apr

(1,0)
(A) =

POS(1,0)(A) and apr(1,0)(A) = POS(1,0)(A) ∪ BND(1,0)(A). For clarity, we use
the subscript (1, 0) to indicate the parameters used to define lower and upper
approximations. The standard rough set approximations are obtained as [15,24]:

apr
(1,0)

(A) = {x ∈ U | P (A|[x]) = 1},

apr(1,0)(A) = {x ∈ U | P (A|[x]) > 0}, (21)

where P (A|[x]) = |A ∩ [x]|/|[x]|.

The 0.5 probabilistic model [15]. Consider a loss function:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (22)

A unit cost is incurred if an object in Ac is classified into the positive region
or an object in A is classified into the negative region; half of a unit cost is
incurred if any object is classified into the boundary region. For other cases,
there is no cost. By substituting these λij ’s into equation (13), we obtain α =
β = γ = 0.5. By using decision rules (P2)-(B2), we obtain the 0.5 probabilistic
approximations [15]:

apr
(0.5,0.5)

(A) = {x ∈ U | P (A|[x]) > 0.5},

apr(0.5,0.5)(A) = {x ∈ U | P (A|[x]) ≥ 0.5}. (23)

The 0.5 model corresponds to the application of the simple majority rule.
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The symmetric variable precision rough set model [35]. The symmetric
variable precision rough set model corresponds to Case 5 of the decision-theoretic
model discussed in the last subsection. As suggested by many authors [17,35],
the value of α should be in the range (0.5, 1]. This condition can be satisfied by
a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12 and the condition:

λ12 − λ32 > λ31 − λ11. (24)

The condition of symmetry, i.e., β = 1 − α, is guaranteed by the additional
condition:

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31). (25)

By decision rules (P1)-(B1), we obtain the probabilistic approximations of the
symmetric variable precision rough set model [35]:

apr
(α,1−α)

(A) = {x ∈ U | P (A|[x]) ≥ α},

apr(α,1−α)(A) = {x ∈ U | P (A|[x]) > 1 − α}. (26)

They are defined by a single parameter α ∈ (0.5, 1]. The symmetry of parameters
α and β = 1 − α implies the duality of approximations, i.e., apr

(α,1−α)
(A) =

(apr(α,1−α)(A
c))c and apr(α,1−α)(A) = (apr

(α,1−α)
(Ac))c.

As an example, consider a loss function:

λ12 = λ21 = 4, λ31 = λ32 = 1, λ11 = λ22 = 0. (27)

It can be verified that the function satisfies the conditions given by equations (24)
and (25). From equation (13), we have α = 0.75, β = 0.25 and γ = 0.5. By
decision rules (P1)-(B1), we have:

apr
(0.75,0.25)

(A) = {x ∈ U | P (A|[x]) ≥ 0.75},

apr(0.75,0.25)(A) = {x ∈ U | P (A|[x]) > 0.25}. (28)

In general, higher costs of mis-classification, namely, λ12 and λ21, increase the
α value [29].

The asymmetric variable precision rough set model [6]. The asymmetric
variable precision rough set model corresponds to Case 1 of the decision-theoretic
model. The condition on the parameters of the model is given by 0 ≤ β < α ≤ 1.
In addition to λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, a loss function must satisfy
the following conditions:

(λ12 − λ32)(λ21 − λ31) > (λ31 − λ11)(λ32 − λ22). (29)

By decision rules (P1)-(B1), we obtain the probabilistic approximations of the
asymmetric variable precision rough set model [6]:

apr
(α,β)

(A) = {x ∈ U | P (A|[x]) ≥ α},

apr(α,β)(A) = {x ∈ U | P (A|[x]) > β}. (30)
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They are no longer dual operators.
Consider a loss function:

λ12 = 4, λ21 = 2, λ31 = λ32 = 1, λ11 = λ22 = 0. (31)

The function satisfies the conditions given in equation (29). From equation (13),
we have α = 0.75, β = 0.50 and γ = 2/3. By decision rules (P1)-(B1), we have:

apr
(0.75,0.50)

(A) = {x ∈ U | P (A|[x]) ≥ 0.75},

apr(0.75,0.50)(A) = {x ∈ U | P (A|[x]) > 0.50}. (32)

They are not dual operators.

4 Probabilistic Approximations of a Partition

The decision-theoretic rough set model examined in the last section is based on
the two-class classification problem, namely, classifying an object into either A
or Ac. In this section, we extend the formulation to the case of more than two
classes.

Let π = {A1, A2, . . . , Am} be a partition of the universe U , representing m
classes. For this m-class problem, we can solve it in terms of m two-class prob-
lems. For example, for the class Ai, we have A = Ai and Ac = U −Ai =

⋃
i�=j Aj .

For simplicity, we assume the same loss function for all classes Ai’s. Furthermore,
we assume that the loss function satisfies the conditions: (i) λ11 ≤ λ31 < λ21,
(ii) λ22 ≤ λ32 < λ12, and (iii) (λ12 − λ32)(λ21 − λ31) > (λ31 − λ11)(λ32 − λ22).
It follows that α > γ > β. By decision rules (P1)-(B1), we have the positive,
boundary and negative regions:

POS(α,β)(Ai) = {x ∈ U | P (A|[x]) ≥ α},

BND(α,β)(Ai) = {x ∈ U | β < P (A|[x]) < α},

NEG(α,β)(Ai) = {x ∈ U | P (A|[x]) ≤ β}. (33)

The lower and upper approximations are given by:

apr
(α,β)

(Ai) = POS(α,β)(Ai) = {x ∈ U | P (A|[x]) ≥ α},

apr(α,β)(Ai) = POS(α,β)(Ai) ∪ BND(α,β)(Ai) = {x ∈ U | P (A|[x]) > β}.(34)

Similar to the algebraic case, we can define the approximations of a partition
π = {A1, A2, ..., Am} based on those approximations of equivalence classes of π.
For a partition π, the three regions can be defined by:

POS(α,β)(π) =
⋃

1≤i≤m

POS(α,β)(Ai),

BND(α,β)(π) =
⋃

1≤i≤m

BND(α,β)(Ai),

NEG(α,β)(π) = U − POS(α,β)(π) ∪ BND(α,β)(π). (35)
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In contrast to the algebraic case, we have the following different properties of
the three regions:

1. The three regions are not necessarily pairwise disjoint. Nevertheless, the
family {POS(α,β)(π), BND(α,β)(π), NEG(α,β)(π)} is a covering of U .

2. The family of positive regions {POS(α,β)(Ai) | 1 ≤ i ≤ m} does not necessar-
ily contain pairwise disjoint sets. That is, it may happen that POS(α,β)(Ai)∩
POS(α,β)(Aj) �= ∅ for some i �= j.

3. If α > 0.5, the family {POS(α,β)(Ai) | 1 ≤ i ≤ m} contains pairwise disjoint
sets.

4. If β > 0.5, the three regions are pairwise disjoint. That is, {POS(α,β)(π),
BND(α,β)(π), NEG(α,β)(π)} is a partition of U . Furthermore, the family
boundary regions {BND(α,β)(Ai) | 1 ≤ i ≤ m} contains pairwise disjoint
sets.

5. If β = 0, we have NEG(α,β)(π) = ∅.

When generalizing results from the algebraic rough set model, it is necessary to
consider the implications of those properties.

The positive and boundary regions give rise to two kinds of rules. For [x] ⊆
POS(α,β)(Ai) and [x′] ⊆ BND(α,β)(Ai), we have:

[x] c>α−→ Ai, [x′]
β<c<α−→ Ai. (36)

Unlike the algebraic rough set model, the probabilistic positive region may also
produce non-deterministic rules. The negative region NEG(α,β)(π) consists of all
those objects that cannot be classified by the above rules.

In the application of probabilistic rough set models, some authors proposed
straightforward generalizations of the notions of the algebraic rough set model.
For example, the dependency of partition π on U/E is still quantified by using
only the probabilistic positive region. The measure used in the variable precision
model is [35]:

r(α,β)(π|U/E) =
|POS(α,β)(π)|

|U | . (37)

This may not necessarily be meaningful for the following two reasons. First, the
probabilistic positive region may also produce non-deterministic rules. Second,
the negative region is no longer empty. It is therefore necessary to consider the
impact of the negative region. Similar comments can also be made regarding the
generalizations of other measures.

5 Conclusion

A revisit to the decision-theoretic rough set model brings new insights into the
probabilistic approaches to rough sets. Different probabilistic models, proposed
either before or after the decision-theoretic models, can be easily derived from the
decision-theoretic model. More importantly, instead of introducing ad hoc pa-
rameters, the Bayesian decision procedure systematically computes the required
parameters based on a loss function.
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The two-class decision-theoretic model is extended into a many-class model.
The results show that some of the straightforward generalizations of the alge-
braic rough set model may not necessarily be meaningful. From our analysis,
it becomes clear that we need to examine new and different measures for the
probabilistic rough set models. The decision-theoretic rough set model opens
an avenue for future research. A promising direction may be to study various
measures based on the loss function within the decision-theoretic model.
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Abstract. To reduce the time complexity of attribute reduction algorithm based 
on discernibility matrix, a simplified decision table is first introduced, and an 
algorithm with time complexity (| || |)O C U  is designed for calculating the 
simplified decision table. And then, a new measure of the significance of an 
attribute is defined for reducing the search space of simplified decision table. A 
recursive algorithm is proposed for computing the attribute significance that its 
time complexity is of (| / |)O U C . Finally, an efficient attribute reduction 
algorithm is developed based on the attribute significance. This algorithm is 
equal to existing algorithms in performance and its time complexity is 

(| || |)O C U  2(| | | / |)O C U C+ . 

Keywords: Attribute reduction, simplified decision table, discernibility matrix. 

1   Introduction 

Recently, some efforts on attribute reduction have focused on dealing with 
inconsistency in decision information systems. Since Pawlak proposed the attribute 
reduction based on positive region [1], there has been some work developed for 
improving the efficiency of the attribute reduction based on positive region [2,3]. 
Latter, Skowron and Hu proposed the attribute reduction based on discernibility 
matrix [4,5]. There have been also other types of knowledge reduction [6,7]. 

In this paper, we study the attribute reduction based on discernibility matrix and to 
design correspondence attribute reduction algorithm. The attribute reduction 
algorithm based on discernibility matrix given in [8-14] starts with an empty set of 
attributes and heuristically adds new attributes one by one, in a greedy way, until a 
super reduction is constructed. In each loop, if the attribute ak frequently occurs in the 
discernibility matrix, it will be added. This is equivalent to choosing the attribute that 
‘discerns’ the largest number of pairs of objects with different decisions. Full details 
of the algorithm can be found in [8-14]. In these algorithms, the elements of 
discernibility matrix are used as the heuristic information. So it must be first to 
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calculate the discernibility matrix. The time complexity and space complexity are 
both 2(| || | )O C U , where C and U are attributes set and objects set of a decision table, 
respectively. The time complexity of these algorithms proposed by authors in [8-10] 
is 2 2(| | | | )O C U . The time complexity of these algorithms proposed by authors in  

[11-14] is cut down to 2((| | log | |) | | )O C U U+ . Hence if the elements of discernibility 
matrix are used as the heuristic information to design attribute reduction algorithm, 
the best time complexity of this kind of algorithm is not lower than 2(| || | )O C U . On 
the other hand, it needs large space to store the discernibility matrix. When the data 
set is very large, algorithm is difficult to operate.  

To lower the time complexity of attribute reduction algorithm based on 
discernibility matrix, we design an algorithm based on the significance of attribute 
and its time complexity is 2(| || |) (| | | / |)O C U O C U C+ . 

The rest of this paper is as follows. In Section 2, we introduce some basic concepts. 
We present our algorithm in Section 3 and illustrate the use of the algorithm with an 
example in Section 4. We summarize this paper in Section 5. 

2   Concepts and Definitions 

In this section, we introduce the basic concepts and correspondence definitions. 

Definition 1. A decision table is defined as ( , , , , )S U C D V f= , where 1 2{ , ,U x x=  

, }nxL  is the set of objects, 1 2{ , , , }rC c c c= L  is the set of condition attributes, D is the 

set of decision attributes, and C D∩ = ∅ ; a
a C D

V V
∈ ∪

= ∪ , where aV  is the value range of 

attribute a. :f U C D V× ∪ →  is an information function, in which an information 

value for each attribute of an object, i.e., , , ( , ) aa C D x U f x a V∀ ∈ ∪ ∈ ∈ . Every 

attribute subset ( )P C D⊆ ∪  determines a binary indiscernibility relation ( )IND P : 

( ) {( , ) | , ( , ) ( , )}IND P x y U U a P f x a f y a= ∈ × ∀ ∈ =  

( )IND P  determines a partition of U, which is denoted by / ( )U IND P  (in short U/P). 
Any element , ( , ) ( , )}[ ] { |P P f x a f y ax y a == ∀ ∈  in U/P is called equivalent class. 

Definition 2. For a decision table ( , , , , )S U C D V f= , let 1 2/ { , , , }kU D D D D= L be the 

partition of D to U, and 1 2/ { , , , }mU C C C C= L  be the partition of C to U, where 

( 1,2, , )iC i m= L  is basic block, then 
/

( ) ( )
i

C i
D U D

POS D C D−∈
= ∪  is called positive region of 

C on D. If ( )CPOS D U= , then the decision table is called consistent, else it is called 

inconsistent. 

Theorem 1. For a decision table ( , , , , )S U C D V f= , there is 

/ , ( , ) ( , )
( )C X U C x y X f x D f y D

P O S D X
∈ ∧ ∀ ∈ ⇒ =

= ∪  

Proof: According to the definition of positive region of C for D, it is easy to know the 
proposition is right. 
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According to Theorem 1, we have the following definition of simplicity decision 
table. 

Definition 3. For a decision table ( , , , , )S U C D V f= , let 1 2/ {[ ] ,[ ] , ,[ ] }C C m CU C x x x′ ′ ′= L  

and 1 2{ , , , }mU x x x′ ′ ′ ′= L . For the definition of positive region, there is 
1

( ) [ ]C i CPOS D x′= ∪  

2
[ ] [ ]

ti C i Cx x′ ′∪ ∪L , where 
1 2

{ , , , }
ti i ix x x U′ ′ ′ ′⊆L  and , [ ]

si Cx y x′∀ ∈  ( 1,2, , )s t= L , there are 

( , ) ( , )f x D f y D= ; let 
1 2

{ , , , }
tpos i i iU x x x′ ′ ′ ′= L  and neg posU U U′ ′ ′= − . It is said that the 5-tuple 

( , , , , )S U C D V f′ ′=  is a simplicity decision table. 

Definition 4.  For a decision table ( , , , , )S U C D V f= , we define discernibility matrix 
( )i jM m= , whose elements are defined as follow: 

, ( , ) ( , ), ( , ) ( , )}{ | j i jk k k ki
ij

C f x f x f x D f x D
m

c c c c⎧ ∈ ≠ ≠⎪
⎨
⎪⎩

=
∅ el se

 

where 1,2,...,k r= . 

Definition 5. For a decision table ( , , , , )S U C D V f= , ( )ijM m=  is discernibility 

matrix, B C∀ ⊆ , if B satisfies: (1) ijm M∀ ∅ ≠ ∈ , such that ijB m∩ ≠ ∅ ; 

(2) b B∀ ∈ , { }B b−  is not satisfied (1), then B is called the attribute reduction of C for 
D based on discernibility matrix. 

In next section, we would define a new reasonable formula for measuring the 
significance of attribute to reduce the search space of simplified decision table.  

3   The Significance of Attribute 

In these old algorithm based on discernibility matrix, it was first to calculate the 
discernibility matrix, so the time complexity of the algorithm is not lower than 

2(| || | )O C U . To cut down the time complexity of the attribute reduction, we designed 
a new and reasonable formula for measuring the significance of attribute to reduce the 
search space of the simplicity decision table. In order to propose the significance of 
attribute, we first introduce the follow proposition. 

Definition 6. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its 
simplicity decision table. B C∀ ⊆ , we define knowledge of the attribute set B for D as 
follow: 

/ ( ) | / | 1 / ( ) | / | 1
( ) { } { }

pos neg
D

X U B X U X D X U B X U X C
Sig B X X

′ ′ ′ ′∈ ∧ ⊆ ∧ = ∈ ∧ ⊆ ∧ =
= ∪ ∪ ∪ . 

where we consider ( )DSig ∅ = ∅ . We can easily know ( )DSig C U ′= . 

Theorem 2. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′= is its simplicity 
decision table, ( )i jM m= is the deiscernibility matrix of the old decision 

table. B C∀ ⊆ , if ( ) ( )D DSig B Sig C= , there is ijm M∀∅ ≠ ∈ such that ijB m∩ ≠ ∅ . 
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Theorem 3. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its simplicity 
decision table, and ( )i jM m= is the discernibility matrix of the old decision 

table. B C∀ ⊆ , if ijm M∀∅ ≠ ∈ such that ijB m∩ ≠ ∅ , there has ( ) ( )D DSig B Sig C= . 

Theorem 4. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its simplicity 
decision table, and ( )i jM m=  is the discernibility matrix of the old decision 

table. B C∀ ⊆ , if ( ) ( )D DSig B Sig C≠ , there must exist 
0 0i jm M∅ ≠ ∈ such that 

0 0i jB m∩ = ∅ . 

Theorem 5. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′= is its simplicity 
decision table. B C∀ ⊆ , if ( ) ( )D DSig B Sig C=  and b B∀ ∈  there is 

( { }) ( )D DSig B b Sig C− ≠ , then B is an attribute reduction C for D based on the 

discernibility matrix. 

Definition 7. (The significance of attribute) For a decision table ( , , , , )S U C D V f= , 
( , , , , )S U C D V f′ ′=  is its simplicity decision table. For P C⊆ , the significance of 

arbitrary attribute a ( ( )a C P∈ − ) to attribute set P is defined as follow: 

( ) ( { }) ( )p D DI a Sig P a Sig P= ∪ − . 

Theorem 6[3]. For a decision table ( , , , , )S U C D V f= , to , ( )P C a C P∀ ⊆ ∀ ∈ − , there is 

/
/( { }) ( /{ })

X U P
U P a X a

∈
∪ = ∪ . 

Theorem 7. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′=  is its simplicity 
decision table. For , ( )P C a C P⊆ ∀ ∈ − , there is  

/
/( { }) ( /{ })

X U P
U P a X a

′∈
′ ∪ = ∪ . 

Theorem 8. For a decision table ( , , , , )S U C D V f= , ( , , , , )S U C D V f′ ′= is its simplicity 
decision table. For , ( )P C a C P⊆ ∀ ∈ − , there is 

( ) ( { }) ( )p D DI a Sig P a Sig P= ∪ −  

/ ( ) /{ } | / | 1
{ }

pos neg posX U P X U X U Y X a Y U Y D
Y

∈ ∧ ⊄ ∧ ⊄ ∧ ∈ ∧ ⊆ ∧ =′ ′ ′ ′
∪U

/ | / | 1 / { } | / | 1
| { }

p o sX U P X U X D Y X a Y D
Y

∈ ∧ ⊆ ∧ ≠ ∧ ∈ ∧ =′ ′
= ∪   

/ ( ) /{ } | / | 1
{ }

pos neg negX U P X U X U Y X a Y U Y C
Y

∈ ∧ ⊄ ∧ ⊄ ∧ ∈ ∧ ⊆ ∧ =′ ′ ′ ′
∪U  

/ | / | 1 /{ } | / | 1
{ }|

negX U P X U X C Y X a Y C
Y

∈ ∧ ⊆ ∧ ≠ ∧ ∈ ∧ =′ ′
∪U . 

4   Algorithm for Calculating the Significance of Attribute 

According to Definition 6, it is first to calculate the simplified decision table before 
calculating the significance of attribute. So we first propose an efficient algorithm for 
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calculating the simplified decision table. Calculating the simplified decision table is in 
fact to calculate the IND(C). To our best knowledge, the best algorithm for computing 
IND(C) is the algorithm of [3] with the time complexity (| || | log | |)O C U U  at present. 
So we used radix sorting to design a good algorithm for computing IND(C). And its 
time complexity is cut down to (| || |)O C U . 

Algorithm 1. Computing the simplicity decision table 

Input: Decision table ( , , , , )S U C D V f= , 1 2{ , , , }nU x x x= L  , 1 2{ , , , }rC c c c= L  

Output: , ,pos negU U U′ ′ ′ , , (1 )i iM m i s≤ ≤ . 

1. To each ( 1,2, , )ic i r= L , calculate the maximum and minimum of ( , )j if x c  

( 1,2, , )j n= L and denote iM and im  respectively; 

2.  use state list to store the objects 1 2, , , nx x xL  in turn ; let the head pointer of the  

list point to 1x ; 

3.  for (i=1;i<r+1;i++) 
3.1  the ith “distribution”: construct Mi-mi+1 empty queues, let kfront  and 

kend  (k=0,1,…, Mi-mi ) be the head pointer and tail pointer of the kth 

queue respectively. Distribute the object x of the list U to the 
( , )i if x c m− th queue according to the elements order of list U. 

3.2 the ith “collection”: the head pointer of the list points to the head pointer 
of the first nonempty queue, modify the tail pointer of each nonempty 
and let it point to the head object of the next nonempty queue. In this 
way, recombine 1i iM m− +  queues to a new list; 

4.    Let the objects sequence of list from Step 3 be 1 2, , , nx x x′ ′ ′L ; 

t=1; 1{ }tB x′= ; 

for (j=2;j<n+1;j++) 
if any ( 1,2, , )ic C i r∈ = L  there is 1( , ) ( , )j i j if x c f x c−′ ′= ,  

then { }t t jB B x′= ∪ ; 

else {   t=t+1;  { }t jB x′= ;   } 

5.    ; ;pos negU U′ ′= ∅ = ∅  

for ( i=1;i<t+1;i++) 
if any x,y∈ iB  there is ( , ) ( , )f x D f y D= , then we take out the first 

object of iB  to posU ′ ; Else we take out the first object of iB  to negU ′ ; 

      pos negU U U′ ′ ′= ∪ ; 

Complexity analyze of Algorithm 1. the time complexity for the first step of 
algorithm is (| || |)O C U ; the time complexity for the second step is (| |)O U ; the time 
complexity for Step 3.1 is (| | 1)i iO U M m+ − + , the time complexity for Step 3.2 

is ( 1)i iO M m− + , so the time complexity for Step 3 is 
1

(| || | ( 1))
r

i i
i

O C U M m
=

+ − +∑ ; the 

time complexity for Step 4 is (| || |)O C U ; the time complexity for Step 5 is 
(| || |)O D U (the decision attribution usually is only one). Hence the time complexity of 
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algorithm is 
1

(| || | ( 1))
r

i i
i

O C U M m
=

+ − +∑ . In most condition, especially to the large-

scale decision table, there is often 
1
max( 1) | |i ii s

M m U
≤ ≤

− + ≤   ( for example, the 

mushroom in UCI mushroom, it has more 8000 objects and 22 attributions, but these 
attribution values are single letter, so there is at most 26 kinds difference values in 

each attribution.) ,hence (| || |C U +  
1

( 1))
r

i i
i

M m
=

− +∑  | || | | || |C U C U≤ + , therefore the 

time complexity of Algorithm 1 is (| || |)O C U . It is easily to know that the space 
complexity of Algorithm 1 is (| |)O U . 

According to Theorems 7 and 8, we can design the following efficient algorithm 
for calculating the significance of attribute. 

Algorithm 2. compute ( )pI a  

Input：  { | / ((P pos negS X X U P X U X U′ ′ ′= ∈ ∧ ⊄ ∧ ⊄ ) 

( | / | 1) ( | / | 1))}pos negX U X D X U X C′ ′∨ ⊆ ∧ ≠ ∨ ⊆ ∧ ≠ , aM , am ; 

Output： { } { | /( { }) (( )P a pos negS X X U P a X U X U∪ ′ ′ ′= ∈ ∪ ∧ ⊄ ∧ ⊄  

( | / | 1) ( | / | 1))}pos negX U X D X U X C′ ′∨ ⊆ ∧ ≠ ∨ ⊆ ∧ ≠ ； ( )pI a ； 

1.    for (j=1; j<| PS |+1; j++)   jx X∀ ∈ , let .x flag j= ;  // j PX S∈  

2. Let 1 2 | | 1 2{ , , , }
PS zT X X X x x x= ∪ ∪ ∪ =L L ; where ( 1,2, ,| |)j P PX S j S∈ = L ; 

3. use state list to store the objects 1 2, , , zx x xL  in turn ;  

4. construct Ma-ma+1 empty queues, let kfront  and kend  (k=0,1,…, Ma-ma ) be 

the head pointer and tail pointer of the kth queue respectively. Distribute the 
object x∈T of the list to the ( , ) af x a m− th queue according to the elements 

order of list.   //where ,a aM m  are the maximal value and the minimal value of 

the attribute a in the old decision table. 
5. ( ) 0pI a = ; { }P aS ∪ = ∅ ; 

6. It deals with the each not empty queue 1 2{ , , , }hCol y y y= L  as follow acquired 

from the four step; 
t=1; 1{ }tB y= ; 

for (j=2;j<h+1;j++) 
{  if  ( 1. . )j jy flag y flag−==    

{ }t t jB B y= ∪ ; 

else  {  t=t+1; { }t jB y= ;  }; 

} 
           for (i=1;j<t+1;i++) 

if  ( | / | 1i pos iB U B D′⊆ ∧ = )         ( ) ( ) | |p p iI a I a B= ∪ ; 

else    if  ( | / | 1i neg iB U B C′⊆ ∧ = )          

  ( ) ( ) | |p p iI a I a B= ∪ ; 

            else  { } { } { }P a P a iS S B∪ ∪= ∪ ; 
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Complexity analyses of Algorithm 2. The time complexity of the first step is 
(| |)O T ; The time complexity of the fourth step is (| |)O T ; The time complexity of the 

first for cycle of the sixth step is (| |)O Col . The time complexity of the second for 
cycle is also (| |)O Col . So the time complexity of the sixth step is (| |)O T . Therefore, 
the time complexity of Algorithm 2 is (| |)O T . Because of (| |)O T ≤ (| |)O U ′ , the worst 
time complexity of Algorithm 2 is (| |)O U ′ . The space complexity is (| |)O T . For the 
same reason, the worst space complexity of the algorithm is (| |)O U ′ . 

5   Attribute Reduction Algorithm Based on Discernibility Matrix 

According to Algorithms 1 and 2, we now can design an efficient attribute reduction 
algorithm based on discernibility matrix. 

Algorithm 3. Attribute reduction algorithm based on discernibility matrix 

Input: decision table ( , , , , )S U C D V f= , 1 2{ , , , }nU x x x= L , 1 2{ , , , }sC c c c= L ; 

Output: attribute reduction R; 
1. It uses the algorithm 1 to calculate 1 2{ , , , },mU u u u′ = L , ( 1,2, , )i im M i s= L , 

posU ′ , negU ′ ; 

2. let R = ∅ ; 1 2{{ , , , }}R mS u u u= L ; // When algorithm begins, input set S is the 

only one equivalence, i.e. U ′ ; 
3. To each attribute ic C R∈ − , calculating ( )R iI c ;Denote ( )R kI c = max ( )

i
R i

c C R
I c

∈ −
; If 

the attribute like that is not only one, we arbitrary select one； 
4.  If { }kR cS ∪ is an empty set, then stop the algorithm, output the attribute 

reduction { }kR c∪ ；// { }kR cS ∪ is the corresponding output set to calculate 

( )R kI C . 

5. If { }kR cS ∪ ≠ ∅ , then { };kR R c= ∪ The algorithm will turn to step 3; 

The complexity of Algorithm 3. It can be known from Algorithm 1 that the time and 
space complexities of the first step are (| || |)O C U  and (| |)O U  respectively. The worst 
time and space complexity third step are (| |) (| / |)O U O U C′ = from analyzing of 
Algorithm 2. So the worst time and space complexities of the third step are 

(| / || |)O U C C R−  and (| / || |)O U C C R−  respectively. The worst time complexity of 
the third step to the fifth is (| / || |) (| / || 1 |) (| / |)O U C C O U C C O U C+ − + +L   

2(| / || | )O U C C= . The worst space complexity of the third step to the fifth is 
(| / || |)O U C C . Therefore the worst time and space complexities of Algorithm 3 are 

2( (| || |) (| | | / |)O C U O C U C+  and (| |) (| || / |)O U O C U C+  respectively.  

6   Conclusion  

At present, the elements of discernibility matrix are used as the heuristic information 
by all the existing attribute reduction algorithms based on discernibility matrix. In 
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these algorithms, it is first to calculate the discernibility matrix. Because it must be 
first to calculate the Skowron’s discenibility matrix in this kind of attribute reduction 
algorithm, the best time complexity of this kind algorithm is not lower than 

2(| || | )O C U . On the other hand, it needs the large space to store the discernibility 
matrix. Once the data set is very large, algorithm is difficult to operate. To lower the 
time complexity of attribute reduction algorithm based on discernibility matrix, 
firstly, the simplified decision table and the significance  of attribute are introduced. 
Then an efficient attribute reduction based on the significance of attribute is proposed. 
And And it is proved that our algorithm is equivalent to existing algorithms in 
performance and the time complexity is (| || |)O C U  2(| | | / |)O C U C+ .  
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Abstract. The problem considered in this paper is how to recognize ob-
jects that are qualitatively but not necessarily spatially near each other.
The term qualitatively near is used here to mean closeness of descriptions
or distinctive characteristics of objects. The solution to this problem is
inspired by the work of Zdzis�law Pawlak during the early 1980s on the
classification of objects by means of their attributes. In working toward a
solution of the problem of the approximation of sets that are qualitatively
near each other, this article considers an extension of the basic model
for approximation spaces. The basic approach to object recognition is
to consider the degree of overlap between families of perceptual neigh-
bourhoods and a set of objects representing a standard. The proposed
approach to object recognition includes a refinement of the generalized
model for approximation spaces. This is a natural extension of recent
work on nearness of objects. A byproduct of the proposed object recog-
nition method is what we call a near set. The contribution of this article
is an approximation space-based approach to object recognition formu-
lated in the context of near sets.

Keywords: Approximation space, feature, near set, object recognition,
perceptual neighborhood.

An approximation space ... serves as a formal
counterpart of perception ability or observation.

– Ewa Orlowska, March, 1982.

1 Introduction

The problem considered in this paper is how to recognize objects that are qual-
itatively but not necessarily spatially near each other. The term qualitatively
near is used here to mean closeness of descriptions or distinctive characteristics
of objects. The term object denotes something perceptible. If we choose shad-
ing as a feature and let Bshading(x) = {y | shading(x) = shading(y)}, then
the objects in Fig. 1 can be partitioned, where the objects in Bshading(x), i.e.,
equivalence class containing objects that are descriptively indiscernible from x,

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 22–33, 2007.
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are not adjacent to each other (see, e.g., Bshading(x1) = {x1, x11, x15, x16} in
Fig. 1.2 or Bshading(g1) = {g1, g2, g3} in Fig. 1.1).

1.1: Hexagonal Objects 1.2: Pixel Neighborhoods

Fig. 1. Non-Adjacent Objects with Matching Descriptions

The solution to this problem is inspired by the work of Zdzis�law Pawlak during
the early 1980s on the classification of objects [22] and elaborated in [25,26,27].
In working toward a solution of the problem of the approximation of sets that
are qualitatively near each other, this article considers an extension of the ba-
sic model for approximation spaces. The basic approach is to consider families
of perceptual neighborhoods containing objects with matching descriptions that
are possibly space-independent. A perceptual neighborhood is an equivalence class
containing observed sample objects with matching descriptions. The proposed
approach to object recognition is a straightforward extension of the rough set
approach, where approximation can be considered as formal counterpart of per-
ception [18] in the context of families of perception granules (neighborhoods).
The term perception granule comes from [48]. A byproduct of the proposed ap-
proximation method is what we call a near set.

The approach to classifying objects such as those in Fig. 1.2 contrasts sharply
with the approach to defining neighborhoods with an Adjacency relation in [7].
For example, the hexagons with mesh interiors (g1, g2, g3) in Fig. 1.1 are descrip-
tively near each other but spatially non-adjacent. The refinement of approxima-
tion spaces in [28] is close to what is known as a nearness space [11,48] with the
exception of the distinction between attributes and features as well as covering
F (family of neighborhoods) that underly the approach to approximation spaces
in this article. In addition, the proposed approach of nearness of objects [28] is
not restricted to the neighborhood of a point x and x ε Cl(A) (closure of A)
as in [48], since we consider the nearness of objects that are not points. The
contribution of this article is an approach to approximating a set based on the
union of families of sets of objects with matching descriptions, which provides a
foundation for near sets.

This article is organized as follows. The distinction between features and attr-
ibutes is explored in Sect. 2. An approach to pattern recognition is brieflypresented
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in Sect. 3. A refinement of the generalized approximation space model is given in
Sect. 4. Sample near sets extracted from ethogram tables are presented in Sect. 5.

2 Features and Measurements

Underlying the study of near sets is an interest in classifying sample objects
by means of probe functions associated with object features. The term feature
was originally identified with the cast of a face [14]. More recently, the term
feature is defined as the make, form, fashion or shape (of an object) [19]. This
term comes from the Latin term factura, i.e., facture, which means the action or
process of making an object or the result of an action or process (e.g., a work
of art, image made with a digital camera). In effect, the term feature charac-
terizes some aspect of the makeup of an object. From a philosophical perspec-
tive that can be traced back to Kant [15], features highlight an interest in the
appearances of objects rather than calling attention to the properties or quali-
ties that are somehow inherent in objects. The term feature is commonly used
in pattern recognition theory [21], statistical learning theory [45], reinforcement
learning [34], neural computing [4], science (e.g., ethology [16,33,35]), image pro-
cessing [13,5], biotechnology, industrial inspection, the internet, radar, sonar, and
speech recognition [9]. More recently, the term feature has been used in rough
set theory [5,33,34,35,28,30].

Historically, semantically, and philosophically, there is a distinction between
the terms feature and attribute. An attribute is a quality regarded as characteristic
or inherent in an object [19]. In philosophy, an attribute is a property of an object
(e.g., spatial extension of a piece of wax). The term attribute is commonly used
in database theory [44], data mining [47], and philosophy [12]. In rough set
theory [25], an attribute is treated as a partial function, which is a relation that
associates each element of a set of objects (domain) with at most one element
of a value set (codomain) [49].

It was Zdzis�law Pawlak who proposed classifying objects by means of their at-
tributes considered in the context of an approximation space [22]. The proposed
approach to classifying objects can also be explained in terms of features. Implicit
in the original work of Pawlak is a distinction between features (makeup, appear-
ance) of objects and knowledge about objects. The knowledge about an object
is represented by a measurement associated with each feature of an object. It
can observed that a feature is an invariant characteristic of objects belonging to
a class [46]. The distinction between features and corresponding measurements
associated with features is usually made in the study of pattern recognition (see,
e.g., [17,21]). Let A denote a set of features for objects in a set X . For each
a ∈ A, we associate a function fa that maps X to some set Vfa (range of fa).
The value of fa(x) is a measurement associated with feature a of an object
x ∈ X . The function fa is called a probe [21]. By InfB(x), where B ⊆ A and
x ∈ U we denote the signature of x, i.e., the set {(a, fa(x)) : a ∈ B}. If the set
B = {a1, . . . , am}, then InfB is identified with a vector (fa1(x), . . . , fam(x)) of
probe function values for features in B.
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2.1: Prototype Image 2.2: Sample Image

Fig. 2. Image Patterns

3 Approach to Pattern Recognition

The problem considered here is to determine whether there is a correspondence
between an object in a prototype image I (e.g., cup in Fig. 2.1) and an object in
a sample image I1 (e.g., fire hydrant in Fig. 2.2). By way of illustration, consider
contour as a helpful feature in considering the form of various objects. Let I1, I, f
denote sample image, prototype image, probe function associated with contour,
respectively. Then, following the approach suggested in [21], pattern recognition
is defined for real-valued probe functions in

I ≈ (I1)T ⇔ ∀f.|f(I) − f(I1)| < ε, ε ∈ [0, 1],

where I is approximately the same as I1 after some transformation T iff the
differences between pairs of probe function values is less than some threshold.

4 Approximation Spaces and Object Recognition

This section introduces a view of approximation spaces defined in a slightly mod-
ified manner in comparison with the original definition in [38]. Any generalized
approximation space (GAS) is a tuple

GAS = (U, A, Nr, νB),

where U is a universe of objects, A, a set of probe functions, Nr, a neighbourhood
family function and νB is an overlap function defined by

νB : P(U) × P(U) −→ [0, 1],
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where P(U) is the powerset of U . νB maps a pair of sets to a number in [0, 1]
representing the degree of overlap between the sets of objects with features
defined by B, and P(U) is the powerset of U [39]. For each subset B ⊆ A
of probe functions, define the binary relation ∼B= {(x, x′) ∈ U × U : ∀f ∈
B, f(x) = f(x′)}. Since each ∼B is, in fact, the usual IndB (indiscernibility)
relation, for B ⊂ F and x ∈ U , let [x]B denote the equivalence class containing
x, i.e.,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′), then x and x′ are said to be indiscernible
with respect to all feature probe functions in B, or simply, B-indiscernible. Then
define a family of neighborhoods Nr(A), where

Nr(A) =
⋃

B⊆Pr(A)

[x]B,

where Pr(A) = {B ⊆ A | |B| = r} for any r such that 1 ≤ r ≤ |A|. That is, r
denotes the number of features used to construct families of neighborhoods. For
the sake of clarity, we sometimes write [x]Br to specify that the equivalence class
represents a neighborhood formed using r features from B. Families of neigh-
borhoods are constructed for each combination of probe functions in B using(|B|

r

)
, i.e., |B| probe functions taken r at a time. Information about a sample

X ⊆ U can be approximated from information contained in B by constructing
a Nr(B)-lower approximation

Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br ,

and a Nr(B)-upper approximation

Nr(B)∗X =
⋃

x:[x]Br∩X �=∅
[x]Br .

Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BNDNr(B)(X) between
upper and lower approximations of a set X is defined to be the complement of
Nr(B)∗X , i.e.

BNDNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

Remark 1. What is a Near Set? A set X is termed a “near set” relative to
a chosen family of neighborhoods Nr(B) iff |BNDNr(B)(X)| ≥ 0. This means
every rough set is a near set but not every near set is a rough set. Object recogni-
tion and the problem of the nearness of objects have motivated the introduction
of near sets (see, e.g., [28,29]).
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4.1 Object Recognition

It is now possible to formulate a basis for object recognition, which parallels
the traditional formulation of pattern recognition. Assume Nr(B)∗X defines a
standard for classifying perceived objects. The notation Bj(x) denotes a member
of the family of neighborhoods in Nr(B), where j ∈ B. Put

νj(Bj(x), Nr(B)∗X) =
|Bj(x) ∩ Nr(B)∗X |

|Nr(B)∗X | ,

(called lower rough coverage) where νj is defined to be 1, if Nr(B)∗X = ∅. Let
O, Oid denote sample object and standard object, respectively. Then recognition
of sample objects that are approximately the same as Oid is defined by comparing
overlap function values in

O ≈ (Oid)T ⇔ |νj(O, Nr(B)∗X) − νB(Oid, Nr(B)∗X | < ε,

where ε ∈ [0, 1]. The sample object O is approximately the same as Oid after
some transformation T iff the difference in coverage values is less than some
threshold. An image-based model for object recognition is given in [10].

4.2 Percepts and Perception

The set Nr(B) contains a set of percepts. A percept is a byproduct of perception,
i.e., something that has been observed [19]. For example, a member of Nr(B)
represents what has been perceived about objects belonging to a neighborhood,
i.e., observed objects with matching probe function values. Collectively, Nr(B)
represents a perception, a product of perceiving. Perception is defined as the
extraction and use of information about one’s environment [1]. This is basic idea
is represented in the sample objects, perceptual neighborhoods and judgemental
percepts columns in Fig. 3. In this article, we are focusing on the perception of
acceptable objects.

4.3 Sensing, Classifying, and Peceptual Judgement

Sensing provides a basis for probe function measurements commonly associated
with features such as colour, contour, shape, arrangement, entropy, and so on. A
probe function can be thought of as a model for a sensor. Classification combines
evaluation of a disposition of sensor measurements with judgement (apprehend-
ing the significance of a vector of probe measurements for an observed object).
The result is a higher level percept, which has been traditionally called a deci-
sion. In the context of percepts, the term judgement means a conclusion about an
object’s measurements rather than an abstract idea. This form of judgement is
considered perceptual. Perceptual judgements provide a basis for the formulation
of abstract ideas (models of perception, rules) about a class (type) of object. Let
D denote a feature called decision with a probe dB : X ×B −→ {0, 1}, where X
denotes a set of sample objects; B, a set of probe functions; 0, “reject perceived
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object” and 1, “accept perceived object”. A set of objects d with matching
perceptual judgements (e.g., dB(x) = 1, x ∈ X for an acceptable object) is a
mathematical model representing the abstract notion acceptable.

5 Near Sets From Ethograms

This section briefly considers particular near sets derived from an ethogram. An
ethogram is a set of descriptions of behaviour patterns of a species [2], which
is fundamental in ethology [43]. In this work, an ethogram is represented by
a decision system that provides a record of observations of episodic behaviour
of a swarm. The form of ethogram in Table 1 was introduced in [33,35] and
elaborated in [31,34]. An episode is a sequence of states that terminates. During
a swarm episode, an ethogram table is constructed, which provides the basis for
an approximation space such as the one represented in Fig. 3.

Fig. 3. Approximate Adaptive Learning Cycle

Let s, a, p(s, a), r denote the state, action, action preference and reward as-
sociated with a previous action by an observed organism. Define a behaviour
to be a collection (s, a, p(s, a), r) at any one time t, and let d denote a deci-
sion (1 = choose action, 0 = reject action) for acceptance of a behaviour. Let
Ubeh = {x0, x1, x2, . . .} denote a set of behaviours. Decisions to accept or reject
an action are made by the actor during the learning process; let d denote a de-
cision (0=reject, 1=accept). Often ethograms also exclude p(s, a) or include a
column for “proximate cause” (see [43]). Let S = {k, �} be the collection of two
states, and let A = {i, j, k} be the set of possible actions, with A(k) = {h, i},
A(�) = {i, j}.

The calculations are performed on the feature values shown in the first four
columns of Table 1. Put B = {s, a, p(s, a), r}. Let Ubeh = {x0, x1, . . . , x9} and
let D = {x ∈ U : d(x) = 1} = {x0, x3, x4, x6, x8} be the decision class. Then



Near Sets. Toward Approximation Space-Based Object Recognition 29

Table 1. Sample Ethogram

xi s a p(s, a) r d

x0 k h 0.0 0.75 1
x1 k i 0.0 0.75 0
x2 � i 0.0 0.1 0
x3 � j 0.0 0.1 1
x4 k h 0.0 0.75 1
x5 k i 0.0 0.75 0
x6 � i 0.010 0.9 1
x7 � j 0.025 0.9 0
x8 k h 0.01 0.75 1
x9 k i 0.056 0.75 0

Case 1. N1, 1-Feature Neighborhoods
Let D = {x ∈ Object | d(x) = 1} = {x0, x3, x4, x6, x8}, B = {s, a, p(s, a), r},
and observe
Bsk

(x0) = {x0, x1, x4, x5, x8, x9}, Bs�
(x2) = {x2, x3, x6, x7},

Bah
(x0) = {x0, x4, x8}, Bai(x1) = {x1, x2, x5, x6, x9}, Baj (x3) = {x3, x7},

Bp0.0(x0) = {x0, x1, x2, x3, x4, x5},
Bp0.01(x6) = {x6, x8}, Bp0.025(x7) = {x7}, Bp0.056(x9) = {x9}
Br0.1(x2) = {x2, x3}, Br0.75(x0) = {x0, x1, x4, x5, x8, x9}, Br0.9(x6) = {x6, x7},

(N1(B))∗D = Bah(x0) ∪ Bp0.01(x6) = {x0, x4, x6, x8},
(N1(B))∗D = Bsk (x0)∪Bs� (x2)∪Bah(x0)∪Bai(x1)∪Baj (x3)∪Bp0.0(x0)∪Bp0.01 (x6)∪
Bp0.75(x0) ∪ Br0.1(x2) ∪ Br0.9(x6) = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9},
BNDN1(B)D = {x1, x2, x5, x7, x9}.

Using (N1(B))∗D together with each block Bfv (x), f ∈ B, f(x) = v, we obtain

νsk(Bsk (x0), (N1(B))∗D) = 3
4 , νs�(Bs(x2), (N1(B))∗D) = 1

4 ,
νah

(Bah
(x0), (N1(B))∗D) = 3

4 , νai(Bai(x1), (N1(B))∗D) = 1
4 ,

νaj (Baj (x3), (N1(B))∗D) = 0,
νp0.0(Bp0.0(x0), (N1(B))∗D) = 1

2 , νp0.01(Bp0.01(x6), (N1(B))∗D) = 1
2 ,

νp0.025(Bp0.025 (x7), (N1(B))∗D) = 0, νp0.056 (Bp0.056(x9), (N1(B))∗D) = 0,
νr0.1(Br0.1(x2), (N1(B))∗D) = 0, νr0.75(Br0.75(x0), (N1(B))∗D) = 3

4 ,
νr0.9(Br0.9(x6), (N1(B))∗D) = 1

4 .

Recently, we have found that lower coverage obtained in this manner has proved
to be useful in solving image pattern recognition problems (see, e.g., [10]). Next,
we obtain the average lower coverage for each feature, which indicates that fea-
tures a and r are more important than s and p(s, a) (it happens that this matches
our tuition about the content of an ethogram, where actions and rewards have
greater weight).

νs =
3
4+ 1

4
2 = 1, νa =

3
4+ 1

4+0
3 = 0.3, νp =

1
2+ 1

2+0+0
4 = 0.25 νr = 0+ 3

4+ 1
4

3 = 0.3.

In sum, notice that all of the features are used to construct families of neigh-
borhoods, but not in the usual way, since features are considered separately to
construct feature-based neighborhoods. The lower and upper approximations are
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obtained by taking into account feature-based families of neighborhoods. The set
D is both a near set as well as a rough set. This does not always happen. Aver-
age lower coverage has proved to be useful in reinforcement learning (see, e.g.,
[34,31]). In the remaining cases, only the approximation sets and boundary set
are given.

Remark 2. Significance of the Lower Approximation
This goes back to Archimedes, who suggested approximating the unknown area
of a bounded region in the plane by summing the areas of all of the small rect-
angles entirely contained inside the bounded region. Each rectangle inside the
bounded region is well-understood, since we know that it is inside the bounded
region, i.e., there is no part of an inner rectangle that is outside the bounded
region (we know an inner rectangle belongs entirely inside the bounded re-
gion). Also notice that the bounded region provides a basis for evaluating all
rectangles, those inside, overlapping or entirely outside the bounded region.
Analogously, each perceptual neighborhood Bj(x) contained in the lower ap-
proximation of a set D is well-understood because the objects in Bj(x) are
entirely contained inside the set of perceptual judgements D, assuming that
D = {x | d(x) = 1, i.e., accept behaviour associated with x}. That is, based on
knowledge represented by Bj(x), the sample objects in Bj(x) ⊆ D are known to
have acceptable behaviours. For this reason, (N1(B))∗D can be used as a norm
or standard in evaluating all of the perceptual neighbourhoods gathered together
during an episode. That is, we can measure the extent that the objects in each
perceptual neighbourhood overlap with the acceptable objects in (N1(B))∗D.

Case 2. N2, 2-Feature Neighborhoods
(N2(B))∗D =

Bsa(x0)∪Bsp(x6)∪Bsp(x8)∪Bap(x0)∪Bap(x3)∪Bap(x6)∪Bap(x8)∪Bpr(x6)∪Bpr(x8) =

{x0, x3, x4, x6, x8},
(N2(B))∗D =

Bsa(x2)∪Bsa(x3)∪Bsp(x0)∪Bsp(x2)∪Bpr(x0)∪Bpr(x2)∪Bsr(x0)∪Bsr(x2)∪Bsr(x6)∪
Bsr(x8) = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9},
BNDN2(B)D = {x1, x2, x5, x7, x9}.

Case 3. N3, 3-Feature Neighborhoods
(N3(B))∗D =

Bsap(x0)∪Bsap(x3)∪Bsap(x6)∪Bsap(x8)∪Bapr(x0)∪Bapr(x3)∪Bapr(x6)∪Bapr(x8)∪
Bspr(x0) ∪ Bspr(x3) ∪ Bspr(x6) ∪ Bspr(x8) ∪ Bsar(x0) ∪ Bsar(x3) ∪ Bsar(x6) =

{x0, x3, x4, x6, x8},
(N3(B))∗D = {x0, x1, x2, x3, x4, x5, x6, x8},
BNDN3(B)D = {x1, x2, x5}.

Case 4. N4, 4-Feature Neighborhoods
(N4(B))∗D = (N4(B))∗D =

B(x0) ∪ B(x3) ∪ B(x6) ∪ B(x8) = {x0, x3, x4, x6, x8},
BNDN4(B)D = ∅.

This case is interesting because D is a near set but not a rough set.
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In sum, D is a near set as well as a rough set in cases 1, 2 and 3. D is
a near set but not a rough set in case 4 and 4 (quadruple feature families
of neighborhoods). The lower approximation in several cases equals D, which
means the objects in D are known with certainty for certain but not all feature
combinations.

6 Conclusion

It is Zdzis�law Pawlak’s original 1981 paper on classification of objects by means
of attributes that has led to the introduction of near sets and the proposed
approach to object recognition. In this approach, the focus is on the compar-
ison between families of perceptual neighborhoods containing observed sample
objects with matching descriptions and perception granules representing a stan-
dard. The standard we have in mind is the lower approximation of a set of sample
objects representing perceptual judgements, i.e., objects judged to be acceptable.
This has led to a refinement of the generalized approximation space model to
include families of neighborhoods. Object recognition is defined in terms of a
measure of the degree of overlap between perceptual neighborhoods and a set of
objects constituting a standard. The feature identification and feature extraction
are currently the subject of intense research in connection with solving object
recognition, ethology and reinforcement learning problems. It is conjectured that
near sets will be useful in solving a number of object recognition problems.
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Abstract. This paper is devoted to the discussion of extended covering
rough set models. Based on the notion of neighborhood, five pairs of dual
covering approximation operators were defined with their properties be-
ing discussed. The relationships among these operators were investigated.
The main results are conditions with which these covering approximation
operators are identical.
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1 Introduction

Rough set theory(RST), proposed by Pawlak [2], [3], is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. It provides a systematic approach for the study of indiscernibility of
objects. Typically, indiscernibility is described using equivalent relations. When
objects of a universe are described by a set of attributes, one may define the indis-
cernibility of objects based on their attribute values. When two objects have the
same value over a certain group of attributes, we say they are indiscernible with
respect to this group of attributes, or have the same description with respect to the
indiscernibility relation. Objects of the same description consist of an equivalence
class and all the equivalence classes form a partition of the universe. With this par-
tition, rough set theory approximates any subset of objects of the universe by two
sets, called the lower and upper approximations. They can be formally described
by a pair of unary set-theoretic operators. It is noticed that equivalence relation
or partition, as the indiscernibility relation in Pawlak’s original rough set theory,
is restrictive for many applications. To address this issue, several interesting and
meaningful extensions to equivalent relation have been proposed in the past, such
as tolerance relation [4,12], similarity relation [13], and others [14,15,16,17]. This
leads to various approximation operators. By adopting the notion of neighbor-
hood systems from topological space, Lin[6,7] proposed a more general framework
for the study of approximation operators. Zakowski [20] have used coverings of a
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universe for establishing the covering generalized rough set theory and an exten-
sive body of research works have been developed [2,3,11]. In [22], the concept of
reducts of coverings is introduced and the conditions for two coverings to gener-
ate the same covering lower approximation or the same covering upper approxi-
mation were given. In[5], the indiscernibility relation is generalized to any binary
reflexive relation and some generalized approximation operators were introduced.
The following problems worth paying attention to. Some important properties of
Pawlak’s lower and upper approximation do not hold for the covering lower and
upper approximation, such as Duality, Multiplication and Addition [22]. For cov-
ering upper approximation, even Monotonicity does not hold.

This paper is devoted to the discussion of extended covering rough set models.
Based on the concept of neighborhood, five pairs of dual covering approximation
operators were defined with their properties being discussed. The relationship
among these operators were investigated. Some equivalent conditions for covering
approximation operators coinciding with each other were given. Furthermore, if
each element of the universe is a representative element [2], the Multiplication
for Zakowski’s lower approximation operator holds.

2 Preliminaries

This section presents a review of some fundamental notions of Pawlak’s rough
sets and covering rough sets. We refer to [2,9,10] for details.

2.1 Fundamentals of Pawlak’s Rough Sets

Let U be a finite set, the universe of discourse, and R an equivalence relation on
U , called an indiscernibility relation. The pair (U, R) is called a Pawlak approx-
imation space. R will generate a partition U/R = {[x]R; x ∈ U} on U , where
[x]R is the equivalence class with respect to R containing x. ∀X ⊆ U , the upper
approximation R(X) and lower approximation R(X) of X are defined as [9,10]
R(X) = {x; [x]R ∩ X �= ∅}, R(X) = {x; [x]R ⊆ X} Alternatively, in terms
of equivalence classes of R, the pair of lower and upper approximation can be
defined by R(X) = ∪{[x]R; [x]R ∩ X �= ∅}, R(X) = ∪{[x]R; [x]R ⊆ X}. Let
∅ be the empty set and ∼ X the complement of X in U , the following con-
clusions have been established for Pawlak’s rough sets: (1)R(U) = U = R(U).
(2)R(∅) = ∅ = R(∅). (3)R(X) ⊆ X ⊆ R(X). (4)R(X ∩ Y ) = R(X) ∩ R(X),
R(X∪Y ) = R(X)∪R(Y ). (5)R(R(X)) = R(X), R(R(X)) = R(X). (6)R(X) =∼
R(∼ X), R(X) =∼ R(∼ X). (7)X ⊆ Y ⇒ R(X) ⊆ R(Y ), R(X) ⊆ R(Y ).
(8)R(∼ R(X)) =∼ R(X), R(∼ R(X)) =∼ R(X). (9)R(R(X)) ⊆ X ⊆ R(R(X)).

It has been shown that (3), (4) and (8) are the characteristic properties of the
lower and upper approximations [8,23,18].

2.2 Concepts and Properties of Covering Rough Sets

Definition 1. Let U be a universe of discourse, C a family of subsets of U . If
no subsets in C is empty, and ∪C = U , C is called a covering of U .
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It is clear that a partition of U is a covering of U , so the concept of a covering
is an extension of the concept of a partition. In the following discussion, the
universe of discourse U is considered to be finite. We will list some definitions
and results about covering rough set.

Definition 2. [2] Let U be a non-empty set, C a covering of U . The pair (U, C)
is called a covering approximation space.

Definition 3. [2] Let (U, C) be a covering approximation space and x ∈ U . The
family of sets Md(x) = {K ∈ C; x ∈ K ∧ (∀S ∈ C)(x ∈ S ∧ S ⊆ K ⇒ K = S)}
is called the minimal description of x.

Definition 4. [2] Let (U, C) be a covering approximation space and X ⊆ U .
The family C∗(X) = {K ∈ C; K ⊆ X} is called the covering lower approxi-
mation set of X. Set X∗ = ∪C∗(X) is called the covering lower approximation
of X. Set X∗

∗ = X − X∗ is called the covering boundary of X. The family
Bn(X) = ∪{Md(x); x ∈ X∗

∗} is called the covering boundary approximation set
family of X. The family C∗(X) = C∗(X) ∪ Bn(X) is called the covering upper
approximation family of X. Set X∗ = ∪C∗(X) is called the covering upper ap-
proximation of X. If C∗(X) = C∗(X), X is said to be exact, otherwise inexact.

Theorem 1. [2] Let (U, C) be a covering approximation space, then ∀X, Y ⊆ U
and ∀x ∈ U , (1) C∗(∅) = C∗(∅) = ∅, C∗(U) = C∗(U) = C. (2) C∗(X) ⊆ C∗(X).
(3) C∗(X∗) = C∗(X) = C∗(X∗). (4) X ⊆ Y ⇒ C∗(X) ⊆ C∗(Y ), X ⊆ Y ⇒
X∗ ⊆ Y∗. (5) C∗(X∗)∗ = ∅. (6) C∗({x}) �= ∅ ⇔ {x} ∈ C. (7) C∗({x}) = Md(x).
(8) ∩Md(x) = ∩{K ∈ C; x ∈ K}.

Theorem 2. [2] Let (U, C) be a covering approximation space and X, Y ⊆ U ,
then (1) U∗ = U = U∗. (2) ∅∗ = ∅ = ∅∗. (3) X∗ ⊆ X ⊆ X∗. (4) (X∗)∗ = X∗,
(X∗)∗ = X∗.

By providing some examples, Zhu [22] shown that the following properties do not
hold for the covering lower and upper approximations: (1) (X ∩ Y )∗ = X∗ ∩ Y∗,
(X ∪ Y )∗ = X∗ ∪ Y ∗. (2) X∗ =∼ (∼ X)∗, X∗ =∼ (∼ X)∗. (3) X ⊆ Y ⇒ X∗ ⊆
Y ∗. (4) (∼ X∗)∗ =∼ X∗, (∼ X∗)∗ =∼ X∗.

3 The Extension of the Covering Approximation
Operators

Let (U, C) be a covering approximation space. For each x ∈ U , N(x) = ∩{K ∈
C; x ∈ K} is called the neighborhood of x. By (8) of Theorem 1, N(x) =
∩Md(x). We know that Pawlak’s approximation operators can be defined in
two different, but equivalent, ways. Similarly, we consider five pairs of dual ap-
proximation operators defined by means of neighborhoods as follows: for each
X ⊆ U , (I1) C1(X) = X∗ = ∪{K ∈ C; K ⊆ X}, C1(X) =∼ C1(∼ X) = ∩{∼
K; K ∈ C, K ∩ X = ∅}. (I2) C2(X) = {x ∈ U ; N(x) ⊆ X}, C2(X) = {x ∈
U ; N(x) ∩ X �= ∅}. (I3) C3(X) = {x ∈ U ; ∃u(u ∈ N(x) ∧ N(u) ⊆ X)}, C3(X) =
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{x ∈ U ; ∀u(u ∈ N(x) → N(u)∩X �= ∅)}. (I4) C4(X) = ∪{N(x); N(x)∩X �= ∅},
C4(X) = {x ∈ U ; ∀u(x ∈ N(u) → N(u) ⊆ X)}. (I5) C5(X) = ∪{N(x); x ∈ X},
C5(X) = {x ∈ U ; ∀u(x ∈ N(u) → u ∈ X)}.

Remark 1. The operator C1 is just Zakowski’s lower approximation[20] and is
studied in [2,3,11]. C5 is Zhu’s upper approximation operator[22].

3.1 On Approximation Operators (I1)

By the definition, C1(X) = X∗ for any X ⊆ U . Consequently, by Theorem 1,
Theorem 2 and the duality of C1 and C1, we have:

Theorem 3. Let (U, C) be a covering approximation space and X, Y ⊆ U , then
(1) C1(U) = U = C1(U), C1(∅) = ∅ = C1(∅). (2) C1(X) ⊆ X ⊆ C1(X).
(3) X ⊆ Y ⇒ C1(X) ⊆ C1(Y ) ∧ C1(X) ⊆ C1(Y ). (4)C1(C1(X)) = C1(X),
C1(C1(X)) = C1(X) .

Definition 5. [2] Let (U, C) be a covering approximation space and K ∈ C, x ∈
K. x is called a representative element of K if ∀S ∈ C(x ∈ S ⇒ K ⊆ S).

By Fact 7 in [2], x is a representative element of K if and only if Md(x) = {K},
and if and only if N(x) = K. We denote by C0 the set of all representative
elements of sets of the covering C, that is C0 = {x ∈ U ; ∃K ∈ C(x ∈ K ∧ ∀S ∈
C(x ∈ S ⇒ K ⊆ S))}.

Lemma 1. Let (U, C) be a covering approximation space and x ∈ U . Then,
x ∈ C0 if and only if |Md(x)| = 1.

Proof. Assume that x ∈ C0. It follows that Md(x) = {N(x)} and |Md(x)| = 1.
Conversely, assume that |Md(x)| = 1. We suppose that Md(x) = {K}, this
means that K is the unique minimal element of {S ∈ C; x ∈ S} and x is a
representative element of K, and consequently x ∈ C0.

Theorem 4. Let (U, C) be a covering approximation space. Then, C0 = U if
and only if for any X, Y ⊆ U , C1(X ∩ Y ) = C1(X) ∩ C1(Y ).

Proof. (⇒) Suppose that C0 = U . For each X, Y ⊆ U and x ∈ C1(X) ∩ C1(Y ),
there exist K1, K2 ∈ C such that x ∈ K1, K1 ⊆ X and x ∈ K2, K2 ⊆ Y . By
C0 = U , there exist K ∈ C such that x is a representative element of K, it
follows that K ⊆ K1, K ⊆ K2 and hence x ∈ K ⊆ K1 ∩ K2 ⊆ X ∩ Y, that
is x ∈ C1(X ∩ Y ). It follows that C1(X ∩ Y ) ⊇ C1(X) ∩ C1(Y ), and hence
C1(X ∩ Y ) = C1(X) ∩ C1(Y ) by (3) of Theorem 4. Conversely, if C0 �= U , then
there exists x ∈ U such that x /∈ C0. It follows that |Md(x)| > 1. Suppose that
K1, K2 ∈ Md(x) and K1 �= K2, it follows that x ∈ K1 ∩K2 = C1(K1)∩C1(K2).
On the other hand, for each K ∈ C such that K ⊆ K1 ∩ K2, x /∈ K and hence
x /∈ ∪{K ∈ C; K ⊆ K1 ∩ K2} = C1(K1 ∩ K2), this contradicts C1(K1 ∩ K2) =
C1(K1) ∩ C1(K2).
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By the duality, we have the following corollary:

Corollary 1. Let (U, C) be a covering approximation space. The following con-
ditions are equivalent: (1) C0 = U . (2)For each X, Y ⊆ U , C1(X ∪ Y ) =
C1(X) ∪ C1(Y ).

Theorem 5. Let (U, C) be a covering approximation space such that C0 = U .
Then for each X ⊆ U , C1(X) = C2(X), C1(X) = C2(X). This means that
approximation operators (I1) and (I2) are equivalent, when C0 = U .

Proof. By the duality, we need only to prove C1(X) = C2(X). If x ∈ C1(X), then
there exists K ∈ C such that K ⊆ X and x ∈ K, it follows that N(x) ⊆ K ⊆ X
and hence x ∈ C2(X). Conversely, if x ∈ C2(X), then N(x) ⊆ X , suppose that
x is a representative element of S, it follows that S = N(x) ⊆ X and hence
x ∈ C1(X) by x ∈ S.

3.2 On Approximation Operators (I2∼I5)

By Theorem 4.4 of [5], we have

Theorem 6. Let (U, C) be a covering approximation space and X, Y ⊆ U , then
(1) Ci(U) = U = Ci(U), Ci(∅) = ∅ = Ci(∅) for i = 2, 3, 4, 5. (2) Ci(X) ⊆
X ⊆ Ci(X) for i = 2, 4, 5. (3) X ⊆ Y ⇒ Ci(X) ⊆ Ci(Y ) ∧ Ci(X) ⊆ Ci(Y ) for
i = 2, 3, 4, 5. (4)Ci(X ∩ Y ) = Ci(X) ∩ Ci(Y ), Ci(X ∪ Y ) = Ci(X) ∪ Ci(Y ) for
i = 2, 4, 5.

Theorem 7. Let (U, C) be a covering approximation space and X ⊆ U , then
(1) Ci(Ci(X)) = Ci(X), Ci(Ci(X)) = Ci(X) for i = 2, 5. (2) X ⊆ C4(C4(X)),
C4(C4(X)) ⊆ X.

Proof. We only prove (1) for i = 2. By (2) of Theorem 6 , C2(C2(X)) ⊆ C2(X).
Conversely, suppose that x ∈ C2(X). It follows that N(x) ⊆ X . Consequently,
N(y) ⊆ N(x) ⊆ X for any y ∈ N(x), that is y ∈ C2(X) and hence N(x) ⊆
C2(X), x ∈ C2(C2(X)).

The following properties do not hold in general: (1) X ⊆ C2(C2(X)). (2) X ⊆
C5(C5(X)). (3) C4(C4(X)) = C4(X), C4(C4(X)) = C4(X). (4) C3(X) ⊆ X ⊆
C3(X).

Example 1. Let U = {x, y, z}, K1 = {x, y}, K2 = {y, z}, C = {K1, K2}. Clearly,
C is a covering of U , N(x) = {x, y},N(y) = {y}, N(z) = {y, z}. (1) For X = {x},
C4(X) = ∪{N(u); x ∈ N(u)} = N(x) = {x, y}, C4(C4(X)) = C4({x, y}) =
N(x) ∪ N(y) ∪ N(z) = U. (2) For X = {y}, C5(C5(X)) = C5(N(y)) = (∼
N(x)) ∩ (∼ N(z)) = ∅. C3(X) = {v ∈ U ; ∃u(u ∈ N(v) ∧ N(u) ⊆ X)} = U. (3)
For X = {z}, C2(C2(X)) = C2({z}) = ∅.
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4 Connections of Covering Approximation Operators

Theorem 8. Let (U, C) be a covering approximation space. For each X ⊆ U ,
(1) C4(X) ⊆ C2(X). (2) C2(X) ⊆ C3(X). (3) C4(X) ⊆ C5(X).

Proof. (1)Suppose that x ∈ C4(X). By the definition, for every u ∈ U such
that x ∈ N(u), N(u) ⊆ X followed. Consequently, N(x) ⊆ X and x ∈ C2(X).
(2)Suppose that x ∈ C2(X). It follows that N(x) ⊆ X . Hence x ∈ C3(X) by
x ∈ N(x). (3)can be proved similarly.

Corollary 2. Let (U, C) be a covering approximation space. For each X ⊆ U ,
(1) C4(X) ⊆ C2(X) ⊆ X ⊆ C2(X) ⊆ C4(X). (2) C4(X) ⊆ C5(X) ⊆ X ⊆
C5(X) ⊆ C4(X). (3)C4(X) ⊆ C2(X) ⊆ C3(X), C3(X) ⊆ C2(X) ⊆ C4(X).

Generally, we cannot substitute = for ⊆ due to the following example.

Example 2. Let U = {x, y, z}, K1 = {x, y}, K2 = {y, z}, C = {K1, K2}. Clearly,
C is a covering of U , N(x) = {x, y},N(y) = {y}, N(z) = {y, z}. For X = {y},
C4(X) = ∩{∼ N(u); N(u) � X} = (∼ N(x)) ∩ (∼ N(z)) = ∅, C2(X) =
{u; N(u) ⊆ X} = {y}. C3(X) = {v ∈ U ; ∃u(u ∈ N(v) ∧ N(u) ⊆ X)} = U.
For X = {x, z}, C4(X) = ∩{∼ N(u); N(u) � X} = (∼ N(x)) ∩ (∼ N(y)) ∩ (∼
N(z)) = ∅, C5(X) = ∩{∼ N(u); u ∈ (∼ X)} =∼ N(y) = {x, z}, C2(X) =
{u; N(u) ⊆ X} = ∅. C3(X) = {v ∈ U ; ∃u(u ∈ N(v) ∧ N(u) ⊆ X)} = ∅.

Lemma 2. Let (U, C) be a covering approximation space. Then, {N(x); x ∈ U}
forms a partition of U if and only if for each x, y ∈ U , x ∈ N(y) ⇒ y ∈ N(x).

Proof. Suppose that {N(x); x ∈ U} forms a partition of U . For each x, y ∈ U ,
if x ∈ N(y), then N(x) ⊆ N(y), and N(x) ∩ N(y) = N(x) �= ∅, it follows that
N(x) = N(y) and y ∈ N(y) = N(x). Conversely, suppose that x ∈ N(y) ⇒ y ∈
N(x) for each x, y ∈ U . If N(x) ∩ N(y) �= ∅, then there exist z ∈ U such that
z ∈ N(x) and z ∈ N(y), it follows that x ∈ N(z) and y ∈ N(z), consequently,
N(x) = N(z), N(y) = N(z), and N(x) = N(y). That is to say, {N(x); x ∈ U}
forms a partition of U .

Theorem 9. Let (U, C) be a covering approximation space. Then, {N(x); x ∈
U} forms a partition of U if and only if for each X ⊆ U , C4(X) = C2(X).

Proof. Suppose that {N(x); x ∈ U} forms a partition of U , X ⊆ U and x ∈ U .
If x ∈ C2(X), then N(x) ⊆ X . For each y ∈ U such that x ∈ N(y), y ∈ N(x)
followed and hence N(y) = N(x) ⊆ X . By the definition, x ∈ C4(X). This means
C4(X) ⊇ C2(X) and hence C4(X) = C2(X) by (1) of Theorem 8. Conversely,
suppose that C4(X) = C2(X) for each X ⊆ U . For each x, y ∈ U such that x ∈
N(y), by x ∈ C2(N(x)) = C4(N(x)) = {v ∈ U ; ∀u(v ∈ N(u) → N(u) ⊆ N(x))},
it follows that N(y) ⊆ N(x) and hence y ∈ N(x). By Lemma 2, {N(x); x ∈ U}
forms a partition of U .

Theorem 10. Let (U, C) be a covering approximation space. Then, {N(x); x ∈
U} forms a partition of U if and only if for each X ⊆ U , C4(X) = C5(X).



40 K. Qin, Y. Gao, and Z. Pei

Proof. Suppose that {N(x); x ∈ U} forms a partition of U , X ⊆ U and x ∈ U . If
x ∈ C4(X) = ∪{N(y); N(y)∩X �= ∅}, then there exists y ∈ U such that x ∈ N(y)
and N(y) ∩ X �= ∅. Let z ∈ N(y) ∩ X , it follows that z ∈ X and z ∈ N(y).
Consequently, y ∈ N(z), N(y) ⊆ N(z) and x ∈ N(z), that is x ∈ ∪{N(u); u ∈
X} = C5(X), and C4(X) ⊆ C5(X). By (2) of Theorem 8, C4(X) = C5(X).
Conversely, suppose that for each X ⊆ U , C4(X) = C5(X). For each x, y ∈ U
such that x ∈ N(y), by y ∈ N(y), it follows that y ∈ ∪{N(z); N(z)∩{x} �= ∅} =
C4({x}), and hence y ∈ C5({x}) = N(x). This means {N(x); x ∈ U} forms a
partition of U .

Theorem 11. Let (U, C) be a covering approximation space, then (1) {N(x); x
∈ U} forms a partition of U if and only if for each X ⊆ U , C4(X) = C3(X).
(2) {N(x); x ∈ U} forms a partition of U if and only if for each X ⊆ U ,
C2(X) = C3(X). (3) {N(x); x ∈ U} forms a partition of U if and only if for
each X ⊆ U , C5(X) = C3(X). (4) {N(x); x ∈ U} forms a partition of U if and
only if for each X ⊆ U , C2(X) = C5(X).

By Theorem 9, 10 and 11, if any two pairs of operators are identical, then they
are all identical.

5 Conclusions

In this paper, five pairs of dual covering approximation operators were defined
and their properties have been discussed. Some equivalent conditions about these
operators were given. For a covering approximation space (U, C), define a binary
relation R on U as follows: for each x, y ∈ U , (x, y) ∈ R if and only if ∀K ∈ C(x ∈
K → y ∈ K). It is trivial to verify that the successor of an element with respect to
R coincides with its neighborhood, that is Rs(x) = {y ∈ U ; (x, y) ∈ R} = N(x).
With this definition, binary relation based covering rough set can be constructed.
We will discuss this problem in our future work.
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Abstract. This paper is devoted to the discussion of transitive uncer-
tainty mapping in general approximation space. It is proved that the best
low-approximation mapping exist if the uncertainty mapping is transi-
tive. Furthermore, the best low-approximation mapping is defined and
its properties are discussed.

Keywords: Rough set, covering rough set, covering lower approxima-
tion, covering upper approximation, representative element.

1 Introduction

Rough set theory(RST), proposed by Pawlak [2], [3], is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. It provides a systematic approach for the study of indiscernibility of
objects. Typically, indiscernibility is described using equivalent relations. When
objects of a universe are described by a set of attributes, one may define the in-
discernibility of objects based on their attribute values. When two objects have
the same value over a certain group of attributes, we say they are indiscernible
with respect to this group of attributes, or have the same description with re-
spect to the indiscernibility relation. Objects of the same description consist of
an equivalence class and all the equivalence classes form a partition of the uni-
verse. With this partition, rough set theory approximates any subset of objects
of the universe by two sets, called the lower and upper approximations. They
can be formally described by a pair of unary set-theoretic operators. It is noticed
that equivalence relation or partition, as the indiscernibility relation in Pawlak’s
original rough set theory, is restrictive for many applications. To address this
issue, several interesting and meaningful extensions to equivalent relation have
been proposed in the past, such as tolerance relation [4,12], similarity relation
[13], and others [14,15,16,17]. This leads to various approximation operators. By
adopting the notion of neighborhood systems from topological space, Lin[6,7]
proposed a more general framework for the study of approximation operators.
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Zakowski [20] have used coverings of a universe for establishing the covering
generalized rough set theory and an extensive body of research works have been
developed [2,3,11]. A. Gomolinska [5] provided a new approach for the study of
rough approximations where the starting point is a generalized approximation
space. The rough approximation operator was regarded as set-valued mapping,
called approximation mapping. Two pairs of basic approximation mappings were
defined typically and generalized approximation mappings were constructed by
the compositions of these basic approximation mappings. Some axioms for ap-
proximation mappings were proposed. Based on these axioms, the best low-
approximation mapping was studied.

This paper is devoted to the discussion of transitive uncertainty mapping. The
motivation is to construct the best, in accordance with Gomolinska’s axioms,
approximation operators in general approximation space. It is proved that the
best low-approximation mapping exist if the uncertainty mapping is transitive.
Furthermore, the best low-approximation mapping is defined and its properties
are discussed.

2 Preliminaries

This section presents a review of some fundamental notions of Pawlak’s rough
sets. We refer to [2,9,10] for details.

Let U be a finite set, the universe of discourse, and R an equivalence relation
on U , called an indiscernibility relation. The pair (U, R) is called a Pawlak ap-
proximation space. R will generate a partition U/R = {[x]R; x ∈ U} on U , where
[x]R is the equivalence class with respect to R containing x. For each X ⊆ U ,
the upper approximation R(X) and lower approximation R(X) of X are defined
as [9,10]

R(X) = {x; [x]R ∩ X �= ∅}, (1)

R(X) = {x; [x]R ⊆ X}. (2)

Alternatively, in terms of equivalence classes of R, the pair of lower and upper
approximation can be defined by

R(X) = ∪{[x]R; [x]R ∩ X �= ∅}, (3)

R(X) = ∪{[x]R; [x]R ⊆ X}. (4)

Let ∅ be the empty set and ∼ X the complement of X in U , the following
conclusions have been established for Pawlak’s rough sets:

(1)R(U) = U = R(U).
(2)R(∅) = ∅ = R(∅).
(3)R(X) ⊆ X ⊆ R(X).
(4)R(X ∩ Y ) = R(X) ∩ R(X), R(X ∪ Y ) = R(X) ∪ R(Y ).
(5)R(R(X)) = R(X), R(R(X)) = R(X).
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(6)R(X) =∼ R(∼ X), R(X) =∼ R(∼ X).
(7)X ⊆ Y ⇒ R(X) ⊆ R(Y ), R(X) ⊆ R(Y ).
(8)R(∼ R(X)) =∼ R(X), R(∼ R(X)) =∼ R(X).
(9)R(R(X)) ⊆ X ⊆ R(R(X)).

It has been shown that (3), (4) and (8) are the characteristic properties of the
lower and upper approximations [8,23,18].

3 A General Notion of Rough Approximation Mapping

A general approximation space is a triple A = (U, I, k), where U is a non-
empty set called the universe, I : U → P (U) is an uncertainty mapping, and
k : P (U) × P (U) → [0, 1] is a rough inclusion function.

In general approximation space A = (U, I, k), w ∈ I(u) is understood as w is
in some sense similar to u and it is reasonable to assume that u ∈ I(u) for every
u ∈ U . Then {I(u); u ∈ U} forms a covering of the universe U . The role of the
uncertainty mapping may be played by a binary relation on U .

We consider mappings f : P (U) → P (U). We can define a partial ordering
relation, ≤, on the set of all such mappings as follows: f ≤ g if and only if
∀ ⊆ U(f(x) ⊆ g(x)), for every f, g : P (U) → P (U). By id we denote the identity
mapping on P (U). g ◦ f : P (U) → P (U) defined by g ◦ f(x) = g(f(x)) for every
x ⊆ U , is the composition of f and g. We call g dual to f , written g = fd, if
g(x) =∼ f(∼ x). The mapping f is monotone if and only if for every x, y ⊆ U ,
x ⊆ y implies f(x) ⊆ f(y).

3.1 Axioms for Rough Approximation Mappings

Theoretically speaking, every rough approximation operator is a mapping from
P (U) to P (U), we call it approximation mapping. [5] proposed some fundamental
properties that any reasonable rough approximation mapping f : P (U) → P (U)
should possibly possess. They are the following axioms:

(a1) Every low-mapping f is decreasing, i.e., f ≤ id.
(a2) Every upp-mapping f is increasing, i.e., id ≤ f .
(a3) If f is a low-mapping, then (∗)∀x ⊆ U∀u ∈ f(x)(I(u) ⊆ x).
(a4) If f is a upp-mapping, then (∗∗)∀x ⊆ U∀u ∈ f(x)(I(u) ∩ x �= ∅).
(a5) For each x ⊆ U , f(x) is definable in A, i.e., there exists y ⊆ U such that

f(x) = ∪{I(u); u ∈ y}.
(a6) For each x ⊆ U definable in A, f(x) = x.
The motivation behind these axioms was analyzed in[5]. Also, it is noticed

that finding appropriate candidates for low- and upp-mappings satisfying these
axioms is not an easy matter in general case.

3.2 The Structure of Rough Approximation Mappings

Let A = (U, I, k) be a general approximation space. The approximation map-
pings f0, f1 : P (U) → P (U) were defined as[5]: for every x ⊆ U ,

f0(x) =
⋃

{I(u); u ∈ x}, (5)
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f1(x) = {u; I(u) ∩ x �= ∅}. (6)

Observe that fd
0 and fd

1 satisfy:

fd
0 (x) = {u; ∀w(u ∈ I(w) ⇒ w ∈ x)}, (7)

fd
1 (x) = {u; I(u) ⊆ x}. (8)

If {I(u); u ∈ U} is a partition of U , then f0 = f1, fd
0 = fd

1 and they are the
classical rough approximation operators.

Based on f0, f1 and their dual mappings, several approximation mappings
were defined[5] by means of operations of composition and duality as follows: for
every x ⊆ U ,

f2
.= f0 ◦ fd

1 : i.e., f2(x) =
⋃

{I(u); I(u) ⊆ x},
f3

.= f0 ◦ f1 : i.e., f3(x) =
⋃

{I(u); I(u) ∩ x �= ∅},
f4

.= fd
0 ◦ f1 = fd

2 : i.e., f4(x) = {u; ∀w(u ∈ I(w) ⇒ I(w) ∩ x �= ∅)},
f5

.= fd
0 ◦ fd

1 = fd
3 : i.e., f5(x) = {u; ∀w(u ∈ I(w) ⇒ I(w) ⊆ x)},

f6
.= fd

1 ◦ fd
1 : i.e., f6(x) = {u; ∀w(w ∈ I(u) ⇒ I(w) ⊆ x)},

f7
.= f0 ◦ f6 = f0 ◦ fd

1 ◦ fd
1 = f2 ◦ fd

1 : i.e., f7(x) =
⋃

{I(u); ∀w(w ∈ I(u) ⇒
I(w) ⊆ x)},

f8
.= fd

1 ◦ f1 : i.e., f8(x) = {u; ∀w(w ∈ I(u) ⇒ I(w) ∩ x �= ∅)},
f9

.= f0 ◦ f8 = f0 ◦ fd
1 ◦ f1 = f2 ◦ f1 : i.e., f9(x) =

⋃
{I(u); ∀w(w ∈ I(u) ⇒

I(w) ∩ x �= ∅)}.

Theorem 1. [5] Consider any f : P (U) → P (U).
(1) f(x) is definable for any x ⊆ U iff there is a mapping g : P (U) → P (U)

such that f = f0 ◦ g.
(2) The condition (∗) is satisfied iff f ≤ fd

1 .
(3) The condition (∗∗) is satisfied iff f ≤ f1.

Theorem 2. [5] For any sets x, y ⊆ U , we have that:
(1) fi(∅) = ∅ and fi(U) = U for i = 0, 1, · · · , 9. fd

i (∅) = ∅ and fd
i (U) = U for

i = 0, 1.
(2) fi and fd

j are monotone for i = 0, 1, · · · , 9 and j = 0, 1.
(3) fi(x ∪ y) = fi(x) ∪ fi(y) for i = 0, 1, 3.
(4) fi(x ∩ y) = fi(x) ∩ fi(y) and fd

j (x ∩ y) = fd
j (x) ∩ fd

j (y) for i = 5, 6 and
j = 0, 1.

Theorem 3. [5] For any sets x, y ⊆ U , we have that:
(1) f5 ≤ fd

1 ≤ f2 ≤ id ≤ f4 ≤ f1 ≤ f3.
(2) f5 ≤ fd

0 ≤ id ≤ f0 ≤ f3.
(3) f6 ≤ f7 ≤ fd

1 .
(4) f8 ≤ f9 ≤ f1.
(5) fi ◦ fi = fi for i = 2, 4.

In view of the previous results and in accordance with the axioms, any low- or
upp-mapping should have the form f0 ◦ g, where g : P (U) → P (U) satisfies
f0 ◦ g ◦ f0 = f0 and, moreover, f0 ◦ g ≤ fd

1 in the lower case, while id ≤
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f0 ◦ g ≤ f1 in the upper case[5]. Clearly, ≤ −maximal among the low-mappings
and ≤ −minimal among the upp-mappings would be the best approximation
operators. The greatest element among the low-mappings just described is the
mapping h : P (U) → P (U) where for any x ⊆ U ,

h(x) = ∪{(f0 ◦ g)(x); g : P (U) → P (U) ∧ f0 ◦ g ◦ f0 = f0 ∧ f0 ◦ g ≤ fd
1 }. (9)

It is noticed that an analogous construction, using ∩, does not provide us with
the least element of the family of upp-mappings[5].

4 The Best Approximation Operators

In this section, we discuss the condition with which the approximation mapping
h exist. We noticed that (9) make sense provided S �= ∅ where

S = {g; g : P (U) → P (U), f0 ◦ g ◦ f0 = f0, f0 ◦ g ≤ fd
1 }.

Theorem 4. [5] Consider any f : P (U) → P (U). f satisfies (a5) and (a6) if
and only if there is a mapping g : P (U) → P (U) such that f = f0 ◦ g and
f0 ◦ g ◦ f0 = f0.

Proof. (⇒) Assume f satisfies (a5) and (a6). By Theorem 1, there is a mapping
g : P (U) → P (U) such that f = f0 ◦ g. Consider any x ⊆ U , by definability of
f0(x), we have f0 ◦ g ◦ f0(x) = f(f0(x)) = f0(x). Hence f0 ◦ g ◦ f0 = f0.

(⇐) Assume f = f0 ◦ g and f0 ◦ g ◦ f0 = f0 for some g : P (U) → P (U). By
Theorem 1, f satisfies (a5). If x ⊆ U is definable, then there is y ⊆ U such that
x = ∪{I(u); u ∈ y} = f0(y). Consequently f(x) = f0 ◦ g(x) = f0 ◦ g(f0(y)) =
f0(y) = x. Hence f satisfies (a6).

Theorem 5. If S �= ∅,then h = f0 ◦ G is the greatest element among the low-
mappings which satisfies (a1), (a3), (a5) and (a6), where G : P (U) → P (U)
satisfies: for every x ⊆ U ,

G(x) = ∪{g(x); g ∈ S}.

The proof of this theorem is trivial.

Theorem 6. If

∀u ∈ U∀v ∈ U(u ∈ I(v) ⇒ I(u) ⊆ I(v)) (10)

is satisfied, then
(1) f0 ◦ fd

1 = fd
1 ,

(2) fd
1 ◦ f0 = f0.

Proof. Assume (10). Consider any x ⊆ U and u ∈ U .
(1) If u ∈ f0 ◦ fd

1 (x) = ∪{I(v); v ∈ fd
1 (x)}, then there exist v ∈ fd

1 (x) such
that u ∈ I(v). Hence I(u) ⊆ I(v) ⊆ x. By definition, u ∈ fd

1 (x) and f0 ◦fd
1 ≤ fd

1 .
It follows that f0 ◦ fd

1 = fd
1 by f0 ≥ id.

(2) If u ∈ f0(x), then there exist v ∈ x such that u ∈ I(v). Hence I(u) ⊆
I(v) ⊆ f0(x) and u ∈ fd

1 ◦ f0(x). In other words, fd
1 ◦ f0 ≥ f0. It follows that

fd
1 ◦ f0 = f0.
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Theorem 7. S �= ∅ if and only if (10) is satisfied.

Proof. Suppose that S �= ∅. It follows that there exists g : P (U) → P (U) such
that f0 ◦ g ◦ f0 = f0 and f0 ◦ g ≤ fd

1 . By

f0 = f0 ◦ g ◦ f0 ≤ fd
1 ◦ f0 ≤ f0,

fd
1 ◦ f0 = f0 followed. For every u, v ∈ U with u ∈ I(v), by

I(v) = f0({v}) = fd
1 ◦ f0({v}) = fd

1 (I(v)) = {w; I(w) ⊆ I(v)},

it follows that I(u) ⊆ I(v).
Conversely, assume (10). By Theorem 6,

f0 ◦ fd
1 ◦ f0 = (f0 ◦ fd

1 ) ◦ f0 = fd
1 ◦ f0 = f0,

f0 ◦ fd
1 ≤ fd

1 .

Hence fd
1 ∈ S and S �= ∅.

By Theorem 6 and Theorem 7, if (10) is satisfied, fd
1 is ≤ −maximal among

the low-mappings which satisfy (a1), (a3), (a5) and (a6). Hence fd
1 is the best

low-approximation mapping.

5 The Transitive Uncertainty Mapping

In view of the previous results, the condition (10) plays a central role in general
approximation spaces. It is just the transitivity of uncertainty mapping. In this
section, we will concentrate on properties specific for this kind of uncertainty
mapping.

Theorem 8. Assume (10). For any sets x, y ⊆ U , we have that:
(1) fi ◦ fi = fi for i = 0, 1.
(2)f2 = f6 = f7 = fd

1 .
(3) f4 = f1.
(4) f8 = f9.

Proof. Consider any x ⊆ U and u ∈ U .
(1) If u ∈ f1 ◦ f1(x) = {v; I(v) ∩ f1(x) �= ∅}, then I(u) ∩ f1(x) �= ∅. It follows

that there exists v ∈ I(u) such that I(v) ∩ x �= ∅. By I(v) ⊆ I(u), I(u) ∩ x �= ∅
followed. By the definition, u ∈ f1(x). In other words, f1◦f1 ≤ f1. Consequently,
f1 ◦ f1 = f1 by f1 ≥ id.

If u ∈ f0 ◦ f0(x) = ∪{I(v); v ∈ f0(x)}, then there exists v ∈ U such that
v ∈ f0(x) and u ∈ I(v). By the definition, there is w ∈ x such that v ∈ I(w).
Consequently, u ∈ I(v) ⊆ I(w) and u ∈ f0(x). In other words, f0 ◦ f0 ≤ f0 and
f0 ◦ f0 = f0 followed by f0 ≥ id.

(2) By Theorem 6, f7 = f0 ◦ fd
1 ◦ fd

1 = (f0 ◦ fd
1 ) ◦ fd

1 = fd
1 ◦ fd

1 = f6,
f6 = fd

1 ◦ fd
1 = (f1 ◦ f1)d = fd

1 , f2 = f0 ◦ fd
1 = fd

1 .
(3) and (4) can be proved similarly.
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By (1) of Theorem 8, f0 ◦ id ◦ f0 = f0 ◦ f0 = f0 and f0 = f0 ◦ id, it follows
that f0 satisfies axiom (a6). We summarize the approximation mappings and
satisfiability of the axioms in Table 1. By + (resp., −) we denote that a condition
is (is not) satisfied, while ⊥ denotes that the result does not count. From the
Table we know that fd

1 is the best low-approximation mapping since it satisfies
all axioms and f0 is in our opinion the best candidate for a upp-mapping since
it satisfies three axioms (a1), (a5) and (a6).

Table 1. Approximation mappings and satisfiability of the axioms if (10) holds

f Form status a1 a2 a3 a4 a5 a6

f0 upp ⊥ + ⊥ − + +
f1 = f4 upp ⊥ + ⊥ + − −
fd
0 low + ⊥ − ⊥ − −

fd
1 = f2 = f6 = f7 low + ⊥ + ⊥ + +

f3 f0 ◦ f1 upp ⊥ + ⊥ − + −
f5 fd

0 ◦ fd
1 low + ⊥ + ⊥ − −

f8 = f9 fd
1 ◦ f1 upp ⊥ − ⊥ + − −
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Abstract. In the paper, we present a novel method for handling incom-
plete information systems. By the proposed method we can transform
an incomplete information system into a complete set-value information
system without loss any information, and we discuss the relationship
between the reducts of incomplete information system and the reducts
of it’s complements. For incomplete decision tables, we introduce two
complete methods according to different criterions of certain factor of
decision rules, i.e., maximal sum complement and maximal conjunction
complement of certain factor of decision rules.

Keywords: Rough sets, incomplete information systems, knowledge
reduction.

1 Introduction

Rough sets theory, introduced by Pawlak [1], has been conceived as a tool to
conceptualize and analyze various types of data, in particular, has important
applications to artificial intelligence and cognitive sciences, as a tool for dealing
with vagueness and uncertainty of facts, and in classification [2,3,4,5].

A concept related to rough set is information system (attribute-value system).
According to whether or not there are missing data (null values), information
system can be classified into two categories: complete and incomplete. A incom-
plete information system contains null value for at last one attribute, a null value
may be some value in the domain of the corresponding attribute, however, it is
unknown. Here we consider the case in which a null value means an applica-
ble value. Some important results have recently been obtained for incomplete
information system by knowledge acquisition methodologies [3,5,6,7,8,9].

There are several ways in which null value may be handled in [10,11,12]. The
simplest method to hand null value is to remove objects with unknown values or
replace null values with most common values [10] in the original system. More
complex approaches which provide strategies to deal with null values in terms of
statistics are studied [13], in which it is suggested to predict the null values on
the basis of values of other attributes of an object and relevant class information.
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The problem of rules extraction from incomplete information system was dis-
cussed in the context of the Rough Sets [3,6,7,10,14]. Modeling uncertainty
caused by the appearance of unknown values by means of fuzzy sets was de-
scribed in [3]; A methodology of rules generation from original incomplete sys-
tems was discussed in [6,7]; A learning algorithm is proposed [14], which can
simultaneously derive rules from incomplete system and estimate the missing
values in the learning process.

In the paper,we describe a newmethod for handling incomplete information sys-
tem. By the proposed method we can transform an incomplete information system
into a complete set-value information system.Fordecision tables,we showtwo com-
plete methods according to different criterions of certain factor of decision rules,
i.e., maximal sum complement of certain factor and maximal conjunction comple-
ment of certain factor. The relationship between the reducts of incomplete infor-
mation system and the reducts of it’s complements are also discussed in details.

2 Incomplete Information Systems

An information system (IS) is an ordered triplet I = (U, AT, f), where U is a
finite nonempty set of objects and AT is a finite nonempty set of attributes,
fa : U → Va for any a ∈ AT , where Va is the domain of attribute a.

It may happen that some of attribute values for objects are missing. To in-
dicate such a situation a distinguished value, so-called null value, is usually
assigned to those attributes. We denote special symbol ∗ to indicate that the
value of an attribute is unknown. Here, we assume that an object x ∈ U pos-
sesses only one value for an attribute a (a ∈ AT ). Thus, if the value of an
attribute a is missing, then the real value must be one of value of Va. An IS in
which values of all attributes for all objects from U are known is called complete,
it is called incomplete otherwise.

Example 1. An incomplete IS I = (U, AT, f) is presented in Table 1.

Table 1. An incomplete IS

U a1 a2 a3

x1 1 1 1
x2 1 * 1
x3 2 1 1
x4 1 2 *
x5 1 * 1
x6 2 2 2
x7 1 1 1

From Table 1, we have a set-value IS IF = (U, AT, F ), see Table 2, where
F = {Fa : U → P(Va)| a ∈ AT },

Fa(x) =
{

{fa(x)} fa(x) �= ∗,
Va fa(x) = ∗.
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Table 2. The set-value IS IF

U a1 a2 a3

x1 {1} {1} {1}
x2 {1} {1,2} {1}
x3 {2} {1} {1}
x4 {1} {2} {1,2}
x5 {1} {1,2} {1}
x6 {2} {2} {2}
x7 {1} {1} {1}

In the following, we only consider the set-value IS that derived from incom-
plete IS.

Let IF = (U, AT, F ) be a set-value IS and A ⊆ AT . Let

R∗
A = {(x, y) ∈ U × U | ∀ a ∈ A, Fa(x) ∩ Fa(y) �= ∅},

we denote [x]∗A = {y ∈ U |(x, y) ∈ R∗
A}. In general, U/R∗

A do not constitute a
partition of U , they may overlap.

Let A ⊆ AT , we say A is a reduct of IF , if R∗
A = R∗

AT and R∗
A−{a} �=

R∗
AT (∀ a ∈ A).

Definition 1. Let IF = (U, AT, F ) be a set-value IS, X ⊆ U, A ⊆ AT , a pair
of lower and upper approximations, A(X) and A(X), is defined by

A(X) = {x ∈ U | [x]∗A ⊆ X}, A(X) = {x ∈ U | [x]∗A ∩ X �= ∅}.

Theorem 1. Let IF = (U, AT, F ) be a set-value IS, X, Y ⊆ U, A ⊆ B ⊆ AT ,
then

(1) A(∅) = A(∅) = ∅, A(U) = A(U) = U ;
(2) A(X ∩ Y ) ⊆ A(X) ∩ A(Y ), A(X ∪ Y ) ⊇ A(X) ∪ A(Y );
(3) X ⊆ Y ⇒ A(X) ⊆ A(Y ), X ⊆ Y ⇒ A(X) ⊆ A(Y );
(4) A(X ∪ Y ) ⊇ A(X) ∪ A(Y ), A(X ∩ Y ) ⊆ A(X) ∩ A(Y );
(5) AX ⊆ X ⊆ AX;
(6) AX ⊆ BX, AX ⊇ BX.

Proof. It immediately follows from Definition 1.

Definition 2. Let IF = (U, AT, F ) be a set-value IS. We denote

D(x, y) = {a ∈ AT | Fa(x) ∩ Fa(y) = ∅ (x, y ∈ U)},

then D(x, y) is called discernibility attribute set of IF , and D = (D(x, y) : x, y ∈
U) is called discernibility matrix of IF .

Theorem 2. Let IF = (U, AT, F ) be a set-value IS and A ⊆ AT , then R∗
A =

R∗
AT iff A ∩ D(x, y) �= ∅ (∀D(x, y) �= ∅, x, y ∈ U).
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Proof. Suppose that A ∩ D(x, y) �= ∅ (∀D(x, y) �= ∅, x, y ∈ U), then ∃ a ∈ A,
such that a ∈ D(x, y), which implies Fa(x) ∩ Fa(y) = ∅, i.e. (x, y) �∈ R∗

A. Thus,
R∗

A ⊆ R∗
AT . On the other hand, it is evident that R∗

AT ⊆ R∗
A. Therefore, R∗

A =
R∗

AT .
Conversely, assume that R∗

A = R∗
AT , then [x]∗A = [x]∗AT (∀ x ∈ U). If y �∈ [x]∗AT ,

then y �∈ [x]∗A. Thus ∃ a ∈ A, such that Fa(x) ∩ Fa(y) = ∅, which implies
a ∈ D(x, y). Therefore, A ∩ D(x, y) �= ∅ (∀D(x, y) �= ∅).

We denote
� =

∧

(x,y)∈ U×U

∨
D(x, y),

then �’s prime implications determine reducts uniquely for set-value IS ( see
[15]).

Example 2. Table 3 is the discernibility matrix of Table 2, where, values of
D(xi, xj) for any pair (xi, xj) of objets from U are placed.

Table 3. The discernibility matrix of IF

x/y x1 x2 x3 x4 x5 x6 x7

x1 a1 a2 a1a2a3

x2 a1 a1a3

x3 a1 a1 a1a2 a1 a2a3 a1

x4 a1 a1a2 a1 a2

x5 a1 a1a3

x6 a1a2a3 a1a3 a2a3 a1 a1a3 a1a2a3

x7 a1 a2 a1a2a3

From the Table 3, we have

� = a1 ∧ a2 ∧ (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a3) ∧ (a1 ∨ a2) ∧ (a2 ∨ a3) = a1 ∧ a2.

Thus, {a1, a2} is the unique reduct of set-value IS.

Let IF = (U, AT, F ) be a set-value IS. We denote

f
′
= {f

′

a : U → Va, f
′

a(x) ∈ Fa(x), (a ∈ AT, x ∈ U)},

then f
′
is called a selection of F .

It is easy to see that If ′ = (U, AT, f
′
) is a complement of the original incom-

plete IS. Let F ∗ denotes the set of all selections of F . Then, SF = {(U, AT, f
′
) :

f
′ ∈ F ∗} is the set of all the complements of the original incomplete IS.

Example 3. Table 4 is a selection of set-value IS IF = (U, AT, F ) presented in
Table 2.
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Table 4. A selection If
′ = (U, AT, f

′
)

U a1 a2 a3

x1 1 1 1
x2 1 2 1
x3 2 1 1
x4 1 2 2
x5 1 1 1
x6 2 2 2
x7 1 1 1

Let I = (U, AT, f) be an incomplete IS. We denote

Y ∗ = {(x, a)| x ∈ U, a ∈ AT, fa(x) = ∗}, B∗ = {a ∈ AT | ∃ x ∈ U, fa(x) = ∗}.

The number of all the complement of I is
∏

(x,a)∈Y ∗
|Va|, i.e., |SF | =

∏
(x,a)∈Y ∗

|Va|,

where | · | denotes the cardinal of a set. We can select a complement from SF

according to different criterions.

Example 4. In Example 1, since Y ∗ = {(x2, a2), (x4, a3), (x5, a2)}, then∏
(x,a)∈Y ∗

|Va| = 2 × 2 × 2 = 8.

Theorem 3. Let If ′ ∈ SF , A ⊆ AT . We denote Rf
′

A = {(x, y) ∈ U × U | ∀ a ∈
A, f

′

a(x) = f
′

a(y)}, then R∗
A =

⋃

f ′∈ F ∗
Rf

′

A .

Proof. For any f
′ ∈ F ∗, we have Rf

′

A ⊆ R∗
A. Thus

⋃

f ′∈F ∗
Rf

′

A ⊆ R∗
A. On the

other hand, for any (x, y) ∈ R∗
A, we can easily conclude that Fa(x) ∩ Fa(y) �=

∅ (∀ a ∈ A). Hence ∃ f
′ ∈ F ∗, such that f

′

a(x) = f
′

a(y) (∀ a ∈ AT ), which

implies (x, y) ∈ Rf
′

A . Therefore, R∗
A ⊆

⋃

f ′∈ F ∗
Rf

′

A .

We denote [x]f
′

A = {y ∈ U | (x, y) ∈ Rf
′

A }, by Theorem 3 we have [x]∗A =
⋃

f ′∈ F ∗
[x]f

′

A .

Theorem 4. Let If ′ ∈ SF and A ⊆ AT , if ∀ f
′ ∈ F ∗, Rf

′

A = Rf
′

AT , then
R∗

A = R∗
AT .

Proof. It is immediately from Theorem 3.

Theorem 5. Let IF = (U, AT, F ) be a set-value IS and B∗ ⊆ A ⊆ AT , then

R∗
A = R∗

AT iff Rf
′

A = Rf
′

AT , ∀ f
′ ∈ F ∗.
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Proof. It is evident that Rf
′

AT ⊆ Rf
′

A (∀ f
′ ∈ F ∗), and we only need to prove

that Rf
′

A ⊆ Rf
′

AT . For any (x, y) ∈ Rf
′

A , by Theorem 3 we have (x, y) ∈ R∗
A. Since

R∗
A = R∗

AT , then ∃ Rf1

AT ∈ R∗
AT such that (x, y) ∈ Rf1

AT , i.e. f1
a (x) = f1

a (y) (∀ a ∈
AT ). It is easy to see that ∀ f1, f2 ∈ F ∗ there always are

f1
a (x) = f2

a (x), (∀ a ∈ AT − B∗, ∀ x ∈ U).

Therefore,
f

′

a(x) = f
′

a(y) (∀ a ∈ AT − B∗). (1)

On the other hand, since (x, y) ∈ Rf
′

A , then

f
′

a(x) = f
′

a(y) (∀ a ∈ A). (2)

By Eq. (1) (2), we have f
′

a(x) = f
′

a(y) (∀ a ∈ AT ), i.e., (x, y) ∈ Rf
′

AT . Therefore,

Rf
′

A ⊆ Rf
′

AT .

Conversely, it follows immediately from Theorem 4.

Theorem 6. Let IF = (U, AT, F ) be a set-value IS, A is a reduct of IF . We

denote C = A ∪ B∗, then Rf
′

C = Rf
′

AT , ∀ f
′ ∈ F ∗.

Proof. Since R∗
A = R∗

AT and A ⊆ C, then R∗
C = R∗

AT ; on the other hand, since

B∗ ⊆ C, by Theorem 5 we have that Rf
′

C = Rf
′

AT , (∀ f
′ ∈ F ∗).

Theorem 7. Let If ′ = (U, AT, f
′
) ∈ SF , A is a reduct of If ′ and A ∩ B∗ = ∅.

We denote C = A ∪ B∗, then Rf
′

C = Rf
′

AT , ∀ f
′ ∈ F ∗.

Proof. It is similar to the proof of Theorem 5.

3 Incomplete Decision Tables

A decision table (DT) is an IS I = (U, AT ∪{d}, f), where d (d �∈ AT and ∗ �∈ Vd)
is a distinguished attribute called the decision, and the element of AT are called
conditions. A DT is called complete, if it is a complete IS; it is incomplete
otherwise.

Example 5. An incomplete DT is presented in Table 5, similar to incomplete IS,
from Table 5, we have a set-value DT IF = (U, AT ∪ {d}, F ), see Table 6.

In the following, we only consider the set-value DT derived from incomplete DT.
Let IF = (U, AT ∪ {d}, F ) be a set-value DT, we denote

f
′
= {f

′

a : U → Va, f
′

a(x) ∈ Fa(x) and f
′

d(x) = Fd(x), (a ∈ AT, x ∈ U)},

then f
′
is called a selection of F .
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Table 5. An incomplete DT I = (U, AT ∪ {d}, f)

U a1 a2 a3 d
x1 1 1 1 1
x2 2 * 2 2
x3 1 2 1 2
x4 1 1 * 1
x5 2 2 2 1
x6 1 1 1 2
x7 1 * 1 1
x8 2 1 2 1

Table 6. A set-value DT IF = (U,AT ∪ {d}, F )

U a1 a2 a3 d
x1 {1} {1} {1} 1
x2 {2} {1,2} {2} 2
x3 {1} {2} {1} 2
x4 {1} {1} {1,2} 1
x5 {2} {2} {2} 1
x6 {1} {1} {1} 2
x7 {1} {1,2} {1} 1
x8 {2} {1} {2} 1

Similar to incomplete IS, we can compute the set of all the complements of
the original incomplete DT.

In set-value DT, R∗
AT is defined as in set-value IS, we denote

Rd = {(x, y) ∈ U × U | Fd(x) = Fd(y)},

then IF is called consistent, if R∗
AT ⊆ Rd; it is inconsistent otherwise.

Let IF be a consistent DT and A ⊆ AT , A is called a reduct of DT, if R∗
A ⊆ Rd

and R∗
B �⊆ Rd (∀ B ⊂ A).

Let IF = (U, AT ∪ {d}, F ) be a consistent set-value DT. We denote

Dd(x, y) =
{{a ∈ AT : Fa(x) ∩ Fa(y) = ∅}, Fd(x) �= Fd(y),

∅, Fd(x) = Fd(y).

then Dd(x, y) is called discernibility attribute set of DT, and Dd = (Dd(x, y) :
x, y ∈ U) is called discernibility matrix of DT.

We denote
� =

∧

(x,y)∈ U×U

∨
Dd(x, y),

then � determine reducts uniquely for consistent set-value DT.
Knowledge hidden in data contained in decision tables may be discovered and

expressed in the form of decision rule t → s, where

t = ∧(c, v), c ∈ AT, v ∈ Vc\{∗} and s = ∨(d, w), w ∈ Vd.
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We denote

||t|| = {x ∈ U | fa(x) = v, (a, v) ∈ t}, ||s|| = {x ∈ U | fd(x) = w, (d, w) ∈ s},

where ||t|| be the set of objects of property ∧(c, v) (c ∈ AT, v ∈ Vc), and ||s|| be
the set of objects of property ∨(d, w) (w ∈ Vd), then

||t ∨ s|| = ||t|| ∨ ||s||, ||t ∧ s|| = ||t|| ∧ ||s||.

Let r : ∧(c, v) → ∨(d, w) be a decision rule, we denote

cerIF (s → t) =
card(||s ∧ t||)

card(||s||) ,

then cerIF (s → t) is called the certainty factor of rule r.
Let If ′ = (U, AT ∪ {d}, f

′
) ∈ SF and U/Rd = {D1, D2, · · · , Dn}. A member-

ship distribution function μf
′

A : U → [0, 1]n is defined as follows [16]:

μf
′

A (x) = (D(D1/[x]f
′

A , . . . , D(Dn/[x]f
′

A )), x ∈ U

where

D(Di/[x]f
′

A ) =
|Di

⋂
[x]f

′

A |
[x]f

′

A

.

It is evident that D(Di/[x]f
′

A ) is the certainty factor of the rule
∧

a∈A

(a, f
′

a(x)) → (d, f
′

d(Di)).

Let x ∈ U , we denote

mf
′

A (x) = max{D(Di/[x]f
′

A ) : i ≤ n} = D(Dj/[x]A);

ηf
′

A (x) = {Dj : mf
′

A (x) = D(Dj/[x]f
′

A )}.

Let Dj ∈ ηf
′

A (x), then D(Di/[x]f
′

A ) ≤ D(Dj/[x]f
′

A ) (∀ Di ∈ U/Rd), i.e.,
the certainty factor of rule

∧
a∈A

(a, f
′

a(x)) → (d, f
′

d(Dj)) is maximal in all the

rules supported by object x. Rule
∧

a∈A

(a, f
′

a(x)) → (d, f
′

d(Dj)) is called maximal

confidence rule supported by object x.
We denote

Mf
′

A =
∑

[x]A∈ U/RA

mf
′

A (x), mf
′

A =
∧

[x]A∈ U/RA

mf
′

A (x).

Let
Mf1

A = max{Mf
A : f ∈ F ∗}, mf2

A = max{mf
A : f ∈ F ∗},
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then f1 is called maximal sum selection of certainty factor, and f2 is called
maximal conjunction selection of certainty factor.

Let IF = (U, AT ∪{d}, F ) be a set-value DT, we select f1, f2 ∈ F ∗ such that

Mf1

A = max{Mf
′

A : f
′
∈ F ∗}, mf2

A = max{mf
′

A : f
′
∈ F ∗},

then we have the two complete DT

(U, AT ∪ {d}, f1), (U, AT ∪ {d}, f2).

In all the selection of F , the sum of certainty factor of rules hidden in (U, AT ∪
{d}, f1) is maximal, the conjunction of certainty factor of rules hidden in
(U, AT ∪ {d}, f2) is maximal.

Example 6. In Example 5, from Table 6, we select If1 ∈ SF (see Table 7).

Table 7. DT If1 = (U, AT ∪ {d}, f1)

U a1 a2 a3 d
x1 1 1 1 1
x2 2 1 2 2
x3 1 2 1 2
x4 1 1 2 1
x5 2 2 2 1
x6 1 1 1 2
x7 1 1 1 1
x8 2 1 2 1

It can be easily checked that Mf
′

AT ≤ Mf1

AT , mf
′

AT ≤ mf1

AT (∀ f
′ ∈ F ∗). Therefore,

f1 not only is a maximal sum selection of certainty factor, but also a maximal
conjunction selection of certainty factor.

4 Conclusions

In the paper, a new method is proposed to handling incomplete information sys-
tems. By the proposed method we transform an incomplete information system
into a complete set-value information system, in which we discussed the problems
of set approximation and attribute reduction. For incomplete decision tables, we
introduce two complete methods according to different criterions of certain factor
of decision rules, i.e., maximal sum complement and maximal conjunction com-
plement of certain factor of decision rules. The relationship between the reducts
of incomplete information system and the reducts of it’s complements are also
discussed in details. This paper may provide a new, different understanding and
representations to incomplete information systems.
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Abstract. In this paper, the combination of formal concept analysis and rough 
set theory is considered. The notion of information concept lattice is presented 
and some properties are given. We present the reduction theory of information 
concept lattice and obtain the reduction method. Information concept lattice is 
compared with rough set theory and concept lattice. 

Keywords: rough set, concept lattice, discernibility matrices, information 
system. 

1   Introduction 

The theory of rough sets (RS), proposed by Pawlak [1], is a new mathematical tool to 
deal with uncertain and vague knowledge. The basic concepts are that of an 
equivalence relation and its lower and upper approximation on a set of objects called 
the universe. By the lower and upper approximation of sets, it provides a 
mathematical approach for knowledge discovery, and has many important 
applications in various fields [2-4], such as knowledge acquisition, data analysis and 
so on. 

Formal concept analysis (FCA), also called concept lattice (CL), is proposed by 
Wille [5] in 1982. CL is an ordered hierarchical structure of formal concepts that are 
defined by a binary relation between a set of objects and a set of attributes. Each 
formal concept is an (objects, attributes) pair, which consists of two parts: the 
extension (objects covered by the concept) and intension (attributes describing the 
concept). As an effective tool for data analysis and knowledge processing, it has been 
applied to various fields [6-8], such as data mining, information retrieval, software 
engineering, and so on.  

Based on the similarities of two theories, how to compare formal concept analysis 
with rough set theory has attracted increasing attention from academics in the past 
decade [9-13]. For example, Saquer and Deogun [10] studied approximations of a set 
of objects and a set of properties based on the system of formal concepts in the 
concept lattice. Yao [11] presents a comparative study of rough set theory and formal 
concept analysis, and gives some concept correspondence relation. 

In this paper, the combination of FCA and RS is considered. The notion of 
information concept lattice is presented and some properties are given. Then the 
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reduction theory of information concept lattice is presented and the reduction method 
is obtained. Finally, Information concept lattice is compared with rough set theory 
and concept lattice. 

2   Information Concept Lattice in an IFC 

The notion of information systems (IS) provides a convenient basis for the 
representation of objects in terms of their attributes. Information systems (IS) is a 
triplet (U, AT, F), where { }1, , nU x x= …  is a non-empty finite set of objects and 

{ }1, , mAT a a= … is a non-empty finite set of attributes, { }: ,a aF F U V a AT= → ∀ ∈  

is the relationship set of U and AT , where aV  , a finite set, is called domain of an 

attribute a . If ( ) 0
iaF x = , ia AT∈ , it represent that the object x  doesn’t have the 

attribute ia . In this paper, IS is normal, i.e. a AT∀ ∈ ， 1 2x x∃ ≠ ， ( )1 0aF x = ,        

( )2 0aF x ≠ ； x X∀ ∈ ， 1 2a a∃ ≠ ， ( )
1

0aF x ≠ ， ( )
2

0aF x = . A normal IS is presen-

ted in table 1. 

Table 1. A normal IS (U, AT, F) 

U/AT a b c d e 
x1 1 2 0 1 1 
x2 2 1 2 0 0 
x3 1 2 1 0 0 
x4 0 0 0 1 0 
x5 1 2 1 0 0 
x6 2 1 0 2 2 

Let (U, AT, F) be a normal IS. ( ),a v , { }, 0aa AT v V∈ ∈ − is called information 

attribute (IA). The set of some IAs is called information attribute set (IAS). The IAS 
of an object x is denoted by x : {( , ( )) |  ( ) 0, }a ax a F x F x a AT= ≠ ∈  and the object 

set of an IA ( ),a v  is denoted by ( ),a v : ( ) ( ){ },  aa v x U F x v= ∈ = . The set of all 

information attributes is denoted by Y : ( ) { }{ }, , 1,2, , ; 1,2, , 0
ii ij aY a v i n j V= = = −… … , 

and (U, AT, F, Y) is called an information formal context (IFC). 

Definition 1. Let (U, AT, F, Y) be an IFC. A pair of dual operators are defined by: for 
X U⊆  and YΔ ⊆ , 

( ) ( ){ },   ,  i ij i ijX a v Y X a v∗ = ∈ ⊆  (1) 

{ }  x U x∗Δ = ∈ Δ ⊆  (2) 
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X ∗  is the IAS of all IA shared by all the objects in X , and ∗Δ  is the set of all the 
objects that possess all the information attributes in Δ . 

Definition 2. Let (U, AT, F, Y) be an IFC. A pair ( ),X Δ is called an information 

concept (IC) of (U, A, I), if and only if, X ∗ = Δ  and X ∗= Δ , X ⊆ U, B ⊆ A. X is 
called the extension and Δ  is called the intension of the IC ( ),X Δ . 

Property 1. Let (U, AT, F, Y) be an IFC. The following properties hold: for all X1, X2, 
X ⊆ U and all 1Δ , 2Δ , Δ  ⊆ Y, 

1. 1 2 2 1X X X X∗ ∗⊆ ⇒ ⊆ , 

2. 1 2 2 1
∗ ∗Δ ⊆ Δ ⇒ Δ ⊆ Δ , 

3. ,X X ∗∗ ∗∗⊆ Δ ⊆ Δ , 

4. ,X X∗ ∗∗∗ ∗ ∗∗∗= Δ = Δ , 

5. X X∗ ∗⊆ Δ ⇔ Δ ⊆ , 

6. ( ) ( )1 2 1 2 1 2 1 2,X X X X
∗ ∗∗ ∗ ∗ ∗= Δ Δ = Δ Δ∪ ∩ ∪ ∩ , 

7. ( ),X X∗∗ ∗  and ( ),∗ ∗∗Δ Δ  are all information concepts, 

8. ( ),Yφ , ( ),U φ  are information concepts. 

Proof. It is obvious to get the result. 

Let ( ),X Δ  be an IC, if YΔ ≠ , the IAS Δ  doesn’t have ( ),i ija v  and ( ),i ika v  

{ }1, 2, ,i n∈ … , ij ikv v≠ , ,
iij ik av v V∈ at the same time. It is obvious form the 

normalization of the ICF (U, AT, F, Y) and IC ( ),Yφ . ( ),X Δ is an IC in an ICF, and 

when YΔ ≠ , Δ  is expressed by ( ) { }{ },   1,2, , , , ,i ij i ka v i I n a i k k I∈ ⊆ ≠ ≠ ∈… a  i f  i . 

The information concepts of an IFC(U, AT, F, Y) are ordered by: 

( ) ( )1 1 2 2, ,X XΔ ≤ Δ ⇔ ( )1 2 1 2X X⊆ ⇔ Δ ⊇ Δ  (3) 

where ( )1 1,X Δ  and ( )2 2,X Δ  are IC. Furthermore, ( )1 1,X Δ  is called a subconcept of 

( )2 2,X Δ , and ( )2 2,X Δ  is called a superconcept of ( )1 1,X Δ . The set of all IC forms 

a complete lattice called the ICL of (U, AT, F, Y) and denoted by ( ), , ,L U AT F Y . The 

infimum and supremum are given by: 

( ) ( ) ( )( )1 1 2 2 1 2 1 2, , ,X X X X
∗∗Δ ∧ Δ = Δ Δ∩ ∪  (4) 

( ) ( ) ( )( )1 1 2 2 1 2 1 2, , ,X X X X
∗∗Δ ∨ Δ = Δ Δ∪ ∩  (5) 
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Example 1. There are 9 ICs based on the IFC in table1 denoted by ( )1,2, ,9iIC i = … and 

( )1 ,  IC Yφ= , { } ( ) ( ) ( ) ( ){ }( )2 1 , ,1 , ,2 , ,1 , ,1IC x a b d e= , 

{ } ( ) ( ) ( ){ }( )3 3 5, , ,1 , ,2 , ,1IC x x a b c= , { } ( ) ( ) ( ){ }( )4 2 , ,2 , ,1 , ,2IC x a b c= ,

{ } ( ) ( ) ( ) ( ){ }( )5 6 , ,2 , ,1 , ,2 , ,2IC x a b d e= , { } ( ){ }( )6 1 4, , ,1IC x x d= ,

{ } ( ) ( ){ }( )7 1 3 5, , , ,1 , ,2IC x x x a b= , { } ( ) ( ){ }( )8 2 6, , ,2 , ,1IC x x a b= , ( )9 ,IC U φ= .The ICL is 

presented in Fig. 1. 

 

Fig. 1. The ICL of (U, AT, F, Y) 

3   An Approach to Reduction in Information Concept Lattice 

In this section, an approach to reduction is considered using the idea of discernibility 
matrix [14]. 

Definition 3. Let ( )1 1 1, , ,L U AT F Y  and ( )2 2 2, , ,L U AT F Y  be two ICLs. If for any 

( ),X Δ ∈ ( )2 2 2, , ,L U AT F Y  there exists ( ),X ′ ′Δ ∈ ( )1 1 1, , ,L U AT F Y  such 

that X X′ = , ( )1 1 1, , ,L U AT F Y  is said to be finer than ( )2 2 2, , ,L U AT F Y , denoted by: 

( ) ( )1 1 1 2 2 2, , , , , ,L U AT F Y L U AT F Y≤  (6) 

If ( ) ( )1 1 1 2 2 2, , , , , ,L U AT F Y L U AT F Y≤  and ( ) ( )2 2 2 1 1 1, , , , , ,L U AT F Y L U AT F Y≤ , 

these two ICLs are said to be isomorphic to each other, denoted by: 

( ) ( )1 1 1 2 2 2, , , , , ,L U AT F Y L U AT F Y≅  (7) 

Theorem 1. Let (U, AT, F, Y) be an IFC. For any  ,B AT B φ⊆ ≠ , 

( ) ( ), , , , , ,B BL U AT F Y L U B F Y≤  holds. 

IC9 

IC6 IC7 IC8 

IC2 IC3 IC4 IC5 

IC1 
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Definition 4. Let ( ), , ,U AT F Y  be an ICF. If there exists an attribute set B AT∈  

such that ( ) ( ), , , , , ,B BL U B F Y L U AT F Y≅ , then B  is called a consistent set 

of ( ), , ,U AT F Y . And further, if { } { } { }( ) ( ), , , , , ,B b B bL U B b F Y L U AT F Y− −− ≠  for 

all b B∈ , then B  is called a reduction of ( ), , ,U AT F Y . The intersection of all the 

reductions of ( ), , ,U AT F Y  is called the core of ( ), , ,U AT F Y . 

Definition 5. Let ( ), , ,L U AT F Y  be an ICL. ( ) ( ), , ,i i j jX XΔ Δ ( ), , ,L U AT F Y∈  , 

( ) ( )( ) ( ){ }, , ,   ,i i j j i jD X X a a vΔ Δ = ∈Δ Δ△  is called the discernibility attributes set between 

( ),i iX Δ and ( ),j jX Δ , ( ) ( )( ) ( ) ( ) ( )( ), , , , , , , , , ,i i j j i i j jD X X X X L U AT F YΛ = Δ Δ Δ Δ ∈  is 

called the discernibility matrix of the ICL L (U, AT, F, Y). 
In the discernibility matrix Λ , only those non-empty elements are useful to 

reduction. We also denote the set of non-empty elements in the matrix by Λ : 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }, , ,  , , , , , , , , ,i i j j i i j j i i j jD X X X X L U AT F Y X XΛ = Δ Δ Δ Δ ∈ Δ ≠ Δ  (8) 

Theorem 2. Let (U, AT, F, Y) be an ICF. For any B AT⊆  such that B φ≠ , the 

following assertions are equivalent: 
1. B  is a consistent set. 

2. For all ( ) ( ), , ,i i j jX XΔ Δ ∈  ( ), , ,L U AT F Y ,if ( ) ( ), ,i i j jX XΔ ≠ Δ , 

i B j BY YΔ ≠ Δ∩ ∩ . 

3. For all ( ) ( ), , ,i i j jX XΔ Δ ∈  ( ), , ,L U AT F Y , if ( ) ( )( ), , ,i i j jD X X φΔ Δ ≠ , then 

( ) ( )( ), , ,i i j jB D X X φΔ Δ ≠∩ . 

Proof. 1 ⇒ 2. Suppose ( ) ( ) ( ), , , , , ,i i j jX X L U AT F Y∀ Δ Δ ∈  and ( ) ( ), ,i i j jX XΔ ≠ Δ . 

Since B  is a consistent set, we have ( ) ( ), , , , , ,B BL U B F Y L U AT F Y≤ . There exist 

,i j BYΩ Ω ∈  such that ( ) ( ) ( ), , , , , ,i i j j B BX X L U B F YΩ Ω ∈  and ( ) ( ), ,i i j jX XΩ ≠ Ω . 

Hence, YB
i i i B i BX X Y Y

∗ ∗Ω = = = Δ∩ ∩ , YB
j j j B j BX X Y Y

∗ ∗Ω = = = Δ∩ ∩ and i jΩ ≠ Ω . 

Thus, i B j BY YΔ ≠ Δ∩ ∩ . 

2 ⇒ 3. For ( ) ( ) ( ), , , , , ,i i j jX X L U AT F YΔ Δ ∈ , and i B j BY YΔ ≠ Δ∩ ∩ . There exists 

an IA ( ),a v  , ( ), B i ja v Y∈ Δ Δ∩ ∩ or ( ), B j ia v Y∈ Δ Δ∩ ∩ . Thus, we have: 

( ) ( )( ) ( ) ( ){ } ( ) ( ){ }, , ,  ,  ,i i j j i j i jB D X X B a a v a a v⎡ ⎤Δ Δ = ∈ Δ Δ − ∈ Δ Δ
⎣ ⎦

∩ ∩ ∪ ∩

 

( ) ( ){ } ( ) ( ){ } ,  ,i j i jB a a v a a v⎡ ⎤= ∈ Δ Δ ∈ Δ Δ
⎣ ⎦
∩ ∪ ∩ ∪  

( ){ } ( ){ }( ) ( ){ } ( ){ }( ) ,  ,  ,  ,i j j iB a a v a a v B a a v a a v φ= ∈Δ ∈Δ ∈Δ ∈Δ ≠∩ ∩ ∪ ∩ ∩ . 
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3 ⇒ 2. Suppose ( ) ( ) ( ), , , , , ,i i j jX X L U AT F YΔ Δ ∈ and ( ) ( )( ), , ,i i j jB D X X φΔ Δ ≠∩ . 

Hence, there exists a B∈  such that ( ) ( )( ), , ,i i j ja D X X∈ Δ Δ , i.e. ( ),a v∃ , ( ), ia v ∈ Δ  

or ( ), ja v ∈ Δ  and ( ), i ja v ∉ Δ Δ∩ . Thus, if ( ) ( ), , ,i ja v a v∈ Δ ∉ Δ , ( ), i Ba v Y∈ Δ∩  

and ( ), j Ba v Y∉ Δ ∩ ; if ( ), ja v ∈Δ  and ( ), ia v ∉ Δ , ( ) ( ), , ,j B i Ba v Y a v Y∈ Δ ∉ Δ∩ ∩ . It 

follows that i B j BY YΔ ≠ Δ∩ ∩ . 

2 ⇒ 1. If for all ( ) ( ), , , ,X L U AT F YΔ ∈ , ( ) ( ), , , ,B B BX Y L U B F YΔ ∈∩  hold, 

( ) ( ), , , , , ,B BL U B F Y L U AT F Y≤ . Thus, B  is a consistent set. We need only to prove 

that for YB
BX Y

∗ = Δ∩  and ( )BY X
∗Δ =∩  hold. Firstly, we have 

YB
B BX X Y Y

∗ ∗= = Δ∩ ∩ . Secondly suppose ( )BY X
∗Δ ≠∩ , since 

( ) ( )( ) ( ), , , ,B BY Y L U AT F Y
∗ ∗∗Δ Δ ∈∩ ∩ , we have ( ) ( ) ( )( ), ,B BX Y Y

∗ ∗∗Δ ≠ Δ Δ∩ ∩  which 

implies that ( )B B BY Y Y
∗∗Δ ≠ Δ∩ ∩ ∩ . On the one hand, 

( )B BY Y X
∗ ∗Δ ⊆ Δ ⇒ Δ ⊇ Δ =∩ ∩ ( ) ( )B B B BY X Y Y Y

∗∗ ∗∗∗⇒ Δ ⊆ = Δ ⇒ Δ ⊆ Δ∩ ∩ ∩ ∩ .

On the other hand, ( ) ( )B B B B B BY Y Y Y Y Y
∗∗ ∗∗Δ ⊆ Δ ⇒ Δ ⊆ Δ∩ ∩ ∩ ∩ ∩ ∩ .Thus, 

( )B B BY Y Y
∗∗Δ = Δ∩ ∩ ∩ , which is a contradiction. Thus, ( )BY X

∗Δ =∩ . 

Theorem 2 shows that to find a reduction in an IFC is to find a minimal subset B  

of attributes set such that ( ) ( )( ), , ,i i j jB D X X φΔ Δ ≠∩ . 

Example 2. Reductions of ICL are presented based on discernibility matrix. There is a 
non-empty elements set in the discernibility matrix: 

{ } { } { } { } { } { } { } { } { } { }{ }, , , , , , , , , , , , , , , , , , , , , , , , , ,c d a b d e a b c a b d a b e c d e a b c d a b d e ATΛ = .  

{ }1 , ,B a c d= , { }2 , ,B b c d AT= ⊆ are considered. 1B satisfies ( )1B H Hφ≠ ∀ ∈ Λ∩  , 

and for every subset of 1B , there exists one set which intersect the subset is empty. 

For example, { },c d is a subset of 1B  but{ } { }, ,c d a b φ=∩ . It is similar 

to { }2 , ,B b c d= . Hence, { }, ,a c d and { }, ,b c d  are reductions of the IFL. 

4   Relationships Between ICL and RS 

Let (U, AT, F, Y) be a normal IFC. The IAS is extended by 

( ){ }0 ,0 , , 1,2,i iY Y a a AT i n= ∈ =∪ …  and an IS is denoted by ( )0, , ,U AT F Y . 

Respectively, {( , ( )) | }ax a F x a AT= ∈  and ( ) ( ){ }, aa v x U F x v= ∈ = , which is 

denoted all the objects that have the IA ( ),a v . 
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Let ( )0, , ,U AT F Y  be an IS. According to the definitions and the properties in 

section2, ( )0, , ,L U AT F Y  is a complete lattice which denotes all the information 

concepts in ( )0, , ,U AT F Y .  

Theorem 3.  Let ( )0, , ,U AT F Y be an IS. ( )( ),ATI x x  is an IC. 

Proof. By the definition of ( )ATI x  and x , ( )( )ATI x x
∗

= , ( ) ( )ATx I x
∗

= . 

The IC set denoted by ( )( ){ } ( )0, , 1,2, , , , ,L AT i iI x x i n L U AT F YΟ = = ⊆… , then we 

have the theorem below: 

Theorem 4. The set of the extensions of all IC in LΟ  forms a partition ofU . 

Proof. Firstly, ( ),i iex X φΔ ≠  in IC set LΟ . Secondly, i jX X=  if 

( ) ( ), ,i i j jX XΔ = Δ and i jX X≠ if ( ) ( ), ,i i j jX XΔ ≠ Δ , and then we get i jX X φ=∩  

from ( ) ( ) ,AT i AT jI x I x i jφ= ≠∩ . Finally, it is obvious that ( )AT iI x U=∪ . Thus, the 

set of extensions of all IC in LΟ  forms a partition of U . 

We know that it is consistent between the set of extension of all IC set 0Y  and the 

partition of U . 

5   Relationships Between ICL and CL 

Let (U, AT, F, Y) be an IFC. When { }0,1 ,aV a AT= ∈ , an object x  has an attribute a  

if ( ) 1aF x = , else the object x  doesn’t have the attribute. The relations I U AT⊆ ×  are 

introduced and an object x  which has an attribute a  is denoted by xIa . All IC set 

Y can be denoted by ( ){ },1 , 1, 2, ,iY a i n= = …  in IFC (U, AT, F, Y).  As every IA 

( ),1ia  is unique to attribute ia , we rewrite the set Y  by { }, 1,2, ,iY a i m= = …  

whichY AT= . 
A pair of dual operators are considered, for X U⊆ , YΔ ⊆ ( ). .i e ATΔ ⊆ : 

( ) ( ){ },  ,i ij i ijX a v Y X a v∗ = ∈ ⊆ , { } x U x∗Δ = ∈ Δ ⊆ . As ( ),i ija v  is equal to ia , 

we can get { } ,X a Y x xIa∗ = ∈ ∀ , { } ,x U a xIa∗Δ = ∈ ∀ . It is obvious that when 

{ }0,1 ,aV a AT= ∈  in ICF, ICF is equal to FC and ICL is equal to CL. 

6   Conclusions 

This paper presents a new notion for knowledge discovery in information systems. 
The concept of information concept lattice is introduced to information systems. The 
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reduction theory of information concept lattice is presented and the approach to 
reduction is given using discernibility matrix. This paper extends the concept of the 
formal context and presents the consistent structure of these reduction approaches 
between rough set theory and concept lattice. 
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Abstract. Information system is one of the important mathematical
models in the field of artificial intelligence. The concept of homomor-
phism is very useful to study the communication between two infor-
mation systems. In this paper, some properties of relation information
systems under homomorphisms are investigated. The concept of a rela-
tion mapping between two universes is proposed in order to construct
a binary relation on one universe according to the given binary relation
on the other universe. The main properties of the mapping are studied.
Furthermore, the notion of homomorphism of information systems based
on arbitrary binary relations is proposed, and it is proved that the re-
ductions of the original system and image system are equivalent to each
other under the condition of homomorphism.

Keywords: Consistent functions, relation mappings, relation informa-
tion systems, homomorphism, reduction.

1 Introduction

Rough set theory [7], proposed by Pawlak, is an excellent tool for data analysis
with important applications in data mining and knowledge discovery. A concept
related to rough set is information system. In fact, most applications based on
rough set theory, such as classification, decision support and knowledge discovery
problems, can fall into the knowledge representation model, i.e. an information
system. In recent years, many topics on information systems have been widely
investigated by many scholars [1-6,9-11].

The theory of rough sets deals with the approximation of an arbitrary sub-
set of a universe by two definable or observable subset called lower and upper
approximations. However, lower and upper approximations are not primitive no-
tions. They are constructed from other concepts, such as binary relations on a
universe, partitions and coverings of a universe, and approximation space. For
an information system, it can be seen as a composition of some approxima-
tion spaces on the same universe. The communication between two information
systems is a very important topic in the field of artificial intelligence. In math-
ematics, it can be explained as a mapping between two information systems.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 68–75, 2007.
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The notion of homomorphism on information systems as a kind of tool to study
the relationship between two information systems was introduced by Grzymala
Busse in [1,2]. A homomorphism can be regarded as a special communication
between two information systems. Image system is seen as an explanation system
of the original system. A homomorphism on information systems is very useful
for aggregating sets of objects, attributes, and descriptors of the original system.
The notions of superfluousness and reducts of an information system are cen-
tral notions in decision making, data analysis, reasoning about data and other
subfields of artificial intelligence[2-4,6,8,10,11]. In [2], the authors depicted the
conditions which make an information system to be selective in terms of endo-
morphism of the system. In [4], with algebraic approach, the authors discussed
the features of superfuousness and reducts of an information system under some
homomorphisms. .

However, the requirement of an indiscernibilty relation or a partition in rough
set theory is a condition that limits the application domain of rough set theory.
So several important generalizations were proposed to solve this problem. One of
these generalizations is to relax an equivalence relation to general binary relation
[5]. The work in our paper represents a new contribution to the development of
the theory of homomorphism between information systems. We develop a method
for defining an arbitrary binary on a universe according to a relation on another
universe. In this sense, our method is a mechanism for communicating between
two information systems. We define the concept of homomorphism between two
information systems based on arbitrary binary relations. Under the condition of
the homomorphism, some characters of relation operations in the original system
and some structure features of the original system are guaranteed in explanation
system.

2 Consistent Function and Its Properties

Let U and V be finite and nonempty universes. The class of all binary relations
on U (respectively, on V ) will be denoted by � (U) (respectively, by � (V )).
Let R ∈ � (U), the successor neighborhood of x ∈ U with respect to R will be
denoted by Rs(x), that is, Rs(x) = {y ∈ U : xRy}. In this section, we introduce
the concepts of consistent functions and investigate their main properties which
will be used in the following sections.

Definition 2.1. Let U and V be finite and nonempty universes, f : U → V a
mapping from U to V , and R a binary relation on U . Let

[x]f = {y ∈ U : f (y) = f (x)} , [x]R = {y ∈ U : Rs (y) = Rs (x)} .

Then both of
{

[x]f : x ∈ U
}

and {[x]R : x ∈ U} are partitions on U . If [x]f ⊆
Rs (y) or [x]f ∩ Rs (y) = ∅ for any x, y ∈ U , then f is called a type-1 consistent
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function with respect to R on U . If [x]f ⊆ [x]R for any x ∈ U , then f is called
a type-2 consistent function with respect to R on U .

From definition 2.1, an injection is trivially both a type-1 and a type-2 consistent
function.

Theorem 2.2. Let f : U → V, R ∈ � (U). If f is a type-1 consistent function
with respect to R on U , then ∀x ∈ U, f−1 (f (Rs (x))) = Rs (x).

Proof. Because f−1 (f (Rs (x))) ⊇ Rs (x) for any x ∈ U is always true, we only
need to prove that f−1 (f (Rs (x))) ⊆ Rs (x) , ∀x ∈ U.

For any x1 ∈ f−1 (f (Rs (x))) , we have f (x1) ∈ f (Rs (x)), which implies
∃x2 ∈ Rs (x) such that f (x1) = f (x2). Since [x2]f = {y ∈ U : f (y) = f (x2)} ,
thus, x2 ∈ [x1]f , which implies [x1]f ∩ Rs (x) �= ∅. Since f is a type-1 consistent
function with respect to R on U , we must have x1 ∈ [x2]f ⊆ Rs (x). Thus
f−1 (f (Rs (x))) ⊆ Rs (x). Therefore f−1 (f (Rs (x))) = Rs (x) , ∀x ∈ U .

Corollary 2.3. Let f : U → V, R1, R2, · · · , Rn ∈ � (U). If f is a type-1
consistent function with respect to each relation Ri (i ≤ n) on U , then ∀x ∈

U, f−1
(

f

(
n⋂

i=1
(Ri)s (x)

))
=

n⋂
i=1

(Ri)s (x).

Proof. It is similar to the proof Theorem 2.2.

Theorem 2.4. Let f : U → V, R1, R2 ∈ � (U). If f is a type-1 consistent
function with respect to R1 and R2 on U , then ∀x ∈ U, f ((R1 ∩ R2)s (x)) =
f ((R1)s (x)) ∩ f ((R2)s (x)).

Proof. Since f ((R1 ∩ R2)s (x)) ⊆ f ((R1)s (x)) ∩ f ((R2)s (x)) for any x ∈ U is
always true, we only need to prove the inverse inclusion for any x ∈ U .

For any y ∈ f((R1)s(x))∩f((R2)s (x)), we have y ∈ f ((R1)s (x)) and y ∈ f
((R2)s (x)). Thus f−1 (y)⊆f−1 (f ((R1)s (x))) and f−1 (y)⊆f−1 (f ((R2)s (x))).
Since f is a type-1 consistent function with respect to R1 and R2 on U , by
Theorem 2.2, f−1 (y) ⊆ (R1)s (x) and f−1 (y) ⊆ (R2)s (x). Hence

f−1 (y) ⊆ (R1)s (x) ∩ (R2)s (x) = (R1 ∩ R2)s (x)

This implies y ∈ f((R1∩R2)s(x)). Therefore f((R1∩R2)s(x)) ⊇ f ((R1)s(x)) ∩ f
((R2)s (x)). It follows that∀x∈U, f((R1∩R2)s(x)) = f ((R1)s (x))∩f ((R2)s (x)).

By Corollary 2.3 and Theorem 2.4, we directly get the following corollary.

Corollary 2.5. Let f : U → V, R1, R2,· · ·, Rn ∈�(U). If f is a type-1 consistent

function with respect to each relation Ri on U , then ∀x ∈ U , f

(
n⋂

i=1
(Ri)s (x)

)
=

n⋂
i=1

f ((Ri)s (x)).



Homomorphisms Between Relation Information Systems 71

3 Relation Mapping and Its Properties

In this section, we define the notions of relation mappings and study their main
properties.

Definition 3.1. Let f : U → V, x| → f (x) ∈ V, x ∈ U . f can induce a mapping
from � (U) to � (V ) and a mapping from � (V ) to � (U), that is,

f̂ : � (U) → � (V ) , R| → f̂ (R) ∈ � (V ) , ∀R ∈ � (U);

f̂ (R) =
⋃

x∈U

{f (x) × f (Rs (x))}.

f̂−1 : � (V ) → � (U) , T | → f̂−1 (T ) ∈ � (U) , ∀T ∈ � (V );

f̂−1 (T ) =
⋃

y∈V

{
f−1 (y) × f−1 (Ts (y))

}
.

Then f̂ and f̂−1 are called relation mapping and inverse relation mapping in-
duced by f respectively; f̂ (R) and f̂−1 (T ) are called binary relations induced
by f on V and U respectively. In the subsequent discussion, we simply denote
f̂ and f̂−1 by f and f−1 respectively.

Theorem 3.2. Let f : U → V, R1, R2 ∈ � (U). If f is both type-1 and type-2
consistent with respect to R1 and R2, then f (R1 ∩ R2) = f (R1) ∩ f (R2).

Proof.

f (R1 ∩ R2) =
⋃

x∈U

{f (x) × f ((R1 ∩ R2)s (x))}

⊆
⋃

x∈U

{f (x) × (f ((R1)s (x)) ∩ f ((R2)s (x)))}

=
⋃

x∈U

{f (x) × f ((R1)s (x)) ∩ f (x) × f ((R2)s (x))}

⊆
( ⋃

x∈U

{f (x) × f ((R1)s (x))}
)

∩
( ⋃

x∈U

{f (x) × f ((R2)s (x))}
)

= f (R1) ∩ f (R2) .

Next, we are to prove the inverse inclusion.
Let (y1, y2) ∈ f (R1) ∩ f (R2). Then (y1, y2) ∈ f (R1) and (y1, y2) ∈ f (R2).

By the definition of f (R1), there exists x1 ∈ U such that (y1, y2) ∈ f (x1) ×
f ((R1)s (x1)), which implies y1 = f (x1) and y2 ∈ f ((R1)s (x1)). Similarly, there
exists x2 ∈ U such that (y1, y2) ∈ f (x2) × f ((R2)s (x2)), which implies y1 =
f (x2) and y2 ∈ f ((R2)s (x2)). Thus f (x1) = f (x2) and y2 ∈ f ((R1)s (x1)) ∩
f ((R2)s (x2)). Since f is a type-2 consistent function with respect to R1 and
R2, we have (R1)s (x1) = (R1)s (x2) and (R2)s (x1) = (R2)s (x2). Hence by The-
orem 2.4, y2 ∈ f ((R1)s (x2)) ∩ f ((R2)s (x2)) = f ((R1)s (x2) ∩ (R2)s (x2)) =
f ((R1 ∩ R2)s (x2)). Then we can conclude that (y1, y2) = (f (x2) , y2) ∈ f (x2)×
f ((R1 ∩ R2)s (x2)) ⊆ f (R1 ∩ R2). Thus f (R1 ∩ R2) ⊇ f (R1) ∩ f (R2). There-
fore f (R1 ∩ R2) = f (R1) ∩ f (R2).



72 C. Wang, C. Wu, and D. Chen

Corollary 3.3. Let f : U → V, R1, R2, · · · , Rn ∈ � (U). If f is both type-1 and

type-2 consistent with respect to each relation Ri (i ≤ n), then f

(
n⋂

i=1
Ri

)
=

n⋂
i=1

f (Ri).

Proof. It is similar to the proof of Theorem 3.2.

Theorem 3.4. Let f : U → V, R ∈ � (U). If f is both type-1 and type-2
consistent with respect to R, then f−1 (f (R)) = R.

Proof. Let (x1, x2) ∈ R, namely, x2 ∈ Rs (x1). Thus f (x2) ∈ f (Rs (x1)). By
the definition of f (R), we have that (f (x1) , f (x2)) ∈ f (R). Let y1 = f (x1)
and y2 = f (x2), then y2 ∈ f (R)s (y1). Thus f−1 (y2) ⊆ f−1 (f (R)s (y1)). It
follows that f−1 (y1) × f−1 (y2) ⊆ f−1 (y1) × f−1 (f (R)s (y1)) ⊆ f−1 (f (R)),
which implies (x1, x2) ∈ f−1 (f (R)) . Therefore f−1 (f (R)) ⊇ R. Next, we are
to prove that f−1 (f (R)) ⊆ R.

Let (x1, x2)∈f−1(f(R)), then there exists y1 ∈V such that (x1, x2)∈f−1(y1)×
f−1 ((f (R))s (y1)). This implies x1 ∈ f−1 (y1) and x2 ∈ f−1 ((f (R))s (y1)).
Hence y1 = f (x1) and f (x2) ∈ (f (R))s (y1). Let y2 = f (x2), then (y1, y2) ∈
f (R) . By the definition of f (R), there exists x3 ∈ U such that (y1, y2) ∈ f (x3)×
f (Rs (x3)). This implies y1 = f (x3) and y2 ∈ f (Rs (x3)). Hence f (x1) = f (x3)
and f (x2) ∈ f (Rs (x3)). Since f is type-2 consistent with respect to R, we
have Rs (x3) = Rs (x1) and f (x2) ∈ f (Rs (x1)). Hence x2 ∈ f−1 (f (Rs (x1))).
Again, since f is type-1 consistent with respect to R, by Theorem 2.2, x2 ∈
f−1 (f (Rs (x1))) = Rs (x1). Thus (x1, x2) ∈ R. It follows that f−1 (f (R)) ⊆ R.
Therefore f−1 (f (R)) = R.

Corollary 3.5. Let f : U → V, R1, R2, · · · , Rn ∈ � (U). If f is both type-1 and
type-2 consistent with respect to each relation Ri (i ≤ n), then

f−1
(

f

(
n⋂

i=1
Ri

))
=

(
n⋂

i=1
Ri

)
.

Proof. It is similar to the proof of Theorem 3.4.

4 Homomorphism Between Relation Information
Systems and Its Properties

By means of the results of the above sections, we introduce the notion of a
homomorphism between two information systems and show that reductions of
the original system and image system are equivalent to each other.

Definition 4.1. Let U and V be finite universes, f : U → V a mapping
from U to V , and R = {R1, R2, · · · , Rn} a family of binary relations on U ,
let f (R) = {f (R1) , f (R2) , · · · , f (Rn)}. Then the pair (U,R) is referred to as
a relation information system, and the pair (V, f (R)) is referred to as a f−
induced relation information system of (U,R).
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By Theorem 3.2, we can introduce the following concept.

Definition 4.2. Let (U,R) be a relation information system and (V, f (R)) a
f− induced relation information system of (U,R). If ∀Ri ∈ R, f is both type-
1 and type-2 consistent with respect to Ri on U , then f is referred to as a
homomorphism from (U,R) to (V, f (R)).

Remark. After the notion of homomorphism is introduced, all the theorems and
corollaries in the above sections may be seen as the properties of homomorphism.

Definition 4.3. Let (U,R) be a relation information system. The subset P ⊆ R
is referred to as a reduct of R if P satisfies the following conditions:

(1) ∩ P = ∩R; (2)∀Ri ∈ P, ∩P ⊂ ∩ (P − Ri).

Theorem 4.4. Let (U,R) be a relation information system, (V, f (R)) a f−
induced relation information system of (U,R), and f a homomorphism from
(U,R) to (V, f (R)). Then P ⊆ R is a reduct of R if and only if f (P) is a
reduct of f (R).

Proof. ⇒ Since P is a reduct of R, we have ∩P = ∩R. Hence f (∩P) =
f (∩R). Since f is a homomorphism from (U,R) to (V, f (R)), by Definition
4.2 and Corollary 3.3, we have ∩f (P) = ∩f (R). Assume that ∃Ri ∈ P such
that ∩ (f (P) − f (Ri)) = ∩f (P). Because f (P) − f (Ri) = f (P − Ri), we
have that ∩ (f (P) − f (Ri)) = ∩f (P − Ri) = ∩f (P) = ∩f (R). Similarly,
by Definition 4.2 and Corollary 3.3, it follows that f (∩ (P − Ri)) = f (∩R).
Thus f−1 (f (∩ (P − Ri))) = f−1 (f (∩R)). By Definition 4.2 and Corollary 3.5,
∩ (P − Ri) = ∩R. This is a contradiction to that P is a reduct of R.

⇐ Let f (P) ⊆ f (R) be a reduct of f (R), then ∩f (P) = ∩f (R). Since f a
homomorphism from (U,R) to (V, f (R)), by Definition 4.2 and Corollary 3.3, we
have f (∩P) = f (∩R). Hence f−1 (f (∩P)) = f−1 (f (∩R)). By Definition 4.2
and Corollary 3.5, ∩P = ∩R. Assume that ∃Ri ∈ P such that ∩ (P − Ri) = ∩R,
then f (∩ (P − Ri)) = f (∩R). Again, by Definition 4.2 and Corollary 3.3, we have
∩f (P − Ri) = ∩f (R) . Hence ∩ (f (P) − f (Ri)) = ∩f (R). This is a contradic-
tion to that f (P) is a reduct of f (R). This completes the proof of this theorem.

By Theorem 4.4, we immediately get the following corollary.

Corollary 4.5. Let (U,R) be a relation information system, (V, f (R)) a f−
induced relation information system of (U,R), and f a homomorphism from
(U,R) to (V, f (R)). Then P ⊆ R is is superfluous in R if and only if f (P) is
superfluous in f (R).

The following example is employed to illustrate our idea in this paper.

Example 4.6. Let (U,R) be a relation information system, where U =
{x1, x2, · · · , x10}, R = {R1, R2, R3} ,

R1 = {(x2, x3) , (x2, x6) , (x5, x2) , (x5, x3) , (x5, x6) , (x5, x8) , (x7, x12),
(x7, x13) , (x7, x14) , (x7, x15) , (x8, x3) , (x8, x6) (x9, x12) , (x9, x13),
(x9, x14) , (x9, x15) , (x10, x12) , (x10, x13) , (x10, x14) , (x10, x15)},
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R2 = (x1, x12) , (x1, x13) , (x1, x14) , (x1, x15) , (x2, x3) , (x2, x6) , (x4, x12),
(x4, x13) , (x4, x14) , (x4, x15) , (x5, x2) , (x5, x8) , (x8, x3) , (x8, x6),
(x11, x12) , (x11, x13) , (x11, x14) , (x11, x15)},

R3 = (x1, x7) , (x1, x9) , (x1, x10) , (x2, x3) , (x2, x6) , (x4, x7) , (x4, x9),
(x4, x10) , (x5, x3) , (x5, x6) , (x8, x3) , (x8, x6) , (x11, x7) , (x11, x9),
(x11, x10) , (x12, x5) , (x13, x5) , (x14, x5) , (x15, x5)}

R1 ∩ R2 ∩ R3 = {(x2, x3) , (x2, x6) , (x8, x3) , (x8, x6)}.

Let V = {y1, y2, y3, y4, y5, y6}. Define a mapping as follows:

x1, x4, x11 x2, x8 x3, x6 x5 x7, x9, x10 x12, x13, x14, x15

y1 y2 y3 y4 y5 y6

Then f (R) = {f (R1) , f (R2) , f (R3)}, where
f (R1) = {(y2, y3) , (y4, y2) , (y4, y3) , (y5, y6)},
f (R2) = {(y1, y6) , (y2, y3) , (y4, y2)},
f (R3) = {(y1, y5) , (y2, y3) , (y4, y3) , (y6, y4)}.
And (V, f (R)) is the f− induced relation information system of (U,R). It is

very easy to verify that f is a homomorphism from (U,R) to (V, f (R)).
We can see that f (R1) is superfluous in f (R) ⇔ R1 is superfluous in R

and that {f (R2) , f (R3)} is a reduct of f (R) ⇔ {R2, R3} is a reduct of R.
Therefore, we can reduce the original system by reducing the image system and
reduce the image system by reducing the original system. That is, the reductions
of the original system and image system are equivalent to each other.

5 Conclusions

In this paper, we point out that a mapping between two universes can induce a
binary relation on one universe according to the given relation on the other uni-
verse. For a relation information system, we can consider it as a composition of
some generalized approximation spaces on the same universe. The mapping be-
tween generalized approximation spaces can be explained as a mapping between
the given relation information systems. A homomorphism is a special mapping
between two relation information systems. Under the condition of homomor-
phism, we discuss the characters of relation information systems, and find out
that the reductions of the original system and image system are equivalent to
each other. These results may have potential applications in knowledge reduc-
tion, decision making and reasoning about data, especially for the case of two
relation information systems. Our results also illustrate that some characters of
a system are guaranteed in explanation system, i.e., a system gain acknowledge-
ment from another system.
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Abstract. In this paper we investigate the dynamic characteristics in
an incomplete decision system while information is increasing. We modify
the definition of reduction of condition attributes in this case, and present
algorithms of reduction in order to deal with increase information.
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1 Introduction

When collecting information about a given topic in a certain moment in time, it
may happen that we do not exactly know all the details of the issue in question.
This lack of knowledge leads to an incomplete information system. Rough set
theory is a valid mathematical tool, which deals with imprecise, vague and incom-
plete information[10,11,12]. In general, rough set theory deals with information
in complete information systems. But in recent years, there are many people,
who disposed incomplete information with rough set theory, and presented sev-
eral methods of dealing with missing attribute values[3]. M.Kryszkiewicz[1,2]
proposed a tolerance relation between objects, which is reflexive, symmetric but
not transitive. J.Stefanowskis’ model[6,7] is based on similarity relation, which
is reflexive, transitive, but not symmetric. J.W.Grzymala-Busse’s model[4,5] is
based on characteristic relation, which is only reflexive. S.Greco’s model[8] is
based on similarity relation, which is transitive, but not reflexive or symmetric.
G.Y.Wang[9] extended M.Kryszkiewicz’s model so that his model fits real world
more. But all of indiscernibility relations in these models are static, and they
could not fit the case of increase information in incomplete information system.
In the paper we consider the case of incomplete decision systems with increase
information based on M.Kryszkiewicz’s model. We investigate its dynamic prop-
erties and present new algorithms to get reducts while information is increasing.
The method of reduction preserves their positive regions as well as other impor-
tant information in these incomplete information systems such that the reducts
are not put at a disadvantage when information is increasing.

The rest of the paper is organized as follows. In section 2 we introduce the
basic concepts of incomplete information systems. In section 3 we investigate
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their dynamic properties. In section 4 we present new algorithms of dynamic
reduction. In section 5 an example is given to show the ideas of new algorithms.
At last, we draw a conclusion in section 6.

2 Information Systems

An information system is a pair IS = (U, A), where U is the universe of discourse
with a finite number of objects(or entities), A is a set of attributes defined on
U . Each a ∈ A corresponds to the function a : U → Va, where Va is called the
value set of a. Elements of U are called situation, objects or rows, interpreted
as, e.g., cases, states.

With any subset of attributes B ⊆ A, we associate the information set for
any object x ∈ U by

InfB(x) = {(a, a(x)) : a ∈ B}

An equivalence relation called B-indiscernible relation is defined by

IND(B) = {(x, y) ∈ U × U : InfB(x) = InfB(y)}

Two objects x, y satisfying the relation IND(B) are indiscernible by attributes
from B. [x]B is referred to as the equivalence class of IND(B) defined by x. The
equivalence classes of IND(B) are denoted by

U/B = {[x]B : x ∈ U}.

A minimal subset B of A such that IND(B) = IND(A) is called a reduct of IS.
Suppose IS = (U, A) is an information system, B ⊆ A is a subset of attributes,

and X ⊆ U is a subset of discourse, the sets

B(X) = {x ∈ U : [x]B ⊆ X}, B(X) = {x ∈ U : [x]B
⋂

X �= φ}

are called B-lower approximation and B-upper approximation respectively. The
lower approximation is also called positive region, denoted by POSB(X).

A special type of information system is called decision system DS = (U, A ∪
{d}), where {d}∩A = φ, A is a set of condition attributes, and d is a distinguished
attribute called conclusion attribute. In a decision system the positive region of
the decision attribute corresponding to the condition attributes is denoted by
POSA(d):

POSA(d) =
⋃

Yi∈U/{d}
(POSA(Yi))

It may happen that some values of attributes for objects in information sys-
tems are missing. These information systems are called incomplete information
systems. The missing values are called null values, which are denoted by *.
Therefore, a similarity relation could be defined as follows[1,2]:

SIM(B) = {(x, y) ∈ U × U : ∀a ∈ B(a(x) = a(y) or a(x) = ∗ or a(y) = ∗)}
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Let SB(x) denotes the object set {y ∈ U : (x, y) ∈ SIM(B)}, where B ⊆ A.
The lower and upper approximation of a concept X ⊆ U are defined as follows
respectively:

B(X) = {x ∈ U : SB(x) ⊆ X)}

B(X) = {x ∈ U : SB(x)
⋂

X �= ∅}

If there is not confusion, we will also denote the set of tolerance classes SB(x)
by U/B, and the B-lower approximation of X is also called the positive region,
denoted by POSB(X).

For B ⊆ A, C ⊆ A, we call the cover of U/B is finer than that of U/C,
denoted by U/B ⊆ U/C, if for any tolerance class SB(x) in U/B there exists a
tolerance class SC(x) in U/C such that SB(x) ⊆ SC(x).

In incomplete decision systems, we assume that values of conclusion attributes
are usually complete in the sequel.

3 Incomplete Systems with a Monotonic Increase of
Information

In [13] G.Cattaneo and D.Ciucci defined three ways of increasing the knowledge
in incomplete information systems. In this paper we are only dealing with the
first case. Its definition is formalized in the following way.

Definition 1. Let IS(ti) = (Ui, Ai) and DS(ti+1) = (Ui+1, Ai+1), with ti,
ti+1∈ R, ti ≤ ti+1 be two incomplete information systems, where Ui = Ui+1.
The attributes in Ai are the same as that in Ai+1. We will say that there is a
monotonic increase of information in the information system IS: For ∀x ∈ Ui

and ∀ati ∈ Ai, ati(x) �= ∗ implies ati(x) = ati+1(x). In such a case, we will
denote by IS(ti) �1 IS(ti+1).

IS(ti) �1 IS(ti+1) means that, in the information system IS the universe of
discourse and the attributes do not change, but the values of attributes may be
changed from unknown to known. Because we only investigate this case, we will
denote Ui by U in the sequel.

Definition 2. Let IS(ti) = (U, Ai)(ti ∈ R) be a series of incomplete information
systems with a monotonic increase of information, i.e. IS(ti) �1 IS(ti+1). We say
the information system IS is a complete information system if it satisfies the
condition:

IS = lim
i→∞

IS(ti)

From definition 2, there are two types of complete information systems cor-
responding to a series of incomplete information systems with a monotonic in-
crease of information(complete information systems, in short): (1) All of values
of attributes are known. (2) Some values of attributes will be unknown forever.
Without generality we assume that all of values of attributes are known in com-
plete information systems.
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We will investigate properties of incomplete information systems with a mono-
tonic increase of information in the sequel.

Proposition 1. Suppose IS(ti) = (U, Ai)�1 IS(ti+1) = (U, Ai+1), with ti, ti+1∈
R, ti ≤ ti+1 be two incomplete information systems, Then for ∀a ∈ Ai and
∀x ∈ U , we have

S
ti+1

{a} (x) ⊆ Sti

{a}(x)

Proof. In terms of the definition S{a}(x) = {y ∈ U : (x, y) ∈ SIM({a})}, we
have ∀y(y ∈ S

ti+1

{a} (x) ⇒ y ∈ Sti

{a}(x)). Therefore S
ti+1

{a} (x) ⊆ Sti

{a}(x).

Corollary 1. Suppose IS(ti) = (U, Ai)�1IS(ti+1) = (U, Ai+1), with ti, ti+1∈ R,
ti ≤ ti+1 be two incomplete information systems, then U/Bi+1 ⊆ U/Bi for
B ⊆ A.

Corollary 2. Suppose IS(ti) = (U, Ai)�1IS(ti+1) = (U, Ai+1), with ti, ti+1∈ R,
ti ≤ ti+1 be two incomplete information systems, IS = (U, A) their correspond-
ing complete information system and X ⊆ U a concept. Then

Bi(X) ⊆ Bi+1(X) ⊆ B(X)

B(X) ⊆ Bi+1(X) ⊆ Bi(X)

for ∀B ⊆ A.

Theorem 1. Suppose DS(ti) = (U, Ai

⋃
{d})�1DS(ti+1) = (U, Ai+1

⋃
{d}), with

ti, ti+1∈ R, ti ≤ ti+1, be two incomplete decision systems, Then

POSBi({d}) ⊆ POSBi+1({d})

for B ⊆ A.

Proof. It can be got directly from Corollary 2.

Corollary 3. Suppose DS(ti) = (U, Ai

⋃
{d}) is an incomplete decision system,

DS = (U, A
⋃

{d}) is its corresponding complete decision system, Then

POSBi({d}) ⊆ POSB({d})

for B ⊆ A.

From the above propositions, the positive regions in incomplete decision systems
are increasing with increasing information in them. We should not delete any
of condition attributes unless these condition attributes are confirmed not to
influence the positive regions in the series of incomplete decision systems. In the
next section we will investigate reduction of condition attributes in incomplete
decision systems.
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4 Dynamic Reduction

In decision systems with missing values almost all of existed methods are to get
reducts in the criterion of the positive regions preserved, these methods don’t
consider dynamic increase of information. In this section we will investigate
reduction in this case. The criterion of reduction, except for preserved positive
region, is to delete condition attributes in which there are no null values in the
negative positive region, i.e. all of elements with missing value are in the positive
region. It is easy to prove that these deleted condition attributes are irrelative to
the positive regions in incomplete decision systems with increase information in
terms of above propositions. In terms of the criteria, the algorithm of reduction
in an incomplete decision system is presented as follows:

Algorithm 1: Static reduction of incomplete decision system(SRIDS, In short).

Input: An incomplete decision system DS(ti) = (U, Ai

⋃
{d})

Output: A reduct of DS(ti) = (U, Ai

⋃
{d})

Step1: U1 = POSAi({d}), B = Ai

Step2: U2 = U − U1
Step3: For j=1 to |Ai|

{ flag = 1;
For k=1 to |U2|

If aj(xk) = ∗ Then flag = 0;
If flag and POSB−{aj}({d}) = U1

Then B = B − {aj}; }
Step4: Output the reduct B

In algorithm 1, DS(ti) represents the state of the decision system DS at ti. The
symbol flag is to decide whether any elements in U2(it stands for the negative
positive region) are missing values, if flag = 1 then there are no null values in
the negative positive region, or else there are some null values. | • | denotes the
cardinality of the set, and xk is an element of U2.

The difference between algorithm 1 and other classical algorithms is whether
the missing values in the negative positive region should be considered when con-
dition attributes are reduced. The former considers the null values of condition
attributes in order to avoid a disadvantage for the reduced condition attributes
to the positive region in the future. The later only consider the positive region
at a moment.

The time complexity of algorithm 1 is decided by that of counting positive
region. Suppose we utilize the algorithm in literature [14] to compute positive re-
gion, whose time complexity is O(|Ai||U |log|U |). Therefore, the time complexity
of algorithm 1 is O(|Ai|2|U |log|U |).

Suppose the incomplete decision system DS(ti) = (U, Ai

⋃
{d}) is dynamically

increasing its information, i.e. DS(ti) �1 DS(ti+1), with ti, ti+1∈ R, ti ≤ ti+1,
and the maximum of i is equal to n. In this case we could call the above algorithm
iteratively. The algorithm of reduction with respect to the dynamical incomplete
decision system DS(ti) is presented as follows:
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Algorithm 2: Dynamical reduction of an incomplete decision system with in-
crease information

Input: An incomplete decision system DS(ti) = (U, Ai

⋃
{d}) with increase

information.
Output: A dynamic reduct with respect to the incomplete decision system

DS
For i=1 to n
{ SRIDS(DS(ti));
DS(ti) = (U, B);

}

B denotes a reduct of the incomplete decision system DS at ti. Because
the time complexity of algorithm 1 is O(|Ai|2|U |log|U |), the time complexity of
algorithm 2 is O(n|Ai|2|U |log|U |). The Algorithm 2 counts the positive region
iteratively. We could improve it by avoiding the iterative workload. The improved
algorithm is presented as follows:

Algorithm 3: Improved dynamic reduction of an incomplete decision system.

Input: An incomplete decision system DS(ti) = (U, Ai

⋃
{d}) with increase

information.
Output: A dynamic reduct with respect to the incomplete decision system

DS
Step 1: B = A; U1 = ∅;
Step 2: U2 = U ;
Step 3: For i=1 to n

{U3 = POSB({d});
U1 = U1

⋃
U3;

U2 = U2 − U3;
C = B;
For j=1 to |B|
{ flag = 1;
For k=1 to |U2|

If aj(xk) = ∗ then flag = 0;
If flag and U1 = POSC−{aj}({d}) then C = C − {aj};

} //End for j
Output C;
B=C;
} // End for i

In algorithm 3, U1 denotes positive region of the incomplete decision system,
U2 negative positive region, U3 the incremental positive region in the rest of
the incomplete decision system, POSB({d}) the positive region of incomplete
decision system DS′ = (U2, B

⋃
{d}), and POSC−{aj}({d}) the positive region
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of incomplete decision system DS′′ = (U, (C −{aj})
⋃

{d}). The output value of
C is a reduct at ti. The rest of symbols are the same as that of algorithm 1.

The algorithm 3 could reduce the the iterative workload of computing posi-
tive region. In algorithm 3 we could only compute the additive positive region
POSB({d}), not the whole positive region of the decision system, although the
time complexity of algorithm 3 is the same as that of algorithm 2.

5 Example

Suppose the incomplete decision system DS(ti) = (U, Ai

⋃
{d}) is dynamically

increasing its information, where DS(t1) is denoted by Table 1, DS(t2) is denoted
by Table 2, and DS(t1) �1 DS(t2), A = {a1, a2, a3}. In DS(t1) a1(x3) = ∗, but
a1(x3) = 2 in DS(t2). In terms of Algorithm 1 we could get the reduct {a1, a2}
at t1. In table 1, although the attributes a1 and a3 could be deleted if we only
preserve the positive region, there are some missing values of a1 in the negative
positive region, while there are no missing values of a3 in the negative positive
region. At t2 we could get more elements in the positive region. For example, the
element x3 is not in the positive region at t1, but it is in the positive region at t2. It
is easy to know the reduct of incomplete information DS at t2 is also {a1, a2} from
table 2 in term of algorithm 1. That is to say, the condition attribute a1 should
not be reduced at t1 in the incomplete decision system with increase information.

Table 1. Incomplete Decision system DS at t1

U a1 a2 a3 d

x1 0 0 1 1
x2 1 1 * 1
x3 * 0 1 0
x4 0 2 1 0
x5 0 0 1 1
x6 3 1 * 1
x7 3 2 1 0
x8 * 2 1 0

Table 2. Incomplete Decision system DS at t2

U a1 a2 a3 d

x1 0 0 1 1
x2 1 1 * 1
x3 2 0 1 0
x4 0 2 1 0
x5 0 0 1 1
x6 3 1 * 1
x7 3 2 1 0
x8 * 2 1 0
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6 Conclusion

In the paper we investigate some properties of incomplete decision systems with
increase information, and the reduction of condition attributes in this case. A
new method of reduction is presented, in which we not only consider positive re-
gion in an incomplete decision system but also its potential influence on positive
region in the future.
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Abstract. A partitioning approach to the problem of dealing with the
entropy of incomplete information systems is explored. The aim is to
keep into account the incompleteness and at the same time to obtain
a probabilistic partition of the information system. For the resulting
probabilistic partition, measures of entropy and co–entropy are defined,
similarly to the entropies and co–entropies defined for the complete case.

Keywords: entropy, co–entropy, incomplete information system.

1 Introduction: Qualitative and Quantitative Valuations
of Roughness for Complete Information Systems

In this work, we discuss the entropy of incomplete information systems as an ex-
tension of the approach based on partitions from complete information systems.
In order to introduce an approach of probability partition from an incomplete
information system, let us first recall how one gets a partition from a complete
information system, and thus how one can apply a measure of rough entropy
when dealing with an information system.

Let us recall that the original Pawlak approach to rough sets is essentially
based on an approximation space, i.e., a pair 〈X, π〉 where X is a (finite) set,
called the universe of objects, and π = {A1, A2, . . . , AN} is a partition of X , in
general induced by the indistinguishability equivalence relation from a complete
information system [1]. The subsets Aj are the elementary sets (or also events),
each of which can be interpreted as a granule of knowledge supported by the
partition. We denote by grπ(x) the granule (equivalence class) from π which
contains the point x ∈ X . In the rough set theory, once fixed a partition π of
X , any of its subsets H can be approximated from the bottom and from the top
by the two lower and upper approximations defined respectively as: lπ(H) :=
∪{Ai ∈ π : Ai ⊆ H} and uπ(H) := ∪{Aj ∈ π : H ∩ Aj �= ∅}, producing the
rough approximation of H defined as the pair rπ(h) = (lπ(H), uπ(H)) (with
trivially lπ(H) ⊆ H ⊆ uπ(H)), see [2] for a complete discussion. We can also
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define the boundary region of H as bπ(H) = u(H) \ l(H), and its external region
as eπ(H) = X \ u(H). Obviously, whatever be the starting original partition π,
for any subset H the triple π(H) = {lπ(H), bπ(H), eπ(H)} is a new partition
of X , which depends from the choice of the subset H .

These considerations can be applied to the case of a complete Information
System (IS), formalized by a triple IS := 〈X, Att, F 〉 consisting of a nonempty
finite set X of objects, a nonempty finite set of attribute Att, and a mapping
F : X × Att → V which assigns to any object x ∈ A the value F (x, a) assumed
by the attribute a ∈ Att [1,3,4]. Indeed, in this IS case the partition generated
by a set of attributes A, denoted by πA(IS), consists of equivalence classes of
indistinguishable objects Ai, i.e., two objects x, y ∈ Ai iff for any attribute a ∈ A,
the condition F (x, a) = F (y, a) holds.

In many applications it is of a certain interest to analyze the variations occur-
ring inside two information systems labelled with two parameters t1 and t2. In
particular, one has to do mainly with the following two cases in both of which
the set of objects remains invariant:

(1) dynamics (see [5]), in which ISt1 = (X, Att1, F1) and ISt2 = (X, Att2, F2)
are under the conditions that Att1 ⊂ Att2 and ∀x ∈ X , ∀a1 ∈ Att1: F2(x, a1) =
F1(x, a1). This situation corresponds to a dynamical increase of knowledge (t1
and t2 are considered as time parameters, with t1 < t2) for instance in a medical
database the increase corresponds to the fact that during the researches on the
disease some symptoms which have been neglected at time t1 become relevant
at time t2 under some new investigations.

(2) reduct, in which ISt1 = (X, Att1, F1) and ISt2 = (X, Att2, F2) are under
the conditions that Att2 ⊂ Att1 and ∀x ∈ X , ∀a2 ∈ Att2: F2(x, a2) = F1(x, a2).
In this case it is of a certain interest to verify if the corresponding partitions are
invariant πAtt2(ISt2) = πAtt1(ISt1), or not.

From the point of view of the rough approximations of subsets Y of the
universe X , both these cases can be treated under a unified formal framework
in which during the time evolution t1 → t2 one try to relate the corresponding
variation of partitions πt1 → πt2 with, for instance, the boundary transformation
bt1(Y ) → bt2(Y ). First of all, as to the partitions of X , whose collection will be
denoted by Π(X), their more interesting structure is the one of complete lattice
(see [6]) with respect to the partially order relation π1  π2, which can be
formalized in one of the following mutually equivalent forms: (por1) ∀A ∈ π1,
∃B ∈ π2: A ⊆ B; (por2) ∀B ∈ π2, ∃{Ai1 , Ai2 , . . . , Aih

} ⊆ π1: B = Ai1 ∪ Ai2 ∪
. . . ∪ Aih

; (por3) ∀x ∈ X , grπ1(x) ⊆ grπ2(x) (as shown in [7], an extension
of these three formulations to the case of coverings leads to different binary
relations of quasi–orderings). The lattice Π(X) of all partitions of X is lower
bounded by the least element πd := {{x} : x ∈ X} (the discrete partition)
consisting of all singletons from X , and the greatest element πt := {X} (the
trivial partition) whose unique equivalence class is the whole universe. If π1  π2
we say that π1 (resp., π2) is finer (resp., coarser) than π2 (resp., π1). The induced
strict ordering on partition, denoted by π1 ≺ π2, is defined as π1  π2 and
π1 �= π2. This means that it must exists at least an equivalence class Bi ∈ π2
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such that its partition with respect to π1 is formed at least of two subsets, i.e.,
∃{Ai1 , Ai2 , . . . , Aip} ⊆ π1, with p ≥ 2, s.t. Bi = Ai1 ∪ Ai2 ∪ . . . ∪ Aip .

Let us note that if π1  π2, then the two rough approximations of a given
subset Y , rπi(Y ) = (lπi(Y ), uπi(Y )), for i = 1, 2, are such that lπ2(Y ) ⊆ lπ1(Y ) ⊆
Y ⊆ uπ1(Y ) ⊆ uπ2(Y ), i.e., the rough approximation of Y with respect to the
partition π1 is better than the rough approximation of the same subset with
respect to π2. This leads to a first but only qualitative valuation of the roughness
of a subset Y of the universe expressed by the law: π1  π2 implies that for ∀Y ,
bπ1(Y ) ⊆ bπ2(Y ). The delicate point is that the condition of strict ordering π1 ≺
π2 does not assure that for ∀Y , bπ1(Y ) ⊂ bπ2(Y ). It is possible to give some very
simple counter–examples in which notwithstanding π1 ≺ π2 one has that ∃Y0:
bπ1(Y0) = bπ2(Y0) [8,7], and this is not a desirable behavior of such a qualitative
valuation of roughness. On the other hand, in many practical applications (for
instance in the attribute reduction procedure), it is interesting not only to have
a possible qualitative valuation of the roughness of a generic subset Y , but also a
quantitative valuation formalized by a mapping E : Π(X)×2X → [0, 1] assumed
to satisfy (at least) the following two minimal requirements:

(re1) the strict monotonicity condition: for any Y ∈ 2X , π1 ≺ π2 implies
E(π1, Y ) < E(π2, Y );

(re2) the boundary conditions : for ∀Y ∈ 2X , E(πd, Y ) = 0 and E(πt, Y ) = 1.

In the sequel, sometimes we will use the notation Eπ : 2X → [0, 1] to denote
the above mapping in which the partition π ∈ Π(X) is considered fixed once for
all. The interpretation of condition (re2) is possible under the assumption that
a quantitative valuation of the roughness Eπ(Y ) should be directly related to its
boundary by |bπ(Y )|. From this point of view, the value 0 corresponds to the
discrete partition for which the boundary of any subset Y is empty, and so its
rough approximation is rπd

(Y ) = (Y, Y ) with |bπd
(Y )| = 0, i.e., a crisp situation.

On the other hand, the value 1 corresponds to the trivial partition in which the
boundary of any nontrivial subset Y (�= ∅, X) is the whole universe, and so its
rough approximation is rπt(Y ) = (∅, X) with |bπt(Y )| = |X |, i.e., the minimum
of sharpness or maximum of roughness.

This being stated, in literature one can find a lot of quantitative measures of
roughness of Y relatively to a given partition π ∈ Π(X) formalized as mappings
ρπ : 2X → [0, 1]. The accuracy of the set Y with respect to the partition is then
defined as απ(Y ) = 1 − ρπ(Y ). Two of the more interesting roughness measures
are ρ

(P )
π (Y ) := |bπ(Y )|

|uπ(Y )| [3] and ρ
(C)
π (Y ) := |bπ(Y )|

|X| [7]. These roughness measures
satisfy the above “boundary” condition (re2), but their drawback is that the
strict condition on partitions π1 ≺ π2 does not assure a corresponding strict
behavior ∀Y , bπ1(Y ) ⊂ bπ2(Y ), and so also the strict correlation ρπ1(Y ) < ρπ2(Y )
cannot be inferred. In other words, in general a rough measure is monotonic, but
not strictly monotonic, contrary to the above requirement (re1).

This drawback can be overcome according to at least two strategies: either
by some new strictly monotonic roughness measures or maintaining one of the
monotonic roughness measures ρπ and considering a strict monotonic function
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Ω : Π(X) → [0, 1] in such a way that the new mapping E(π, Y ) := ρπ(Y ) · Ω(π)
turns out to be strictly monotonic. In this paper we explore this second possibility
in which, for the sake of simplicity, the required function is not the normalized Ω
but it is given by a co–entropy function (also granularity measure) E : Π(X) →
[0, k], where k is a suitable constant, and from which it is possible to induce the
normalized Ω(Y ) = E(Y )/k. This is discussed in the following section.

2 Global and Pointwise Entropies and Co–entropies from
Partitions

Given a partition π = (A1, A2, . . . , AN ) of the universe X by the elementary
events Ai, one can construct the σ–algebra E(π) of events generated by π con-
sisting of the empty set and all the set theoretic unions of elementary events.
In the measurable space (X, E(π)) the counting measure mπ : E(π) → R+
assigns to any event E the corresponding measure mπ(E) = |E| (its cardi-
nality). In this space with measure (X, E(π), mπ) we can introduce the vec-
tor m(π) = (mπ(A1), mπ(A2), . . . , mπ(AN ), with mπ(Aj) > 0 for every j and∑N

j=1 mπ(Aj) = |X |, which is a measure of the granulation, called the granu-
larity distribution induced by π. Finally, it is possible to introduce the vector
p(π) := (pπ(A1), pπ(A2), . . . , pπ(AN )), where each pπ(Aj) := |Aj |

|X| represents
the probability of occurrence of the granule Aj . Since for each j we have that
pπ(Aj) > 0 and

∑N
j=1 pπ(Aj) = 1, the vector p(π) constitutes a probability dis-

tribution induced by granulation. This being stated, in this section we consider
the following two quantities depending from the partition π:

E(π) =
1

|X |

N∑

i=1

|Ai| log |Ai| (2.1a)

H(π) := −
N∑

j=1

p(Aj) · log p(Aj) = − 1
|X |

N∑

i=1

|Ai| log
|Ai|
|X | . (2.1b)

Let us note that E(π) depends only from the granularity distribution m(π),
whereas H(π) depends from the probability distribution p(π). In our opinion
this leads to two different semantical interpretations of these quantities. Indeed,
in agreement with the information theory, since the granule Aj has probability
p(Aj), we shall say that the quantity I[p(Aj)] := − log p(Aj) is the uncertainty
associated with the granule Aj . Thus, the quantity H(π), as expectation of
the discrete random variable I[p(Aj)] with probability p(Aj), is the average
uncertainty relatively to the probability distribution p(π), i.e., it measures the
uncertainty of the granulation. According to Shannon [9], H(π) is called the
entropy of the partition π. Besides this entropy, the quantity E(π) can be defined
as co–entropy owing to its complementarity role with respect to the entropy H(π)
formalized by the identity E(π) + H(π) = log |X |, whatever be the partition π.
Let us note that in [10] this quantity has been called measure of the granularity
since it “is basically an expectation of granularity with respect to all subsets in
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a partition”. The following strict monotonic (resp., anti–monotonic) behavior of
co–entropy (resp., entropy) is a standard result (for the entropy see for instance
[11]): π1 ≺ π2 implies E(π1) < E(π2) and H(π2) < H(π1) . Since the trivial
(resp., discrete) partition πt (resp., πd) is the greatest (resp., least) element
of the lattice of all partitions, it is easy to see that for any partition π it is
0 = E(πd) ≤ E(π) ≤ E(πt) = log |X |, according to the fact that “the coarsest
partition πt has the maximum granularity value log |X | and the finest partition
πd has the minimum granularity value 0” [10]. So the required normalized co–
entropy (granular entropy) is Ω(π) := E(π)

log |X| .
Note that in [12] the entropy H(π), with the corresponding anti–monotonic

behavior, has been assumed as a “measure of granularity”, but this (formally
legitimate) choice is in contrast with the strict monotonicity (meta–)requirement
subsumed by E(π, Y ) as “local” (i.e., depending from Y ) measure of roughness.
Further, this choice suffers also of another drawback. As previously underlined,
in information theory the entropy H(π) is interpreted as a measure of the uncer-
tainty of the probability distribution generated by the partition π. In conclusion,
the different behaviors of H(π) and E(π) with respect to the variation of the
partition π lead to different semantics: H(π) can be interpreted as a measure
of the information uncertainty, E(π) as a measure of partition granularity, and
ρπ(Y ) · E(π) as a local measure of rough granularity. The finer is the partition
and the greatest (resp., lower) is the uncertainty (resp., the roughness).

In order to appreciate a possible generalization of these arguments to the
case of incomplete IS, for instance according to the approach of [13], in [7] it
has been introduced also in the partition context the new notions of pointwise
entropy and co–entropy as the two mappings in which the sum involves the
“local” information given by all the equivalence classes gr(x), with corresponding
“probabilities” μπ(x) = |gr(x)|

|X| , for the object x ranging on the universe X :

ELX(π) =
1

|X |
∑

x∈X

|gr(x)| · log |gr(x)| =
1

|X |

N∑

i=1

|Ai|2 · log |Ai| (2.2a)

HLX(π) = −
∑

x∈X

μπ(x) · log μπ(x) = − 1
|X |

N∑

i=1

|Ai|2 · log
|Ai|
|X | (2.2b)

Trivially, ∀π ∈ Π(X), 0 ≤ E(π) ≤ ELX(π). In the sequel, we refer to E(π)
as the global entropy and to ELX(π) as the pointwise one. Moreover, setting
μ(π) :=

∑
x∈X μ(x), one gets that ELX(π) + HLX(π) = log |X | · μ(π), with this

latter depending on the partition π. Note that the probability vector pLX :=
(μπ(x1), μπ(x2), . . . , μπ(x|X|)) is not a probability distribution since the sum
of its components is μ(π) ≥ 1. Notwithstanding this drawback, from (2.2a) it
follows that the strict monotonicity condition holds also for the pointwise co–
entropy: π1 ≺ π2 implies ELX(π1) < ELX(π2) . Of course, in this case one
has that for any π: 0 ≤ ELX(π) ≤ |X | · log |X |, with corresponding normalized
co–entropy (granulation measure) ΩLX(π) := ELX(π)

|X|·log |X| . Unfortunately, HLX

presents neither monotonic nor anti–monotonic behavior.
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3 Incomplete Information Systems and Definition
Domain

An incomplete information system is formalized as a triple 〈X, Att, F 〉 where F
is a mapping partially defined on a subset D(F ) of X × Att under the following
two non–redundancy conditions: (1) about objects: for every object x ∈ X there
exists at least an attribute a ∈ Att such that (x, a) ∈ D(F ); (2) about attributes:
for every attribute a ∈ Att there exists at least an object x ∈ X such that (x, a) ∈
D(F ). In this way also the mapping representation of an attribute a is partially
defined on the definition domain Xa := {x ∈ X : (x, a) ∈ D(F )} of X (which is
nonempty owing to the non–redundancy condition (2) about attributes) as the
surjective mapping fa : Xa �→ val(a), where val(a) := {F (x, a) : x ∈ Xa} is the
set of all possible values of the attribute a. The non–redundancy condition (1)
about objects assures that

⋃
a∈Att Xa = X (covering condition about attribute

definition domains). Adding to val(a) the further null value ∗, we obtain the
new set val∗(a) and it is possible to extend the partially defined mapping fa to
a global defined one, denoted by f∗

a : X �→ val∗(a), which assigns to any object
x ∈ X the value f∗

a (x) = fa(x) if x ∈ Xa, and the value f∗
a (x) = ∗ otherwise.

Also in the case of incomplete information systems, if one fixes an attribute
a and denotes by αi ∈ val(a), the subset of the universe Ai = f−1

a (αi) =
{x ∈ Xa : fa(x) = αi} is the elementary event of all objects for which the
attribute a assumes the value αi. Further, for any family of attributes A one
can construct the “common” definition domain XA =

⋃
a∈A Xa and then it is

possible to consider the multi–attributes mapping fA assigning to any object
x ∈ XA the corresponding collection of values fA(x) = (f∗

a (x))a∈A, obtaining
a mapping fA : XA �→ val∗(A), with val∗(A) ⊆ Πa∈A val∗(a) the range of the
mapping fA. Note that owing to the non–redundancy conditions for any a ∈ Att
at least one of the f∗

a (x) �= ∗, and so val∗(A) excludes the string consisting of
all ∗. In order to extend to an incomplete information system the properties and
considerations about entropy and co–entropy of partitions described at the end
of section (2), we have at least two different possibilities [7].

(i) For any possible “value” α ∈ val∗(A), one can construct the granule
f−1
A (α) = {x ∈ XA : fA(x) = α} of X labelled by α, also denoted by

[A, α]. The family of granules gr(A) = {[A, α] : α ∈ val∗(A)} plus the
null granule [A, ∗] = X \XA (i.e., the collection of the objects in which all
the attributes are unknown) constitutes a partition of the universe X , in
which gr(A) is a partition of the subset XA of X (which can be considered
as a “partial” partition of X).

(ii) Otherwise, we can consider the covering generated by a similarity (re-
flexive and symmetric, but in general nontransitive) relation. In the case
of incompleteness it is often used the following relation [14]: two objects
x, y ∈ X are said to be similar if and only if ∀ai ∈ A ⊆ Att, either
fai(x) = fai(y) or fai(x) = ∗ or fai(y) = ∗ .

The corresponding options are the following two. The first one, related to
the above point (i) and investigated in this paper, involves partial partitions
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(related to “probabilistic partitions”, i.e., partitions with respect to a measure
m on events from X for which m(X \ XA) = 0). The second one, related to the
point (ii), widely treated in literature by almost all the authors devoted to this
argument (see for instance [13,15]), is applied to coverings [7]. The main point
of difference, which gives to the approach (i) a real content of novelty, is that
it is based on a generalization to probability partitions of the more economical
global co–entropy (2.1a), whereas the approach (ii) generalizes the more complex
pointwise co–entropy (2.2a) applied to coverings. Let us recall that in [7] different
attempts has been investigated in order to give a global notion of co–entropy
in the context of coverings, but all these attempts has been failed from the
point of view of the monotonicity requirement. Finally, it is important that the
results about incomplete ISs are not confused with the intrinsic arguments about
complete ISs. These latter (as treated for instance in [16,12,10]), has to do with
a narrow situation whose extension to the incomplete case is not trivial, and
certainly original. This is what we discuss in the remaining part of the paper.

4 Entropies for Incomplete Information Systems

For any subset A of attributes of an incomplete information system, for the sake
of simplicity, let us denote val∗(A) as V ∗

A, for any α ∈ V ∗
A the corresponding

granule f−1
A (α) as Aα and let us set X∗

A = X \ XA. Let us remark that the
following holds: x /∈ XA iff ∀a ∈ A : f∗(x) = ∗. Hence, the complementing
(of XA with respect to X) domain X∗

A is the collection of all states in which
each attribute fa of the family A is not defined (or in the information table the
row corresponding to the object x ∈ X∗

A assumes the value ∗ in correspondence
of any attribute a ∈ A). From now on, if no confusion is likely, we simply use
X∗ instead of X∗

A.
Now, we can define the measures mA(Aα) = |Aα| and mA(X∗) = 0, and

so mA(X) = mA(
⋃

α Aα ∪ X∗) =
∑

α mA(Aα) + mA(X∗) = |XA|, with the
natural extension to the σ–algebra of events EA(X) from X generated by the
elementary events {Aα : α ∈ V ∗

A} ∪ {A∗ ∈ 2X : A∗ ⊆ X∗} (with m(A∗) = 0),
obtaining in this way a finite measure mA : EA(X) → R+ depending from the set
of attributes A. In particular, the measure of the whole universe changes with
the choice of A. The corresponding probabilities are then p(Aα) = mA(Aα)

mA(X) =
|Aα|
|XA| and p(X∗) = 0. According to a widely used terminology, the collection
π(A) = {Aα : α ∈ V ∗

A} is a probability partition in the sense that the following
hold: (1) each p(Aα) > 0; (2) p(

⋃
α Aα) = 1; (3) p(Aα ∩Aβ) = 0 for α �= β.

Also in this case it is possible to define the co–entropy and the entropy of the
probability partition generated by A, similarly to (2.1a) and (2.1b), as follows:

E(A) =
1

mA(X)

∑

α∈V ∗
A

m(Aα) log m(Aα) (4.1a)

H(A) = −
∑

α∈V ∗
A

p(Aα) log p(Aα) = −
∑

α∈V ∗
A

mA(Aα)
mA(X)

log
mA(Aα)
mA(X)

(4.1b)
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Trivially, H(A)+E(A) = log |XA| = log(mA(X)), i.e., the non–negative quantity
E(A) “complements” the entropy H(A) with respect to the value log(mA(X)),
which depends on the attribute collection A. Let us remark that under the order
condition A ⊆ B on attributes we cannot state in general either H(A) ≤ H(B)
or H(A) ≥ H(B) . If for any collection A of attributes one defines the (globally
normalized) probability p∗(Aα) = |Aα|

|X| , then the following definition can be
given.

Definition 4.1. Let 〈X, Att, F 〉 be an incomplete information system, A ⊆ Att
a collection of attributes, XA ⊆ X the corresponding definition domain, and
π(A) the related pseudo–probability partition (pseudo since the condition (2) of
probability partitions must be substituted by p∗(∪αAα) = |XA|/|X | ≤ 1).

Then, we define the following co–entropy and entropy:

Ẽ(A) :=

(
|X| − |XA|

|X|

)
log |X| +

1

|X|
∑

α∈V ∗
A

|Aα | log |Aα | (4.2a)

H̃(A) := −
∑

α∈V ∗
A

p∗(Aα) log p∗(Aα) = − 1

|X|
∑

α∈V ∗
A

|Aα | log |Aα |
|X| (4.2b)

Also in this case we have that H̃(A) + Ẽ(A) = log |X |. The following important
result about monotonicity holds.

Theorem 4.1 (Monotonicity of H̃(A)). Given an incomplete information
system, let A ⊆ B be two collections of attributes, and π(B) and π(A) the cor-
responding probability partitions. Then we have H̃(A) ≤ H̃(B).

Moreover, under the condition |XB| > |XA| the following strict monotonicity
holds: A ⊂ B implies H̃(A) < H̃(B).

As a direct consequence of theorem 4.1, and making use of H̃(A) + Ẽ(A) =
log |X |, we have the following corollary regarding the co–entropy Ẽ(A).

Corollary 4.1 (Anti–monotonicity of Ẽ(A)). Let A, B be two collections of
attributes such that A ⊆ B. Then we have Ẽ(B) ≤ Ẽ(A).

5 Conclusions and Open Problems

We have illustrated a partitioning approach for incomplete information systems
which take into account the incomplete nature producing at the same time
a probability partition from one side (probability p(Aα) = |Aα|/|XA|) and a
pseudo–probability partition on the other side (probability p∗(Aα) = |Aα|/|X |).
We have then presented a definition of entropy and co–entropy for incomplete
information systems based on the described partitioning approach.

We have shown that the entropy behaves monotonically and the co–entropy
anti–monotonically, with respect to the collections of attributes. Let us stress
that both the here defined co–entropies (4.1a) and (4.2a) result to be a general-
ization of the co–entropy (2.1a) of complete information systems.
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The further step in this research will be the application of our co–entropy
to the construction of reducts and rules in “real” information tables and the
comparison, also from a computational point of view, with the “pointwise” co–
entropy based on coverings considered in [7]. Indeed, even if the procedures to
compute the here introduced co-entropy and the “pointwise” one are in the same
complexity class, it can be easily seen that the former one always requires less
operations than the last one.
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Abstract. A family of overlapping granules can be formed by granu-
lating a finite universe under a binary relation in a set-theoretic setting.
In this paper, we granulate a universe by a binary relation and obtain
a granular universe. And then we define two kinds of operators between
these two universes, study properties of them. By combining these two
kinds of operators, we get two pairs of approximation operators. It is
proved that one kind of combination operators is just the approximation
operators under a generalized approximation space defined according to
Pawlak’s rough set theory.

Keywords: Generalized approximation space, L−lower approximation
operator, H−upper approximation operator, Similarity relation.

1 Introduction

Granular computing is a label of theories, methodologies, techniques, and tools
that makes use of granules, i.e., groups, classes, or clusters of a universe, in the
process of problem solving [10, 14, 16]. Since Pawlak introduced the theory of
rough sets [7,8], it has made granular computing popular . Hobbs [2] introduced
the concepts of granularity in 1985. Later the concept “granular computing”
was suggested by Zadeh [15, 16] for the first time in 1996. The basic ideas of
information granulation have been explored in many fields, such as rough sets,
fuzzy sets, cluster analysis, database, machine learning, data -mining, and so on.
There is a renewed and fast growing interest in the study of granular computing
[3, 4, 10, 13].

As a concrete theory of granular computing, rough set model enables us to
precisely define and analyze many notions of granular computing. The results
provide an in-depth understanding of granular computing. Many models of gran-
ular computing have been proposed and studied [16, 11]. However, there are
many fundamental issues in granular computing, such as granulation of the uni-
verse, description of granules, relationships between granules, and computing
with granules.
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Yao [12] proposed a concrete model of granular computing based on a simple
granulation structure, namely, a partition of a universe. Results from rough sets,
quotient space theory, belief functions, and power algebra are reformulated, re-
interpreted, and combined for granular computing. For the universe and the
coarse-grained universe induced by an equivalence relation, two basic operation
called zooming-out and zooming-in operations are introduced. And Computa-
tions in these universes can be connected through the two operations.

Because the equivalence relation in [12] is too strong to be obtained in general,
we only consider a reflexive relation on a universe which is easy to obtain usually.
Then a covering model can be obtained by granulating a finite set of a universe
based on the reflexive relation [6]. And we cited definitions of zooming-out and
zooming-in operations in [12] and discussed the covering model of granular com-
puting [6]. However, relationships between subsets of a coarse-grained universe
would not hold in the universe. Furthermore, although rough set approximations
of a classical subset of a universe in a generalized approximation space [17] can
be obtained by a combination of these operations, the duality may not hold.

In this paper, we first granulate a finite set of a universe into a family of over-
lapping granules based on a general binary relation. We introduce two kinds of
operators between a universe and the granulated universe, and study their prop-
erties. Then we combine them to two pairs of approximation operators, which
are used to study connections between computations in the two universes. It is
also proved that approximation representations of a generalized approximation
space can be obtained by combining them, and the duality always holds for the
different combinations.

This paper is organized as follows. Section 2 introduces two kinds of operators
between a universe and a granulated universe, and studies their properties. Sec-
tion 3 shows new operations formed by different combining the two operations,
investigates their properties, and discusses connections between computations in
the two universes. Finally, Section 4 concludes the paper.

2 Preliminaries

Let U be a finite and nonempty set called a universe, and r ⊆ U × U a binary
relation on the universe U . For any x ∈ U , the set r(x) = {y ∈ U ; (x, y) ∈ r}
is called the successor neighborhood of x. The relation r is referred to as serial
if for any x ∈ U , there exists y ∈ U such that y ∈ r(x). r is referred to as
reflexive if for all x ∈ U, x ∈ r(x); r is referred to as symmetric if for all
x, y ∈ U, x ∈ r(y) implies y ∈ r(x); r is referred to as transitive if for all
x, y, z ∈ U, x ∈ r(y) and y ∈ r(z) implies x ∈ r(z); r is referred to as Euclidean
if for all x, y, z ∈ U, y ∈ r(x) and z ∈ r(x) implies z ∈ r(y) [9,17]. Furthermore,
r is referred to as a similarity relation on U if it is reflexive and transitive; r
is referred to as a tolerance relation on U if it is reflexive and symmetric. For
any binary relation r ⊆ U × U , the pair (U, r) is referred to as a generalized
approximation space.
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For a generalized approximation space (U, r), the family of all successor neigh-
borhood, denoted by A = {r(x); x ∈ U}, is commonly knows as the granulated
set. If r is reflexive, it forms a covering of U , namely, a family of overlapping
subsets whose union is U . For any x ∈ U , the successor neighborhood r(x) is
considered as a whole granule instead of many individuals [12]. It is a subset of
U and an element of A. We use |r(x)| to denote the whole granule r(x), and call
A = {|r(x)|; x ∈ U} a granulated universe. We denote by 2U the power set of
the universe U , and by c the set complement operator.

Definition 1. Let (U, r) be a generalized approximation space. For any B ⊆ A,
the mapping f : 2A → 2U is given by

f(B) = {x ∈ U ; |r(x)| ∈ B}.

Then we can get the following properties: for any B, C ⊆ A,
(1) f(∅) = ∅;
(1) f(A) = U ;
(2) f(B ∪ C) = f(B) ∪ f(C);
(3) f(B ∩ C) = f(B) ∩ f(C);
(4) f(Bc) = f(B)c;
(5) B ⊆ C ⇔ f(B) ⊆ f(C).

Definition 2. Let (U, r) be a generalized approximation space and X ⊆ U . A
pair (L, H) of mappings L, H : 2U → 2A is defined as follows:

L(X) = {|r(x)|; r(x) ⊆ X},
H(X) = {|r(x)|; r(x) ∩ X 	= ∅}.

They are called L−lower and H−upper approximation of X, respectively.

By Definition 2 we can easily get that for a generalized approximation space
(U, r), X, Y ⊆ U ,

(LH1) H(∅) = ∅;
(LH2) L(U) = A;
(LH3) L(Xc) = H(X)c, H(Xc) = L(X)c;
(LH4) L(X ∩ Y ) = L(X) ∩ L(Y ), H(X ∩ Y ) ⊆ H(X) ∩ H(Y );
(LH5) L(X ∪ Y ) ⊇ L(X) ∪ L(Y ), H(X ∪ Y ) = H(X) ∪ H(Y );
(LH6) X ⊆ Y ⇒ L(X) ⊆ L(Y ), H(X) ⊆ H(Y );
(LH7) Let Bn(X) = H(X) − L(X), then Bn(Xc) = Bn(X).
If r is serial, we have L(X) ⊆ H(X), L(∅) = ∅ and H(U) = A.

Remark 1. In fact, there exists X ⊆ U and X 	= ∅ such that L(X) = ∅; and
there is X 	= U such that H(X) = A.

In general, the following formulas may not hold:

H(X ∩ Y ) = H(X) ∩ H(Y ),
L(X ∪ Y ) = L(X) ∪ L(Y ).
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Example 1. Suppose U = {x1, x2, x3, x4, x5}, and r ⊆ U ×U be a binary relation
on U satisfying: r(x1) = {x3, x4}, r(x2) = {x1, x2, x4}, r(x3) = {x3}, r(x4) =
{x4}, r(x5) = {x2, x5}.

(1) Take X = {x3, x4} and Y = {x2, x3}. Then X ∩ Y = {x3} and H(X ∩
Y ) = {|r(x1)|, |r(x3)|}, but H(X) ∩ H(Y ) = {|r(x1)|, |r(x2)|, |r(x3)|, |r(x4)|} ∩
{|r(x1)|, |r(x2)|, |r(x3)|, |r(x5)|} = {|r(x1)|, |r(x2)|, |r(x3)|}. Hence H(X ∩ Y ) ⊂
H(X) ∩ H(Y ).

(2) Take X = {x1, x2} and Y = {x3}. Then X ∪ Y = {x1, x2, x3} and L(X∪
Y ) = {|r(x3)|, |r(x5)|}, however L(X)∪L(Y ) = ∅ ∪ {|r(x3)|} = {|r(x3)|}. Hence
L(X) ∪ L(Y ) ⊂ L(X ∪ Y ).

Proposition 1. Let (U, r) be a generalized approximation space and X, Y ⊆ U .
Note that Z(X, Y ) = {|r(x)|; r(x) ⊆ X ∪ Y, |r(x)| ∈ Bn(X) ∩ Bn(Y )}. Then

L(X ∪ Y ) = L(X) ∪ L(Y ) ∪ Z(X, Y ).

Proof. It is easy to see that L(X) ∪ L(Y ) ⊆ L(X ∪ Y ). Then |r(x)| ∈ L(X ∪
Y ) − L(X) ∪ L(Y ) if and only if r(x) ⊆ X ∪ Y , r(x) 	⊆ X and r(x) 	⊆ Y .
Then |r(x)| ∈ L(X ∪ Y ) − L(X) ∪ L(Y ) if and only if r(x) ⊆ X ∪ Y , and
|r(x)| ∈ Bn(X)∩Bn(Y ). That is L(X ∪Y )−L(X)∪L(Y ) = Z(X, Y ). Therefore
L(X ∪ Y ) = L(X) ∪ L(Y ) ∪ Z(X, Y ).

Proposition 2. Let (U, r) be a generalized approximation space and X, Y ⊆ U .
Note that Z(X, Y ) = {|r(x)|; r(x) ∩ (X ∩ Y ) = ∅, |r(x)| ∈ Bn(X) ∩ Bn(Y )}.
Then

H(X ∩ Y ) = H(X) ∩ H(Y ) − Z(X, Y ).

Proof. By (LH5) we can get that H(X ∩ Y ) ⊆ H(X) ∩ H(Y ). Then |r(x)| ∈
H(X) ∩ H(Y ) − H(X ∩ Y ) if and only if r(x) ∩ X 	= ∅, r(x) ∩ Y 	= ∅ and
r(x) ∩ (X ∩ Y ) = ∅. Then |r(x)| ∈ H(X) ∩ H(Y ) − H(X ∩ Y ) if and only if
|r(x)| ∈ Bn(X) ∩ Bn(Y ), and r(x) ∩ (X ∩ Y ) = ∅. Therefore H(X) ∩ H(Y ) −
H(X ∩ Y ) = Z(X, Y ). Thus H(X ∩ Y ) = H(X) ∩ H(Y ) − Z(X, Y ).

Fig. 1. Z(X, Y ) Fig. 2. Z(X, Y )

3 Rough Approximation Representations on U and A

Pawlak’s classical rough set theory shows that lower and upper approximations
of a classical set are also subsets of the same universe. From Definition 1 and
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Definition 2 we can combine these operators f and (L, H), and get some new
operators on a same universe.

By Definitions 1 and 2, one can easily obtain lower and upper approximations
of a classical subset of the generalized approximation space by performing a
combination of (L, H) and f as follows:

fL(X) = f({|r(x)|; r(x) ⊆ X}) = {x; r(x) ⊆ X},
fH(X) = f({|r(x)|; r(x) ∩ X 	= ∅}) = {x; r(x) ∩ X 	= ∅}.

Then fL, fH : 2U → 2U are called fL−lower and fH−upper approximation
operators, respectively.

Since we have studied properties of f and (L, H), we can easily get the fol-
lowing properties for any X, Y ⊆ U :

(fLH1) fH(∅) = ∅;
(fLH2) fL(U) = U ;
(fLH3) fL(Xc) = fH(X)c, fH(Xc) = fL(X)c;
(fLH4) fL(X ∩ Y ) = fL(X) ∩ fL(Y ),

fH(X ∩ Y ) ⊆ fH(X) ∩ fH(Y );
(fLH5) fL(X ∪ Y ) ⊇ fL(X) ∪ fL(Y ),

fH(X ∪ Y ) = fH(X) ∪ fH(Y );
(fLH6) X ⊆ Y ⇒ fL(X) ⊆ fL(Y ), fH(X) ⊆ fH(Y );
(fLH7) Let B1(X) = fH(X) − fL(X), then B1(Xc) = B1(X).
Note that (fLH7) means simply that if we cannot decide when an object is in

X , we obviously cannot decide whether it is in Xc either. (fLH3) shows that fL
and fH are the dual approximation operators.

If r is reflexive, then fL(X) ⊆ X ⊆ f(H(X), fL(∅) = ∅,fH(U) = U .

Proposition 3. Let (U, r) be a generalized approximation space. If r is reflexive
and Euclidean, for any X ⊆ U , we have

(1) fH(X) = fL(fH(X));
(2) fL(X) = fH(fL(X)).

Proof. Since r is reflexive, we have fL(fH(X)) ⊆ fH(X). Take x ∈ fH(X).
Then r(x)∩X 	= ∅. For any y ∈ r(x), we have r(x) ⊆ r(y) because r is Euclidean.
Hence r(y)∩X 	= ∅ and y ∈ fH(X). By the arbitrariness of y we can get r(x) ⊆
fH(X) which leads to x ∈ fL(fH(X)). Therefore fL(fH(X)) = fH(X). By
(1) and (fLH3) we can easily get (2).

According to Propositions 1 and 2 we can get:

Proposition 4. Let (U, r) be a generalized approximation space. Then for any
X, Y ⊆ U , we have

(1) fL(X ∪ Y ) = fL(X) ∪ fL(Y ) ∪ Z1(X, Y ), where
Z1(X, Y ) = {x ∈ U ; r(x) ⊆ X ∪ Y, r(x) ⊆ B1(X) ∩ B1(Y )}.

(2) fH(X ∩ Y ) = fH(X) ∩ fH(Y ) − Z1(X, Y ), where
Z1(X, Y ) = {x ∈ U ; r(x) ∩ (X ∩ Y ) = ∅, r(x) ⊆ B1(X) ∩ B1(Y )}.
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For a subset B ⊆ A we can obtain a subset f(B) ⊆ U , and then obtain a pair
of subsets Lf(B) and Hf(B) as follows:

Lf(B) = {|r(x)|; r(x) ⊆ f(B)} = {|r(x)|; r(x) ⊆ {y; |r(y)| ∈ B}},

Hf(B)) = {|r(x)|; r(x) ∩ f(B) 	= ∅} = {|r(x)|; ∃y ∈ r(x), |r(y)| ∈ B}.

Then Lf, Hf : 2A → 2A are called Lf−lower and Hf−upper approximation
operators, respectively. And these two approximation operators give out the
approximation representations of B in the granulated universe A.

So for any B, C ⊆ A we have the following properties:
(LHf1) Hf(∅) = ∅;
(LHf2) Lf(A) = A;
(LHf3) Lf(Bc) = (Hf(B))c, Hf(Bc) = (Lf(B))c;
(LHf4) Lf(B ∩ C) = Lf(B) ∩ Lf(C),

Hf(B ∩ C) ⊆ Hf(B) ∩ Hf(C);
(LHf5) Lf(B ∪ C) ⊇ Lf(B) ∪ Lf(C),

Hf(B ∪ C) = Hf(B) ∪ Hf(C);
(LHf6) B ⊆ C ⇒ Lf(B) ⊆ Lf(C), Hf(B) ⊆ Hf(C);
(LHf7) Let B2(B) = Hf(B) − Lf(B), then B2(Bc) = B2(B).
If r is serial, Lf(∅) = ∅ and Hf(A) = A; if r is reflexive, we have Lf(B) ⊆

B ⊆ Hf(B).
For any X ⊆ U and B ⊆ A, by the different combinations of f and (L, H) we

can get
fL(f(B)) = f(Lf(B)),

Lf(L(X)) = L(fL(X)).

Therefore, we can easily get

Lemma 1. Let (U, r) be a generalized approximation space. If r is a similarity
relation, for any X ⊆ U we have

(1) L(fL(X)) = L(X);
(2) H(fH(X)) = H(X).

Proof. Since r is reflexive, L(fL(X)) ⊆ L(X). Conversely, take |r(x)| ∈ L(X).
Then r(x) ⊆ X . Since r is transitive, for any y ∈ r(x) we have r(y) ⊆ r(x).
Therefore |r(y)| ∈ L(X) and y ∈ fL(X). By the arbitrariness of y we can get
r(x) ⊆ fL(X). Hence |r(x)| ∈ L(fL(X)), and L(X) ⊆ L(fL(X)). From which
we get L(fL(X)) = L(X). By (LHf3) we can prove (2).

However, the following formulae may not hold:

fL(f(B)) = f(B),

fH(f(B)) = f(B).

Example 2. Suppose U = {x1, x2, x3, x4, x5}, and r is a similarity relation on U
satisfying: r(x1) = {x1, x3, x4}, r(x2) = {x2}, r(x3) = {x3, x4}, r(x4) = {x4},
r(x5) = {x2, x5}. Then A = {|r(x1)|, |r(x2)|, |r(x3)|, |r(x4)|, |r(x5)|}.
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(1) Take B = {|r(x1)|, |r(x3)|}, then f(B) = {x1, x3}, and L(f(B)) =
L({x1, x3}) = ∅. But fL(f(B)) = f(∅) = ∅ 	= f(B).
(2) Take B = {|r(x4)|, |r(x5)|}, then f(B) = {x4, x5}, and H(f(B)) = {|r(x1)|,
|r(x3)|, |r(x4)|, |r(x5)|}. However fH(f(B)) = f({|r(x1)|, |r(x3)|, |r(x4)|,
|r(x5)|}) = {x1, x3, x4, x5} 	= f(B).

Proposition 5. Let (U, r) be a generalized approximation space. If r is a simi-
larity relation, then for any B ⊆ A we have

(1) Lf(Lf(B)) = Lf(B);
(2) Hf(Hf(B)) = Hf(B).

In addition, according to Propositions 1, 2 and properties of f we can get:

Proposition 6. Let (U, r) be a generalized approximation space. If r is reflexive,
then for any B, C ⊆ A,

(1) Lf(B ∪ C) = Lf(B) ∪ Lf(C) ∪ Z2(B, C); where
Z2(B, C) = {|r(x)|; r(x) ⊆ f(B ∪ C), r(x) ⊆ B2(B) ∩ B2(C)}.

(2) Hf(B ∩ C) = Hf(B) ∩ Hf(C) − Z2(B, C); where
Z2(B, C) = {|r(x)|; r(x) ∩ f(B ∩ C) = ∅, r(x) ⊆ B2(B) ∩ B2(C)}.

Literatures [7, 17] define lower and upper approximation operators for a gen-
eralized approximation space (U, R) with R being a binary relation on U as
follows:

R(X) = {x ∈ U ; Rs(x) ⊆ X},
R(X) = {x ∈ U ; Rs(x) ∩ X 	= ∅},

where Rs(x) denotes the successor neighborhood of x. Obviously, for a general-
ized approximation space (U, r), fL(X) = r(X) and fH(X) = r(X). Since we
have studied properties of operators f and (L, H), we can easily get properties
of (r(X), r(X)).

4 Conclusion

Granular computing is a way of thinking that relies in our ability to perceive the
real world under various grain sizes, to abstract and consider only those things
that serve our present interest, and to switch among different granularities. In
this paper, two kinds of operators have been introduced between a universe and a
granulated universe based on a generalized binary relation. Connections between
the elements of a universe and the elements of a granulated universe, as well as
connections between computations in the two universes are investigated by two
pairs of combination operators.
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Abstract. A reduct is a subset of attributes that are jointly sufficient
and individually necessary for preserving a particular property of a given
information table. A general definition of an attribute reduct is presented.
Specifically, we discuss the following issues: First, there are a variety
of properties that can be observed in an information table. Second, the
preservation of a certain property by an attribute set can be evaluated by
different measures, defined as different fitness functions. Third, by con-
sidering the monotonicity property of a particular fitness function, the
reduct construction method needs to be carefully examined. By adopting
different heuristics or fitness functions for preserving a certain property,
one is able to derive most of the existing definitions of a reduct. The
analysis brings new insight into the problem of reduct construction, and
provides guidelines for the design of new algorithms.

Keywords: attribute reducts, property preservation functions, mono-
tonicity of evaluation function.

1 Introduction

In many data analysis applications, information and knowledge are stored and
represented in an information table, where a set of objects is described by a set
of attributes. We are faced with one practical problem: for a particular property,
whether all the attributes in the attribute set are always necessary to preserve
this property. Using the entire attribute set for describing the property is time-
consuming, and the constructed rules may be difficult to understand, to apply
or to verify. In order to deal with this problem, attribute selection is required.
The theory of rough sets has been applied to data analysis, data mining and
knowledge discovery. A fundamental notion supporting such applications is the
concept of reducts [4]. The objective of reduct construction is to reduce the
number of attributes, and at the same time, preserve the property that we want.

In the literature of rough set theory, there are many definitions of a reduct, and
each focuses on preserving one specific type of property. This results in two prob-
lems: first, all these existing definitions have the same structure, and there is a lack
of a higher level of abstraction. Second, along with the increasing requirements of
data analysis, we need to find more properties of an information table. This natu-
rally leads to more definitions in different forms. For these two reasons, a general
definition of an attribute reduct is necessary and useful [5]. A general definition is
suggested in Section 2. After that, three issues are discussed in detail.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 101–108, 2007.
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2 A Definition of a Reduct

An information table provides a convenient way to describe a finite set of ob-
jects called a universe by a finite set of attributes [4]. It represents all available
information and knowledge. That is, objects are only perceived, observed, or
measured by using a finite number of attributes.

Definition 1. An information table is the following tuple:

S = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values of a ∈ At, and Ia : U → Va is an
information function that maps an object of U to exactly one value in Va.

A general definition of an attribute reduct is given as follows.

Definition 2. Given an information table S = (U, At, {Va | a ∈ At}, {Ia | a ∈
At}), consider a certain property P of S and R ⊆ A ⊆ At. An attribute set R is
called a reduct of A ⊆ At if it satisfies the following three conditions:

(1.) Evaluability condition: the property can be represented by an evaluation func-
tion e : 2At −→ (L, �);

(2.) Jointly sufficient condition: e(A) � e(R);
(3.) Individually necessary condition: for any R′ ⊂ R, ¬(e(A) � e(R′)).

An evaluation or fitness function, e : 2At −→ (L, �), maps an attribute set
to an element of a poset L equipped with the partial order relation �, i.e., �
is reflexive, anti-symmetric and transitive. For each property, we can use an
evaluation function as its indicator. Normally, the fitness function is not unique.
By applying the function e, we are able to pick the attribute set that preserves
the property P. Suppose we target the attribute set A, then the evaluation of
a candidate reduct R (e(R)) should be the same or superior to e(A). In many
cases, we have e(R) = e(A).

There are many properties that can be observed in an information table.
The discovery of a certain property allows us to describe the information of the
universe, or to predict the unseen data in the future. A property can be well-
defined and easy to be observed, for example, the size of the dataset and the
dimension of the description space. Alternatively, a property can be understood
as a previously unknown pattern to be discovered by a data analysis task, for
example, an association of attributes, a cluster of objects, a set of classification
rules, a preference ordering of objects, or the similarities or differences among
objects.

3 Interpretations of Properties

To classify the properties of an information table is not an easy task, as properties
have internal relationships, and there is no clear cut between different properties.
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In addition, the number of properties is huge. Therefore, we only list some of
the well-known properties.

3.1 Property P1: Descriptions of Object Relations

A binary object relation (i.e., a subset of U × U) represents associations of one
object with other objects (perhaps the same one). Pawlak defines the indiscerni-
bility relation to summarize all indiscernible object pairs [4]. Given an attribute
set A ⊆ At, the indiscernibility relation is defined as:

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)}. (1)

If (x, y) ∈ IND(A), then x and y are indiscernible with respect to A. We can
also define a discernibility relation as:

DIS(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) �= Ia(y)}. (2)

If (x, y) ∈ DIS(A), then x and y are different, and are discernible by any at-
tribute in A. It is easy to relax the indiscernibility or the discernibility relation
to define a similarity relation. For the indiscernibility relation IND, IND(At)
is finest, and IND(∅) is the coarsest. All relations form a poset under the set in-
clusion relation, which is embedded in (2U×U , ⊆). For the discernibility relation
DIS, the order is reversed.

Skowron and Rauszer suggest a discernibility matrix that stores all the at-
tributes that differentiate between any two objects of the universe [6]. Given an
information table S, its discernibility matrix dm is a |U |× |U | matrix with each
element dm(x, y) defined as:

dm(x, y) = {a ∈ At | Ia(x) �= Ia(y), x, y ∈ U},

where |.| indicates cardinality of a set. The discernibility matrix dm is symmetric
and dm(x, x) = ∅. It is easy to verify that:

∀(x, y) ∈ IND(A), A ∩ dm(x, y) = ∅;
∀(x, y) ∈ DIS(A), A ⊆ dm(x, y).

3.2 Property P2: Descriptions of Relative Object Relations

The indiscernibility, discernibility relations can be defined regarding to the labels
of the objects. That is, we concern the indiscernibility relation of two objects if
and only if they have the same label, and we concern the discernibility relation
of two objects if and only if their labels are different.

Given an attribute that labels objects, an information table can be written
as S = (U, At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}), where D is called the
set of decision attributes, and C is called the set of conditional attributes. The
D-relative indiscernibility and discernibility relations can be defined as:

INDD(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y) ∧ ID(x) = ID(y)},

DISD(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) �= Ia(y) ∧ ID(x) �= ID(y)}.
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Skowron and Rauszer’s discernibility matrix can be used to store all the D-
relative discernibility relations.

3.3 Property P3: Partitions of an Information Table

An indiscernibility relation induces a partition of the universe, denoted as πA or
U/IND(A) . Each block of the partition,

[x]A = {y ∈ U | ∀a ∈ A, Ia(x) = Ia(y)}, (3)

is an equivalence class containing x. For any two objects x, y ∈ [x]A, (x, y) ∈
IND(A).

One can obtain a finer partition by further dividing the equivalence classes of
a partition. A partition π1 is a refinement of another partition π2, or equivalently,
π2 is a coarsening of π1, denoted by π1 � π2, if every block of π1 is contained
in some block of π2. The partition U/IND(At) is the finest partition and the
partition U/IND(∅) is the coarsest partition. All partitions form a poset under
the refinement relation, denoted as (Π(U), �).

3.4 Property P4: Descriptions of Concepts

To describe a concept, rough set theory introduces a pair of lower approximation
(apr) and upper approximation (apr). Given an attribute set A ⊆ At, the lower
and upper approximations of X ⊆ U induced by A are defined by:

apr
A
(X) =

⋃
{[x]A | [x]A ⊆ X} =

⋃
{[x]A | |[x]A ∩ X |

|[x]A| = 1}; (4)

aprA(X) =
⋃

{[x]A | [x]A ∩ X �= ∅} =
⋃

{[x]A | 0 <
|[x]A ∩ X |

|[x]A| ≤ 1}, (5)

Probabilistic rough set models [9,11] relax the precision threshold from 1 to
β ∈ (0.5, 1]. The β-level lower and upper approximations are defined as:

aprβ
A
(X) =

⋃
{[x]A | |[x]A ∩ X |

|[x]A| ≥ β},

aprβ
A(X) =

⋃
{[x]A | 0 <

|[x]A ∩ X |
|[x]A| < β}.

A pair of approximation operators (aprβ
1
, aprβ

1 ) is larger than another pair
of approximation operators (aprβ

2
, aprβ

2 ), or equivalently, (aprβ
2
,aprβ

2 ) is smaller
than (aprβ

1
, aprβ

1 ), denoted by (aprβ
1
, aprβ

1 )�(aprβ
2
, aprβ

2 ), if aprβ
2
(X) ⊆ aprβ

1
(X)

for all X ⊆ U . The approximation operator pair (aprβ
At

, aprβ
At) is the largest one,

and the approximation pair (aprβ
∅ , aprβ

∅ ) is the smallest one. All approximation
operators form a poset under the set inclusion relation, which is embedded in
((apr : 2U −→ 2U , apr : 2U −→ 2U ), �).
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3.5 Property P5: Classification of a Set of Concepts

The decision attribute of an information table classifies the universe into a family
of classes U/IND(D). The union of all the lower approximations of those classes
can be defined as the positive region, and the rest is called the boundary region.
That is:

POSA(D) =
⋃

Xi∈U/IND(D)

apr
A
(Xi); (6)

BNDA(D) = U − POSA(D). (7)

Based on the β-lower and upper approximations, the β-positive and boundary
regions can be defined. For example, POSβ

A(D) =
⋃

Xi∈U/IND(D) aprβ
A
(Xi). If

β ∈ (0.5, 1], we have POSβ
A(D) ≥ POSA(D).

A positive region POS1(D) is larger than another positive region POS2(D),
or equivalently, POS2(D) is smaller than POS1(D), if POS2(D) ⊆ POS1(D).
The positive region POSAt(D) is the largest positive region, and the positive
region POS∅(D) is the smallest one. All positive regions form a poset under the
subset relation, which is embedded in (2U , ⊆).

4 Evaluation Functions for Property Preservation

For a certain property P, we can use various fitness functions to evaluate the
degree of satisfiability of the property by an attribute set. Some functions reflect
the definition of the property directly; some reflect the definition of the property
indirectly.

4.1 Evaluate the Description of an Object Relation

According to properties P1 and P2, we can directly use the following function to
evaluate the property preservation by a set of attributes:

eP : 2At −→ (2U×U , ⊆).

A property P ∈ {P1, P2} can be one of the IND(A), DIS(A) and SIM(A) re-
lations and the D-relative relations. The standard reduct construction method
implements the IND relation as the evaluation function [4]. Yao and Zhao ex-
plore the DIS relations and the IND−DIS relations for reduct construction [10].

A property P ∈ {P1, P2} can also be quantified using the function:

eP : 2At −→ (�, ≤),

where � is the set of real numbers. We use the cardinality of the set of object
pairs satisfying a certain relation. Owing to the fact that the relations can be rep-
resented as a discernibility matrix, to count the number of dm(x, y) ∈ dm such
that A ∩ dm(x, y) = ∅ is equivalent to counting the cardinality of IND(A). At
the meantime, to count the number of dm(x, y) ∈ dm such that A ⊆ dm(x, y)
is equivalent to counting the cardinality of DIS(A).
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4.2 Evaluate a Partition of the Universe

According to this property, we can use the following function to evaluate the
property preservation by a set of attributes directly:

eP3 : 2At −→ (Π(U), �).

Since only the indiscernibility relation is an equivalence relation and be able to
partition the universe, this type of property can be considered as a variation of
property P1.

A partition of the universe changes the information entropy of the configura-
tion. That means, we can evaluate the partition by calculating the information
entropy. The evaluation function can be defined as:

eP3 : 2At −→ (�, ≤).

For A ⊆ At, the information entropy is defined as H(A) = −
∑

p(φA) log p(φA)
where φA is a configuration defined by an attribute set A, and p(φA) is the
probability of a configuration in the information table. The entire information
table contains H(At) bits of information.

4.3 Evaluate the Description of a Concept

According to this property, we can use the following function to evaluate the
property preservation by a set of attributes directly:

eP4 : 2At −→ ((apr : 2U −→ 2U , apr : 2U −→ 2U ), �).

This type of functions map a set A of attributes to a pair of approximation
operators.

A function representing this property can also be defined as a mapping from
an attribute set A to the lower approximation operator apr

A
. In the probabilistic

cases, it can be defined as a mapping to aprβ
A
. Therefore, the function is written

as:
eP4 : 2At −→ (apr : 2U −→ 2U , �).

4.4 Evaluate a Classification

According to this property, we can use the following function to evaluate the
property preservation by a set of attributes directly:

eP5 : 2At −→ (2U , ⊆).

The positive and the boundary regions can be directly used. The positive region
is defined for reduct construction by Pawlak [4]. Practically, POSβ

A(D) has been
applied for constructing reducts by many researchers [2,7,11].

It is natural to extend the above function to the following form:

eP5 : 2At −→ (�, ≤).
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The function e can be interpreted as the counting of POSA(D) or BNDA(D), or
its extension. For example, a classification accuracy measure γ(A, D) has been
studied to evaluate the ratio of the positive region with respect to the cardinality
of the universe:

γβ(A, D) =
|POSβ

A(D)|
|U | .

The γ criterion is widely applied for reduct construction. The γβ criterion is also
applied for computing reducts by many authors [2,3,11].

The conditional entropy reflects the classification accuracy from the
information-theoretic viewpoint. The conditional entropy of D given an attribute
set A ⊆ C is defined as:

H(D|A) = −
∑

Xi∈U/IND(D)

p(Xi)p(Xi|φA) log p(Xi|φA),

The conditional entropy can be used as a quantitative measure of this property,
and is applied for reduct construction [3]. Other information theoretic approach
has been studied by many researchers [1,8].

5 The Monotonicity of Property Evaluation Functions

It is important to note that some functions are monotonic with respect to the
set inclusion, while some are not. For example, the relations IND, DIS and the
information entropy H have the monotonicity property with respect to the set
inclusion, however, the γβ measure does not have the monotonicity property.

If the function e is monotonic with respect to the set inclusion of attribute
sets, according to the definition, we need to check all the subsets of a candidate
reduct, in order to confirm that a candidate reduct is a reduct. On the other
hand, if e is not monotonic regarding the set inclusion, we need to search more
attribute sets, and the situation is more complicated.

The non-monotonicity property of the fitness function has not received enough
attention by the rough set community. Due to a lack of consideration of this
issue, some of the reduct construction strategies are not entirely reasonable. For
example, the measure γβ(P, D) = γβ(C, D) has been inappropriately used by
many researchers [2,3,11]. By emphasizing the equality relation, one might miss
some attribute sets that also are reducts, and with the γβ value greater than or
equal to γβ(C, D).

6 Conclusion

This paper introduces a general definition of an attribute reduct, and presents
a critical review of the existing reduct construction algorithms. It is found that
the differences among different definitions of a reduct, and associated reduct
construction algorithms, lie in the properties they try to preserve. Various quali-
tative and quantitative functions can be used to evaluate the degree of preserva-
tion of a certain property. The monotonicity property of an evaluation function
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needs to be emphasized. When the monotonicity property holds, the equality re-
lation can be simply used to verify a candidate reduct; otherwise, a partial order
relation � needs to be used. The analysis provides new insight of the existing
studies, points out common insufficient consideration of monotonicity in some of
the existing algorithms, and gives guidelines for the design of new algorithms.
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Abstract. Consumer research has indicated that consumers use com-
pensatory and non-compensatory decision strategies when formulating
their purchasing decisions. Compensatory decision-making strategies are
used when the consumer fully rationalizes their decision outcome whereas
non-compensatory decision-making strategies are used when the con-
sumer considers only that information which has most meaning to them
at the time of decision. When designing online shopping support tools,
incorporating these decision-making strategies with the goal of personal-
izing the design of the user interface may enhance the overall quality and
satisfaction of the consumer’s shopping experiences. This paper presents
work towards this goal. The authors describe research that refines a previ-
ously developed procedure, using techniques in cluster analysis and rough
sets, to obtain consumer information needed in support of designing cus-
tomizable and personalized user interface enhancements. The authors
further refine their procedure by examining and evaluating techniques
in traditional association mining, specifically conducting experimenta-
tion using the Eclat algorithm for use with the authors’ previous work.
A summary discussing previous work in relation to the new evaluation
is provided. Results are analyzed and opportunities for future work are
described.

Keywords: Association mining, clustering, rough sets, usability, per-
sonalization.

1 Introduction

The world wide web is increasingly changing the way consumers browse for
and purchase items. Millions of consumers engage in purchasing and consuming
goods and services from online stores each day. Given this rapid increase in e-
market activities there has been an increased demand for more usable tools that
more effectively support the online consumer in formulating satisfying decision
outcomes. Design of these systems could incorporate functionality that enables
consumers to quickly and easily browse for and retrieve items in which they are
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interested. Providing enhanced options to customize and personalize the support
interface could greatly enrich the consumers online shopping experiences [1].
Modelling consumer decision-making strategies in the design of the user interface
may aid in achieving this end.

1.1 Consumer Decision-Making

Consumer research has indicated that consumers generally employ two types
of decision-making strategies in their purchasing decisions: compensatory and
non-compensatory [2].

Compensatory decision strategies are used when the decision maker applies a
strict, fully rationalized thought process based on pre-defined preferences, rat-
ings, or rankings to formulate a final decision [3]. The decision-maker will sys-
tematically weigh all possible alternatives in order to form the best possible
decision outcome. Compensatory decision strategies have the potential to be
quite complex in that: the consumer may not always be an expert in the deci-
sion domain, the consumer may not value certain attributes yet need to consider
them when they formulate their decisions, the decision outcome may consist of
an overabundance of information forcing the consumer to filter through results
for wanted information, and/or the consumer may have criteria present in every
decision yet they still must specify these value(s) in each decision formulation.

Non-compensatory decision strategies are used when the decision-maker ap-
plies bounded rationality [4]. Bounded rationality refers to the limitations in
the human capacity for reaching fully rationalized decision outcomes (i.e. those
decision outcomes that consider all facets of available information as in compen-
satory strategies). Decision makers will often arrive at a final decision based on
ad hoc decision strategies using a variety of factors, which include: pre-defined
and developing preferences, ratings and rankings (total or subset), the interface
design, in addition to others [2,5].

1.2 Usability in Online Shopping Environments

There has been considerable research into understanding what constitutes a
satisfying user interface for online shopping environments. Jedetski et al. [6]
discuss that the design of the user interface is paramount in whether or not
users have a satisfying experience in such support tools. In terms of developing
satisfying user interfaces, providing consumers with enhanced options such as
the ability to customize and personalize their user interface will ensure that
they have a satisfying shopping experience [1,7,8]. Holland et al. [9], describe a
technique utilizing methods in association mining to gather user preferences in
support of developing personalized user interfaces from online user logs. As well,
Li and Kit [10] describe a method to enhance the usability of online support tools
by utilizing data mining techniques to mine associated information to design
and develop a better link navigational structure of a website. Depending on
the amount of data and information that consumers must provide, this task
has potential to be a highly complex and time consuming. Maciag et al. [8,3]
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describe a technique to reduce the complexity of this task by reducing the amount
of consumer information required. The primary idea of their research was to
formalize the foundations of a personalization procedure aimed at clustering
consumers into groups bearing similar attribute values and product preferences.

2 A Review of Previous Work

In Maciag et al. [8,3], web-based shopping support tools were developed to con-
duct a usability evaluation. The authors chose to base their evaluation using
a software support tool designed by the United States Environment Protection
Agency (US-EPA) that enabled product comparisons between 29 environmen-
tally preferable cleaning products using eight product attributes. Table 1 pro-
vides a listing of these attributes and their corresponding values.

Table 1. US-EPA attributes (with abbreviations) and corresponding values

Attribute (abbreviation) Values
Skin Irritation (skin) exempt, negligible-slight, slight,

medium, strong, not reported

Food chain exposure (fce) exempt, ≤ 5000, ≤ 10000, ≤ 15000,
> 15000, not reported

Air pollution potential (air) N/A, 0%, ≤ 1%, ≤5%, ≤ 15%,
≤ 30%, > 30%, not reported

Product contains fragrance (frag) yes, no

Product contains dye (dye) yes, no

Product is a concentrate (con) yes, no

Product packaging made of
recyclable paper (rec) N/A, yes

Product minimizes exposure to
concentrate (exp) N/A, yes, no/small sizes, no

56 participants were recruited to complete a series of tasks on the support
tools, which included completion of a questionnaire that asked participants to
rank the eight attributes described in Table 1 using a four point scale: unimpor-
tant, somewhat important, important, very important. In addition participants
were asked to select which of the 29 cleaning products they would consider
purchasing for personal use. This information was used to develop a procedure
to gather consumer information in support of clustering the participants into
groups having similar attribute and product preferences.

Figure 1 illustrates the authors’ procedure in Maciag et al. [3]. First, the 29
cleaning products were clustered, generating four product clusters. A decision
system was constructed, comprised of 16 attributes (based on participant rank-
ings) and one decision attribute (based on the participant product selections and
product cluster values). Using the Rough Set Exploration System (RSES) [11],
rough set reduction techniques were performed on the decision system. Utilizing
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Fig. 1. Diagram illustrating the procedure in Maciag et al. [3]

the genetic algorithm functionality in RSES, the authors formulated the top ten
reducts (the set(s) of attributes needed to discern objects (e.g. the 56 partici-
pants) in a decision system [12]) for the training set and tested the results using
participant data in the testing set. Three of the top ten reducts generated con-
sisted of only two of the 16 attributes and had classification accuracy of 100%
and total coverage of 88%. It is important to note that the reason why the total
coverage was slightly reduced is that some participants in the testing set could
not be classified accordingly based on the reduct attributes generated by the
genetic algorithm procedure provided by RSES. Thus, the authors proposed a
system design where, upon initialization (i.e. a consumer’s first use of the sup-
port tool), consumers could be given a reduced questionnaire that would elicit
their preferences with respect to the attributes represented in the reducts. Con-
sumers would be placed in the appropriate cluster based on their response and a
customizable and personalized user interface would be displayed specific to the
cluster group’s preferences.

The work described in this paper will further refine the procedure described in
Maciag et al. [3] (Figure 1). Specifically, the research described here will build on
previous work by examining and evaluating techniques in association mining to
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aid in the task of designing the personalized aspects of the user interface after the
initial clustering procedure, as described in Maciag et al. [3], is performed. The
concepts of compensatory and non-compensatory decision strategies are used to
provide the basis for design.

3 Experiment Design and Results

The authors examined and evaluated the Eclat algorithm [13,14,15], to be used
in conjunction with the work described in Maciag et al. [3], as a means to gather
useful consumer data and information in support of personalizing aspects of a
user interface. Eclat is a data mining algorithm that is used for mining frequent
item sets, i.e. sets of transactions containing associated values meeting minimum
support and confidence thresholds. These thresholds are described in Equations
1 and 2.

Support(X → Y ) = P (X ∪ Y ) (1)

Confidence(X → Y ) =
P (X ∪ Y )

P (X)
(2)

The Eclat algorithm can be used to determine whether certain items, e.g.
item X and item Y , are associated in some fashion [16,14]. For instance, what is
the percentage items X and Y are purchased together? [14]. Eclat functions by
performing a depth-first traversal of a prefix tree to formulate association rules,
i.e. the set(s) of rules that could be used to describe relationships among data.
Figure 2 provides a classic illustration of the Eclat algorithm [16,14,15].

The authors utilized the Eclat algorithm to examine and evaluate the associa-
tions among certain aspects of user and product data obtained from the usability
evaluation described previously. Figure 3 illustrates the steps taken in the au-
thors’ analysis. Eclat software1 was used to analyze the associations between
the total set of 29 cleaning products, the sets of products belonging to each of
the four clusters generated in Maciag et al. [3], as well as the stated attribute
rankings of those participants assigned within each cluster as per the proce-
dure described in Maciag et al. [3]. A minimum support/confidence threshold of
75% was used in the examination. This support/confidence threshold was chosen
since lower thresholds would provide a more loosely bound collection of associ-
ated attributes (personalized aspects would potentially loose meaning) whereas
as higher thresholds would yield a more tightly bound collection of associated
attributes (reduction of design possibilities).

4 Discussion

Tables 2 and 3 provide the results of the authors’ examination. The first column
of Table 2 represents the cluster value (the total set of products and clusters
1 The authors used the Eclat software developed by Borgelt, http://fuzzy.cs.
uni-magdeburg.de/ borgelt/eclat.html, (Fall 2006) [16].

http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html
http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html
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Fig. 2. Classic illustration of Eclat [16,14]. The empty root is omitted from the illus-
tration. The depth-first traversal begins at the left-most item, a, and traverses the tree
structure (backtracking when necessary) until all items are analyzed.

Fig. 3. Diagram illustrating the Eclat procedure used by the authors. Note, on the
bottom left hand side, non-discretized attribute rankings (four point ranking scale) are
denoted as ND and discretized rankings (binary scale) are denoted as D.
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Table 2. Eclat results for the product analysis (total set and four product clusters).
Please refer to Section 2 for definitions and attribute abbreviations. Note there were in-
teresting results below the minimum support/confidence thresholds. These associations
are italicized.

Cluster Associated Attributes Confidence
All Products frag=no 86%

1 rec=N/A, dye=no, frag=no, fce=exempt 78%
dye=no, frag=no, fce=exempt 89%
fce=exempt 100%
frag=no 89%
dye=no 89%
rec=N/A 78%

2 frag=no, fce=not reported 83%

3 rec=yes, exp=no, con=yes 83%
exp=no, con=yes 100%
rec=yes 83%

4 dye=no, frag=no 78%
fce=exempt, frag=no 78%
frag=no 89%
fce=exempt 78%
dye=no 78%
dye=no, fce=exempt, frag=no 67%

1 to 4) as generated by the procedure in Maciag et al. [3], the second column
represents the set(s) of associated product attributes generated by Eclat that
met the 75% support threshold, and the final column represents the confidence
threshold (as %) of the set(s) of associated product attributes. The first column of
Table 3 represents the cluster value similarly seen in Table 2, the second column
indicates whether the attribute rankings were discretized or not (as illustrated in
Figures 1 and 3), the third column represents the set(s) of associated attribute
rankings generated by Eclat that met the 75% support threshold, and the final
column represents the confidence threshold (as %) of the set(s) of associated
attribute rankings.

The results described in Table 2 could be used to indicate how to incorporate
compensatory decision strategies in the design of a personalized user interface.
Using this information, the interface design could highlight those attributes that
are highly associated. For example, products in cluster 1 are strongly associated
by the following: they contain no dye or fragrance, are not made of recyclable pa-
per, and are mostly exempt from food chain exposure. Since consumers who are
assigned to this cluster would normally select products that have these attribute
values, they could initially be included in their product comparisons.

The results described in Table 2 could be used to indicate how to incorporate
non-compensatory decision strategies in the design of a personalized user inter-
face. Here, the attributes that are highly associated and favourably ranked could
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Table 3. Eclat results for the participant rankings. Note, non-discretized (four point
ranking scale) are denoted as ND under the Type label and discretized rankings (bi-
nary scale) are denoted as D. Refer to Section 2 for definitions and attribute abbrevia-
tions. Note, interesting results below the minimum support/confidence thresholds are
italicized.

Cluster Type Associated Rankings Confidence
All Products D air=important, skin=important 88%

D skin=important 95%
D air=important 93%

1 − no participants assigned −
2 − only 1 participant assigned −
3 D exp=not important, rec=not important,

100%
con=not important, dye=not important,
frag=important, air=important,
skin=important

ND rec=somewhat important,
100%con=somewhat important,

air=very important

4 D rec=important, air=important, skin=important 74%
D air=important, skin=important 93%
D skin=important 97%
D air=important 95%
D rec=important 77%

ND skin=very important 72%

be highlighted on the interface display, while omitting all other non-associated
and non-favourably ranked attributes. This information could be used to design
and deploy a personalized user interface specific to each cluster’s attribute and
product preferences.

5 Conclusion and Future Work

This paper described refinement of a procedure to design personalized user inter-
faces for online shopping support tools. The emphasis of the research described
was to formalize a procedure to provide information in support of enhancing
the functionality of these types of support tools by accommodating the diversity
in consumer decision-making. The authors refined previous research by examin-
ing algorithms in association mining, specifically examining the Eclat algorithm.
The authors illustrated how Eclat could be used, in conjunction with the au-
thors’ previous work, to obtain consumer information in support of designing
personalized support tools to enhance the user interface design and potentially
increase consumer satisfaction while using such tools.

Future work will include software implementation of the procedure described
and further examination through usability evaluation. The authors also plan to
examine and evaluate the procedure described in this paper in similar appli-
cation domains that provide consumers with options to compare items using
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additional product attributes. As well, techniques to develop metrics for eval-
uating consumer decision accuracy using concepts described in this paper are
currently being designed and evaluated.
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to deal with multi-criteria classification problems, where data
may be inconsistent with respect to the dominance principle. However, in
real-life datasets, in the presence of noise, the notions of lower and upper
approximations handling inconsistencies were found to be excessively
restrictive which led to the proposal of the variable consistency variant
of the theory. In this paper, we deal with a new approach based on DRSA,
whose main idea is based on the error corrections. A new definition of
the rough set concept known as generalized decision is introduced, the
optimized generalized decision. We show its connections with statistical
inference and dominance-based rough set theory.

1 Introduction

The multicriteria classification problem [10] consists in assignment of objects to
pre-defined decision classes Clt, t ∈ T = {1, . . . , n}. It is assumed that the classes
are preference-ordered according to an increasing order of class indices, i.e. for all
r, s ∈ T , such that r > s, the objects from Clr are strictly preferred to the objects
from Cls. The objects are evaluated on a set of condition criteria (i.e., attributes
with preference-ordered domains). It is assumed that a better evaluation of an
object on a criterion, with other evaluations being fixed, should not worsen its
assignment to a decision class. The problem of multicriteria classification can also
be seen as a data analysis problem, under assumption of monotone relationship
between the decision attribute and particular condition attributes, i.e. that the
expected decision value increases (or decreases) with increasing (or decreasing)
values on condition attributes. This definition is valid only in the probabilistic
sense, so it may happen that there exists in the dataset X an object xi not worse
than another object xk on all condition attributes, however xi is assigned to a
worse class than xk; such a situation violates the monotone nature of data, so
we shall call objects xi and xk inconsistent with respect to dominance principle.
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Rough set theory [9] has been adapted to deal with this kind of inconsistency
and the resulting methodology has been called Dominance-based Rough Set Ap-
proach (DRSA) [5,6]. In DRSA, the classical indiscernibility relation has been
replaced by a dominance relation. Using the rough set approach to the analy-
sis of multicriteria classification data, we obtain lower and the upper (rough)
approximations of unions of decision classes. The difference between upper and
lower approximations shows inconsistent objects with respect to the dominance
principle. Another, equivalent picture of this problem can be expressed in terms
of the generalized decision concept [3,4].

Unfortunately, it can happen, that due to the random nature of data and
due to the presence of noise, we loose too much information, thus making the
DRSA inference model not accurate. In this paper, a new approach is proposed,
based on combinatorial optimization for dealing with inconsistency, which can
be viewed as a slightly different way of introducing variable precision in the
DRSA. The new approach is strictly based on the generalized decision concept.
It is an invasive method (contrary to DRSA), which reassigns the objects to
different classes when they are traced to be inconsistent. We show, that this
approach has statistical foundations and is strictly connected with the standard
dominance-based rough set theory.

We assume that we are given a set X = {x1, . . . , x�}, consisting of � objects,
with their decision values (class assignments) Y = {y1, . . . , y�}, where each yi ∈
T . Each object is described by a set of m condition attributes Q = {q1, . . . , qm}
and by domqi we mean the set of values of attribute qi. By the attribute space
we mean the set V = domq1 × . . . ×domqm. Moreover, we denote the evaluation
of object xi on attribute qj by qj(xi). Later on we will abuse the notation a little
bit, identifying each object x with its evaluations on all the condition attributes,
x ≡ (q1(x), . . . qm(x)). By a class Clt ⊂ X , we mean the set of objects, such that
yi = t, i.e. Clt = {xi ∈ X : yi = t, 1 ≤ i ≤ �}.

The article is organized in the following way. Section 2 describes main elements
of DRSA. Section 3 presents an algorithmic background for new approach. The
concept of optimized generalized decision is introduced in Section 4. In Sec-
tion 5 the connection with statistical inference is shown. The paper ends with
conclusions. Proofs of the theorems are omitted due to the space limit.

2 Dominance-Based Rough Set Approach

Within DRSA [5,6], we define the dominance relation D as a binary relation
on X in the following way: for any xi, xk ∈ X we say that xi dominates xk,
xiDxk, if on every condition attribute, xi has evaluation not worse than xk,
qj(xi) ≥ qj(xk), for all 1 ≤ j ≤ m. The dominance relation D is a partial pre-
order on X , i.e. it is reflexive and transitive. The dominance principle can be
expressed as follows. For all xi, xj ∈ X it holds:

xiDxj =⇒ yi ≥ yj (1)
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The rough approximations concern granules resulting from information carried
out by the decisions. The decision granules can be expressed by unions of decision
classes: for all t ∈ T

Cl≥t = {xi ∈ X : yi ≥ t}, Cl≤t = {xi ∈ X : yi ≤ t}. (2)

The condition granules are dominating and dominated sets defined as:

D+(x) = {xi ∈ X : xiDx}, D−(x) = {xi ∈ X : xDxi}. (3)

Lower rough approximations of Cl≥t and Cl≤t , t ∈ T , are defined as follows:

Cl≥t = {xi ∈ X : D+(xi) ⊆ Cl≥t }, Cl≤t = {xi ∈ X : D−(xi) ⊆ Cl≤t }. (4)

Upper rough approximations of Cl≥t and Cl≤t , t ∈ T , are defined as follows:

Cl
≥
t = {xi ∈ X : D−(xi) ∩ Cl≥t 
= ∅}, Cl

≤
t = {xi ∈ X : D+(xi) ∩ Cl≤t 
= ∅}.

(5)
In the rest of this section we focus our attention on the generalized decision

[3]. Consider the following definition of generalized decision δi = [li, ui] for object
xi ∈ X , where:

li = min{yj: xjDxi, xj ∈ X}, (6)
ui = max{yj: xiDxj , xj ∈ X}. (7)

In other words, the generalized decision reflects an interval of decision classes
to which an object may belong due to the inconsistencies with the dominance
principle caused by this object. Obviously, li ≤ yi ≤ ui for every xi ∈ X and
if li = ui, then object xi is consistent with respect to the dominance principle
with every other object xk ∈ X .

Let us remark that the dominance-based rough approximations may be ex-
pressed using generalized decision:

Cl≥t = {xi ∈ X : li ≥ t} Cl
≥
t = {xi ∈ X : ui ≥ t}

Cl≤t = {xi ∈ X : ui ≤ t} Cl
≤
t = {xi ∈ X : li ≤ t}.

(8)

It is also possible to obtain generalized decision using the rough approximation:

li = max
{
t: xi ∈ Cl≥t

}
= min

{
t: xi ∈ Cl

≤
t

}
(9)

ui = min
{
t: xi ∈ Cl≤t

}
= max

{
t: xi ∈ Cl

≥
t

}
(10)

Those two descriptions are fully equivalent. For the purpose of this text we
will look at the concept of generalized decision from a different point of view.
Let us define the following relation: the decision range α = [lα, uα] is more
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informative than β = [lβ , uβ] if α ⊆ β. We show now that the generalized decision
concept (thus also DRSA rough approximations) is in fact the unique optimal
non-invasive approach that holds the maximum possible amount of information
which can be obtained from given data:

Theorem 1. The generalized decisions δi = [li, ui], for xi ∈ X, are most in-
formative ranges from any set of decisions ranges of the form αi = [lαi , uα

i ] that
have the following properties:

1. The sets {(xi, l
α
i ): xi ∈ X} and {(xi, u

α
i ): xi ∈ X}, composed of objects with,

respectively, decisions lαi and uα
i assigned instead of yi are consistent with

the dominance principle.
2. For each xi ∈ X it holds lαi ≤ yi ≤ uα

i .

3 Minimal Reassignment

A new proposal of the definitions of lower and upper approximations of unions of
classes is based on the concept of minimal reassignment. At first, we define the
reassignment of an object xi ∈ X as changing its decision value yi. Moreover,
by minimal reassignment we mean reassigning the smallest possible number of
objects to make the set X consistent (with respect to the dominance principle).
One can see, that such a reassignment of objects corresponds to indicating and
correcting possible errors in the dataset, i.e. it is an invasive approach.

We denote the minimal number of reassigned objects from X by R. To com-
pute R, one can formulate a linear programming problem. Such problems were
already considered in [2] (in the context of binary and multi-class classification)
and also in [1] (in the context of boolean regression). Here we formulate a similar
problem, but with a different aim.

For each object xi ∈ X we introduce n−1 binary variables dit, t ∈ {2, . . . , n},
having the following interpretation: dit = 1 iff object xi ∈ Cl≥t (note that always
di1 = 1, since Cl≥1 = X). Such interpretation implies the following conditions:

if t′ ≥ t then dit′ ≤ dit (11)

for all i ∈ {1, . . . , �} (otherwise it would be possible that there exists object xi

belonging to Cl≥t′ , but not belonging to Cl≥t , where t′ > t). Moreover, we give
a new value of decision y′

i to object xi according to the rule: y′
i = 1 +

∑n
t=2 dit

(the highest t such that xi belongs to Cl≥t ). So, for each object xi ∈ U the cost
function of the problem can be formulated as Ri = (1 − di,yi) + di,yi+1. Indeed,
the value of decision for xi changes iff Ri = 1 [4].

The following conditions must be satisfied for X to be consistent according
to (1):

dit ≥ djt ∀i, j: xiDxj 2 ≤ t ≤ n (12)

Finally, we can formulate the problem in terms of integer linear programming:

minimize R =
�∑

i=1

Ri =
�∑

i=1

((1 − di,yi) + di,yi+1) (13)
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subject to dit′ ≤ dit 1 ≤ i ≤ �, 2 ≤ t < t′ ≤ n

dit ≥ djt 1 ≤ i, j ≤ �, xiDxj , 2 ≤ t ≤ n

dit ∈ {0, 1} 1 ≤ i ≤ �, 2 ≤ t ≤ n

The matrix of constraints in this case is totally unimodular [2,8], because it
contains in each row either two values 1 and -1 or one value 1, and the right
hand sides of the constraints are integer. Thus, we can relax the integer condition
reformulating it as 0 ≤ dit ≤ 1, and get a linear programming problem. In [2],
the authors give also a way for further reduction of the problem size. Here, we
prove a more general result using the language of DRSA.

Theorem 2. There always exists an optimal solution of (13), y∗
i = 1+

∑n
t=2 d∗it,

for which the following condition holds: li ≤ y∗
i ≤ ui, 1 ≤ i ≤ �.

Theorem 2 enables a strong reduction of the number of variables. For each object
xi, variables dit can be set to 1 for t ≤ li, and to 0 for t > ui, since there exists
an optimal solution to (13) with such values of the variables. In particular, if an
object xi is consistent (i.e. li = ui), the class assignment for this object remains
the same.

4 Construction of the Optimized Generalized Decisions

The reassignment cannot be directly applied to the objects from X , since the
optimal solution may not be unique. Indeed, in some cases one can find different
subsets of X , for which the change of decision values leads to the same value of
cost function R. It would mean that the reassignment of class labels for some
inconsistent objects depends on the algorithm used, which is definitely undesir-
able. To avoid that problem, we must investigate the properties of the set of
optimal feasible solutions of the problem (13).

Let us remark the set of all feasible solutions to the problem (13) by F , where
by solution f we mean a vector of new decision values assigned to objects from
X , i.e. f = (f1, . . . , f�), where fi is the decision value assigned by solution f to
object xi. We also denote the set of optimal feasible solutions by OF . Obviously,
OF ⊂ F and OF 
= ∅, since there exist feasible solutions, e.g. f = (1, . . . , 1).

Assume that we have two optimal feasible solutions f = (f1, . . . , f�) and
g = (g1, . . . , g�). We define “min” and “max” operators on F as min{f, g} =
(min{f1, g1}, . . . , min{f�, g�}) and max{f, g} = (max{f1, g1}, . . . , max{f�, g�}).
The question arises, whether if f, g ∈ OF then min{f, g} and max{f, g} also
belong to OF? The following lemma gives the answer:

Lemma 1. Assume f, g ∈ OF . Then min{f, g}, max{f, g} ∈ OF .

Having the lemma, we can start to investigate the properties of the order in OF .
We define a binary relation  on OF as follows:

∀f,g∈OF (f  g ⇔ ∀1≤i≤� fi ≥ gi) (14)
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It can be easily verified that it is a partial order relation. We now state the
following theorem:

Theorem 3. There exist the greatest and the smallest element in the ordered
set (OF, )

Theorem 3 provides the way to define for all xi ∈ X the optimized generalized
decisions δ∗i = [l∗i , u

∗
i ] as follows:

l∗i = y∗i = min{fi: f ∈ OF} (15)
u∗

i = y∗
i = max{fi: f ∈ OF} (16)

Of course, both l∗ and u∗ are consistent with respect to dominance principle
(since they belong to OF ). The definitions are more resistant to noisy data,
since they appear as solutions with minimal number of reassigned objects. It
can be shown that using the classical generalized decision, for any consistent set
X we can add two “nasty” objects to X (one, which dominates every object
in X , but has the lowest possible class, and another which is dominated by
every object in X , but has the highest possible class) to make the generalized
decisions completely noninformative, i.e. for every object xi ∈ X , li equals to
the lowest possible class and ui equals to the highest possible class. If we use
the optimized generalized decisions to this problem, two “nasty” objects will be
relabeled (properly recognized as errors) and nothing else will change.

Optimized generalized decision is a direct consequence of the non-uniqueness
of optimal solution to the minimal reassignment problem (so also to the prob-
lems considered in [2,1]). Also note that using (15) and (16) and reversing the
transformation with 8 we end up with new definitions of optimized lower and
upper approximations.

The problem which is still not solved is how to find the smallest and the
greatest solutions in an efficient way. We propose to do this as follows: we modify
the objective function of (13) by introducing the additional term:

R′ = ε

�∑

i=1

ui∑

t=li

dit (17)

and when we seek the greatest solution we subtract R′ from the original objective
function, while when we seek the smallest solution we add R′ to the original
objective function, so we solve two linear programs with the following objective
functions:

R± =
�∑

i=1

Ri ± R′ = R ± R′ (18)

To prove, that by minimizing the new objective function we indeed find what
we require, we define I =

∑�
i=1(ui − li). The following theorem holds:
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Theorem 4. When minimizing objective functions (18) one finds the smallest
and the greatest solution provided ε < I−1.

Note that the solutions to the modified problem are unique.

5 Statistical Base of Minimal Reassignment

In this section we introduce a statistical justification for the described approach.
We consider here only the binary (two-class) problem, however this approach can
be extended to the multi-class case. We state the following assumptions: each
pair (xi, yi) ∈ X × Y is a realization of random vector (X , Y), independent and
identically distributed (i.i.d.) [7,12]. Moreover, we assume that the statistical
model is of the form Y = b(X ) ⊕ ε, where b(·) is some function, such that
b(x) ∈ {0, 1} for all x ∈ V and b(x) is isotonic (monotone and decreasing) for
all x ∈ V . We observe y which is the composition (⊕ is binary addition) of b(x)
and some variable ε which is the random noise. If ε(x) = 1, then we say, that the
decision value was misclassified, while if ε(x) = 0, than we say that the decision
value was correct. We assume that Pr(ε = 1) < 1

2 ≡ p and it is independent of
x, so each object is misclassified with the same probability p.

We now use the maximum likelihood estimate (MLE). We do not know the
real decision values b(xi) ≡ bi for all xi ∈ X and we treat them as parameters.
We fix all xi and treat only yi as random. Finally, considering B = {b1, . . . , b�}
and denoting by εi the value of variable ε for object xi, the MLE is as follows:

L(B; Y ) = Pr(Y |B) =
�∏

i=1

Pr(yi|bi) =
�∏

i=1

pεi(1 − p)1−εi (19)

Taking minus logarithm of (19) (the negative log-likelihood) we equivalently
minimize:

− ln L(B; Y ) = −
�∑

i=1

(εi ln p − (1 − εi) ln(1 − p)) = ln
1 − p

p

�∑

i=1

εi + � ln(1 − p)

(20)
We see, that for any fixed value of p, the negative log-likelihood reaches its

minimum when the sum
∑�

i=1 εi is minimal. Thus, for any p, to maximize the
likelihood, we must minimize the number of misclassifications. This is equivalent
to finding values bi, 1 ≤ i ≤ �, which are monotone, i.e. consistent with the
dominance principle, and such that the number of misclassifications

∑�
i=1 εi =∑�

i=1 |bi − yi| is minimal. Precisely, this is the two-class problem of minimal
reassignment.

Finally, we should notice that for each x ∈ X , b(x) is the most probable value
of y (decision) for given x, since p < 1

2 . Therefore, we estimate the decision
values, that would be assigned to the object by the optimal Bayes classifier [7],
i.e. the classifier which has the smallest expected error.
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6 Conclusions

We propose a new extension of the Dominance-based Rough Set Approach
(DRSA), which involves a combinatorial optimization problem concerning min-
imal reassignment of objects. As it is strongly related to the standard DRSA,
we describe our approach in terms of the generalized decision concept. By reas-
signing the minimal number of objects we end up with a non-univocal optimal
solution. However, by considering the whole set of optimal solution, we can op-
timize the generalized decision, so as to make it more robust in the presence of
noisy data.

On the other hand, reassigning the objects to different classes in view of
making the dataset consistent, has a statistical justification. Under assumption
of common misclassification probability for all of the objects, it is nothing else
than a maximum likelihood estimate of the optimal Bayes classifier.
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Abstract. We consider new definitions of Variable Consistency Rough
Set Approaches that employ monotonic measures of membership to the
approximated set. The monotonicity is understood with respect to the
set of considered attributes. This kind of monotonicity is related to the
monotonicity of the quality of approximation, considered among basic
properties of rough sets. Measures that were employed by approaches
proposed so far lack this property. New monotonic measures are consid-
ered in two contexts. In the first context, we define Variable Consistency
Indiscernibility-based Rough Set Approach (VC-IRSA). In the second
context, new measures are applied to Variable Consistency Dominance-
based Rough Set Approaches (VC-DRSA). Properties of new definitions
are investigated and compared to previously proposed Variable Precision
Rough Set (VPRS) model, Rough Bayesian (RB) model and VC-DRSA.

1 Introduction to Monotonicity Problem in Rough Sets

One of the basic concepts in rough set approaches is the decision table, defined
as an universe of objects U , described by a set A = {a1, a2, . . . , an} of criteria
and/or regular attributes. The set of attributes is divided into a set of condi-
tion attributes C and a set of decision attributes D, where C ∪ D = A. We
use indiscernibility relation for regular attributes and dominance relation for
criteria to define elementary sets and dominance cones in the space of condition
attributes, respectively. When we consider Indiscernibility-based Rough Set Ap-
proach (IRSA), the set of attributes is composed of regular attributes only. In
order to analyze a decision table within Dominance-based Rough Set Approach
(DRSA), we need at least one condition criterion and at least one decision crite-
rion. Decision attributes introduce partition of U into decision classes. In DRSA,
decision classes Xi are ordered. If i < j, then class Xi is considered to be worse
than Xj. The ordered classes form upward unions X≥

i =
⋃

t≥i Xt and downward

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 126–133, 2007.
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unions X≤
i =

⋃
t≤i Xt. Further, we define P -lower approximations of decision

classes or unions of decisions classes, where P is a non-empty subset of C.
For X ⊆ U, P ⊆ C, y ∈ U , given lower threshold αX , let fP

X(y) be a measure
used in the definition of P -lower approximation of set X in one of two ways:

P (X) = {y ∈ U : fP
X(y) ≥ αX} (1)

or P (X) = {y ∈ X : fP
X(y) ≥ αX}. (2)

Analogically, for upper threshold βX , we can define (1) and (2) using gP
X(y) as

P (X) = {y ∈ U : gP
X(y) ≤ βX} (3)

or P (X) = {y ∈ X : gP
X(y) ≤ βX}. (4)

It is reasonable to require that measure fP
X(y) (gP

X(y)) is monotonically non-
decreasing (non-increasing) with respect to (w.r.t.) P . Formally, fP

X(y) (gP
X(y))

is monotonically non-decreasing (non-increasing) if and only if (iff) for all y ∈ U ,
P ⊆ R ⊆ C, X ⊆ U , fP

X(y) ≤ fR
X(y) (gP

X(y) ≥ gR
X(y)).

Monotonicity of measure fP
X(y) or gP

X(y) ensures monotonicity w.r.t. set of
attributes of P -lower approximation defined according to (2) or (4), respectively.
A rough set approach is called monotonic if its P -lower approximation has this
property. This kind of monotonicity is one of the basic properties of rough sets.
It is important also because it simplifies rule induction, in which P -lower (and
P -upper) approximations are generalized by rules.

Rough membership measure is used to control positive regions in Variable
Precision Rough Set (VPRS) model [6] and in Variable Consistency Dominance-
based Rough Set Approaches (VC-DRSA) [1]. Originally, rough membership
function was introduced in [4].

In IRSA, rough membership of y ∈ U to X ⊆ U w.r.t. P ⊆ C, is defined as

μP
X(y) =

|IP (y) ∩ X |
|IP (y)| ,

where Ip(y) denotes a set of objects indiscernible with object y when consider-
ing set of attributes P (i.e., elementary set composed of all objects having the
same description as object y, which is also called a granule). Rough membership
captures a ratio of objects that belong to granule IP (y) and to considered set X ,
among all objects belonging to granule IP (y). This measure can also be treated
as an estimate of conditional probability Pr(x ∈ X |x ∈ IP (y)). In IRSA, the
rough membership is used in definition (1), so it is expected to be monotonically
non-decreasing. Unfortunately, this property does not hold. Let us consider the
following example: U composed of objects y1, y2, y3 and two sets X1 = {y1},
X2 = {y2, y3}. First, we consider only one attribute, thus P = {a1}. All objects
have the same value on a1 (i.e., they all belong to the same granule). We can
observe that μP

X2
(y1) = μP

X2
(y2) = μP

X2
(y3) = 0.66. We extend set P to set

R = {a1, a2}. It may happen that on a2 objects y1 and y2 have the same value
while y3 has different value. Thus, we have two granules. The first one consisting



128 J. Błaszczyński et al.

of objects y1, y2 and the other one composed of object y3. The value of rough
membership in the first granule drops to 0.5.

Other measures than rough membership are also used in rough set approaches.
For example, confirmation measures [2] are used together with rough membership
in Parameterized Rough Sets [3]. Confirmation measures quantify the degree to
which membership of object y to given elementary set Ip(y) provides “evidence
for or against” or “support for or against” assignment to considered set X . Ac-
cording to [3], confirmation measures are used within definition (1), so they
should be monotonically non-decreasing. Unfortunately, the well-known confir-
mation measures do not have this property. Bayes factor is an interestingness
measure that has similar properties as confirmation measures (its formulation is
very close to the confirmation measure l [2]). It is used in Rough Bayesian (RB)
model [5]. Bayes factor for y ∈ U and X ⊆ U w.r.t. P ⊆ C is defined as

BP
X(y) =

|IP (y) ∩ X ||¬X |
|IP (y) ∩ ¬X ||X | .

The Bayes factor can also be seen as a ratio of two inverse probabilities Pr(x ∈
IP (y)|x ∈ X) and Pr(x ∈ IP (y)|x ∈ ¬X). This measure is also used in definition
(1), so it is expected to be monotonically non-decreasing w.r.t. set of attributes.
Unfortunately, this is not the case. In the example considered above, Bayes factor
for object y2 drops from BP

X2
(y2) = 1 to BR

X2
(y2) = 0.5.

In DRSA, rough membership is defined for y ∈ U , P ⊆ C, X≥, X≤ ⊆ U , as

μP
X≥(y) =

∣∣D+
P (y) ∩ X≥∣∣
∣∣D+

P (y)
∣∣ , μP

X≤(y) =

∣∣D−
P (y) ∩ X≤∣∣
∣∣D−

P (y)
∣∣ ,

where D+
p (y), D−

p (y) denotes P -positive and P -negative dominance cone of ob-
ject y (i.e., granule that is composed of objects dominating y, and granule com-
posed of objects dominated by y, both w.r.t. P ) and X≥, X≤ denotes upward and
downward union of sets, respectively. Moreover, μP

X≥(y) and μP
X≤(y) can be in-

terpreted as estimates of probability Pr(z ∈ X≥|zDP y) and Pr(z ∈ X≤|yDP z),
respectively (zDP y denotes object z dominates object y w.r.t. P ).

Formulation of Bayes factor for y ∈ U , X≥, X≤ ⊆ U , P ⊆ C, is as follows:

BP
X≥(y) =

|D+
P (y) ∩ X≥||¬X≥|

|D+
P (y) ∩ ¬X≥||X≥|

, BP
X≤(y) =

|D−
P (y) ∩ X≤||¬X≤|

|D−
P (y) ∩ ¬X≤||X≤|

.

Both these measures, used within DRSA in definition (2), are not monotonically
non-decreasing w.r.t. set of attributes. To show this lack, it suffices to add to
the example considered above that object y3 has worse evaluation on attribute
a2 than objects y1, y2 and we consider union X≥

2 .

2 Monotonic Variable Consistency Indiscernibility-Based
Rough Set Approaches

Our motivation for proposing Variable Consistency Indiscernibility-based
Rough Set Approaches (VC-IRSA) comes from the need of ensuring monotonicity
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of lower and upper approximations of sets w.r.t. set of attributes. The main differ-
ence between VC-IRSA and VPRS and RB model is that we include to P -lower
approximation only objects that belong to the approximated set (def. (2) and
(4)). In the other approaches, whole granules are included to lower approxima-
tion (def. (1) and (3)). Remark that a granule included in P -lower approximation
may be composed of some inconsistent objects. Enlarging set P of attributes to
R ⊃ P , the P -inconsistent objects may become R-discernible and thus, if we
would like to preserve monotonicity of lower approximations, then we should
keep in the R-lower approximation the R-discernible objects that do not belong
to the approximated set. This can be considered controversial, however.

We propose definitions of measures that ensure monotonicity of VC-IRSA.
In the first definition, the number of acceptable objects from outside of the
approximated set is controlled by an inconsistency measure εP

Xi
(y), that for

y ∈ U, P ⊆ R ⊆ C, Xi, ¬Xi ⊆ U , where ¬Xi = U − Xi, is defined as

εP
Xi

(y) =
|IP (y) ∩ ¬Xi|

|¬Xi|
.

Theorem. For all P ′ ⊆ P ′′ ⊆ C, Xi ⊆ U, y ∈ U , inconsistency measure εP
Xi

(y)
is monotonically non-increasing w.r.t. sets of attributes P ′ and P ′′:

εP ′

Xi
(y) ≥ εP ′′

Xi
(y). 	


In this case, definition (4) takes the form:

P βXi (Xi) = {y ∈ Xi : εP
Xi

(y) ≤ βXi}, (5)

where parameter βXi ∈ [0, 1] reflects the greatest degree of inconsistency accept-
able to include object y to the lower approximation of set Xi. Let us observe
that εP

Xi
(y) is an estimate of inverse probability Pr(x ∈ IP (y)|x ∈ ¬Xi).

Other two measures that ensure monotonicity of VC-IRSA are as follows:

μP
Xi

(y) = minR⊇P
|IR(y) ∩ Xi|

|IR(y)| , μP
Xi

(y) = maxR⊆P
|IR(y) ∩ Xi|

|IR(y)| .

Theorem. For all P ′ ⊆ P ′′ ⊆ C, Xi ⊆ U, y ∈ U :

μP ′

Xi
(y) ≤ μP ′′

Xi
(y), μP ′

Xi
(y) ≤ μP ′′

Xi
(y),

that is, measures μP
Xi

(y) and μP
Xi

(y) are monotonically non-decreasing w.r.t. sets
of attributes P ′ and P ′′. Moreover, for all P ⊆ C, Xi ⊆ U, y ∈ U :

μP
Xi

(y) ≤ μP
Xi

(y). 	


Since μP
Xi

(y) ≤ μP
Xi

(y), we define rough membership interval [μP
Xi

(y), μP
Xi

(y)].
We define P -lower approximation of Xi by means of μP

Xi
(y), μP

Xi
(y) and lower

thresholds αXi
, αXi ∈ [0, 1], as

PαXi
,αXi (Xi) = {y ∈ Xi : μP

Xi
(y) ≥ αXi

∧ μP
Xi

(y) ≥ αXi}. (6)
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The notion of rough membership interval can be further extended to multi-
dimensional VC-IRSA. We define multi-dimensional inconsistency measure
γP

Xi
(y, αXi

) and multi-dimensional consistency measure γP
Xi

(y, αXi) as

γP
Xi

(y, αXi
) = |(R, z) : R ⊇ P, z ∈ IR(y), μR

Xi
(z) < αXi

|,

γP
Xi

(y, αXi) = |(R, z) : R ⊆ P, z ∈ IR(y), μR
Xi

(z) ≥ αXi |.

Measures γP
Xi

and γP
Xi

are monotonic w.r.t. set of attributes.

Theorem. For all P ′ ⊆ P ′′ ⊆ C, αXi
, αXi ∈ [0, 1], Xi ⊆ U, y ∈ U :

γP ′

Xi
(y, αXi

) ≥ γP ′′

Xi
(y, αXi

), γP ′

Xi
(y, αXi) ≤ γP ′′

Xi
(y, αXi). 	


We can define P -lower approximation of Xi by γP
Xi

(y, αXi
), γP

Xi
(y, αXi) as

P
αXi

,αXi
,ψ

Xi
,ψXi (Xi) = {y ∈ Xi : γP

Xi
(y, αXi

) ≤ ψ
Xi

∧ γP
Xi

(y, αXi) ≥ ψXi
},
(7)

where ψ
Xi

∈ {0, 1, . . .}, ψXi
∈ {1, 2, . . .} is a threshold of inconsistency and

consistency, respectively. Let us observe that in case ψ
Xi

= 0 and ψXi
= 1, the

lower approximation based on γP
Xi

(y, αXi
) and γP

Xi
(y, αXi) coincide with the

lower approximation based on μP
Xi

(y) and μP
Xi

(y).

3 Monotonic Variable Consistency Dominance-Based
Rough Set Approaches

We reformulate definitions of monotonic approaches presented in section 2 to
introduce monotonic definitions of VC-DRSA. Instead of granule IP (y), we use
positive dominance cone D+

P (y) or negative dominance cone D−
P (y). Instead of

set Xi, we consider upward union X≥
i or downward union X≤

i .
The inconsistency measures εP

X≥
i

(x) and εP
X≤

i

(y) for x ∈ X≥
i , y ∈ X≤

i , X≥
i , X≤

i ,

X≤
i−1, X

≥
i+1 ⊆ U , P ⊆ R ⊆ C, are defined as

εP
X≥

i

(x) =
|D+

P (x) ∩ X≤
i−1|

|X≤
i−1|

, εP
X≤

i

(y) =
|D−

P (y) ∩ X≥
i+1|

|X≥
i+1|

.

Theorem. For all P ′ ⊆ P ′′ ⊆ C, x ∈ X≥
i , y ∈ X≤

i , X≥
i , X≤

i ⊆ U , measures
εP
X≥

i

(x) and εP
X≤

i

(y) are monotonically non-increasing w.r.t. P ′ and P ′′:

εP ′

X≥
i

(x) ≥ εP ′′

X≥
i

(x), εP ′

X≤
i

(y) ≥ εP ′′

X≤
i

(y). 	


We define P -lower approximation of X≥
i and X≤

i , for β
X≥

i
, β

X≤
i

∈ [0, 1], as

P
β

X
≥
i (X≥

i ) = {x ∈ X≥
i : εP

X≥
i

(x) ≤ β
X≥

i
}, (8)

P
β

X
≤
i (X≤

i ) = {y ∈ X≤
i : εP

X≤
i

(y) ≤ β
X≤

i
}. (9)
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Other four measures that ensure monotonicity of VC-DRSA are as follows:

μP
X≥

i

(x) = min
R⊇P,

z∈D+
R(x)∩X≥

i

|D+
R(z) ∩ X≥

i |
|D+

R(z)|
, μP

X≥
i

(x) = max
R⊆P,

z∈D−
R (x)∩X≥

i

|D+
R(z) ∩ X≥

i |
|D+

R(z)|
,

μP

X
≤
i

(y) = min
R⊇P,

z∈D−
R (y)∩X≤

i

|D−
R(z) ∩ X≤

i |
|D−

R(z)|
, μP

X
≤
i

(y) = max
R⊆P,

z∈D+
R(y)∩X≤

i

|D−
R(z) ∩ X≤

i |
|D−

R(z)|
.

Theorem. For all P ′ ⊆ P ′′ ⊆ C, x ∈ X≥
i , y ∈ X≤

i , X≥
i , X≤

i ⊆ U :

μP ′

X
≥
i

(x) ≤ μP ′′

X
≥
i

(x), μP ′

X
≥
i

(x) ≤ μP ′′

X
≥
i

(x),

μP ′

X≤
i

(y) ≤ μP ′′

X≤
i

(y), μP ′

X≤
i

(y) ≤ μP ′′

X≤
i

(y),

that is, measures μP
X≥

i

(x), μP
X≥

i

(x), μP
X≤

i

(y) and μP
X≤

i

(y) are monotonically non-

decreasing w.r.t. sets of attributes P ′ and P ′′. Moreover, for all P ⊆ C:

μP
X≥

i

(x) ≤ μP
X≥

i

(x), μP
X≤

i

(y) ≤ μP
X≤

i

(y). 	


Consequently, we introduce rough membership intervals [μP
X≥

i

(x), μP

X≥
i

(x)] and

[μP
X≤

i

(y), μP
X≤

i

(y)]. We define P -lower approximation of union X≥
i and X≤

i , for

lower thresholds α
X≥

i
, α

X≥
i

, α
X≤

i
, α

X≤
i

∈ [0, 1], as

P
α

X
≥
i

,α
X

≥
i (X≥

i ) = {x ∈ X≥
i : μP

X≥
i

(x) ≥ α
X≥

i
∧ μP

X≥
i

(x) ≥ α
X≥

i
}, (10)

P
α

X
≤
i

,α
X

≤
i (X≤

i ) = {y ∈ X≤
i : μP

X≤
i

(y) ≥ α
X≤

i
∧ μP

X≤
i

(y) ≥ α
X≤

i
}. (11)

The notion of rough membership interval can be further extended to multi-
dimensional VC-DRSA. We define multi-dimensional inconsistency (consistency)
measures γP

X≥
i

(x, α
X≥

i
) and γP

X≤
i

(y, α
X≤

i
) (γP

X≥
i

(x, α
X≥

i
) and γP

X≤
i

(y, α
X≤

i
)) as

γP
X≥

i

(x, α
X

≥
i

) = |(R, z) : R ⊇ P, z ∈ D+
R(x) ∩ X≥

i , μR
X≥

i

(z) < α
X

≥
i

|,

γP

X
≥
i

(x, α
X≥

i
) = |(R, z) : R ⊆ P, z ∈ D−

R(x) ∩ X≥
i , μR

X
≥
i

(z) ≥ α
X≥

i
|,

γP
X≤

i

(y, α
X≤

i
) = |(R, z) : R ⊇ P, z ∈ D−

R(y) ∩ X≤
i , μR

X≤
i

(z) < α
X≤

i
|,

γP
X≤

i

(y, α
X

≤
i

) = |(R, z) : R ⊆ P, z ∈ D+
R(y) ∩ X≤

i , μR
X≤

i

(z) ≥ α
X

≤
i

|.

Measures γP
X≥

i

(x, α
X≥

i
), γP

X≥
i

(x, α
X≥

i
), γP

X≤
i

(y, α
X≤

i
) and γP

X≤
i

(y, α
X≤

i
) are

monotonic w.r.t. set of attributes, as stated by the following theorem.
Theorem. For all P ′ ⊆ P ′′ ⊆ C, α

X≥
i

, α
X≥

i
, α

X≤
i

, α
X≤

i
∈ [0, 1], x ∈ X≥

i , y ∈
X≤

i , X≥
i , X≤

i ⊆ U :

γP ′

X
≥
i

(x, α
X≥

i
) ≥ γP ′′

X
≥
i

(x, α
X≥

i
), γP ′

X
≥
i

(x, α
X≥

i
) ≤ γP ′′

X
≥
i

(x, α
X≥

i
),

γP ′

X≤
i

(y, α
X≤

i
) ≥ γP ′′

X≤
i

(y, α
X≤

i
), γP ′

X≤
i

(y, α
X≤

i
) ≤ γP ′′

X≤
i

(y, α
X≤

i
). 	
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We define P -lower approximation of union X≥
i , X≤

i by measures γP

X
≥
i

(x, α
X≥

i
),

γP
X≥

i

(x, α
X≥

i
), γP

X
≤
i

(y, α
X≤

i
) and γP

X≤
i

(y, α
X≤

i
), for inconsistency thresholds ψ

X≥
i

,

ψ
X≤

i

∈ {0, 1, . . .} and consistency thresholds ψ
X≥

i
, ψ

X≤
i

∈ {1, 2, . . .}, as

P
α

X
≥
i

,α
X

≥
i

,ψ
X

≥
i

,ψ
X

≥
i (X≥

i ) = {x ∈ X≥
i : γP

X
≥
i

(x, α
X

≥
i

) ≤ ψ
X

≥
i

∧γP

X
≥
i

(x, α
X

≥
i

) ≥ ψ
X

≥
i

},
(12)

P
α

X
≤
i

,α
X

≤
i

,ψ
X

≤
i

,ψ
X

≤
i (X≤

i ) = {y ∈ X≤
i : γP

X
≤
i

(y, α
X

≤
i

) ≤ ψ
X

≤
i

∧ γP

X
≤
i

(y, α
X

≤
i

) ≥ ψ
X

≤
i

}.
(13)

4 Illustrative Example

Let us consider VC-IRSA and the set of objects shown in Fig. 1a. First, let
us observe that according to def. (5), P 0(X2) = {y2, y3}. Object y1 /∈ P 0(X2)
because εP

X2
(y1) = 1

3 . Second, applying def. (6), we have P
1
2 , 23 (X2) = {y1, y2, y3}.

It is worth noting that because μ
{a1}
X2

(y1) = 2
3 , μ

{a2}
X2

(y1) = 1
2 and μP

X2
(y1) = 1

2 ,
then μP

X2
(y1) = 2

3 . Thus, μP
Xi

(y) is monotonically non-decreasing. The same
can be shown for μP

Xi
(y). Third, according to def. (7), we have P

1
2 , 2

3 ,0,1(X2) =

{y1, y2, y3}. Let us show the monotonicity of γP
Xi

(y, αXi). We have γ
{a1}
X2

(y3,
2
3)=1,

γ
{a2}
X2

(y3,
2
3 ) = 3 and γ

{a1,a2}
X2

(y3,
2
3 ) = 5.

We present properties of VC-DRSA by example in Fig. 1b. We distinguish two
unions: X≤

1 and X≥
2 . First, we can observe that P

1
3 (X≥

2 ) = {y1, y2} (def. (8)).
Object y3 /∈ P

1
3 (X≥

2 ) because εP
X≥

2
(y3) = 2

3 . We can notice that ε
{a1}
X≥

2
(y2) = 1

3 ,

ε
{a2}
X≥

2
(y2) = 2

3 , while εP
X≥

2
(y2) = 1

3 . This shows monotonically non-increasing

behavior of εP
X≥

i

(x) w.r.t. set of attributes. Second, applying def. (10), we ob-

tain P
1
2 , 2

3 (X≥
2 ) = {y1, y2}. It is worth noting that because μ

{a1}
X≥

2
(y2) = 2

3 ,
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a) Exemplary set of objects described by means of
set P of two condition attributes a1 and a2.

b) Exemplary set of objects described by means of
set P of two condition gain criteria a1 and a2.

Fig. 1. Exemplary data sets. Objects marked with 1 and 2 belong to class X1 and X2.
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μ
{a2}
X≥

2
(y3) = 3

5 , μP
X≥

2
(y3) = 3

5 , then μP

X
≥
2

(y1) = 2
3 . Thus, μP

X
≥
i

(x) is monotoni-

cally non-decreasing. The same can be shown for μP
X≥

i

(x). Third, by def. (12),

P
1
2 , 2

3 ,0,1(X≥
2 ) = {y1, y2}. Let us show monotonicity of γP

X≥
i

(x, α
X≥

i
). We have

γ
{a1}
X≥

2
(y2,

2
3 ) = 1, γ

{a2}
X≥

2
(y2,

2
3 ) = 0 and γ

{a1,a2}
X≥

2
(y2,

2
3 ) = 1.

5 Conclusions

In this paper, we have presented several definitions of monotonic Variable Con-
sistency Rough Set Approaches that employ indiscernibility and dominance re-
lations. The monotonicity of lower (and upper) approximations w.r.t. set of at-
tributes is an important property from the perspective of rule induction, because
it permits incremental search of conditions. We have proposed two types of def-
initions of monotonic approaches. The first one involves inconsistency measure,
which formulation is similar to Bayes factor and confirmation measure l. The
second one consists in using monotonic measures based on the rough membership
measure, which itself is not monotonic. Computation of lower approximations
according to definitions of the second type is an NP-hard problem, equivalent to
induction of a set of all rules. On the other hand, computation of approximations
and rules induction can be combined.
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to generalize classical rough set approach when consideration
of monotonicity between degrees of membership to considered concepts
has to be taken into account. This is typical for data describing vari-
ous phenomena, e.g., “the larger the mass and the smaller the distance,
the larger the gravity”, or “the more a tomato is red, the more it is
ripe”. These monotonicity relationships are fundamental in rough set
approach to multiple criteria decision analysis. In this paper, we propose
a Bayesian decision procedure for DRSA. Our approach permits to take
into account costs of misclassification in fixing parameters of the Variable
Consistency DRSA (VC-DRSA), being a probabilistic model of DRSA.

Keywords: Bayesian Decision Theory, Dominance, Rough Set Theory,
Variable Consistency, Cost of Misclassification.

1 Introduction

Rough set theory has been proposed by Pawlak in the early 80s [5,6] as a tool for
reasoning about data in terms of granules of knowledge. While the original rough
set idea is very useful for classification support, it is not handling a background
knowledge about monotonic relationship between evaluation of objects on con-
dition attributes and their evaluation on decision attributes. Such a knowledge
is typical for data describing various phenomena and for data describing mul-
tiple criteria decision problems. E.g., “the larger the mass and the smaller the
distance, the larger the gravity”, “the more a tomato is red, the more it is ripe”
or “the better the school marks of a pupil, the better his overall classification”.
The monotonic relationships within multiple criteria decision problems follow
from preferential ordering of value sets of attributes (scales of criteria), as well
as preferential ordering of decision classes. In order to handle these monotonic

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 134–141, 2007.
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relationships between conditions and decisions, Greco, Matarazzo and S�lowiński
[2,3,7] proposed to substitute the indiscernibility relation for a dominance rela-
tion. Dominance-based Rough Set Approach (DRSA) permits approximation of
ordered sets. When dealing with preferences, monotonicity is expressed through
the following relationship: “the better is an object with respect to (w.r.t.) con-
sidered points of view (criteria), the more it is appreciated”. The definitions
of rough approximations originally introduced in DRSA are based on a strict
application of the dominance principle. However, when defining non-ambiguous
objects, it is reasonable to accept a limited proportion of negative examples, par-
ticularly for large data tables. Such extended version of DRSA is called Variable
Consistency DRSA model (VC-DRSA) [4] being a probabilistic model of DRSA.
The focus of this paper is on extending the Bayesian decision theoretic frame-
work [1], already introduced in case of classical rough set approach [8], to the
VC-DRSA model. The paper is organized as follows. In the next section, the gen-
eral principle of DRSA are recalled, together with a presentation of VC-DRSA.
In the third section, a Bayesian decision procedure for DRSA is presented. The
last sections contains conclusions.

2 Dominance-Based Rough Set Approach

In data analysis, information about objects can be represented in the form of an
information table. The rows of the table are labelled by objects, whereas columns
are labelled by attributes and entries of the table are attribute-values. Formally,
by an information table we understand the 4-tuple S =< U, Q, V, f >, where U
is a finite set of objects, Q is a finite set of attributes, V =

⋃
q∈Q Vq, where Vq is

a value set of the attribute q, and f : U × Q → V is a total function such that
f(x, q) → Vq for every q ∈ Q, x ∈ U , called an information function [6]. The set
Q is, in general, divided into set C of condition attributes and set D of decision
attributes. Assuming that all condition attributes q ∈ C are criteria, let �q be
a weak preference relation on U w.r.t. criterion q such that x �q y means “x
is at least as good as y w.r.t. criterion q”. We suppose that �q is a complete
preorder, i.e. a strongly complete and transitive binary relation, defined on U
on the basis of evaluations f(·, q). Without loss of generality, we can assume
that for all x, y ∈ U , x �q y iff f(x, q) ≥ f(y, q). Furthermore, let us assume
that the set of decision attributes D (possibly a singleton {d}) makes a partition
of U into a finite number of decision classes Cl = {Clt, t ∈ T }, T = {1, ..., n},
such that each x ∈ U belongs to one and only one class Clt ∈ Cl. We suppose
that the classes are preference-ordered, i.e. for all r, s ∈ T , such that r > s, the
objects from Clr are preferred to the objects from Cls. More formally, if � is
a comprehensive weak preference relation on U , i.e. if for all x, y ∈ U , x � y
means “x is at least as good as y”, we suppose:

[x ∈ Clr, y ∈ Cls, r > s] ⇒ [x � y and not y � x].

The above assumptions are typical for consideration of a multiple-criteria sorting
problem. The sets to be approximated are called upward union and downward
union of classes, respectively:
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Cl≥t =
⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls, t = 1, ..., n.

The statement x ∈ Cl≥t means “x belongs to at least class Cl t”, while x ∈ Cl≤t
means “x belongs to at most class Cl t”. Let us remark that Cl≥1 = Cl≤n = U ,
Cl≥n =Cln and Cl≤1 =Cl1. Furthermore, for t=2,...,n, we have:

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

The key idea of rough sets is approximation of one knowledge by another
knowledge. In classical rough set approach (CRSA) [6], the knowledge approxi-
mated is a partition of U into classes generated by a set of decision attributes;
the knowledge used for approximation is a partition of U into elementary sets of
objects that are indiscernible with respect to a set of condition attributes. The
elementary sets are seen as “granules of knowledge”. In DRSA [2,3,7], where
condition attributes are criteria and classes are preference-ordered, the knowl-
edge approximated is a collection of upward and downward unions of classes
and the “granules of knowledge” are sets of objects defined using a dominance
relation, instead of an indiscernibility relation used in CRSA. This is the main
difference between CRSA and DRSA. In the following, in order to gain some
more flexibility, we use the variable consistency DRSA model [4] which has its
counterpart within the CRSA in the variable precision rough set approach [9,10].
Let us define now the dominance relation. We say that “x dominates y w.r.t.
P ⊆ C, denoted by xDP y, if x �q y for all q ∈ P .

Given a set of criteria P ⊆ C and x ∈ U , the “granules of knowledge” used
for approximation in DRSA are:

– a set of objects dominating x, called P -dominating set,

D+
P (x) = {y ∈ U : yDP x},

– a set of objects dominated by x, called P -dominated set,

D−
P (x) = {y ∈ U : xDP y}.

For any P ⊆ C we say that x ∈ U belongs to Cl≥t with no ambiguity at con-
sistency level l ∈ (0, 1], if x ∈ Cl≥t and at least l × 100% of all objects y ∈ U

dominating x w.r.t. P also belong to Cl≥t , i.e.

|D+
P (x) ∩ Cl≥t |
|D+

P (x)|
≥ l (i)

where, for any set A, |A| denotes its cardinality.
In this case, we say that x is a non-ambiguous object at consistency level l w.r.t.
the upward union Cl≥t (t = 2, ..., n). Otherwise, we say that x is an ambiguous
object at consistency level l w.r.t. the upward union Cl≥t (t = 2, ..., n).
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Let us remark that |D+
P (x)∩Cl≥t |
|D+

P (x)| can be interpreted as an estimation of the prob-

ability P (y ∈ Cl≥t |yDP x) in the data table and thus (i) can be rewritten as

P (y ∈ Cl≥t |yDP x) ≥ l.

The level l is called consistency level because it controls the degree of consistency
between objects qualified as belonging to Cl≥t without any ambiguity. In other
words, if l < 1, then no more than (1− l)×100% of all objects y ∈ U dominating
x w.r.t. P do not belong to Cl≥t and thus contradict the inclusion of x in Cl≥t .
Analogously, for any P ⊆ C we say that x ∈ U belongs to Cl≤t with no ambiguity
at consistency level l ∈ (0, 1], if x ∈ Cl≤t and at least l × 100% of all objects
y ∈ U dominated by x w.r.t. P also belong to Cl≤t , i.e.

|D−
P (x) ∩ Cl≤t |
|D−

P (x)|
≥ l. (ii)

In this case, we say that x is a non-ambiguous object at consistency level l w.r.t.
the downward union Cl≤t (t = 1, ..., n−1). Otherwise, we say that x is an ambigu-
ous object at consistency level l w.r.t. the downward union Cl≤t (t = 1, ..., n−1).

Let us remark that |D−
P (x)∩Cl≤t |
|D−

P (x)| can be interpreted as an estimation of the prob-

ability P (y ∈ Cl≤t |xDP y) in the data table and thus (ii) can be rewritten as

P (y ∈ Cl≤t |xDP y) ≥ l.

The concept of non-ambiguous objects at some consistency level l leads naturally
to the definition of P -lower approximations of the unions of classes Cl≥t and Cl≤t
, denoted by P l(Cl≥t ) and P l(Cl≤t ), respectively:

P l(Cl≥t ) =

{
x ∈ Cl≥t :

|D+
P (x) ∩ Cl≥t |
|D+

P (x)|
≥ l

}
,

P l(Cl≤t ) =

{
x ∈ Cl≤t :

|D−
P (x) ∩ Cl≤t |
|D−

P (x)|
≥ l

}
.

P -lower approximations of the unions of classes Cl≥t and Cl≤t can also be for-
mulated in terms of conditional probabilities as follows:

P l(Cl≥t ) =
{
x ∈ Cl≥t : P (y ∈ Cl≥t |yDP x) ≥ l

}
,

P l(Cl≤t ) =
{
x ∈ Cl≤t : P (y ∈ Cl≤t |xDP y) ≥ l

}
.

Given P ⊆ C and consistency level l ∈ (0, 1], we can define the P -upper approxi-
mations of Cl≥t and Cl≤t , denoted by P

l
(Cl≥t ) and P

l
(Cl≤t ), by complementarity

of P l(Cl≥t ) and P l(Cl≤t ) w.r.t. U :

P
l
(Cl≥t ) = U − P l(Cl≤t−1), t = 2, ..., n,



138 S. Greco, R. S�lowiński, and Y. Yao

P
l
(Cl≤t ) = U − P l(Cl≥t+1), t = 1, ..., n − 1.

P
l
(Cl≥t ) can be interpreted as the set of all the objects belonging to Cl≥t , possibly

ambiguous at consistency level l. Analogously, P
l
(Cl≤t ) can be interpreted as the

set of all the objects belonging to Cl≤t , possibly ambiguous at consistency level
l. The P -boundaries (P -doubtful regions) of Cl≥t and Cl≤t are defined as:

Bnl
P (Cl≥t ) = P

l
(Cl≥t ) − P l(Cl≥t ),

Bnl
P (Cl≤t ) = P

l
(Cl≤t ) − P l(Cl≤t ).

The variable consistency model of the dominance-based rough set approach
provides some degree of flexibility in assigning objects to lower and upper ap-
proximations of the unions of decision classes. It can easily be shown that for
0 < l′ < l ≤ 1,

P l(Cl≥t ) ⊆ P l′(Cl≥t ), P
l
(Cl≥t ) ⊇ P

l′

(Cl≥t ), t = 2, ..., n,

P l(Cl≤t ) ⊆ P l′(Cl≤t ), P
l
(Cl≤t ) ⊇ P

l′

(Cl≤t ), t = 1, ..., n − 1.

The dominance-based rough approximations of upward and downward unions
of classes can serve to induce a generalized description of objects contained in
the information table in terms of “if..., then...” decision rules. The following
two basic types of variable-consistency decision rules can be induced from lower
approximations of upward and downward unions of classes:

1. D≥-decision rules with the following syntax:
“if f(x, q1) ≥ rq1 and f(x, q2) ≥ rq2 and ... f(x, qp) ≥ rqp, then x ∈ Cl≥t ”
in α% of cases, where t = 2, ..., n, P = {q1, ..., qp} ⊆ C,
(rq1,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp.

2. D≤-decision rules with the following syntax:
“if f(x, q1) ≤ rq1 and f(x, q2) ≤ rq2 and ... f(x, qp) ≤ rqp, then x ∈ Cl≤t ”
in α% of cases, where t = 1, ..., n − 1, P = {q1, ..., qp} ⊆ C,
(rq1,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp.

3 The Bayesian Decision Procedure for DRSA

Let P (y ∈ Cl≥t |yDP x) be the probability of an object y ∈ U to belong to
Cl≥t given yDP x, that is the probability that y belongs to a class of at least
level t, given that y dominates x w.r.t. set of criteria P ⊆ C. Analogously, let
P (y ∈ Cl≤t |xDP y) be the probability of an object y ∈ U to belong to Cl≤t
given xDP y, that is the probability that x belongs to a class of at most level
t, given that y is dominated by x w.r.t. set of criteria P ⊆ C. One can also
consider probabilities P (y ∈ Cl≤t−1|yDP x) and P (y ∈ Cl≥t+1|xDP y). Obviously,
we have that P (y ∈ Cl≤t−1|yDP x) = 1 − P (y ∈ Cl≥t |yDP x), t = 2, ...., n, and
P (y ∈ Cl≥t+1|xDP y) = 1 − P (y ∈ Cl≤t |xDP y), t = 1, ...., n − 1.
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Let λ(z ∈ Cl≥t |z ∈ Cl≥t ) denote the loss for assigning an object z ∈ U to Cl≥t
when this is true, i.e. when condition z ∈ Cl≥t holds, t = 2, ...., n. Analogously,

– λ(z ∈ Cl≥t |z ∈ Cl≤t−1) denotes the loss for assigning an object z ∈ U to Cl≥t
when this is false, i.e. when condition z ∈ Cl≤t−1 holds, t = 2, ...., n,

– λ(z ∈ Cl≤t |z ∈ Cl≤t ) denotes the loss for assigning an object z ∈ U to Cl≤t
when this is true, i.e. when condition z ∈ Cl≤t holds, t = 1, ...., n − 1,

– λ(z ∈ Cl≤t |z ∈ Cl≥t+1) denotes the loss for assigning an object z ∈ U to Cl≤t
when this is false, i.e. when condition z ∈ Cl≥t+1 holds, t = 1, ...., n − 1.

In the following, we suppose for simplicity that the above losses are indepen-
dent from object z.

Given an object y ∈ U , such that yDP x, the expected losses R(y ∈ Cl≥t |yDP x)
and R(y ∈ Cl≤t−1|yDP x) associated with assigning y to Cl≥t and Cl≤t−1, t =
2, ..., n, respectively, can be expressed as:

R(y ∈ Cl≥t |yDP x) = λ(y ∈ Cl≥t |y ∈ Cl≥t )P (y ∈ Cl≥t |yDP x)+

λ(y ∈ Cl≥t |y ∈ Cl≤t−1)P (y ∈ Cl≤t−1|yDP x),

R(y ∈ Cl≤t−1|yDP x) = λ(y ∈ Cl≤t−1|y ∈ Cl≥t )P (y ∈ Cl≥t |yDP x)+

λ(y ∈ Cl≤t−1|y ∈ Cl≤t−1)P (y ∈ Cl≤t−1|yDP x).

By applying the Bayesian decision procedure, we obtain the followingminimum-
risk decision rules:

– assign y to Cl≥t if R(y ∈ Cl≥t |yDP x) ≥ R(y ∈ Cl≤t−1|yDP x),

– assign y to Cl≤t−1 if R(y ∈ Cl≥t |yDP x) < R(y ∈ Cl≤t−1|yDP x).

It is quite natural to assume that

λ(z ∈ Cl≥t |z ∈ Cl≥t ) < λ(z ∈ Cl≤t−1|z ∈ Cl≥t ) and

λ(z ∈ Cl≤t−1|z ∈ Cl≤t−1) < λ(z ∈ Cl≥t |z ∈ Cl≤t−1).

That is, the loss of classifying an object belonging to Cl≥t into the correct
class Cl≥t is smaller than the loss of classifying it into the incorrect class Cl≤t−1;
whereas the loss of classifying an object not belonging to Cl≥t into the class
Cl≥t is greater than the loss of classifying it into the class Cl≤t−1. With this loss
function and the fact that P (y ∈ Cl≥t |yDP x) + P (y ∈ Cl≤t−1|yDP x) = 1, the
above decision rules can be expressed as:

– assign y to Cl≥t if P (y ∈ Cl≥t |yDP x) ≥ αt,

– assign y to Cl≤t−1 if P (y ∈ Cl≥t |yDP x) < αt,
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where αt =
λ(z ∈ Cl≥t |z ∈ Cl≤t−1) − λ(z ∈ Cl≤t−1|z ∈ Cl≤t−1)

Λ≥ , and

Λ≥ = λ(z ∈ Cl≥t |z ∈ Cl≤t−1) + λ(z ∈ Cl≤t−1|z ∈ Cl≥t )−

λ(z ∈ Cl≤t−1|z ∈ Cl≤t−1) − λ(z ∈ Cl≥t |z ∈ Cl≥t ).

Given an object y ∈ U , such that xDP y, the expected losses R(y ∈ Cl≤t |xDP y)
and R(y ∈ Cl≥t+1|xDP y) associated with assigning y to Cl≤t and Cl≥t+1, respec-
tively, can be expressed as:

R(y ∈ Cl≤t |xDP y) = λ(y ∈ Cl≤t |y ∈ Cl≤t )P (y ∈ Cl≤t |xDP y)+

λ(y ∈ Cl≤t |y ∈ Cl≥t+1)P (y ∈ Cl≥t+1|xDP y),

R(y ∈ Cl≥t+1|xDP y) = λ(y ∈ Cl≥t+1|y ∈ Cl≤t )P (y ∈ Cl≤t |xDP y)+

λ(y ∈ Cl≥t+1|y ∈ Cl≥t+1)P (y ∈ Cl≥t+1|xDP y).

By applying the Bayesian decision procedure, we obtain the followingminimum-
risk decision rules:

– assign y to Cl≤t if R(y ∈ Cl≤t |xDP y) ≥ R(y ∈ Cl≥t+1|xDP y),

– assign y to Cl≥t+1 if R(y ∈ Cl≤t |xDP y) < R(y ∈ Cl≥t+1|xDP y).

It is quite natural to assume that

λ(z ∈ Cl≤t |z ∈ Cl≤t ) < λ(z ∈ Cl≥t+1|z ∈ Cl≤t ) and

λ(z ∈ Cl≥t+1|z ∈ Cl≥t+1) < λ(z ∈ Cl≤t |z ∈ Cl≥t+1).

That is, the loss of classifying an object belonging to Cl≤t into the correct
class Cl≤t is smaller than the loss of classifying it into the incorrect class Cl≥t+1;
whereas the loss of classifying an object not belonging to Cl≤t into the class
Cl≤t is greater than the loss of classifying it into the class Cl≥t+1. With this loss
function and the fact that P (y ∈ Cl≤t |xDP y) + P (y ∈ Cl≥t+1|xDP y) = 1, the
above decision rules can be expressed as:

– assign y to Cl≤t if P (y ∈ Cl≤t |xDP y) ≥ βt,

– assign y to Cl≤t+1 if P (y ∈ Cl≤t |xDP y) < βt,

where βt =
λ(z ∈ Cl≥t+1|z ∈ Cl≥t+1) − λ(z ∈ Cl≥t+1|z ∈ Cl≤t )

Λ≤ , and

Λ≤ = λ(z ∈ Cl≤t |z ∈ Cl≥t+1) + λ(z ∈ Cl≥t+1|z ∈ Cl≤t )−

λ(z ∈ Cl≥t+1|z ∈ Cl≥t+1) − λ(z ∈ Cl≤t |z ∈ Cl≤t ).
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Using the values of parameters αt and βt obtained using the Bayesian decision
procedure, we can redefine the P -lower approximations of the unions of classes
Cl≥t and Cl≤t , denoted by Pαt(Cl≥t ) and P βt(Cl≤t ), as follows:

Pαt(Cl≥t ) =

{
x ∈ Cl≥t :

|D+
P (x) ∩ Cl≥t |
|D+

P (x)|
≥ αt

}
,

P βt(Cl≤t ) =

{
x ∈ Cl≤t :

|D−
P (x) ∩ Cl≤t |
|D−

P (x)|
≥ βt

}
.

4 Conclusions

In this paper, we proposed a Bayesian decision procedure for DRSA that per-
mits to take into account costs of misclassification in fixing parameters of the
probabilistic model of DRSA, i.e. VC-DRSA. Future research will focus on in-
vestigation of the formal properties of the proposed model and on comparison
of its performance with competitive models in data analysis.
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Abstract. A pulping process is studied to illustrate a new methodology in the 
field of decision engineering, which relies on the Dominance Rough-Set-based 
Approach (DRSA) to determine the optimal operating region. The DRSA 
performs a rough approximation of preferences on a small set of Pareto-optimal 
experimental points to infer the decision rules with and without considering 
thresholds of indifference with respect each attribute in the decision table. With 
thresholds of indifference, each rule can be represented by three discrete values 
(i.e. 0; 0.5; 1). A value of (1) indicates the first point, in a pair wise comparison, 
is strictly preferred to the second point from the Pareto domain. A value of (0) 
indicates the opposite relation whereas a value of (0.5) indicates that the two 
points are equivalent from an engineering point of view. These decision rules 
are then applied to the entire set of points representing the Pareto domain. The 
results show that the rules obtained with the indifference thresholds improve the 
quality of approximation. 

Keywords: Neutral network, Genetic algorithm, Pareto domain, Preferences, 
Multicriteria analysis, Dominance-based Rough Set Approach. 

1   Introduction 

During the operation of an industrial process, the operator should ideally select values 
of input parameters/variables from a performance criterion point of view. The main 
problem facing the decision maker is that the range of parameter/variable values is 
usually very large and the number of their combinations is even larger such that a 
decision aid methodology is required to assist the decision maker in the judicious 
selection of all values of the process parameter/variables that lead to the best 
compromise solution in the eyes of the expert that has a profound knowledge of the 
process. This is at the core of a new decision engineering methodology, which mainly 
consists of three steps: 

1. Process modelling, 
2. Determination of the Pareto domain defined in terms of input parameters, and  
3. Pareto Set ranking by the Rough Set Method. 
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The rough set method allows capturing relatively easily valuable, at time 
unconscious, information, from an expert that a profound knowledge about the 
operation for the process in other to establish a ranking method that will be used to 
rank the entire Pareto domain. 

2   Process Modelling 

This methodology will be illustrated using a pulping process example. In the pulping 
process it is necessary to choose, using an appropriate multicriteria methodology, the 
set of operating conditions that will give the optimal quality of the pulp and the 
resulting paper sheet. The pulping process is a very complex nonlinear process for 
which a model is not readily available. It is therefore desired to have a model that can 
predict the various quality characteristics of the final product. To derive this model, a 
series of experiments were conducted by Lanouette et al. [4] in a pilot-scale pulp 
processing plant located in the Pulp and Paper Research Centre at Université du 
Québec à Trois-Rivières. 

Among the numerous performance criteria, four objective criteria were retained as 
the most important ones for this process (see Thibault et al. [7] and Renaud et al. [6] 
for a more complete description of the process). The aim in this process is to 
maximize both the ISO brightness (Y1) and the rupture length (Y4) of the resulting 
paper sheet, while reducing the specific refining energy requirement (Y2) and the 
extractive contents (Y3). The experimental design that was used to perform the 
experiment is a D-Optimal design where seven input variables were considered. A D-
Optimal design consists of a group of design points chosen to maximize the 
determinant of the Fisher information matrix (X’X). To model each of the four 
performance criteria of the process, stacked feedforward neural networks were used. 
Each neural network used the seven input process variables. 

3   Determination of the Pareto Domain 

The next step of the methodology consists of determining the region circumscribing 
all feasible solutions of the input variables represented by a large number of data 
points. An extension of the traditional genetic algorithm is suggested to deal with 
discretized data by introducing the dominance concept (see [3]). The procedure to 
obtain a good approximation of the Pareto domain is relatively simple. The n points 
randomly chosen initialize the search algorithm. For each point, the performance 
criteria are evaluated. A pair wise comparison of all points approximating the Pareto 
domain is performed. Then a dominance function, consisting of counting the number 
of times a given point is dominated by the other points, is calculated. A fraction of the 
dominated points corresponding to those most dominated is discarded. The non-
dominated and the least dominated points are retained and recombined to replace the 
most dominated ones that were discarded. The recombination procedure is applied 
until all points are non-dominated. In the case of the pulping process, the Pareto 
domain defined in terms of input variables is represented by 6000 points. This number 
of points is too numerous to allow the decision-maker to easily select the zone of 
optimal conditions. For this reason it is necessary to use a ranking algorithm to 
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establish the optimal region of operation. The next step of this overall methodology 
deals with this problem. The particular method used in this investigation is the Rough 
Set Method which is based on the Dominance Rough-Set-Based Approach (DRSA) 
(see [1]). 

4   Ranking the Entire Pareto Set Using the Rough Set Method  

The Rough Set Method is used to rank a large number of non-dominated points 
approximating the Pareto domain. The implementation of this ranking scheme is 
based on the Rough Set theory suggested by Pawlak [5], and developed by  Greco  
et al. [1-2,7]  and Zaras  [9], a method known as the Dominance Rough-Set–based 
Approach (DRSA).  

The procedure of this ranking method can be summarized as follows (see Thibault 
et al. [8]). First, a handful of points, usually (4-7), from different regions of the Pareto 
domain are selected and presented to a human expert who has a profound knowledge 
of the process. The expert is given the task of ordering the subset of points from the 
most preferred to the least preferred (Table 1). After creating the ranked subset, the 
expert specifies the indifference threshold for each criterion. The indifference 
threshold corresponds to measurement error as well as possible limits in the human 
detection of differences in a given criterion. Especially, the indifference threshold for 
a particular criterion is defined as the difference between two values of that criterion 
that is not considered significant enough to rank one value as preferred over another 
(Table 2).  

Table 1. Subset of points from the Pareto domain ranked by the expert 

Point  Y1 Y2 Y3 Y4 

16 66.95 7.04 0.311 4.07 

271 69.49 7.64 0.218 3.76 

223 68.82 7.26 0.166 3.54 

4671 69.46 7.91 0.222 3.89 

12 66.99 7.25 0.526 4.14 

2 68.68 6.29 0.469 2.55 

1 67.85 6.53 0.273 1.94 

The next step is to establish a set of rules that are based on the expert’s ranked 
subset and indifference thresholds. Here, each point in the ranked subset is compared 
to every other point within that set in order to define “rules of preference” and “rules 
of non-preference”. Each rule can be represented by a vector containing two (i.e. 0; 1, 
see Table 3) or three values (i.e. 0; 0,5; 1, see Table 4) depending if the comparison is 
performed without or with indifference thresholds. The dimension of each vector is 
equal to the number of attributes. In the case without thresholds a value of (1) for a 
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given criterion indicates the first point of the compared pair is preferred to the second 
point whereas a value of (0) indicates the criterion of the second point is preferred to 
the first point. However, it is not known if the point is weakly or strongly preferred 
for that particular criterion. In the case with thresholds of indifference, a value of (1) 
indicates the first point of the compared pair is strictly preferred to the second point 
from the Pareto domain, a value of (0) indicates the opposite relation and (0.5) 
indicates the indifference because the gap between the two values of the criterion is 
not sufficient to allow choosing one point over the other. The conjunctions (0.5 ∨ 1) 
and (0 ∨ 0.5) indicate the weak preference and the weak non-preference, respectively. 
These decision rules are then applied to the whole set of points approximating the 
Pareto domain where all pairs of points are compared to determine if they satisfy a 
preference or a non-preference rule. 

Table 2. Indifference thresholds for each criterion 

Criterion Description Threshold 

Y1 ISO Brightness 0.50 

Y2 Refining Energy 0.40 

Y3 Extractives Content 0.05 

Y4 Rupture Length 0.30 

Table 3. Set of rules for the ranked set without indifference thresholds 

Preference rules Non-preference rules 

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 

0 0 1 1 1 1 0 0 

1 1 0 1 0 0 1 0 

The quality of the approximation expresses the ratio of all pairs of points in the 
ranked subset correctly ordered by “rules of preference” and “rules of non-
preference” to the number of all the pairs of points in the ranked subset.  The quality 
of approximation in the case without thresholds is equal to 0.38. 

The quality of the approximation in the case with thresholds is equal to 0.57, which 
indicates that the quality of the approximation with the thresholds is significantly 
improved. 

The last step of the Rough Set method is to perform a pair wise comparison of all 
6000 points of the Pareto domain to determine if a preference or non-preference rule 
applies.  If a preference rule is determined, the score of the first point is incremented 
by one and the score of the second point is decreased by one. The opposite operation 
is performed if a non-preference rule is identified. The scores of all Pareto-optimal 
points were initially set to zero. When all points are compared, the point that has the 
highest score is considered to be the optimal point. It is however preferable to 
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examine the zone of the Pareto domain where a given percentage of the best points 
are located rather than considering an individual point. The Rough Set Method 
provides a clear recommendation as to the optimal zone of operation. 

Table 4. Set of rules for the ranked set with indifference thresholds 

Preference rules Non-preference rules 

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 

- - 0.5 1 - - 0.5 0 

- 1 - 0.5 ∨ 1 - 0 - 0.5 ∨  0

0.5 0.5 1 0.5 0.5 0.5 0 0.5 

1 0.5 0 0.5 1 0 0 0 

5   Results and Conclusions 

Results obtained using the Rough Set Method (RSM) are presented in Fig. 1 without 
thresholds and in Fig. 2 with thresholds. Two-dimensional graphical projections show 
the results for both cases of the ranking the 6000 points of the Pareto front. The first 
10% corresponding to the highly-ranked points are plotted using dark points.   

 

             

Fig. 1. Graph of the Pareto Front ranked by RSM without thresholds 

The optimal region satisfies very well three of the four criteria. The choice of the 
expert is very clear, he can sacrifice having a higher specific refining energy (Y2 
being highest in the optimal region when it should be lowest) to have all the other 
criteria (Y1, Y3 and Y4) being satisfied extremely well. In RSM, there is always at 
least one criterion that has to be sacrificed because a preference rule cannot contain all 
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ones. Indeed, if a rule contained all ones this would mean that one of the two points 
that led to that rule would dominate the other point.  

In this paper, two Dominance Rough–Set-based Approaches have been compared 
based on the extraction of rules from a subset of Pareto-optimal points ranked by a 
DM with and without indifference thresholds. The comparison of the quality of 
approximation indicates that the quality performance is improved with using the 
thresholds. However, the improved quality doesn’t reduce the region of highly-ranked 
points. On the contrary, we can see on the graphical projections of the Pareto Front 
that this region is getting larger. There seems to have more nuance in the choice of the 
decision maker. 

The introduction of indifference thresholds to the Dominance Rough-Set-based 
Approach (DRSA) also allows to make a difference between weaker and strict partial 
preferences with respect to each criterion for each decision rule.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graph of the Pareto Front ranked by RSM with thresholds 
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Abstract. This study considers the construction of a multicriteria model
to assist in the early diagnosis of Alzheimer’s disease. Alzheimer’s disease
is considered the most frequent of the dementias and it is responsible for
about 50% of the cases. Due to this fact and the therapeutical limitations
in the most advanced stage of the disease, early diagnosis of Alzheimer’s
disease is extremely important and it can provide better life conditions
to patients and their families.

Keywords: Early diagnosis, alzheimer’s, multicriteria.

1 Introduction

Demographic studies in developed and developing countries have showed a pro-
gressive and significant increase in the elderly population in the last years [14].
According to the [11], chronic disease is a main cause of incapacity and cardiopa-
thy, cancer and vascular accidents continue to be the main cause of death in 65
year olds. The Alzheimer’s disease contributed to almost 44,000 deaths in 1999.

Alzheimer’s disease is the most frequent cause of dementia and is responsible
(alone or in association with other diseases) for 50% of the cases in western
countries [14]. The dementias are syndromes described by a decline in memory
and other neuropsychological changes especially occurring in the elderly and
increasing exponentially in function of age. According to [8], despite that high
incidence, doctors fail to detect dementia in 21 to 72% of their patient.

Considering the few alternative therapies and greater effectiveness of treat-
ments after early diagnosis, identifying the cases that are high-risk for becoming
dementia take on capital importance [10].

For this reason, systems of classification with specific criteria of inclusion
and exclusion allow the definition of the diagnosis the Alzheimer’s disease to be
clinically viable. The criteria were based on clinical information and in laboratory
tests.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 149–156, 2007.
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The main focus of this paper is to develop a multicriteria model for aiding
in decision making of the early diagnosis of Alzheimer’s disease. This disease is
difficult to diagnose due to its initial subtle symptoms, which progress slowly
until it becomes obvious and destructive. Therefore a study was developed with
a patient that showed symptoms of dementia. It was necessary to construct
value scales originating from semantic judgments of value with the objective of
defining a ranking with the classification of the dementia in patient analysis.
Finally conclusions and futures works are shown.

2 Importance of Early Diagnosis of Alzheimer’s Disease

Alzheimer’s disease is the most common type of dementia. People with any type
of cognitive loss represent 5-10% of the population of 65 years or more, and more
than 50% of the cases are due to Alzheimer’s disease [7].

For this reason, the early diagnosis of this pathology is of great importance;
mainly if we take in consideration the therapeutic advances and the relative
optimism in relation to new active drugs in Central Nervous System.

Nowadays, there is an attempt to diagnose as soon as possible. It is necessary
to carefully evaluate Mild Cognitive Damage (MCD), that represents a deficit in
episodic memory tasks (relevant to day to day), but that still is insufficient for the
diagnosis of dementia. This occurs because it is increasingly evident that many
of these people with MCD can be found in a pre-clinical stage of Alzheimer’s
disease [12] and that this progression up to full dementia can take several years.

2.1 Criteria for Diagnosis

Systems of classification with specific inclusion and exclusion criteria allow for
the clinically probable definition and diagnosis of Alzheimer’s disease. These
criteria were based on clinical information and laboratory tests.

There are at least four different systems that were proposed for the clinical
diagnosis of Alzheimer’s disease:

1. ICD-10 (International Classification of Diseases)[15].
2. DSM-III-R and DSM-IV (Diagnostic and Statistical Manual of Mental Dis-

orders)[6].
3. NINCDS-ADRDA (National Institute of Neurological and Communicative

Disorders and Stroke/Alzheimer’s Disease and Related Disorders Associa-
tion)[9].

4. CDR (Clinical Dementia Rating)[10].

[6] proposed a global criterion for evaluating the gravity of the dementias,
especially those motived by Alzheimer’s disease. This criterion was denominated
"Clinical Dementia Rating" (CDR). CDR evaluates six behavioral and cognitive
categories and can be used by neurologists, psychiatrists, psychologists and oth-
ers professionals that study cognitive functions in the elderly. Another advantage
is that it is highly reliable. CDR emphasizes cognitive operations without being
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bound to the medical, social and emotional aspects of the patient. Thus it is
applied in the light cases as well as the more severe cases of dementia and even
for patients with questionable diagnosis.

In spite of the fact that CDR does not meet all criteria necessary for the
clinical judgment of the disease, initially, this will not affect the initial application
of the model. Because at this moment, we are carrying out the initial tests in
order to subsequently apply new judgments with more patients to improve the
initially proposed model.

Two categories of the CDR are described in table 1.

Table 1. Classification of the categories memory and orientation evaluated by Clinical
Dementia Rating [10]

In this study only the CDR criteria will used, therefore a multicriteria ap-
proach for aiding in early diagnosis of Alzheimer’s disease will be used.

3 Decision Making Tool

The evaluation of early diagnosis of Alzheimer’s disease is complex, and requires
a high level of expertise. In order to help in decision making for early diagnosis
of Alzheimer’s disease we use a multicriteria methodology, which is based on two
main characteristics:

1. The existence of several criteria.
2. Solutions for attending to the needs of the actors involved.

According to [2], in decision making it is necessary to look for elements that
can answer the questions raised in order to clarify and make recommendations or
increase the coherency between the evolution of the process and the objectives
and values considered in the environment.

A substantial reading on MCDA methods can be found in [1, 2, 3, 4, 13],
where the authors address the definitions and the problems that are involved in
the decision making process.

The evaluation process is composed of the construction of judgment matrixes
and constructing value scales for each Fundamental point of view (FPV) already
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Fig. 1. Problem value tree

defined. The construction of cardinal value scales will be implemented through
the MACBETH methodology developed by [2].

Figure 1 shows the tree corresponding to the FPV’s that are used in evaluation
of early diagnosis of Alzheimer’s disease in a given patient.

Each Fundamental Point of View (FPV) is constituted by actions, which will
be the alternatives used for the classification of each dementia (the acronyms in
parentheses correspond to the names of the alternatives used in Macbeth): No
Dementia (ND), Questionable Dementia (QD), Mild Dementia (MD), Moderate
Dementia (MOD) and Severe Dementia (SD). The order that alternatives have
in the judgment matrix was determined by everyday facts of the patient in
comparasion with his life history or his performance in the past.

After the judgment of each FPV according to the each patient’s information
the value scales will be generated, which correspond to the Current Scale field
in the judgment matrix. The resulting values will be used in the final judgment
of the patient’s diagnosis.

4 Application of the Model in the Decision Making
System

The application of the model in multicriteria together with CDR was done by
means of unstructured interviews carried out by the examiner who did not know
the clinical diagnosis. A family member was also interviewed, preferably the
spouse or a son or daughter who lives together on a daily basis with the individ-
ual. In rare cases, when the elderly patient lived alone, we talked with a close
relative or a friendly neighbor. The coherence of this information was evaluated.
In a few cases the interview was done with another type of informant [10].

As an example of a practical case, we will describe two case histories of patients
that were used in this decision making process.

4.1 Case History 1

Mrs. Y is 80 years old. She was a bilingual secretary in a big firm. According to
her friend and neighbor for many years (informant selected because the patient
is single and lives alone). She presented difficult in remembering appointments,
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even those as important as doctors’ appointments. Many times she would call
the doctor without realizing that she had already called [10].

All things considered, we constructed the matrixes in Macbeth software and
the evaluations were done. After the judgment of the each FPV, a scale of values
that correspond to the Current Scale field in the judgment matrix will be gen-
erated. This can be observed in figure 2 where the judgment matrix of the FPV
Memory is shown. For the evaluation, the history of the patient was considered
together with the classifications defined by the CDR showed previously in table 1.

Fig. 2. Judgment of the Memory FPV for the patient Mrs. Y

After evaluating the alternatives of all the FPV’s individually, an evaluation
of the FPV’s in one matrix only was carried out. For this, a judgment matrix was
created in which the decision maker’s orders are defined according to the patient’s
characteristics. In summary, the order of the FPV’s in the judgment matrix was
defined in the following manner: Orientation, Memory, Judgment and Problem
Solving, Community Affairs, Personal Care and Home and Hobbies. Figure 3
presents the judgment matrix of the FPV’s.

Fig. 3. Judgment of all the FPV’s for Mrs. Y
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Fig. 4. Indexes resulting from the final evaluation of the FPV’s for the patient Mrs. Y

After all the evaluations were carried out, a matrix for each FPV and a matrix
with all the FPV’s, show the final result. The table shows the values of each
alternative judged. Figure 4 shows the Overall column with the values of the
each alternative compared with all the FPV’s. The values of the alternatives in
relation each FPV are also shown.

The results in figure 4 lead us to conclude that Mrs. Y suffers from mild
dementia (84.14% possibility). The same result was obtained with the application
of the general rules of classification of the Clinical Dementia Rating [6] and [10].
An advantage found in the application of these multicriteria models was that
achieved a ranking of all the alternatives, so it was possible to determine the
chance that a given patient has of acquiring Alzheimer’s disease in each one of the
categories of memory. The result of the application of this model concluded that
Mrs. Y has an 84.14% possibility of acquiring mild dementia, 77.42% possibility
of acquiring questionable dementia, 71.18% possibility of acquiring moderate
dementia, 37.96% possibility of acquiring severe dementia and 10.59% possibility
of acquiring no dementia.

4.2 Case History 2

Mr. X is 77 years old. He was an accountant. According to his daughter, after
he retired, he lost many of his more complex interests and preferred to stay
at home reading his newspaper. He has no more say in family decisions, but
when requested, he can give coherent comments. He attends to the details of his
retirement and pays his bills, but sometimes requests help from his daughter. He
drives a car without problems, but apparently he was distruct [10].

According to this information, matrixes in Macbeth software were created and
evaluations were carried out. After the judgment of each FPV, the scale of values
that correspond to the Current Scale field in the judgment matrix was generated.
For the evaluation, the history of the patient, together with the classifications
defined by the CDR showed previously in table 1 was considered.

After the evaluation of the alternatives of all the FPV’s individually an eval-
uation of the FPV’s in only one matrix was carried out. For this, a judgment
matrix was created in which the decision maker’s orders were defined to come
from the patient’s characteristics. In summary, the order of the FPV’s in the
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judgment matrix was defined in the following way: Home and Hobbies, Commu-
nity Affairs, Judgment and Problem Solving, Orientation, Memory and Personal
Care.

After all the evaluations were carried out, a matrix for each FPV and a matrix
with all the FPV’s, show the final result. The table shows the values of each
alternative judgment.

The result conclude that Mr. X suffers from mild dementia (87.92% of possi-
bility). The result obtained with the application the general rules of classification
of the Clinical Dementia Rating was different [6] and [10]. The result found was
that the patient has questionable dementia. This is a stage of dementia a little
more progressed than that found with the application of the model in multicri-
teria. An advantage found in application of these multicriteria models was that
a ranking of all the alternatives allowed for the possibilities of determining the
chances that a given patient had of acquiring Alzheimer’s disease in each one the
memory categories. The result of the application of the model concluded that
Mr. X has an 87.92% possibility of acquiring mild dementia, 79.48% possibility
of acquiring moderate dementia, 73.23% possibility of acquiring questionable de-
mentia, 44.24% possibility of acquiring severe dementia and 42.62% possibility
of acquiring no dementia.

5 Conclusion

As a consequence of the progressive increase in the elderly population in the
last years, there has been an increase in the prevalence of dementias. There are
on average 70 diseases that can cause dementia, but Alzheimer’s disease is the
most frequent and is responsible (separately or in association) for 50% of cases
in western countries [14].

Several systems of classification with specific criteria of inclusion and exclusion
permit the definition of early diagnosis of Alzheimer’s disease. A multicriteria
analysis that aids in decision making for these diagnoses was applied to one of
these systems, the Clinical Dementia Rating (CDR).

After evaluating the judgment matrixes that FPV’s were generated based on
cognitive - behavior categories of the CDR, a case study was carried out. The
history of the behavior of the three patients was analyzed and judgment matrixes
were generated from the information obtained.

The result these matrixes was satisfactory because it confirmed the result ob-
tained in the application of the same case study applied with the general rules for
the classification of the CDR. The patient Mr. X yielded a different result than
that which was found with the application of the general rules of the CDR. How-
ever, the application of multicriteria for this case study revealed the percentage
of all the possibilities of memory deficiency that are possible in the patient.

As a future project, this model can be extended with the inclusion of new
criteria or new models which can be developed that use other systems of classifi-
cation. Another project that can be developed could be the application of these
models in a given group of people that would serve to verify its validity.



156 A.K. Araújo de Castro, P.R. Pinheiro, and M.C. Dantas Pinheiro

Another interesting project could be the application of the model to cases of
patients with suspected dementia of unknown causes but that are difficult to
diagnose.

The application of the Dominance-based Rough Set Approach method [5] that
is based on ordinal properties of evaluations is being analyzed now.

Acknowledgments. Ana Karoline Araújo de Castro is thankful to FUNCAP
(Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) for
the support she has received for this project.

References

1. Costa, C.A.B., Beinat, E., Vickerman, R.: Introduction and Problem Definition,
CEG-IST Working Paper (2001).

2. Costa, C.A.B., Corte, J.M.D., Vansnick, J.C.: Macbeth, LSE-OR Working Paper
(2003).

3. Drucker, P.F.: The Effective Decision. Harvard Business Review on Decision Mak-
ing, Harvard Business School Press, Boston (2001).

4. Goodwin, P., Wright, G.: Decision Analysis for Management Judgment, John Wiley
and Sons, Chicester (1998).

5. Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria De-
cision Analysis, European J. of Operational Research 129 (2001) 1–47.

6. Hughes, C.P., Berg, L., Danzinger, W.L., Coben, L.A., Martin, R.L.: A New Clin-
ical Scale for the Staging of Dementia, British Journal of Psychiatry 140 (1982)
566–572.

7. Jellinger, K., Oanielczyk, W., Fischer P. et al.: Clinicopathological Analysis of
Dementia Disorders in the Elderly, Journal Neurology 5ci (1990) 95:239–258.

8. Mayo Fundation for Medical Education and Research. Homepage at
http://www.mayo.edu/geriatrics-rst/Dementia.I.html

9. Mckhann, G.D., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan,
E.M.: Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA
Work Group under the Auspices of the Department of Health and Human Services
Task Force on Alzheimer’s Disease, Neurology 34 (1984) 939–944.

10. Morris, J.: The Clinical Dementia Rating (CDR): Current Version and Scoring
Rules, Neurology 43(11) (1993) 2412–2414.

11. National Center for Health Statistics, United States, 2000 with Adolescent Health
Chartbook, Hyattsville, Maryland (2000).

12. Petersen, R.C., Smith, G.E., Waring, S.C. et al.: Mild Cognitive Impairment: Clin-
ical Characterization and Outcome, Archives Neurology 56 (1999) 303–308.

13. Pinheiro, P.R., Souza, G.G.C.: A Multicriteria Model for Production of a Newspa-
per. Proc: The 17th International Conference on Multiple Criteria Decision Anal-
ysis, Canada (2004) 315–325.

14. Porto, C.S., Fichman, H.C., Caramelli, P., Bahia, V. S., Nitrini, R.: Brazilian
Version of the Mattis Dementia Rating Scale Diagnosis of Mild Dementia in
Alzheimer.s Disease, Arq Neuropsiquiatr 61(2-B) (2003) 339–345.

15. World Health Organization. Homepage at
http://www.who.int/classifications/ icd/en/



Singular and Principal Subspace of Signal

Information System by BROM Algorithm

W�ladys�law Skarbek

Warsaw University of Technology, Faculty of Electronics and Information Technology,
00-665 Warszawa, Nowowiejska 15/19, Poland

W.Skarbek@ire.pw.edu.pl

Abstract. A novel algorithm for finding algebraic base of singular sub-
space for signal information system is presented. It is based on Best
Rank One Matrix (BROM) approximation for matrix representation of
information system and on its subsequent matrix residua. From alge-
braic point of view BROM is a kind of power method for singular value
problem. By attribute centering it can be used to determine principal
subspace of signal information system and for this goal it is more accu-
rate and faster than Oja’s neural algorithm for PCA while preserving its
adaptivity to signal change in time and space. The concept is illustrated
by an exemplary application from image processing area: adaptive com-
puting of image energy singular trajectory which could be used for image
replicas detection.

Keywords: Principal Component Analysis, Singular Value Decomposi-
tion, JPEG compression, image replica detection, image energy singular
trajectory.

1 Introduction

Signal information system is a special kind of information system in Pawlak’s
sense [1] in which objects are certain signal (multimedia) objects such as images,
audio tracks, video sequences while attributes are determined by certain discrete
elements drawn from spatial, temporal, or transform domain of signal objects.

For instance the Discrete Cosine Transform frequency channel represents a
DCT coefficient which specifies a share of such frequency in the whole signal
object.

Having n signal objects and m DCT frequency channels we get an information
system which can be represented by a matrix A ∈ R

m×n. In case of Discrete
Fourier Transform the matrix has complex elements and A ∈ C

m×n.
The columns of A ∈ R

m×n define n attributes A = [a1, . . . , an] and they can
be considered as elements of m dimensional vector space: ai ∈ R

m, i = 1, . . . , n.
In order to use algebraic properties of the vectorial space the attributes should

have common physical units or they should be made unit-less, for instance by
an affine transform, such as attribute centering and scaling.

Having attributes in the vectorial space we can define their dependence by the
concept of linear combinations and by the related concepts of linear independence
and linear subspace.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 157–165, 2007.
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In such approach we start from the subspace span(A) which includes all finite
linear combinations of columns of A, i.e. attributes a1, . . . , an. If the dimension
of span(A) equals to r, i.e. if rank(A) = r then we can find a nested sequence of
r+1 linear subspaces of increasing dimensionality starting from the null subspace
S0 := {0m} and ending at Sr :=span(A) :

S0 ⊂ S1 ⊂ · · · ⊂ Sr−1 ⊂ Sr .

In the infinite number of nested subspace sequences for the given matrix A,
there is a specific class of singular subspaces defined for A by the condition of
minimum projection error. Namely, let PSa be the orthogonal projection of a
onto the subspace S. Then the singular subspace Sq of dimension q <rank(A)
minimizes the following squared projection error in norm l2 :

Sq := arg min
dim(S)=q

n∑

i=1

‖ai − PSai‖2
2 .

The unit vector u spanning S1 is called the singular direction. We say that
the attributes a1, . . . , an are centered if their mean is zero vector, i.e.

∑n
i=1 ai =

0m. In case of centered attributes the singular subspace is called the principal
subspace and the singular direction is called the principal direction.

In practice the singular subspace of matrix A is found from Singular Value
Decomposition (SVD) of matrix A to orthogonal matrices U, V and diagonal
matrix Σ :

A = UΣV t, U ∈ R

m×r, U tU = Ir×r

Σ = diag(σ1, . . . , σr), V ∈ R

n×r, V tV = Ir×r .

Namely, the first q columns of U = [u1, . . . , ur] span the singular subspace Sq =
span(u1, . . . , ur).

Traditionally principal subspaces are obtained from Eigenvector Decomposi-
tion (EVD) of the outer product of centered matrix A :

AAt = UΛU t

This procedure is known as Principal Component Analysis (PCA) – one of the
most famous transformations in signal theory [2]. The traditional approach,
though very efficient, is not adaptive to change of matrix A. In case of PCA
there is also well known Oja neural scheme [3] which stochastically approxi-
mates the principal direction. However, it can be used to centered data only and
therefore is not applicable to the general case of singular direction. In this paper
another adaptive scheme is presented. It is based on analysis of rank one matrix
approximations of the information system.

2 BROM Algorithm for Singular Subspace

Let us consider a signal information system with m objects and n real valued at-
tributes. Then it is represented by a matrix A = [a1, . . . , an] ∈ R

m×n, ai ∈ R

m.
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If the linear subspace spanned by attributes ai has the dimension r, i.e. if
rank(A) = r, then for any q < r we consider the following problem: Find a
matrix X ∈ R

m×n of rank q which is the best approximation of A in Frobenius
norm, i.e. it minimizes ‖A − X‖F . We call this problem as best rank q matrix
and in particular for q = 1 we have BROM problem, i.e. best rank one matrix
problem.

It appears that it is enough to know an algorithm for BROM problem, in
order to get incrementally the solution Xq for any q < r :

X0 = 0m×n; for q = 1, . . . , rank(A)−1 : Xq := Xq−1 +BROM(A−Xq−1); (1)

On the other hand the matrix X of rank one has a shorter nonlinear parametriza-
tion with m + n variables. Namely the following property is true: The matrix
X ∈ R

m×n is of rank one if and only if there exist vectors u ∈ R

m, v ∈ R

n,
u �= 0, v �= 0, such that X = uvt. Therefore we can state the following optimiza-
tion goal function e of two vectorial parameters u, v :

e(u, v) := ‖A − uvt‖2
F , u ∈ R

m, v ∈ R

n (2)

It is easy to find a necessary and sufficient condition for the stationary points of
e, i.e. the zero gradient points of e(u, v) :

v =
Atu

‖u‖2 , u =
Av

‖v‖2 (3)

Moreover, at fixed u (v) the actual minimum of e can be explicitly found:

– At fixed u ∈ R

m, u �= 0 the optimal vopt ∈ R

n minimizing e(u, v) has the
form:

vopt = Atu
‖u‖2 , e(u, vopt) ≤ e(u, v), ∀v ∈ R

n

e(u, vopt) = ‖A‖2
F − ‖u‖2

2‖vopt‖2
2

(4)

– At fixed v ∈ R

n, v �= 0 the optimal uopt ∈ R

m minimizing e(u, v) is of the
form:

uopt = Av
‖v‖2 , e(uopt, v) ≤ e(u, v), ∀u ∈ R

m

e(uopt, v) = ‖A‖2
F − ‖uopt‖2

2‖v‖2
2

(5)

The algorithm BROM looks for the best rank one matrix uvt of the matrix A
by the following locally optimal steps for i = 0, 1, · · · :

1. for ui determine the optimal vi+1;
2. for vi+1 determine the optimal ui+1.

Using the explicit formulas for uopt and vopt we get the following iterative scheme:

u0 := nonzero column of A

vi+1 := Atui

‖ui‖2 , ui+1 := Avi+1
‖vi+1‖2 , i = 0, 1, 2, . . .

(6)

For practical use the following form of BROM has been elaborated which returns
the singular direction in vector u.
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algorithm [u, v] := brom(A)
u := the first nonzero column of A
if u = 0 then return endif
do

v := Atu
‖u‖2 ; u := Av

‖v‖2

until (‖u‖ · ‖v‖ stabilizes)
v := v ∗ ‖u‖; u := u/‖u‖

endalgorithm

Since at the exit of BROM we have v = Atu, the coordinate of column ai w.r.t.
to the vector u is vi, i = 1, . . . , n. It is interesting that when a symmetric matrix
A is input of the BROM, the algorithm produces as u the eigenvector correspond-
ing to the eigenvalue λmax of maximum absolute value and λmax = utAu. This
follows from the observation that modulo a scaling factor, the BROM algorithm
performs iterations of the power method for the matrix A2 which has the same
eigenvectors as A, but for squared eigenvalues. Since the power method com-
putes the maximal eigenvalue for A2 then for A it corresponds to the maximum
absolute eigenvalue.

3 Outline of BROM’s Convergence Analysis

The strict proof of convergence for BROM has been recently developed by the
author, but the limit of pages for this paper allows only for an outline of BROM’s
convergence analysis.

We analyze the sequences defined by (6). The first observation concerns the
behavior of norms for the sequences. Namely, the norms of vectorial sequences
ui and vi satisfy the following inequalities for i = 1, 2, · · · :

‖ui‖‖vi‖ ≤ ‖A‖F

‖ui‖‖vi‖ ≤ ‖ui‖‖vi+1‖ ≤ ‖ui+1‖‖vi+1‖
‖ui‖ ≤ ‖ui+1‖, 1 ≤ ‖vi‖ ≤ ‖vi+1‖

Hence, the norms of the sequences are bounded and monotonic. Thus the
sequences of norms ‖ui‖, ‖vi‖ are convergent.

Let λ be an eigenvalue of the matrix B. Then we denote by W (B, λ) the
subspace of all eigenvectors defined by eigenvalue λ :

W (B, λ) := {u : Bu = λu}

The remaining convergence analysis can be summarized in six properties
which are stated in the following theorem.

Theorem 1 (on convergence of BROM).

1. The vectorial sequence ui is convergent in l2 to an eigenvector u∗ of the
matrix AAt corresponding to the largest eigenvalue λ for which the initial
vector u0 is not perpendicular to the eigenvector subspace W (AAt, λ).
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2. The vectorial sequence vi is convergent in l2 to the vector v∗ = Atu∗/‖u∗‖2.
3. The vector u∗/‖u∗‖ is the singular direction with the singular value

√
λ and

the singular coordinates
√

λv∗/‖v∗‖.
4. The matrix sequence uiv

t
i is convergent in Frobenius norm to the matrix u∗vt

∗
which is the stationary point of the objective function e(u, v).

5. If u0 is not perpendicular to the eigenvector subspace W (AAt, λmax) for
the maximal eigenvalue of the matrix AAt then the matrix sequence uiv

t
i

is convergent w.r.t. Frobenius norm to the matrix u∗vt∗ which is the global
minimum of the objective function e(u, v) and e(u∗, v∗) = ‖A‖2

F − λmax.
6. The stop condition for BROM algorithm selected in the form:

‖ui+1‖‖vi+1‖ − ‖ui‖‖vi‖ < ε

implies the stabilization of the objective function: e(ui, vi)−e(ui+1, vi+1) < ε.

The above theorem explains why in the stop condition we can replace the original
requirement for uiv

t
i stabilization by less costly condition of stabilization for

the norm product ‖ui‖‖vi‖. Namely, the convergence of the matrix sequence
uiv

t
i enables observing of this convergence indirectly in the range of the error

function e(ui, vi). But from the last property of the theorem we have seen that
the convergence of e(ui, vi) can be detected from the convergence of the sequence
‖ui‖‖vi‖.

4 Application: Image Energy Singular Trajectory

In many applications images are decomposed into small size blocks in order
to make local analysis which is more efficient or more problem relevant. The
blocks of the decomposition can be disjoint or overlapping. For instance in JPEG
compression [4] the blocks are of size 8×8 and they are not overlapping. In some
applications the order of blocks is irrelevant while in some their relative locations
in the sequence is important.

Having a fixed ordering of blocks, for instance according the raster scan or
along the Hilbert curve, we can introduce a concept of signal energy trajectory
for the given image. Namely, each image block is characterized by the signal
energy measured by the sum of squared pixel intensities.

The signal energy as a block feature is not invariant to most image processing
operations. However, if we consider the fractional distribution of the energy in
singular channels defined by singular directions of image blocks, the situation is
much better and such features can be used for instance to image replica detection
[5] even if replica have been invisibly processed to cheat web robots.

Let us define the image energy singular trajectory of rank r more formally. Let
f1, . . . , fL be the sequence of pixel blocks drawn from the image f. It means that
fi := f |Di for a rectangular sub-domain Di of the image domain D. Performing
the singular decomposition of the matrix fi, we consider only r dominant singular
values σi(1), . . . , σi(r).
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It is well known that the signal energy of block fi is decomposed into the sum
of all squared singular values of fi :

‖fi‖2
F =

∑

k

σ2
i (k),

∑

k

σ2
i (k)

‖fi‖2
F

= 1

The image energy singular trajectory of rank r is defined as the sequence of
points in r dimensional unit cube [0, 1]r :

(
σ2

i (1)
‖fi‖2

F

, . . .
σ2

i (r)
‖fi‖2

F

)
, i = 1, . . . , L
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Fig. 1. Dependence of energy distribution in singular channels for various JPEG com-
pression quality. For bottom graphs lower curves correspond to higher index of energy
channel while for the right upper graph to the higher quality index.

The rationale for this novel concept is getting a fine characterization of signal
energy distribution with its spatial coherency to be represented by trajectory
concept. Since trajectories can be normalized by its re-sampling to a standard
discrete interval, changes of image resolutions, cutting of windows, and local
affine image transformations could be detected in trajectory segments by point
proximity analysis for trajectories in time-energy space.
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If small rank trajectories are enough for a particular application then we
expect that BROM algorithm can be recommended in place of standard SVD
algorithm. In the remaining part of this section few such practical cases are
analyzed.

JPEG quality measure. In image compression the quality is usually measured by
error image global analysis. The error image is the difference between decoder’s
output image and encoder’s input image computed pixel-wise.

The most popular image fidelity measures are based on mean squared error
(MSE) which is a scaled version of squared Frobenius norm for the error im-
age. More subtle fidelity measures have vectorial character such as SVD based
measures [6].

We analyze the distribution of compression error energy for an image of ar-
chitectural scenes. Let JPEG quality index be from the set:

Q = {1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100} .

Then for the image of Fig. 1 the average distribution of energy in error images
for those quality indexes w.r.t. all eight singular directions is presented. We see
that most of energy is included in the first three singular directions (so called the
energy channels) – from 95% for low quality images down to 80% for high quality
image. We observe that the proposed measure is uncorrelated with human eye
sensitivity: the highest drop of energy corresponds to best visual quality interval
[70, 100]. This is very desirable property for image replica detection.
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Fig. 2. Number of floating point operation at computing image energy singular trajec-
tory by BROM and SVD (horizontal line) as function of singular subspace dimension

Trajectory complexity for BROM and SVD. It is interesting to compare the
computational efficiency of using BROM to find the image energy singular tra-
jectory w.r.t. the classical approach using Singular Value Decomposition for im-
age blocks. Since SVD returns all singular values of image blocks it seems that
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BROM should be much faster. The expectation is confirmed up to rank r = 3
(cf. Fig. 2) at the arithmetic precision 10−10 for singular values.

For this kind of applications when signal information systems are relatively
small the adaptivity of BROM results in less than 5% reducing of complexity.

At comparison, the SVD complexity has been evaluated on the basis of the
formulas given in [7]. Other experiments show that BROM algorithm is more
accurate and faster than Oja algorithm [3] when applied for centered data to
find the principal direction.
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Fig. 3. Dependence of energy distribution in singular channels for various image
contrasting and brightening operations

Energy distribution at image contrasting and brightening. In this experiment we
change the image contrast and its brightness using scaling parameter s ∈ (0, 1) :

fs := (1 − s) · f + s · fmax

where fmax is the maximum value of image f. This kind of image processing
operations in the same time reduces contrast by factor (1 − s) and in a sense
compensates this by increase of brightness to preserve the maximum value of
image intensity. For small s the processing effect is invisible, but the change in
the signal energy is significant.

Figure 3 shows two processed versions of image from Fig. 1. The left image is
processed with s = 0.05 and the right one with s = 0.4.

Experiments show that the error in image energy distribution slightly depends
on s and for singular channels with indices higher than three (lower curves on
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the left graph of Fig. 3) is marginal (less than 0.04%). The maximum change
is observed for the dominant singular subspace (top curve) but even for max-
imal s = 0.4 the change of energy share for this channel is less than 0.4%. It
means that the energy distribution is a good invariant for image contrasting and
brightening operations and it in this context is useful for image replica detection.

The right graph on Fig. 3 confirms the rule of three observed in context of
JPEG image quality: the most of change in image energy distribution is observed
in the first three singular channels. The curves in this graph are indexed by the
parameter s with s = 0.05 for the bottom curve and s = 0.4 for the top one.

5 Conclusions

BROM algorithm is a practical alternative for SVD in finding algebraic base of
singular subspace for signal information systems.

From algebraic point of view BROM is a kind of power method applied for
singular value problem and it can be specialized to be a novel power method for
eigenvalue problem.

By attribute centering it can be used to determine principal subspace of signal
information system and for this goal it is more accurate and faster than Oja’s
neural algorithm for PCA while preserving its adaptivity to signal change in
time and space.

In exemplary application computing image energy singular trajectory it ap-
pears faster than SVD for rank less than four. The trajectory approach is the
useful tool applicable to image replica detection.
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Abstract. A general methodology for design of biometric verification sys-
tem is presented. It is based on linear feature discrimination using sequen-
tial compositions of several types of feature vector transformations: data
centering , orthogonal projection onto linear subspace, vector component
scaling, and orthogonal projection onto unit sphere. Projections refer to
subspaces in global, within-class, and between-class error spaces. Twelve
basic discrimination schemes are identified by compositions of subspace
projections interleaved by scaling operations and single projection onto
unit sphere. For the proposed discriminant features, the Euclidean norm
of difference between query and average personal feature vectors is com-
pared with the threshold corresponding to the required false acceptance
rate. Moreover, the aggregation by geometric mean of distances in two
schemes leads to better verification results. The methodology is tested and
illustrated for the verification system based on facial 2D images.

Keywords: biometrics, face verification, discriminant analysis, singular
subspace, within-class errors.

1 Introduction

Biometrics is a research field with a practical goal: create applications for uniquely
recognizing humans based upon one or more intrinsic physical and/or behavioral
traits including facial 2D/3D image, voice, fingerprints, eye retinas and irises, hand
measurements, signature, gait and typing patterns. Biometric verification is one of
three tasks which are usually attributed to pattern recognition: object identifica-
tion, object verification, and similar object searching. However, biometric pattern
verification is conceptually different from traditional class membership verifica-
tion. To understand this point let us consider two pattern verification queries:

1. Given an image of a digit, verify whether the digit is five.
2. Given a facial image and a person identifier, verify whether the image matches

to this id.

To solve the first problem a model for image class five is designed and used
to verify the membership of the input image to the queried class. For instance
symbol images x are mapped into a space of features y = M(x) in which mem-
berships to symbol classes are represented by class c probability distributions

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 166–173, 2007.
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pc(y) Then the predicate ∀c �= 5, pc(y) < p5(y) could be the basis of the ver-
ification. Moreover, such verification is optimal since it results in minimum of
verification error = false acceptance rate + false rejection rate.

To solve the second problem we may follow the above approach. But then each
new human being h in the system should have a new model ph for his/her facial
images in certain feature space. It means that models built for facial databases
in training stage cannot be directly used in testing and exploiting stages of such
verification system since in practice the sets of training persons and exploiting
persons are different.

From the above examples we see that for the biometric verification we need
such a model training procedure which builds a model with parameters to be
used by testing and exploiting procedures.

Since natural human centered pattern classes cannot be used in person veri-
fication biometric systems, another categorization has to be sought. It appears
that differences of human features for the biometric measurements of the same
person (within-class differences) and for different persons (between-class fea-
tures) create a consistent categorization including two specific classes. The speci-
ficity of this two classes follows from the fact that means of these two classes
are both equal to zero. Moreover, for the within-class feature variation could be
sometimes greater than between-class feature variation, i.e. usually the squared
within-class errors are of the same magnitude as squared between-class errors.

Therefore, it is natural to look for such a linear transformation W : R

N → R

n

of original biometric measurements x ∈ R

N (e.g. vectorized pixel matrix of face
image or its 2D frequency representation) into a target feature vector y = W tx
for which within-class differences are decreased while between-class differences
are increased.

To this goal the class separation measure is defined as the ratio of between-
class variation to within-class variation for vectorial data set {x1, . . . , xL} rep-
resented in columns of matrix X ∈ R

N×L :

vX :=
variationb(X)
variationw(X)

(1)

where the within and between class variations are defined together with total
variation via squared Euclidean distance:

variationw(X) :=
1
J2

J∑

j=1

1
L2

j

∑

i1,i2∈Ij

‖yi1 − yi2‖2

variationb(X) :=
1
J2

∑

j1 �=j2

1
Lj1Lj2

∑

i1∈Ij1 ,i2∈Ij2

‖yi1 − yi2‖2

variationt(X) := variationw(X) + variationb(X) =

1
J2

J∑

j1=1

J∑

j2=1

1
Lj1Lj2

∑

i1∈Ij1 ,i2∈Ij2

‖yi1 − yi2‖2

(2)

where J is the number of classes, Lj is the number of j-th class samples (L =
L1 + · · · + LJ) whose index set is denoted by Ij , j = 1, . . . , J.
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It appears that the class variations are not new concepts as they are scaled
forms of class variances which were introduced by Fisher already in thirties of
twentieth century [1]:

varw(X) := 1
J

∑J
j=1

1
Lj

∑
i∈Ij

‖xi − xj‖2

varb(X) := 1
J

∑J
j=1 ‖xj − x‖2

vart(X) := varw(X) + varb(X) = 1
J

∑J
j=1

1
Lj

∑
i∈Ij

‖xi − x‖2

(3)

where xj is the class mean of all j-th class samples in X and x is the grand mean
of all samples in X.

Namely, the following relations are true for class variations and class variances:

variationw(X) = 2vart(X)
J

variationb(X) = 2
(
varb(X) + J−1

J varw(X)
)

variationt(X) = 2vart(X)

(4)

Hence, the class separation measure vX is the affine form of Fisher separation
measure with coefficients solely dependent on the number of classes J :

vX = JfX + J − 1 (5)

2 Classical Optimization of Fisher Measure

The Fisher class separation measure becomes a goal function w.r.t. transforma-
tion matrix W ∈ R

N×n when the source data matrix X is replaced by feature
data matrix Y := W tX.

The standard approach in optimizing (maximizing) f(W ) := fW tX is replac-
ing the scalar product of two vectors by the trace of their outer product:

atb = tr(abt), ‖a‖2 = tr(aat)

Then we observe that the within and between-class variances are traces of within
and between-class covariance matrices, respectively:

Rw(Y ) := 1
L

∑J
j=1

1
Lj

∑
i∈Ij

(yi − yj)(yi − yj)t = W tRw(X)W

Rb(Y ) = 1
J

∑J
j=1(y

j − y)(yj − y)t = W tRb(X)W

f(W ) = fY = tr(Rb(Y ))
tr(Rw(Y )) = tr(W tRb(X)W )

tr(W tRw(X)W ))

(6)

The results of optimization for f(W ) are traditionally called Linear Discrim-
inant Analysis (LDA). Fisher considered the scalar LDA features, i.e. the case
of n = 1 in which W = w ∈ R

n×1, y = wtx is the scalar and the within and
between-class variances are quadratic forms of vectorial variable w. Then the
Fisher measure transforms to Rayleigh quotient w.r.t. matrices Rb and Rw :

f(w) = fy = fwtX =
wtRb(X)w
wtRw(X)w

(7)
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The standard analysis of stationary points for f(W ), W = [w1, . . . , wn],
wi ∈ R

N , i = 1, . . . , n, leads to conclusion that the maximum is achieved by
eigenvectors wi corresponding to the maximal eigenvalue λmax of the following
generalized eigenvalue problem:

Rb(X)W = λRw(X)W (8)

Therefore the rank of matrix W cannot be higher than the rank of eigenvalue
λmax. In practice this rank equals to one and we get the result equivalent to
scalar case with n = 1. Therefore, the additional requirement should be imposed
onto W : rank(W ) = n.

If the matrix Rw is not singular then the optimal solution (Fukunaga [2]) at
this requirement is achieved from Eigenvalue Decomposition (EVD) of symmet-
ric, semi-definite matrix R′

b := C−1
w RbC

−t
w , where Cw is the Cholesky matrix

([3]) for Rw. Firstly, we look for W of rank N as follows:

RbW = λRwW, Rw = CwCt
w, W ′ = Ct

wW
R′

b = W ′Λ(W ′)t

W = C−t
w W ′

(9)

If columns of W ′ are sorted by decreasing eigenvalues λi then we select from W
the first n columns as the solution. This procedure works only if rank(Rw) = N
and rank(Rb) ≥ n.

In Section 3 we discuss the important case of rank(Rw) < N.

3 Optimization of Fisher Measures by Projections in
Error Spaces

In case of singular matrix Rw a sort of regularization is necessary. There are
known two general approaches to this problem:

1. Regularization of data by mapping to Y = P(X) in order to get nonsingular
Rw(Y ).

2. Regularization of LDA model by imposing an additional constraint on full
rank LDA matrix W = [w1, . . . , wn] – for instance orthogonality to kernel
space of Rw :

wi⊥ker(Rw), i = 1, . . . , n (10)

In this section a novel point of view on LDA regularization is presented
which uses the concept of projections in error subspaces. It unifies in one consis-
tent scheme both approaches and integrates also with Dual Linear Discriminant
Analysis (DLDA) [5].

In the presented discriminant analysis the source data matrix Y0 := X under-
goes up to seven linear transformations before reaching the final matrix of features:

Yt−1 −→ Yt, t = 1, . . . , T ≤ 7
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The j-th class indexes Ij are identified by column indexes of data matrix Yt and
they are not changed at data matrix transformations.

There are three types of errors in our approach. They are defined w.r.t.
any data matrix Y = [y1, . . . , yL] and with the fixed class assignments Ij ,
j = 1, . . . , J :

1. Grand error: the difference of data vector yk and the grand mean vector of
Y. This can be modelled by the global centering operation Cg :

ȳ =
1
L

L∑

i=1

yi, Cg(yk) := yk − ȳ, k = 1, . . . , L (11)

2. Within-class error: the difference of data vector yk, k ∈ Ij and its class mean
ȳ(j):

ȳ(j) =
1
Lj

∑

i∈Ij

yi, Cw(yk) := yk − ȳ(j), k ∈ Ij , j = 1, . . . , J (12)

3. Between-class error: the difference of class mean ȳ(j) and grand mean ȳ :

Cb(ȳ(j)) := ȳ(j) − ȳ, j = 1, . . . , J (13)

The error vectors span error linear subspaces denoted as follows:

Eg(Y ) := span(Cg(Y )), Ew(Y ) := span(Cw(Y )), Eb(Y ) := span(Cb(Y )) (14)

Note that Eg(Y ) is related to famous PCA approach recently linked to rough
set [4] verification, too.

The singular bases U (g), U (w), U (b) of the error linear subspaces are obtained
from Singular Value Decomposition (SVD [3]) for matrices Cg(Y ), Cw(Y ), Cb(Y ),
respectively:

Cg(Y ) = U (g)Σ(g)(V (g))t, Cw(Y ) = U (w)Σ(w)(V (w))t, Cb(Y ) = U (b)Σ(b)(V (b))t

where diagonal squared matrices Σ(·) are of size equal to the rank of centered
data matrix C·(). In case of grand and within-class centering singular values are
ordered from maximal to minimal value while in case of between-class centering
the standard SVD order is inverse – the first element on the diagonal is minimal.

Let Y ∈ R

a×L. Then we identify all singular subspaces of dimension a′ ≤
dim(E(Y )) of error spaces by the projection operators which map the space R

a

onto R

a′
– the space of projection coefficients w.r.t. to the singular base Ua′

restricted to the first a′ vectors:

1. P(g)
a,a′ : projection onto grand error singular subspace of dimension a′;

2. P(w)
a,a′ : projection onto within-class error singular subspace of dimension a′;

3. P(b)
a,a′ : projection onto between-class error singular subspace of dimension a′.
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Additional operation required after projection is component-wise scaling by the
first inverse singular values which create the diagonal matrix Σ−1

a′ :

1. S(g)
a′ : scaling of projected vector in grand error singular subspace of dimen-

sion a′;
2. S(w)

a′ : scaling of projected vector in within-class error singular subspace of
dimension a′;

3. S(b)
a′ : scaling of projected vector in between-class error singular subspace of

dimension a′.

In matrix composition terms the projection and scaling operations have the form:

Pa,a′(x) = U t
a′x, Sa′(y) = Σ−1

a′ y (15)

x1

P(g)
N,N′

��

��
��

��
��

��
x2

N:=N′

��

x3
S(w)

q
�� x4

P(b)
q,n

�� x5 ��

Nn

��

x6

S(b)
n ��

��
��

��
��

x �� x0

Cg

��

�� x2

P(w)
N,q

����������

P(b)
N,q ���

��
��

��
� x6

����������
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x3
S(b)

q
�� x4
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�� x5 ��

Nn

��

x6
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n

����������

x6

����������

Fig. 1. Diagram of LDA type transformations based on projections onto error singular
subspaces

The last operation we use in definition of LDA transformation is the vector
length normalization Na which can be geometrically interpreted as the projection
on the unit sphere in R

a.

Na(x) :=
x

‖x‖ (16)

Using the above notation the all known to authors LDA transformations can
be defined via the diagram in Fig.1. It defines altogether 12 LDA type trans-
formations. For instance in face verification system the following transformation
path on the diagram gives best results:
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In terms of operation compositions we get the following sequence (denoted
here by DLDA) which includes also optimal weighting for matching:

WDLDA := S(w)
n NnP(w)

q,n S(b)
q P(b)

N,qC(g) (17)
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It is better than more popular LDA scheme improved by centering and nor-
malization operations:

WLDA := S(b)
n NnP(b)

q,nS(w)
q P(w)

N,qC(g) (18)

As a matter of fact the discriminant operation maximizing DLDA class sepa-
ration measure is restricted to the composition P(w)

q,n S(b)
q P(b)

N,qC(g) while the final

two operations S(w)
n Nn are responsible for the optimal thresholding of within-

class error which is selected as the distance function for the person id verification.

4 Experiments for Face Verification

From the previous works described in [5] it is already known that in case of face
verification the optimization of inverse Fisher ratio (DLDA) leads to better re-
sults than the optimization of Fisher ratio (LDA). The final weighting of LDA or
DLDA vector components had been also applied since they follow from Gaussian
model of class errors.

Moreover, it was also observed that the normalization operation Nn improves
significantly the equal error rate and ROC function face verification based on
LDA or DLDA. The reason is explained by weak correlation between within-class
error and between-class error. Therefore despite comparable norm magnitude of

  

  

Fig. 2. Receiver operating characteristics and equal error rate for two facial databases
Feret and Mpeg for DLDA and combined LDA+DLDA in single and multi-image
scenarios
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those errors the projection onto the unit sphere separates them while the final
scaling respects the probability of all errors which are projected onto the same
point of the unit sphere.

In the experiments described here we analyze two problems for face verification:

1. Is there any combination of LDA and DLDA class errors which improves
DLDA?

2. What is the degree of improvement if the verification is based on the several
facial images of the same person instead of the single one?

For the first problem we have found (cf. Fig. 2):

– LDA and DLDA class errors are of comparable magnitude.
– Geometric mean of both errors leads to slight improvements of EER and

ROC w.r.t. DLDA error alone.
– The maximum, the arithmetic mean, and the harmonic mean of LDA and

DLDA class errors give intermediate results between the best DLDA results
and significantly worse LDA results.

For the second problem, experiments prove the significant advantage of the
multi-image approach. Confront Fig. 2 where by Person ROC we mean the id
acceptance if at least half of the query images are accepted. The acceptance by
single image is described by Image ROC.

Conclusions. The general methodology presented for design of biometric veri-
fication system based on linear feature discrimination using sequential composi-
tions of several types of feature vector transformations identifies the 12 basic dis-
crimination schemes. The methodology has been tested for the verification system
based on facial 2D images allowing for the choice of two best schemes which ag-
gregated by geometric mean of distances leads to the best face verification results.
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Abstract. Object detection using AdaBoost cascade classifier was in-
troduced by Viola and Jones in December 2001. This paper presents
a modification of their method which allows to obtain even 4-fold de-
crease in false rejection rate, keeping false acceptance rate – as well as
the classifier size and training time – at the same level. Such an improve-
ment is achieved by extending original family of weak classifiers, which
is searched through in every step of AdaBoost algorithm, with classifiers
calculating absolute value of contrast.

Test results given in the paper come from a face localization problem,
but the idea of absolute contrasts can be applied to detection of other
types of objects, as well.

1 Introduction

The original AdaBoost method is known from the late 1980s as a multiclassifier
and a training procedure for a collection of weak classifiers (called also features),
having success rate of about 0.5, to boost them by suitable voting process to very
high level of performance [1,2]. Although this training scheme gives a classifier
of very good accuracy, the number of simple features used is far too big, making
real-time applications impossible [3].

The AdaBoost cascade method proposed by Viola and Jones [3] solves this
problem. Viola and Jones connected a number of strong classifiers built with
standard AdaBoost algorithm in a sequence, to form a cascade of classifiers of
increasing complexity. Every stage of the cascade either rejects the analyzed
window or passes it to the next stage. Only the last stage may finally accept the
window. Thus, to be accepted, a window must pass through the whole cascade,
but rejection may happen at any stage.

During detection, most sub-windows of the analyzed image are very easy to
reject, so they are rejected at very early stage and do not have to pass the whole
cascade. In this way, the average processing time of a single sub-window can be
even thousands times lower than in the case of a standard AdaBoost classifier,
particularly because the first stages can be very small and fast, and only the last
ones have to be large.

Viola and Jones [3] proposed also a set of features for use particularly in
face detection (but easily applicable to detection of other objects). This paper
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presents an extension of that family of features, after which the AdaBoost al-
gorithm – both the original and the cascade one – yields a classifier of much
better accuracy. Original features given by Viola and Jones [3] are described in
section 2.1, and the extension is presented in section 3.

2 AdaBoost Cascade Algorithm

2.1 The Weak Classifier

For each detection window o of the image being processed, a weak classifier gives
a decision δω(o) ∈ {−1, +1} indicating membership of the image o to one of two
classes, labelled by -1 (negative, e.g. a non-face) and +1 (positive, e.g. a face).

The classifier first calculates a region contrast c(R) of the window o:

c(R) =
∑

(x,y)∈R+

o(x, y) −
∑

(x,y)∈R−

o(x, y) , (1)

where R is a sub-window of the window o, composed of a positive sub-region R+

and a negative sub-region R−. After computing the contrast, the classifier gives
a response of +1 if c(R) >= θ or −1 otherwise. Here, R and θ are parameters
of the weak classifier.

There are four types of regions R, presented in Figure 1. Positive sub-region
R+ is drawn in white and negative sub-region R− is drawn in black. The main
advantage of these sub-regions is that they have rectangular shape, so they can be
computed very rapidly (in constant time) using an integral image representation
of the original image. The integral image is computed only once, at the beginning
of object detection in a specified image.

Fig. 1. Types of regions used in weak classifiers. White indicates positive sub-region
and black negative sub-region.

The contrast region R is parameterized not only by its type t(t∈{A, B, C, D}),
but also by four integral parameters: position (x, y) of its upper-left corner rela-
tive to the detection window, width a and height b of sub-regions (all sub-regions
of a given region have the same size). Note that the family of all possible features
is very large, e.g. in the experiments described further in the paper this family
was composed of about 160000 elements. Certainly, only small subset of this
family is used in a final strong classifier – AdaBoost algorithm is used to choose
the best subset.
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2.2 The Strong Classifier

A strong classifier is composed of a number of weak classifiers. Its decision is
made by weighted voting: decision of a t-th weak classifier is multiplied by a
weight αt:

γt(o) = δt(o) ∗ αt

and all values γt(o) are summed up and compared with a threshold Θ to form a
final decision. Usually Θ = 0, but when strong classifiers are further connected
into a cascade, their thresholds can be different, in order to obtain required rate
of false acceptance/rejection at every stage.

The AdaBoost algorithm is used to choose the most discriminative subset of
all possible features and to set values of αt. The algorithm works in an incre-
mental manner, finding consecutive weak classifiers one by one. In every step,
the algorithm looks through the whole family of contrast regions R to choose
the best one – this is a simple exhaustive search method. However, to evalu-
ate a weak classifier, its threshold θ has to be set, as well, not only the region
R. Thus, for every possible R the best θ has to be found, which takes N log N
time, where N is the number of training images. Certainly, this procedure is very
time-consuming, usually it takes several minutes to choose a next weak classifier.

Every image in the training set has an associated weight, which is a positive
real number. The weights are used during evaluation of weak classifiers: images
with bigger weights are more important and have more influence on which clas-
sifier will be chosen next. The weights get changed after every step of AdaBoost
procedure – in this way the successive classifiers found by the algorithm can be
different (but not necessarily have to be).

Initially the weights wi,t are equal and sums up to 1:

wi,1 =
1
N

for every image i = 1, . . . , N . When the next weak classifier is found, the weights
are modified and normalized to sum up to 1:

vi,t+1 = wi,te
−γt(oi)yi ,

wi,t+1 =
vi,t+1∑N
i=1 vi,t+1

,

where γt(oi) is a decision value of the recently found classifier and yi is a true
classification (+1 or −1) of the i-th image.

2.3 The Cascade

Every stage of a cascade is built using the simple AdaBoost algorithm. When the
next stage is created, its threshold Θ is set to the biggest value which still guar-
antees that the false rejection rate is below a predefined level – this is evaluated
on a separate data set (evaluation set), not the training one.
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Before the next stage can be created, both the training and the evaluation
set must be filtered: images rejected by the new stage have to be removed. In
consequence, new negative images have to be generated, as their number would
drop roughly by half at every stage.

3 New Type of Weak Classifiers

The family of weak classifiers used in the algorithm proposed by Viola and Jones
has a disadvantage. Namely, the contrast computed by a weak classifier, eq. (1),
depends on which exactly sub-region (R+ or R−) is darker, so the weak classifier
discriminates between windows with R+ darker than R− and R− darker than R+.

However, in many cases we would like to discriminate between windows with
the same or different intensity in R+ and R−, ignoring information of which
exactly sub-region is darker. That is because in real images what is important
is the existence or lack of an intensity difference, and not the exact sign of the
difference. For example, in face localization one may encounter a dark face on a
bright background as well as a bright face on a dark background, so a classifier
detecting whether there is a difference in intensity would be more discriminative
than the one detecting a sign of the difference.

Table 1. Test error rates of face classifiers. Every classifier is characterized by its size
(number of weak classifiers at each stage of a cascade) and number of training images
(positive+negative examples). The first four classifiers are strong ones, the latter are
cascades. FA – false acceptance rate, FR - false rejection rate. ABS – a classifier was
built using extended family of weak classifiers, comprising both standard classifiers
and the ones computing absolute contrast. In this case, the number of weak classifiers
chosen from the absolute-contrast family is given in parentheses.

Classifier FA FR

20 weak, 500+500 images 1.4% 9.0%

20 weak, 500+500 images, ABS (4) 0.6% 8.2%

100 weak, 1000+1000 images 0.3% 3.2%

100 weak, 1000+1000 images, ABS (49) 0.4% 0.9%

4+4+10+20, 1000+1000 0.086% 13.1%

4+4+10+20, 1000+1000, ABS 0.024% 14.2%
(1+2+5+12)

5+15+30+50+100+200, 1500+1000 0.00120% 4.4%

5+15+30+50+100+200, 1500+1000, ABS 0.00028% 4.5%
(1+6+11+25+50+120)

For this reason, we extended the family of weak classifiers with the ones
computing absolute values of contrasts:

c(R) =

∣∣∣∣∣∣

∑

(x,y)∈R+

o(x, y) −
∑

(x,y)∈R−

o(x, y)

∣∣∣∣∣∣
(2)
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3.1 Test Results

The results of strong and cascaded classifiers of different size built of the extended
family of weak classifiers, compared to the ones using original family alone, are
shown in Table 1. The results come from a face localization problem, but the
idea of absolute contrasts can be applied in detection of other types of objects, as
well. Two types of errors – false acceptance and false rejection – are considered
separately, as in practical applications the former should be hundreds times lower
than the latter.

Images of faces came from MPEG-7 and Altkom databases. MPEG-7 con-
tained images of 635 persons, 5 for each subject (3175 in total). Altkom was
composed of images of 80 persons, 15 for each subject (1200 in total). The
images had 46 × 56 pixels and contained frontal or slightly rotated faces with
fixed eye positions, with varying facial expressions and under different lighting
conditions.

The number of positive training examples in each experiment is given in
Table 1. Test sets contained the same number of faces as training ones. A vali-
dation set was used to find thresholds of strong classifiers in a cascade. All these
sets were disjoint in each experiment (i.e. contained images of different per-
sons) and included the same proportion of images from MPEG-7 and Altkom
databases.

Negative examples were generated randomly from 10000 large images not
containing faces, in on-line fashion. They had to be generated after creation of
every new stage of a cascade, so as to compensate for examples correctly rejected
by the last stage.

Exemplary face images used in the experiments are shown in Figure 2.
In order to speed up the training, only weak classifiers of even positions and

sizes were considered (this applied both to standard and absolute classifiers).
This is almost equivalent to scaling down the images by a factor of 2, but has
the advantage of not introducing rounding errors.

Results from Table 1 show that using the extended family allows to achieve
over 4-fold decrease in one type of error rate (e.g., false rejection), keeping the
other one at a similar level, and without a need of increasing classifier size.

It is worth mentioning that using the absolute-contrast classifiers alone, with-
out the standard ones, gives worse results than using the original family alone,
so it is good to extend the original family, but not to replace it with the absolute-
contrast one.

Table 1 (first column, in parentheses) contains also information about the
number of weak classifiers which were chosen by AdaBoost algorithm from the
absolute-contrast family, at every stage of a cascade. Comparison of this infor-
mation with the total size of each stage shows that the contribution of absolute-
contrast classifiers rises with the size of a stage, from 20 or 25% at the first stage
to 60% at the last one. This suggests that absolute contrasts are more useful
when the problem becomes more difficult.
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Fig. 2. Positive examples (faces) used in the training process

3.2 Efficiency of the Cascade and the Training Process

Calculation of a decision of an absolute-contrast weak classifier takes the same
amount of time as in the case of a standard classifier, since the only additional
operation is a computation of an absolute value. Therefore, the final strong or
cascaded classifier is as fast as the one built of original weak classifiers alone.

The use of the extended family does not slow down significantly the training
algorithm either. Although the family is twice bigger, searching through it takes
(if properly implemented) at most 10% longer. That is because the most time-
consuming part of the search through original family is a quest for the optimal
threshold θ, given a type, a size and a position of a sub-window (t, a, b, x, y).
This requires calculating and sorting of contrasts of a given sub-window on all
training images (say N), which takes time of the order of N log N .

When absolute contrasts are also considered, additionally a sorted sequence
of absolute values of contrasts is needed. However, this does not require com-
putations of N log N complexity again, because a sorted sequence of contrasts
is already available, and after transformation by absolute-value function this se-
quence turns into two sorted sequences, which can be merged in linear time. It
should be noted here that construction of a cascade is a very time-consuming
process, which takes from several hours to several days when executed on a per-
sonal computer (CPU 2.0 GHz), so time efficiency of the presented modification
is an important feature.

4 Conclusion

The paper presented a modification of Viola and Jones’ object detection algo-
rithm. The modified algorithm utilizes an extended family of features which is
searched through during construction of strong classifiers. This extension enables
4-fold decrease in false rejection rate without increase in false acceptance rate
or classifier size. Moreover, the extension does not influence significantly train-
ing time, despite the fact that the family of features is twice bigger. Obviously,
resolution of training images does not have to be increased either.
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Abstract. This paper describes voice activity detection algorithm for
speaker verification systems based on properties of human speech mod-
ulation spectrum i.e. rate of power distribution in modulation frequency
domain. Based on the fact that power of modulation components of
speech is concentrated in a range from 1 to 16 Hz and depends on rate
of syllables uttering by a person, a new effective algorithm was proposed
and compared to standard energy and cepstral based detectors. Experi-
ments confirmed reliability of proposed detector and its better ability to
detect speech in real street noise with high probability for signals with
very low SNR in compare to other methods.

Keywords: voice activity detector, speech modulation spectrum.

1 Introduction

This paper describes the Voice Activity Detector (VAD) for speaker verifi-
cation system capable of working efficiently in noisy street conditions. Pre-
sented here algorithm can also be applied to many other speech-processing
applications especially when speech is corrupted by strong even nonstationary
noise.

Detection of voice activity in noisy environments is a challenging task and
many algorithms have been proposed. They are usually based on energy, spec-
tral or cepstral features [1][2], higher statistics [3] or Hidden Markov Mod-
els are also utilized. All these solutions work well when signal to noise ratio
(SNR) is high and noise level changes slowly in compare to speech. But in many
real situations, where speech processing systems are used speech signal is cor-
rupted by nonstationary noise, e.g. street noise, and these algorithms give poor
results.

In this paper psyhoacoustically motivated voice activity detector is proposed
which exploits properties of modulation spectrum of human speech [4]. The
speech to noise estimate is computed in modulation frequency domain and used
as a feature for speech/pause detection.
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2 Voice Activity Detector Based on Filtering of Spectral
Envelopes

2.1 Modulation Spectrum of Speech

It is know that low-frequency modulations of sound are the carrier of information
in speech [5][6]. In the past many studies were made on the effect of noise and re-
verberation on the human modulation spectrum [4][7] usually described through
modulation index (MI) as a measure of the energy distribution in modulation
frequency domain i.e. normalized power over modulation for a given frequency
band at dominant modulation frequencies of speech. MI vary between analysis
frequency bands. The corrupting background noise encountered in real environ-
ments can be stationary or changing usually different in compare to the rate
of change of speech. Relevant modulation frequency components of speech are
mainly concentrated between 1 and 16 Hz with higher energies around 3 − 5 Hz
what corresponding to the number of syllables pronounced per second [4]. Slowly-
varying or fast-varying noises will have components outside the speech range.
Further, steady tones will only have MI constant component. Additive noise
reduces the modulation index. System capable of tracking speech components
in modulation domain are very tempting perspective for such fields like speech
coders and speech compression [8], speech enhancement [9][10] and voice activity
detectors [11].

2.2 Voice Activity Detector Based on Modulation Spectrum of
Speech

The idea of the system comes from previous work on speech enhancement sys-
tems [10] based on modulation of speech. The block diagram of the system was
shown in Fig. 1. Signal from microphone with sampling frequency 16 kHz is split
into M = 512 frequency bands using Short Time Fourier Transform (STFT)
with Hamming window and 50 % overlapping. Next amplitude envelope is cal-
culated for first 256 bands except first eight bands corresponding to frequencies
below 250 Hz in speech signal:

yk(nM) =
√

Re2[xk(nM)] + Im2[xk(nM)] (1)

Amplitude envelope is summed for all bands and filtered by passband IIR
filter with center frequency 3.5 Hz and frequency response shown in Fig. 2. The
output of the filter is half-wave filtered to remove negative values from output
of the filter. The following computation is carried out on the filtered and not
filtered envelope:

S(nM) =
Y ′

Y − mean(Y ) − Y ′ − mean(Y ′)
(2)

Above parameter is an estimate of speech to noise ratio of analyzed signal.
Mean value of filtered and nonfiltered envelope is computed based on exponen-
tial averaging with time constant approximately 1 s. The square of this estimate
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is used as a classification parameter for voce activity detector. Speech decision
is based on comparison between classification parameter and the threshold com-
puted based on the following statistics [1]:

Thr = mean(d) + α · std(d) (3)

where d is a classification parameter and α controls confidence limits and is
usually in the range 1 to 2, here was set to be equal 2. Both mean value and
standard deviation is estimated by exponential averaging in pauses with time
constant a = 0.05. Frame is considered to be active if value of classifier is greater
than threshold. To avoid isolated errors on output caused by short silence pe-
riods in speech or short interferences correction mechanism described in [12]
was implementing. If current state generating by the VAD algorithm does not
differ from n previous states then current decision is passed to detector output
otherwise the state is treated as a accidental error and output stays unchanged.
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Fig. 1. Voice activity detector block diagram
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Fig. 2. Magnitude frequency response of modulation filter (MF)

3 Simulation Results

3.1 Simulation Parameters and Classification

Described algorithm was implemented in MATLAB environment. All experi-
ments were realized with speech signals with digitally added street noise and
collected in the database with manually marked speech sequences. The algorithm
was tested for four different SNRs: 20 dB, 5 dB, 0 dB and −5 dB. Sampling fre-
quency was 16 kHz. The following objective criteria for detector comparison with
other algorithms were used [2]: correct detection rate - P (A) and speech/non-
speech resolution factor P (B).

P (A) = P (A/S)P (S) + P (A/N)P (N),
P (B) = P (A/S)P (A/N) (4)

where P (S) and P (N) are rates of speech and pauses in the processed signal.
Proposed algorithm (MDET) was compared to the following voice activity

detectors: EDET - energy detector, CEP - one step integral cepstral detector and
CEP2 - two step integral cepstral detector [2]. Each algorithm have implemented
identical isolated errors correction mechanism according to [12].

3.2 Performance of the Proposed Algorithm

In Table 1 results of carried out experiments was shown. Detectors were tested
with signals corrupted by nonstationary street noise because the aim of developed
detector is to work as a part of speaker verification system of device localized in
noisy streets. Experiments show that all detectors give good results with SNR =
20 dB. The difference became from SNR = 5 dB and is clear for SNR = 0 dB.
Cepstral detector is better than energy one but for nonstationary noise also fails
for low SNR. Voice activity detector based on modulation spectrum of speech
have higher correct detection rate for heavy noise (SNR below 0 dB) in compare
to other methods. In Fig. 3 behavior of the presented system with heavy street
noise was shown.
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Table 1. Computed parameters for tested VADs

Detector SNR = 20 dB SNR = 5 dB SNR = 0 dB SNR = −5 dB
P (A) P (B) P (A) P (B) P (A) P (B) P (A) P (B)

EDET 0.893 0.786 0.818 0.613 0.657 0.384 0.583 0.154

CEP 0.865 0.693 0.823 0.658 0.811 0.673 0.622 0.210

CEP2 0.914 0.713 0.833 0.674 0.852 0.745 0.632 0.272

MDET 0.982 0.941 0.967 0.912 0.915 0.824 0.863 0.702
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Fig. 3. Example of VAD decision for speech signal corrupted by street noise
SNR = −5 dB

4 Conclusions

Voice activity detector based on modulation properties of human speech was
developed and tested. Tests with real noise sources shown the advantage of
presented algorithm over classical solutions based on energy o cepstral features
in case of low SNR signals. Carried out experiments confirm that this solution
is a very good candidate for VAD in real noisy conditions.
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Abstract. A novel face detection scheme is described. The facial feature
extraction algorithm is based on discrete approximation of Gabor Trans-
form, called Discrete Gabor Jets (DGJ), evaluated in fiducial face points.
DGJ is computed using integral image for fast summations in arbitrary
windows, and by FFT operations on short contrast signals. Contrast-
ing is performed along radial directions while frequency analysis along
angular direction. Fourier coefficients for a small number rings create a
long vector which is next reduced to few LDA components. Four fiducial
points are only considered: two eye corners and two nose corners. Fidu-
cial points detection is based on face/nonface classifier using distance to
point dependent LDA center and threshold corresponding to equal error
rate on ROC. Finally, the reference graph is used to detect the whole face.
The proposed method is compared with the popular AdaBoost technique
and its advantages and disadvantages are discussed.

Keywords: face detection, Gabor filter, Linear Discriminant Analysis,
reference graph.

1 Introduction

Face detection is important preprocessing task in biometric systems based on
facial images. The result of detection gives the localization parameters and it
could be required in various forms, for instance:

– a rectangle covering the central part of face;
– a larger rectangle including forehead and chin;
– eyes centers (the choice of MPEG-7 [1]);
– two eyes inner corners and two nose corners (the choice of this paper).

While from human point of view the area parameters are more convincing
(cf. Fig. 1), for face recognition system fiducial points are more important since
they allow to perform facial image normalization – the crucial task before facial
features extraction and face matching.

We may observe for each face detector the following design scheme [2]:

1. Define admissible pixels and their local neighborhoods of analysis. Admissible
pixels could cover the whole image area or its sparse subset, for instance edge
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Fig. 1. Area versus fiducial points parameters for face localization

or corner points. The neighborhoods could consist of one pixel only or even
thousands of them forming rectangular windows of analysis or for instance
rings of small rectangles (cf. Fig. 2).

2. Design a feature extractor which produces a collection of features for each
admissible local neighborhood. It may be as simple as admissible pixel color
frequency or as complex as long vector of 100 Angular Radial Transformation
(ART) coefficients.

3. Design a classifier which decides whether the collection of features extracted
from the given neighborhood of analysis could be face relevant. If so the
admissible pixel becomes face relevant point. It could be a simple classifier
based on comparison of feature with a threshold or more complex Support
Vector Machine (SVM classifier) using Gaussian kernel.

4. Define a postprocessing scheme which selects representative face relevant
points defining face locations. The representatives could be obtained as cen-
troids of connected components in the set of all face relevant points or results
or more complex clustering scheme combined with graph matching to reject
inconsistent ensembles of face relevant points.

On top of the above scheme each detector includes a multi-resolution mecha-
nism to deal with face size. It is implemented either through analysis in image
pyramid or by scaling the local neighborhood of analysis together with relevant
parameters.

One of the most known face detectors is based on AdaBoost classifier. It was
introduced by Viola and Jones in 2001 [3]. Let us trace the design scheme of this
prominent method:

1. The local neighborhood of analysis is a small window of size 20 × 20 scaled
up by 20%. The pixel is admissible if and only if it is upper left corner of
the window analysis completely included in image domain.

2. In window analysis at fixed positions small contrasting filters are defined
of specific size and type. The filter returns the contrast between white and
black region defined as the difference between total intensities in the regions.

3. The regional contrast is compared with filter specific threshold giving a weak
classifier. The weak decisions are linearly combined using cost coefficients
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Fig. 2. Rings of small squares as neighborhoods of analysis in our method

elaborated according the AdaBoost machine learning scheme. The AdaBoost
is a multi-classifier well known from the late 1980s which due a special weight-
ing scheme of training examples ensures the high performance of strong clas-
sifier providing that weak classifiers have the success rate about 0.5. Authors
of [3] applied an early and suboptimal heuristics given for AdaBoost train-
ing algorithm in [4]. However, their face recognition system described in [5]
which also used the AdaBoost concept, contained the optimal training proce-
dure which is methodologically sound. The algorithm proposed by them is a
generalization of one described in [6].

4. In postprocessing stage the centroid of enough large connected components
of face relevant window corners represents the detected face window.

While AdaBoost is satisfactory solution for facial window detection, its exten-
sions to detect fiducial points, for instance eye centers, are not equally effective.
The normalization of facial image based on AdaBoost is not accurate and it re-
sults in poor face recognition and verification. In this paper we develop a novel
method for detection of face fiducial points which is based on very rough discrete
approximation of Gabor transform called here Discrete Gabor Jet (DGJ). The
method gives very good results for detection of frontal face views with almost
perfect false acceptance rate.

2 DGJ Face Detector

The whole process of face detection consists of several steps illustrated in Fig. 3.
The fiducial points are searched only within edge points in the image.

The feature extraction in local neighborhood of analysis is performed in two
stages. Firstly the frequency analysis is performed on selected rings (first type co-
efficients) and on contrasts between pairs of rings (second type coefficients). In the
second stage amodifiedLDAanalysis produces 2D features discriminating face and
non-face fiducial points. Each type of fiducial point has its specific LDA matrix.



190 J. Naruniec and W. Skarbek

 Edge 
detector 

Fiducial 
points 
detector 

Graph matching Merging 
neighbours 

Fig. 3. Illustration of all steps for our face detector

The classifier for the particular fiducial point is based on distance to the
centroid of fiducial feature vectors. The standard ROC is built up to tune the
distance threshold to the required false acceptance rate.

2.1 Extractor I: Discrete Gabor Jet

The kernel of Gabor filter [7] in spatial image domain is a Gaussian modulated
2D sine wave grating with parameters controlling wave front spatial orientation,
wave frequency and rate of attenuation. While Gabor wavelet is accurate tool to
represent local forms with complex textures its computation excludes real time
applications in pure software implementations.

Therefore we seek for the representation which can describe changes of local
image contrasts around the given pixel in both angular and radial direction. To
this goal we design rings of small squares and evaluate frequency of luminance
changes on such rings (cf. Fig. 2).

There are two types of Gabor jets. The first type detects angular frequency
on selected rings while the second type represents angular frequencies for radial
contrast between two selected rings.

First type jets. The concept is illustrated in Fig. 4 in upper part.
Each jet of the first type is characterized by radius r of the ring, the number

of squares n = 2k, the center (anchoring) point (x, y). The sizes of all squares
on the ring are equal. The size is the maximum possible providing that squares
do not intersect each other (except of intersection perhaps by one pair).

The sum of pixel values in each square is computed using the integral image
like in AdaBoost detector [3]. The sequence of n such values is normalized to be
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Fig. 4. First type jet (up) – frequency features on single ring of squares, and second
type jet – frequency features of double ring of squares

included in the unit interval [0, 1]. Finally the obtained sequence f is transformed
by FFT. Only the first n/2 of DFT complex coefficients are joined to the output
feature vector.

Second type jets. The idea is shown in Fig. 4 in bottom part.
Now the jet consists of two rings with radii r1 < r2 with the same center (x, y)

and with the same number n = 2k of equal size squares.
Like for the first type jets the sum of pixel values in each square is computed

using the integral image, but now the mean value of each square is computed.
Differences between mean values of each square in the first ring and the corre-
sponding mean values in second ring are taken. Next the obtained differential
signal is normalized to the unit interval and then transformed by FFT. Again
only the first n/2 of DFT complex coefficients are joined to the output feature
vector.

In the final design of Gabor jets we take six jets of the first kind and three
jets of the second with parameters defined in the following table:

type 1 1 1 1 1 1 2 2 2
n 16 16 16 32 32 64 16 16 32
r1 8 13 20 16 20 24 10 13 16
r2 – – – – – – 16 20 21

After the first stage of feature extraction, the feature vector has 5 ∗ 16 + 3 ∗
32 + 64 = 240 of real components.

2.2 Extractor II: Modified Linear Discriminant Analysis

Having DFT description over local rings as feature vector of length 240 we
discriminate them using a Modified Linear Discriminant Analysis (MLDA).
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In case of face detection when we deal with two classes only, i.e. with facial
descriptions and non-facial descriptions, the classical LDA enables only scalar
discriminative feature. It makes harder separation of two classes by linear ap-
proach. Therefore we modify the concepts of within and between-variances and
related scatter matrices, in order to get vectorial discriminative features.

Namely, the classical LDA maximizes the Fisher ratio of between-class vari-
ance over within-class variance defined as follows ([8],[9]):

fX := varb(X)
varw(X)

varw(X) := 1
|If |

∑
i∈If

‖xi − xf‖2 + 1
|If̄ |

∑
i∈If̄

‖xi − xf̄‖2

varb(X) := ‖xf − x‖2 + ‖xf̄ − x‖2

(1)

where the training set X of feature vectors is divided into the facial part indexed
by If and the non-facial part with remaining indices IF̄ .

It appears that we obtain better discrimination results with the following class
separation measure:

mX := mvarb(X)
mvarw(X)

mvarw(X) := 1
|If |

∑
i∈If

‖xi − xf‖2

mvarb(X) := ‖xf − x‖2 + 1
|If̄ |

∑
i∈If̄

‖xi − xf‖2

(2)

Like in classical case, the optimization procedure requires replacing variances
by traces of scatter matrices:

mX := trace(Smb(X))
trace(Smw(X))

Smw(X) := 1
|If |

∑
i∈If

(xi − xf )(xi − xf )t

Smb(X) := (xf − x)(xf − x)t + 1
|If̄ |

∑
i∈If̄

(xi − xf )(xi − xf )t

(3)

Since for the large number of positive training examples the scatter matrix
Smw is of full rank then we can optimize m(W ) := mW tX w.r.t. the training set
X by Cholesky factorization ([10]) of Smw = CmwCt

mw and solving the following
EVD problem for the symmetric, semi-definite matrix S′

mb := C−1
mwSmbC

−t
mw :

SmbW = λSmwW, Smw = CmwCt
mw, W ′ = Ct

mwW

S′
mb = W ′Λ(W ′)t

W = C−t
mwW ′

(4)

If columns of W ′ are sorted by decreasing eigenvalues λi and we want to have
n ≥ 2 LDA features then we select from W the first n columns as the optimal
solution.

2.3 Postprocessing: Graph Matching

Let fiducial facial points be depicted according the notation from the Fig. 5. All
detected fiducial points to be preserved must pass, for at least one scale, through
the graph matching procedure with the following pseudocode.
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edge length

A 1.00
B 1.05
C 0.99
D 0.98
E 1.41
F 1.43

Fig. 5. Fiducial points and their symbols used in graph matching algorithm: le - left
eye, re - right eye, ln - left nostril, rn - right nostrils corners

forall left eyes le do
forall right eyes re do

if distance(le.Y,re.Y)<15*scale
and 30*scale>(re.X-le.X)>20*scale
forall left nostrils ln do

if distance(le.X,ln.X)<30*scale
and 35*scale>(ln.Y-le.Y)>20*scale
forall right nostrils rn do

if distance(re.X,rn.X)<30*scale
and 35*scale>(rn.Y-re.Y)>20*scale
set distance(le,re):=norm;
normalize other distances:

distancen:=distance/norm;
get total_distance as the sum of distances

between actual graph and reference graph;
if total_distance<threshold

consider points as detected face;
endfor

endfor
endfor

endfor

It is interesting that averaged normalized distances between fiducial points
indicate their displacement in the corners of a square.

3 Experiments

We have compared DGJ and AdaBoost (AB)methods for several facial databases:
Mpeg, Banca, BioID. To experiments only near frontal pose images were selected
but with varying lighting conditions. In the following table the false rejection
rate (frr in percent) and false acceptance (fa in items) are given. From this com-
parison we observe that DGJ is a very promising approach for face detection.

Face Base [#] DGJ frr [%] AB frr [%] DGJ fa [#] AB fa [#]

Mpeg normal. (500) 3.5 11.6 0 0
Banca original (500) 36.0 19.4 4 18
Banca normal. (500) 23.0 39.0 0 0
BioID original (1500) 9.8 17.5 2 9
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4 Conclusion

The proposed face detector looking for corners of special facial square using com-
bined feature extraction by DGJ and LDA and next matching to face reference
graph has very promising performance. Its false acceptance rate is very low, but
false rejection rate still has a room for improvements. However, in experiments
it is consistently better than AdaBoost technique.
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Abstract. The paper proposes a new iris coding method based on Zak-
Gabor wavelet packets. Details of the Zak-Gabor-based coding are pre-
sented in the paper, and the method of adaptation the transformation
parameters is described. The methodology may be of particular help
in development mobile iris systems, where the iris capture devices may
present a limited quality. The method was evaluated and presents very
favorable results.

Keywords: Iris recognition, biometrics.

1 Iris Measurement and Preprocessing

Biometric authentication starts from acquisition of appropriate biological data
characteristic of an individual. We use a dedicated hardware designed and con-
structed to capture the iris from a convenient distance, with the desired speed
and a minimal user cooperation. To illuminate iris we apply a near infrared 850
nm light that meets the ISO recommendations [1]. The system uses the pupil
position estimated in real time to guide a person to position the eye, and to
release the image capturing process. In this process several frames are captured
at varying focal lengths, and the sharpest frame is selected for further analysis.
The latter procedure compensates a small depths-of-field typical in iris imaging.

The raw images contain the iris and its surroundings. The iris must be first
localized. To detect a boundary between the pupil and the iris, we propose a
method which is sensitive to circular dark shapes, and unresponsive to other dark
areas as well as light circles, such as specular reflections. This may be achieved by
a modified Hough transform that uses the directional image to employ the image
gradient, rather than the edge image, which neglects the gradient direction. A
boundary between the iris and the sclera may be approximated by a circle. To
determine this boundary, we independently apply Daugman’s integro-differential
operator [2] to two opposite horizontally placed angular sectors, 45◦ each, since
the entire circular iris boundary may be partially disturbed by eyelids. The two
radii of the resulting arcs are averaged to construct a circle approximating the
outer iris boundary.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 195–202, 2007.
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The iris ring limited by the two circular boundaries may still be disrupted
by irregular objects like reflections or eyelashes. It is desirable to use occlusion
detection that does not assume any particular occlusion shape. We localize non-
uniformity points within the iris ring and then construct an occlusion map.
First, we calculate the sample variances of the iris image intensity for a set of
radial sectors. These variances are compared to the maximum allowed variance
obtained for directions in which the probability of iris occlusion is minimal.
Those directions in which the calculated variance exceeds the threshold value
is marked as an occlusion direction, and the appropriate occlusion radius is
stored.

Based on the localized occlusions, we select two opposite 90◦ wide angular
iris sectors. Each iris sector is then transformed by resampling and smoothing
to a P × R rectangle, where P = 512 and R = 16. The rows f� of these two
rectangles will be further referred to as the iris stripes. The experiments (see
also [2]) revealed much higher correlation of the iris image in the radial direc-
tion, i.e. along the iris stripes, as compared to the angular direction, across the
stripes. Figure 1 illustrates the preprocessed iris image and the corresponding
iris stripes.

Fig. 1. Left: raw camera image processed by our system. The eyelids were automatically
detected, and the sectors free of occlusions (marked as white full circles) are selected.
Star-like shapes on the pupil are reflections of the illumination NIR diodes, and the
’+’ marks represent the pupil and the iris centers. Right: iris stripes automatically
determined for the image shown on the left.

2 Database of Iris Images

Calculations in this work are employing our proprietary database of 720 iris im-
ages. The data was collected for 180 different eyes, with 4 images of each eye. We
used 3 images of each eye in the estimation stage to calculate the iris templates,
and the remaining single image of each eye in the verification stage. Typically,
in iris capturing systems with one-eye capture optics, the images taken may be
mutually rotated. Thus the mutual rotation of images used in the estimation
stage was corrected using the correlation between images. The remaining fourth
image was not altered.
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3 Iris Features

3.1 Choice of Features

It is often convenient to characterize a discrete-time signal in the frequency
domain, thus describing stationary energy distribution. For non-stationary sig-
nals, it might be worthwhile to characterize the frequencies locally, and to find
the distribution of signal energy in local (possibly overlapping) time segments
by application of time-frequency or time-scale analysis. Similarly, any constant
(time-independent) space-homogeneous 1D or 2D pattern can be characterized
in a 1D or 2D frequency domain. If a pattern is not space-homogeneous, its spa-
tial frequency contents may be analyzed locally, with the use of space-frequency
or space-scale analysis. Although the iris texture makes a 2D pattern, we sim-
plify it to a set of 1D patterns with a certain loss of information and apply the
space-frequency analysis locally to the iris circular sectors to describe their local
features and to construct a compact iris features set.

There exist various tools to represent the signal in the mixed space-frequency
domain. A family of Windowed Fourier Transforms apply Fourier Transform
to windowed signals in time or space. The Gabor transform belongs to this
family, and uses a Gaussian window characterized by its width. The window
width significantly influences the resulting iris features and must be carefully
chosen. We use the space-frequency analysis that employs waveforms indexed
by space, scale and frequency simultaneously, what results in a larger set of
possible tilling in the space-frequency plane, possibly redundant. This directs
our methodology toward a wavelet packet analysis. There is a need to select
appropriate frequencies and scales simultaneously to make the transformation
sensitive to individual features existing in the iris image. In this paper we propose
a systematic selection of appropriate scales and frequencies of the iris coding.
This approach enables our method to be applied for databases of images of
various resolution.

3.2 Application of Zak’s Transform

Gaussian-shaped windows are not orthogonal, i.e., the inner product of any two
windows is nonzero, therefore Gabor’s expansion coefficients cannot be deter-
mined in a simple way. The fastest method of Gabor’s expansion coefficients
determination consists of application of Zak’s transform [3] and is often referred
to as Zak-Gabor’s transform. We outline briefly Zak-Gabor’s transform for a
single iris stripe and a fixed window width.

Denote by gs a one-dimensional Gaussian elementary function of the width
index s, sampled at points 0, . . . , P − 1, namely

gs(p) = e−π
(
(p+ 1

2 )/2s
)2

, p = 0, . . . , P − 1 (1)

where s = 2, . . . , S, and for the stripe length P = 512 we set S = 8. If P is
(typically) chosen to be even, the 1

2 term in (1) makes gs to be an even function.
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Let M be the number of possible translations of gs, and K be the number
of frequency shifts, where, following Bastiaans [3], we always take M = P/K.
A shifted and modulated version gmk;s of the elementary function gs can be
constructed, namely

gmk;s(p) = gs(p − mK)eikp2π/K , p = 0 . . . P − 1 (2)

where m = 0, . . . , M − 1 and k = 0, . . . , K − 1 denote the space and frequency
shifts, respectively, and gs is wrapped around in the P -point domain. The finite
discrete Gabor transform of the iris stripe f� is defined as a set of complex
coefficients amk;s� that satisfy the Gabor signal expansion relationship, namely

f�(p) =
M−1∑

m=0

K−1∑

k=0

amk;s�gmk;s(p), p = 0 . . . P − 1 (3)

Following Bastiaans [3], we further set K = 2s. Note that once the frequency
index k is kept constant, gmk;s may be localized in frequency by a modification
of s. This is done identically as the scaling in a wavelet analysis, hence we call
s the scale index. The number of Gabor expansion coefficients amk;s� may be
interpreted as the signal’s number of degrees of freedom. Note that the number
S of scales together with the stripe size P determine both M and K.

The discrete finite Zak transform Z f�(ρ, φ; K, M) of a signal f� sampled
equidistantly at P points is defined as the one-dimensional discrete Fourier trans-
form of the sequence f�(ρ + jK), j = 0, . . . , M − 1, namely [3]

Z f�(ρ, φ; K, M) =
M−1∑

j=0

f�(ρ + jK)e−ijφ2π/M (4)

where M = P/K. Discrete Zak’s transform is periodic both in frequency φ
(with the period 2π/M) and location ρ (with the period K). We choose φ and
ρ within the fundamental Zak interval [3], namely φ = 0, 1, . . . , M − 1 and
ρ = 0, 1, . . . , K − 1.

Application of the discrete Zak transform to both sides of (3) and rearranging
the factors yields

Z f�(ρ, φ; K, M) =
M−1∑

j

[
M−1∑

m

K−1∑

k

amk;s�gs(ρ + jK − mK)eikρ2π/K

]
e−ijφ2π/M

=

[
M−1∑

m=0

K−1∑

k=0

amk;s�e
−i2π(mφ/M−kρ/K)

][
M−1∑

j=0

gs

(
ρ + jK

)
e−i2πjφ/M

]
(5)

= Fas�(ρ, φ; K, M)Z gs(ρ, φ; K, M)

where Fas�[ρ, φ; K, M ] denotes the discrete 2D Fourier transform of an array of
as� that represents Gabor’s expansion coefficients determined for the iris stripe
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f� and scale s, and Z gs[ρ, φ; K, M ] is discrete Zak’s transform of the elementary
function gs. This shows that Gabor’s expansion coefficients can be recovered from
the product form (5). Once K and M are chosen to be powers of 2 (making also
the signal length P to be a power of 2), the calculation of both Z f [ρ, φ; K, M ]
and Z g[ρ, φ; K, M ], and inversion of 2D Fourier series can employ Fast Fourier
Transform thus yielding computation times proportional to those in the FFT.

3.3 Definition of Iris Features

Calculation of Gabor’s transform for all iris stripes and for all scales results in a
set of coefficients a indexed by the quadruple: within-stripe position, frequency
index, scale and stripe index (m, k, s, �). Inspired by Daugman’s work [2], we
define the signs of the real and imaginary parts of Zak-Gabor coefficients as the
feature set B, namely

B = {sgn(�(amk;s�)), sgn(�(amk;s�))} (6)

where m = 0, . . . , M − 1, k = 0, . . . , K − 1, � = 0, . . . , 2R − 1 and s = 2, . . . , S.
Since Fourier’s transform is symmetrical for real signals, for each position m the
coefficients with the frequency index k > K/2 can be ignored. Since M = P/K,
for each s there are (N−1)P/2 coefficients to be determined. Taking into account
that this analysis is carried out for all iris stripes, and remembering that R =
16, S = 8 and P = 512, the total number of coefficients calculated for the iris
image is R(S−1)P = 57, 344. Both real and imaginary parts are coded separately
by one bit, hence N = |B| = 114, 688 features may be achieved, where | · | denotes
the number of elements in a finite set. The features, positioned identically for
each iris, may thus form a binary vector. Thus, matching two features requires
only a single XOR operation, and the Hamming distance can be applied to
calculate the score.

We stress that B should not be confused with the so called iriscodeTM invented
by Daugman. The latter one is a result of an iris image filtering, while B is
constructed with Gabor expansion coefficients.

3.4 Features Selection

The feature set B selected so far is oversized and only its certain subset will be
included into the final feature set. All elements of B will thus be considered the
candidate features. We propose a two-stage method that selects Zak-Gabor coef-
ficients. We further consider partitions of all candidate features B onto candidate
feature families Bk,s, which represent all candidate features that are labeled by
the same scale k and frequency s, and differ by space indices m and �, namely

Bk,s = {sgn(�(amk;s�)), sgn(�(amk;s�)) : m = 0, . . . , M − 1, � = 0, . . . , 2R − 1}

Stage one: selection of useful features. The first selection stage consists of choos-
ing a subset B

0 of candidate features B, called here the useful features. To de-
termine B

0, we analyze a variability of candidate features. For each feature b
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we calculate the within-eye sum of squares SSW (b), and the between-eye sum
of squares SSB(b). We categorize the features to maximize SSB and minimize
SSW . We tried several methods to solve this multicriteria maximization prob-
lem. The best results were obtained when we minimized the distance from the
most desired point on SSW ×SSB plane. This point was set as

(
minb∈B SSW (b),

maxb∈B SSB(b)
)
, Fig. 2 (left).

We use the order introduced by the above procedure in the set of candidate
features B in a procedure removing a high correlation of candidate features to
increase an ‘information density’. We include k-th candidate feature into the set
B

0 only if it is not strongly correlated with all the features already selected.
We base our useful feature definition on the decidability coefficient d′ [2] cal-

culated for a given feature subset. We calculate the decidability coefficient for
each set of candidate features included into B

0. The decidability varies with
the number of candidate features included: it first grows to reach the maximum
and then decreases. Experiments show that the decidability d′ is highest for
the correlation threshold around 0.3, Fig. 2 (right). For this solution there is
no between-eye – within-eye overlap of sample distributions, i.e., there are no
false matches and no false non-match examples in the estimation data set. The
resulting 324 useful features pass to the second feature selection stage. We may
add that our procedure included only such features for which SSW < SSB.

The higher is the number ν(k, s) of useful features in the candidate features
family Bk,s, the more important is (k, s) in iris recognition. This enables to
categorize these families in the next stage of our selection procedure.

Stage two: selection of feature families Bk,s. To finally decide for the best fre-
quencies k and scales s, independently for real or imaginary parts of the Zak-
Gabor coefficients, we sort Bk,s by decreasing ν(k, s) separately for real and
imaginary parts of coefficients. This procedure prioritizes the families that are

Fig. 2. Left: within-eye sum of squares vs. between-eye sum of squares and the area of
useful features. Right: the decidability coefficient vs. number of useful features selected
for a few correlation thresholds allowed within the useful features set.
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most frequently ‘populated’ by the useful features. Such candidate feature fam-
ilies resulting in maximum d′ are selected to the final feature set. This finally
produces the iris feature set of 1024 bits (128 bytes), containing only four fami-
lies. For this final feature set, we achieved the maximum decidability d′ and no
sample verification errors.

3.5 Features Personalization

Once the optimal feature families, namely the best scale-frequency pairs indexed
by s and k, are selected, the iris features set is calculated for those chosen s and
k and all m = 1, . . . , M − 1, and � = 0, . . . , 2R − 1. Each Zak-Gabor coeffi-
cient can ‘measure’ the correlation between the modulated Gaussian elementary
function gmk;s and the corresponding stripe. The question arises how ‘robust’
are the consecutive Zak-Gabor coefficients against noise, and iris tissue elastic
constrictions and dilations.

Due to a significant variability of the iris tissue, some gmk;s may not conform
with the iris body, resulting in small coefficients. Such a situation is dangerous,
since once the coefficients are close to zero, their signs may depend mostly on a
camera noise, and consequently may weaken the final code. This motivates per-
sonalization of the iris feature sets that employ only those Zak-Gabor coefficients
that exceed experimentally determined threshold, for which the decidability was
maximal. Experiments show a far better discrimination between the irises if the
personalized coding is employed.

3.6 Template Creation and Verification

Typically, more than one iris image is available for enrollment. For a given eye,
a distance is calculated between a feature set of each image and the feature sets
calculated for the remaining enrollment images. As the iris template we select
this feature set, for which this distance is minimal.

Small eyeball rotations in consecutive images may lead to considerable de-
terioration of within-eye comparison scores. This rotation can be corrected by
maximizing the correlation within the images enrolled. Since during verification
the iris image corresponding to the template is unavailable, another methodol-
ogy must be applied. We use an iterative minimization of the comparison score
between Zak-Gabor-based features determined for a set of small artificial shifts
of the iris stripes being verified.

4 System Evaluation and Summary

Figure 3 shows a sample distributions of genuine and impostor comparison scores
achieved for theproposed coding.No sample errorswere observed (FRR=FAR=0%)
for the database used. However, the results must be taken with care since we used
various images of the same eyes for estimation as well as for verification. Consider-
ing statistical guarantees and assuming 95% confidence level for the results
obtained we expect FRR < 0.017 and FAR ∈ 〈0.000093, 0.03〉 in this approach.



202 A. Czajka and A. Pacut

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Comparison score

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Fig. 3. Sample distributions of genuine and impostor comparison scores in the verifica-
tion stage achieved for Zak-Gabor-based personalized coding with iterative eye rotation
correction. No sample errors were encountered.

The Zak-Gabor coding was used in a number of applications, for instance
in remote access scenario [4], in BioSec European project for the purpose of
the biometric smart card development and it is also an element of the original
iris recognition system prototype with eye aliveness detection [5]. Our feature
selection procedure can be applied also to other iris coding methods.
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Abstract. This paper overviews several problems in Kansei engineering such as 
Comparison of Intelligent systems with Kansei systems, Kansei dialog, family 
and individuals, framework of a Kansei system, non-verbalized area, and 
exchange from tacit knowledge to explicit knowledge. Then emphasis is put on 
importance of the two dimensional space defined by natural and artificial 
Kansei. 

Keywords: Kansei engineering, Natural and artificial Kansei, Kansei systems, 
Kansei dialog, Non-verbalized area, Tacit knowledge, Explicit knowledge. 

1   Introduction 

The 19th and 20th Centuries were machine-centered eras. However the 21st Century 
will be centered on various human senses, where science and technology will be 
appraised on being harmonious to human beings, and to natural and social 
environments. Therefore, it is supposed that research and development of advanced 
technologies cannot be decided from only a technological point. Before the beginning 
of the 21st century, stand-alone technologies could not solved many issues. For 
example, it is extremely important that people in the technological and science fields 
cooperate with people in the human and social science areas. In our era, it is 
impossible to solve many issues only by technology.  

Today stress should be placed on solving issues through a combination of the 
science and humanities fields. Therefore, conventional problem-solving methods or 
approaches must be adjusted to properly deal with such issues. In order for 
technology to aid providing happiness it cannot stand alone. It must cooperate with 
various fields related to the issues that are being dealt with by the human and social 
sciences.  

Issues which have remained unsolved until the beginning of the 21st century 
cannot be understood from the perspective of conventional technological views. One 
of the most important aspects within such issues is to place stress on our senses, 
consciousness, and feeling. In Japanese these are generally named “Kansei”. Kansei is 
the total concept of senses, consciousness, and feelings, that relate to human behavior 
in social living. Especially, Kansei relates to the research and developments of 
products that foster communication and information transfer among people. There are 
various approaches to achieve this type of communication. However, Kansei has not 
been considered, nor studied sufficiently to date. The objective of this paper is to 
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discuss the basic concepts and methods of the system and provide a framework for 
future Kansei oriented research. 

2   Framework of Intelligent Systems 

First of all, let us describe the framework of intelligent systems. As Fig.1 shows, the 
horizontal axis is expression and learning and the vertical axis is Kansei. There are 
four quadrants. The 1st to 4th quadrants correspond to learning engineering, knowledge 
engineer- ing, fuzzy engineering and related work, respectively. Although these terms 
cannot sufficiently express all the fields include-ed in the framework, an intelligent 
system is understood to exist in the framework. The 4th quadrant includes neural 
networks, genetic algorithms, genetic programming and chaos systems and is 
included as a category of the intelligent system. These fields are termed soft 
computing. Recently, the field of soft computing has been very active. 

 

Fig. 1. Framework of Intelligent System 

3   Requirement in Kansei Dialog 

Let us discuss a two dimensional space in which elements required for Kansei dialog 
are mapped. When we build a structure for Kansei that has been drawn from then 
intelligent system, what kind of elements should be placed in the two dimensional 
space? As shown in Fig.2, it is easier to understand the vertical axis using “natural 
Kansei” of real hu man beings and “artificial Kansei,” which realizes or expresses 
“artificially” natural Kansei. 

The horizontal axis in Fig.2 has its left side as corresponding to “measurement,” 
which means the perception and cognition that is necessary to understand a concept, 
in other words the thoughts and intentions of humans. Let us name this space 
“Framework of Kansei Systems.” In the framework, research is conducted in the area 
of “natural Kanei” so as to build a viewpoint of natural Kansei that can be analyzed so 
as to explain the Kansei phenomena in nature with the goal of building a 
mathematical model of natural Kansei. research in the 3rd and 4th quadrants can be 
understood from such a perspective. 
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Fig. 2. Elements required in Kansei Dialog 

Let us name this space “Frame- work of Kansei Systems.” In the framework, 
research is conducted in the area of “natural Kanei” so as to build a viewpoint of 
natural Kansei that can be analyzed so as to explain the Kansei phenomena in nature 
with the goal of building a mathematical model of natural Kansei. Research in the 3rd 
and 4th quadrants can be understood from such a perspective. 

4   Family and Individuals from Kansei 

The research conducted to analyze and explain the Kansei held by we humans 
naturally is included in the field of natural Kansei. The aim is to explain the nature of 
Kansei from a family point of view by aggregating various statistical data and 
analyzing them. The area of natural Kansei overlaps the 3rd and 4th quadrants in 
Figure 3, so that natural Kansei can be closely modeled and thus ex- plained by using 
mathematical equations. The research points included in the area of natural Kansei 
were chosen to clarify the nature of the family of human Kansei.  

 

Fig. 3. Family and Individuals from Kansei 
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In contrast, the field of artificial Kansei overlaps the 1st and 2nd quadrants and is 
used to build a system that can properly respond to individual situations. In other 
words, the proposed system can provide different services for varied individuals. The 
most important asset of the system is that it can deal with differences among 
individuals. Therefore, artificial Kansei can allow for individualization within mass-
production. It is in this area that a company can then foster flexible decisions, 
strategies and policies. 

Hitherto, research on Kansei was pursued on natural Kansei. The methods 
employed and applications were, as shown by the 3rd and 4th quadrants in Fig.4, about 
cognitive science and modeling techniques. For example, questionnaires analyzed by 
the semantic differential method and other multivariate analyses were used to clarify 
the nature of human Kansei from the viewpoint of their forming a group, a related 
family. Such results can structure a database. Much of the research conducted, which 
was on measurements and questionnaires, can be included in this database. The 4th 
quadrant is mainly relating to modeling and methodology. Adjective words and 
Kansei words from the early stages of Kansei research have been evaluated so as to 
determine their validity for inclusion in  the database. Multivariate analyses were 
widely employed to analyze statistical data. Since then, fuzzy systems, neural 
networks, genetic algorithms and so on have been used as effective tools. Recently, 
the method of rough sets has been widely utilized in re- search regarding Kansei. 
Scientists using rough sets intend to discover knowledge or rules that are latent within 
the data. Understanding the concept of rough sets is vital to insure its value as an 
effective analytical devise for Kansei. Recently, a research group on rough sets 
published “Rough sets and Kansei”[1], justifying the rough set method. 

5   Framework of a Kansei System 

As mentioned above research on natural Kansei intends to study the real subject of 
human Kansei. Research on the area of artificial Kansei is seen in the 1st and 2nd 
quadrants. The most distinguishing feature of this research is to construct a system 
that will behave differently according to each situation and each individual. That is, 
the most valuable aspects in the field are that various services can be provided to 
various people and that such a system can deal with differences between individuals. 

It is important to hold Kansei as a system, to understand Kansei from the point of a 
systematic view. In the field of natural Kansei, cognitive science and modeling are 
studied from this perspective in the 3rd and 4th quadrants. However, the field of 
artificial Kansei, placed in the upper portion of the two dimensional space, has Kansei 
expressions in the 1st quadrant and Kansei recognition in the 2nd quadrant. This design 
represents Kansei expression. This design is based upon a wide range of research. In 
particular, by employing Kansei methods, new perspectives and new methodologies 
can be brought to universal and information design. 

The philosophy of universal design(UD) is to design products or provide urban 
designs where various people can use a product or a city with the least amount of 
difficulty. As universal design relates to various places and situations in daily living, 
many experts from myriad fields participate. These fields include archit- 
ecture, housing, transportation, urban design, industrial products, daily goods, and 
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information techno- logy. As mentioned above, universal design is used for making 
products, buildings and urban environments more user-friendly. 

The following are the 7 rules of universal design. The 7 rules clarify the direction 
and method of design in relation to wide areas for environments, products and 
communications. The 7 rules are employed to not only direct design evaluation and 
the design process, but also to enlighten consumers, as well as designers, about which 
products and environments are user-friendly. The 7 rules of universal design are 
specifically written as follows: 

(Principle 1) Fairly usable for any person 
(Principle 2) Freedom in usage is high. 
(Principle 3) Usage is simple. 
(Principle 4) The required information is understandable. 
(Principle 5) The design is free from careless mistakes and dangers.  
(Principle 6) The design is easy to use: there are no difficult physical requirements  

and it can be used with little power. 
(Principle 7) There is sufficient space and size for easy access. 

It is expected that the methodology based on Kansei can be utilized in information 
design. The rapid development of technology and media require drastic and more 
qualitative changes in the handling of information. In particular, “learning” is being 
termed a business in the 21st century. Various learning methods or chances are being 
provided in parallel and concurrently for all generations. For instance, there are real 
time conversations, gestures and physical interaction, facial expressions, new reading 
methods, smart TV programs, entertainment and so on. This is a mode of 
entertainment that makes people fully delighted after giving information, and that 
changes the learned information into intelligence[2]. 

 

Fig. 4. Framework of a Kansei system 
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approach aimed at hard robots. It is much more important to develop Kansei 
recognition within the robot. This places stress on developing software robots. For 
example, this would be a non-hardware robot (software robot) that moves freely in an 
Internet (cyberspace) envi- ronment and gathers data. A robot based on Kansei would 
have wider applications than one based on hardware. 

6   Kansei in Non-verbalized Area 

The phrase “Today is an information society” is heard frequently. Even if this so, it is 
important to show whether this statement is true or not.  What does it state? 
Knowledge is a reward obtained from understanding through experience. Even if 
information is presented, it may not be transferred accurately. When relations are 
constructed so as to mutually act with other persons or systems, and when patterns 
and meanings of information are assimilated with each other, then the transfer of 
knowledge will occur. 

 

Fig. 5. Kansei in non-verbalized area (modified from [2]) 

When information is presented after being integrated and put in order, knowledge 
cquisition will be realized. The stimulation of this information creates experience. 
What is obtained from such experiences is knowledge. It is important that knowledge 
becomes wisdom after the understanding of knowledge is deepened. Fig.5 shows this 
flow.  
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aspects as to how wisdom is acquired and developed that are unknown.  
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interpretation: these are very individual processes. Wisdom cannot be created by a 
process such as data and information. It is also impossible to share wisdom with 
another person in the same way that knowledge can be shared. It is understood that 
each individual obtains wisdom by themselves. As Fig.6 shows, Kansei is thought to 
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be the bridge from knowledge and intelligence to wisdom, in the flow of the 
understanding process that starts from data. That is, since the contents understood 
(impression) are different among individuals, Kansei bridges them and such 
understanding occurs at an extremely individual level. 

 

Fig. 6. Kansei in the process of context understanding (modified from [2]) 

7   Kansei to Exchange Tacit Knowledge to Explicit Knowledge 

In this section the most important point to be addressed is how to treat the area of 
sense that cannot be verbalized even if it is known. This includes implicit knowledge. 
Generally knowledge can be classified into tacit knowledge and explicit knowledge. It 
is said that human knowledge is mostly tacit knowledge. Nevertheless, it is necessary 
to verbalize and objectify senses and concepts in order to understand them and to 
transfer the related ideas coupled with them. That is, it is essential to change tacit 
knowledge into explicit knowledge. However, it is said that it is difficult to execute a 
rapid evaluation and transfer of knowledge (tacit knowledge) if it is possessed with a 
body or as an intuition. Yet, it is essential that objective knowledge (explicit 
knowledge) be employed in the process. 

 

Fig. 7. Explicit knowledge from tacit knowledge 
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guidelines of operational procedures, systematic analysis and verbalized questions 
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Kansei is naturally different for individuals, it is a problem that knowledge transfer 
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people and systems, that is, a Kansei transferring device is required: one like that 
which is shown in Fig.7. This is also equivalence to that it is variously in how to feel 
the person, shown in Fig.8. 

 

Fig. 8. Kansei transform: It is variously in how to feel the person 

8   Concluding Remarks 

As explained at the beginning of this paper, the framework of a Kansei system shown 
in Figure 4 is proposed and related topics are discussed in order to answer the 
questions of how human Kansei (senses) functions, how these relate with each other, 
and which method is most appropriate for Kansei. It should be noted that the two 
dimensional space can be divided by defining the vertical axis of natural Kansei and 
artificial Kansei and by the horizontal axis of measurement and expression. Research 
on artificial Kansei has not started yet. Such research is important in the development 
of software robots (smart agents). Also, it should be emphasized that Kansei plays an 
important role in the process of transferring tacit knowledge into explicit knowledge 
in the non-verbalized area as Figure 5 shows. As Figure 3 shows, this area is shared 
with the area of artificial Kansei corresponding to an individual. Kansei is extremely 
personal and user- participatory, that is, Kansei is different among individuals. It is 
also important to decide, in realization of artificial Kansei, what should be taken into 
consideration, what should be removed from specification and how much vagueness 
can be accepted. 
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Abstract. In this paper, we discuss attribute-value reduction for raising
up the understandability of data and rules. In the traditional “reduction”
sense, the goal is to find the smallest number of attributes such that
they enable us to discern each tuple or each decision class. However,
once we pay attention also to the number of attribute values, that is, the
size/resolution of each attribute domain, another goal appears.

An interesting question is like, which one is better in the following
two situations 1) we can discern individual tuples with a single attribute
described in fine granularity, and 2) we can do this with a few attributes
described in rough granularity. Such a question is related to understand-
ability and Kansei expression of data as well as rules. We propose a
criterion and an algorithm to find near-optimal solutions for the crite-
rion. In addition, we show some illustrative results for some databases
in UCI repository of machine learning databases.

Keywords: Attribute Values, Reduction, Grouping, Granularity,
Understandability.

1 Introduction

In general, the data handled in the fields of pattern recognition and data mining
are expressed by a set of measurement values. These measurement values are
strongly affected by the intention of the observer and the precision of measure-
ment. Therefore, there is no deterministic evidence that the given representation
is essential. There might exist more appropriate representation of data in evoking
our “Kansei”. If so, it would bring easiness/intuition for the analyst to interpret
them. Here “Kansei” is a Japanese word which refers to the psychological image
evoked by the competing sensations of external stimuli, and affected by emo-
tions and personal sense of values. This word is often used in the various fields
which are derived from “Kansei Engineering” proposed by Nagamachi [1], such
as Kansei Information Processing, Kansei Information Retrieval, Kansei mining,
and so on [2,3].
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Obviously, too rough description is not enough for distinguishing an object
from the others. While, too fine description is redundant. That is, it is desired
to find an appropriate roundness of representation on that problem domain and
the data available. Such a trial is seen as “reduction” in rough sets [4,5]. In
reduction, we seek the minimum number of attributes enough for discerning in-
dividual objects. However, such a reduction is not always sufficient in roundness
viewpoint. To find an appropriate Kansei representation, the attribute values are
also required to be a few or succinct. To achieve this goal, we consider reduction
of attribute values in addition to reduction of attributes. We do this according
to several criteria on the basis of discernibility. This way includes the traditional
reduction, as will be described later on. We have already started discussion on
this issue [6,7]. In this paper, we describe the methodology in a more general
scheme and show its application to rule generation.

2 Reduction and Partition

Rough sets theory [4,5] is known as one of the theories which give mathemat-
ical frameworks to describe objects and to understand them. One of purposes
of rough sets theory is to find the minimal subsets of attributes keeping some
discernibility on a given equivalence relation. This goal is referred to as “reduc-
tion”. However, the number of attribute values, not the number of attributes,
has not been considered so far. Therefore, it can happen that the number of at-
tributes is small but those attributes are described in a very fine way, sometimes
with infinitely many values. Such a fine description is not useful in the light of
understandability of data or rules or both.

A given equivalence relation specifies “granularity” which gives a basic level of
expression of any concept, and each equivalence class gives a granule [8,9,10]. We
can see that the traditional reduction is the procedure to make granules expand
maximally in some attributes. However, it does not simplify the representation
in the selected attributes. For example, in Fig. 1, in reduction we can discern
all the data in the first attribute only (Fig. 1 (b)), but, in fact, two attribute
values are sufficient to separate two decision classes (Fig. 1 (c)). With this rough
representation, we ca use some linguistic representation (Kansei representation),
say “low or high” or “small or large.”

(a) (b) (c)

Fig. 1. Reduction and partition: (a) base
relation, (b) reduction, and (c) the sim-
plest partition

(a) (b) (c)

Fig. 2. Several types of granularity:
(a) Measurement granularity RM , (b)
Individual-discernible granularity RI , and
(c) Class-discernible granularity RD
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3 Reduction of Attribute Values Using Granularity

Let us describe formally the reduction of attribute values or granularity. First,
let us consider m different attributes A1, A2, . . . , Am, and denote their domains
Di = {ai1, ai2, . . . , aini}(i = 1, 2, . . . , m). In addition, let us consider a class
attribute C with its domain DC = {c1, c2, . . . , cnC }. Here, we denote the universe
by U = D1 × D2 × · · · × Dm. An information table T is given as a subset of U .
A tuple of T is expressed by (x, y) with x = (x1, x2, . . . , xm), xi ∈ Di, y ∈ DC .
By (xi, yi), we denote ith tuple. We introduce several types of granularity as
follows.

3.1 Discernible Granularity

First, we call the granularity of given data itself the “measurement granular-
ity” (RM ). We give it on account of the measurement precision, the description
precision, and computational expression on memory. Here we assume that the
measurement granularity is fine enough for discerning individuals. However, it
can happen that the measurement granularity is not enough for this goal. Then
we require a finer granularity in measurement by adopting higher resolution de-
vices or manners. Next, we define two types of granularity on the basis of two
kinds of discernibility: 1) “individual-discernible granularity” (RI) requiring

xi �= xj ⇒ [xi]RI �= [xj ]RI for ∀i �= j,

and 2) “class-discernible granularity” (RD) requiring

yi �= yj ⇒ [xi]RD �= [xj ]RD for ∀i �= j,

where [x]R is an equivalence class including x in equivalence relation R. An exam-
ple is shown in Fig. 2. These types of granularity are assumed to be refinements
of the successors, that is, RM ≤ RI ≤ RD.

3.2 Evaluation of Granularity

From the viewpoint of understandability of data or rules, it is preferable to
minimize the number of attributes and the number of attribute values as long
as it ensures some discernibility. Let ni be the number of attribute values in
ith attribute and n be the total sum of them. Then, we propose the following
criterion to minimize:

J =
m∏

i

ni + kH
(n1

n
,
n2

n
, . . . ,

nm

n

)
/ log2 m,

where, H
(n1

n
,
n2

n
, . . . ,

nm

n

)
= −

m∑

i

ni

n
log2

ni

n
, n =

m∑

i

ni.
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Here, k takes a real value in [−1, 1]. Especially we use k = ±1. For k = −1, it
enhances the equality n1 ∼= n2 ∼= · · · ∼= nm. While, k = 1 enhances the reverse,
that is, a concentration on a few attributes such as n1 = n − m + 1, n2 = · · · =
nm = 1. In either case, the first term is dominant, so it requires the minimal
number of attribute values. It is also noted that ni = 1 does not increase the
value of the first term.

3.3 Algorithm

To find the granularity that minimizes the criterion, an exhaustive search is not
practical. Therefore, we use a greedy algorithm to find a near-optimal granular-
ity for the criterion. The algorithm is shown in Fig. 3. The method starts with
the measurement granularity and searches a more rough partition of attribute
values. This partition is performed as long as the criterion decreases and the
granularity still keeps discernibility. Here, we only consider the equally sized par-
tition (granules). Numerical (ordered) attributes and categorical (non-ordered)
attributes are differently dealt with.

– Initialization
1. Set measurement granularity RM for given attributes. Mark all attributes by

‘reducible.’ Let n
(0)
i be the number of attribute values in ith attribute for all

i. Let t = 1.
2. Compute the evaluation value J with n

(0)
1 , n

(0)
2 , . . . , n

(0)
m .

– Repeat the following steps as long as discernibility is kept:
1. For all reducible attributes, compute the minimum prime number q

(t)
i of n

(t−1)
i

to derived n
(t)
i = n

(t−1)
i /q

(t)
i for i = 1, 2, . . . , m.

2. Compute the decrease amount ΔJ
(t)
i with n

(t−1)
1 , n

(t−1)
2 , . . . , n

(t)
i , . . . , n

(t−1)
m .

3. Choose j such as j = arg max
i

ΔJ
(t)
i .

4. (a) Compute the discretization with n
(t)
j equally-sized intervals if jth attribute

is numerical.
(b) Compute the partition with n

(t)
j equally-sized groups which consist of qj

attribute values if jth attribute is categorical. If there are several possible
partitions, compute all the possible partitions.

5. (a) If discernibility is kept after the discretization/partition, perform the dis-
cretization/partition.

Let n
(t)
i = n

(t−1)
i for all i �= j, n

(t)
j = n

(t−1)
j /q

(t)
j , J(t) = J(t−1) − ΔJ

(t)
j .

(b) Otherwise, let n
(t)
i = n

(t−1)
i for all i, and J(t) = J(t−1).

The jth attribute will not be reduced with ‘irreducible’ mark.
6. If there is no reducible attribute, then terminate the process. Otherwise, let

t = t + 1.

Fig. 3. Greedy bottom-up partition algorithm
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Table 1. Statistics of Datasets

Dataset #Attribute #Attribute #Attribute #Object #Class Majority
(categorical) (numerical) Class

Hepatitis 19 13 6 80 2 0.84
Mushroom 22 22 - 5644 2 0.62

4 Experiments and Discussion

We dealt with two datasets of Hepatitis and Mushroom from the UCI repository
of Machine Learning databases [12] to evaluate the proposed criteria. Table 1
shows the statistics of those datasets. Here, we removed the instances which
include missing values.

We found in order the measurement granularity, individual-discernible gran-
ularity and class-discernible granularity for parameter k = ±1 in J .

The results are shown in Tables 2 and 3. In individual-discernible granular-
ity we succeeded to reduce the attribute size largely from their original size in
measurement granularity. In addition, those sizes were further reduced in class
discernibility. As for the difference of granularity with two types of k. As ex-
pected, the number of attributes is largely reduced, while some attributes have
large domain sizes in the results of k = 1. In the contrary, in k = −1, the number
of attribute values are largely reduced. If we focus on the understandability of
data or rules, the latter is better.

Table 2. Granularity of Hepatitis
(2 classes). In type, N means numeri-
cal attribute and C means categorical
attribute.

k = 1 k = −1
Attribute Type RM RI RD RI RD

Age N 54 1 1 1 1
Sex C 2 1 1 1 1

Steroid C 2 1 1 2 2
Antivirals C 2 1 1 2 1

Fatigue C 2 2 1 2 1
Malaise C 2 1 1 1 1

Anorexia C 2 1 1 1 1
Liver Big C 2 1 1 2 1

Liver Firm C 2 2 1 1 1
Spleen Palpable C 2 2 2 2 1

Spiders C 2 1 1 1 1
Ascites C 2 2 2 1 1
Varices C 2 1 1 2 2

Bilirubin N 45 1 1 1 1
Alk Phosphate N 256 1 1 32 32

Sgot N 432 432 216 1 1
Albumin N 30 1 1 5 5
Protime N 100 1 1 1 1

Histology C 2 1 1 1 1
#Attribute 19 5 3 8 4

Table 3. Granularity of Mushroom
(2 classes)

k = 1 k = −1
Attribute RM RI RD RI RD

cap-shape 6 6 1 6 1
cap-surface 4 4 2 4 2

cap-color 10 5 1 5 1
bruises? 2 1 1 1 1

odor 9 3 1 3 1
gill-attachment 4 2 1 2 1

gill-spacing 3 3 1 3 1
gill-size 2 1 1 2 2

gill-color 12 6 3 6 1
stalk-shape 2 2 2 2 2
stalk-root 6 3 3 1 1

stalk-surface-above-ring 4 2 1 2 2
stalk-surface-below-ring 4 2 1 2 1

stalk-color-above-ring 9 3 1 3 1
stalk-color-below-ring 9 3 1 3 1

veil-type 2 1 1 1 1
veil-color 4 1 1 1 1

ring-number 3 1 1 1 1
ring-type 8 1 1 1 1

spore-print-color 9 3 3 3 3
population 6 3 3 3 3

habitat 7 4 4 4 2
#Attribute 22 16 7 16 7
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Table 4. Abstract words which correspond to merged values

odor

merged values abstract word
{foul, anise, musty} unpleasant odor
{none, spicy, fishy} pleasing odor

{pungent, creosote, almond} irritating odor

stalk-surface-above-ring

merged values abstract word
{fibrous, silky} fibrous
{scaly, smooth} rough or smooth

spore-print-color

merged values abstract word
{brown,orange,yellow} brownish yellow

{buff,black,purple} purplish brown
{chocolate,green,white} barely colored

habitat

merged values abstract word
{woods, leaves, paths} in forest

{grasses,waste,
meadows,urban}

plain

In Hepatitis, in case of k = 1, the number of attributes were reduced from 19 to
5 in RI , and furthermore were reduced from 5 to 3 in RD (Table 2). In addition,
the number of attribute values were reduced from 100 to 1 at maximum. In
Mushroom, the number of attributes were also reduced from 22 to 16 (RI), and
from 16 to 7 (RD) (Table 3). These results show a success both in the traditional
“reduction,” and in our “further reduction.”

Once we have a small number of attribute values, then it is possible to assign
more “appropriate” words for them instead of their original names or resolution.
So, we translated the attribute values to a small set of “abstract words” in

Rule 1: Ascites = yes, Protime ≤ 51, Anorexia = no ⇒ DIE (TPrate = 0.54, FPrate = 0.00)
Rule 2: Spiders = yes, Protime ≤ 39, Histology = yes

⇒ DIE (TPrate = 0.46, FPrate = 0.02)
Rule 3: Histology = no ⇒ LIVE (TPrate = 0.69, FPrate = 0.08)
Rule 4: Protime > 51 ⇒ LIVE (TPrate = 0.78, FPrate = 0.15)
Rule 5: Anorexia = yes ⇒ LIVE (TPrate = 0.18, FPrate = 0.00)

(a) Extracted rules in RM .

Rule 1: Albumin ≤ 1/5 ⇒ DIE (TPrate = 0.23, FPrate = 0.00)
Rule 2: Spleen Palpable = yes, Liver Big = yes, Albumin ≤ 3/5

⇒ DIE (TPrate = 0.31, FPrate = 0.02)
Rule 3: Antivirals = yes, Steroid = no and Liver Big = yes, Albumin ≤ 3/5

⇒ DIE (TPrate = 0.15, FPrate = 0.00)
Rule 4: Albumin > 3/5 ⇒ LIVE (TPrate = 0.73, FPrate = 0.08)
Rule 5: Steroid = yes, Albumin > 1/5 ⇒ LIVE (TPrate = 0.55, FPrate = 0.15)
Rule 6: LIVER BIG = no ⇒ LIVE (TPrate = 0.19, FPrate = 0.00)

(b) Extracted rules in RI .

Rule 1: Albumin ≤ 1/5 ⇒ DIE (TPrate = 0.23, FPrate = 0.00)
Rule 2: Steroid = no, Albumin ≤ 3/5 ⇒ DIE (TPrate = 0.62, FPrate = 0.15)
Rule 3: Albumin > 3/5 ⇒ LIVE (TPrate = 0.73, FPrate = 0.08)
Rule 4: Steroid = yes, Albumin > 1/5 ⇒ LIVE (TPrate = 0.55, FPrate = 0.15)

(c) Extracted rules in RD .

Fig. 4. Extracted rules for Hepatitis (k = −1). In the condition, i/j means ith-level of
j levels.
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Rule 1: spore-print-color in {black, brown, purple, white},
population in {abundant, numerous, scattered, several, solitary}
odor in {almond, anise, none} ⇒ Edible (TPrate = 1.000, FPrate = 0.000)

Rule 2: odor in {creosote, foul, musty, pungent} ⇒ Poisonous (TPrate = 0.96, FPrate = 0.00)
Rule 3: spore-print-color = green ⇒ Poisonous (TPrate = 0.03, FPrate = 0.00)
Rule 4: population = clustered ⇒ Poisonous (TPrate = 0.02, FPrate = 0.00)

(a) Extracted rules in RM (4/4).

Rule 1: spore-print-color in {purplish brown, brownish yellow},
gill-size = broad ⇒ Edible (TPrate = 0.92, FPrate = 0.00)

Rule 2: spore-print-color in {purplish brown, brownish yellow},
odor in {unpleasant odor, pleasing odor} ⇒ Edible (TPrate = 0.86, FPrate = 0.00)

Rule 3: odor = unpleasant odor,
spore-print-color = barely colored ⇒ Poisonous (TPrate = 0.75, FPrate = 0.00)

Rule 4: habitat = plain,
spore-print-color = barely colored ⇒ Poisonous (TPrate = 0.37, FPrate = 0.00)

(b) Extracted rules in RI (top 4/9).

Rule 1: spore-print-color in {purplish brown, brownish yellow},
gill-size = broad ⇒ Edible (TPrate = 0.92, FPrate = 0.00)

Rule 2: spore-print-color in {purplish brown, brownish yellow},
stalk-shape = tapering ⇒ Edible (TPrate = 0.74, FPrate = 0.00)

Rule 3: stalk-surface-above-ring = fibrous, gill-size = broad,
spore-print-color = barely colored, ⇒ Poisonous (TPrate = 0.69, FPrate = 0.00)

Rule 4: habitat = plain,
spore-print-color = barely colored ⇒ Poisonous (TPrate = 0.37, FPrate = 0.00)

(c) Extracted rules in RD (top 4/10).

Fig. 5. Extracted rules for Mushroom (k = −1). The number in parentheses shows
number of rules selected from all extracted rules.

RI and RD. It would help us to understand the data and rules derived from
them (Table 4). For numerical values we used a word ’i/j’ for showing ith of
possible j levels. We compared the rules in measurement granularity and those
in discernible granularity. Here, we used C4.5 [11] as the rule extraction method.
We calculated the true positive (TP) rate (the ratio of positive samples correctly
classified to all positive samples) and the false positive (FP) rate (the ratio of
negative samples incorrectly classified to all negative samples).

The results are shown in Figs. 4 and 5. The value of TP rate decreases in the
order of RM ,RI , and RD. While the easiness of interpretation increase reversely
in the order RM , RI , and RD. It is also noted that a larger variety of rules
obtained in RI or RD or both compared with in RM .

5 Conclusions

We havediscussed on appropriate roughness of description using “granularity”, for
raising up the understandability of data and rules. We defined some types of granu-
larity on the basis of discernibility criteria, and proposed an algorithm to find near-
optimal solutions. In experiments, it has shown that reduced granularity helped us
to read/understand the data and the derived rules. In addition, such a way enables
us to give some “abstract words” for data, which evokes even our “Kansei.”
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Abstract. Decision rule generation from Kansei data using rough set
theory is one of the most hot topics in Kansei engineering. Usually,
Kansei data have various types of scheme, however, Pawlak’s “tradi-
tional” rough set theory treats structured data mainly, that is, deci-
sion tables with fixed attributes and no hierarchy among data. On the
other hand, Kudo and Murai have proposed the object-oriented rough set
model which treats structural hierarchies among objects. In this paper,
we propose semi-structured decision rules in the object-oriented rough
set model to represent structural characteristics among objects, which
enable us to consider characteristics of hierarchical data by rough sets.

Keywords: semi-structured decision rules, object-oriented rough sets,
hierarchical data.

1 Introduction

Prof. Pawlak’s rough set theory [5,6] provides useful framework of approximation
and reasoning about data. In the research field of Kansei engineering, various
methods of decision rule generation from Kansei data using rough set theory are
widely studied [4]. Usually, Kansei data have various types of scheme, however,
“traditional” rough set theory treats structured data mainly, that is, decision
tables with fixed attributes and no hierarchy among data. On the other hand,
Kudo and Murai have proposed the object-oriented rough set model (for short,
OORS) [2], and also proposed decision rule generation in OORS [3]. The object-
oriented rough set model introduces object-oriented paradigm (cf. [1]) to the
“traditional” rough set theory, which illustrates hierarchical structures between
classes, names and objects based on is-a and has-a relationships. Moreover, de-
cision rules in OORS illustrates characteristic combination of objects as parts
of some objects. However, in the previous paper [3], hierarchical characteristics
among objects are not represented in decision rules sufficiently.
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In this paper, we propose semi-structured decision rules in the object-oriented
rough set model to represent hierarchical characteristics among objects, which
enable us to consider characteristics of hierarchical data by rough sets.

2 The Object-Oriented Rough Set Model

We briefly review the object-oriented rough set model. Note that the contents
of this section are entirely based on the authors’ previous papers [2,3].

2.1 Class, Name, Object

OORS consists of the following three triples: a class structure C, a name structure
N and an object structure O, respectively:

C = (C, �C , �C), N = (N, �N , �N), O = (O, �O, �O),

where C, N and O are finite and disjoint non-empty sets such that |C| ≤ |N |
(|X | is the cardinality of X). Each element c ∈ C is called a class. Similarly,
each n ∈ N is called a name, and each o ∈ O is called an object. The relation
�X (X ∈ {C, N, O}) is an acyclic binary relation on X , and the relation �X is
a reflexive, transitive, and asymmetric binary relation on X . Moreover, �X and
�X satisfy the following property:

∀xi, xj , xk ∈ X, xi �X xj , xj �X xk ⇒ xi �X xk.

These three structures have the following characteristics, respectively:

– The class structure illustrates abstract data forms and those hierarchical
structures based on part / whole relationship (has-a relation) and specialized
/ generalized relationship (is-a relation).

– The name structure introduces numerical constraint of objects and those
identification, which provide concrete design of objects.

– The object structure illustrates actual combination of objects.

Two relations �X and �X on X ∈ {C, N, O} illustrate hierarchical structures
among elements in X . The relation �X is called a has-a relation, and xi �X xj

means “xi has-a xj”, or “xj is a part of xi”. For example, ci �C cj means that
“the class ci has a class cj”, or “cj is a part of ci”. On the other hand, the
relation �X is called an is-a relation, and xi �X xj means that “xi is-a xj”. For
example, �C illustrates relationship between superclasses and subclasses, and
ci �C cj means that “ci is a superclass of cj”, or “cj is a subclass of ci”.

2.2 Well-Defined Structures

Each object o ∈ O is defined as an instance of some class c ∈ C, and the class
of o is identified by the class identifier function. The class identifier idC is a
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p-morphism between O and C (cf. [7], p.142), that is, the function idC : O −→ C
satisfies the following conditions:

1. ∀oi, oj ∈ O, oi �O oj ⇒ idC(oi) �C idC(oj).
2. ∀oi ∈ O, ∀cj ∈ C, idC(oi) �C cj ⇒ ∃oj ∈ O s.t. oi �O oj and idC(oj) = cj ,

and the same conditions are also satisfied for �O and �C . idC(o) = c means
that the object o is an instance of the class c.

The object structure O and the class structure C are also connected through
the name structure N by the naming function nf : N −→ C and the name
assignment na : O −→ N . The naming function provides names to each class,
which enable us to use plural instances of the same class simultaneously. On the
other hand, the name assignment provides names to every objects, thus we can
treat objects by using their names.

Formally, the naming function nf : N −→ C is a surjective p-morphism
between N and C, and satisfies the following name preservation constraint:

– For any ni, nj ∈ N , if nf(ni) = nf(nj), then HN (c|ni) = HN (c|nj) is satisfied
for all c ∈ C,

where HN (c|n) = {nj ∈ N | n �N nj, f(nj) = c} is the set of names of c that
n has. These characteristics of the naming function nf imply that (1) there is
at least one name for each class, (2) the name structure reflects all structural
characteristics of the class structure, and (3) all names of the parts of any class
are uniquely determined.

On the other hand, the name assignment na : O −→ N is a p-morphism
between O and N , and satisfies the following uniqueness condition:

– For any x ∈ O, if HO(x) 
= ∅, the restriction of na into HO(x):
na|HO(x) : HO(x) −→ N is injective,

where HO(x) = {y ∈ O | x �O y} is the set of objects that x has. na(x) = n
means that the name of the object x is n. The uniqueness condition requires
that all distinct parts y ∈ HO(x) have different names.

We say that C, N and O are well-defined if and only if there exist a naming
function nf : N −→ C and a name assignment na : O −→ N such that idC =
nf ◦ na, that is, idC(x) = nf(na(x)) for all x ∈ O.

In well-defined structures, if a class ci has m objects of a class cj , then any
instance oi of the class ci has exactly m instances oj1, · · · , ojm of the class cj [2].
This good property enables us the following description for clear representation
of objects. Suppose we have o1, o2 ∈ O, n1, n2 ∈ N , and c1, c2 ∈ C such that
o1 �O o2, and na(oi) = ni, nf(ni) = ci for i ∈ {1, 2}. We denote o1.n2 instead
of o2 by means of “the instance of c2 named n2 as a part of o1”.

2.3 Indiscernibility Relations in OORS

We consider indiscernibility relations in OORS based on the concept of equiva-
lence as instances. In [2], to evaluate equivalence of instances, an indiscernibility
relation ∼ on O are recursively defined as follows:
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x ∼ y ⇐⇒

x and y satisfy the following two conditions:
1. idC(x) = idC(y), and,

2.

{
x.n ∼ y.n, ∀n ∈ HN (na(x)) if HN (na(x)) 
= ∅,
V al(x) = V al(y) otherwise,

(1)

where HN (na(x)) is the set of names that na(x) has. V al(x) is the “value” of
the “value object” x. Because C is a finite non-empty set and �C is acyclic,
there is at least one class a such that a has no other class c. We call such class
a an attribute, and for any instance x of the attribute a, we call x a value object
of a. The value object x of a represents a “value” of the attribute a. Moreover,
we assume that we can compare “values” of value objects of the same attribute.

x ∼ y means that the object x is equivalent to the object y as an instance of
the class idC(x). Using the indiscernibility relation ∼, an indiscernibility relation
∼B with respect to a given subset B ⊆ N of names is defined as follows:

x ∼B y ⇐⇒
x and y satisfy the following two conditions:
1 B ∩ HN (na(x)) = B ∩ HN (na(y)), and,
2. ∀n[n ∈ B ∩ HN (na(x)) ⇒ x.n ∼ y.n].

(2)

x ∼B y means that x and y are equivalent as instances of the class idC(x) in
the sense that, for all n ∈ B ∩ HN (na(x)), x and y have equivalent instances of
the class idC(x.n). Equivalence classes [x]∼B by ∼B are usually defined.

2.4 Decision Rules in OORS

Decision rules in OORS illustrate characteristic combination of objects as parts
of some objects. Decision rules in OORS are defined as follows [3]:

c ∧ c.n1 ∼ x.n1 ∧ · · · ∧ c.ni ∼ x.ni ⇒ c.m1 ∼ x.m1 ∧ · · · ∧ c.mj ∼ x.mj , (3)

where c ∈ C, x ∈ O such that idC(x) = c, n1, · · · , ni ∈ NCON ∩ HN (na(x))
(i ≥ 0) and m1, · · · , mj ∈ NDEC ∩ HN (na(x)) (j ≥ 1). NCON is the set of names
that may appear in antecedents of decision rules (called condition names), and
NDEC is the set of names that may appear in conclusions of decision rules (called
decision names). Note that N = NCON ∪ NDEC and NCON ∩ NDEC = ∅. We call this
rule a decision rule of the class c by the object x, and denote DR(c; x).

The decision rule DR(c; x) means that, for any object y ∈ O, if y is an instance
of c and each part y.nk is equivalent to x.nk (k ≤ i), then all parts y.ml are
also equivalent to x.ml (l ≤ j), respectively. Thus, DR(c; x) describes a certain
property about combination of objects as an instance of the class c.

Example 1. We need to check three desk-top personal computers (PCs) and
three lap-top PCs about the price (p: low or high), maker (m: X or Y) and clock
(c: low or high) of CPUs, and size (s: A4 notebook size or B5 notebook size, only
lap-top PCs), and find some rules about prices of these PCs. Here, we consider
the following class structure C = (C, �C , �C) with C = {PC, LPC, Price, Size,
CPU, Maker, Clock}, where Price, Size, Maker and Clock are attributes. Next, the
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PC: pc1
���

p: low

���
cpu: c1

��
m: X

��
c: low

PC: pc2
���

p: low

���
cpu: c2

��
m: Y

��
c: low

PC: pc3
���

p: high

���
cpu: c3

��
m: X

��
c: high

LPC: pc4
���

p: low s: B5

���
cpu: c4

��
m: Y

��
c: low

LPC: pc5
���

p: high s: A4

���
cpu: c5

��
m: Y

��
c: high

LPC: pc6
���

p: high s: B5

���
cpu: c6

��
m: X

��
c: high

Fig. 1. Has-a relationship in Example 1

name structure is N = (N, �N , �N) with N = {pc, lpc, price, size, cpu, maker,
clock}. Finally, the object structure is O = (O, �O, �O) such that all objects
appear in Fig. 1. Suppose that these structures are well-defined.

Figure 1 illustrates has-a relationship between objects, and assignment of
names to objects. For example, the object “pc1” is an instance of the PC class,
and has an instance “low”(=pc1.price) of the attribute Price, and an instance
“c1”(=pc1.cpu) of the CPU class. Moreover, the object “c1” has an instance
“X”(=pc1.cpu.maker) of the attribute Maker, and an instance “low”(=pc1.cpu.
clock) of the attribute Clock.

Equivalence classes about the set NDEC = {price} of names defined by (2)
represents the following two decision classes about the price of PCs:

[pc1]NDEC = {pc1, pc2, pc4}, [pc3]NDEC = {pc3, pc5, pc6},

where [pc1]NDEC is the set of low price PCs, and [pc3]NDEC is the set of high price
PCs, respectively. Similarly, equivalence classes by B = {cpu} are as follows:

[pc1]B = {pc1}, [pc2]B = {pc2, pc4}, [pc3]B = {pc3, pc6}, [pc5]B = {pc5}.

Thus, using these equivalence classes, we get the following six decision rules:

– DR(PC, pc1): PC∧ PC.cpu ∼ c1 ⇒ PC.price ∼ low,
– DR(PC, pc2): PC∧ PC.cpu ∼ c2 ⇒ PC.price ∼ low,
– DR(PC, pc3): PC∧ PC.cpu ∼ c3 ⇒ PC.price ∼ high,
– DR(LPC, pc4): LPC∧ LPC.cpu ∼ c4 ⇒ LPC.price ∼ low,
– DR(LPC, pc5): LPC∧ LPC.cpu ∼ c5 ⇒ LPC.price ∼ high,
– DR(LPC, pc6): LPC∧ LPC.cpu ∼ c6 ⇒ LPC.price ∼ high.

In Fig. 1, it is obvious that price of PCs and clock of CPUs have clear rela-
tionship, that is, if the clock is low (high), then price is low (high). However,
these decision rules can not represent this relationship sufficiently. We consider
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that this is because decision rules in OORS (and indiscernibility relations de-
fined by (2)) can only treat equivalence of parts which consist in directly. Thus,
when we consider the equivalence of PCs, we can only treat value objects of the
Price attribute and instances of the CPU class, and can not treat value objects of
the Clock attribute. Therefore, to represent structural characteristics by decision
rules, we need to treat hierarchical structures among objects recursively.

3 Semi-structured Decision Rules in OORS

In this section, we propose semi-structured decision rules in OORS to represent
hierarchical characteristics among objects by decision rules. First, we introduce a
concept of consistent sequences of names which illustrate hierarchical structures
in the given name structure correctly, and define an indiscernibility relation
based on such sequences. Next, using the indiscernibility relation, we propose
semi-structured decision rules in OORS.

3.1 Indiscernibility Relations by Consistent Sequences of Names

Definition 1. Let C, N and O be well-defined class, name and object structures,
respectively. A sequence of names n1. · · · .nk with length k (k ≥ 1) such that
ni ∈ N (1 ≤ i ≤ k) is called a consistent sequence of names if and only if either
(1) k = 1, or (2) k ≥ 2 and nj+1 ∈ HN (nj) for each name nj (1 ≤ j ≤ k − 1).
We denote the set of all consistent sequences of names in N by N+.

Hereafter, we concentrate consistent sequences of names. Note that all names
n ∈ N are consistent sequences with length 1, thus we have N ⊂ N+.

Consistent sequences of names have the following good property, which guar-
antees that consistent sequences describe hierarchical structures among objects
correctly.

Proposition 1. For any consistent sequence of names n1. · · · .nk ∈ N+ (k ≥ 1)
and any object x ∈ O, if n1 ∈ HN(na(x)), then there exist xi ∈ O (1 ≤ i ≤ k)
such that na(xi) = ni and xj �O xj+1 (0 ≤ j ≤ k − 1), where x = x0.

By this property, we can easily check that, for any object x and any consistent
sequence n1. · · · .nk, whether the sequence n1. · · · .nk “connects” to the object
x, and find the object y(= x.n1. · · · .nk) by tracing the has-a relation �O such
that x �O · · · �O y.

Using consistent sequences of names, we define indiscernibility relations which
directly treat “nested” parts of objects as follows.

Definition 2. Let S ⊆ N+ be a non-empty set of consistent sequences of names.
We define a binary relation ≈S on O as follows:

x ≈S y ⇐⇒

x and y satisfy the following two conditions:

1. ∀n1. · · · .nk

[
n1. · · · .nk ∈ S ⇒
{n1 ∈ HN (na(x)) ⇔ n1 ∈ HN (na(y))}

]
,

2. ∀n1. · · · .nk

[
n1. · · · .nk ∈ S and n1 ∈ HN (na(x))
⇒ x.n1. · · · .nk ∼ y.n1. · · · .nk

]
,

(4)
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where ∼ is the indiscernibility relation defined by (1).

It is easy to check that ≈S is an equivalence relation.

Theorem 1. The relation ≈S defined by (4) is an equivalence relation on O.

The condition 1 in (4) requires that the object x and y concern the same se-
quences in S, which means that x and y have the same structure partially il-
lustrated by such sequences. The condition 2 requires that, for all sequences
n1. · · · .nk ∈ S that connect both x and y, the object x.n1. · · · .nk as a nested
part of x is equivalent to the object y.n1. · · · .nk as a nested part of y.

We intend that the relation ≈S is an extension of the indiscernibility relation
∼B by using sequences of names. Actually, Proposition 2 below shows that ∼B

is a special case of ≈B.

Proposition 2. Suppose B ⊆ N is a non-empty set of names, that is, a set of
consistent sequences of names with length 1, ∼B is the indiscernibility relation
defined by (2), and ≈B is the indiscernibility relation defined by (4). Then, x ≈B

y if and only if x ∼B y for any objects x, y ∈ O.

3.2 Semi-structured Decision Rules

Using consistent sequences of names and indiscernibility relations defined by
(4), we propose semi-structured decision rules in OORS. Similar to the case
of decision rules in OORS, we need to divide the set of consistent sequences
of names N+ into the set N+

CON of consistent sequences which may appear in
antecedents and the set N+

DEC of consistent sequences which may appear in
conclusions. Note that N+ = N+

CON ∪ N+
DEC and N+

CON ∩ N+
DEC = ∅. The set

N+
DEC provides decision classes as equivalence classes based on the equivalence

relation ≈N+
DEC

. We define semi-structured decision rules in OORS as follows.

Definition 3. A semi-structured decision rule in the object-oriented rough set
model has the following form:

c ∧ c.n11. · · · .n1k1 ∼ x.n11. · · · .n1k1 ∧ · · · ∧ c.ns1. · · · .nsks ∼ x.ns1. · · · .nsks

⇒ c.m11. · · · .m1l1 ∼ x.m11. · · · .m1l1 ∧ · · · ∧ c.mt1. · · · .mtlt ∼ x.mt1. · · · .mtlt

(5)
where c ∈ C, x ∈ O such that idC(x) = c, ni1. · · · .niki ∈ N+

CON (1 ≤ i ≤ s, ki ≥
1), mj1. · · · .mjlj ∈ N+

DEC (1 ≤ j ≤ t, lj ≥ 1) , and all sequences which appear in
(5) have to connect to the object x. We call this rule a semi-structured decision
rule of the class c by the object x, and denote SSDR(c; x).

The semi-structured decision rule SSDR(c; x) means that, for any object y ∈ O,
if y is an instance of c and each part y.ni1. · · · .niki (1 ≤ i ≤ s) is equivalent to
x.ni1. · · · .niki , then all parts y.mj1. · · · .mjlj (1 ≤ j ≤ t) are also equivalent to
x.mj1. · · · .mjlj , respectively. Thus, SSDR(c; x) describes certain characteristics
of combination of parts of x even though the parts do not consist in x directly,
which enable us to represent hierarchical characteristics of parts by decision
rules.
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Example 2. We consider to generate semi-structured decision rules from well-
defined structures illustrated in Example 1. The set N+

CON is constructed as
follows:

N+
CON = (N \ {price}) ∪

⎧
⎨

⎩

pc.price, pc.cpu, pc.cpu.maker, pc.cpu.clock,
lpc.price, lpc.size, lpc.cpu, lpc.cpu.maker,
lpc.cpu.clock, cpu.maker, cpu.clock

⎫
⎬

⎭ .

Equivalence classes based on the set N+
DEC = {price} are identical to the case

of the equivalence classes by (2) in Example 1. On the other hand, equivalence
classes about the set S = {cpu.clock} are as follows:

[pc1]S = {pc1, pc2, pc4}, [pc3]S = {pc3, pc5, pc6}.

Therefore,using these equivalenceclasses,weget the following four semi-structured
decision rules:

– SSDR(PC, pc1): PC∧ PC.cpu.clock ∼ low ⇒ PC.price ∼ low,
– SSDR(PC, pc3): PC∧ PC.cpu.clock ∼ high ⇒ PC.price ∼ high,
– SSDR(LPC, pc4): LPC∧ LPC.cpu.clock ∼ low ⇒ LPC.price ∼ low,
– SSDR(LPC, pc5): LPC∧ LPC.cpu.clock ∼ high ⇒ LPC.price ∼ high.

Consequently, from these rules, we can interpret the characteristic “if the
clock of CPU is low (high), then the price of PC is low (high).”

4 Conclusion

In this paper, we have proposed semi-structured decision rules in OORS based on
consistent sequences of names. Semi-structured decision rules represent certain
characteristics of combination of parts even though the parts do not consist in
directly, and consistent sequences of names capture hierarchical characteristics
of objects correctly. Development of algorithms to find consistent sequences of
names which appear in antecedents of semi-structured decision rules, and ap-
plication of rule generation methods of semi-structured decision rules to various
Kansei data are important future issues.
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Abstract. In this paper, we deal with functional data analysis includ-
ing functional clustering and an application of functional data analy-
sis. Functional data analysis is proposed by Ramsay et al. In functional
data analysis, observed objects are represented by functions. We give an
overview of functional data analysis and describe an actual analysis of
Music Broadcast Data with functional clustering.

Keywords: Functional Clustering, Music Broadcast Data, Power Law.

1 Introduction

Most methods for data analysis assume that the data are sets of numbers with
structure. For example, typical multivariate data are identified as a set of n vec-
tors of p real numbers and dissimilarity data on pairs of n objects are as n × n
matrix. However, requests for analysis of data with new models become higher,
as the kind and quantity of the data is increased. In concert with the requests,
Ramsay et al. proposed Functional Data Analysis (FDA) in the 1990’s, which
treats data as functions. Many researchers proposed various methods for func-
tional data, including functional regression analysis, functional principal com-
ponents analysis, functional clustering, functional multi dimensional scaling etc.
We can study these methods from http://www.psych.mcgill.ca/misc/fda/,
[16] and [17].

Data mining has been a field of active research and is defined as the process of
extracting useful and previously unknown information out of large complex data
sets. Cluster analysis is a powerful tool for data mining. The purpose of cluster
analysis is to find relatively homogeneous clusters of objects based on measured
characteristics. There are two main approaches of cluster analysis: hierarchical
clustering methods and nonhierarchical clustering methods. Single Linkage is
a kind of hierarchical clustering and is a fundamental method. k-means is a
typical nonhierarchical clustering method. We have studied clustering methods
for functional data: functional single linkage [10], functional k-means [11] etc.

In this paper, we deal with functional data analysis, especially functional
clustering methods with an actual example.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 228–235, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Functional Data Analysis and Its Application 229

2 Functional Data and Functional Data Analysis

Functions are dealt with as data in FDA and have domain and range. We dis-
cuss about functions from the viewpoint of domain and range. It is possible to
understand it from considering the argument of functional data to be the time
axis, in the case that the domain is one dimensional real number space. When
the range is one dimensional real space, the functional data represent the value
that changes timewise. When the range is two or three dimensional Euclidean
space, the functional data can be taken as the motion on the plane or the space
respectively. Most studies on FDA use these kinds of functional data. When the
dimension of the domain is more than one, i.e. multidimensional arguments, there
are many issues to deal with functional data. In the section 22.3 (Challenges for
the future) of [17], they show the topics on it.

There are many techniques in FDA including functional regression analy-
sis [3] [4] [18], functional principal components analysis, functional discriminant
analysis, functional canonical correlation and functional clustering [1][19][20]. We
can get excellent lists of bibliography on FDA from [17] and http://
www.psych.mcgill.ca/misc/fda/bibliography.html. We have proposed sev-
eral methods for functional data: functional multidimensional scaling [8], ex-
tended functional regression analysis [18] etc. Functional data can be considered
as infinity-dimensional data. Most methods in the book (Ramsay and Silverman
[17]) for functional data are based on an approximation with finite expansions of
the functions with basis functions. Once the functional data can be thought as
finite linear combinations of the basis functions, functional data analysis meth-
ods for the functional data are almost the same as those of conventional data
analysis methods. But, there is some possibility of using different approaches.

3 Clustering and Functional Clustering

Sometimes, we divide methods of cluster analysis into two groups: hierarchical
clustering methods and nonhierarchical clustering methods.

Hierarchical clustering refers to the formation of a recursive clustering of
the objects data: a partition into two clusters, each of which is itself hier-
archically clustered. We usually use data set of dissimilarities or distances;
S = {sij ; i, j = 1, 2, . . . , n}, where sij are dissimilarity between object i and
object j, and n is the size of the objects. Single linkage is a typical hierarchical
clustering method. We start with each object as a single cluster and in each step
merge two of them together. In each step, the two clusters that have minimum
distance are merged. At the first step, the distances between clusters are defined
by the distance between the objects. However, after this, we must determine
the distances between new clusters. In single linkage, the distance between two
clusters is determined by the distance of the two closest objects in the different
clusters. The results of hierarchical clustering are usually represented by dendro-
gram. The height of dendrogram represents the distances between two clusters.
It is well known that the result of Single Linkage and the minimal spanning tree
(MST) are equivalent from the computational point of view[5].
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Nonhierarchical clustering partitions the data based on a specific criterion.
Most nonhierarchical clustering methods do not deal with a set of dissimilarities
directly. They use a set of p-dimensional : X = {xi; i = 1, 2, . . . , n}. k-means
method is a kind of nonhierarchical clustering and is to choose initial seeds points
and assign the cases to them using a minimum the trace of within variances.

We will describe clustering methods for functional data. Typically, there are
two types of functional data to be applied to clustering methods. The first
type of functional data is p-dimensional functions. The other type is a set of
dissimilarity functions. We denote the functions for n objects depending on a
variable t as X(t) = {xi(t)}(i = 1, 2, . . . , n) and denote dissimilarity data as
S(t) = {sij(t); i, j = 1, 2, . . . , n}, where sij(t) are dissimilarity functions be-
tween object i and object j. We also use the notations X = {xi} and S = {sij}
for ordinary data.

3.1 Using Conventional Clustering Methods

Simple idea for clustering methods for functional data is to transform functional
data to ordinary data and we apply conventional clustering methods to these
data.

There are several methods to derive ordinary data S = {sij} or X = {xi}
from functional dissimilarity data S(t) or p-dimensional functional data X(t).
The most natural method may be to use integration in the domain or max
operator:

sij =
∫

‖ xi(t) − xj(t) ‖2 dt,

sij =
∫

sij(t)dt,

sij = maxtsij(t),

xi =
∫

xi(t)dt.

Then we can use ordinary clustering method to set of dissimilarity data S = {sij}
or p-dimensional data X = {xi}.

3.2 Functional k-Means Method

Functional k-means method is proposed in this section. We assume that we have
p-dimensional functional data X(t) = {xi(t)}(i = 1, 2, . . . , n). It is realistic that
values X(tj), j = 1, 2, . . . , m are given. We restrict ourselves to two dimensional
functional data and the one dimensional domain. The number of clusters k is
prespecified as a user parameter.

The idea of functional k-means method is repetitive procedure of the con-
ventional k-means method. At first, we apply conventional k-means method to
X(tj) for each tj . Then, we adjust labels of clusters. Even if we fix clustering
method, there is freedom of labeling. We denote Ci(t) as the cluster label of
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the i-th object at t for fixed K. We discuss about adjusting the cluster label-
ing of Ci(t2) with fixed Ci(t1). C∗

i (t2) are new cluster labels of the object that
Σi�{Ci(t1) = C∗

i (t2)} takes the maximum value, where � indicates the size of
the set. A simple method for adjusting the cluster labels is to use the cluster
centers of the previous clustering for initial guesses for the cluster centers.

We must pay attention to the fact that even if two objects belong to the same
cluster at tj , it is possible that the two objects belong to different clusters at t′j .

The results of the proposed functional k-means method can be represented
graphically. We use the three dimensional space for the representation. Two
dimensions are used for the given functional data, one is for t, and the clusters are
shown with colors. If we may use dynamic graphics, the results can be analyzed
more effectively with interactive operations: rotations, slicing, zooming etc. We
can analyze the result deeply.

3.3 Functional Single Linkage Method

We introduce the algorithm of single linkage for functional dissimilarity data
S(t) = {sij(t); i, j = 1, 2, . . . , n}. The basic idea of this method is that we apply
conventional single linkage to S(t) and get functional MST, say MST(t). Then
we calculate functional configuration and adjust labels of objects. We mention
the detail of these two steps in the following.

We must construct a functional configuration of vertices of MST(t); functional
multidimensional scaling [8] is useful to get them. The MST(t) is represented on
the 2 dimensional space. It is possible to represent the results of functional single
linkage for the given number of clusters K. Especially when we can use dynamic
graphical display, the representation is much interactive.

But, even if we fix hierarchical clustering method, there is freedom of labeling
of clusters. We adjust the cluster labels used the same method as functional
k-means.

3.4 Moving Functional Clustering

In the previous sections, we deal with clustering method for functional data.
When we must analyze one dimensional functional data xi(t)(i = 1, · · · , n),
functional k-means method or functional single linkage method can be applicable
formally. But, these methods do not use multidimensional information of the
data. We propose a method for clustering for one dimensional functional data.

In order to actively use the information from the functional data, we apply
windows of the domain of the functions. We define the dissimilarities functions
of the two functions:

sij(t)d =
∫ t+d

t−d

(xi(u) − xj(u))2du.

These sij(t)d are called moving dissimilarities functions with windows range d.
sij(t)d represent the degree of the closeness between functions xi(t) and xj(t)
in the interval [t − d, t + d]. We can apply functional single linkage clustering,
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in the subsection 3.3, to these functional dissimilarities sij(t)d. The parameter
d affects the sij(t)d and the clusters as results. But, in general, cluster analysis
is an exploratory method. So the freedom of d is important for finding interest-
ing results. For example, when we analysis stocks data, we can see interesting
structures using d = 3 (days).

We assumed the dimension of the domain of the functions is one. It is easy
to extend this method to more than one dimensional domain. The integration
domain in the definition of sij(t)d is changed to multidimensional neighborhood;
sphere or hyper sphere.

4 Actual Data Analysis: Music Broadcast Data

We will show an example of functional clustering with actual data. Music Broad-
cast Data are collected from Japanese seven FM stations in Tokyo during 2003.
There are about 350000 records on broadcasting contained playlist ID, music ID
and title, start time, end time etc. Frequency of broadcast of musics for each
day is changing under some pattern. The frequency is usually increasing until
the day of release and takes peak some later date, then decreasing (Figure 1).
Figure 2 shows the double logarithmic plot of ranking versus rate of broadcast
and reveals Power law.
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The top 100 musics (Figure 3) are applied Functional clustering described in
subsection 4.1. The number of cluster is 4 and we adopted hierarchical clustering.
Figure 4 shows four clusters.
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Fig. 3. Top 100 musics (Dec. 2003
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Fig. 4. Result of functional clustering [7]

5 Concluding Remarks

We mainly discussed about clustering methods for functional data. We would
summarize the method of functional clustering.

If you would like to use conventional clustering methods, the functional data
are transformed to the ordinal data set with integration on t or maximum oper-
ation. When the functional dissimilarities data S(t) are given, functional single
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linkage method is available. The results of functional clustering can be repre-
sented by functional minimum spanning tree (MST). When p-dimensional func-
tions X(t) are given, functional k-means is a candidate for the method. Specially
when p = 1, moving functional clustering is helpful in analysis.

There is a strong possibility of extending the concept of functional data anal-
ysis. For example, mapping is a generalization of function. Formally, we can treat
the contingency table as discrete functional data. These concepts may also help
to improve original functional data analysis.
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Abstract. In this paper, we consider pictograms from a point of view of Kansei 
engineering and rough sets. We propose an evaluation method to the under- 
standing level of and the pictogram to good quality further. The feature of this 
text is to use rough sets for the method. In this text that treats information 
obtained from a lot of pictograms, using rough-set-based-rule extraction. The 
targeted pictogram used is chart signs for a standard guide “Locker room.” 

Keywords: Kansei engineering, Pictogram, Rough sets. 

1   Introduction 

In all situations of our life, to give neither inconvenience nor the unpleasantness, and 
to compose an easy, safe, comfortable commodity and space, the universal design 
attracts attention. The center concern might be “A lot of people availably design the 
product, the building, and the space.” As for pictogram considered here, it is one of 
the information transmission means when seeing from the aspect of such a universal 
design, and the utility will be expected more and more in the contemporary society in 
the future.  

The pictogram is a means to be translated into “Emoticon” and “Picture word”, 
etc., and to visually convey information by figure. As for the pictogram, when the 
pictogram was adopted for the first time as a visual information that showed the 
athletic event in Tokyo Olympics in 1964, the pictogram etc. that expressed the rest 
room were made from the advantage “It was possible to impart information frankly 
regardless of the age or the learning environment, etc.” in the Osaka exposition in 
1970 in Japan. Various the one was made, and it was used by various scenes when 
came to be used widely in Japan after 1980. As for the pictogram that had been made 
in this age, the one not understood easily because standardization had not been done 
in one side was not few though there were a lot of good quality one for the sight 
person to understand the expression object easily.  

The Ministry of Land, Infrastructure and Transport and the traffic ecology mobility 
foundation standardized the pictogram to solve such a problem in 2001, and 125 
chart-sign items for a standard guide1 were enacted. The pictogram from which there 
was no standard up to now by this standardization and it was judged to be difficult to 
obtain information became a good quality information transmission means with high 
                                                           
1 See http://www.ecomo.or.jp/symbols/, for the chart sign guideline of a standard guide. 
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understanding level at which sight person’s experience and knowledge were put to 
use. However, the one with a difficult expression of transmission information in these 
standardized pictograms is not few. Moreover, it is proven that a lot of pictograms 
with low understanding level exist from understanding level investigation of the 
chart-sign for a standard guide.  

This paper proposes the pictogram generally used based on such a current state 
now and it proposes the evaluation method to the understanding level of and the 
pictogram to good quality further. The feature of this text is to use the rough set for 
the evaluation method. In this text that treats information obtained from a lot of picto- 
grams, using the rough set that is the rule extraction means that a lot of in formation 
can be analyzed becomes a major plus. Moreover, proposing a new expression 
standard of the pictogram from which it is evaluated that the rule in the if-then form is 
extracted concerning the validity of straightening and the standardized pictogram, and 
has been thought the expression to be difficult before becomes possible. 

Moreover, the method by annexation was first done by using the rough set in this 
text, and it analyzed it by the combination table based on the result. It is a purpose to 
improve the reliability of the evaluation by using two or more analysis methods. The 
targeted pictogram used chart sign for a standard guide “Locker room”.  

First, in Section 2, the decision and making the pictogram targeted by this paper 
are shown. Next, in Section 3, the method of the understanding level investigation 
that uses the pictogram is shown. In Section 4, then, the process of extracting the 
decision rule of the rough set is shown. Then, in Section 5, the decision rule obtained 
as a result is shown. From these, in Section 6, the evaluation and consideration are 
actually done. As a result, it is shown that “Locker room” fills three of four extracted 
attribute values. In addition, the attribute value of the remainder showed the 
numerical value with the highest column score in the expression of figure. When this 
result images “Locker room”, it is shown to become a very big factor. It is shown that 
it is a pictogram with low understanding level in “Locker room” because it lacks the 
attribute value from this.  

Next, the guess by the rough set that is another possibility is considered in seven. 
The pictogram that filled all of the four extracted attribute values was made figure, 
and it compared, and it investigated, saying that chart sign for a standard guide 
“Locker ro om”. As a result, it has been understood that the understanding level of the 
pictogram derived by the guess is higher. In a word, it was clarified that the pictogram 
guessed from the rough set was a good quality information transmission means with 
high understanding level.  

2   Decision and Making of Pictogram 

In this Section, the evaluated pictogram is decided. The targeted pictogram is 
assumed to be the one to meet the following requirement.  

(a) The one that understanding level is low in understanding level investigation. 
(b) The one that expression object is not adopted in figure as it is. 
(c) The one that doesn't depend on knowledge and experience alone. 
(d) The one that figure can be operated. 
(e) The one frequently used in public domain. 
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As for the pictogram that does not correspond to this condition, because the factor 
that depends on knowledge and the experience increases when transmission 
information is understood, the act “The expression object is guessed from the feature 
of figure” is not extracted easily. Moreover, figure in the pictogram should be the one 
replaced by something related to transmission information. Therefore, the pictogram 
that expresses “Locker room” standardized by chart-sign for a standard guide is 
targeted as a pictogram that meets the requirement of (a)-(e) in described the above. 

“Locker room” is made to be imaged indirectly by pictogram. “Locker room” is 
not drawing the expression object in figure, and drawing the suspender and the 
person. Moreover, it is easy to be simple figure, and to change to various figures. It is 
thought that the understanding level is a pictogram not comparatively understood 
easily for the side estimated to be 50% low in investigation concerning the 
understanding level[2]. It is necessary to make two or more pictograms used by the 
understanding level investigation to use the rough set in this text. When making it, 
figure used in the pictogram was assumed to be five “Locker”, “Suspender”, “Towel”, 
“Person”, and “Chair” based on “Image of the locker room” that had been obtained 
from the image research into “Locker room”. The pictogram of 16 kinds of the 
combination was made and these figures were used for the understanding level 
investigation. Moreover, it referred to chart sign guideline for a standard guide when 
the pictogram was made.  

3   Understanding Level Investigation 

The understanding level investigation used 16 pictograms shown in Section 2. Each 
pictogram was presented, and the answer form was assumed to be “(1) It was easy to 
understand” and “(2) It is not easy to understand” by the one to ask whether of each 
being able to image “Locker room”. It was thought it was improper in a case this time 
when the understanding level was asked and omitted it though it thought the selection 
item “There was not both” was added to give answered continuousness when the 
rough set was treated.  

The understanding level investigation was done to 20 people (The boy: 16 people 
and girl: 4 people) in the total of the man and woman in his/her twenties.  

4   Rough Sets 

4.1   Decision of Attributes and Attribute Values 

The index of the attribute was a feature of figure described by three and information 
on the easiness of figure to see. Moreover, "Side availability" was installed as an 
evaluation to the visual check level so that the pictogram had to make the other party 
intuitively understand transmission information. The attribute and the attribute value 
are shown in Table 1. 
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Table 1. Attribute and attribute value list 

Attribute Attribute value Sign 
There is a display. R1 Locker There is no display. R2 
There is a display. H1 Suspender There is no display. H2 
There is a display. T1 Towel There is no display. T2 
Display under the 

left 
C1 

Display under the 
right 

C2 

 
Chair 

There is no display. C3 
Left display P1 

Right display P2 
 

Man 
There is no display. P3 

One G1 
Two G2 

 
Number of 

figures Three G3 
20% or less U1 
20%~35% U2 
35%~40% U3 
40%~45% U4 

 
 

Side 
availability 

45% or more U5 

4.2   Decision Rule 

It applies it to the attribute value in which each 16 pictograms used to investigate is 
requested by 4.1. Afterwards, the result of the survey is assumed to be a decision 
attribute and the decision table is made. Here, the decision attribute is assumed to be 
two kinds of “Y=1: It borrows the solution easily” and “Y=2: It is incomprehensible”.  

The individual decision rule conditional part is extracted based on the obtained 
decision table for 20 to decision attribute Y=1 and Y=2.  

5   Analysis of Data and Its Result 

We analyze it based on the decision rule conditional part obtained in the previous 
Section. In this paper, annexation, combination table, and two analysis methods are 
used. Because a different analysis method is used, the output result is different though 
both are the techniques that the large number of people decision rule extracts from an 
individual decision rule. The reliability of the evaluation is improved by using these 
two kinds of analysis methods.  

5.1   Analysis Result by Annexation 

The individual decision rule conditional part of 20 people who obtained it in the 
previous Section is annexed to large number of people's decision rule. Annexation 
brings the output individual rule together, and shows how much each decision rule 
conditional part contributes to others.  

Table 2 shows the rule of the output annexation rule and the C.I. value (high rank). 
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Table 2. Condition part of annexation rule and C.I. value 

Y=1 
Annexation rule S.C.I value 

C3P1T2U2 0.777777 
G2H1R1U5 0.611111 
C3P1R1U2 0.611111 
H1P1T2U2 0.444444 
G2H1R1U1 0.444444 
G3P1R1U3 0.388888 
P1R1T2U3 0.388888 
C2P1R1U3 0.388888 

G2H1P3T2U5 0.388888 
C3G3P3R1T2 0.388888 
C3G2P3T2U5 0.388888 
C3G3P3T2U2 0.388888 
C3P3R1T2U5 0.388888 
C3P3R1T2U4 0.388888 
C3H1P3R1U5 0.388888 

Table 3. Combination table: result 

Attribute Attribute value Y=1 
It displays and it exists: 

R1. 
4.986508 Locker 

There is no display: R2.  2.555952 
It displays and it exists: T1.  0.833333 Towel 
There is no display: T2.  5.853283
It displays and it exists: H1.  4.010318Suspender 
There is no display: H2.  1.267532 
Left display: P1 1.528571 
Right display: P2 2.685714 

Person 

There is no display: P3.  1.616667 
Right display: C1 0 
Left display: C2 0.4 

Chair 

There is no display: C3.  3.861833
One: G1 0.5 
2: G2 2.075902 

Number of 
figures 

3: G3 1.761905 
20% or less: U1.  1.028571 
20%~35%:U2 0 Side 

availability 35%~40%:U3 0.4 
 40%~45%U4 1.495238 
 45% or more: U5. 0 

Combination rate 44.4444 
Column score threshold 2.787041 

Distribution score threshold 0.628817 
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5.2   Analysis Result by Combination Table 

The analysis method by the combination table requests large number of people's 
decision rule from individual information as well as annexation. 

First of all, it calculates the column score based on the CI value to the decision 
rule. In addition, it is a technique for analyzing each attribute value based on them 
based on the value for the threshold of the column score and the threshold of the 
distribution score. Table 3 shows the analysis result of decision attribute Y=1  
(It borrows the solution easily) obtained according to the decision rule conditional 
part and the CI value. 

Table 4. Combination pattern 

Attribute value Combination pattern 

R1 R1H1P2C3 

T2 T2R2H2P2C3G2 

H1 R1H1 

C3 C3R1T2 

6   Evaluation and Consideration 

In the analysis result in 5.1, it annexes it among extracted the annexation rules C.I . 
The value high and 15 titles are adopted and evaluated. As for the reason, the 
following two are thought: (a) Because the number of annexation rules increases 
extremely when the rule after that is evaluated; (b) Because reliability is scarce 
because the annexed CI value is low. The condition of requesting it is evaluated from 
the pictogram of the chart sign for the standard guide shown in Figure 1 based on 
these of information. 

               

Fig. 1. Pictogram that corresponds to annexation 

The obtained annexation rule is examined as follows. We examined the annexation 
rule that the value of S.C.I. is high. As a result, it has been understood that the 
annexation rule (C3P1T2U2) for S.C.I.=077 corresponds to the pictogram shown in 
figure 1. This means the answer that 70 percent investigated is comprehensible. 
Moreover, it has been understood that there are three criteria to make "Locker room" 
imaged from other annexation rules, as follow. 
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(1) The expression of the chair is excluded from figure.  
(2) The number of figures must be two or more.  
(3) Put the suspender in figure.  

The pictogram used for the chart sign for a standard guide satisfies these three 
conditions, as follows from Figure 1. 

The attribute value whose column score calculated from Table 3 is higher than the 
threshold 3.5 is four "R1", "T2", "H1", and "C3". In this evaluation table where the 
combination table was used, the one to meet four requirements is a pictogram with 
high understanding level. The attribute value of "R1" is not satisfied though the 
pictogram of Figure 1 satisfies three attribute values. Moreover, the corresponding 
pattern was not output from the combination pattern in three attribute values that 
corresponded to Figure 1. Chart sign for a standard guide "Locker room" is evaluated 
in consideration of these two results. This pictogram has raised the visual check level 
by making figure simple. It makes "Locker room" it imaged by using comprehensible 
figure for person, which consists of hanger and person. This adopts the suspender in 
figure, and transmits information with a difficult expression of point well raising the 
visual check level. However, it is necessary to expand information in figure more than 
the improvements of the visual check level to make "Locker room" imaged like 
understanding resultants of 5.2. Therefore, it is judged, the cause with low 
understanding level of this pictogram is from "Information is a little in the chart". 

7   Proposal of Pictogram by Guess 

It is not easy to pack transmission information in figure small as understood from the 
evaluation result. However, this problem can be solved by using the guess that is the 
feature of the rough set. The guess extracts, and makes the pictogram that agrees with 
the condition by the annexation rule and the combination table obtained by six. The 
pictogram is made based on the condition when not corresponding. Figure 2 is given 
as a pictogram that meets the above-mentioned requirement.  

              

Fig. 2. Example of guessed pictogram 

These pictograms were the one that "5.1: an annexation rule and 3 standards 
necessary to make it image" and "5.2: the combination pattern to 4 attribute values 
and 4 attribute values in the combination table" is filled, and the pictogram at the right 
of Figure 2 succeeded when these understanding levels were investigated in obtaining 
an understanding level that was higher than the pictogram of Figure 1. In a word, it is 
thought that the condition of a good quality pictogram can be derived by using the 
rough set for the feature extraction of the pictogram.  
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8   Summary 

In this paper, it proposed to use the rough set for the evaluation method of the 
pictogram. When figure used is expressed because the pictogram is an information 
transmission means to depend only on the sight, it is necessary to consider Canonical 
View. It becomes easy to image information from 2 to 3 dimensions by correcting this 
respect, and the improvement of a further understanding level can be expected.  

The device will be done repeatedly to the feature extraction method in the future. 
Not a single pictogram but two or more pictograms are evaluated from various angles. 
It has in a different expression though the same chart is adopted when the same chart 
is used in the pictogram with a different expression object and it has arrived to cite 
instances. Moreover, it is necessary to propose a good quality pictogram with high 
understanding level about other pictograms with a difficult expression.  
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Abstract. In this paper, we examine a logical representation of images
by means of multi-rough sets. We introduce a level of granularization
into a color space and then define approximations of images. Further we
extend the idea to conditionals in images, which is expected to give a
basis of image indexing and retrieval by images themselves.
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1 Introduction

Rough set theory proposed by Pawlak[5] is now regarded as providing one of the
most theoretically elegant and powerful tool of dealing with granularity in various
areas of science and technology. Recently Miyamoto[3] has studied multisets and
rough sets. Further Miyamoto et al.[4] has described multi-roughness in a clear
way in information systems as well as tables in relational databases[6]. In this
paper, we examine a logical representation of images themselves in the framework
as an application of Miyamoto’s concepts of multi-rough sets.

2 Multi-rough Sets

We give a brief review on multi-rough sets according to Miyamoto[3,4].

2.1 Information Tables

Let A be a fixed set of m attributes, say, A = {a1, · · · , am}. Assume that
each attribute ai has its corresponding domain Di. Then, any subset T in the
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Cartesian product D1 × · · · × Dn is called an information table with respect
to A.An element in an information table is called a tuple of the table. For any
tuple t ∈ T , denote its i-th component by t(ai), then t can be written as t =
(t(a1), · · · , t(am)).

2.2 Projection

For any non-empty subset A = {ai1 , · · · , air} ⊆ A, we can define the projection
of a tuple t with respect to A by

t(A) def= (t(ai1), · · · , t(air )).

Further it can be extended for a set of tuples T ⊆ T as

T (A) def= {t(A) | t ∈ T }.

Then, we have the following proposition.

Proposition 1. ([4]) t ∈ T =⇒ t(A) ∈ T (A).

Note that the converse does not necessarily hold1.

2.3 Multisets

As well known in database theory[6], the operation of projection usually induces
multisets. In general, a multiset T̃ in a universe U is characterized by the count
function

CtT̃ (x) : U → N,

where N is the set of natural numbers including 0. We also use the following
notation of multisets as

T̃ = {
CtT̃ (x)

x
| x ∈ U}.

By T̃ ⊆̃ U , we mean T̃ is a multiset in U .
For any non-empty subset A ⊆ A of attributes, we can define an equivalence

relation RA by
tRAt′ def⇐⇒ t(A) = t′(A)

for any t, t′ ∈ T . Then we have the quotient set T /RA defined by

T /RA = {[t]RA | t ∈ T },

where [t]RA is the equivalence class of t with respect to RA:

[t]RA = {t′ ∈ T | tRAt′} = {t′ ∈ T | t(A) = t′(A)}.

Then we define a multiset T̃ (A) in T characterized by

CtT̃ (A)(t(A)) = | [t]RA |,

where |·| is a number of elements. If every [t]RA is a singleton, then T (A) = T̃ (A).
1 See Example 1 in Section 3.
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2.4 Approximation

For arbitrary subset of tuples T ⊆ T , its lower and upper approximations can
be defined by

[A]T def= {t ∈ T | [t]RA ⊆ T },

〈A〉T def= {t ∈ T | [t]RA ∩ T 
= ∅}.

Then we have the following characterizations of the apporximations:

Proposition 2. ([4])

[A]T = {t ∈ T | t(A) ∈ T (A) − T C(A)},

〈A〉T = {t ∈ T | t(A) ∈ T (A)},

〈A〉T − [A]T = {t ∈ T | t(A) ∈ T (A) ∩ T C(A)},

where T C(A) = {t(A) | t ∈ T C}.

Assume we have already had a multiset T̃ in T by another equivalence relation
RA′ with respect to a set of attributes A′ ⊆ A. Miyamoto[3] proposed the
following definitions of approximations:

[A]T̃ ⊆̃ T : Ct[A]T̃ (t) def= min{ | [t′]RA | | t′ ∈ [t]RA′ },

〈A〉T̃ ⊆̃ T : Ct〈A〉T̃ (t) def= max{ | [t′]RA | | t′ ∈ [t]RA′ }.

In many application areas, in general, the crisp definition of approximations is
too strict and, to solve the problem, Ziarko[7] proposed variable precision rough
set models, in which graded approximations are defined by

[A]αT
def= {t ∈ T | Inc([t]RA , T ) ≥ α},

〈A〉αT
def= {t ∈ T | Inc([t]RA , T C) < α},

where Inc(X, Y) is a inclusion measure such as, say, Inc(X, Y) = |X ∩ Y |/|X |.
We have [A]1T = [A]T and 〈A〉1T = 〈A〉T .

2.5 Conditionals

Following Chellas’s conditional logics[1], for two subsets T, T ′(⊆ T ) of tuples,
we can define a conditional by

T ′ ⇒ T
def= {t ∈ T | f(T ′, t) ⊆ T },

where f is a selection function

f : 2T × T → 2T .

The simplest example of a selection function is

f(T, t) = T.
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Table 1. Images as information tables

(a)

X Y R G B

0 0 255 255 255
0 1 255 253 0

· · · · · ·
w − 1 h − 2 0 0 255
w − 1 h − 1 0 0 255

(b)

ID R G B

0 255 255 255
1 255 253 0

· · · · · ·
wh − 2 0 0 255
wh − 1 0 0 255

Similarly we can introduce variable precision model:

T ′ ⇒α T
def= {t ∈ T | Inc(f(T ′, t), T ) ≥ α}.

By the definition, obviously we have

(T ′ ⇒1 T ) = (T ′ ⇒ T ),

α ≤ β (α, β ∈ (0, 1]) =⇒ (T ′ ⇒β T ) ⊆ (T ′ ⇒α T ).

3 Logical Representation of Images

3.1 Images as Information Tables

A color image data of RGB 24 bit/pixel can be regarded as an information table
with the attributes of positions (X, Y ) and colors (R, G, B). If the size of a given
image is w × h, where w is the width of the image and h is a height, then

DX = {x ∈ N | 0 ≤ x < w − 1},

DY = {y ∈ N | 0 ≤ y < h − 1},

where N is the set of natural numbers including 0. And, for colors, say

DR = DG = DB = {c ∈ Z | 0 ≤ c < 28 = 256}.

An example of a color image data is shown in Table 1(a) where two attributes
X and Y are the candidate key of the table in Table 1(a). By formula ID =
w ∗ X + Y , we can replace each position (X, Y ) by its one to one corresponding
ID number whose domain is DID = N. It is also the candidate key2 in Table 1(b).
Such an example is shown in Table 1(b). We can use the ID number as an index
number for each tuple like t0 = (0, 255, 255, 255).

Definition 1. Let us define the atomic color space C by

C

def= DR × DG × DB.

2 In the example in Table 1(b), the domain of ID numbers is actually {i ∈ N | 0
≤ i < wh}.
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Then a color image img is represented as an information table in N × C with
respect to A = {ID, R, G, B}:

img ⊆ N × C.

3.2 Projection and Approximation of Images

By the operation of projection3, we have a subset or multiset of img in the atomic
color space C:

img(RGB) = {t(RGB) | t ∈ img} ⊆ C,

ĩmg(RGB) ⊆̃ C : Ctĩmg(RGB)(t(RGB)) = | [t]RRGB |.

Further, by confining ourselves to a subset A ⊆ RGB, we have the following
lower approximations:

[A]img def= {t ∈ img | [t]RA ⊆ img},

〈A〉img def= {t ∈ img | [t]RA ∩ img 
= ∅}.

Example 1. Consider the following image as an information table:

ID R G B

0 255 0 0
1 255 255 0
2 255 255 0
3 255 0 0
4 255 0 255

Then for a subset img′ = {t0, t1, t2}(⊆ img), we have

img′(RGB) = {(255, 0, 0), (255, 255, 0), (255, 0, 255)} ⊆ img(RGB) ⊆ C.

We can easily see that t3 
∈ img′, but t3(RGB) = (255, 0, 0) ∈ img′(RGB).
Next, we define an equivalence relation RRGB , then

img/RRGB = { {t0, t3}, {t1, t2}, {t4} },

and thus

ĩmg′(RGB) = { 2
(255, 0, 0)

,
2

(255, 255, 0)
,

1
(255, 0, 255)

} ⊆ img(RGB) ⊆̃ C.

Further, for A = GB, we have

[GB] img′ = {t1, t2},

〈GB〉img′ = {t0, t1, t2, t3}.

3 We use the usual abbreviations for subsets in database theory, for instance, RG for
{R, G}.
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Original Lower approximations
α = 0.01 α = 0.011 α = 0.017 α = 0.0245

Original Lower approximations
α = 0.01 α = 0.011 α = 0.017 α = 0.0245

Fig. 1. Examples of images and their lower apporximations (black part) with level 2
of base granularity and several precision value α = 0.01, 0.011, 0.017, and 0.0245

3.3 Granularization of the Atomic Color Space

We can introduce another kind of granularity of colors into the atomic color
space C. Let us consider a division of each color component R, G, amd B into
equally n parts4. That is, we divide C equally into n × n × n parts and let Rn

be the equivalence relation on T that corresponds to the partition. And define

Cn
def= C/Rn,

and let Cn = {C1, · · · , Cn×n×n}. We call n a level of base granularity.
We can define two kinds of approximations5 of a given image img :

[img]n
def= {C ∈ Cn | C ⊆ img(RGB)},

〈img〉n
def= {C ∈ Cn | C ∩ img(RGB) 
= ∅}.

Example 2. We show several examples of lower approximation for images in
Figure 1.

4 Of course, we can give different level of granularity, say, (nr, ng, nb) to red, green,
and blue, respectively.

5 To be more precise, they should be denoted as [Rn]img(RGB) and 〈Rn〉img(RGB),
respectively.
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3.4 Conditionals Between Images

Then for given two images img and img′, we can formulate the following four
kinds of conditionals:

[img′]n ⇒ [img]n, [img′]n ⇒ 〈img〉n, 〈img′〉n ⇒ [img]n, 〈img′〉n ⇒ 〈img〉n

under a given level n of the base granularity.
In this paper, we take the first type of conditional as a first step, and we define

the following two indices between of two images img and img′:

CONDn(img, img′) def= supα∈(0,1]{α | [img′]n ⇒α [img]n},

RELn(img, img′) def= min(CONDn(img, img′), CONDn(img, img′)).

These indices are useful to make some ranking among images.

Example 3. Given four images and their lower appoximations in Fig. 2, we can
calculate indices of CONDn and RELn between the images in Table 2.

Four original images

Lower approximations of the four original images

Fig. 2. Examples of four images and their lower approximation
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Table 2. Degrees of conditionals and relevance between images

(a) COND(img, img′).

1 2 3 4

1 1.0000 0.3547 0.3786 0.4589
2 0.3449 1.0000 0.3671 0.3315
3 0.3614 0.3604 1.0000 0.2837
4 0.3801 0.2824 0.2462 1.0000

(b) REL(img, img′).

1 2 3 4

1 1.0000 0.3449 0.3614 0.3801
2 1.0000 0.3604 0.2824
3 1.0000 0.2462
4 1.0000

4 Concluding Remarks

In this paper, we presented a basic framework of dealing with image data by
means of multi-rough sets. We are now planning a Kansei-based component
of images retrieval systems in the framework. In the component user-system
interaction is carried out directly by using images relevant to users’ Kansei, and
without any word like index terms. In fact, we have many tasks for the plan and
among them:

– Indexing and retrieval of images by images themselves.
– Meaning and applications of rules extracted from images as information

tables.

Finally it should be noted that manipulation of several images as information
tables at the same time is also related with the concept of multi-agent rough
sets proposed by Inuiguchi[2].
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Abstract. Cheung [2] has recently proposed a general learning frame-
work, namely Maximum Weighted Likelihood (MWL), in which an adap-
tive Rival Penalized EM (RPEM) algorithm has been successfully
developed for density mixture clustering with automatic model selec-
tion. Nevertheless, its convergence speed relies on the value of learning
rate. In general, selection of an appropriate learning rate is a nontrivial
task. To circumvent such a selection, this paper further studies the MWL
learning framework, and develops a batch RPEM algorithm accordingly
provided that all observations are available before the learning process.
Compared to the adaptive RPEM algorithm, this batch RPEM need not
assign the learning rate analogous to the EM, but still preserve the ca-
pability of automatic model selection. Further, the convergence speed of
this batch RPEM is faster than the EM and the adaptive RPEM. The
experiments show the efficacy of the proposed algorithm.

Keywords: Maximum Weighted Likelihood, Rival Penalized Expec-
tation-Maximization Algorithm, Learning Rate.

1 Introduction

As a typical statistical technique, clustering analysis has been widely applied
to a variety of scientific areas such as data mining, vector quantization, image
processing, and so forth. In general, one kind of clustering analysis can be formu-
lated as a density mixture clustering problem, in which each mixture component
represents the probability density distribution of a corresponding data cluster.
Subsequently, the task of clustering analysis is to identify the dense regions of
the input (also called observation interchangeably) densities in a mixture.

In general, the Expectation-Maximum (EM) algorithm [3] provides an effi-
cient way to estimate the parameters in a density mixture model. Nevertheless,
it needs to pre-assign a correct number of clusters. Otherwise, it will almost al-
ways lead to a poor estimate result. Unfortunately, from the practical viewpoint,
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it is hard or even impossible to know the exact cluster number in advance. In the
literature, one promising way is to develop a clustering algorithm that is able
to perform a correct clustering without pre-assigning the exact number of clus-
ters. Such algorithms include the RPCL algorithm [4] and its improved version,
namely RPCCL[1]. More recently, Cheung [2] has proposed a general learning
framework, namely Maximum Weighted Likelihood (MWL), through which an
adaptive Rival Penalized EM (RPEM) algorithm has been proposed for density
mixture clustering. The RPEM learns the density parameters by making mixture
component compete each other at each time step. Not only are the associated
parameters of the winning density component updated to adapt to an input, but
also all rivals’ parameters are penalized with the strength proportional to the
corresponding posterior density probabilities. Subsequently, this intrinsic rival
penalization mechanism enables the RPEM to automatically select an appropri-
ate number of densities by fading out the redundant densities from a density
mixture. The numerical results have shown its outstanding performance on both
of synthetic and real-life data. Furthermore, a simplified version of RPEM has
included RPCL and RPCCL as its special cases with some new extensions.

In the papers [2], the RPEM algorithm learns the parameters via a stochastic
gradient ascending method, i.e., we update the parameters immediately and
adaptively once the current observation is available. In general, the adaptiveness
of the RPEM makes it more applicable to the environment changed over time.
Nevertheless, the convergence speed of the RPEM relies on the value of learning
rate. Often, by a rule of thumb, we arbitrarily set the learning rate at a small
positive constant. If the value of learning rate is assigned too small, the algorithm
will converge at a very slow speed. On the contrary, if it is too large, the algorithm
may even diverge. In general, it is a nontrivial task to assign an appropriate value
to the learning rate, although we can pay extra efforts to make the learning rate
dynamically changed over time, e.g. see [5].

In this paper, we further study the MWL learning framework, and develop a
batch RPEM algorithm accordingly provided that all observations are available
before the learning process. Compared to the adaptive RPEM, this batch one
need not assign the learning rate analogous to the EM, but still preserve the
capability of automatic model selection. Further, the convergence speed of this
batch RPEM is faster than the EM and the adaptive RPEM. The experiments
have shown the efficacy of the proposed algorithm.

2 Overview of Maximum Weighted Likelihood (MWL)
Learning Framework

Suppose an input x comes from the following density mixture model:

P (x|Θ) =
k∑

j=1

αjp(x|θj),
k∑

j=1

αj = 1, αj > 0, ∀1 ≤ j ≤ k, (1)

where Θ is the parameter set of {αj , θj}k
j=1. Furthermore, k is the number of

components, αj is the mixture proportion of the jth component, and p(x|θj) is
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a multivariate probability density function (pdf) of x parameterized by θj . In
the MWL learning framework, the parameter set Θ is learned via maximizing
the following Weighted Likelihood (WL) cost function:

l(θ) =
∫ k∑

j=1

g(j|x, Θ) ln[αjp(x|θj)]dF (x) −
∫ k∑

j=1

g(j|x, Θ) ln h(j|x, Θ)dF (x),

(2)
with

h(j|x, Θ) =
αjp(x|θj)
P (x|Θ)

(3)

to be the posterior probability of x coming from the jth density as given x, where
g(j|x, Θ)s are the designable weights satisfying the two conditions:

(Condition 1)
∑k

j=1 g(j|x, Θ) = 1, and
(Condition 2) ∀j, g(j|x, Θ) = 0 if h(j|x, Θ) = 0.

Suppose a set of N observations, denoted as χ = {x1,x2, . . . ,xN}, comes
from the density mixture model in Eq.(1), the empirical WL function of Eq.(2),
written as Υ (Θ; χ), can be further expanded as:

Υ (Θ; χ)=
1
N

N∑

t=1

k∑

j=1

g(j|xt,Θ) ln[αjp(xt|θj)]−
1
N

N∑

t=1

k∑

j=1

g(j|xt, Θ) ln h(j|xt, Θ).

(4)
In [2], the weights g(j|xt, Θ) have been generally designed as:

g(j|xt, Θ) = (1 + εt)I(j|xt, Θ) − εth(j|xt, Θ) (5)

where εt is a coefficient varying with the time step t. Please note that g(j|xt, Θ)
in Eq.(5) can be negative as well as positive. For simplicity, we hereinafter set
εt as a constant, denoted as ε. Furthermore, I(j|xt, Θ) is an indicator function
with

I(j|xt, Θ) =
{

1, if j = c = arg max1≤i≤k h(j|xt, Θ);
0, otherwise. (6)

Subsequently, the earlier work [2] has presented the adaptive RPEM to learn
Θ via maximizing the WL function of Eq.(4) using a stochastic gradient ascent
method. Interested readers may refer to the paper [2] for more details. In the
following, we just summarize the main steps of the adaptive RPEM as follows:

Step 1. Given the current input xt and the parameter estimate, written as
Θ(n), we compute h(j|xt, Θ

(n)) and g(j|xt, Θ
(n)) via Eq.(3) and

Eq.(5), respectively.
Step 2. Given h(j|xt, Θ

(n)) and g(j|xt, Θ
(n)), we update Θ by

Θ(n+1) = Θ(n) + η
qt(Θ;xt)

Θ
|Θ(n) , (7)
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with

qt(Θ;xt) =
k∑

j=1

g(j|xt, Θ) ln[αjp(xt|θj)], (8)

where η is a small positive learning rate.
Step 3. Let n = n + 1, and go to Step 1 for the next iteration until Θ is

converged.

The experiments have shown the superior performance of the adaptive RPEM,
in particular the capability of automatic model selection. Nevertheless, the con-
vergence speed of this adaptive algorithm relies on the value of learning rate.
Under the circumstances, we will present a batch version without the learning
rate in the next section.

3 Batch RPEM Algorithm

3.1 Algorithm

As shown in Step 2 of Section 2, we actually update the parameters via max-
imizing the first term of Eq.(4), whereas the second term is just a conditional
entropy of the densities and can be regarded as the constant when updating the
parameters. In the following, we denote the first term of Eq.(4) as:

ζ(Θ; χ) =
1
N

N∑

t=1

k∑

j=1

g(j|xt, Θ) ln[αjp(xt|θj)]. (9)

Hence, we need to solve the following nonlinear optimization problem:

Θ̃ = arg max
Θ

{ζ(Θ; χ)} (10)

subject to the constraints as shown in Eq.(1). To solve this optimal problem
with equality constraint, we adopt Lagrange method analogous to the EM by
introducing a Lagrange multiplier λ into the Lagrange function. Subsequently,
we have:

F (Θ, λ) = ζ(Θ; χ) + λ(
k∑

j=1

αj − 1) (11)

with Θ = (αj , θj)k
j=1.

In this paper, we concentrate on the Gaussian mixture model only, i.e., each
component p(j(x|θj) in Eq.(1) is a Gaussian density. We then have

p(j|xt, θj) =
1

(2π)d/2|Σ|1/2 exp[−1
2
(xt − mj)T Σ−1

j (xt − mj)], (12)

where θj = (mj , Σj), mj and Σj are the mean (also called seed points inter-
changeably) and the covariance of jth density, respectively.

Through optimizing Eq.(11), we then finally obtain the batch RPEM algo-
rithm as follows:
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Step 1. Given Θ(n), we compute h(j|xt, Θ
(n))s and g(j|xt, Θ

(n))s for all xts
via Eq.(3) and Eq.(5), respectively.

Step 2. Given h(j|xt, Θ
(n))s and g(j|xt, Θ

(n))s computed in Step 1, we
update Θ by

α
(n+1)
j = ℵ(n)

j /

k∑

j=1

ℵ(n)
j , m(n+1)

j =
1

ℵ(n)
j

N∑

t=1

xtg(j|xt, θ
(n))

Σ
(n+1)
j =

1

ℵ(n)
j

N∑

t=1

g(j|xt, θ
(n))(xt − m(n)

j )(xt − m(n)
j )T , (13)

where ℵ(n)
j =

∑N
t=1 g(j|xt, θ

(n)). If the covariance matrix Σ
(n+1)
j is

singular, it indicates that the corresponding jth density component is
degenerated and can be simply discarded without being learned any
more in the subsequent iterations. In this case, we have to normalize
those remaining α

(n+1)
j s so that their sum is always kept to be 1.

Step 3. Let n = n + 1, and go to Step 1 for the next iteration until Θ is
converged.

In the above batch RPEM, we need to assign a value to ε in the weight design
as shown in Eq.(5). A new question is how to assign an appropriate value of ε?
The next sub-section will answer this question.

3.2 How to Assign Parameter ε?

We rewrite Eq.(5) as the following form:

g(j|xt, Θ) =
{

h(j|xt, Θ) + (1 + ε)(1 − h(j|xt, Θ)), if j = c
h(j|xt, Θ) − (1 + ε)h(j|xt, Θ), otherwise, (14)

where the term (1 + ε)(1 − h(j|xt, Θ)) is the award of the winning density
component (i.e. the cth density with I(c|xt, Θ) = 1), and meanwhile the term
−(1 + ε)h(j|xt, Θ) is the penalty of the rival components (i.e., those densities
with I(j|xt, Θ) = 0). Intuitively, it is expected that the award is positive and
the penalty is negative, i.e., ε should be greater than −1. Otherwise, as ε < −1,
we will meet an awkward situation: the amount of award is negative and the
penalty one becomes positive. This implies that we will penalize the winner
and award the rivals, which evidently violates our expectations. Furthermore,
as ε = −1, both of the award and penalty amount becomes zero. In this special
case, the batch RPEM is actually degenerated into the EM without the property
of automatic model selection.

In addition, it is noticed that the larger the ε, the stronger the award and
penalty are. This property makes the algorithm converge faster with a larger
value of ε, but the algorithm is more prone to a sub-optimal solution. Our em-
pirical studies have shown that the covariance matrix of a rival density is prone
to singular if ε is too large. Hence, an appropriate selection of ε in the batch
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RPEM would be a negative value. Further, our empirical studies have found
that the algorithm has a poor capability of automatic model selection if ε is
close to zero. As we can see, the smaller the |ε|, the smaller difference among the
rival densities is. For example, if we set |ε| = 0, we get g(j|xt, Θ) = I(j|xt, Θ).
Subsequently, the batch RPEM degenerates to the hard-cut EM without the ca-
pability of automatic model selection. Hence, by a rule of thumb, an appropriate
selection of ε should be within the range of (−1, −0.4). In the next section, we
will arbitrarily set ε at −0.5.

4 Experimental Results

Because of the space limitation, we will conduct two experiments only to demon-
strate the performance of the batch RPEM. In these two experiments, we used
the same 1, 000 observations that were generated from a mixture of three bivari-
ate Gaussian distributions, whose true parameters were:

α∗
1 = 0.3, α∗

2 = 0.4, α∗
3 = 0.3

m∗
1 = [1.0, 1.0]T , m∗

2 = [1.0, 2.5]T , m∗
3 = [2.5, 2.5]T

Σ∗
1 =

(
0.20, 0.05
0.05, 0.30

)
, Σ∗

2 =
(

0.2 0.0
0.0 0.20

)
, Σ∗

3 =
(

0.2 −0.1
−0.1 0.2

)
. (15)

4.1 Experiment 1

This experiment was to investigate the convergence speed of the batch RPEM
algorithm. We set k = 3, and the three seed points were randomly allocated in
the observation space. Furthermore, all αjs and Σjs were initialized at 1

k and the
identity matrix, respectively. For comparison, we also implemented the EM under
the same experimental environment. After all parameters were converged, both
of the batch RPEM and EM gave the correct parameter estimates. Nevertheless,
as shown in Fig. 1(a) and (b), the batch RPEM converges at 25 epochs while the
EM needs 60 epochs. That is, the convergence speed of the former is significantly
faster than the latter. This indicates that the intrinsic rival-penalization scheme
of the batch RPEM, analogous to the RPCL [4], RPCCL [1] and the adaptive
RPEM [2], is able to drive away the rival seed points so that they can be more
quickly towards the other cluster centers. As a result, the batch RPEM converges
much faster than the EM. Furthermore, we also compared it with the adaptive
RPEM, in which we set the learning rate η = 0.001. Fig. 1(c) shows that the
adaptive RPEM converges at 40 epochs, slower than the proposed batch version.

4.2 Experiment 2

This experiment was to investigate the capability of the batch RPEM on model
selection. We set k = 10, and randomly allocated the 10 seed points, m1, m2, . . .,
m10 into the observation space as shown in Fig. 2(a). During the learning process,
we discarded those densities whose covariance matrices Σjs were singular. After
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Fig. 1. Learning curves of mjs by (a) EM, (b) Batch RPEM, and (c) Adaptive RPEM,
respectively

90 epochs, we found that 5 out of 10 density components have been discarded.
The mixture proportions of the remaining components were converged to α1 =
0.0061, α2 = 0.3508, α3 = 0.3222, α4 = 0.3161, α5 = 0.0048. Furthermore, the
corresponding mjs and Σjs were:

m1 = [3.1292, 1.3460]T ,m2 = [0.9462, 2.5030]T ,m3 = [1.0190, 0.9788]T ,

m4 = [2.5089, 2.5286]T ,m5 = [1.8122, 1.8955]T

Σ1 =
(

0.1920, 0.0310
0.0310, 0.0088

)
, Σ2 =

(
0.1708, 0.0170
0.0170, 0.1489

)
, Σ3 =

(
0.1894, 0.0461
0.0461, 0.2892

)
,

Σ4 =
(

0.2155, −0.1101
−0.1101, 0.2116

)
, Σ5 =

(
0.0027, −0.0053

−0.0053, 0.0213

)
. (16)
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Fig. 2. The Results of the Batch RPEM Algorithm
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It can be seen that the three seed points m2,m3,m4 together with the cor-
responding proportions α2, α3, α4 have provided a good estimate of the true
parameters as shown in Fig. 2(b), where m2, m3, m4 are stabled at the center
of the clusters. In contrast, m1 and m5 have been driven away and located at the
boundary of the clusters with a very small mixture proportions: α1 = 0.0061 and
α5 = 0.0048. Actually, the 1st and 5th density components have been gradually
faded out from the mixture.

5 Conclusion

In this paper, we have developed a batch RPEM algorithm based on MWL
learning framework for Gaussian mixture clustering. Compared to the adaptive
RPEM, this new one need not select the value of learning rate. As a result, it
can learn faster in general and still preserve the capability of automatic model
selection analogous to the adaptive one. The numerical results have shown the
efficacy of the proposed algorithm.
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Abstract. A new evolution strategy based on clustering and local search
scheme is proposed for some kind of large-scale travelling salesman prob-
lems in this paper. First, the problem is divided into several subproblems
with smaller sizes by clustering, then the optimal or the approximate op-
timal tour for each subproblem is searched by a local search technique.
Moreover, these tours obtained for the subproblems are properly con-
nected to form a feasible tour based on a specifically-designed connec-
tion scheme. Furthermore, a new mutation operator is designed and used
to improve each connected feasible tour further. The global convergence
of the proposed algorithm is proved. At last, the simulations are made
for several problems and the results indicate the proposed algorithm is
effective.

Keywords: TSP, evolutionary algorithm, clustering, memetic algorithm.

1 Introduction

The traveling salesman problem (TSP) is one of the most famous combinatorial
optimization problems. Given n cities and a distance matrix D = [dij ], where
dij is the distance between city i and city j, TSP requires finding a tour ( i.e.,
a permutation of cities) through all of the cities, visiting each exactly once,
and returning to the originating city such that the total distance traveled is
minimized.

In this paper we consider the two-dimensional (2-D) Euclidean TSP, in which
the cities lie in R2 and the distance between two cities is calculated by Euclidean
distance. The 2-D Euclidean TSP is known to be NP -hard ([1],[2],[3]). It was
proven that there is no polynomial-time approximation scheme for TSP unless
P = NP ([4]). However, the TSP and its variants have a diverse practical ap-
plications. More than 1700 related papers have been published during the past
five years (see the INSPEC database: http://www.inspec.org). They are one of
the most actively studied topics in the evolutionary computation community,
too. Many papers have published in this field (e.g., [5]∼ [10]). One of the most
successful evolutionary algorithms (EAs) for TSP is the hybrid EAs (or memetic

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 260–266, 2007.
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EAs)that incorporate local search scheme into EAs (e.g., [7],[8],[9]). To the best
of our knowledge, Freisleben and Merz’s hybrid EA ([8],[9]) with powerful Lin-
Kernighhan (LK) local search algorithm ([10]) is in practice one of the best EAs
for TSP among the published algorithms. However, LK local search algorithm
needs a lot of computation and can not be applied to general large scale prob-
lems. For some special kind of TSP problems, it is possible to design effective
evolutionary algorithms.

In this paper, we focus our attention on some special TSP problems, i.e.,
the problems in which the cities can be classified into several groups, and in
each group the cities crowd together, and try to design an effective evolutionary
algorithm. To do so, we first divided cities into several groups by using clustering
technique. Second, we look for the optimal or approximate optimal tour for each
group by a local search technique. Third, we connect the tours found for these
groups to form a feasible tour based on a specifically-designed connection scheme.
Fourth, we design a new mutation operator and use it to improve the feasible
tour. Based on these, a novel evolution strategy based on clustering and local
search is proposed for this kind of TSP problems. At last, the simulations are
made and the results demonstarte the effectiveness of the proposed algorithm.

2 Classification of All Cities into Several Groups by
Clustering

For traveling salesman problems in which the cities can be classified into several
groups, and in each group the cities crowd together, it seems that the salesman
should go through all cities in best way in one group, then move to some other
group and also go through all cities in this group in optimal way. Repeat this
process until he goes through all groups and returns the starting city. Based on
this idea, we have to classify all cities into several groups. In this paper we use
the following clustering algorithm: K-mean clustering ([11]).

Algorithm 1

1. Randomly choose k cities as the initial centers of k clusters, where k is a
parameter. Let t = 0.

2. Calculate the distance between each city and each center of the clusters.
Classify the city into a cluster in which the distance between the city and
the center of the cluster is the shortest.

3. Re-compute the center for each cluster. Let t = t + 1.
4. If the center for every cluster is the same as the center for this cluster in

previous iteration t − 1, then stop; otherwise, go to step 2.

3 Local Search

For each cluster, a local search algorithm, 2−opt algorithm, is used to search high
quality tour. To explain the idea of 2 − opt algorithm clearly, we first introduce
the following definitions.
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Definition 1. For a given tour P , if λ links (edges) of tour P are replaced by
other λ links and the resulted graph is also a feasible tour, then the operation
of exchanging λ links is called a λ-exchange, and the resulted tour is called a
λ-exchange tour.

Definition 2. A tour is said to be λ-optimal (or simply λ−opt) if it is impossible
to obtain a shorter tour by replacing any λ of its links (edges) by any other set
of λ links.

The following is a local search algorithm for each cluster of cities.

Algorithm 2 (Local search heuristics based on λ-exchange)

1. Set Lopt = M , where M is a large enough positive number and Popt = ∅.
Let t1 = 0.

2. Arbitrarily take a feasible tour P .
3. Check whether there is a λ-exchange tour Pλ−ex which is better than current

tour P . If there is such a tour, let P = Pλ−ex. Go to step 3; otherwise, go
to step 4.

4. Tour P is the λ-optimal tour for the initial tour, let P1 = P . Let L1 is the
length of tour P1.

5. If t1 < 2, go to step 6; otherwise, Popt is an approximate optimal tour.
6. If L1 < Lopt, let Lopt = L1, Popt = P1, go to step 2; otherwise, let t1 = t1+1,

go to step 2.

In our simulation we take λ = 2. Note that for a given tour there are total
n(n−3)

2 λ-exchange tours.

4 Scheme for Connecting Clusters

In the previous two sections, all cities of a special kind of TSP problems are
divided into several clusters, and for the cities contained in each cluster an
optimal or approximate optimal tour is found. To get a high quality tour for
all cities it is necessary to design an effective connection scheme to connect all
these tours. Our motivation is that the connection is made in such a way that
the connected tour is as short as possible. The detail is as follows.

Algorithm 3 (Connection Scheme)

1. Let k denotes the number of clusters and let �L = 2.
2. Choose two clusters whose centers are the nearest. Their corresponding tours

are denoted as T 1 and T 2, respectively.
3. Choose an edge A1B1 ∈ T 1 and an edge A2B2 ∈ T 2 satisfying

|A1A2|+|B1B2|−|A1B1|−|A2B2| = min{|C1C2|+|D1D2|−|C1D1|−|C2D2|},

where edge C1D1 ∈ T 1 and edge C2D2 ∈ T 2, respectively, and |A1A2|
denotes the length of edge A1A2.
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4. Connect A1 and A2 (i.e., add edge A1A2), and B1 and B2. Remove edges
A1B1 and A2B2, respectively. Then a new tour T through all cities of two
chosen clusters is formed by connecting T 1 and T 2, and a new cluster is
formed by the union of these two chosen clusters.

5. If �L < k, then let �L = �L + 1, go to step 2; otherwise tour T is a feasible tour
through all cities. Stop.

5 Mutation Operator

To further improve the quality of the tours obtained by section 4, we design a
mutation operator and use it to each tour obtained. The detail is as follows.

Algorithm 4 (Mutation Operator)

1. For each tour i1i2 · · · in obtained by section 4, where i1i2 · · · in is a permu-
tation of 1, 2, · · · , n.

2. For q = 1, 2, · · · , n, randomly change iq into any element, denoted by jq, in
{1, 2, · · · , n}/{j1, j2, · · · , jq−1} with equal probability, where

{1, 2, · · · , n}/{j1, j2, · · · , jq−1}

represents a set whose elements belong to set {1, 2, · · · , n} but do not to set
{j1, j2, · · · , jq−1}.

3. Tour j1j2 · · · jn is the offspring of tour i1i2 · · · in.

It can be seen from this mutation operator that, for any feasible tours i1i2 · · · in
and j1j2 · · · jn, the probability of generating j1j2 · · · jn via i1i2 · · · in by mutation
operator is 1

n > 0.

6 The Proposed Algorithm

Based on algorithms in the previous four sections, the proposed evolution strat-
egy can be described as follows:

Algorithm 5 (A Memetic-Clustering-Based Evolution Strategy)

1. (Initialization) Given population size N , maximum generations gmax, and
N positive integers k1, k2, · · · , kN . For each ki for i = 1, 2, · · · , N , do the
following:
– Generate ki clusters by algorithm 1, and generate a tour for each cluster

by using Algorithm 2.
– Connect all these tours for clusters into one feasible tour for all cities by

using Algorithm 3.
All these N feasible tours constitute the initial population P (0), Let t = 0.
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2. (Mutation)For each individual

Tr = i1i2 · · · in ∈ P (t),

generate an offspring
Or = j1j2 · · · jn,

r = 1, 2, · · · , N . The set of all offspring is denoted as O(t).
3. (Selection) Select best N individuals from P (t)∪O(t) as the next generation

population P (t + 1).
4. (Stop Criterions) If t > gmax and the best tour obtained can not improved

in successive 10 generations, then stop; otherwise, let t = t + 1, go to step 2.

7 Global Convergence

First, we introduce the concept of the global convergence as follows.

Definition 3. Let a∗ ∈ A denote the chromosome which corresponds to an op-
timal tour. If

prob{ lim
t→∞ a∗ ∈ P (t)} = 1,

then the proposed genetic algorithm is called to converge to the global optimal
solution with probability one, where prob{} represents the probability of random
event {}.

For any feasible tours i1i2 · · · in and j1j2 · · · jn, note that

prob{M(i1i2 · · · in) = j1j2 · · · jn} =
1
n

> 0,

and the best tour found so far will be kept by the selection process, where
M(i1i2 · · · in) represents the offspring of i1i2 · · · in by mutation. It can be proved
by making use of the conclusions in [12] that the proposed algorithm has the
following property of the global convergence.

Theorem 1. The proposed evolution strategy (Algorithm 5) converges to the
global optimal solution with probability one.

8 Simulations

8.1 Test Problems

In the simulations, We execute the proposed algorithm to solve six standard
benchmark problems: nrw1379, a 1379-city problem, rL1889, a 1889-city prob-
lem u2319, a 2319-city problem, pr2392, a 2392-city problem, pcb3038, a
3038-city problem, and rL5915, a 5915-city problem. These problems are avail-
able from TSPLIB at http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/
TSPLIB95/TSPLIB.html
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8.2 Parameter Values

We adopt the following parameter values: N = 20, k1 = · · · = kN = s, and s =
5, 8, 10 respectively for problems with fewer than 3000 cities, and s = 5, 8, 10 and
15 respectively for problems with more than 3000 cities. gmax = 300 for problems
with fewer than 3000 cities and 500 for problems with more than 3000 cities.

8.3 Results

The simulations are carried out on a AthlonXP1800+512M PC and we program
the proposed algorithm in Matlab language. For each benchmark problem, we
perform 20 independent executions. We record the following data:

– The best, the average and the worst lengths over 20 runs, denote them by
Best, Mean and Worst, respectively.

– Average CPU time over 20 runs, denoted by CPU.
– Percentage of the amount the best tour found surpasses the optimal tour

over the optimal tour, denoted by %.

Table 1. Results obtained by proposed algorithm, where Opt − tour represents the
length of the optimal tour, and K is the number of clusters used

TSP Opt-tour K Best Mean Worst CPU %

5 59770 60236 61069 65.3 5.5
nrw1379 56638 8 59922 60177 60353 57.6 5.8

10 59981 60389 60873 65.6 5.9

5 342447 347407 353226 147.7 8.2
rL1889 316536 8 344107 350777 358637 135.4 8.7

10 344513 349777 355378 130.5 8.8

5 243379 243997 244465 227.7 3.9
u2319 234256 8 243167 243843 245016 216.1 3.8

10 242677 243243 243829 209.8 3.6

5 389288 394309 396554 246.8 2.9
pr2392 378032 8 394863 398895 404705 232.1 4.4

10 398937 402243 405692 225.6 5.5

5 148031 149461 150881 433.0 7.5
pcb3038 137694 8 149209 150126 151309 410.4 8.3

10 148867 149681 150905 408.7 8.1
15 148326 149853 151286 398.1 7.7

5 625686 629688 638488 2229.8 10.6
rL5915 565530 8 613469 625109 635527 2040.0 8.5

10 617823 627439 637816 1828.7 9.2
15 624123 633052 655479 1965.5 10.3

The results are given in Table 1. It can be seen from Table 1 that the percentage
of the amount the best tour found surpasses the optimal tour over the optimal
tour is relatively small although the proposed algorithm has not found the optimal
tours for these problems. This indicates the proposed algorithm is effective.
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9 Conclusions

In this paper we deal with some special TSP problems, i.e., the problems in
which the cities can be classified into several groups, and within each group
the cities crowd together. We designed an effective and globally convergent evo-
lutionary algorithm for this kind of problems. The proposed algorithm has the
ability of finding close-to-optimal solutions with high speed and a relatively small
amount of computation. The simulation results demonstrate the effectiveness of
the proposed algorithm.
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Abstract. A network community refers to a group of vertices within which the 
links are dense but between which they are sparse. A network community min-
ing problem (NCMP) is the problem to find all such communities from a given 
network. A wide variety of applications can be formalized as NCMPs such as 
complex network analysis, Web pages clustering as well as image segmenta-
tion. How to solve a NCMP efficiently and accurately remains an open  
challenge. Distinct from other works, the paper addresses the problem from a 
probabilistic perspective and presents an efficient algorithm that can linearly 
scale to the size of networks based on a proposed Markov random walk model. 
The proposed algorithm is strictly tested against several benchmark networks 
including a semantic social network. The experimental results show its good 
performance with respect to both speed and accuracy.  

Keywords: Social networks, Community, Markov chain, Semantic Web. 

1   Introduction 

A network community refers to a group of vertices within which the links are dense 
but between which they are sparse, as illustrated in Fig.1. A network community 
mining problem (NCMP) is the problem to find all such communities from a given 
network. A wide variety of problems can be formalized as NCMPs such as social 
network analysis[1], linked-based Web clustering[2], biological network analysis[3] 
as well as image segmentation[4]. Network communities in different contexts have 
different meanings and serve different functions. For instances, communities in a 
social network are interest-related social groups within which people have more con-
tacts with each other; communities in the World Wide Web are groups of topic-
related Web pages; communities in a protein regulatory network indicate groups of 
function-related proteins. Therefore, the ability to discover such a kind of hidden 
pattern from those networks can help us understand their structures and utilize them 
more effectively.  

So far, many methods have been proposed to address the NCMP. They can be gen-
erally divided into three main categories: (1) bisection methods, mainly including 
spectral methods [4,5] and the Kernighan-Lin algorithm[6]; (2) hierarchical methods, 
including agglomerative methods based on some structural measures[7] and divisive 
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methods such as the GN algorithm[8], the Tyler algorithm[9] and the Radicchi algo-
rithm[10]; (3) linked-based methods for mining Web communities mainly including 
the MFC algorithm[2] and the HITS algorithm[11]. 

 

BA

 

Fig. 1. A schematic representation of network communities. This simple network describes the 
social interactions among the members of a karate club at an American university, constructed 
by Wayne Zachary in the 1970s[1]. Different width of edges denotes different interaction 
strength. The club eventually split into two communities. One (community A) was led by its 
administrator (vertex 1) whose members are represented by squares, and another (community 
B) was led by its teacher (vertex 33) whose member are represented by circles. As we can 
observe, the social interactions within communities are much more than those between them.  

The above mentioned methods have their advantages and limitations. The authors 
hold the opinion that a method for solving the NCMP is said to be efficient if it inte-
grates three features at the same time, that is, be fast, be accurate, and be insensitive 
to parameters. In the paper, we will present a novel method to address the NCMP 
from a perspective of Markov random walk process, which demonstrates the three 
features as mentioned. The remainder of the paper is organized as follow: Section 2 
describes our method. Section 3 gives main experimental results. Section 4 concludes 
the paper by highlighting the major advantages of our method. 

2   The Probabilistic Approach 

First of all, we observe that if we can extract the community containing a specified 
vertex from a complete network, we will be able to find all communities hidden in the 
network by means of recursively extracting communities one by one. However, in 
order to do so, we need to solve three key problems as follows: (1) How to specify a 
vertex? (2) How to correctly extract the community containing the specified vertex 
from a complete network? (3) When to stop the recursive extracting process? In what 
follows, we will answer these questions with the aid of a Markov random walk model. 
Based on this model, we propose our method for solving the NCMP.  

2.1  Markov Random Walk Model 

Consider a random walk process in a given network N, in which an agent wanders 
freely from one vertex to another along the links between them. After the agent arrives 
at one vertex, it will select one neighbor at random and move there. Let N = (V, E)  
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and 1{ , , }nV v v= L . Let { , 0}lX X l= ≥ denote a random series, and { ,1 }
ll i lP X v i n= ≤ ≤  

denote the probability that the agent arrives at the vertex 
li

v after l steps. We have 

0 1 1 10 1 1 1( | , , , } ( | }
l l l ll i i i l i l i l iP X v X v X v X v P X v X v

− −− −= = = = = = =L . Thus, the random walk 

process is a finite and discrete Markov chain, denoted as ξ(N), and its state space is V. 
In a network, the probability of the agent walking from vertex i to vertex j is 

{ , } { , }( / ) 0ij ij i i j E i j Ep a d I I< >∈ < >∉= ⋅ + ⋅  where I denotes the condition of different case, ija is 

the weight on the edge <i, j> and i ij
j

d a=∑ is the degree of vertex i . Furthermore, we 

have 1( | }l j l i ijP X v X v p−= = = , so ξ(N) is a homogeneous Markov chain. Let 

( )ij n nA a ×=  be the adjacency matrix of network N and 1( , )nD diag d d= L . Let P be the 

one-step transfer matrix of ξ(N), we have 1( )ij n nP p D A−
×= = . Let ( )l

ijp  be the probabil-

ity that the agent starting from vertex i can arrive at vertex j after exact l steps. We 
have ( ) ( , )l l

ijp P i j= where Pl is the l-step transfer matrix of ξ(N). We have proven the 

following: Suppose that network N = (V,E) is a connected network and contains at 

least a loop with an odd path length, we have ( )lim /l
ij j k

l
k

p d d
→∞

= ∑ . 

A network is called ergodic if the Markov random walk process in the network is 
ergodic. Most real networks, especially social networks and the Web, are ergodic 
because they usually contain a lot of triangles due to their high clustering coefficient. 
The fact tells us that a random-walk agent wondering in an ergodic network will 
reach a specified destination vertex (called sink) with a fixed limit probability inde-
pendent of the starting vertex. The community containing the sink is called a sink 
community, denoted as Csink . Note that the density of edges within communities is 
much denser than that between communities, thus it is more likely for the random 
walk to reach the sink if it sets out from the vertex within the sink community, as it 
has more redundant paths to choose in order to reach its destination. On the contrary, 
if the random-walk agent starts from a vertex outside the sink community, it is very 
difficult for the agent to reach the sink because it has to take much more efforts to 
escape from other communities and get into the sink community through only a few 
“bottleneck” edges connecting them. In that case, the random walk will arrive at the 
sink with a quite low probability. Therefore, we have the following property for the 
above-mentioned Markov random walk model: Given a sink vj, there exists an inte-
ger L, when l L>  we have ( ) ( )l l

ij kj i j k jp p for v C and v C> ∈ ∉ . 
Based on this property, the procedure for extracting the community containing a 

specified vertex can be described as follows: (1) specifying a vertex vj as the sink; 
(2) calculating the L-step transfer probability ( )L

ijp  for each vertex I; (3) ranking all 
vertices into a non-decreasing permutation according to these probabilities. After 
the above three steps, all members belonging to the sink community are accumu-
lated together in the bottom of the ranked permutation. Then, the members of the 
sink community can be separated from others using a predefined cut strategy.  
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2.2   Selecting a Sink and Computing the L-Step Transfer Probabilities 

There are no special requirements about the selection of a sink, and we can randomly 
select one. While in a practical application, in addition to mining all communities, we 
also hope to identify their respective centers. For this reason, we will manage to select 
the center of a community as a sink in each bipartition. From the perspective of the 
random walk, a vertex with a maximum limit probability is likely the center of a net-
work because all walks randomly wandering in the network will eventually come to-
gether at such a vertex with the largest probability wherever they sets out. Therefore, 
we can choose a sink according to sink arg max{ } arg max{ / } arg max{ }i i k i

k

d d d= π = =∑ . 

All ( )L
ijp  can be found by calculating the L-step transfer matrix PL using at least O(n3) 

time. Here, we present an efficient algorithm for computing all L-step transfer prob-
abilities to a sink with O(n+Lm) time, where m is the number of edges. 
Let ( ) ( )

,( )l l
i sinkP i p= , we have 

(0)
{ } { }

( ) ( 1)

,

( ) 0 1

( ) ( ( )) /
i j

i sink i sink

l l
ij i

v v E

P i I I

P i a P j d

≠ =

−

< >∈

⎧ = ⋅ + ⋅
⎪
⎨ = ⋅
⎪
⎩

∑  

Now the problem can be stated as follows: Given a sink vj, how to decide a reason-
able value of L. Instead of calculating an exact value, we can estimate a large enough 
value using a simple error-control method, in which L is the minimum value of l satis-
fying ( )lerror < ε  where ( ) ( )

,| |l l
i sink sink

i

error p= − π∑ and ε  is a predefined constant such 

as 10-3. Briefly speaking, based on the Dobrushin convergent theorem we can obtain 
the following:  

( )
10 10 10min{ | } ( ) / ( ( ))l kL l error ε k log ε-log log C P⎡ ⎤= < = ⋅ α⎢ ⎥  

where α , ,( ) (sup | |) / 2i k ij kjC P p p= −∑ , and arg min{ ( ) 1}kk C P= <  are three Dobrushin 

constants which are insensitive to the dimension of the network.  
So for a given network and a predefined error, the value of L can be considered as a 

constant and the time of computing the L-step transfer probabilities will 
be O( ) O( )n Lm n m+ = + . In practice, L can be quite small for most real-world  
 
 
 
 
 
 
 
 
 
 

Fig. 2. The linear relationship between steps L and the logarithm of control error ε  in different 
networks with different dimensions 
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networks. We can verify this through the experiments as presented in Fig.2. In the 
legend, n, m, and d correspond, respectively, to the number of vertices, the number of 
edges, and the average degree of networks. Using a linear regression approach, we 
can respectively figure out the linear function of 10 ( )log ε =aL b+ , where 

10( ( )) /ka log C P k=  and 10b log= α , that best fits the experimental data of each network. 

For all cases, the error will be below ε = 10-3 after at most 350 steps.  

2.3   Probability Cut and Stopping Criterion 

Now our next problem is, based on the sorted P(L), how to find a cut position that can 
perfectly distinguish the sink community from others. In this section, we present a 
new cut criterion, probability cut, to efficiently complete this task.  

Let (V1,V2) be a bipartition of N, where 1 2V V V∪ =  and 1 2V V∩ = φ . The escaping 

probability, 1 2( , )EP V V , is defined as the probability of a random walk transitioning 

from set V1 to set V2 in one step, and can be calculated as 
1 2

1 2 1
,

( , ) / | |ij
i V j V

EP V V p V
∈ ∈

= ∑ . 

Specifically, 1 1( , )EP V V  is called a trapping probability, which is the probability of the 

random walk being trapped in set V1 in one step. We have 1 1 1 2( , ) ( , ) 1EP V V EP V V+ = . 

From the viewpoint of community structure, if (V1, V2) is a “good” bipartition of the 
entire network, the escaping probability should be very small and at the same time the 
trapping probability should be very large because it is very hard for a random-walk 
agent to escape from the trap of one community in which it currently stays and get 
into another via only a few “bridge links” connecting them. Based on this idea, we 
define the probability cut, Pcut, as 1 2 1 2 2 1( , ) ( , ) ( , )Pcut V V EP V V EP V V= + . 

Given a cut position pos(1 pos n≤ < ), the bipartition of sorted P(L) divided by pos is 
denoted as (V1, V2) = ([1, pos], [pos+1, n]). Now, the problem of finding a good cut 
position of a sorted P(L) is essentially that of finding its bipartition that minimizes the 
Pcut value, that is, ( )

1
( ) arg min { ([1, ],[ 1, ])}L

pos n
cut P Pcut pos pos n

≤ <
= + . 

Such a cut position can be efficiently computed by at most thrice scanning the ma-
trix with O(n+m) time in term of the adjacency list.  

If a given network N can be nicely divided into two parts, the escaping probability 
will be much less than the trapping probability. Otherwise, no further division is re-
quired because there is no obvious community structure in the network such that it is 
easy for a random walk to escape from one community and get into another. Based on 
this fact, a reasonable criterion to stop the recursive process of extracting sink com-
munities is 1 2 1 1 2 1 2 2( , ) ( , ) ( , ) ( , )EP V V EP V V and EP V V EP V V≥ ≥ . Furthermore, we have 

1 2 2 1( , ) 0.5 ( , ) 0.5EP V V and EP V V≥ ≥ , where (V1, V2) is the optimal probability cut of 

network N as discussed above. We have proven that the worst time complexity of the 
above algorithm is O((2 1)( log ))K n n m− + , where K is the number of communities in 
the network. Usually, K is much smaller than n. Also note that the value of logn is 
extremely small and can be ignored as compared with the value of n. Thus, the worst 
time complexity of the NCMA algorithm is approximately O(n+m), or O(n) in a 
sparse network. 
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2.4   Main Algorithm and Time Complexity 

 

Algorithm. NCMA: Algorithm for Mining Network Communities  
Input: A, the adjacency matrix of the network to be mined 
Output: B, the adjacency matrix of the clustered network 
1. select the vertex with the maximum degree as the sink; 
2. compute the transfer probability vector P(L)  with respect to a given error; 
3. sort P(L)  into a non-decreasing permutation SP(L); 
4. transform adjacency matrix A into matrix B based on SP(L); 
5. compute the optimal cut position and two escaping probabilities based on B;  
6. return matrix B if the stopping criterion is satisfied; otherwise, divide matrix B 

into sub-matrices B1 and B2 based on the cut position;   
7. NCMA (B1); 
8. NCMA (B2).  

3   Validation of the Probabilistic Algorithm for Solving NCMA 

We have validated our proposed probabilistic algorithm for solving the NCMA by 
using various benchmark datasets, including real and artificial networks. As limited 
by the space, here we will discuss only two of them.  

3.1   The Karate Club Network 

Fig.3 presents the community structure of the karate club network extracted by the 
probabilistic NCMA algorithm. The number on the left of each row denotes the vertex 
identifier and the binary tree denotes the hierarchy of communities, in which three 
communities are detected. We can see that the two largest groups are exactly identical 
with the actual division as shown in Fig.1. In addition, the NCMP also predicts a 
potential division of the group led by the administrator in the future. 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The output of the probabilistic NCMA algorithm for the karate club network of Fig.1 

3.2   Applying the Probabilistic NCMA Algorithm to a Semantic Social Network  

Flink is a social network with semantic information. It describes the scientific collabo-
rations among 681 Semantic Web researchers[12]. It is constructed based on Semantic 
Web technologies and all related semantic information is extracted automatically from 
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“Web-accessible information sources”, such as “Web pages, FOAF profiles, email lists 
and publication archives. The directed arc between vertices, as shown in Fig. 4(a), 
denotes the “know relationship” indicating scientific activities happened between re-
searchers. The weight on each arc quantitatively measures the strength of such a “know 
relationship”. We select Flink as the experimental testbed for our algorithm mainly 
because it contains rich semantic information and statistical information of the network 
which allow us to analyze the practical meaning of each community as detected by our 
algorithm. Additionally, so far Flink has not provided useable information related to its 
community structure, and we hope our work can supplement this important informa-
tion to it.   

(a) (b)

(c) (d)  

Fig. 4. The results of the probabilistic NCMA algorithm for the Flink network 

Fig.4(a) shows the network structure of the Flink, and Fig.4(b) presents the output 
of the NCMA algorithm, in which each black dot denotes an arc ignoring its weight 
and the grey bar at the right denotes the hierarchical community structure with differ-
ent grey level. Three biggest groups are detected which contains 51, 294, and 336 
vertices, respectively. The first group is almost completely separated from the entire 
network, and its 49 member constitute the outer cycle of Fig.4(a). In total, 93 com-
munities are detected and the average size of community is 7.32, as shown in Fig.4(c). 
Approximately, we can observe a power-law emerging: Most communities have a 
small size, while a small number of communities contain quite a large number of 
members. As an example, we take a look at the second largest communities in which 
Steffen Staab, with the biggest centrality, is the center, as shown in Fig.4(d). After 
carefully checking their profiles one by one, we can discover an interesting fact: the 
community is highly location-related. In it, 22 of 39 come from Germany, 21 come 
from the same city, Karlsruhe, and 12 out of such 21 come from the same university, 
the University of Karlsruhe where Steffen Staab works. Also we can note that the 
community is research topic related. Currently, Flink does not cover the research 
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interest information of all people, we have to estimate their respective research inter-
ests according to their published papers. In this community, most members are inter-
ested in the topic related to learning.  

4   Conclusions 

In this paper, we have presented a probabilistic NCMP algorithm to mine network 
communities based on a Markov random walk model. We have validated it using 
various types of networks to show confirm its performance. As demonstrated in our 
experiments, the algorithm is very efficient with a linear time, with respect to the size 
of networks. In addition, it is accurate with a good clustering capability. Finally, our 
algorithm can automatically detect a hierarchical community structure without any 
prior knowledge, such as the number and the size of communities. 
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Abstract. This paper presents a new approach to blind separation
of sources using sparse representation in an underdetermined mixture.
Firstly, we transform the observations into the new ones within the gener-
alized spherical coordinates, through which the estimation of the mixing
matrix is formulated as the estimation of the cluster centers. Secondly,
we identify the cluster centers by a new classification algorithm, whereby
the mixing matrix is estimated. The simulation results have shown the
efficacy of the proposed algorithm.

Keywords: Sparse representation, blind source separation, underdeter-
mined mixture.

1 Introduction

Blind separation of sources using sparse representation in an underdetermined
mixture has recently received wide attention in the literature, e.g. see [1]-[7], be-
cause of its attractive applications in wireless communication, time series anal-
ysis, bioinformatics, to name a few. In this paper, we consider the following
underdetermined blind source separation (BSS) model only:

x(t) = As(t), (1)

where A ∈ �m×n is an unknown mixing matrix, s(t) = [s1(t), s2(t), . . . , sn(t)]T

is an n-dimensional hidden source vector at time step t, and x(t) = [x1(t), x2(t),
. . ., xm(t)]T is the corresponding m-dimensional observation vector with m < n.
The objective of the problem is to estimate the wave-form of the source signals
from the q observations, denoted as x(1), x(2), . . . , x(q) without knowing A.

Typically, such a problem can be performed with two stages: (1) the estima-
tion of the mixing matrix A, and (2) identify the source signals based on the
estimate of A. If the source signals are strictly sparse, i.e., there is one and only
one component of s(t) for each t, t = 1, 2, . . . , q, to be non-zero, a two-stage algo-
rithm can successfully identify the source signals. Unfortunately, from a practical
viewpoint, the sources may not be sparse enough. Under the circumstances, it is
nontrivial to estimate the source signals. In the literature, some works have been

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 276–283, 2007.
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done towards solving this problem. For example, Bofill and Zibulevsky [1] have
proposed a contrast function to estimate the mixing matrix A and then identi-
fied the source signals using a short-path separation criterion. The paper [1] has
demonstrated the success of this method in two-dimensional observation space,
i.e. m = 2. However, it is not applicable to the situations as m ≥ 3. Further, this
method introduces a lot of parameters, whose values are hard to be determined
in advance. In the work of [2], the time-frequency masks are created to partition
one of the mixtures into the original sources. The experimental results on speech
mixtures have verified this technique, which, however, is somewhat sensitive to
the sparseness of the sources. Subsequently, the paper [3] has further developed
a generalized version of the algorithm in [2]. Nevertheless, this generalized algo-
rithm involves a number of parameters and the computation is laborious. The
basic procedure in literature [6] and [7] is to parametrize the mixing matrix in
spherical coordinates, to estimate the projections of the maxima of the multidi-
mensional PDF that describes the mixing angles through the marginals, and to
reconstruct the maxima in the multidimensional space from the projections.

In this paper, we will present a new two-stage algorithm for the underdeter-
mined BSS problem as described in Eq.(1). In this algorithm, we first transform
the observations into the new ones within the generalized spherical coordinates,
whereby the estimation of the mixing matrix can be formulated as the estima-
tion of the cluster centers. Then, we identify the cluster centers by using a new
classification algorithm, through which the mixing matrix is therefore estimated.
Compared to the existing methods, the advantages of the proposed algorithm
are as follows:

1. Its performance is somewhat insensitive to the source sparseness in compar-
ison with the k-means based BSS algorithms and those in [2,5];

2. The number of parameters involving in the proposed algorithm is less than
the one in [3], whereby saving the computation costs.

The simulation results have shown the efficacy of the proposed algorithm.

2 Transformation of Observations into Generalized
Spherical Coordinates

Following the model of Eq.(1), we can re-write x(t), t = 1, 2, . . . , q, by:

x(t) = s1(t)a1 + s2(t)a2 + . . . + sn(t)an, (2)

where aj is the jth column of the mixing matrix A, i.e., A = (a1, a2, . . . , an).
When the sources are sparse enough, there is one and only one to be non-
zero among s1(t), s2(t), . . ., sn(t). Under the circumstances, a clustering based
method can provide an efficient way to estimate the value of A. Unfortunately,
the sources are often not sparse. To make the sources become sparse, one possible
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Fig. 1. Three observed signals applied a discrete wavelet transformation

way is to transform the sources into the spectrum ones via a Fourier transforma-
tion or a wavelet packet transformation. However, such a simple transformation
cannot make the sources sparse enough as shown in Figure 1, where the sources
are four music signals and are transformed into time-frequency by applying a
discrete wavelet packets transformation to three observed signals. In the follow-
ing, we will map the observations into the generalized spherical coordinates. For
simplicity, we assume that the first component x1(t) of an xt is non-negative,
i.e., all observations x(t)s are in half the space of �m. Otherwise, we may let
x(t) = −x(t) as x1(t) < 0. Subsequently, we make the following transformation:

1. As m = 2, we make the polar-coordinate transformation:
{

x1(t) = ρ(t) cos θ1(t)
x2(t) = ρ(t) sin θ1(t),

(3)

where 0 ≤ θ1(t) ≤ π.
2. As m ≥ 3, we make the generalized-spherical-coordinate transformation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(t) = ρ(t) cos θ1(t)
x2(t) = ρ(t) sin θ1(t) cos θ2(t)
...

...
xm−1(t) = ρ(t) sin θ1(t) sin θ2(t) . . . sin θm−2(t) cos θm−1(t)
xm(t) = ρ(t) sin θ1(t) sin θ2(t) . . . sin θm−2(t) sin θm−1(t),

(4)

where 0 ≤ θ1(t) ≤ π
2 , 0 ≤ θ2(t), . . . , θm−1(t) ≤ 2π. Subsequently, we

can compute the values of ρ(t) and θj(t)s with t = 1, 2, . . . , q, and j =
1, 2, . . . , m − 1.

Among all s(t)s, there must exist many of source column vectors that are sparse
enough, i.e. there is only one nonzero entry in each column vector. Suppose
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there are qk source column vectors with only the jth component being nonzero,
we re-write them as s(ik1), s(ik2), . . . , s(ikqk

) (k = 1, 2, ..., n). According to Eq.(2),
we then have:

x(t) = s1(t)a1, t = i11, i
1
2, . . . , i

1
q1

;
x(t) = s2(t)a2, t = i21, i

2
2, . . . , i

2
q2

;
...

x(t) = sn(t)an, t = in1 , in2 , . . . , inqn
.

(5)

When t = ik1 , ik2 , . . . , i
k
qk

, the vectors (ρ(t), θ1(t), θ2(t), . . . , θm−1(t))T s
transformed by x(t)s via generalized spherical-coordinate have the same val-
ues in all the components except for the first one ρ(t)s. We let them be a vector
without the first one:

θk = (θk
1 , θk

2 , . . . , θk
m−1)

T , (k = 1, 2, . . . , n). (6)

Therefore, the problem of estimating the n column vectors of mixing matrix A
has been changed into the problem of finding out the n points under the coordi-
nate of θ1, θ2, . . . , θm−1 by the generalized-spherical-coordinate transformation.

3 Algorithm for Estimating the Mixing Matrix

As shown in Fig.1, the sources near origin are not so sparse. In order to remove
these sources which are not sparse in the time-frequency domain, we set an
appropriate parameter r0, and remove those x(t)s that satisfy the condition
ρ(t) < r0. Subsequently, the number of the corresponding points (θ1(t), θ2(t), . . .,
θm−1(t))T (t = 1, 2, . . .,q) under the coordinate constructed by θ1, θ2, . . . , θm−1 is
reduced. It is well known that many points stay around the points (θ1, θ2, . . . , θn)
in Eq.(5); while the others are dispersal. This feature coincides the insufficient
sparseness of the source signals. Hence, we propose the following algorithm to
estimate the mixing matrix based on above property.

Firstly, we consider the entries of the first axis and remove the disturbing ones.
Let the total number of the points in the coordinate θ1, θ2, . . . , θm−1 be q1. Also,
let m1, M1 be the minimum and maximum of the first component corresponding
to these points, respectively. Then, we divide the interval [m1, M1] into L slide
windows with equal size and count the number of points in each window. Suppose
the average number in each slide window is p1 with p1 = q1

L . We remove those
windows in which the number of points is less than rp1. Here r is a parameter
greater than 1. Subsequently, we combine the adjacent subintervals. As a result,
we obtain l1 new slide windows, denoted as I1

1 , I1
2 , . . . , I1

l1
. Secondly, we remove

the disturbing entries of the second axis. Similar to the process of the first axis,
we let q2

j be the total number of the points, and m2
j , M2

j be the minimum
and maximum of the second component corresponding to these points in each
slide window I1

j , respectively. Again, we divide each window [m2
j , M

2
j ] into L

slide window with equal size. Then, we remove the windows with the number of

points less than rp2
j , (p

2
j =

q2
j

L ), and combine the adjacent subintervals to obtain
new slide windows.
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Fig. 2. Three observed signals deleted disturbing points

In this way, we can remove the disturbing entries from the 3rd to nth axis, and
we obtain many slide windows. The each window is processed once again by the
above way, and finally obtain the results as shown in Fig.2. After removing all
of disturbing entries, we denote the final slide windows as In

1 , In
2 , . . . , In

ln
, where

each window In
j contains Qj points with:

(θ1(i1), θ2(i1), . . . , θm−1(i1))T ,
(θ1(i2), θ2(i2), . . . , θm−1(i2))T ,
...
(θ1(iQj ), θ2(iQj ), . . . , θm−1(iQj ))T ,
(j = 1, 2, . . . , ln).

Since the source signals are not sparse enough, we calculate

mean(θj
1) =

1
Qj

Qj∑

k=1

θ1(ik),

mean(θj
2) =

1
Qj

Qj∑

k=1

θ2(ik),

...

mean(θj
m−1) =

1
Qj

Qj∑

k=1

θm−1(ik),

(j = 1, 2, . . . , ln).
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Let ρ(t) = 1, θ1(t) = mean(θj
1), θ2(t) = mean(θj

2),. . .,θm−1(t) = mean(θj
m−1),

we can get the estimated vectors of aj from Eq.(3) or Eq.(4) (j = 1, 2, . . . , ln).

Algorithm :
Step 1: Use the Fourier or discrete wavelet packets transformation to transform

the observed signals to the frequency domain or time-frequency domain, and
make them sparse. In the following, we assume x(t) is the data vector on
frequency domain or time-frequency domain (t = 1, 2, . . . , q).

Step 2: Transform the points into the sphere coordinates, and define the vector
as (ρ(t), θ1(t), θ2(t), . . . , θm−1(t))T with t = 1, 2, . . . , q.

Step 3: Given the parameter r0, we remove the column vectors
(ρ(t), θ1(t), θ2(t), . . . , θm−1(t))T , (t = 1, 2, . . . ,q) in the data vectors, which
satisfy ρ(t) < r0. Also, let the remaining vectors be (ρ(t), θ1(t), θ2(t), . . .,
θm−1(t))T , (t = 1, 2, . . ., q1)

Step 4: We set k = 1.

Step 5: Set the parameter L and r. We calculate mk = min
1≤t≤q

θk(t) and Mk =

max
1≤t≤q

θk(t). Further, we divide the interval [mk, Mk] into L slide windows

with equal-size, and let them be Ik
i =[mk+(j−1)

Mk − mk

L
, mk+j

Mk − mk

L
)

(j = 1, 2, . . . ,L-1), Ik
L = [mk + (L − 1)

Mk − mk

L
, mk + L

Mk − mk

L
]. We

remove the windows Ik
j if qk

j < r q1
L (j=1,2,. . . ,L), where qk

j is the number of
vectors the number of vectors of θk(t) belong to the window Ik

j .

Step 6: Combine the adjacent slide windows, and re-write them as Ik
j , j =

1, 2, . . . , Lk.

Step 7: If k < m − 1, let k = k + 1, and goto Step 5.

Step 8: If k = m − 1, after removing the disturbing entries, the vectors (θ1(t),
θ2(t) ,. . ., θm−1(t))T belong to Lm−1 hyperrectangle regions. For the points
of each hyperrectangle region, process Step 4 to Step 7 once more.

Step 9: Calculate the average value of vectors
(ρ(t), θ1(t), θ2(t), . . . , θm−1(t))T (t = 1, 2, . . . , q1) from the second axes to the
last axes, which belong to the slide window Im−1

j (j = 1, 2, . . . , Lm−1), and
let ρ(t) = 1, θ1(t) = mean(θ1), θ2(t) = mean(θ2), . . . , θm−1 = mean(θm−1).
Then we get the estimated vectors of aj , j = 1, 2, . . . , Lm−1 from Eq.(3) or
Eq.(4). (Note that Lm−1 = n)
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4 Simulation Examples

To demonstrate the efficacy of our algorithm, we compared the estimated mixing
matrix with the original mixing matrix in the examples. In most cases, the sources
are not sparse enough. To obtain a more sparse representation, we should apply
the Fourier transformation or a wavelet packet transformation to them. Note that
the sparseness of them influences the precision of our algorithm. The following
examples come from Bofill’s web site, http://www.ac.upc.es/homes/pau/.

Example 1. In this example, the observations are three signals mixed by four
music signals via the mixing matrix.

A =

⎡

⎣
−0.7797 −0.3703 0.1650 0.5584
−0.0753 0.8315 0.6263 0.3753
−0.6215 −0.4139 0.7619 −0.7397

⎤

⎦ .

We apply the discrete wavelet packet transformation to make it sparse by trans-
forming these signals from the time domain to the time-frequency domain. Sub-
sequently, the estimated matrix obtained by our algorithm of is:

Ã =

⎡

⎣
−0.7797 −0.3773 0.1652 0.5435
−0.0737 0.8284 0.6271 0.3788
−0.6239 −0.4137 0.7611 −0.7489

⎤

⎦ .

Comparing the columns of Ã with those of A, we can see that the algorithm
works well.

Example 2. In this example, the observations are three signals mixed by six
flutes signals with

A =

⎡

⎣
−0.1670 −0.3558 0.5703 −0.7712 −0.5104 −0.1764

0.6337 −0.9265 0.2944 −0.5643 0.2496 −0.5603
−0.7552 −0.1221 −0.7668 −0.2943 0.8228 −0.8092

⎤

⎦ .

We apply the Fourier transformation to make it sparse by transforming these
signals from the time domain to the frequency domain. The estimated matrix
obtained by our algorithm is

Ã =

⎡

⎣
0.1695 0.3588 0.5659 0.7713 0.5100 0.1776

−0.6358 0.9288 0.3003 0.5680 −0.2480 0.5580
0.7529 0.1245 −0.7677 0.2869 −0.8236 0.8105

⎤

⎦ .

Comparing the columns of Ã with those of A, we can see once again that the
algorithm works well.

5 Conclusion

This paper has presented a new algorithm to blindly separate the sources us-
ing sparse representation in an underdetermined mixture. In our method, we
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transform the observations into the new ones within the generalized spherical
coordinates, through which the estimation of the mixing matrix is formulated as
the estimation of the cluster centers. Subsequently, we identify the cluster cen-
ters by a new classification algorithm, whereby the mixing matrix is estimated.
The numerical simulations have demonstrated the efficiacy of our algorithm.
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Abstract. Biclustering or simultaneous clustering attempts to find
maximal subgroups of genes and subgroups of conditions where the genes
exhibit highly correlated activities over a range of conditions. The pos-
sibilistic approach extracts one bicluster at a time, by assigning to it a
membership for each gene-condition pair. In this study, a novel evolu-
tionary framework is introduced for generating optimal fuzzy possibilistic
biclusters from microarray gene expression data. The different parame-
ters controlling the size of the biclusters are tuned. The experimental
results on benchmark datasets demonstrate better performance as com-
pared to existing algorithms available in literature.

Keywords: Microarray, Genetic algorithms, Possibilistic clustering,
Optimization.

1 Introduction

It is often observed in microarray data that a subset of genes are coregulated
and coexpressed under a subset of conditions, but behave almost independently
under other conditions. Here the term “conditions” can imply environmental con-
ditions as well as time points corresponding to one or more such environmental
conditions. Biclustering attempts to discover such local structure inherent in the
gene expression matrix. It refers to the simultaneous clustering of both genes and
conditions in the process of knowledge discovery about local patterns from mi-
croarray data [1]. This also allows the detection of overlapped groupings among
the biclusters, thereby providing a better representation of the biological reality
involving genes with multiple functions or those regulated by many factors. For
example, a single gene may participate in multiple pathways that may or may
not be co-active under all conditions[2].

A good survey on biclustering is available in literature [3], such as: i)Iterative
row and column clustering combination [4], ii) Divide and conquer [5], iii) Greedy
iterative search [1,6], iv) Exhaustive biclustering enumeration [7], v) Distribution
parameter identification [8].
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The pioneering work by Cheng and Church [1] employs a set of heuristic
algorithms to find one or more biclusters, based on a uniformity criteria. One
bicluster is identified at a time, iteratively. There are iterations of masking null
values and discovered biclusters (replacing relevant cells with random numbers),
coarse and fine node deletion, node addition, and the inclusion of inverted data.
The computational complexity for discovering k biclusters is of the order of
O(mn × (m + n) × k), where m and n are the number of genes and conditions
respectively. Here similarity is computed as a measure of the coherence of the
genes and conditions in the bicluster. Although the greedy local search methods
are by themselves fast, they often yield suboptimal solutions.

Genetic algorithms, with local search, have been developed for identifying bi-
clusters in gene expression data [9]. Sequential evolutionary biclustering (SEBI)
[10] detects high quality overlapped biclusters by introducing the concept of
penalty into the fitness functions, in addition to some constrained weightage
among the parameters.

Recently a fuzzy possibilistic biclustering has been developed [11] to include
the concept of membership for realistically representing each gene-condition pair.
We present here a novel approach to evolutionary tuning of the different param-
eters that control the size of the generated biclusters.

The rest of the paper is organized as follows. Section 2 introduces the concept
of biclustering and the fuzzy possibilistic approach. The proposed evolutionary
modeling is described in Section 3. The experimental results, along with compar-
ative study, are provided in Section 4. Finally, Section 5 concludes the article.

2 Fuzzy Possibilistic Biclustering

A bicluster is defined as a pair (g, c), where g ⊆ {1, . . . , p} is a subset of genes
and c ⊆ {1, . . . , q} is a subset of conditions/time points. The optimization task
[1] is to find the largest bicluster that does not exceed a certain homogeneity
constraint. The size (or volume) f(g, c) of a bicluster is defined as the number of
cells in the gene expression matrix E (with values eij) that are covered by it. The
homogeneity G(g, c) is expressed as a mean squared residue score; it represents
the variance of the selected genes and conditions.

A user-defined threshold δ represents the maximum allowable dissimilarity
within the bicluster. For a good bicluster, we have G(g, c) < δ for some δ ≥ 0.

Often centralized clustering algorithms impose a probabilistic constraint, ac-
cording to which the sum of the membership values of a point in all the clusters
must be equal to one. Although this competitive constraint allows the unsuper-
vised learning algorithms to find the barycenter (center of mass) of fuzzy clus-
ters, the obtained evaluations of membership to clusters are not interpretable
as a degree of typicality. Moreover isolated outliers can sometimes hold high
membership values to some clusters, thereby distorting the position of the cen-
troids. The possibilistic approach to clustering [12] assumes that the membership
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function of a data point in a fuzzy set (or cluster) is absolute, i.e., it is an
evaluation of a degree of typicality not depending on the membership values of
the same point in other clusters.

Here we generalize the concept of biclustering in the possibilistic framework
[11]. For each bicluster we assign two vectors of membership, one for the rows
and one other for the columns, denoting them respectively by a and b. In a crisp
set framework row i and column j can either belong to the bicluster (ai = 1 and
bj = 1) or not (ai = 0 or bj = 0). An element xij of input data matrix X
belongs to the bicluster if both ai = 1 and bj = 1, i.e., its membership uij to
the bicluster may be defined as

uij = and(ai, bj), (1)

with the cardinality of the bicluster expressed as

n =
∑

i

∑

j

uij . (2)

A fuzzy formulation of the problem can help to better model the bicluster
and also to improve the optimization process. Now we allow membership uij, ai

and bj to lie in the interval [0, 1]. The membership uij of a point to the bicluster
is obtained by the average of row and column membership as

uij =
ai + bj

2
. (3)

The fuzzy cardinality of the bicluster is again defined as the sum of the mem-
berships uij for all i and j from eqn. (2). In the gene expression framework we
have

G =
∑

i

∑

j

uijd
2
ij , (4)

where

d2
ij =

(eij + egc − eic − egj)
2

n
, (5)

eic =

∑
j uijeij∑

j uij
, (6)

egj =
∑

i uijeij∑
i uij

, (7)

egc =

∑
i

∑
j uijeij∑

i

∑
j uij

. (8)

The objective is to maximize the bicluster cardinality n while minimizing the
residual G in the fuzzy possibilistic paradigm. Towards this aim we treat one
bicluster at a time, with the fuzzy memberships ai and bj being interpreted as
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typicality degrees of gene i and condition j with respect to the bicluster. These
requirements are fulfilled by minimizing the functional JB as

JB =
∑

i

∑

j

(
ai + bj

2

)
d2

ij + λ
∑

i

(ai ln(ai) − ai) + μ
∑

j

(bj ln(bj) − bj). (9)

The parameters λ and μ control the size of the bicluster by penalizing small
membership values.

Setting the derivatives of JB with respect to the memberships ai and bj to
zero, we have the necessary conditions

ai = exp

(
−

∑
j d2

ij

2λ

)
, (10)

bj = exp

(
−

∑
i d2

ij

2μ

)
. (11)

for the minimization of JB.

PBC-Algorithm (Possibilistic Biclustering)

1. Initialize the memberships a and b.
2. Compute d2

ij ∀i, j using eqn. (5).
3. Update ai ∀i using eqn. (10).
4. Update bj ∀j using eqn. (11).
5. If ‖at+1 − at‖ < ε and ‖bt+1 − bt‖ < ε then Stop.

else jump to Step 2.

Here the parameter ε is a threshold controlling the convergence of the algorithm,
at and bt are the vectors of row and column memberships respectively after the
t-th iteration. The memberships initialization can be made randomly or by using
some a priori information about relevant genes and conditions. After convergence
the memberships a and b can be defuzzified with respect to a threshold (say,
0.5) for subsequent comparative analysis.

3 Evolutionary Possibilistic Biclustering

The size of the biclusters generated by the PBC algorithm is very sensitive to
the choice of the values of parameters λ and μ. It may so happen that for some
values of parameters either of the following cases occur:

1. No bicluster can be found.
2. A bicluster with a very large mean square residue can be found.

We find that the conditions of eqns. (10)-(11) are necessary for the functional JB

of eqn. (9) to be minimum. Now if the values of λ and μ are increased gradually,
the presence of second and third terms in the r.h.s. cause the functional value to
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Fig. 1. An equivalent encoded chromosome representing λ = 0.56348 and μ = 180

go on decreasing. In other words, for unrestricted values of parameters the func-
tional JB fails to attain a minimum value over a real space. Therefore a proper
choice of λ and μ plays a crucial role during the extraction of a large bicluster
(within a pre-specified tolerable mean square residue). The proposed evolution-
ary method determines the optimal values for these parameters by minimizing
a fitness function.

Each parameter is represented using 10 bits in a chromosome. We assume that
λ takes real values between 0 and 1 and μ takes integer values. A chromosome
corresponds to the candidate solution (values of parameters) in the extraction of
the largest bicluster. The initial population of encoded parameters is generated
randomly. But a more informed initialization scheme (based on some prior knowl-
edge about the problem domain) may be helpful in generating a good quality
bicluster faster. Fig. 1 depicts such an encoding scheme for a chromosome.

Let gλ,μ, cλ,μ be the selected genes and selected conditions, with cardinality
respectively, |g|λ,μ, |c|λ,μ and Gλ,μ be the mean square residue, in the bicluster
retrieved by the PBC algorithm for a particular values of λ and μ. The bicluster
size is now expressed as nλ,μ = |g|λ,μ ×|c|λ,μ. Threshold δ is used to incorporate
a measure of homogeneity of the extracted bicluster. The aim is to minimize the
fitness function [9]

F (gλ,μ, cλ,μ) =

{
1

|g|λ,μ×|c|λ,μ
if Gλ,μ ≤ δ,

Gλ,μ

δ otherwise,
(12)

such that the size of the bicluster is simultaneously maximized.

Evolutionary PBC Algorithm
GA is employed over an initial population of P chromosomes with single point
crossover. The steps of the algorithm are as follows.

1. Generate a random population of P chromosomes encoding parameters λ
and μ.

2. Run PBC algorithm to compute residual Gλ,μ by eqn. (4).
3. Compute fitness F by eqn. 12.
4. Generate offspring population of size P through selection, crossover and

mutation.
5. Repeat Steps 2 to 4 to tune the parameters λ and μ, until the GA

converges to a minimum value for the fitness function.
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Table 1. Best biclusters for Yeast data based on fitness function F

λ μ No.of No.of Bicluster Mean squared Fitness
genes conditions size residue value (×10−6)

0.3251 102 902 11 9922 279.21 100.79
0.2000 300 662 17 11254 298.30 88.86
0.2988 116 871 13 11323 278.81 88.32
0.2880 130 905 13 11765 284.94 85.00
0.2304 190 739 16 11824 299.17 84.57
0.2958 132 977 13 12701 294.19 78.73
0.3020 130 1003 13 13039 298.25 76.69
0.3025 130 1006 13 13078 298.89 76.46
0.3300 109 1020 13 13260 299.35 75.41
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Fig. 2. Largest bicluster profile of size 13260 on Yeast data

4 Experimental Results

The two soft computing based biclustering algorithms described in Sections 2 and
3 were implemented on the benchmark gene expression Yeast cell cycle data1 is a
collection of 2884 genes (attributes) under 17 conditions (time points), having 34
null entries with -1 indicating the missing values. All entries are integers lying
in the range of 0 to 600. The missing values are replaced by random number
between 0 to 800, as in [1]. We selected δ=300 for fair comparison with the
existing literature.

The crossover and mutation probability were selected as .8 and .02 after sev-
eral experiments with random seeds. The GA was run for around 150 generations,

1 http://arep.med.harvard.edu/biclustering
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Table 2. Comparative study on Yeast data

Method Average Average Average Average Largest
residue bicluster no. of no. of bicluster

size genes conditions size

Cheng-Church [1] 204.29 1576.98 167 12 4485
GA [13] 52.87 570.86 191.12 5.13 1408

SEBI [10] 205.18 209.92 13.61 15.25 –
PBC [11] - - - - 12,857
EPBC 292.35 12018 898.33 13.55 13,260

with the population size varying between 50 and 150 chromosomes. Since GA
involves randomness, we have shown the average results. Table 1 summarizes
some of the best biclusters using fitness function F , with P = 50 after 100
generations. The largest bicluster is found at λ = 0.3300 and μ = 109, with a
minimum fitness value of 75.41 ×10−6 for a size of 13,260 with 1020 genes and 13
conditions. Figure 2 depicts the gene expression profile for the largest bicluster.
We observe that the genes in this bicluster demonstrate high coregulation, with
expression values in the range 220–400 for the selected set of conditions of the
bicluster.

Table 2 provides a comparative study with related algorithms. We observe
that the proposed evolutionary PBC gives the best results both in terms of
mean square residue (homogeneity) as well as the bicluster size.

5 Conclusions and Discussion

A gene expression data set contains thousands of genes. However, biologists often
have different requirements on cluster granularity for different subsets of genes.
For some purpose, biologists may be particularly interested in some specific sub-
sets of genes and prefer small and tight clusters. While for other genes, people may
only need a coarse overview of the data structure. However, most of the existing
clustering algorithms only provide a crisp set of clusters and may not be flexible
to different requirements for cluster granularity on a single data set. It is here that
the overlapping membership concept of fuzzy biclusters becomes useful.

In this study we have presented a novel evolutionary approach for selecting
the different parameters that control the size of the generated fuzzy possibilistic
biclusters. We next plan to work on Bezdek’s [14] simultaneous clustering of rows
and columns of a data matrix.
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9. Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene ex-
pression data. In: Proceedings of Congress on Evolutionary Computation. (2004)
166–173

10. Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary
computation. IEEE Transactions on Knowledge and Data Engineering 18 (2006)
590–602

11. Filippone, M., Masulli, F., Rovetta, S., Mitra, S., Banka, H.: Possibilistic approach
to biclustering: An application to oligonucleotide microarray data analysis. In:
Computational Methods in Systems Biology. Volume 4210 of LNCS. Springer
Verlag, Heidelberg (2006) 312–322

12. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. Fuzzy
Systems, IEEE Transactions on 1 (1993) 98–110

13. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression
data. Pattern Recognition 39 (2006) 2464–2477

14. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)



Rough Clustering and Regression Analysis

Georg Peters

Munich University of Applied Sciences
Faculty of Computer Science and Mathematics

Lothstrasse34, 80335 Munich, Germany
georg.peters@muas.de

Abstract. Since Pawlak introduced rough set theory in 1982 [1] it has
gained increasing attention. Recently several rough clustering algorithms
have been suggested and successfully applied to real data. Switching re-
gression is closely related to clustering. The main difference is that the
distance of the data objects to regression functions has to be minimized
in contrast to the minimization of the distance of the data objects to clus-
ter representatives in k-means and k-medoids. Therefore we will intro-
duce rough switching regression algorithms which utilizes the concepts
of rough clustering algorithms as introduced by Lingras at al. [2] and
Peters [3].

Keywords: Rough sets, switching regression analysis, clustering.

1 Introduction

The main objective of cluster analysis is to group similar objects together into
one cluster while dissimilar objects should be separated by putting them in
different clusters.

Besides many classic approaches [4,5] cluster algorithms that utilize soft com-
puting concepts have been suggested, e.g. Bezdek’s fuzzy k-means [6] or Kr-
ishnapuram and Keller’s possibilistic approach [7]. Recently also rough cluster
algorithms have gained increasing attention and have been successfully applied
to real life data [2,8,9,10,11,12,3,13,14].

Switching regression models [15,16] are closely related to cluster algorithms.
However, while cluster algorithms, like the k-means, minimize the cumulated
distance between the means and the associated data objects the objective of
switching regression analysis is to minimize the cumulated distance between
the K regression functions Yk (k = 1, ..., K) and their associated data objects
(Figure 1).

The objective of the paper is to transfer the concepts of rough clustering
algorithms to switching regression models and introduce rough versions. We
also briefly specify possible areas of applications.

The paper is structured as follows. In the following Section we give a short
overview on switching regression models and rough cluster algorithms. In Section
3 we introduce rough switching regression models. In the last Section we give a
brief discussion and conclusion.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 292–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Fundamentals: Switching Regression and Rough
Clustering

2.1 Switching Regression Models

Switching regression models were introduced in the fifties of the last century [15].
In the meantime these classic, probabilistic based models have been accompanied
by switching regression models that utilize soft computing concepts like fuzzy
set theory.

Classic Switching Regression Models. Let us consider a simple data con-
stellation as depicted in Figure 1. Obviously two linear regression functions (Y1
and Y2) should adequately represent these data:

Y1(x) = a10 + a11x and Y2(x) = a20 + a21x (1)

Fig. 1. Switching Regression Analysis

The challenge is to determine which of the two regression functions should
represent a certain observation yi:

yi = Ŷ1(xi) = a10 + a11xi + μ1i or yi = Ŷ2(xi) = a20 + a21xi + μ2i

with μ1i and μ2i error terms.
(2)

To solve this problem in switching regression analysis - the estimation of the
parameters a - one can apply Goldfeld and Quandt’s D-method [17].
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Fuzzy Switching Regression Models. Besides classic switching regression
models Hathaway and Bezdek [18] suggested a fuzzy switching regression model
which is closely related to Bezdek’s fuzzy k-means [6]. Jajuga [19] also proposed
a linear switching regression model that consists of a two step process: (1) the
data are clustered with the fuzzy k-means, (2) the obtained membership degrees
are used as weights in weighted regression analysis.

2.2 Rough Clustering Algorithms

Lingras’ Rough k-Means. Lingras et al. rough clustering algorithm belongs
to the branch of rough set theory with a reduced set of properties [20]:

1. A data object belongs to no or one lower approximation.
2. If a data object is no member of any lower approximation it is member of

two or more upper approximations.
3. A lower approximation is a subset of its underlying upper approximation.

The part of an upper approximation that is not covered by a lower approxi-
mation is called boundary area. The means are computed as weighted sums of
the data objects Xn(n = 1, ..., N):

mk =

⎧
⎪⎨

⎪⎩

wL

∑
Xn∈Ck

Xn

|Ck| + wB

∑

Xn∈CB
k

Xn

|CB
k | for CB

k �= ∅

wL

∑
Xn∈Ck

Xn

|Ck| otherwise
(3)

where |Ck| is the number of objects in lower approximation and |CB
k | = |Ck−Ck|

(Ck the upper approximation) in the boundary area of cluster k (k = 1, ..., K).
Then rough cluster algorithm goes as follows:

1. Define the initial parameters: the weights wL and wB , the number of clusters
K and a threshold ε.

2. Randomly assign the data objects to one lower approximation (and per def-
initionem to the corresponding upper approximation).

3. Calculate the means according to Eq (3).
4. For each data object, determine its closest mean. If other means are not

reasonably farer away as the closest mean (defined by ε) assign the data
object to the upper approximations of these close clusters. Otherwise assign
the data object to the lower and the corresponding upper approximation of
the cluster of its closest mean (see Figure 2).

5. Check convergence. If converged: STOP otherwise continue with STEP 3.

Extensions and Variations of the Rough k-Means. Lingras rough k-means
was refined and extended by an evolutionary component. Peters [12,3] presented
a refined version of the rough k-means which improves its performance in the
presence of outliers, its compliance to the classic k-means, its numerical stability
besides others. To initialize the rough k-means one has to select the weights
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Fig. 2. Lingras’ Rough k-Means

of the lower approximation and the boundary area as well as the number of
clusters. Mitra [11] argued that a good initial setting of these parameters is
one of the main challenges in rough set clustering. Therefore she suggested an
evolutionary version of Lingras rough k-means which automates the selection of
the initial parameters. And, recently Mitra et al. [10] introduced a collaborative
rough-fuzzy k-means.

3 Rough Switching Regression Models

The new rough switching regression models utilize the concepts of rough clus-
tering as suggested by Lingras [8] and Peters [3]. First let us define some terms
and abbreviations:

– Data set: Sn = (yn, xn) = (yn, x0n, ..., xMn) for the nth observation and
S = (S1, ..., SN )T with n = 1, ..., N . The variable yn is endogenous while
xn = (x0n, ..., xMn) with m = 0, ..., M (features) and x0n := 1 repre-
sent the exogenous variables.

– Yk the kth function: ŷkn = Yk(xn) =
∑M

m=0 akmxmn for k = 1, ..., K.
– Approximations: Yk is the lower approximation corresponding to the re-

gression function Yk, Yk the upper approximation and Y B
k = Yk − Yk the

boundary area. This implies Yk ⊆ Yk.
– The distance in y between the data object Sn and the regression function

Yk is given by d(Sn, Yk) = |yn − ŷkn|.

3.1 A First Rough Switching Regression Algorithm Based on
Lingras’ k-Means

First we present a rough switching regression model based on Lingras’ k-means.

– Step 0: Initialization
(i) Determine the number K of regression functions.
(ii) Define the weights for the lower approximations and the boundary areas:

wL and wB with wL + wB = 1.
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(iii) Randomly assign each data object Sn to one lower approximation Yk of
the corresponding regression function Yk.

– Step 1: Calculation of the New Regression Coefficients
The new regression coefficients akm are calculated using weighted regression
analysis with weights defined as follows:

wkn =

⎧
⎪⎨

⎪⎩

wB for Sn ∈ Y B
k

wL for Sn ∈ Yk

0 else
(4)

– Step 2: Assignment of the Data Objects to the Approximations
(i) For an object Sn determine its closest regression function Yh (Figure 3):

ymin
hn = d(Sn, Yh) = min

k
d(Sn, Yk). (5)

Assign Sn to the upper approximation of the function Yh: Sn ∈ Yh.
(ii) Determine the regression functions Yt that are also close to Sn. They are

not farther away from Sn than d(Sn, Yh) + ε with ε a given threshold:

T = {t : d(Sn, Yk) − d(Sn, Yh) ≤ ε ∧ h �= k}. (6)

• If T �= ∅ (Sn is also close to at least one other regression function
Yt besides Yh)
Then Sn ∈ Yt, ∀t ∈ T .

• Else Sn ∈ Yh.
– Step 3: Checking the Convergence

The algorithms has converged when the assignments of all data objects to
the approximations remain unchanged in the latest iteration i in comparison
to iteration i − 1.

• If the algorithm has not converged Then continue with Step 1.
• Else STOP.

However, the algorithm has similar weaknesses as Lingras’ k-means (see Pe-
ters [3] for a detailed discussion). E.g., please note that the algorithm does not
enforce that each regression function has two or more data objects in its lower
approximation.

3.2 A Rough Switching Regression Algorithm Based on Peters
Rough k-Means

– Step 0: Initialization
(i) Determine the number K of the regression functions which is limited by:

2 ≤ K ≤ N
2 since each regression function should be defined by at least

two data points.
(ii) Randomly assign each data object Sn to one and only one lower approx-

imation Yk of the corresponding regression function Yk so that each re-
gression function has at least two data objects in its lower approximation.
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Fig. 3. Assignment of the Objects to the Approximations

– Step 1: Calculation of the New Regression Coefficients
The new regression coefficients akm are calculated using weighted regression
analysis (see Eq 4). The weights are defined as follows:
(i) A data object Sn in lower approximations of a regression functions k is

weighted by 1: wL = 1.
(ii) A data object Sn that is member of b boundary areas is weighted by

wB = 1
b .

Alternatively the weights of the lower approximation wL and the boundary
area wB can be determined by the user.

– Step 2: Assignment of the Data Objects to the Approximations

(i) Assign the data object that best represents a regression function to its
lower and upper approximation.
(a) Find the minimal distance between all regression functions Yk and

all data objects Sn and assign this data object Sl to lower and upper
approximation of the regression function Yh:

d(Sl, Yh) = min
n,k

d(Sn, Yk) ⇒ Sl ∈ Yk ∧ Sl ∈ Yk. (7)

(b) Exclude Sl. If this is the second data object that has been assigned
to the regression function Yh exclude Yh also. If regression functions
are left - so far, in Step (a) no data object has been assigned to them
- go back to Step (a). Otherwise continue with Step (ii).
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(ii) For each remaining data points S′
n′ (n′ = 1, ..., N ′, with N ′ = N − 2K)

determine its closest regression function Yh:

ymin
hn′ = d(S′

n′ , Yh) = min
k

d(S′
n′ , Yk). (8)

Assign S′
n′ to the upper approximation of the function h: S′

n′ ∈ Yh.
(iii) Determine the regression functions Yt that are also close to S′

n′ . Take the
relative distance as defined above where ζ is a given relative threshold:

T ′ =
{

t :
d(S′

n′ , Yk)
d(S′

n′ , Yh)
≤ ζ ∧ h �= k

}
. (9)

• If T ′ �= ∅ (S′
n′ is also close to at least one other regression function

Yt besides Yh)
Then S′

n′ ∈ Yt, ∀t ∈ T ′.
• Else S′

n′ ∈ Yh.
– Step 3: Checking the Convergence

The algorithms has converged when the assignments of all data objects to
the approximations remain unchanged in the latest iteration i in comparison
to iteration i − 1.

• If the algorithm has not converged Then continue with Step 1.
• Else STOP.

4 Discussion and Conclusion

In the paper we proposed rough switching regression models which are based on
rough clustering. While classic switching regression models have been extensively
applied in economics (e.g. [21,22]) applications to bioinformatics can hardly be
found. However Qin et al. [23] suggested the related CORM method (Clustering
of Regression Models method) and applied it to gene expression data.

Therefore future work can go in different directions. First, the rough switching
regression model should be applied to real life data and compared to classic
models, especially in the field of economics. Second, the potential of switching
regression (classic, fuzzy, rough) for bioinformatics could be further evaluated.
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Abstract. Prediction of MHC (Major Histocompatibility Complex) binding 
peptides is prerequisite for understanding the specificity of T-cell mediated 
immunity. Most prediction methods hardly acquire understandable knowledge. 
However, comprehensibility is one of the important requirements of reliable 
prediction systems of MHC binding peptides. Thereupon, SRIA (Sequential 
Rule Induction Algorithm) based on rough set was proposed to acquire under-
standable rules. SRIA comprises CARIE (Complete Information-Entropy-based 
Attribute Reduction algorithm) and ROAVRA (Renovated Orderly Attribute 
Value Reduction algorithm). In an application example, SRIA, CRIA (Conven-
tional Rule Induction Algorithm) and BPNN (Back Propagation Neural Net-
works) were applied to predict the peptides that bind to HLA-DR4(B1*0401). 
The results show the rules generated with SRIA are better than those with CRIA 
in prediction performance. Meanwhile, SRIA, which is comparable with BPNN 
in prediction accuracy, is superior to BPNN in understandability. 

1   Introduction 

T lymphocytes play a key role in the induction and regulation of immune responses 
and in the execution of immunological effector functions [1]. Binding of peptides to 
MHC (Major Histocompatibility Complex) molecules conveys critical information 
about the cellular milieu to immune system T cells. Different MHC molecules bind 
distinct sets of peptides, and only one in 100 to 200 potential binders actually binds to 
a certain MHC molecules. And it is difficult to obtain sufficient experimental binding 
data for each human MHC molecule. Therefore, computational modeling of predict-
ing which peptides can bind to a specific MHC molecule is necessary for understand-
ing the specificity of T-cell mediated immunity and identifying candidates for the 
design of vaccines.  

Recently, many methods have been introduced to predict MHC binding peptides. 
They could be classified as 4 categories: 1) Prediction method based on motif [2]; 2) 
Prediction method based on quantitative matrices [3]; 3) Prediction method based on 
structure [4]; 4) Prediction method based on machine learning [5]. Because the meth-
ods in category 4 consider the interactive effect among amino acids in all positions of 
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the peptide, their prediction performance has been improved a lot. The involved ma-
chine learning approaches are mainly from ANNs (artificial neural networks) and 
HMMs (Hidden Markov Models). Brusic et al. proposed PERUN method, which 
combines the expert knowledge of primary anchor positions with an EA (evolutionary 
algorithm) and ANNs, for prediction of peptides binding to HLA-DRB1*0401 [5]. 

Category 4 has better prediction performance than other categories when much 
structure information cannot be obtained since category 4 owns the strongest non-
linearity processing capability and generalization ability and self-organization spe-
cialty among the four categories. However, category 4 has been mainly focused on the 
application of ANNs so far. Meanwhile, it is very hard to understand the weights in 
ANNs and it is very difficult to provide the rules for the experts to review and modify 
so as to aid them to understand the reasoning processes in another way. 

Rough set theory (RS), which was advocated by Pawlak Z. [6] in 1982, gives an 
approach to automatic rule acquisition, i.e., one might use RS to find the rules de-
scribing dependencies of attributes in database-like information systems, such as a 
decision table. The basic idea of RS used for rule acquisition is to derive the corre-
sponding decision or classification rules through data reduction (attribute reduction 
and attribution value reduction) in a decision table under the condition of keeping the 
discernibility unchanged. 

The rest of the paper is organized as follows: Section 2 proposes the methodology 
for prediction of MHC II-binding peptides, which consists of two subparts: peptide 
pre-processing and the SRIA (Sequential Rule Induction Algorithm) algorithm based 
on rough set theory. Section 3 describes and discusses the comparable experiment 
results of various algorithms. Section 4 summarizes the paper. 

2   Methodology 

The process of prediction of MHC II-binding peptides is composed of two phases: 1) 
an immunological question is converted into a computational problem with peptide 
pre-processing, 2) SRIA, which consists of Complete Information-Entropy-based 
Attribute Reduction sub-algorithm (CARIE) and Renovated Orderly Attribute Value 
Reduction sub-algorithm (ROAVRA), is advocated to acquire sequential rules from 
pre-processed peptides. 

2.1   Peptide Pre-processing 

MHC class II molecules bind peptides with a core region of 13 amino acids contain-
ing a primary anchor residue. Analysis of binding motifs suggests that only a core of 
nine amino acids within a peptide is essential for peptide/MHC binding [7]. It was 
found that certain peptide residues in anchor positions are highly conserved, and con-
tributed significantly to the binding by their optimal fit to residues in the MHC bind-
ing groove [8]. Moreover, evidence further shows that MHC class II-binding peptides 
contain a single primary anchor, which is necessary for binding, and several secon-
dary anchors that affect binding [5,7]. Thereupon, all peptides with the variable 
lengths could be reduced to putative binding nonamer cores (core sequences of nine 
amino acids) or non-binding nonamers.  
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In terms of domain knowledge about primary anchor positions in reported binding 
motifs [7], position one (1) in each nonamer corresponds to the primary anchor. Each 
non-binder is resolved into as many putative non-binder nonamers as its first position 
is occupied by primary anchor residue. And for binders, after the position one (1) as 
primary anchor residue is fixed, each binder yields many putative nonamer subse-
quences. Among these subsequences, the highest scoring nonamer subsequence 
scored by the optimized alignment matrix is regarded as pre-processed result of the 
corresponding binding peptide. Here, just like the description in the paper [5], an EA 
is utilized to obtain the optimized alignment matrix. In this way, the problem of pre-
dicting MHC class II-binding peptides is converted into the classification problem. 
The detailed description of peptide pre-processing is shown in paper [5]. 

With the pre-processed peptides (nonamers), we can form a decision table where 
every object represents a nonamer and the numbers of decision attributes and condi-
tion attributes respectively are one and 180 (nine positions by 20 possible amino acids 
at each position, i.e., amino acids are represented as binary strings of length 20, of 19 
zeros and a unique position set to one). The values of condition attributes are }1,0{  

and the values of the decision attribute are }1,0{ , which corresponds to peptide 

classes (0: non-binders; 1: binders). 

2.2   Sequential Rule Induction Algorithm 

Complete Information-Entropy-Based Attribute Reduction Sub-algorithm 
Here, we proposed CARIE. It can acquire an attribute reduct only comprising the es-
sential condition attributes with higher importance measured by the information en-
tropy, while the algorithm in [9] could obtain an attribute subset with redundancy.  

Given a decision table T=(U, A, C, D) and a partition of U with classes Xi, 
ni ≤≤1 . Here, C, D ⊂ A be two subsets of attributes A, called condition and decision 

attributes respectively. We define the entropy of attributes B as in formula (1) [9]:  

∑
=

−=
n

i
ii XpXpBH

1

))(log()()(  (1) 

where ||/||)( UXXp ii = . Here, X  means the cardinality of set X.  

The conditional entropy of D (U/Ind(D)={Y1, Y2, …, Ym}) with reference to another 

attribute set CB ⊆ (U/Ind(B)={X1, X2, …, Xn}) is defined as in formula (2): 

∑ ∑
= =

−=
n

i
iji

m

j
ji XYpXYpXpBDH

1 1

))|(log()|()()|(  (2) 

where ||/||)|( iijij XXYXYp I= , ni ≤≤1 , mj ≤≤1 .  

The relative importance degree of an attribute a for a condition attribute set B 
( CB ⊆ ) is defined as in formula (3): 

}){|()|(),,( aBDHBDHDBaSgf U−=  (3) 
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For a given decision table T=(U, A, C, D), the detailed steps of the CARIE sub-
algorithm are as follows: 

(1)   Calculate the conditional entropy )|( CDH . 

(2)   Compute the RDCT, which was detailed in paper [10]. Here, assume the 
RDCT be DD, and let R be an attribute reduct of the decision table T. 

(3)   All of the columns of DD are summed transversely and the result is CC. 
(4)   Among the rows of DD, find out the rows of },,,{ 21 krrr L  corresponding to 

the rows of the locations of the minimal elements among CC. 
(5)   If the minimal element among CC is one, find out the columns 

},,,{
21 krrr

ccc L  where the element 1s in the rows },,,{ 21 krrr L  are located 

and initialize R be the attribute set responding to the columns 

},,,{
21 krrr

ccc L . Otherwise, initialize R be empty.  

(6)   Compute the conditional entropy )|( RDH . Here, if R is empty, 

)()|( DHRDH = . 

(7)   Judge if )|( RDH is equal to )|( CDH ; if not, repeat the steps i~iii till 

)|()|( CDHRDH = . 

i. ;RCE −=   
ii. For every attribute a )( Ea ∈ , compute the relative importance degree of 

a for R ),,( DRaSGF  according to formula (3). 

iii. Find out maximum ),,( DRaSGF , let }{aRR U= . 

(8)    Call the RJ algorithm in paper [10], and decide whether R is a reduct or not. 
(9)    If so, the attribute reduct is R. STOP. 

(10)    If not, obtain the possibly redundant attributes with RJ algorithm, and delete  
the condition attributes with the least ),,( DRaSGF  among them one by one 

till R is an attribute reduct. STOP. 

Here, RJ algorithm is the complete algorithm for judgment of attribute reduct in paper 
[10], which can be used to completely and correctly judge whether an attribute subset 
is an attribute reduct or not. Paper [10] gives the detailed steps and proof about RJ 
algorithm. 

Renovated Orderly Attribute Value Reduction Sub-algorithm 
In order to more efficiently acquire the rule set with the stronger generalization capa-
bility, we advocate ROAVRA, which combines OAVRA [10] with domain knowl-
edge of the primary anchor positions.  

In ROAVRA, firstly, one object in a decision table is taken out in a certain se-
quence one at a time, and the current object’s attribute value is classified. Secondly, a 
rule is generated according to the classification result. Finally the objects that are 
consistent with the current rule in the decision table are deleted. The above steps re-
peat until the decision table is empty. Thus, compared with OAVRA, ROAVRA need 
not classify the attribute values of the objects consistent with obtained rules so that it 
can reduce the scanning costs to a great extent. 

The description of ROAVRA is as follows: 
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(1) Select an object in the decision table in a certain sequence one at a time. 
Here, we adopted a random sequence. 

(2) For the selected object, classify the attribute value as three classes. 
(3) According to the classification results for the selected object, judge whether 

the first-class attribute values are enough to constitute a correct rule. If not, one at a 
time precedently choose the second-class attribute value correspond-ing to an amino 
acid on the primary anchor position. If all attribute values of the second class have 
used to compose a rule and a correct rule can’t be formed yet, one at a time prece-
dently choose the attribute value corresponding to an amino acid on the primary an-
chor position among the third class until a correct rule can be generated. Save the 
obtained rule in the rule set. 

(4) Delete all the objects that are consistent with the current rule in the decision 
table. The rest of the decision table is saved as the decision table. 

(5) Repeat step (1) – (4) until the decision table is empty. STOP. 

The obtained rules are sequential and have the priority order, i.e. the rule generated 
earlier has the higher priority order. When the rule set is used to make a decision for 
an unseen instance, the rules must be used in the same sequence as they were pro-
duced. If a rule is qualified to making a decision, the others with the lower priority 
order than its need not to be used. 

3   Experiment Results and Discussions 

The data set is composed of 650 peptides to bind or not bind to HLA-DR4 (B1*0401), 
which is provided by Dr. Vladimir Brusic. The lengths of peptides are variable from 9 
to 27 amino acids. With the help of SYFPEITHI software [3], the primary anchor of 
peptides binding to HLA-DR(B1*0401) can be obtained. The alignment matrix [5] is 
used to score each nonamer within the initial peptide after fixing the first position into 
any one among F, Y, W, I, L, V or M. The highest scoring nonamer sequence is seen 
as pre-processed results of the corresponding peptide.  

Here, 915 pre-processed nonamers are obtained. There are some nonamers with 
unknown affinity and some inconsistence nonamers (i.e. the same nonamers have 
different binding affinity) among the 915 nonamers. After removing the inconsistent 
and unknown nonamers from 915 pre-processed peptides, we have 853 nonamers 
remained to analyze. The decision table is composed of 853 nonamers (553 non-
binders, 300 binders). The numbers of condition attributes and decision attributes are 
180 and one respectively. 

In the experiment, the decision table is divided into two parts by a 4-fold stratified 
cross-validation sample method. The following experimentation consists of eight 4-
fold stratified cross-validations. 

CARIE sub-algorithm is called to compute an attribute reduct. According to the re-
sulting attribution reduct, ROAVRA is used to acquire sequential rules. The rules 
have been examined and the results are shown in Table 1.  

For comparison purposes, two different algorithms are utilized to process the same 
decision table. The first is CRIA consisting of attribute reduction sub-algorithm [11] 
and attribute value reduction sub-algorithm [12]. The second is BPNN. 
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Table 1. Test Results with SRIA 

No. of Test sensitivity (%) specificity (%) precision (%) accuracy (%) 
1 81.333 88.788 81.879 86.166 
2 81.000 90.054 83.219 86.870 
3 81.000 88.969 82.373 86.166 
4 80.667 89.693 81.757 86.518 
5 79.667 87.884 81.293 84.994 
6 78.667 88.427 81.661 84.994 
7 78.667 90.235 82.517 86.166 
8 78.667 90.958 83.688 86.635 
Average (%) 79.959 89.376 82.298 86.064 

Table 2. Test Results with CRIA 

No. of Test sensitivity (%) specificity (%) precision (%) accuracy (%) 
1 62.333 76.130 83.111 71.278 
2 63.667 76.492 80.591 71.981 
3 64.000 79.566 82.759 74.091 
4 64.667 76.673 79.835 72.450 
5 65.333 76.673 86.344 72.685 
6 65.667 74.503 82.083 71.395 
7 65.667 75.226 82.427 71.864 
8 65.667 74.684 78.800 71.512 
Average (%) 64.625 76.243 81.994 72.157 

Table 3. Test Results with BPNN 

No. of Test sensitivity (%) specificity (%) precision (%) accuracy (%) 
1 79.667 91.682 83.860 87.456 
2 84.667 91.501 84.385 89.097 
3 83.000 91.139 83.557 88.277 
4 78.333 90.958 82.456 86.518 
5 77.000 92.224 84.307 86.870 
6 78.667 89.512 80.272 85.698 
7 80.333 92.405 85.159 88.159 
8 80.333 92.405 85.159 88.159 
Average (%) 80.250 91.478 83.644 87.530 

With the help of CRIA, the rules have been acquired with the training part and ex-
amined with the test part. The results are shown in Table 2. 

The structure of ANNs is 180-4-1 style, i.e., the input layer and hidden layer con-
sist of 180 nodes and 4 nodes respectively, and output layer with a single node. The 
learning procedure is error back-propagation, with a sigmoid activation function. 
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Values for learning rate and momentum are 0.2 and 0.9 respectively. The prediction 
performance of ANNs is shown in Table 3. 

From comparisons of the test results listed in table 1, 2 and 3, we can see that the 
sensitivity, specificity, precision and accuracy with SRIA are much higher than those 
with CRIA, and very close to those with BPNN. This suggests that SRIA is much 
better than CRIA in the generalization capability of induced rules though the both 
algorithms can obtain the plain and understandable rules. In addition, compared with 
BPNN, SRIA can provide the comprehensible rules that can help experts to under-
stand the basis of immunity. 

Table 4 shows a part of rules generated from SRIA in the experimentation. 

Table 4. A part of rules generated with SRIA 

Rule 
No. Antecedents 

Conse-
quent 

1 

1L(1)&2A(0)&2L(0)&2R(0)&2T(0)&3Q(1)&4M(0)&4Q(0)&4V(0)&5A
(0)&5L(0)&6A(0)&6S(0)&6T(0)&7L(0)&7P(0)&8L(0)&8R(0)&8S(0)&
9A(0)&9G(0)&9S(0)&9V(0)&9W(0) 0 

2 
1F(1)&2A(0)&2R(0)&4M(0)&4Q(0)&4V(0)&5A(0)&5L(0)&6A(0)&6T
(0)&7L(1)&8R(0)&9A(0)&9G(0)&9S(0)&9V(0) 0 

3 2R(0)&6A(1)&8R(0)&9V(1) 1 

Here, we can write the third rule in table 4 as  “2R(0)&6A(1)&8R(0)&9V(1)  1”, 
i.e., if amino acid code “R” does not appear in the second position of a nonamer and 
“A” appears in the sixth position and “R” does not appear in the eighth position and 
“V” appears in the ninth position, the nonamer is classified into “binders”. 

4   Conclusions 

In order to minimize the number of peptides required to be synthesized and assayed 
and to advance the understanding for the immune response, people have presented 
many computational models mainly based on ANNs to predict which peptides can 
bind to a specific MHC molecule. Although the models work well in prediction per-
formance, knowledge existing in the models is very hard to understand because of the 
inherent “black-box” nature of ANNs and the difficulty of extraction for the symbolic 
rules from trained ANNs. In fact, comprehensibility is one of the very important  
requirements of reliable prediction systems of MHC binding peptides. 

Thus, SRIA based on RS theory is proposed to acquire the plain and understand-
able rules. The CARIE algorithm, which is adopted as a sub-algorithm of SRIA, could 
compute an attribute reduct only comprising essential and relatively important condi-
tion attributes in a decision table composed of 180 condition attributes. The 
ROAVRA in SRIA is used to extract sequential rules from the reduced decision table 
based on the attribute reduct. Experimental results suggest SRIA is comparable to the 
conventional computational model based on BPNN and is obviously superior to CRIA 
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in prediction performance. Moreover, the SRIA algorithm can extract plain rules that 
help experts to understand the basis of immunity while BPNN cannot. 
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Abstract. The methodology which was previously used with success in
genomic sequences to predict new binding sites of transcription factors
is applied in this paper for protein structure prediction. We predict local
structure of proteins based on alignments of sequences of structurally
similar local protein neighborhoods. We use Secondary Verification As-
sessment (SVA) method to select alignments with most reliable models.
We show that using Secondary Verification (SV) method to assess the
statistical significance of predictions we can reliably predict local pro-
tein structure, better than with the use of other methods (log-odds or
p-value). The tests are conducted with the use of the test set consisting
of the CASP 7 targets.

Keywords: statistical significance, SV method, SVA method, assessing
predictions, model assessment, protein structure prediction, CASP 7.

1 Introduction

Predicting protein structure has been for many years in the very center of at-
tention of many researchers. In this paper we focus on a little easier problem of
predicting local protein structure. However, it is clear, that having done suffi-
ciently many local predictions it should be possible to select the self-consistent
subset of local structure predictions (in other words, the subset of local structure
predictions which structurally agree with one another) and construct the global
structure. In this paper we show that it is possible, indeed. We present an exam-
ple of global protein structure prediction on one of the hardest CASP 7 targets.
The main focus of this paper remains, however, on the local protein structure
prediction.

For doing the predictions we use the SVA (Secondary Verification Assessment)
and SV (Secondary Verification) methods. They were originally developed in [1]
for the use in genomic sequences. In this paper we show that they can be adapted
to protein sequences. Both methods are shown to be more successful than other
methods used routinely nowadays.

We use a database of protein motifs [2]. A motif constitutes of many fragments,
not adjacent on the sequence, but neighboring in 3D structure. In this way it is
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possible to use many local predictions to predict global structure: finding only a
few local structures which agree with one another gives us the prediction of ma-
jority of amino acids in the protein [3]. It is known that the number of fragments
grows exponentially with motif length for contiguous fragment databases [4]. But
thanks to building our database out of fragments adjacent in 3D space, not on
the sequence, we can have long motifs (on average, our motifs constituted of 28
amino acids), while keeping the size of representative motif set reasonably small
(less than 3000 motifs are needed to cover evenly and densely the space of all
possible protein motifs). Currently used methods which use contiguous protein
fragments [5] as motifs are limited to short fragments, and contiguous and short
fragments which agree with one another build a contiguous and short prediction.

2 Materials and Methods

2.1 Data

Descriptor Database Preparation. Local descriptors are the structural
building blocks that we use to construct our database of motifs. They are units
encompassing 3 or more short contiguous backbone segments consisting of at
least 5 residues that are close in 3D space but not necessarily along the protein
sequence. For each residue, from each considered protein with a known struc-
ture, a descriptor is constructed as a set of segments which are located close to
the selected residue in a selected protein. A detailed description of the descriptor
construction may be found in [2,3]. In short, descriptors are created for all amino
acids in all proteins in a representative database.

Creating a Motif and Its Sequential Profile. In this step we base on the
assumption that structurally similar local descriptors have also similar sequence.
To measure the structural similarity of any two descriptors we calculate the root
mean square deviation (RMSD) in the best alignment of these descriptors. If
this alignment contains at least 75% of residues belonging to each descriptor and
the RMSD score is not greater than 2.5Å then we consider descriptors to be
structurally similar.

Based on the structural similarity, for each constructed descriptor we define
a group of similar descriptors. The structure of the descriptor for which a given
group g was calculated will be further considered representative for g and called a
motif representing g. Since within each group descriptors are aligned, a sequence
profile can be computed [6]. This profile is in the form of a PSSM (Position Spe-
cific Score Matrix) and defines the probability of seeing each amino acid in each
column of a group, assuming that columns are independent. The PSSM repre-
sentation will further be considered a sequence model associated with a motif.

Preparing Training and Test Sets
Training Set. To construct a database of descriptors we used the ASTRAL 1.63
database [7] restricted to domains having no more than 40% sequence identity
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to one another. Based on these descriptors the set of 127078 motifs containing
at least 10 descriptors and 3 segments was constructed.

Additional Training Set. Domains from ASTRAL 1.65 which do not appear in
ASTRAL 1.63 form the additional training set. In this set we identified positive
and negative sequences for each motif. Sequences corresponding to local neigh-
borhoods with the structure similar to the motif are positive examples, while
sequences corresponding to local neighborhoods with the structure not similar
to the motif are negative examples (of that motif).

For each positive and negative sequence we calculate its log-odds score (see
equation (1) in Section 2.2) using the model M associated with the fixed motif
and using the background distribution B. Next we estimate the pdf (probability
density function) of the normal distribution of scores in positive sequences (this
pdf is denoted f+) and in negative sequences (this pdf is denoted f−). Then we
estimate P+ and P−, the a priori probabilities that a sequence is positive or
negative, respectively, before one even sees the sequence. To do that we sim-
ply divide the number of positive (or, respectively, negative) sequences in the
additional training set by the number of all sequences (positive and negative).

Test Set. As a test set we used all proteins from CASP 7 experiment except those
classified to the easiest FM (Free Modeling) category. This set of 71 proteins is
independent from our training sets (ASTRAL 1.63 and 1.65 databases were
published before the CASP 7 experiment) and covers a wide range of known
structures.

2.2 Making Predictions

In this Section we describe how we make local structure predictions. It is detailed
how to find neighborhoods in the query sequence with high affinity to the fixed
motif. The predictions can be repeated for all motifs one wants to consider.

Selecting Sequences - Candidates to Become Predictions. Suppose that
the motif that we use for local structure prediction consists of one segment only.
For a given protein sequence we use a simple sliding window and all subsequences
of the same length as the motif are considered as the candidates.

Since we use representative descriptors containing several segments, the num-
ber of possible candidates is exponential with respect to the number of segments.
We showed that the problem of finding the best assignment is NP-complete [8],
even with the assumption that all segments can be assigned independently. To
deal with this problem we proposed the dynamic programming algorithm which
allows limiting the number of candidates efficiently [8].

Making Predictions and Assessing Their Statistical Significance. In
this Section we focus on making predictions, i.e. selecting only the sequences
with the highest scores (according to the scoring method) out of all candidates
selected in previous Section.
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Let us fix the motif and its PSSM model M with N columns. The PSSM
model of i-th column of M will be denoted Mi. Let us also fix the background
model B (as B we use average amino acid frequencies in ASTRAL 1.65).

Three methods of making predictions are compared in our paper. The most
straightforward method is the log-odds score of a sequence.

Log-odds Score. The log-odds score of the amino acid sequence S = s1s2 . . . sN

of length N is (thanks to the column independence assumption):

log-odds(S) = log
P (S|M)
P (S|B)

=
N∑

i=1

log
P (si|Mi)
P (si|B)

. (1)

We use notation P (S|X) when we want to make explicit dependence of the
probability measure on a model X . X can be a PSSM model or the background
distribution.

Since the above score is a sum of many similar values, we make a simpli-
fying assumption (based on the Central Limit Theorem) that it is normally
distributed [1].

Other two methods assess statistical significance of log-odds score and require
the existence of the additional training set. They start by identifying positive
and negative populations for the fixed motif and then estimate f+, f−, P+ and
P− for that motif as in Section 2.1.

P-value Method. The p-value of a log-odds score s is the probability that the
score this high (or higher) could be obtained by chance. Thus the p-value is
calculated as a ‘right tail’ of the cdf (cumulative distribution function) of negative
distribution estimated as in Section 2.1, p-value(s) = 1 − F−(s). The sequences
with the lowest p-values of the log-odds score (i.e. the most significant) are
selected to become predictions. Since we want to score better predictions higher,
in our paper we use

PV(s) = − log(p-value(s)) = − log(1 − F−(s)). (2)

under the name p-value scoring method.

Secondary Verification Method. In [1] it is pointed out that in cases of similar
positive and negative distributions of log-odds scores it may be not informative
to simply have a look at a negative distribution: a score which is statistically
significant may not be likely to be positive, either. One would require to consult
both distributions to tell if the score s is significant. To this end Secondary
Verification (SV) score was proposed, which assesses the log-odds score (1) by
the probability that the sequence with this score is positive. The SV score of a
log-odds score s is thus (we make the use of Bayes Theorem):

SV(s) = P (+|s) =
f+(s)P+

f+(s)P+ + f−(s)P− . (3)
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2.3 Assessing Model Quality

Every local structural motif from our database of structural motifs was associ-
ated with a PSSM model, as it is described in Section 2.1. Some of those models
are obviously of very poor quality and if they were used to predict local struc-
ture of proteins from the test set, the proportion of false positives would increase.
In order to minimize this effect, the PSSM models are scored with the use of
Secondary Verification Assessment (SVA) method [1] and only models with the
highest SVA scores are used for predictions.

To calculate the SVA score for a given motif we use the sets of positive and
negative examples in the additional training set (see Section 2.1). We start by
estimating f+, f−, P+ and P− for the fixed motif as in Section 2.1.

The SVA score of a model M (as it was in detail explained in [1]) is then
given by

SVA(M) = E+(SV) =
∫ ∞

−∞
SV(s)f+(s) ds =

∫ ∞

−∞

f2
+(s)P+ ds

f+(s)P+ + f−(s)P− . (4)

In other words, the SVA score is the expected Secondary Verification score over
the population of positive sequences. Observe that this measure is very appealing
intuitionally: the best models M are the ones which can distinguish positive
sequences faultlessly and this very feature is captured in the SVA score.

Some of the motifs may be rare and other motifs may be frequent in proteins.
To predict the local protein structure most reliably we want not only the motif
models to be of the highest quality, but we also want to use only the most
frequent motifs (having fixed a constraint that the selected motifs span the
possible protein motif space). In other words, if we could choose the very rare
motif with a high quality model, it would be better to replace it with a much
more frequent motif having a model of slightly worse quality. To this end, when
scoring the model M , we used a modified SVA score:

mSVA(M) = #(positive sequences) · SVA(M), (5)

where #(positive sequences) is the number of positive motif occurances in the
additional training set.

2.4 Selecting Best Motifs Spanning the Structural Space

In order to reduce the number of considered motifs we need to identify a subset of
good and structurally different motifs representing all local structures of proteins.
We introduce two criteria.

Structural Criterion. The main idea behind this approach is to promote big
groups (with many descriptors) representing frequently occurring substructures.
Using algorithm presented in [3] we selected 2569 motifs which cover the space
of all possible motifs. This set of structural motifs is referred to as the set picked
up with “the structural criterion”.
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Sequential Criterion. Based on the modified SVA score (5) we selected struc-
turally different motifs which have the most reliable models. Using algorithm pre-
sented in [3] we selected 2771 motifs which cover the space of all posible motifs.
This set of motifs is referred to as the set picked up with “the sequential criterion”.

3 Experiments

3.1 Visualizing Results

The results of the experiments are presented in Figure 1. It presents the num-
ber of true positives (correct predictions) and the corresponding number of false
positives (wrong predictions) for all proteins in the test set as a function of a
changing threshold value (when the score of a chosen method is higher than
the threshold, we consider it a local structure prediction). For maximal thresh-
old obviously no predictions are made (no score value can be higher). As the
threshold gets smaller the number of predictions increases - and the number of
correct predictions increases. Simultaneously the number of incorrect predictions
increases. We want the number of true positives to be as large as possible while
we want the number of false positives to be as small as possible. The obtained
curve is similar to the ROC (Receiver Operating Characteristic) curve known
from signal processing field: in short, the steeper the curve close to the (0, 0)
point, the better the prediction quality.

3.2 Structural vs. Sequential Criterion for Selecting Motifs

In this Section we compare two sets of motifs: motifs and their models picked
up with the structural criterion and motifs and their models picked up with the
sequential criterion (see Section 2.4). Both sets are used to make predictions of
local structure of proteins from the test set. We used the SV method and the
log-odds method to make predictions.

We can see in Figure 1 (Left and Middle) that the sequential criterion by far
outperforms the structural criterion for both methods.
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Fig. 1. Comparison of structural and sequential criteria for selecting the motifs to do
predictions with the log-odds method (Left) and the Secondary Verification method
(Middle). Comparison of three methods of predicting local structure for sequential
criterion (Right).
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3.3 Predicting Local Protein Structure

In this Section we use the sequential criterion (see Section 2.4) for picking up
the motifs and their models. We make predictions using log-odds, p-value and
SV method. We predict local structure of proteins from the test set.

We can see in Figure 1 (Right) that the SV method by far outperforms two
other methods. In fact, for a fixed number of false positives, the number of true
positives (i.e. correct predictions) is almost twice as large for the SV method as
for the log-odds method, the better one of the remaining two.

3.4 Future Work: Global Protein Structure Predictions

After identifying the the most reliable self-consistent local predictions the global
structure can be predicted. This process allows eliminating false positive predic-
tions and building the global prediction only from structurally correct motifs. An
example of global prediction obtained in such a way is presented in Figure 2. We
predicted the structure of CASP 7 domain T0347 2 (qualified as FM, i.e. with
no structural template). We predicted 47 amino acids out of 71 with RMSD
equal to 4.4Å. This global prediction is the result of finding a consensus over 9
self-consistent local predictions.

Fig. 2. The prediction of CASP 7 T0347 2 domain. Our prediction is presented in
black, while the original structure is presented in grey.

4 Conclusions

In this paper we show that the SV and SVA methods, which were used before in
the case of genomic sequences, can be used also in the case of protein sequences
with great success. We show it predicting local protein structure which may be
the first step in predicting global protein structure. Predicting global protein
structure is currently one of the most important problems in bioinformatics. As
we have seen on the example of the real protein (and note that it was shown on
one of the hardest CASP 7 targets), it is possible to efficiently use the approach
presented in this paper to predict protein 3D structure.

Two main results of this paper include showing that using the SVA score
to select only motifs with the best model quality is a great improvement over
selecting motifs only based on their structural properties. It is connected with the
fact, which was many times pointed out by different authors in the past [1,9], that
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the models of alignments are frequently of quality too bad to make it possible
to differentiate them from the background.

The second result is showing the superiority of the SV score (which incor-
porates positive sequence population) over routinely used log-odds scoring and
p-value scoring (which does statistical significance assessment of the results, but
is based solely on the negative sequence population).
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Abstract. We extend the standard rough set-based approach to be able
to deal with huge amounts of numeric attributes versus small amount of
available objects. We transform the training data using a novel way of
non-parametric discretization, called roughfication (in contrast to fuzzifi-
cation known from fuzzy logic). Given roughfied data, we apply standard
rough set attribute reduction and then classify the testing data by vot-
ing among the obtained decision rules. Roughfication enables to search
for reducts and rules in the tables with the original number of attributes
and far larger number of objects. It does not require expert knowledge or
any kind of parameter tuning or learning. We illustrate it by the analysis
of the gene expression data, where the number of genes (attributes) is
enormously large with respect to the number of experiments (objects).

Keywords: Rough Sets, Discretization, Reducts, Gene Expression Data.

1 Introduction

DNA microarrays provide a huge quantity of information about genetically con-
ditioned susceptibility to diseases [1,2]. However, a typical gene expression data
set, represented as an information system A = (U, A) [9,14], has just a few
objects-experiments u ∈ U , while the number of attributes-genes a ∈ A is
counted in thousands. Moreover, preciseness of measuring gene expressions, i.e.
the values a(x) ∈ R, is still to be improved. Both these issues yield a problem
for methods assuming data to be representative enough.

We solve the above problems using roughfication,1 already applied to gene
clustering [6] and classification [13]. Foe a given A = (U, A), we produce a new
system A

∗ = (U∗, A∗), where U∗ corresponds to U × U and A∗ – to the original
A. Every a∗ ∈ A∗ labels a given (x, y) ∈ U∗ with symbolic value “≥ a(x)”
iff a(y) ≥ a(x), and “< a(x)” otherwise. This simple trick provides us with a
larger universe, where the number of attributes remains unchanged. This way, it
is very different from other discretization techniques, which keep U unchanged
while exploding the amount of possible attributes in A (cf. [5,8]).
1 In [6,13] we also used the terms rough discretization and rank-based approach.
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�

gene exp1 exp2 ...... exp8 exp9

No.1 2.52 0.59 ...... -0.46 -0.83

No.2 0.61 0.06 ...... -2.03 -0.59

No.3 -0.19 0.65 ...... -0.37 -0.07

No.4 0.62 -0.47 ...... 0.00 -0.10

. . . ...... . .

. . . ...... . .

. . . ...... . .

No.n . . ...... . .

Fig. 1. Microarrays provide the gene expression data. A sample of 9 experiments from
Synovial Sarcoma data is illustrated. We have n = 5520 genes in this data set (cf. [6]).

Given roughfied, symbolic data, we apply the rough set methods for finding
optimal (approximate) decision reducts and rules [11,18]. We extend our research
reported in [13] by thorough experimental analysis, involving different reduction
and voting options. We show that the proposed simple mechanism provides re-
sults comparable to far more complex methods (cf. [15]).

The paper is organized as follows: Section 2 contains basics of gene expression
data. Section 3 – basics of rough sets and attribute reduction. Section 4 – roughfi-
cation and its usage in classification. Section 5 – results of 8-fold cross-validation
analysis of the breast cancer-related data with 24 biopsies-objects, 12,625 genes-
attributes, and binary decision. Section 6 concludes the paper.

2 Gene Expression Data

The DNA microarray technology [1] enables simultaneous analysis of character-
istics of thousands of genes in the biological samples of interest. It is automated,
much quicker, and less complicated than the previous methods of molecular bi-
ology, allowing scientists to study no more than a few genes at a time.

Microarrays rely on DNA sequences fabricated on glass slides, silicon chips,
or nylon membranes. Each slide (DNA chip) contains samples of many genes
in fixed spots. It may represent cDNA (most popular, used also in this paper),
DNA or oligonucleotide. Microarray production starts with preparing two sam-
ples of mRNA. The sample of interest is paired with a healthy control sample.
Fluorescent labels are applied to the control (green) and the actual (red) sam-
ples. Then the slide is washed and the color intensities of gene-spots are scanned,
indicating to what extent particular genes are expressed. Figure 1 illustrates the
process.

The analysis of such prepared data can lead to discoveries of important de-
pendencies in gene sequences, structures, and expressions. The cDNA microarray
data sets are often analyzed to track down the changes of the gene activations for
different types of tumors. This information could be then applied to identifying
tumor-specific and tumor-associated genes. However, a large number of gathered
numerical data makes this analysis particularly hard.
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3 Rough Sets, Reducts, Classification

In the rough set theory [9], we analyze information system A = (U, A), where
attributes a ∈ A correspond to functions a : U → Va from universe U into
value sets Va. In this paper, A corresponds to the set of genes, U – to the set
of experiments, and functions a : U → R, reflect gene expressions of humans
or other organisms, measured in certain conditions. For classification purposes,
we distinguish decision d /∈ A to be determined using A. Then, we talk about
decision systems A = (U, A ∪ {d}). In the case of gene expression data d is
usually symbolic, reflecting some classes of diseases or behaviors. For instance,
in Section 5, d labels two types of behaviors related to breast cancer.

Rough set-based classifiers are a good illustration of tradeoff between accuracy
and complexity. In this paper, we focus on decision reducts – minimal subsets
B ⊆ A that (almost) determine d. Smaller reducts induce shorter and more
general rules. Often, it is even better to remove attributes to get shorter rules at
a cost of slight loss of decision determination [11], which can be expressed in many
ways. We refer to the original rough set positive region [9] and to its probabilistic
counterpart [12]. Both measures base on the indiscernibility classes [u]B ⊆ U
defined, for every u ∈ U and B ⊆ A, as [u]B = {x ∈ U : ∀a∈B a(x) = a(u)}.
The positive region is defined as POS(B) = {u ∈ U : [u]B ⊆ [u]{d}}. Each
u ∈ POS(B) induces an ”if-then” rule saying that if a new object is equal to
u on all attributes a ∈ B, then it can be classified to the u’s decision class.
One can use also inexact rules, especially if the exact ones require too many
attributes. Even given no [u]B ⊆ [u]{d} we can still refer to rough memberships
μv

B(u) = |{x ∈ [u]B : d(x) = v}|/|[u]B|,2 where v ∈ Vd [10]. Whenever a new
object is equal to u on all a ∈ B, our belief that its value on d equals to v
relates to μv

B(u). In [12] it is shown that such a classification strategy relates
to probabilistic positive region POSμ(B) = {(u, μ

d(u)
B (u)) : u ∈ U} and, more

precisely, to its cardinality represented as in the theory of fuzzy sets [19]:3

|POSμ(B)| =
∑

u∈U

μ
d(u)
B (u) =

∑

u∈U

|[u]B∪{d}|
|[u]B| (1)

By a decision reduct we mean B ⊆ A such that POS(B) = POS(A) and there is
no C � B such that POS(C) = POS(A) [9]. In this paper,4 by an ε-approximate
decision and ε-approximate μ-decision reducts we mean subsets B ⊆ A such that,
respectively, |POS(B)| ≥ (1−ε)|POS(A)| and |POSμ(B)| ≥ (1−ε)|POSμ(A)|,
and there are no C � B holding analogous inequalities. In both cases, threshold
ε ∈ [0, 1) expresses willingness to reduce more attributes (and simplify rules) on
the cost of losing the (probabilistic) positive region’s strength.5 In the special
case of ε = 0, we are interested in complete preserving of the regions, i.e. in
equalities POS(B) = POS(A) and POSμ(B) = POSμ(A), respectively.
2 By |X| we denote cardinality of the set X.
3 Formula (1), after additional division by |U |, was denoted in [12] by E(B).
4 There are many formulations of approximate reducts in the literature [12,18].
5 |POS|, |POSμ| : 2A → [0, |U |] are monotonic with respect to inclusion [9,12].
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|POS(B)| ≥ (1 − ε)|POS(A)| |POS(B)| ≥ (1 − ε)|POS(A)|
Only exact decision rules used Only exact decision rules used

|[u]B | added for d(u) 1 added for d(u)

|POSμ(B)| ≥ (1 − ε)|POSμ(A)| |POSμ(B)| ≥ (1 − ε)|POSμ(A)|
Also inexact decision rules used Also inexact decision rules used
|[u]B | · μv

B(u) added for each v μv
B(u) added for each v

Fig. 2. Four techniques of classification, each described by three lines. Line 1 indicates
constraints for subsets B ⊆ A that can be contained in the classifier. (E.g., in Section
5 we always choose 5 best found subsets.) Line 2: the types of rules. (Note that they
are related to the types of reducts.) Line 3: the weights being added to decision classes,
whenever a rule generated by B is applicable to u. The decision for u is finally chosen
as v ∈ Vd with the highest overall weight, summed up over all applicable rules.

The rough set classifier is based on a collection of optimal (approximate) de-
cision reducts and the resulting rules [14,18]. Relaying on a larger set of reducts
improves both applicability and accuracy of rough set classifiers. A chance that
a new object is recognized by at least one out of many rules is getting higher
when operating with diversified subsets of attributes. Appropriate synthesis of
information based on different attributes also helps in predicting the right de-
cisions (cf. [3]). In this paper, we compare two techniques of voting – by rules’
supports and by rules’ counting, referring to both of the above-considered types
of approximate reducts. We obtain four variants described in Figure 2. We apply
them in Section 5 to classification of real-life data.

4 Roughfication

Standard rule-based methods are hardly applicable to real-valued data systems
unless we use discretization [7,8] or switch to more advanced techniques, requir-
ing more parameters and/or expert knowledge (cf. [16,19]). Machine learning
methods have serious problems while dealing with disproportions between at-
tributes and objects. Gene expression technology is still quite imprecise, which
causes additional problems with data representativeness. As a result, many ap-
proaches, including those in Section 3, cannot be applied straightforwardly.

We suggest a new way of data preparation, called roughfication. Given A =
(U, A∪{d}), we create a new system A

∗ = (U∗, A∗∪{d∗}), where U∗ ≡ U×U and
A∗∪{d∗} ≡ A∪{d}. It is illustrated by Figure 3. For every a ∈ A, Va = R, a new
attribute a∗ ∈ A∗ has the value set V ∗

a =
⋃

u∈U{“≥ a(x)”,“< a(x)”}. For every
x, y ∈ U , we put a∗(x, y) =“≥ a(x)” iff a(y) ≥ a(x), and a∗(x, y) =“< a(x)” oth-
erwise. For symbolic attributes, in particular for d /∈ A, we put d∗(x, y) = d(y),
i.e. V ∗

d = Vd. It is important that V ∗
a can be treated as a symbolic-valued do-

main during further calculations, e.g., those described in Section 3. When the
classifier is ready, the values in V ∗

a begin to be interpreted in a non-symbolic way
again. Continuing with analogy to fuzzy sets [19], we may say that the data is
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a b d

u1 3 7 0

u2 2 1 1

a b d

u3 4 0 1

u4 0 5 2

====>

IF a ≥ 3 AND b ≥ 7 THEN d = 0
IF a ≥ 3 AND b < 7 THEN d = 1
IF a ≥ 2 AND b < 1 THEN d = 1
IF a < 2 AND b ≥ 1 THEN d = 2
IF a ≥ 4 AND b ≥ 0 THEN d = 1
IF a ≥ 0 AND b < 5 THEN d = 1

a∗ b∗ d∗

(u1, u1) ≥ 3 ≥ 7 0

(u1, u2) < 3 < 7 1

(u1, u3) ≥ 3 < 7 1

(u1, u4) < 3 < 7 2

(u2, u1) ≥ 2 ≥ 1 0

(u2, u2) ≥ 2 ≥ 1 1

(u2, u3) ≥ 2 < 1 1

(u2, u4) < 2 ≥ 1 2

a∗ b∗ d∗

(u3, u1) < 4 ≥ 0 0

(u3, u2) < 4 ≥ 0 1

(u3, u3) ≥ 4 ≥ 0 1

(u3, u4) < 4 ≥ 0 2

(u4, u1) ≥ 0 ≥ 5 0

(u4, u2) ≥ 0 < 5 1

(u4, u3) ≥ 0 < 5 1

(u4, u4) ≥ 0 ≥ 5 2

Fig. 3. Top left: Original A = (U, A ∪ {d}), U = {u1, u2, u3, u4}, A = {a, b}, Vd =
{0, 1, 2}. Right: Roughfied A∗ = (U∗, A∗ ∪{d∗}). Bottom left: Exact rules based on A∗.

first roughfied, then the learning process is performed, and finally the resulting
classifier is deroughfied to deal with new objects.

Figure 3 illustrates a decision system obtained using roughfication. Region
POS(a∗, b∗) = {(u1, u1), (u1, u3), (u2, u3), (u2, u4), (u3, u3), (u4, u2), (u4, u3)}
is covered by six exact rules. Although formally we should write, e.g., IF a∗ =“≥
3” AND b∗ =“≥ 7” THEN d∗ = 0, we use a deroughfied notation, as used while
classifying new objects. Note that one set of attributes can induce more than
one rule. For a new object u /∈ U , the rules may point at different decisions. For
instance, if a(u) = 4 and b(u) = 7, then the first rule in Figure 3 will yield d = 0
while the fifth one will give us d = 1. Also, some rules may be more applicable
than the others. For example, whenever conditions of the third rule are satisfied,
the sixth rule is applicable too. We may say that such rules are able to represent
more and less typical patterns for decision classes. It indicates that roughfication
should be followed by well-designed voting mechanisms.

Continuing with Figure 3, let us consider POS({a∗}) = {(u2, u4), (u3, u3)}
and POS({b∗}) = {(u1, u1), (u2, u3), (u4, u2), (u4, u3)}. Given that |POS(A∗)|
equals 7, the set {a∗} begins to be an ε-approximate reduct for ε ≥ 3/7 and
{b∗} – for ε ≥ 5/7. Note that POS({a∗}) and POS({b∗}) are disjoint, covering
together 6 our of 7 elements of POS(A∗). Hence, {a∗} and {b∗} might work
well together, as a reduct collection. The only missing element is (u1, u3) and,
accordingly, the second rule in Figure 3 cannot be shortened.

Finally, we briefly illustrate POSμ(A∗) in Figure 4. The rules not occurring
in Figure 3 are, e.g.: IF a < 3 AND b < 7 THEN d = 0 with weight 0.5 AND
d = 2 with weight 0.5; or, e.g.: IF a ≥ 2 AND b ≥ 1 THEN d = 0 with weight
0.5 AND d = 1 with weight 0.5. As illustrated in Figure 2, such decision weights
participate in voting in the case of inexact rule-based reduction/classification.

5 Classification Results

We study the breast cancer data downloaded from Gene Expression Omnibus
GEO, http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds browse.cgi?gds=360,
analyzed in [15]. It contains 24 core biopsies taken from patients, who are
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u1 a∗ b∗ d∗ μ

u1 ≥ 3 ≥ 7 0 1

u2 < 3 < 7 1 1/2

u3 ≥ 3 < 7 1 1

u4 < 3 < 7 2 1/2

u2 a∗ b∗ d∗ μ

u1 ≥ 2 ≥ 1 0 1/2

u2 ≥ 2 ≥ 1 1 1/2

u3 ≥ 2 < 1 1 1

u4 < 2 ≥ 1 2 1

u3 a∗ b∗ d∗ μ

u1 < 4 ≥ 0 0 1/3

u2 < 4 ≥ 0 1 1/3

u3 ≥ 4 ≥ 0 1 1

u4 < 4 ≥ 0 2 1/3

u4 a∗ b∗ d∗ μ

u1 ≥ 0 ≥ 5 0 1/2

u2 ≥ 0 < 5 1 1

u3 ≥ 0 < 5 1 1

u4 ≥ 0 ≥ 5 2 1/2

Fig. 4. The POSμ(A∗) coefficients displayed in the column “μ”. The objects in U∗ are
now split onto subtables with respect to the first elements in pairs (ui, uj), i, j = 1, ..., 4.

resistant (14 objects) or sensitive (10 objects) to the docetaxel treatment. There
are 12,625 genes-attributes. Figure 5 shows the results obtained using the 8-fold
cross validation (CV-8). For each split onto 21 training and 3 testing objects, we
repeated the following steps: 1) Roughfy the training data; 2) Calculate 5 best
reducts of a given type; 3) Classify the testing data using voting of a given type.
The reported numbers are averaged over the 40 independent CV-8 data splits,
with standard deviations low enough to provide the results’ credibility.

Given the number of genes-attributes, we applied very simple heuristics to
optimize ε-approximate (μ-)decision reducts: 1) Start with B∗ = ∅ and keep
randomly adding attributes until we get |POS(B∗)| ≥ (1 − ε)|POS(A∗)| (or
|POSμ(B∗)| ≥ (1 − ε)|POSμ(A∗)|); 2) Also randomly, keep removing attributes
from B – if a given attribute cannot be removed without losing the above in-
equality, keep it in B and try with the next one; 3) Out of 15 such randomly
generated reducts,6 select 5 with minimal cardinality. Obviously, more advanced
techniques can be applied to get better collections for each ε ∈ [0, 1) [17,18].

The obtained results are fully comparable with those obtained using far more
complicated methodologies, which usually remain difficult to understand for the
domain experts (cf. [4,15]). A huge advantage of the proposed method is that
it simply bases on collections of genes’ subsets and “if-then” rules operating on
inequalities. Besides a need of tuning the level of ε ∈ [0, 1), which is actually
related to the simplicity versus accuracy tradeoff specific for particular users,
there are no parameters requiring additional tuning or expert knowledge, in-
cluding the ones related to discretization [7,8]. Even the most basic variant (b)
in Figure 5, the one using only exact rules and very simplified voting mechanism,
provides good results. Operating with |POSμ| instead of |POS| enables to re-
duce attributes faster along the ε-axis, though we need to be more careful with
accuracy. The two considered voting mechanisms give quite similar outcomes,
though (b) and (d) seem to slightly better than (a) and (c), respectively. Expla-
nation may lay in a fact that the collections of rules derived from roughfied data
are able to express more and less typical areas of particular decision classes by
themselves (see Section 4), hence any additional weights assigned to the rules are
not so necessary. Last but not least, we do not report percentage of unrecognized
testing objects because it is practically equal to 0. Also, we do not consider any
additional filtration of decision rules [14,18] because we experimentally measured
6 Previously mentioned monotonicity of functions |POS| and |POSμ|, now defined

over 2A∗
, guarantees that the obtained sets are reducts of appropriate type in A∗.
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Fig. 5. Accuracy of classification within the CV-8 scheme (solid line) and average the
reduct length (dotted line). The following attribute reduction and rule voting settings
correspond to those illustrated in Figure 2: a) reduction measure |POS| and voting by
the rules’ supports; b) reduction measure |POS| and voting by numbers of rules; c)
reduction measure |POSμ| and voting by the rules’ supports times rough memberships
to decision classes; d) reduction measure |POSμ| and voting by rough memberships. In
each case, the horizontal axis shows the values of ε, for which the results were obtained.

its insignificance to the results. As a summary, the proposed method is very easy
to design and implement, comparing to other approaches.

6 Conclusions and Further Research

We introduced a new method for dealing with real-valued decision tables, espe-
cially useful in the cases when the sets of attributes are significantly larger than
the sets of objects, with very limited applicability of standard classification meth-
ods based on both parameterized and non-parameterized models. We showed
how to combine it with a classical framework for construction of rough set-based
classifiers. We tested the obtained approach against the real-life gene expres-
sion data set with 12,625 genes-attributes and 24 measurements-objects. The
results turn out to be comparable with those of other classification techniques,
while our method remains far simpler in interpretation for the domain experts.
Further research is required to fully prove its practical usefulness over a wider
range of benchmark data. We also consider adapting the proposed framework
for real-valued decisions, as well as dominance/preference-related attributes.
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Abstract. The U-commerce service is “context-aware,” and it focuses more on 
actively sensing different customer’s roles through both time and location 
specificity [1] [2]. In U-commerce environment, we can make decisions proac-
tively and intelligently by automatically detecting users’ contextual data such as 
time, identity, location, entity. Context-aware technology can provide personal-
ization services that reference the user’s context and preferences. Proactive ser-
vice and high personalization will enable a great number of improvements in 
the current CRM processes and open a new area of customer satisfaction. 
uCRM must pay due regard to ‘context-aware‘ characteristics of U-commerce. 
In this paper, we define the term “context” and “context-aware computing.”  In 
addition, we suggest a practical framework of uCRM as equipped with context 
data warehouse correspondingly. 

Keywords: u-commerce, CRM, context aware, context data warehouse. 

1   Context and Context-Aware Computing 

Humans are quite successful at conveying ideas to each other and reacting appropriately. 
This is due to many factors: the richness of the language they share, the common under-
standing of how the world works, and an implicit understanding of everyday situations. 
When humans talk with humans, they are able to use implicit situational information, or 
context, to increase the conversational bandwidth. Unfortunately, this ability to convey 
ideas does not transfer well to humans interacting with computers. In traditional interac-
tive computing, users have an impoverished mechanism for providing input to com-
puters. Consequently, computers are not currently enabled to take full advantage of the 
context of the human-computer dialogue. By improving the computer’s access to con-
text, we increase the richness of communication in human-computer interaction and 
make it possible to produce more useful computational services. 

Context can be specifically classified as TILE: time, identity, location and entity 
[3]. First, time context is usable when the user enters a service zone and if the service 
is available at that time, then the service is working for the user. Second, identity 
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context indicates with whom the user is communicating. Third, location context 
means a location of an identity in which the user is interested. Last, entity context is 
the information of any things that the user may be currently using. The context can be 
co-opted to create an inferable compound context. For example, the user’s activity can 
be inferred from the user’s current location and entity context [4].  

Context-aware computing is becoming more crucial in mobile distributed comput-
ing systems. These systems aim to provide people with context-aware access to in-
formation, communication and computation. For example, CAMP (context-aware 
mobile portal) is a modular mobile internet portal enhanced with context awareness 
features, such as user preferences, location, and temperature [5]. Location-aware 
applications are other examples of context-awareness which take advantage of loca-
tion-awaking sensors. Some excellent work in this area includes PARCTab at Xerox 
PARC [6], the InfoPad project at Berkeley [7], the Olivetti Active Badge system [8] 
and the Personal Shopping Assistant [9] [10].  

2   uCRM 

Mobile or ubiquitous computing services contain the following additional features in 
comparison with conventional electronic commerce, which runs on fixed networks. 
Successful mobile or ubiquitous commerce depends on the realization of their unique 
characteristics such as mobility, proactiveness, embededness, context-awareness, as 
well as the characteristics-business model fit. Characteristics increase the timeliness 
and promptness of the legacy services, and hence create new service areas. 

Ubiquity can be simply defined as the state of being everywhere at once with any 
networks and devices. To do so, the service should be mobile: the users can access to 
the service via wireless network through portable client devices or smart objects. 
Moreover, the service system may be embedded in the client device or in smart ob-
jects, which can communicate and coordinate with each other. Decision-orientedness 
means to what extent a service embeds decision technologies and automates decision 
making process on behalf of the user. The watermarked area in the upper-right side of 
the figure indicates the mobile or ubiquitous decision support oriented service: 
mSCM, mCRM, mobile recommender, context-aware comparative shopping, and 
uCRM. Current mobile or ubiquitous computing services still stress information-
based services such as location based services (LBS). uCRM are in their early age of 
adopting ubiquitous computing technologies, such as context-aware computing tech-
nology and wearable computing technology [4]. 

3   ContextDW : Integrated Customer Information 

Customer information is usually stored in multiple customer databases. For example, 
customer’s purchase history, such as demographic, production category, and payment 
method, is stored in a purchase database. In a Web log file, customer’s navigation 
behavior is logged. When customers want to refund their purchase or revoke com-
plaints, their records are saved into a customer complaint database. The greater the 
number of data sources for the customer information, the richer the information  
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available to the business. Thus the integrated customer information is regarded as a 
CRM critical success factor [11][12].  

In U-commerce environment, we name the integrated customer information the con-
textDW. The contextDW consists of basic information, sales information and behavioral 
patterns. As shown in Figure 1, basic information contains customer data, product data, 
statistical sales data and accounting data. Sales information contains dynamic sales data, 
event & campaign data and complains & claim data. Behavioral patterns information 
contains logical patterns and physical patterns. Logical patterns data is extracted from 
web access log and physical patterns data is extracted from user’s contextual data such 
as current location, time, physiological state, personal profile. 

E-commerce can use not only basic and sales information but also logical behavioral 
patterns data such as web access log. eCRM segments customers into several groups 
and provide customers with personalized service such as recommendation service using 
web access log. We can push personalized information such as “Customers who bought 
this product also bought” service using eCRM functions [13] [14] [15]. Because eCRM 
can use only logical pattern data such as web access log, purchase patterns, it is difficult 
that we connect on-line patterns with off-line behavioral patterns.  

 

Fig. 1. Contextual DataWarehouse in Ubiquitous computing 

On the other hand, U-commerce can use not only basic and sales information but also 
logical behavioral patterns data and physical contextual data such as TILE: Time, Iden-
tity, Location, Entity. Because uCRM can use both logical patterns and physical patterns, 
it can provide customers with real-time recommendation service and high personalized 
service such as Personal Shopping Assistant (PSA). In U-commerce, companies can push 
personalized service and customers can pull appropriate service using uCRM functions. 
Also, it is easy that we connect on-line patterns with off-line behavioral patterns. 
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To utilize the context information for the personalization services, we need the con-
text entity attribute, the current situation context, the situation context history and the 
situation context database. First, the database of the context entity attribute informa-
tion is composed of the customer’s profile information. The current situation context 
is the context entity, the information of the customer’s current activity, and it is used 
for the context recognition service. The context entity history information is used for 
the recommendation of the objects through analyzing the customer’s preferences. The 
environment context information in U-commerce is provided by the host of the shop-
ping mall to get the information of the context entity which is the customer’s location 
or the selected items.  

4   Practical Framework of uCRM 

Figure 2 shows data flow and process in ubiquitous environment. The publishers, such 
as government, companies, schools, hospitals and so on, attach RFID tag to belong-
ings of customers. RFID tag can be attached to almost everything such as credit cards, 
industrial products, agricultural and marine products and so on.  

 

Fig. 2. Scope of uCRM in Ubiquitous environment 

We name RFID-attached thing a smart object. The publishers have the RFID tag 
ID, the smart object and the customer information. While the customer moves with 
the smart object, intermediary are sensing and tracking RFID tab ID continuously. 
Intermediary is an organization that has an infrastructure such as sensing receiver, 
wireless local area network, mobile communication network and so on. That is, gov-
ernment, mobile communication companies, schools, department stores, hospitals can 
be intermediary. Intermediary stores sensing data that has contextual information such 
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as time, identity location, and entity. Intermediary has not smart object information and 
customer information but only RFID tag ID and contextual data of ID. The publisher 
requests sensing contextual data to Intermediary in real time or at regular intervals. After 
Intermediary extracts sensing data of requested ID and modifies the data, it provides the 
publisher with modified sensing data. The modified sensing data contains contextual 
data of requested ID. The publisher executes mapping ID in modified sensing data and 
customer information in customer database. After mapping process is completed, cus-
tomers’ contextual data is stored in contextDW. Therefore, the publisher can know  
customer’s behavior patterns. Using customer’s behavior patterns, the publisher can 
provide the customer with high personalized service in real time or at regular intervals. 
Actually, OMRON Corporation, in a joint effort with PIA CORPORATION and TO-
KYU CORPORATION (Tokyu Railways), has launched an information service experi-
ment called Goopas that utilizes automated turnstiles at the stations of Tokyu Railways. 
Train passengers who use seasonal passes to go through the turnstiles get time- and 
place-dependent information (event notices, shop ads and coupon tickets) in the form of 
emails addressed to their mobile phones. For example, a passenger who has just entered 
a station will receive current time-sensitive information concerning his destination. And 
passengers leaving a station will get similar information about the areas around the 
terminal. The road towards services of this nature has been paved by the rapid spread of 
mobile phones with push technology and automated turnstiles that are connected to 
ubiquitous networks. In this case, the publishers are PIA CORPORATION and TOKYU 
CORPORATION and mobile phone and season pass are smart objects. Intermediary is 
TOKYU CORPORATION and Goopas provide the customer with time- and place-
dependent information concerning customer’s current state as personalized service [16].  

 

 

Fig. 3. Practical Framework of uCRM 
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The greater part of the contextual data can be analyzed with traditional data mining 
techniques but the new mining techniques can be needed to analyze the rest. So, we name 
the mining techniques containing data mining, web mining and the new mining for the 
rest context mining [13][14][17]. Context mining contains web mining techniques such 
as web usage mining and web content mining and data mining techniques such as asso-
ciation/sequence, clustering/classification, and forecasting. Context mining techniques 
must handle nominal or symbolic data expertly because contextual data has nominal 
values. 

With analysis results, marketing strategies, for example, context marketing, bench-
mark marketing, and collaborative marketing, will be developed and delivered to proper 
customer segment. From the viewpoint of marketing, the realm of customer information 
handled by enterprises will expand dramatically under ubiquitous computing. In addition 
to the records they currently maintain on customer attributes and purchase histories, 
companies will gather real-time data that give clues to the circumstances surrounding 
each customer (the hour, place, activities, and other details). This is information that can 
have drastically stronger marketing effects if skillfully utilized. Moreover, interactive 
contacts with customers will become closer and shift to a real-time basis. Companies can 
show merchandise in the planning stage to potential buyers through an online customer 
community and carry forward with improvements based on the returned assessments. 
This will enable a company to produce goods whose design includes the “participation” 
of customers.  
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Abstract. Positioning technology is a core component of the ubiquitous comput-
ing environment. Radio Frequency IDentificaiton (RFID) is recognized as a pow-
erful means of replacing not only barcodes for product identification but also  
conventional positioning systems in unfavorable situations such as indoor and ob-
stacle-laden sites. The objective of this study was to determine the design parame-
ters of an RFID-based positioning system and to conduct a series of simulations in 
order to evaluate the impact of individual parameters on positional accuracy ac-
cording to RMSE.  The conclusions drawn from the experimentation are that (1) 
geometric distribution (triangular or square) of RFID tags is not a determining 
factor; (2) multiple-level ranging of reference tags can significantly improve posi-
tional accuracy; (3) the detection rate is the most significant factor in positional 
accuracy;  (4) a smaller-percent standard deviation accompanies a larger fluctua-
tion of positional accuracy; and (5) the detection range over the neighboring nodes 
is sufficient to achieve a reasonable accuracy. 

Keywords: Positioing, RFID, Simulation, Accuracy. 

1   Introduction 

Radio Frequency IDentificaiton (RFID) is a means of storing and retrieving data 
through electromagnetic transmission to compatible reading devices. RFID originated 
back in World War II, but has only recently become popular in many applications such 
as automated inspection/identification of products, real-time inventory management, 
distribution tracking, access control, and location-sensing systems. RFID is recognized 
as a powerful means not only of replacing barcodes for product identification but also of 
assisting in conventional positioning systems in unfavorable situations. The advent of 
wireless technologies and mobile computing has required the knowledge of the physical 
location of objects for location-aware services. This is mainly because contextual in-
formation obtained from a sensor network is meaningful only when the physical loca-
tion of the source of that information is determined [1]. The Global Positioning System 
(GPS) is the best known, best established, and most successful positioning solution. 
However, as GPS is satellite-dependent, it has the intrinsic problem of positioning ob-
jects in signal-blocked environments such as the inside of buildings and obstacle-laden 
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sites. RFID is one of the solutions for overcoming such a limitation, and it has been 
studied by many research groups [2, 3, 4, 5]. Most of the research has focused on feasi-
bility studies of RFID-based positioning systems. However, very little progress has been 
made in determining the performance factors necessary to achieve the best system per-
formance. To that end, the objective of this study was to present the design parameters 
of an effective RFID-based positioning system, to conduct a series of simulations in 
order to evaluate the impact of individual parameters on the expected positional-
accuracy performance measures, and finally to produce more meaningful design guide-
lines for an RFID-based positioning system. 

2   RFID-Based Positioning System 

2.1   Overview of Positioning Technology 

Position is typically represented in terms of a set of coordinates within a semantic 
reference system. Many positioning systems have been designed to determine the  
 

 
 

 
 

      

Fig. 1. Conceptual views of positioning algorithms 
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position of objects. They are categorized into three major groups: global location 
systems such as GPS, wide-area location systems, and indoor location systems [6]. 
Numerous technologies have been deployed for those positioning systems, such as 
infrared, ultrasonic, video surveillance, and wireless local area network (WLAN).  
Regardless of the choice of technology, positioning is based on one of four algo-
rithms: (1) proximity sensing; (2) triangulation; (3) pattern matching; and (4) dead 
reckoning. Fig. 1 offers a conceptual view of each algorithm. Proximity sensing is 
based on a single base station’s coverage area. Triangulation combines lateration and 
angulation. Lateration computes the position of an object by measuring its distance 
from multiple reference positions. Complementarily, angulation computes the posi-
tion of that object by measuring the angles with which it sees those multiple reference 
points. For lateration, the governing equation in 2D is the distance between I and J: 

22 )()( jiji yyxxIJ −+−= , which is linearized for solving unknown coordinates using 

least squares estimation.  On the other hand, when no explicit distance between ob-
jects is available, the k-neighboring algorithm can be used.  Thereby, the coordinates 
of the target point can be obtained by  
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where xj, yi are the coordinates of the ith reference point and wi is the weighting factor.  
The choice of weighting factor is inverse-proportional to the distance between the 
reference point and the target point, in order to ensure minimal error in coordinate 
estimation. 

2.2   RFID Technology for Positioning  

RFID is composed of tags, a reader with an antenna, and software. The main function 
of the RFID reader is to retrieve the information stored on the tags. If the tags store 
the coordinates of the locations where they are installed, the location of the reader that 
communicates with the tags can be estimated. There are two methods of communicat-
ing between readers and tags: inductive coupling and electromagnetic waves. Induc-
tive coupling is also called passive, in which the antenna coil of the reader induces a 
magnetic field in the antenna of the tag. The induced energy is used to transmit the 
data of the tag to the reader. The reader is very light, inexpensive, and battery-free. 
However, it has a very limited detection range, and consequently, it is not appropriate 
to positioning systems requiring a longer range. Instead, electromagnetic waves or 
active tags that can communicate with the reader over a long range are ideally suited 
for the positioning system. For example, Mantis tag solution [6] has a maximum read 
range of 1,000 feet for communication between tags and readers. With the capability 
of reading multiple tags and signal strength, it is feasible to obtain the location of the 
RFID reader through triangulation and the k-neighboring algorithm as well as conven-
tional proximity sensing. A recent development makes it feasible to measure the  
distance between the RFID tag and the reader using Time Difference of Arrival 
(TDOA) [7]. For all of these reasons, an active RFID system was assumed in the 



334 J. Heo et al. 

simulation. For performance measures of positioning accuracy, RMSE in 2D which is 
defined as the closeness to the true position, was used.  
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3   Simulation  

3.1   Simulation Setup  

In the simulation of the proposed RFID-based positioning system, it was assumed that 
reference tags were installed in the space of interest and that they stored the coordi-
nates of the locations. The moving object (target object) was equipped with a reader 
for communication with the reference tags and a computing machine for the estima-
tion of the coordinates. Using lateration, proximity sensing, or the k-neighboring 
algorithm, the location of the reader could be estimated. The opposite setup – posi-
tioning moving-tags with installed reference readers – is rather popular for the  
purposes of inventory monitoring and distribution tracking, where all of the other 
processing is generally conducted at a centralized server. In contrast, the proposed 
setup is more suited for navigation systems, where additional processing is conducted 
at the moving object. The current RFID technology can measure the distance between 
reader and tag, but it requires a sufficiently long range for reasonable accuracy. In 
other words, it is not a generic solution for all environments – indoor and outdoor, 
close range and long range – as yet. For that reason, the k-neighboring algorithm was 
selected for positioning computation in the simulation. 

3.2   Simulation Design 

The objective of the simulation was to uncover the governing factors in RFID-based 
positioning systems and to present a design guide that could maximize the perform-
ance measure of positional accuracy according to RMSE. The authors determined to 
investigate the following five factors: (1) geometric placement of reference RFID 
tags; (2) multiple-level ranging; (3) tag detection rate; (4) percent standard deviation 
of detection range; and (5) detection range.  First of all, triangle-based and square-
based regular assignments of the reference tags were simulated and compared. For a 
fair comparison, interval of points was determined to make Voronoi diagrams of the 
points have the same size, in other words, affecting region of a reference tag have the 
same size. The ratio between the square and the triangle was 1:1.07457.  The second 
consideration was the detection range, which is directly associated with the number of 
neighboring reference tags. With respect to the given configurations of triangles and 
squares, detection ranges from 8m to 27m were tested. The third design factor was the 
ranging capability of the RFID reader. Signal power analysis can be used for multiple 
leveling of range, and is common in WLAN-based positioning systems [6]. For  
 



 Towards the Optimal Design of an RFID-Based Positioning System 335 

instance, if three levels – close, medium, and far – of range can be measured, the 
weight factors will be 1, 1/2, and 1/3, respectively, and the result will be expected to 
be more accurate than that for a single level or two levels. The fourth factor to be 
considered was detection rate. A 100% detection rate is ideal but hardly achievable in 
reality for many reasons. Power shortage and mechanical/electromagnetic breakdown, 
signal interference, signal collision, multi-path, obstacles, and other harsh conditions 
are examples. The last factor is the variation of the behavior of tags. It was assumed 
that all of the tags would have the same detection range and signal strength, but they 
vary in reality [5]. In order to reflect that effect in the simulation, the detection range 
was treated as a random variable following a Gaussian distribution, which employs 
the mean of the given detection range and the standard deviation of 10% of the detec-
tion range in most simulations. For example, when the detection range of 15m is 
given, the detection range will be randomly generated under the condition of d~N 
(15m, 1.5m).  
    It was simulated that a target object equipped with an RFID reader was randomly 
moving in the space where the reference tags were installed, as shown in Fig. 2. The 
detection range of each reference tag was generated from the Gaussian distribution.  
Any tags that included the target object within its detection range were considered for 
the k-neighboring algorithm. For each parameter setup, the simulation was repeated 
ten  thousands times  to report positional accuracy according to RMSE. 

 

Fig. 2. Geometric placement of reference tags 

3.3   Simulation Results and Analysis 

(1) Geometric placement of reference RFID tags 
For the evaluation of the geometric placement of reference RFID tags – either triangu-
lar or square, of single-level ranging capability and with 100% of the detection rate  
fixed – the average detection range as well as a standard deviation of detection range 
of 10%, from 8m to 27m were applied to the simulation. Fig. 3(A) illustrates the 
simulation results. The average RMSE over a 1 m detection range were 1.93m for 
triangles and 1.98m for squares. This shows that triangular placement could yield a 
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slightly better accuracy, but that geometric placement is not an important factor in 
differentiating the positional accuracy. 

(2) Multiple-level ranging  
For this simulation, it was assumed that the RFID reader could simultaneously ana-
lyze the signal power and multiple-level discrete ranges. With respect to the different 
number of range levels, the changes of RMSE were monitored through the simulation 
of triangular placement reference tags. Again, 100% of the detection rate was fixed, 
and the average detection range as well as a standard deviation of detection range of 
10%, from 8 m to 27 m, was applied to the simulation. Fig. 3(B) illustrates the simu-
lation results. Certainly, it is an important design factor that can differentiate the posi-
tional accuracy. It is also noted that the marginal benefit of the number of discrete 
levels decreases.  

(3) Detection rate 
With respect to five different detection rates – 100%, 95%, 90%, 85%, and 80% – the 
proposed RFID-based positioning system was simulated. Triangular placement, sin-
gle-level ranging, and the average detection range as well as a standard deviation of 
detection range of 10%, from 13m to27 m were applied. The impact of the changes in 
detection rate was very discernible. As shown in Fig. 3(C), the positional accuracy 
almost linearly increases as detection rate is improved. In other words, improvement 
of detection rate can produce a clear upgrade of positional accuracy.  

(4) Percent standard deviation of detection range 
The next parameter to be tested was percent standard deviation, which is associated 
with RFID system reliability. Up to this point, 10% standard deviation of detection 
range under Gaussian assumption was used for the simulation. Triangular placement, 
single-level ranging, 100% detection rates, and a detection range from 10m to 27m 
were assumed. Fig. 3(D) summarizes the results of the simulation. It presents the 
interesting result that a smaller standard deviation accompanies a larger fluctuation of 
positional accuracy. It was also an important finding that the RMSE cycle should be 
considered in the design, particularly when installed RFID tags are expected to per-
form stably and consistently in radar signal emission.    

(5) Detection range  
Detection range, before the simulations, was supposed to be the most important fac-
tor. However, surprisingly it is not a dominating factor in the positional accuracy of 
RFID-based positioning systems. All four graphs in Fig. 3, in a variety of combina-
tions of parameter setup, substantiate the insignificance of detection range. Provided 
that the range reaches the neighboring node, any addition of detected reference tags 
basically is redundant. RMSE is highly stable with detection ranges over 14m, regard-
less of a change of parameters. The insignificant impact on RMSE is dramatically 
illustrated in Fig. 3(D). For instance, the detection range of 13 m with no uncertainty 
(0% standard deviation) produced a 0.85m RMSE, whereas 16 m generated a 1.67m 
RMSE. That is, the increase of detection range doubled the RMSE. 



 Towards the Optimal Design of an RFID-Based Positioning System 337 

1

1.5

2

2.5

3

8m 10
m

12m 14
m

16m 18
m

20
m

22m 24
m

26m

Detection Range

R
M

S
E

 (
m

)

Triangle

Rectangle

 

0

0.5

1

1.5

2

2.5

3

8m
10

m
12m

14m
16m

18m
20m 22

m
24m

26m

Detection Range

R
M

S
E

 (m
)

1 Levels

2 Levels

3 Levels

4 Levels

5 Levels

10 Levels

 

1

1.5

2

2.5

3

3.5

4

4.5

13m 15
m

17m
 

19
m 

21m
 

23m 25
m

27m

Detection Range

R
M

S
E

 (
m

)

100%

95%

90%

85%

80%

 

0

0.5

1

1.5

2

2.5

3

10
m

12
m

14
m

16
m

18
m

20
m

22
m

24
m

26
m

Detection Range

R
M

S
E

 (m
)

0% STD

5% STD

10% STD

15% STD

 

Fig. 3. Simulation results with respect to different parameter setups 

4   Conclusions and Future Study 

Determination of the physical location of objects is one of the key issues in develop-
ment of context-aware applications in ubiquitous computing. In this study, the con-
ceptual framework of an RFID-based positioning system based was simulated and 
tested for find a guideline for the optimal design. The moving object (target object) 
was equipped with an RFID reader for communication with the reference RFID tags 
and with a computing machine for the estimation of the coordinates. The  
k-neighboring algorithm was used for coordinate estimation of the moving target. 
RMSE was chosen for comparative measurement of the performances of the position-
ing system. In the simulation, five parameters were tested–geometric distribution of 
reference tags, multiple-level ranging, detection rate, percent standard deviation of 
detection range, and detection range. The results of the simulation revealed that (1) 
the geometric distribution (triangular or square) of the RFID tags is not a determining 
factor; (2) multiple-level ranging can significantly improve the positional accuracy; 
(3) the detection rate is the most significant factor in positional accuracy; (4) a 

(A) (B)

(D)(C) 
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smaller-percent standard deviation accompanies a larger fluctuation of positional 
accuracy; and (5) the detection range is sufficient to reach the neighboring nodes and 
any increase of that does not produce a significant gain of positional accuracy.  An-
other finding worth reporting was that about 20% of the intervals of the reference tags 
in the given regular spacing was the upper limit of positional accuracy under the k-
neighboring algorithm. For future research, an integration of the k-mean algorithm 
and trajectory estimation techniques such as Kalman filter in 3D space will be consid-
ered in order to construct an enhanced RFID-based positioning system and to produce 
more meaningful design guidelines for an RFID-based positioning system.   
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Abstract. Wireless sensor networks consist of a large number of the distributed 
nodes organized in a multihop structure. Energy consumption in sensor nodes 
that are generally battery-operated is very important. This paper proposes an 
energy efficient routing/MAC integrated scheme, called Wave Dissemination, 
to prolong the network lifetime by having all nodes uniformly consume their 
energies without increasing delay and degrading throughput. Wave dissemina-
tion scheme generates the virtual wave lines that induce the wave-to-wave  
networking. Wave dissemination consists of three network phases: network ini-
tialization, query wave and data wave. Simulation study assures that wave  
dissemination scheme outperforms the traditional protocols; it achieves a higher 
energy saving and a lower message delay.  

Keywords: Wireless sensor network, energy efficiency, routing protocol, media 
access control (MAC). 

1   Introduction 

Wireless sensor networks consist of large number of distributed nodes that organize 
themselves into a multihop wireless network. Sensor nodes are generally battery-
operated, and deployed in a variety of terrains. With many nodes placed in their target 
application, changing batteries becomes difficult or impossible. So, energy consumption 
is very important. 

Energy conservation in wireless sensor networks involves two dominant approaches. 
The first is at the medium access control (MAC) and networking layers. In MAC layer, 
one of the main mechanisms to save energy is the use of sleep modes, by powering off 
the radio since transmitting, receiving, and listening to idle channel are functions which 
require a comparable amount of power. In network layer, routing protocol must be 
lightweight, and designed energy-constrainedly. The second is data aggregation (fusion) 
through in-network processing, whereby correlations in data are exploited to reduce the 
size of data, and different data packets are mixed into one to reduce the number of data 
transmissions. 
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This paper proposes a new routing scheme, called Wave Dissemination, to prolong 
the network lifetime by reducing the number of exchanged messages, the relayed mes-
sages, the collision and the overhearing. Wave dissemination can integrate MAC and 
routing into a single layer, like a GeRaF [1,2] and [3]. All messages in wave dissemina-
tion are transmitted in multi-hop manner by using intermediate sensors as relay nodes. 
Wave dissemination constitutes the virtual wave lines that induce the wave-to-wave 
networking. Wave dissemination is based on four elementary functions: wave transmis-
sion, aggressive data aggregation, proactive data path reservation, and predictable  
active-sleep. 

2   Wave Dissemination 

A network in wave dissemination is viewed like the waves on the windy ocean as  
illustrated in Fig. 1. The traffic direction in traditional wired and mobile ad hoc network 
is wayward; they cannot expect who sends message and receives message. On the other 
hand, the message direction in wireless sensor networks is relatively deterministic. There 
are a sink and sensor nodes. The direction of message communication is sink-to-nodes 
for query message and nodes-to-sink for data message. We can constitute the virtual 
wave lines in network to energy-efficiently transmit the messages. All networking  
processes and message transmissions are performed in wave-to-wave. 

 

Fig. 1. Virtual wave lines in wireless sensor network 

Wave dissemination consists of three network phases: network initialization, query 
wave and data wave phases. A network initialization process is performed only once 
when the network is deployed.  Then, query wave and data wave phases are repeated. 
In wave dissemination, query wave phase may be omitted, so only data wave phase 
may occur periodically. 

2.1   Network Initialization 

When all sensor nodes in network turn on their powers, networking information is 
collected for network initialization. For this, dummy query messages are flooded into 
the whole network, and dummy data messages are followed in order to obtain the 
networking information as illustrated in Fig. 2. At this time, all nodes compute the 
minimum hop count from the sink to themselves in order to constitute virtual wave 
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lines. Hop count is based on radio radius. All nodes share the minimum hop count 
information. Also, nodes share their residual battery information. Nodes with the 
same minimum hop count are connected by virtual wave line. 

In general, sharing of whole topology information imposes a heavy burden on bat-
tery-powered sensor nodes. Thus, in our scheme, nodes maintain the information of 
only nodes at one level upper or down wave. For this, each node relays its own infor-
mation to nodes at one level upper or down wave. This is enough for message routing 
in our scheme. 

 

Fig. 2. Network initialization: (a) Dummy query messages. (b) Dummy data message. 

Nodes that are located in the same wave level are called as associate. There can be 
multiple paths from a node to the sink, so a node can have different multiple hop 
counts to the sink. But, there is no possibility of any muddle due to the wave line built 
based on the minimum hop count. As illustrated in Fig. 1, node A has two paths 
through node B and node C to reach the sink. But, A uses B located at inbound wave, 
to deliver message to the sink. So, the minimum hop count from A to the sink is 5. 
Node A and C are in the same wave level (5-th wave level). All messages except 
dummy query messages are exchanged with only nodes at one level upper or one 
level down wave, not with associate. Node-to-node round trip time (RTT) is com-
puted in the network initialization phase. RTT can be computed simply by using time-
stamp in dummy query and dummy data message. In order to obtain an accurate RTT 
value, dummy query and dummy data messages must be sized as the same as the 
actual query and data message. This RTT value is used for predicting the time of 
receiving the data message. In our scheme, the data path of the next round is reserved 
in a proactive manner by using the dummy data message as illustrated in Fig. 2 (b). 
Each node knows the residual battery information of nodes on one level upper wave; 
it is acquired from dummy query message. In order to reserve the data path for the 
next round, nodes choose the most powerful node on its one level upper wave. Each 
node maintains the path information of just nodes at one level upper wave, do not the 
whole path information. Data path for the next round is reserved in every round. This 
beforehand-reserved data path makes the aggressive data aggregation and predictable 
active-sleep. 

2.2   Query Wave  

In wave dissemination, the number of query messages transmitted and relayed is re-
duced through the wave transmitting. When sensing task is demanded by application, 
the sink sends the query messages to sensor nodes. In wave dissemination, it is assumed 
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that the query is transmitted to all nodes in network and all nodes receiving the query 
sense the event and have the sensed data to send to the sink. While the query message 
including the amount of residual battery is transmitted, each node shares the battery 
information with nodes at one level down wave. So, each node can know the most pow-
erful node of the one level upper wave. Query message is relayed only to nodes at one 
level down wave and is not relayed to its associates in the same level as shown in Fig. 3 
(a). In our scheme, nodes may turn the radio off just after relaying the query message in 
order to reduce the energy waste by overhearing and collision. Associates on the same 
wave line send the message and turn the radio off almost simultaneously. All other 
networking processes are performed in wave-to-wave fashion. Each node transmits the 
amount of its own residual battery. It does not relay the information to nodes at one 
level upper wave. For data path, it is enough that node knows the information on its 
neighbor among nodes at one level upper wave. The roof problem of routing is naturally 
excluded because query messages are transmitted to nodes at one level down wave, and 
data messages are transmitted to nodes at one level upper wave. In wave-to-wave 
transmission, broadcast storm problem can be relieved. Query messages are relayed to 
neighbor among nodes at one level down wave. At this time, the query messages trans-
mitted from its associate are not relayed.  After relaying the query message, it turns off 
the radio and sets the TTL (Time To Live) field to the wave level of the destination 
(e.g., TTL value for the 3rd wave nodes is 3). 

 

Fig. 3. Network phases: (a) Query messages in query wave. (b) Data messages in data wave. 

2.3   Data Wave  

Data messages wave to the sink through beforehand-reserved data paths after sensing 
task ends as shown in Fig. 3 (b). Data paths for the next round in wave dissemination 
are reserved beforehand. The sink-to-node and node-to-sink traffic feature of wireless 
sensor networks permits the data path to be reserved. This is proactive manner.  For this, 
each node maintains the information on its neighbor at one level upper or down wave. 
End-to-end path or whole topology information is not required in our scheme. In our 
scheme, the most powerful node at one level upper wave is reserved for the next round. 
Wave dissemination assumes that all nodes always have the data to send. However, 
when only a few nodes have the data to send, the reserved data path can be changed 
every round to keep the network energy-balanced. 

Data messages are relayed to the reserved node among nodes at one level upper wave. 
Considering that transmission of data message is generally unicast, the amount of data 
transmissions are uniformly balanced over all nodes in the network by the aggressive 
data aggregation. In wave dissemination, each sensor node transmits its data message 
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only one time per round through the aggressive data aggregation. Each node can know 
who will send the data message to itself by using the reserved data paths. Each node is 
waiting until receiving all data messages from nodes at one level down wave, aggregates 
those data and its own data, and then transmits it to the upper wave. This aggressive data 
aggregation can increase the latency, but in energy-constrained sensor networks, the 
number of message transmissions can be reduced and be evenly balanced over all nodes. 
The radio may be turned off after data message is relayed to mitigate the overhearing and 
collision from nodes at down wave. 

2.4   Predictable Active-Sleep Period 

One important factor for energy saving is idle listening, i.e., listening to receive possible 
traffic that is not sent. During an active period, node is always in the idle listen state. 
Idle listening can be reduced by shortening active period. In our scheme, the active 
period is shortened by predicting the receive time of the data message. Wave dissemina-
tion uses the predictable dynamic active-sleep period, while PS mode of 802.11 uses a 
fixed duty cycle or uses an adaptive duty cycle that chooses uniformly active (idle) 
period (e.g., 1 second ~ 8 second). In wireless sensor networks, the message communi-
cation time and traffic pattern are relatively deterministic, and a message size is rela-
tively constant comparing with mobile ad hoc and wired IP networks. These features 
make the message latency more constant. Wave dissemination predicts the time when 
each node receives the data message by using wave-to-wave round trip time (RTT) to 
prolong the sleep period for energy saving. 

 

Fig. 4. Predictable active-sleep period 

The process of predictable active-sleep technique is as follows and also as shown 
Fig. 4. Each sensor node receives the query message from the sink. The node that is 
closer to the sink more quickly receives the query message. As soon as the node re-
lays this query message to nodes at one level down wave, it turns the radio off and 
transits into the sleep mode. Then, the active timer in the node starts. The active timer 
is used for determining the time when it should be active (idle) again. When the active 
timer expires, it wakes up and transits into the active mode to receive the data mes-
sage from down wave. Timeout value of the active timer is given by 

sensingquery TTTT RTTtimeout ++=  (1) 

where 
queryT  is the time when the node receives the query message, 

RTTT  is RTT value 

from itself to the farthest wave which is computed in network initialization phase, and 
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gsenT sin
 means the sensing period spent on sensing task. For more energy saving, the 

predictable active-sleep may be used together with 802.11 PS mode. For example, each 
node can be usually in PS mode and then it can perform the predictable active-sleep 
only when it receives the query message. Predictable active-sleep may be more efficient 
in the application that needs the long sensing time like tracking the mobile target for 
quite a time. The predictable active-sleep can reduce the energy consumption by  
shortening the active period and reduce the message latency. 

3   Performance Evaluation  

To evaluate the performance of wave dissemination scheme, we have implemented an 
ns-2 simulator. This includes four functional modules; wave transmission, aggressive 
data aggregation, proactive data path reservation and prediction of active-sleep period. 

3.1   Simulation Model  

We used a random topology which consists of initially 20-node in a 600 × 600m area. 
Each sensor node has a radio range of 250m. Each node has its own ID. In our simula-
tion, 0-node is the sink and others are sensor nodes. We used 802.11 DCF (Distributed 
Coordination Function) as MAC protocol. The radio power characteristics are given in 
Table 1. These values are taken from the specifications for the TR1000 radio from RF 
Monolithics [5]. The sink generates query messages in CBR (Constant Bit Rate). The 
destination address of query message is the broadcast address. The sink generates one 
query message for every sensor node. So, 19 query messages are generated at the sink 
for 19 sensor nodes. These query messages are transmitted and relayed to sensor nodes 
in a form of wave. Nodes that receive it send out the data message to the sink after 
sensing task ends. Data messages are aggregated at nodes. Query and data messages 
have a length of 36 bytes and 64 bytes, respectively. 

Table 1. Radio Power Characteristics 

Radio mode Power consumption (mW) 
Transmit (Tx) 14.88 
Receive (Rx) 12.50 

Idle 12.36 
Off 0.016 

3.2   Experimental Results  

Fig. 5 shows the average dissipated energy which means the dissipated energy per 
node per second (dissipated total energy in network / number of nodes / simulation 
time). The wave dissemination is compared with other traditional protocols such as 
flooding of RREQ (Route Request) used in AODV (Ad hoc On Demand Distance 
Vector) and 802.11 PS mode. We can see that the wave dissemination consumes the 
less energy than the flooding scheme in Fig. 5 (a). This is because in the wave dis-
semination, each node receives the query messages from only nodes upper by one level 
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while the flooding protocol uses the broadcast ID for reducing the rebroadcast over-
head. For example, the node at the second wave level receives the query messages 
from only nodes at the first wave level. All messages from its associate and other wave 
level are dropped. Also, the wave dissemination uses the wave level of the destination  
 

         (a) 

            (b) (c)
 

Fig. 5. Average energy dissipation: (a) Impact of the query loads. (b) Impact of the number of 
nodes. (c) Impact of the query loads.  

for the TTL field for reducing the rebroadcast overhead. For example, TTL value for 
third wave nodes is 3. In this 20-node network, four levels of waves are generated. So, 
our scheme reduces the broadcast storm. This advantage can be observed more appar-
ently as the traffic becomes heavier. As the traffic is heavier, the wave dissemination 
consumes much less energy than the flooding scheme. Fig. 5 (b) shows the average 
dissipated energy as the number of nodes in network increase. Query message is gen-
erated every second. This figure indicates that the wave dissemination outperforms the 
flooding scheme because wave dissemination re-broadcasts the relatively less mes-
sages through wave transmitting. We can observe that the average dissipated energy 
becomes saturated as the traffic load increases. Fig. 5 (b) shows a saturation point 
where there are around 50 nodes in the network. This results from the characteristics of 
CSMA/CA. In the saturation situation, messages are collided, are dropped and are not 
relayed. So, no more energy is consumed. It should be noted that the wave dissemina-
tion consumes less energy than the flooding scheme regardless of saturation because 
less messages are relayed than the flooding scheme. 
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Fig. 5 (c) shows that our scheme consumes the less energy than the PS mode with 
the duty cycle of 67% at high traffic intensities. But, we can see a contrary result at 
low traffic intensities. In the simulation, sensing period is assumed 0.8 second. In the 
PS mode, it is assumed that the sleep and idle periods are 2 and 8 seconds, respec-
tively. And, idle period is uniformly selected. In Fig. 5 (c), “No duty cycle” represents 
that it does not have any radio on-off scheme; radio is always turned on. CSMA/CA 
protocol always consumes the energy because it is always working in the idle listen-
ing state except transmit and receive states. Idle listening state consumes almost the 
same energy as the receive state. So, the number of the received messages rarely af-
fects the energy consumption in sensor node. Only the number of transmitted mes-
sages impacts the amount of energy dissipation in sensor node. In idle listening state, 
the traffic density makes only a little effect on the total energy dissipation since 
802.11 DCF always consumes the energy. 

4   Conclusion  

In this paper, we proposed an energy-efficient MAC-routing integrated protocol, 
called wave dissemination, for wireless sensor networks. Wave dissemination induces 
the wave-to-wave networking by virtual wave lines. Our scheme is carried out by four 
basic functions; wave transmission, aggressive data aggregation, proactive data path 
reservation and prediction of active-sleep period. Experimental results using the ns-2 
simulator show that wave dissemination achieves a higher energy savings and lower 
message latency than the traditional protocols. 
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Abstract. In this paper, we propose a zone-based clustering method to balance 
the amount of energy consumptions over all sensor nodes in the wireless sensor 
network field. In our method, a network field is divided into several zones with 
two types of shape: arc and square. And, the number of clusterheads selected in 
each zone is determined depending on its area. These contribute to distributing 
clusterheads evenly over the network field. Simulation results show that our 
zone method can outperform LEACH and PEGASIS in terms of network life-
time and connectivity. 

Keywords: wireless sensor network, clustering, clusterhead selection, multiple 
hop transmission, zone, routing. 

1   Introduction 

Persistent advances in hardware and wireless network technologies have led us to 
another era where small wireless gadgets will allow access to prompt information 
anytime, anywhere. So, wireless sensor networks have gathered a great research inter-
est in recent years mainly due to their possible wide applicability. Especially, they 
have advantages in inaccessible environments, such as difficult terrains, or on a 
spaceship [1]. In addition potential applications for such large-scale wireless sensor 
networks exist in a variety of fields, including environmental monitoring [2, 3], sur-
veillance, home security, military operations, and object tracking [4]. Generally a 
sensor node consists of sensing elements, microprocessor, limited memory, battery, 
and low power radio transmitter and receiver. Sensor nodes are usually unattended, 
resource-constrained, and unrechargeable in wireless sensor networks. And thus dis-
tributing power consumption to all nodes is a major design factor because the system 
lifetime of wireless sensor networks is limited [5]. And also, locating sensor nodes 
over network fields efficiently is one of the most important topics in wireless sensor 
networks. 

To solve this problem, several clustering approaches in wireless sensor networks have 
been proposed. Clustering approaches can reduce the energy used to communicate data 
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from sensor nodes to the sink [6]. The essential operation in clustering approaches is to 
select a set of clusterheads from the set of sensor nodes in the network, and then group 
the remaining sensor nodes with these clusterheads. Clusterheads are responsible for 
coordination among sensor nodes within their clusters and aggregation of their data, and 
communication with each other with external observers on behalf of their clusters. A 
good clustering scheme should preserve its structure of cluster as much as possible [7].  

In this paper, we propose a clustering method to evenly distribute clusterheads over 
the network field to reduce the energy consumption and the computational overhead. 
To distribute the clusterheads almost evenly, we propose two different methods for 
dividing the network field. One method uses an arc-shaped zones and the other uses a 
square-shaped zones. The key idea proposed here is that the network field is divided 
into several zones and the number of clusterheads to be included in each zone is de-
termined in proportion to its area.  

This paper is organized as follows. We discuss some related works in section 2 and 
present an overview and discussion of our method in section 3. In section 4, we com-
pare our method with the existing protocols and show the results. Finally, we con-
clude the paper in section 5. 

2   Related Works 

Low-Energy Adaptive Clustering Hierarchy (LEACH) is an efficient routing of data 
in wireless sensor networks. In LEACH, sensor nodes elect themselves as cluster-
heads with some probability and broadcast their decisions. Each sensor node deter-
mines to which cluster it wants to belong by choosing the clusterhead that requires the 
minimum communication energy. The algorithm is run periodically, and the probabil-
ity of becoming a clusterhead for each period is chosen to ensure that every sensor 
node becomes a clusterhead at least once within 1/p rounds, where p is 5 percent of 
the number of all nodes [8]. The positive aspect of LEACH is that sensor nodes will 
randomly consume their power supply, and they should randomly die throughout the 
network. On the other hand, the randomized clusterheads will make it very difficult to 
achieve optimal results. Moreover, direct transmission from clusterheads to the sink 
leads to deplete a plenty of transmission energy.  

Power-Efficient GAthering in Sensor Information Systems (PEGASIS) [9] is near 
optimal for this data gathering application. The key idea in PEGASIS is to form a 
chain among sensor nodes so that each node will receive from and transmit to a close 
neighbor node. Gathered data moves from a sensor node to another node, get fused, 
and eventually a designated node transmits to the sink. Nodes take turns transmitting 
to the sink so that the average energy spent by each node per round is reduced. The 
PEGASIS shows improvement compared to the LEACH protocol.  

HEED [10] uses an iterative cluster formation algorithm, where sensor nodes assign 
themselves a “clusterhead probability” that is a function of their residual energy and a 
“communication cost” that is a function of neighbor nearness. The advantages of HEED 
are that sensor nodes only require neighborhood information to form the clusters, the 
algorithm terminates in O(1) iterations, the algorithm guarantees that every sensor nodes 
is part of just one cluster, and the clusterheads are distributed evenly. 
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3   Our Proposed Method 

We propose a clustering method for wireless sensor networks to balance energy con-
sumptions over all sensor nodes in the network field. We call it “zone-based clustering 
method” in which a network field is divided into several zones with two types of shape: 
arc and square. The network field is first divided into several zones, and the number of 
clusterheads is determined in proportion to its area. These lead to distributing cluster-
heads evenly over the network field. Each sensor node transmits data to the nearest 
neighbor node or clusterhead in its zone. Each clusterhead aggregates data and sends it 
to the nearest clusterhead in the previous zone towards the sink as illustrated in Figure 1. 
The sink accumulates all packets from clusterheads. The sink is an essential component 
with complex computational abilities. On the other hand, sensor nodes are considered to 
perform very simple and cost effective functions. 

Cluster Cluster 

ClusterHeadClusterHead

Sensor NodeSensor Node

SinkSink

ZONE2ZONE1ZONE0
Cluster Cluster 

ClusterHeadClusterHead

Sensor NodeSensor Node

SinkSink

ZONE2ZONE1ZONE0  

Fig. 1. Routing path 

Initialization

(1) ZC: Zone Configuration,  (2) CLST: Clustering for all zones
(3) ReCLSTi: Data communication and Reclustering for ZONEi

ZC CLST ReCLST1 ReCLST2 ReCLSTi

Steady State

……….

Initialization

(1) ZC: Zone Configuration,  (2) CLST: Clustering for all zones
(3) ReCLSTi: Data communication and Reclustering for ZONEi

ZC CLST ReCLST1 ReCLST2 ReCLSTi

Steady State

……….

 

Fig. 2. Three stages for the proposed method 

We make some assumptions for our method. First, all sensor nodes in the network 
are uniformly distributed, static, homogeneous and energy constrained. Second, all 
sensor nodes know their location. Third, the sink node is immobile and controls to select 
clusterheads. Fourth, all data sent by the previous node are aggregated with a constant 
bit size. Our schemes are implemented by the following three stages. (a) Zone configu-
ration stage, (b) Clustering stage, (c) Data communication and reclustering stage as 
shown in Figure 2.  
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3.1   Zone Configuration Stage 

The essential task in this stage is to divide the network field into several zones. It is 
divided into several zones based on the zone range(r) which is determined by consid-
ering the network size, transmission range, and distribution density of the nodes. In 
the arc-shaped zone scheme, the first zone is created starting from the sink. The first 
zone includes sensor nodes which are located within zone range(r) from the sink. The 
next zone, ZONE1, contains sensor nodes whose distances to the sink are greater than 
r but less than 2r. The i-th zone, ZONEi, includes sensor nodes whose distances to the 
sink are greater than ri ×  but less than ri ×+ )1( . Finally, the last zone covers all 

remaining sensor nodes which have not yet been included in the previously estab-
lished zones (e.g. ZONE5 in Figure 3a). 
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Fig. 3. Zone configuration 

In the square-shaped zone scheme, we create a number of virtual grids by simply 
making squares with widths (or depths) of zone range(r) as illustrated in Figure 3b. 
After zone configuration, the sink broadcasts the zone information to allow each node 
to know which zone it will be assigned to.  

3.2   Clustering Stage 

This stage consists of the clusterhead selection, the cluster setup, and the formation of 
routing paths. The clusterhead selection is done by the sink, and repeats until the 
desired number of clusterheads in each zone is attained.  

In arc-shaped zone scheme, selection of clusterheads is based on two parameters: 
the density of neighbor nodes within a transmission range, and the distance from 
previously selected clusterhead in a specific zone. The former implies that a highly 
dense node which has many neighbor nodes around it would be selected as a cluster-
head. There may be two or more clusterheads in a zone depending on the zone size. 
The number of clusterheads selected in a zone is proportional to its size relative to 
size of the zone to which the sink belongs. By not only selecting clusterheads in this 
manner, but by also considering the distance from previously selected clusterhead in a 
zone, the allocation of clusterheads is almost evenly distributed. 
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In the square-shaped zone scheme, however, selection of clusterheads in a square is 
done in a round robin fashion. By selecting clusterheads in this way, clusterheads can 
be almost evenly distributed over the entire network field. 

The number of clusterheads in an arc-shaped zone is obtained by 
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where 
iCHN _  is the number of clusterheads selected in 

iZONE . In the square-

shaped zone scheme, the number of clusterheads in each zone is obtained by 
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Cluster setup operation in this stage means that each sensor node has to make a 
logical connection to the clusterhead in the same square. Once the clusters and the 
clusterheads have been identified, the sink determines the routing path for any two 
adjacent clusterheads. Transmission can be done via a multihop path between cluster-
heads in adjacent zones. It leads to diminish communication energy as well as setting 
optimal routing path from sensor nodes to the sink. 

3.3   Data Communication and Reclustering Stage 

The main action in this stage is data communication whose task includes data gather-
ing, data fusion and data forwarding, and reclustering for a single zone. Each sensor 
node transmits the sensed information to its clusterhead on a multiple-hop path. Once 
a clusterhead receives data from any node, it performs data fusion on the collected 
data to reduce the amount of raw data that needs to be sent to the sink.  

A sensor node transmits its data to the nearest neighbor node within the cluster that 
it belongs to. The neighbor node aggregates the data with its own data, and transmits 
it to the next node until reaching to clusterhead. Similarly, the clusterhead sends its 
aggregated data to the nearest clusterhead in the next zone until arriving at the sink. 
There is an exception for ZONE0 where data is transmitted to the sink directly. We 
assume that the sink request or query is generated every round.  

At the reclustering part of this stage, the clusterheads are reselected in a single zone 
for every round. After this, each node joins the closest clusterhead in the same zone. 
In other words, reclustering is performed for only a single zone but not in all zones 
every round. This contributes to reducing the computation overheads. Once the clus-
ters and the clusterheads have been reclustered, the sink determines the routing path 
for any two nearby clusterheads. After as many rounds as the number of zones, all 
clusterheads will be replaced once for all zones.  

4   Simulation Results 

Throughout the simulation, we consider a 100 x 100 network configuration with 200 
nodes and 300 nodes. Some important simulation parameters are listed in Table 1. In 
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Table 1. Simulation Parameters 

Parameter Value Parameter Value 

Network size 100 x 100 Transmission energy  50 nJ/bit 
Number of nodes 200 / 300 Data Aggregation energy 5 nJ/bit/message 
Packet size 2000 bits Transmit amplifier energy 100 pJ/bit/m2 
Initial energy 1 J Zone range( r ) 20(arc),14(square) 

our simulations, all sensor nodes are assumed to carry out sensing operation at a fixed 
rate and always have data to send. It is also assumed that all data sent by the previous 
nodes are aggregated into a data segment with a constant size of 2000 bits.  

Figure 4 shows the number of rounds when a sensor node becomes dead for the 
first time and all sensor nodes are dead. Our two schemes outperform LEACH and 
PEGASIS in terms of the system lifetime.  
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Fig. 4. The number of rounds until the first or the last sensor node dies 
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Fig. 5. The amount of residual energy as time goes on 

Figure 5 shows the amount of used energy at all sensor nodes during network life-
time. This plot shows that our two schemes have more desirable energy expenditure 
than those of LEACH and PEGASIS since a multi-hop routing path is allowed for data 
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transmission, and thus the distance required for data transmission is closer than that of 
LEACH. Consequently, the short transmission distance in our two schemes allows less 
energy consumption at all sensor nodes.  

Figure 6 shows the connection failure ratio. The x-axis represents the time steps in 
rounds, and the y-axis represents the connection failure ratio which is obtained by the 
number of failure counts divided by the number of live nodes. Our proposed method 
shows a low connection failure ratio comparable with PEGASIS until 30% nodes are 
alive. As the number of dead nodes is increased, the PEGASIS protocol shows a 
lower connection failure ratio as compared with the zone-based method because all 
nodes can be connected in a chain with a minimum distance from neighbor nodes in 
PEGASIS. Although PEGASIS appears to perform better when more than 70% of 
nodes are dead, our proposed methods still have a longer lifetime.  
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Fig. 6. The connection failure ratio 

5   Conclusions 

In this paper, we propose a clustering method based on zone with a shape of arc or 
square for wireless sensor networks aiming at balancing energy consumption over all 
sensor nodes in the network field. To estimate the performance of proposed methods, 
we compared their performance with other cluster-based protocols, LEACH and 
PEGASIS. Simulation results show that our arc-based zone method and square-based 
zone method outperform LEACH and PEGASIS in terms of the system lifetime, the 
energy expenditure but compete with PEGASIS in terms of the connectivity.  
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Abstract. In this paper, two kinds of multi-level formal concepts are
discussed. Based on the proposed Multi-level formal concepts, we present
two pairs of rough set approximations within fuzzy formal contexts. By
the proposed rough set approximations, we not only approximate a crisp
set, but also approximate a fuzzy set with the multi-level concepts. We
discuss the properties of the proposed two pairs of approximation oper-
ators in details.

Keywords: Rough sets, formal concept analysis, concept lattice, lower
approximation, upper approximation.

1 Introduction

The theory of formal concept analysis (FCA) proposed by Wille [1,2] has been
studied intensively, and obtained results have played an important role in con-
ceptual data analysis and knowledge processing. Wille’s definition of a concept
be a (objects, attributes) pair, the set of objects is referred to as the exten-
sion and the set of attributes as the intension of formal concept. They uniquely
determine each other [1,2].

FCA is analyzed based on a formal context, which is a binary relation between
a set of objects and a set of attributes with the value 0 and 1. However, in
many practical applications, the binary relation is a fuzzy set represented by a
membership degrees, instead of a single value in {0, 1}. For this fuzzy binary
relation, several generalizations to formal concept can be found in the existent
literatures [3,4,5,6,7,8,9,10]. In [5], Elloumi defined a Lukasiewicz based fuzzy
Galois connection. Belohlavek [6,7,8] proposed fuzzy conceps in fuzzy formal
context based on residuated lattice. Moreover, Georgescu and Popescu [9,10]
discussed a general approach to fuzzy FCA.

The theory of Rough sets, proposed by Pawlak [11], as a method of set ap-
proximation, it has continued to flourish as a tool for data mining and data
analysis. The basic operators in rough set theory are approximations. Using the
concepts of lower and upper approximations, knowledge hidden in information
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tables may be unraveled and expressed in the form of decision rules. Many au-
thors have generalized the rough set model to rough fuzzy sets and fuzzy rough
sets models (see [12,13,14]).

FCA and Rough set are both analyzed based on binary information tables.
In recent years, many efforts have been made to compare and combine the two
theories [15,16,17,18,19]. The combination of formal concept analysis and rough
set theory can provide related and complementary approaches for data analysis.

In this paper,based on the proposed Multi-level formal concepts, we present
two pairs of rough set approximations within fuzzy formal contexts. By the pro-
posed rough set approximations, we not only approximate a crisp set, but also
approximate a fuzzy set with the multi-level concepts. Furthermore, for a fixed
set, we have different lower and upper approximation according to different pre-
cision level. We discuss the properties of the proposed two pairs of approximation
operators in details.

2 Two Kinds of Multi-level Formal Concepts

The notion of residuated lattice provides a very general truth structure for
fuzzy logic and fuzzy set theory. In the following, we list its definition and basic
properties.

Definition 1. [7] A residuated lattice is a structure (L, ∨, ∧, ⊗, →, 0, 1) such
that
(1) (L, ∨, ∧, 0, 1) is a lattice with the least element 0 and the greatest element 1;
(2) (L, ⊗, 1) is a commutative monoid;
(3) for all a, b, c ∈ L, a ≤ b → c iff a ⊗ b ≤ c.

Residuated lattice L is called complete if (L, ∨, ∧) is a complete lattice.

Lemma 1. [7,9] In any complete residuated lattice (L, ∨, ∧, ⊗, →, 0, 1), → is
antitone in the first and isotone in the second argument.

Let L be a residuated lattice. An L − set A on a universe set U is any map A:
U → L, A(x) being interpreted as the truth degree of the fact “ x belongs to A”.
By LU denote the set of all L − set in U . For any X1, X2 ∈ LU , X1 ⊆ X2 if and
only if X1(x) ≤ X2(x) (∀ x ∈ U). Operations ∨ and ∧ on LX are defined by:

(X1 ∨X2)(x) = X1(x)∨X2(x), (X1 ∧X2)(x) = X1(x)∧X2(x), ∀X1, X2 ∈ LU .

Example 1. Let U = {x1, x2, . . . , xn} be a set of n elements, An L − set A on U
is denoted by A = {x1/A(x1), x2/A(x2), . . . , xn/A(xn)}, where A(x) represents
the degree to which an element x ∈ U is an element of A.

A fuzzy formal context is defined as a triple (U, M, R), where U and M are the
object and attribute sets, R ∈ LU×M is a fuzzy relation between U and M .
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Table 1. A fuzzy formal context (U, M, R)

R a b c d
x1 0.4 0.4 0.9 0.6

x2 0.8 0.2 0.7 0.8

x3 0.5 0.4 0.7 0.9

x4 0.8 0.2 0.7 0.7

Example 2. Table 1 represents a fuzzy formal context (U, M, R) with U =
{x1, x2, x3, x4} and M = {a, b, c, d}, the fuzzy relation R defined as in Table 1.

Let (U, M, R) be a fuzzy formal context and we denote the power set of U by
P(U). For any δ ∈ (0, 1], the operators: ∗ : P(U) −→ LM , � : LM −→ P(U),
defined for X ∈ P(U), B ∈ LM and a ∈ M by [20]:

X∗(a) = δ →
∧

x∈X R(x, a),
B� = {x ∈ U |

∧
a∈M (B(a) → R(x, a)) ≥ δ}.

The following property list the basic properties of the adjoint pair of operators.

Theorem 1. Let (U, M, R) be a fuzzy formal context, X, X1, X2, Xi ∈ P(U), B,
B1, B2, Bi ∈ LM , then

(i) X1 ⊆ X2 ⇒ X∗
2 ⊆ X∗

1 , B1 ⊆ B2 ⇒ B�
2 ⊆ B�

1 ;
(ii) X ⊆ X∗�, B ⊆ B�∗;
(iii) X∗ = X∗�∗, B� = B�∗�;
(iv) (

⋃
i∈I Xi)∗ =

∧
i∈I X∗

i , (
∨

i∈I Bi)� =
⋂

i∈I B�
i .

Proof. It is omitted.

A crisp-fuzzy concept [20] of (U, M, R) is a pair of (X, B) ∈ P(U) × LM , such
that X∗ = B and B� = X . For a set of objects X ⊆ P(U) and a fuzzy set of
attributes B ⊆ LM , from Theorem 1 (iii) we have that (X∗�, X∗) and (B�, B�∗)
are crisp-fuzzy concepts. We have different level crisp-fuzzy concepts with dif-
ferent precision level δ. For two crisp-fuzzy concepts (X1, B1) and (X2, B2),
(X1, B1) ≤ (X2, B2), if and only if X1 ⊆ X2 (or equivalently, B2 ⊆ B1). All the
crisp-fuzzy concepts of (U, M, R) forms a complete lattice in which infimum and
supremum are defined by:

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)∗�, B1 ∩ B2)
= ((B1 ∩ B2)�, B1 ∩ B2);

(X1, B1) ∧ (X2, B2) = ((X1 ∩ X2), (B1 ∪ B2)�∗)
= ((X1 ∩ X2), (X1 ∩ X2)∗).

Example 3. In Example 2, let → be the Lukasiewicz implication, ie., for
x, y ∈ [0, 1],

x → y =
{ 1, x ≤ y,

1 − x + y x > y;

x ⊗ y = (x + y − 1) ∨ 0.
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Table 2. Crisp-fuzzy concepts for δ = 1

Label Objects × properties
FC0 ∅ × {a/1.0, b/1.0, c/1.0, d/1.0}
FC1 {x1} × {a/0.4, b/0.4, c/0.9, d/0.6}
FC2 {x2} × {a/0.8, b/0.2, c/0.7, d/0.8}
FC3 {x3} × {a/0.5, b/0.4, c/0.7, d/0.9}
FC4 {x1, x3} × {a/0.4, b/0.4, c/0.7, d/0.6}
FC5 {x2, x3} × {a/0.5, b/0.2, c/0.7, d/0.8}
FC6 {x2, x4} × {a/0.8, b/0.2, c/0.7, d/0.7}
FC7 {x2, x3, x4} × {a/0.5, b/0.2, c/0.7, d/0.7}
FC8 {x1, x2, x3, x4} × {a/0.4, b/0.2, c/0.7, d/0.6}

When δ = 1, by computation we obtain the crisp-fuzzy concepts presented in
Table 2.

Let (U, M, R) be a fuzzy formal context, for any δ ∈ (0, 1], the operators: # :
LU −→ P(M), � : P(M) −→ LU , defined for X ∈ LU , B ∈ P(M) and x ∈ U
by [20]:

X# = {a ∈ M |
∧

x∈U (X(x) → R(a, x)) ≥ δ},
B�(x) = δ →

∧
a∈B R(x, a).

Theorem 2. Let (U, M, R) be a fuzzy formal context, X, X1, X2, Xi ∈ LU , B,
B1, B2, Bi ∈ P(M), then

(i) X1 ⊆ X2 ⇒ X#
2 ⊆ X#

1 , B1 ⊆ B2 ⇒ B�
2 ⊆ B�

1 ;
(ii) X ⊆ X#�, B ⊆ B�#;
(iii) X# = X#�#, B� = B�#�;
(iv) (

∨
i∈I Xi)# =

⋂
i∈I X#

i , (
⋃

i∈I Bi)� =
∧

i∈I B�
i .

Proof. It is similar to the proof of Theorem 1.

A fuzzy-crisp concept [20] of (U, M, R) is a pair of (X, B) ∈ LU ×P(M), such that
X# = B and B� = X . For a fuzzy set of objects X ⊆ LU and a set of attributes
B ⊆ P(M), from Theorem 2 (iii) we have that (X#�, X#) and (B�, B�#) are
fuzzy-crisp concepts. We have different level fuzzy-crisp concepts with different
precision level δ. For two fuzzy-crisp concepts (X1, B1) and (X2, B2), (X1, B1) ≤
(X2, B2), if and only if X1 ⊆ X2 (or equivalently, B2 ⊆ B1). All the fuzzy-crisp
concepts of (U, M, R) forms a complete lattice in which infimum and supremum
are defined by:

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)#�, B1 ∩ B2)
= ((B1 ∩ B2)�, B1 ∩ B2);

(X1, B1) ∧ (X2, B2) = ((X1 ∩ X2), (B1 ∪ B2)�#)
= ((X1 ∩ X2), (X1 ∩ X2)#).

Example 4. Continuing from Example 3, when δ = 1, by calculation we obtain
the fuzzy-crisp concepts presented in Table 3.
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Table 3. Fuzzy-crisp concepts for δ = 1

Label Objects × properties
FC0 {x1/1.0, x2/1.0, x3/1.0, x4/1.0} × ∅
FC1 {x1/0.4, x2/0.8, x3/0.5, x4/0.8} × {a}
FC2 {x1/0.9, x2/0.7, x3/0.7, x4/0.7} × {c}
FC3 {x1/0.6, x2/0.8, x3/0.9, x4/0.7} × {d}
FC4 {x1/0.4, x2/0.8, x3/0.5, x4/0.7} × {a, d}
FC5 {x1/0.6, x2/0.7, x3/0.7, x4/0.7} × {c, d}
FC6 {x1/0.4, x2/0.7, x3/0.5, x4/0.7} × {a, c, d}
FC7 {x1/0.4, x2/0.2, x3/0.4, x4/0.2} × {a, b, c, d}

3 The Approximation Operators Based on Multi-level
Formal Concepts

In this section, based on above discussed two pair of adjoint operators we in-
troduced two pair of lower and upper approximation operators in fuzzy formal
contexts.

Definition 2. Let (U, M, R) be a fuzzy formal context. For any set X ⊆ U , a
pair of upper and lower approximations, apr(X), apr(X), is defined by

apr(X) = X∗�, apr(X) =∼ apr(∼ X).

Operators, apr, apr: P(U) −→ P(U), are referred to as lower and upper approx-
imation operators for object sets, and the pair (apr(X), apr(X)) is referred to as
a generalized rough object set.

Where ∼ denotes the complement of a set.

Theorem 3. Let (U, M, R) be a fuzzy formal context. The generalized lower and
upper approximation satisfy the following properties: for any X, Y ⊆ U ,

(L1) apr(X) =∼ (apr(∼ X)),
(U1) apr(X) =∼ (apr(∼ X));
(L2) apr(∅) = apr(∅) = ∅,
(U2) apr(U) = apr(U) = U ;
(L3) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),
(U3) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y );
(L4) X ⊆ Y =⇒ apr(X) ⊆ apr(Y ),
(U4) X ⊆ Y =⇒ apr(X) ⊆ apr(Y );
(L5) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),
(U5) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y );
(L6) apr(X) ⊆ X,
(U6) X ⊆ apr(X);
(L7) apr(apr(X)) = apr(X),
(U7) apr(apr(X)) = apr(X).
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Proof. Properties (L1) and (U1) show that approximation operators apr and apr
are dual to each other. Properties with the same number may be regarded as
dual properties. Thus, we only need to prove one of them.

(L1) and (L2) follows immediately from the definition of lower approximation.
From the definition of upper approximation, we have

apr(X ∪Y ) = (X ∪Y )∗� = {x ∈ U |∀ a ∈ M, δ → R(x, a) ≥ δ →
∧

y∈X∪Y

R(y, a)}.

Since ∧

y∈X

R(y, a) ≥
∧

y∈X∪Y

R(y, a),
∧

y∈Y

R(y, a) ≥
∧

y∈X∪Y

R(y, a)

from Lemma 1, we have

δ →
∧

y∈X

R(y, a) ≥ δ →
∧

y∈X∪Y

R(y, a), δ →
∧

y∈Y

R(y, a) ≥ δ →
∧

y∈X∪Y

R(y, a)

which implies (X∪Y )∗� ⊇ X∗�, (X∪Y )∗� ⊇ Y ∗�. Then, (X∪Y )∗� ⊇ X∗�∪Y ∗�.
Thus, (U3) holds.

From Theorem 1 (i), we have

X ⊆ Y ⇒ Y ∗ ⊆ X∗ ⇒ X∗� ⊆ Y ∗�.

Property (U4) holds.
Similar to the proof of Property (U3), we have

apr(X ∩Y ) = (X ∩Y )∗� = {x ∈ U |∀ a ∈ M, δ → R(x, a) ≥ δ →
∧

y∈X∩Y

R(y, a)}.

Since ∧

y∈X∩Y

R(y, a) ≥
∧

y∈X

R(y, a),
∧

y∈X∩Y

R(y, a) ≥
∧

y∈Y

R(y, a),

then from Lemma 1 we have

δ →
∧

y∈X∩Y

R(y, a) ≥ δ →
∧

y∈X

R(y, a), δ →
∧

y∈X∩Y

R(y, a) ≥ δ →
∧

y∈Y

R(y, a),

which implies (X∩Y )∗� ⊆ X∗�, (X∩Y )∗� ⊆ Y ∗�. Then, (X∩Y )∗� ⊇ X∗�∩Y ∗�.
Thus, (U5) holds.

Property (U6) follows directly from Theorem 1 (ii).
Since apr(apr(X)) = (X∗�)∗� = X∗�∗�, from Theorem 1 (iii) we conclude that

(U7) holds.

Definition 3. Let (U, M, R) be a fuzzy formal context. For any set X ⊆ LU ,
another pair of upper and lower approximations, Apr(X), Apr(X), is defined by

Apr(X) = X#�, Apr(X) =∼ Apr(∼ X).

Operators, Apr, Apr: LU −→ LU , are referred to as lower and upper approxima-
tion operators for fuzzy object sets, and the pair (Apr(X), Apr(X)) is referred
to as a generalized rough fuzzy object set.
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Where ∼ denotes the complement of a fuzzy set. For example, in Example 1,
∼ A = {x1/1 − A(x1), x2/1 − A(x2), . . . , xn/1 − A(xn)}.

Theorem 4. Let (U, M, R) be a fuzzy formal context. The generalized lower and
upper approximation of fuzzy object sets satisfy the following properties: for any
X, Y ⊆ LU ,

(FL1) Apr(X) =∼ (Apr(∼ X)),
(FU1) Apr(X) =∼ (Apr(∼ X));
(FL2) Apr(∅) = Apr(∅) = ∅,

(FU2) Apr(U) = Apr(U) = U ;
(FL3) Apr(X ∩ Y ) ⊆ Apr(X) ∩ Apr(Y ),
(FU3) Apr(X ∪ Y ) ⊇ Apr(X) ∪ Apr(Y );
(FL4) X ⊆ Y =⇒ Apr(X) ⊆ Apr(Y ),
(FU4) X ⊆ Y =⇒ Apr(X) ⊆ Apr(Y );
(FL5) Apr(X ∪ Y ) ⊇ Apr(X) ∪ Apr(Y ),
(FU5) Apr(X ∩ Y ) ⊆ Apr(X) ∩ Apr(Y );
(FL6) Apr(X) ⊆ X,

(FU6) X ⊆ Apr(X);
(FL7) Apr(Apr(X)) = Apr(X),
(FU7) Apr(Apr(X)) = Apr(X).

Proof. Properties with the same number may be regarded as dual properties, we
only need to prove one of them.

Property (FL1) and Property (FL2) are evident by the definition of lower
approximation.

For any x ∈ U , we have

Apr(X ∪ Y )(x) = (X ∪ Y )#�(x)
= δ →

∧
a∈(X∪Y )# R(x, a)

=
∧

a∈X#∩Y #(δ → R(x, a)).

Since X# ∩ Y # ≤ X#, X# ∩ Y # ≤ X#, from Lemma 1 we have
∧

a∈X#∩Y #(δ → R(x, a)) ≥
∧

a∈X#(δ → R(x, a)) = X#�(x),∧
a∈X#∩Y #(δ → R(x, a)) ≥

∧
a∈Y #(δ → R(x, a)) = Y #�(x),

then Apr(X ∪ Y ) ⊇ Apr(X) ∪ Apr(Y ). Thus, (FU3) holds.
Properties (FU4) follows directly from Theorem 2 (i).
For any x ∈ U , we have

Apr(X ∩ Y )(x) = (X ∩ Y )#�(x)
= δ →

∧
a∈(X∩Y )# R(x, a)

=
∧

a∈(X∩Y )#(δ → R(x, a)).

From Theorem 2 (i) we have X# ≤ (X ∩ Y )#, Y # ≤ (X ∩ Y )#, which implies
∧

a∈(X∩Y )#(δ → R(x, a)) ≤
∧

a∈X#(δ → R(x, a)) = X#�(x),∧
a∈(X∩Y )#(δ → R(x, a)) ≤

∧
a∈Y #(δ → R(x, a)) = Y #�(x),

then Apr(X ∩ Y ) ⊆ Apr(X) ∩ Apr(Y ), and (FU5) holds.
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Property (FU6) follows directly from Theorem 2 (ii).
Since Apr(Apr(X)) = (X#�)#� = X#�#�, from Theorem 2 (iii) we con-

clude that (U7) holds.

By the definition of apr(X) and Apr(X), apr(X) is the extent of the crisp-fuzzy
concept derived from X , and Apr(X) is the extent of the fuzzy-crisp concept
derived from X . For any crisp subset of the universe U we can approximate it by
the extent of the crisp-fuzzy concept, and for any fuzzy subset of the universe U
we can approximate it by the extent of the fuzzy-crisp concept. Furthermore, for
a fixed object set, we have different lower and upper approximation according
to different precision level δ.

Theorem 5. Let (U, M, R) be a fuzzy formal context, X ∈ P(U), Y ∈ LU , then
(1) apr(X) = X iff X is the extent of a crisp-fuzzy concept;
(2) Apr(Y ) = Y iff Y is the extent of a fuzzy-crisp concept.

Proof. Straightforward.

Example 5. In Example 3, let X = {x1, x2} and Y = {x1/0.5, x2/0.6, x3/0.8,
x4/0.4}. When δ = 1, by calculation we obtain

apr(X) = X∗� = {x1, x2, x3, x4}, apr(X) =∼ apr(∼ X) = {x1},

Apr(Y ) = Y #� = {x1/0.6, x2/0.8, x3/0.9, x4/0.7},
Apr(Y ) =∼ Apr(∼ Y ) = {x1/0.4, x2/0.3, x3/0.3, x4/0.3}.

4 Conclusions

Multi-level formal concept analysis is an important tool that can be applied to
deal with uncertainty contained in conceptual fuzzy data analysis and knowledge
processing. In the paper, based on the discussed multi-level formal concept lat-
tice, we present two pairs of rough fuzzy set approximations within fuzzy formal
contexts. By the proposed rough set approximations, we not only approximate a
crisp set, but also approximate a fuzzy set with the multi-level concepts. Further-
more, for a fixed set, we have different lower and upper approximation according
to different precision level. The proposed rough set approximations are differ-
ent from former set approximations which are based on a equivalence relation
or a fuzzy similarity relation. The equivalence relation or the fuzzy similarity
relation seems too strict so that it can’t be satisfied in most situations and this
constrains its applications. The applications of the proposed lower and upper
approximation operators are our next research.
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Abstract. This paper deals with knowledge reduction in generalized
consistent decision formal contexts. The concept of a generalized con-
sistent decision formal context is first introduced. Its equivalent defi-
nitions are also examined. The judgement theorem and discernibility
matrix which are helpful for computing reducts are then established,
from which we can obtain an approach to knowledge reduction in gener-
alized consistent decision formal contexts.

Keywords: Concept lattices, Formal contexts, Knowledge reduction,
Rough sets.

1 Introduction

The theory of formal concept analysis, proposed by Wille [8], has very important
meaning in mathematical thinking for conceptual data analysis and knowledge
processing. A concept lattice generated from a formal context reflects relation-
ship of generalization and specialization among concepts, it thereby is more in-
tuitional and more effective to research on reducing and discovering knowledge.
As a kind of very effective methods for data analysis, formal concept analysis
has been widely applied in machine learning, artificial intelligence and knowledge
discovery.

In the rough set theory [5], knowledge reduction has been studied extensively
in recent years from various point of perspectives and each of them aims at some
basic requirement [4,7,9,11].

There are strong connections between formal concept lattice theory and rough
set theory. Proposals have been made to combine the two theories in a common
framework. The notions of rough set approximations have been introduced into
formal concept analysis [1,3,6], and the notions of formal concept and concept
lattice have also been introduced into rough set theory by considering different
types of formal concepts [10].

Comparing with the studies on knowledge reduction in rough set theory, there
is less effort investigated on the issue in concept lattice theory. In [12], concepts of

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 364–371, 2007.
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strong consistent decision formal context and consistent decision formal context
were defined, and approaches to knowledge reduction with two requirements in
these decision formal contexts were proposed. We try to investigate in this paper
knowledge reduction in generalized consistent decision formal contexts.

2 Preliminaries

A formal context is a triplet (U, A, I), where U = {x1, x2, . . . , xn} is a non-empty,
finite set of objects called the universe of discourse, A = {a1, a2, . . . , am} is a
non-empty, finite set of attributes, and I ⊆ U × A is a binary relation between
U and A. In a formal context (U, A, I), for each (x, a) ∈ U × A, if (x, a) ∈ I,
we write xIa, we say that x has attribute a, or the attribute a is possessed by
object x.

For X ⊆ U and B ⊆ A, we denote

X∗ = {a ∈ A : ∀x ∈ X, (x, a) ∈ I},

B∗ = {x ∈ U : ∀a ∈ B, (x, a) ∈ I}.

X∗ is the maximal set of attributes shared by all objects in X . Similarly, B∗ is
the maximal set of objects that have all attributes in B. For x ∈ U and a ∈ A,
we denote x∗ = {x}∗, a∗ = {a}∗. Thus x∗ is the set of attributes possessed by x,
and a∗ is the set of objects having attribute a.

Definition 1. ([2]) A pair (X, B), X ⊆ U, B ⊆ A, is called a formal concept of
the context (U, A, I) if X∗ = B and B∗ = X. X and B are respectively referred
to as the extent and the intent of the concept (X, B).

Theorem 1. ([2]) Let (U, A, I) be a formal context, X, X1, X2 ⊆ U, B, B1, B2 ⊆
A. Then

(1) X1 ⊆ X2 =⇒ X∗
2 ⊆ X∗

1 ;
(2) B1 ⊆ B2 =⇒ B∗

2 ⊆ B∗
1 ;

(3) X ⊆ X∗∗, B ⊆ B∗∗;
(4) X∗ = X∗∗∗, B∗ = B∗∗∗;
(5) (X1 ∪ X2)∗ = X∗

1 ∩ X∗
2 , (B1 ∪ B2)∗ = B∗

1 ∩ B∗
2 .

Let L(U, A, I) denote all concepts of formal context (U, A, I), denote

(X1, B1) ≤ (X2, B2) ⇐⇒ X1 ⊆ X2 ⇐⇒ B1 ⊇ B2,

then ≤ is an order relation on L(U, A, I).

Theorem 2. ([2]) Let (U, A, I) be a formal context, (X1, B1), (X2, B2) ∈
L(U, A, I), then

(X1, B1) ∧ (X2, B2) =
(
X1 ∩ X2, (B1 ∪ B2)∗∗

)
,

(X1, B1) ∨ (X2, B2) =
(
(X1 ∪ X2)∗∗, B1 ∩ B2

)
.

are concepts. Thus L(U, A, I) is a complete lattice called the concept lattice of
the context (U, A, I).
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3 Generalized Consistent Decision Formal Contexts

In this section, we first introduce a new partial ordered relation on the set of
all concept lattices with the same universe, and we then propose the notion of a
generalized consistent decision formal context.

Theorem 3. Let U be the universe of discourse and P(U) the power set of U ,
denote

H = {H ⊆ P(U) : ∅ ∈ H, X, Y ∈ H =⇒ X ∩ Y ∈ H}.

For any H1, H2 ∈ H, we define

R = {(Xi, Xj) ∈ H2
1 : Xi ⊆ Y ⇐⇒ Xj ⊆ Y (Y ∈ H2)}.

Then R is an equivalence relation on H1, it partitions H1 into equivalence classes

H1/R = {L(Y ) �= ∅ : Y ∈ H2},

where
L(Y ) = {X ∈ H1 : X ⊆ Y, ∀ Y ′ ∈ H2, Y

′ ⊂ Y, X �⊆ Y ′}.

Proof. For any X ∈ H1, denote

L0(X) = {Y ′ ∈ H2 : X ⊆ Y ′}, Y = ∩L0(X).

Then, for each X ∈ H1, there exists Y ∈ H2 such that X ∈ L(Y ), i.e.,⋃
Y ∈H2

L(Y ) = H1.

For Y1, Y2 ∈ H2, if Y1 �= Y2, we have L(Y1) ∩ L(Y2) �= ∅, then there exists
X ⊆ U such that X ∈ L(Y1) and X ∈ L(Y2), hence X ⊆ Y1 ∩ Y2. Since
Y1 �= Y2, by the definition of L(Y ) we obtain X �∈ L(Y1) or X �∈ L(Y2), This is a
contradiction. Hence {L(Y ) �= ∅ : Y ∈ H2} forms a partition of H1. Evidently,
X1, X2 ∈ L(Y ) if and only if (X1, X2) ∈ R.

Definition 2. Let H1, H2 ∈ H. If for any Y ∈ H2, L(Y ) �= ∅, then H1 is said
to be finer than H2 and is denoted as H1 ≤∗ H2.

Let U be a finite nonempty set, then (H, ≤∗) is an partial ordered set.

Definition 3. S = (U, A, I, C, J) is said to be a decision formal context, where
A ∩ C = ∅, I ⊆ U × A and J ⊆ U × C, A and C are called the conditional
attribute set and decision attribute set respectively.

Let (U, A, I, C, J) be a decision formal context, for any D ⊆ A, denote ID =
I ∩ (U × D), then (U, D, ID) is a formal context. For X ⊆ U , we denote

IA = I, X∗A = X∗, X∗D = X∗A ∩ D = X∗ ∩ D,

X∗C = {a ∈ C : ∀x ∈ X, (x, a) ∈ J}.

Let K = (U, A, I) be a formal context. Then Lu(U, A, I) = {X ⊆ U : X∗∗ =
X} ∈ H.
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Definition 4. Let L(U, A1, I1) and L(U, A2, I2) be two concept lattices, if

Lu(U, A1, I1) ≤∗ Lu(U, A2, I2),

then L(U, A1, I1) is said to be finer than L(U, A2, I2) and is denoted as L(U, A1, I1)
≤∗ L(U, A2, I2).

Definition 5. Let S = (U, A, I, C, J) be a decision formal context, if

L(U, A, I) ≤∗ L(U, C, J),

we say that S is a generalized consistent decision formal context. For any D ⊆ A,
if

L(U, D, ID) ≤∗ L(U, C, J),

we say that D is a consistent set of S. If D is consistent set and no proper subset
of D is a consistent set of S, then D is referred to as a reduct of S.

4 Knowledge Reduction in Generalized Consistent
Decision Formal Contexts

This section provides an approach to knowledge reduction in a generalized con-
sistent decision formal context.

Theorem 4. Let S = (U, A, I, C, J) be a decision formal context and D ⊆ A.
Denote

HD = Lu(U, D, ID), H = Lu(U, C, J),

RD = {(Xi, Xj) ∈ H2
D : Xi ⊆ Y ⇐⇒ Xj ⊆ Y (Y ∈ H)}.

Then:
(1) RD is an equivalence relation,
(2) RD partitions HD into a family of disjoint subsets HD/RD called a

quotient set of HD:

HD/RD = {LD(Y ) �= ∅ : Y ∈ H},

where LD(Y ) is the equivalence class determined by Y with respect to (w.r.t.)
D, i.e.,

LD(Y ) = {X ∈ HD : X ⊆ Y, ∀ Y ′ ∈ H, Y ′ ⊂ Y, X �⊆ Y ′}.

Proof. It follows immediately from Theorem 3.

Theorem 5. Let S = (U, A, I, C, J) be a formal context, D ⊆ A. Then:
(1) S is a generalized consistent decision formal context iff LA(Y ) �= ∅ for all

Y ∈ H,
(2) D is a consistent set iff LD(Y ) �= ∅ for all Y ∈ H.

Proof. It follows immediately from Theorem 3 and Definition 5.
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Definition 6. Let S = (U, A, I, C, J) be a generalized consistent decision formal
context, denote

RA = {(Xi, Xj) ∈ H2
A : Xi ⊆ Y ⇐⇒ Xj ⊆ Y (Y ∈ H)},

HA/RA = {LA(Y1), LA(Y2), . . . , LA(Yk)},

where Yl ∈ H, l = 1, 2, . . . , k. For (Xi, Bi), (Xj , Bj) ∈ L(U, A, I), we define

D((Xi, Bi), (Xj , Bj))=
{

Bi � Bj, Xi ∈ LA(Yl), Xj �∈ LA(Yl),
∅, otherwise. (l = 1, 2, . . . , k)

where Bi � Bj = Bi ∪Bj − Bi ∩ Bj, then D((Xi, Bi), (Xj , Bj)) is referred to as
the discernibility attribute set of the two concepts (Xi, Bi) and (Xj , Bj). And

D = {D((Xi, Bi), (Xj , Bj)) : (Xi, Bi), (Xj , Bj) ∈ L(U, A, I)}

is referred to as the discernibility matrix of the formal context.
Denote

D0 = {D((Xi, Bi), (Xj , Bj)) : D((Xi, Bi), (Xj , Bj)) �= ∅}

Theorem 6. Let S = (U, A, I, C, J) be a generalized consistent decision formal
context, D ⊆ A, D �= ∅. Then the following conditions are equivalent:

(1) D is a consistent set,
(2) D ∩ D((Xi, Bi), (Xj , Bj)) �= ∅ for all D((Xi, Bi), (Xj , Bj)) ∈ D0,
(3) For any B ⊆ A, if B ∩ D = ∅, then B �∈ D0.

Proof. “(1) ⇒ (2)” If D is a consistent set, then for any Yi, Yj ∈ H we have

LD(Yi) = {Xi ∈ HD : Xi ⊆ Yi, ∀ Y ′
i ∈ H, Y ′

i ⊂ Yi, Xi �⊆ Y ′
i },

LD(Yj) = {Xj ∈ HD : Xj ⊆ Yj , ∀ Y ′
j ∈ H, Y ′

j ⊂ Yj , Xj �⊆ Y ′
j }.

Since Yi �= Yj , LD(Yi) ∩ LD(Yj) = ∅, it follows that Xi �= Xj . Then there exist
Ci, Cj ⊆ D such that (Xi, Ci), (Xj , Cj) ∈ L(U, D, ID) and (Xi, Ci) �= (Xj , Cj),
hence Ci �= Cj , but

Ci = X∗D
i = X∗

i ∩ D = Bi ∩ D, Cj = X∗D
j = X∗

j ∩ D = Bj ∩ D,

so Bi ∩ D �= Bj ∩ D.
If HA = HD, then for any Xi ∈ LA(Yl) and Xj �∈ LA(Yl), l = 1, 2, . . . , k, it is

clear that Bi ∩ D �= Bj ∩ D.
If HA �= HD, that is, HD ⊂ HA, then it is easy to verify that LD(Y ) ⊂ LA(Y )

for all Y ∈ H , hence we have Xi ∈ LA(Y ) for all Xi ∈ LD(Y ). It should be noted
that X∗

i ∩ D = X∗ ∩ D for all X ∈ LA(Y ). Consequently, for any Xi ∈ LA(Yl),
Xj �∈ LA(Yl), l = 1, 2, . . . , k, we have Bi ∩ D �= Bj ∩ D. Therefore

Bi ∩ D − Bj ∩ D = D ∩ Bi ∩ Bj �= ∅,
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(where Bj is the complement of Bj in A) or

Bj ∩ D − Bi ∩ D = D ∩ Bj ∩ Bi �= ∅.

It follows that

D ∩ D((Xi, Bi), (Xj , Bj)) = D ∩ (Bi ∪ Bj − Bi ∩ Bj)

= D ∩ (Bi ∪ Bj) ∩ (Bi ∪ Bj)

= (D ∩ Bj ∩ Bi) ∪ (D ∩ Bi ∩ Bj) �= ∅.

“(2)⇒(1)” To prove that D is a consistent set, we only need to prove that

LD(Y ) = {X ′ ∈ HD : X ′ ⊆ Y, ∀ Y ′ ∈ H, Y ′ ⊂ Y, X ′ �⊆ Y ′} �= ∅, ∀Y ∈ H.

Since S is a consistent decision formal context, we have

LA(Y ) = {X ∈ HA : X ⊆ Y, ∀ Y ′ ∈ H, Y ′ ⊂ Y, X �⊆ Y ′} �= ∅, ∀Y ∈ H.

Hence, for any Y ∈ H , we can find X ∈ HA such that X ⊆ Y , i.e., (X, B) ∈
L(U, A, I).

Now we are to prove that (X, B ∩ D) ∈ L(U, D, ID). Obviously, X∗D =
X∗∩D = B∩D. If (B∩D)∗ �= X , notice that ((B∩D)∗, (B∩D)∗∗) ∈ L(U, A, I),
we have (X, B) �= ((B ∩ D)∗, (B ∩ D)∗∗), and in turn, B �= (B ∩ D)∗∗. Since
Bi ∩ D �= Bj ∩ D, we have B ∩ D �= (B ∩ D)∗∗ ∩ D, and

B ∩ D ⊆ B =⇒ (B ∩ D)∗ ⊇ B∗

=⇒ (B ∩ D)∗∗ ⊆ X∗ = B

=⇒ (B ∩ D)∗∗ ∩ D ⊆ B ∩ D.

On the other hand,

B ∩ D ⊆ (B ∩ D)∗∗ =⇒ B ∩ D = B ∩ D ∩ D ⊆ (B ∩ D)∗∗ ∩ D.

Therefore B ∩ D = (B ∩ D)∗∗ ∩ D, which contradicts the fact that B ∩ D �=
(B ∩ D)∗∗ ∩ D. Consequently, (B ∩ D)∗ = X . Hence for any Y ∈ H we have

LD(Y ) = {X ′ ∈ HD : X ′ ⊆ Y, ∀ Y ′ ∈ H, Y ′ ⊂ Y, X ′ �⊆ Y ′} �= ∅.

Thus D is a consistent set.
“(2)⇔(3)” is obvious.

Theorem 6 provides an approach to knowledge reduction in a generalized con-
sistent decision formal context. Now we present an example to illustrate this
approach.

Example 1. Table 1 depicts an example of a decision formal context S = (U, A, I,
C, J), where U = {1, 2, 3, 4}, A = {a, b, c, d, e} is the conditional attribute set,
and C = {f, g} is the decision attribute set. The conditional concept lattice and
the decision concept lattice are depicted as Figure 1 and Figure 2 respectively.
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Table 1. A decision formal context S

U a b c d e f g

1 1 1 0 1 1 0 1
2 1 1 1 0 0 1 0
3 0 0 0 1 0 1 0
4 1 1 1 0 0 1 0

        #1(U, )

#2(13, d)          #3(124,a b)

#4(1,abde)        #5(24,abc)

         #6( )A,

Fig. 1. The concept lattice L(U, A, I)

          (U, )

(1,g)                (234,f)

( )fg,

Fig. 2. The concept lattice L(U, C, J)

Following the standard notions in formal concept analysis, set notions are
separator-free in the sequel to follow, e.g., 24 stands for {2, 4}.

It is easy to observe

HA = Lu(U, A, I) = {U, 13, 124, 1, 24, ∅},
H = Lu(U, C, J) = {U, 1, 234, ∅}.

Also,

LA(U) = {U, 13, 124}, LA(234) = {24},

LA(1) = {1}, LA(∅) = {∅}.

Obviously, for any Y ∈ H, LA(Y ) �= ∅, i.e., L(U, A, I) ≤∗ L(U, C, J). Thus S is
consistent. Now we give the discernibility matrix of S as Table 2.

By Theorem 6 we conclude that D1 = {a, c, d}, D2 = {b, c, d}, D3 = {c, e} are
the reducts of S.

Table 2. The discernibility matrix

X1 X2 X3 X4 X5 X6

X1 ∅ ∅ ∅ abde abc abcde
X2 ∅ ∅ ∅ abe abcd abce
X3 ∅ ∅ ∅ de c cde
X4 abde abe de ∅ cde c
X5 abc abcd c cde ∅ de
X6 abcde abce cde c de ∅
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5 Conclusion

Knowledge reduction is one of the main issues for the study of data mining and
knowledge discovery in databases. Comparing with the studies on knowledge
reduction in rough set theory, there is less results on this issue in concept lattice
theory. In this paper, we have introduced a new partial ordered relation on the set
of concept lattices with the same universe. We have also proposed a new method
to knowledge reduction in generalized consistent decision formal contexts, from
which relationship between concepts in conditional part and decision part of
contexts can be analyzed and knowledge in the sense of decision rules about the
concepts hidden in decision formal contexts can be discovered.
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Abstract. In this paper we study properties of the graph G(T ), asso-
ciated with an arbitrary decision table T . The set of vertices of G(T )
coincides with the set of conditional attributes of T belonging to at least
one decision reduct for T , and the set of edges coincides with the set of
pairs of attributes which do not belong to any decision reduct for T .

Keywords: rough sets, decision tables, decision reducts.

1 Introduction

The set of decision reducts [5] for a decision table can give us various informa-
tion on relationships among conditional attributes. Unfortunately, there is no
polynomial algorithm which for a given decision table T constructs the set of
decision reducts for T . However, there exist polynomial algorithms for obtaining
indirect but useful information on the set of reducts, and representation of this
information in simple graphical form.

For example, in [6] it is shown that there exists a polynomial algorithm which
for a given decision table T constructs so-called pairwise core graph. The set
of vertices of this graph coincides with the set of conditional attributes of T ,
and the set of edges coincides with the set of pairs of attributes such that each
attribute from the pair does not belong to the core of T (the intersection of all
reducts for T ), but each reduct contains at least one attribute from the pair.

In [3] it is shown that that there exists a polynomial algorithm which for a
given decision table T constructs a graph G(T ). The set of vertices of this graph
coincides with the set of attributes belonging to at least one reduct for T , and
the set of edges coincides with the set of pairs of attributes which do not belong
to any reduct for T .

This paper is devoted to consideration of properties of the graph G(T ). We
show that any undirected graph can be represented as the graph G(T ) for an ap-
propriate decision table T . We study experimentally dependencies of parameters
of the graph G(T ) on parameters of table T , possibilities of the use of degree of
an attribute in the graph G(T ) as a characteristic of the attribute importance,

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 372–378, 2007.
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and possibilities of the use of changes of the graph G(T ) after adding of a new
object to the table T for evaluation of influence of this new object on T .

2 Graph G(T )

A decision table T is a finite table in which each column is labeled by a condi-
tional attribute (name of conditional attribute). Rows of the table T are inter-
preted as tuples of values of conditional attributes on some objects. Each row is
labeled by a decision which is interpreted as the value of the decision attribute.

Let A be the set of conditional attributes (the set of names of conditional
attributes) of T . We will say that a conditional attribute a ∈ A separates two
rows if these rows have different values at the intersection with the column
labeled by a. We will say that two rows are different if at least one attribute
a ∈ A separates these rows. Denote by P (T ) the set of unordered pairs of different
rows from T which are labeled by different decisions.

A subset R of the set A is called a test for T if for each pair of rows from
P (T ) there exists an attribute from R which separates this pair. A test R for T
is called a reduct for T if each proper subset of R is not a test for T . Really, we
deal with decision reducts but we will omit the word “decision”.

Let us describe a graph G(T ). The set of vertices of this graph is equal to the
set of attributes a ∈ A for each of which there exists a reduct R for T such that
a ∈ R. Two different vertices a1 and a2 of G(T ) are linked by an edge if and
only if there is no reduct R for T such that a1, a2 ∈ R.

Example 1. Let us denote by TZ the decision table “Zoo” [4] with 16 conditional
attributes a1, . . . , a16 (we ignore first attribute “animal name”) and 101 rows.
Only attributes a1, a3, a4, a6, . . . , a14, a16 are vertices of the graph G(TZ). The
set of reducts for TZ is represented in Table 1. The graph G(TZ) is represented
in Fig. 1.

Note that there exists close analogy between the graph G(T ) and so-called co-
occurance graph [1] for positive Boolean function f . The set of vertices of this

Table 1. The set of reducts for the decision table TZ (“Zoo”)

{a3, a4, a6, a8, a13} {a3, a6, a8, a9, a12, a13} {a3, a6, a8, a13, a16}
{a3, a4, a6, a9, a13} {a1, a3, a6, a7, a10, a12, a13} {a3, a6, a9, a13, a16}
{a3, a6, a8, a10, a13} {a3, a4, a6, a7, a10, a12, a13} {a4, a6, a8, a11, a13, a16}
{a1, a3, a6, a9, a10, a13} {a1, a6, a8, a10, a12, a13} {a4, a6, a9, a11, a13, a16}
{a1, a3, a6, a8, a11, a13} {a1, a6, a9, a10, a12, a13} {a3, a6, a7, a10, a11, a13, a16}
{a1, a3, a6, a9, a11, a13} {a1, a3, a6, a10, a13, a14} {a1, a6, a8, a10, a11, a13, a16}
{a3, a6, a8, a9, a11, a13} {a3, a4, a6, a10, a13, a14} {a1, a6, a9, a10, a11, a13, a16}
{a1, a3, a6, a8, a12, a13} {a3, a6, a8, a11, a13, a14} {a3, a6, a7, a10, a12, a13, a16}
{a4, a6, a8, a12, a13} {a3, a6, a8, a12, a13, a14} {a3, a6, a10, a13, a14, a16}
{a1, a3, a6, a9, a12, a13} {a1, a6, a10, a12, a13, a14} {a1, a6, a10, a11, a13, a14, a16}
{a4, a6, a9, a12, a13} {a4, a6, a10, a12, a13, a14} {a4, a6, a10, a11, a13, a14, a16}
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a1

a4a3

a6

a7

a8

a9

a14

a11

a12

a10

a13

a16

Fig. 1. Graph G(TZ) for the decision table TZ (“Zoo”)

graph is equal to the set of variables of f . Two different variables are linked by
an edge if and only if f has a prime implicant containing these variables.

3 Representation of Undirected Graphs by Graphs G(T )

Let us show that any undirected graph G can be represented as the graph G(T )
for an appropriate decision table T . It means that the graph G(T ) can give us
reach information about the set of reducts for a decision table T .

Proposition 1. Let A be a finite set of names of conditional attributes, and
G = (V, E) be an undirected graph, where V ⊆ A is the set of vertices of G
and E is the set of edges of G such that each edge of G is a two-element subset
of V . Then there exists a decision table T with the set of names of conditional
attributes A such that G(T ) = G.

Proof. Let R be a set of subsets of A. This set is called independent if there are
no two subsets B1, B2 ∈ R such that B1 ⊂ B2. It is known (see, for example, [2])
that R is independent if and only if a decision table T exists such that the set
of names of conditional attributes of T coincides with A, and the set of reducts
for T coincides with R.

Let V = ∅ and T be a decision table with the set of names of conditional
attributes A such that all rows of T are labeled by the same decision. Then,
evidently, G(T ) = G.

Let now V �= ∅, E′ be the set of two-element subsets of V each of which does
not belong to E, and a1, . . . , ar be all vertices in the graph G′ = (V, E′) without
incident edges. Let us denote

R = {{a1}, . . . , {ar}} ∪ E′.
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It is clear that the set R is independent. Then there exists a decision table T
with the set of names of conditional attributes A such that the set of reducts for
T coincides with R. One can show that G(T ) = G. �	

4 On Parameters of Graphs G(T )

In this section we consider results of experiments with randomly generated deci-
sion tables filled by numbers from the set {0, 1}. The probability of appearance
of 1 is a number p from the set {0.05, 0.1, 0.2, 0.3, 0.4}. Values of the decision
attribute belong to the set {0, 1}. The value of the decision attribute is equal to
1 with the probability 0.5. The number of conditional attributes is equal to 20.
The number n of rows belongs to the set {20, 50, 100}.

We generate randomly 10 decision tables T for each pair of parameters (n, p),
where n ∈ {20, 50, 100} and p ∈ {0.05, 0.1, 0.2, 0.3, 0.4}, and find average number
of vertices in the graph G(T ) (see left hand subtable of Table 2) and average
number of edges in G(T ) (see right hand subtable of Table 2).

Table 2. Average number of vertices and edges in graphs G(T )

Number Probability p
of rows n 0.05 0.10 0.20 0.30 0.40

20 10.4 14.1 20.0 20.0 20.0

50 15.7 17.0 20.0 20.0 20.0

100 19.1 19.4 19.6 20.0 20.0

Number Probability p
of rows n 0.05 0.10 0.20 0.30 0.40

20 142.1 102.6 6.8 0.6 0.2

50 73.7 54.8 1.1 0 0

100 17.1 11.5 8.9 0 0

Results of experiments show that in randomly generated decision tables T
with fixed number of conditional attributes as the rule the average number of
vertices in graphs G(T ) increases with the growth of the number of rows, and
the average number of edges in graphs G(T ) decreases with the growth of the
number of rows. Note also that the alignment of probabilities of appearance of
0 and 1 in tables leads to increasing of the average number of vertices and to
decreasing of average number of edges.

The obtained results show also that sometimes it is appropriate to represent
graphically not the graph G(T ) but the graph G′(T ) which is the complement of
G(T ). The graph G′(T ) has the same set of vertices as G(T ), and two different
vertices in G′(T ) are adjacent (linked by an edge) if and only if these vertices in
G(T ) are not adjacent.

5 On Degree of Attributes in G(T )

In this section we compare the degree of an attribute in the graph G(T ) (the
number of edges incident to this attribute) and the number of reducts for T
containing this attribute (last parameter is considered often as attribute impor-
tance). We study three decision tables from [4]: TZ “Zoo” (see Example 1), TL
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“Lymphography” with 18 conditional attributes a1, . . . , a18 and 148 rows (each
of the considered attributes is a vertex of the graph G(TL)), and TS “Soybean-
small” with 35 conditional attributes a1, . . . , a35 and 47 rows (only attributes
a1, . . . , a10, a12, a20, . . . , a28, a35 are vertices of the graph G(TS)).

In Table 3 for each attribute ai, which is a vertex of G(TZ) (G(TL), G(TS)),
the degree of ai and the number of reducts for TZ (TL, TS) containing ai are
considered. In Table 4 for each appropriate value of degree the average number
of reducts for TZ (TL, TS) containing fixed attribute of this degree is considered.

Table 3. Comparison of degree of attribute (third row of each subtable) and number
of reducts containing this attribute (fourth row of each subtable)

“Zoo”

a1 a3 a4 a6 a7 a8 a9 a10 a11 a12 a13 a14 a16

1 0 1 0 3 1 2 0 1 1 0 2 0

13 21 10 33 4 13 11 17 11 13 33 9 11

“Lymphography”

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

0 1 1 8 1 0 1 1 1 1 0 1 0 0 0 0 0 0

283 232 183 5 176 252 37 216 32 201 190 203 270 356 238 219 220 265

“Soybean–small”

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a12 a20 a21 a22 a23 a24 a25 a26 a27 a28 a35

0 0 3 0 0 0 1 0 0 0 0 0 5 4 1 1 0 4 4 1 0

227 178 156 163 210 304 165 232 209 349 305 232 47 39 167 167 193 121 121 142 289

Table 4. Comparison of degree of attribute (second row of each subtable) and aver-
age number of reducts containing fixed attribute with this degree (third row of each
subtable)

“Zoo”

0 1 2 3

23 12 10 4

“Lymphography”

0 1 8

254.77 160 5

“Soybean–small”

0 1 3 4 5

240.91 160.25 156 93.66 47

The obtained results show that there exists a correlation between the degree
of an attribute and the number of reducts containing this attribute.

6 Changes of G(T )

In this section we study possibilities to use changes of the graph G(T ) after
adding of a new object to the decision table T as an indicator of changes of
the set of reducts for T . The presence of changes of the set of reducts can be
considered as a noticeable influence of the new object to the table T .
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First experiment is connected with the decision table TZ “Zoo”. Let us denote
T

(0)
Z empty table, and for i = 1, . . . , 100 denote T

(i)
Z the decision table containing

first i rows of TZ . In Table 5 for i = 1, . . . , 100 the column with number i contains
the sign “+” at the intersection with the row “graph” if G(T (i−1)

Z ) �= G(T (i)
Z ),

and contains the sign “+” at the intersection with the row “reducts” if the set
of reducts for T

(i−1)
Z is not equal to the set of reducts for T

(i)
Z . One can see that

in 78% of cases changes in the set of reducts entail changes in the considered
graph.

Table 5. Changes in the decision table TZ“Zoo”

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

graph + + + + + + + + + + + +

reducts + + + + + + + + + + + +

i 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

graph + + + + + + + +

reducts + + + + + + + + + + + + +

i 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

graph + + + +

reducts + + + + +

i 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

graph + + + + +

reducts + + + + + + +

Second experiment is similar to the first one and is connected with the decision
table TL “Lymphography”. There are 133 changes in the set of reducts and 32
changes in the considered graph. So in 24% of cases changes in the set of reducts
entail changes in the graph.

The obtained results show that there exists a correlation between changes of
the set of reducts for T and changes of the graph G(T ) after adding of a new
object to T.

7 Conclusions

In the paper some properties of the graph G(T ) are studied. It is proved that any
undirected graph can be represented as the graph G(T ) for an appropriate deci-
sion table T . Experimental results show that there exist correlations between the
degree of attribute in the graph G(T ) and the number of reducts for T containing
this attribute (last parameter is considered often as attribute importance), and
between changes of G(T ) and changes of the set of reducts for T after adding of
new object to T (the presence of changes of the set of reducts can be considered
as a noticeable influence of new object to the decision table).
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6. Wróblewski, J.: Pairwise cores in information systems. Proceedings of the 10th
International Conference Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting, Part 1. Regina, Canada. Lecture Notes in Artificial Intelligence 3641,
Springer-Verlag, Heidelberg (2005) 166–175



Minimal Attribute Space Bias for Attribute

Reduction

Fan Min, Xianghui Du, Hang Qiu, and Qihe Liu

School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 610054, China

{minfan,xianghd,qiuhang,qiheliu}@uestc.edu.cn

Abstract. Attribute reduction is an important inductive learning issue
addressed by the Rough Sets society. Most existing works on this issue use
the minimal attribute bias, i.e., searching for reducts with the minimal
number of attributes. But this bias does not work well for datasets where
different attributes have different sizes of domains. In this paper, we
propose a more reasonable strategy called the minimal attribute space
bias, i.e., searching for reducts with the minimal attribute domain sizes
product. In most cases, this bias can help to obtain reduced decision
tables with the best space coverage, thus helpful for obtaining small rule
sets with good predicting performance. Empirical study on some datasets
validates our analysis.

Keywords: Attribute reduction, bias, space coverage, rule set.

1 Introduction

Practical machine learning algorithms are known to degrade in performance
(prediction accuracy) when faced with many attributes that are not necessary
for rule discovery [1]. It is therefore not surprising that much research has been
carried out on attribute reduction [2], particularly by people in the Rough Sets
society. A reduct is a subset of attributes that is jointly sufficient and individually
necessary for preserving the same information (in terms of positive region [3],
class distribution [4] among others) under consideration as provided by the entire
set of attributes [5].

A commonly used reduct selection/construction strategy, called the minimal
attribute bias [1][3][6], is to searching for a reduct with the minimal number of
attributes. In some cases, especially when different attribute have approximately
the same size of domain, this bias may be helpful for obtaining small rule sets
with good performance. However, for data in reality where attribute domain
sizes vary, this strategy is unfair since attributes with larger domains tend to
have better discernibility or other significance measures [7], and it has severe
implications when applied blindly without regarding for the resulting induced
concept [1].

To cope with these problems, in this paper we propose a new bias called the
minimal attribute space bias which is intended to minimize the attribute space.
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We argue that this bias is more reasonable, thus more helpful for obtaining small
rule set, than the minimal attribute bias. Empirical study on some datasets in
the UCI library [8] validates our analysis.

2 Preliminaries

In this section we enumerate basic concepts introduced by Pawlak [3] through
an example.

Formally, a decision table is a triple S = (U, C, {d}) where d �∈ C is the
decision attribute and elements of C are called conditional attributes or sim-
ply conditions. Table 1 lists a decision table where U = {t1, . . . , t8}, C =
{Shape, Material, Weight, Color} and d = Size.

Table 1. An exemplary decision table

Toy Shape Material Weight Color Size

t1 round wood light red small
t2 round plastic heavy black small
t3 round wood heavy white large
t4 round wood light white small
t5 triangle wood light green small
t6 triangle plastic heavy blue large
t7 triangle plastic light pink large
t8 triangle plastic heavy yellow large

Any ∅ �= B ⊆ C ∪ {d} determines a binary relation I(B) on U , which will be
called an indiscernibility relation, and is defined as follows:

I(B) = {(xi, xj) ∈ U × U |∀a ∈ B, a(xi) = a(xj)}, (1)

where a(x) denotes the value of attribute a for element x.
A partition determined by B is denoted by U/I(B), or simply by U/B. Let

BX denotes B−lower approximation of X , the positive region of {d} with respect
to B ⊆ C is defined as POSB({d}) =

⋃
X∈U/{d} B(X).

A reduct is the minimal subset of attributes that enables the same classifi-
cation of elements of the universe as the whole set of attributes. This can be
formally defined as follows:

Definition 1. Any B ⊆ C is called a decision relative reduct of S = (U, C, {d})
iff:

1. POSB({d}) = POSC({d}), and
2. ∀a ∈ B, POSB−{a}({d}) ⊂ POSC({d}).

A decision relative reduct can be simply called a relative reduct, or a reduct for
briefness if the decision attribute is obvious from the context.

According to Definition 1, the exemplary decision table has two reducts:
R1 ={Shape, Material, Weight} and R2 ={Weight, Color}.
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3 The Minimal Attribute Bias

This bias is described as follows: A reduct R is optimal iff |R| is minimal, where
| · | denotes the cardinality of a set.

According to this bias, R2 ={Weight, Color} is an optimal reduct of Table 1
because |R1| = 3 and |R2| = 2 . For the sake of clarity, we use the term minimal
reduct instead of optimal reduct in the following context.

The main advantage of this bias is simple and tend to give short rules. For
datasets where different attributes have approximately the same size of do-
mains, it may be also helpful for obtaining small rule sets with good predicting
performance.

However, it also has the following drawbacks:

1. Unfair for different attributes. For example, in Table 1, attribute Color is
the most important attribute from the viewpoint of discernibility. But this
is due to its relatively large domain (7 values versus 2 of others) rather than
its intrinsic importance.

2. Too many optimal reducts. For example, the Mushroom dataset [8] (further
discussed in Subsection 5.1) has 14 minimal reducts. Some of them perform
well in terms of further rule set generation and/or decision tree construction,
but others do not. The bias does not indicate a more detailed strategy for
choosing among those reducts.

4 The Minimal Attribute Space Bias

We propose the minimal attribute space bias as follows: A reduct R is optimal
iff Πa∈R|Va| is minimal, where Va is the domain of attribute a.

According to this bias, R1 = {Shape, Material, Weight} is an optimal reduct
of Table 1 because Πa∈R1 |Va| = 8 and Πa∈R2 |Va| = 14. We also use the term
minimal space reduct instead of optimal reduct.

Remark 1. If Vai = Vaj for any ai, aj ∈ C, then the minimal attribute space bias
coincides with the minimal attribute bias.

Now we explain why this bias is more reasonable than the minimal attribute
bias using the exemplary decision table. Each object in the table corresponds
with a decision rule. For example, t1 corresponds with

Shape=round ∧Material=wood∧Weight = light∧Color = red ⇒ Size = small.

This type of rules will be called original rules since no inductive learning algo-
rithm has been introduced. Because no object pairs are indiscernible, there are
a total of 8 original rules. On the other hand, the attribute space of the decision
table is |Shape| × |Material| × |Weight| × |Color| = 2 × 2 × 2 × 7 = 56. Therefore
objects in the decision table only cover 8/56 = 1/7 = 0.143 of the attribute
space, and the original rule set may have poor performance in terms of coverage.
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As an inductive approach, attribute reduction can reduce the number of at-
tribute; or more importantly, it can reduce the attribute space. The attribute
space of S(R1) = {{t1, . . . , t8}, R1, {Size}} is |Shape| × |Material| × |Weight| =
2 × 2 × 2 = 8, while it has two indiscernible object pairs: t1 and t4 as well as t6
and t8, hence only 8−2 = 6 original rules could be obtained, incurring 6/8 = 0.75
of space coverage. The attribute space of S(R2) = {{t1, . . . , t8}, R2, {Size}} is
|Weight| × |Color| = 2 × 7 = 14, and no indiscernible object pairs exist, hence
8 original rules could be obtained, incurring 8/14 = 0.571 of space coverage.
From this viewpoint, both reducts have notable generalization ability, and R1
performs better (with space coverage 0.75 versus 0.571 of R2).

Table 2. Rule sets generated from S(R1) and S(R2)

rule No. rule support

r1 Material = wood ∧ Weight = light ⇒ Size = small 3
r2 Shape = triangle ∧ Material = plastic ⇒ Size = large 3
r3 Shape = round ∧ Weight = light ⇒ Size = small 2
r4 Shape = triangle ∧ Weight = heavy ⇒ Size = large 2
r5 Shape = round ∧ Material = plastic ⇒ Size = small 1
r6 Material = wood ∧ Weight = heavy ⇒ Size = large 1
r7 Shape = triangle ∧ Material = wood ⇒ Size = small 1
r8 material = plastic ∧ weight = light ⇒ Size = large 1

r9 Color = red ⇒ Size = small 1
r10 Color = black ⇒ Size = small 1
r11 Weight = heavy ∧ Color = white ⇒ Size = large 1
r12 Weight = light ∧ Color = white ⇒ Size = small 1
r13 Color = green ⇒ Size = small 1
r14 Color = blue ⇒ Size = large 1
r15 Color = pink ⇒ Size = large 1
r16 Color = yellow ⇒ Size = large 1

It should be noted that better generalization ability does not ensure smaller
rule sets. In fact, using the exhaustive algorithm [9] we obtained 8 rules for either
reduced decision tables, as listed in Table 2, where the former 8 rules corresponds
with S(R1). But it should be noted further that each rule generated from S(R2)
is supported by only 1 object, while in all rules generated from S(R1), 2 rules
(r1 and r2) are supported by 3 objects, and another 2 rules (r3 and r4) are
supported by 2 objects. In other words, R1 is more helpful for generating strong
rules.

One can observe that in this case both rule sets cover the whole attribute
space. While for larger datasets, reducts with smaller attribute spaces often
result in smaller rule sets with better space coverage.

Formally, the space coverage of S = (U, C, {d}) is defined as

SC(S) =
|U/C|

Πa∈C |Va| , (2)



Minimal Attribute Space Bias for Attribute Reduction 383

which serves as an important factor for further rule generation / decision tree
construction.

From the viewpoint of space coverage, the goal of attribute reduction should
be searching for a reduct R such that SC((U, R, {d})) is minimal. One approach
is to maximize |U/R|, but |U/R| has an upper bound |U |, and |U/R| does not
vary too much for different reducts. Thus this approach does not make sense.
The other approach is to minimize Πa∈R|Va|, which coincides with the minimal
attribute space bias.

In most cases, minimal attribute space results in maximal space coverage. One
might construct a counterexample as follows: A decision table S = (U, C, {d})
and two reducts R1, R2 satisfying |U/R1| > |U/R2|, Πa∈R1 |Va| > Πa∈R2 |Va|
and SC((U, R1, {d})) > SC((U, R2, {d})); but this situation is quite unlikely to
happen in real data.

5 Experiments and Comparisons

There are very few datasets (e.g., Nursery) with complete coverage of the at-
tribute space. For many datasets, attribute reduction is a very important ap-
proach to improving the space coverage.

We tested these two reduct selection biases on some datasets of the UCI
library [8] using RSES [9] and a software developed by us called RDK (Rough
Developer’s Kit). For some datasets the set of all minimal space reducts coincides
with the set of all minimal reducts. These datasets can be classified as follows:

1. One reduct datasets, e.g., Zoo, solar-flare and Monks;
2. Datasets whose all conditional attributes have the same size of domain, e.g.,

Letter Recognition and Tic-Tac-Toe, and
3. Other Datasets, e.g., bridges.

In what follows experiments on two datasets will be discussed in more detail.

5.1 Experiments on Mushroom

The Mushroomdataset [8] contains 8416 objects and 22 conditional attributes. The
domain sizes of attributes vary from 1 (veil-type, the attribute value UNIVERSAL
announced in agaricus-lepiota.names never appeared in the dataset) to 12
(gill-color). It has 292 reducts, and all minimal space reducts are also minimal
reducts. For each minimal reduct, LEM2 was employed (with the cover parame-
ter set to 1.0) to generate rule sets on reduced decision tables. Furthermore, we
used CV-5 (the rule generation algorithm was also LEM2) to test the performance
of those reducts. For all reducts tested, both the coverage and the accuracy of
respective rule sets were 1.0. Other results are listed in Table 3.

For this dataset, the number of minimal attribute reducts is much less than
the number of minimal reducts. Also, minimal attribute reducts are more helpful
for obtaining smaller rule sets.
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Table 3. Experimental results of Mushroom

minimal attribute bias minimal attribute space bias

optimal reducts 14 2
minimal rule set size 19 19
maximal rule set size 30 26
average rule set size 26.5 22.5

5.2 Experiments on Soybean

The Large Soybean Database [8] contains two parts: the training set with 307 in-
stances, and the testing set with 376 instances. There are 35 nominal conditional
attributes, with domain sizes varying from 2 to 8, and some of them have missing
(unknown)values.Thedomain size (i.e., 18) of thedecisionattribute is rather large.

Due to the relatively large number of attributes, when we tried to use the
exhaustive algorithm [9] to obtain the set of all reducts, an error “out of memory”
was reported. So we used the genetic algorithm on the training set to obtain
reducts, with the speed set to low and the number of reducts set to 100. In
this way, 100 reducts were obtained, 35 of which were minimal reducts, and 9
of which were minimal space reducts. 8 out of 9 minimal space reducts contain
9 attributes, hence they were also minimal reducts. Rule sets were generated
through employing the exhaustive algorithm on reduced decision tables, then
they were tested on the testing set. Some results are listed in Table 4.

Table 4. Experimental results of Soybean (Bolded Values Indicate the Best Results)

minimal attribute reducts minimal attribute space reducts

minimal maximal average minimal maximal average

rule set size 1201 2563 1902 1324 1806 1577
coverage 0.818 0.960 0.930 0.912 0.949 0.926
accuracy 0.544 0.766 0.668 0.626 0.766 0.692

F -measure 0.522 0.740 0.644 0.602 0.740 0.668

Since the minimal attribute reduct set is much larger than the minimal at-
tribute space reduct set, it contains both the “best” and the “worst” reducts. In
general, for this dataset the minimal attribute space bias outperforms the mini-
mal attribute bias in terms of average rule set size (325 less), average accuracy
(0.024 more) and averge F -measure (0.024 more). It is quite interesting that
the latter bias outperforms (0.004 more than) the former in terms of average
coverage. Two reducts drew our special attention:

1. The best reduct. It helped obtaining a rule set with a predication accuracy of
0.766 and F -measure of 0.740, and it was included in both reduct sets; and

2. The minimal attribute space reduct with 10 attributes. Although not a
minimal reduct, it helped obtain a rule set containing 1789 rules, with the
predication coverage 0.949, accuracy 0.658 and F -measure 0.641. The results
are fairly good compared with that of minimal reducts.



Minimal Attribute Space Bias for Attribute Reduction 385

6 Discussion

In this section we discuss these two biases from a broader viewpoint.

Discretization

scheme 
Reduct

Predicting

performance 

Rule

set

Decision

tree

Fig. 1. A typical inductive learning scenario

As depicted in Fig. 1, the ultimate goal of inductive learning is to obtain good
predicting performance, defined by the coverage, the accuracy, or the combina-
tion of both (e.g., F -measure) on the data.

But the predicting performance can be obtained only after rule set was gen-
erated or decision tree [10] was constructed (for the sake of simplicity, other
approaches such as neural network or kNN are not included in Fig. 1). Accord-
ing to Occam’s Razor, smaller rule sets, or simpler decision trees (with least
nodes) are preferred.

In order to obtain a small rule set or a simple decision tree, also according
to Occam’s Razor, the simplest reduct is desired. But the key issue is: What
is the metric of evaluating the simplicity of a reduct? Aforementioned biases
are two metrics, among which the new bias seems to be closer to the essence.
Then why the minimal attribute bias worked well for so many applications? In
fact, many reduct construction algorithms use the following strategy: “[i]f two
attributes have the same performance with respect to the criterion described
above then the one having less values is selected” [1], and it is quite possible
that a minimal space reduct be constructed while a minimal reduct is required.
Moreover, even if the minimal reduct obtained is not a minimal space reduct, its
attribute spaces is not too large compared with that of a minimal space reduct.
In other words, the minimal attribute bias is often a good approximation of the
minimal attribute space bias.

7 Conclusions and Further Works

Compared with the minimal attribute bias, the minimal attribute space bias
is closer to goal of constructing simple reducts from viewpoints of attribute
space and attribute space coverage. Also, it does not incur the fairness problem.
Experiments on two datasets showed that the new bias can help to narrow the
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scope of optimal reducts, and more importantly, it can help to obtain better rule
sets in terms of accuracy and F -measure.

Since the definition of a bias is a quite fundamental issue, many research
works, e.g., reduct constructing algorithms, on the new bias are expected in the
near future.
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Abstract. Reducts are applied to represent the knowledge without superfluous 
attributes in rough set. In this paper, a two-phase β-certain reducts generation is 
developed to preserve the original classification of each decision class in the 
table under the majority inclusion relation with a user defined admissible error 
β. The first phase finds the initial solutions of β-certain reducts. Initial solutions 
are passed to the second phase and β-certain reducts are found by generating 
certain reducts of the second pseudo decision when all sub categories based on 
these certain reducts in the non-β-positive region are totally rejected under the β 
criterion. No verification is needed when β-certain reducts are found. 

Keywords: β-certain reducts, Variable precision rough set model, Rough set 
theory, Information reduction. 

1   Introduction 

Rough set theory was developed by Zdzislaw Pawlak [8] and it uses a strict 
mathematical formulism to represent, analyze and manipulate knowledge in a 
decision table. Rough set theory is a powerful tool to analyze the imprecise and 
ambiguous data. Variable precision rough set model (VPRS model) [13] is an 
extension of the rough set theory which takes partially incorrect classification into 
account. VPRS adapts the notation of the majority inclusion relation, which means an 
indiscernible category will be taken in VPRS if the classification error of assigning all 
instances to the class of the largest proportion in this category is less than or equal to 
the admissible error, β. β is defined by the user and it is within the range [0.0, 0.5). 
Based on the VPRS, a β reduct is defined using the β degree of dependency [13]. 
Beynon [2] further investigated β reduct selection and considered the whole domain 
of the β value and the different levels of quality of classification. In [3], Beynon also 
introduced the notion of (l, u)-graphs to classify groups of objects in condition classes 
to certain decision classes for a choice of l and u values. 

In this paper, we adapt similar definition from Kryszkiewicz [6] and Inuiguchi [4]. 
Kryszkiewicz defined a β reduct for VPRS model then she applied the discernibility 
function [10] to compute β reducts incrementally. Inuiguchi [4] defined similar 
reducts using a discernibility function and reducts are generated by searching prime 
implicants in the function. The way of generating reducts using the discernbility 
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matrix may not be feasible when table becomes large (e.g. with over 10,000 
instances) because it contains too many candidates [7]. β-certain reduct is defined in 
this paper which preserves the original classification of each decision class in the 
table under the user defined admissible error, β. We call these reducts as β-certain 
because they preserve the original classification of the table like the certain reducts  
[1, 5, 9]. A two-phase β-certain reducts generation is developed in this paper. 

The first phase creates a pseudo decision table and certain reducts of the first 
pseudo decision table are taken as the initial solutions of β-certain reducts. The 
second phase takes initial solutions from the first phase and β-certain reducts are 
certain reducts of the second pseudo decision if all sub categories based on these 
certain reducts in the non-β-positive region are totally rejected under the β condition. 
Pseudo decision table was proposed by Wang [11] and certain reducts of the table are 
generated by merging candidate attributes into an attribute set recursively. Related 
propositions are shown in this paper and the generation of any certain reduct of 
consistent or inconsistent decision table takes O(k2n log n) [11] where k is the total 
number of condition attributes and n is the total number of instances of the table. The 
generation of a certain reduct can be further reduced to O(k2n) if the hash data 
structure proposed by Wang [12] is applied. 

The rest of the paper is organized as follows: Section 2 reviews the basic 
preliminaries of rough set and the β-certain reduct is defined. Section 3 and 4 presents 
the first and the second phase of the β-certain reducts generation. 

Table 1. A simple decision table with 11 instances and 4 condistions 

U c1 c2 c3 c4 D 
x1 1 1 1 2 1 
x2 1 1 2 4 3 
x3 1 1 3 2 1 
x4 1 1 3 2 1 
x5 1 1 3 2 2 
x6 1 1 3 2 2 
x7 2 1 2 2 2 
x8 3 1 1 2 1 
x9 1 2 1 3 1 
x10 1 2 1 3 2 
x11 1 2 1 3 2  

2   Rough Set Preliminaries and β-Certain Reduct 

In this section, basic notations related to information systems, decision systems and 
rough set theory are introduced. Let T = (U, A) be an information table where U = 
{x1,…, xn} is a nonempty finite set of instances called the universe and A = {a1,…, ak} 
is a nonempty finite set called attributes. V= aAa V∈U is a set of attribute values and Va 

is the value set of attribute a. An information function f: U x A → V returns values of 
attributes in instances. With any subset B ⊆ A, an indiscernibility relation, denoted by 
IND(B), called the B-indiscernibility relation can be defined as IND(B)={(x, y)∈U2 : 
for every a∈B, f(x, a)=f(y, a)}. Instances x, y satisfying relation IND(B) are 
indiscernible from the subset of attributes B. In rough set, indiscernible relations are 



 Two-Phase β-Certain Reducts Generation 389 

used to represent knowledge in an information table. Instances indiscernible with 
regard to the attribute set B of the table are denoted as IB(x) where IB(x) = {y∈U:  
(x, y)∈IND(B)}. In regarding of classification using knowledge from these 
indiscernible relations, approximation [9] is introduced. When B ⊆ A and X ⊆ U, the 
B-lower and B-upper approximation of X in table T are denoted as BX 

=U })(:)({ XxIxI BB ⊆  and XB =U })(:)({ ∅≠∩ XxIxI BB
. B-lower approxima-

tion of X, BX, contains the indiscernible relations definitely define X and B-upper 
approximation of X, XB , contains the indiscernible relations possibly define X. 

A decision table T is denoted as T = (U, C, D) where U = {x1,…, xn} is a nonempty 
finite set of instances, C = {c1,…, ck} is a nonempty finite sets of attributes called 
condition and D is the decision. The decision D is considered as a singleton set and D 
∩ C= ∅ . In each decision class i, the β-lower approximation of Xi = {x∈U: f(x, D) = 
i} for P ⊆ C is defined as 

PβXi =U {IP(x) | card(IP(x) ∩ iX ) / card(IP(x)) ≤ β}, ∀ x∈Xi and iX = U \ Xi 

Function f(x, D) returns the decision class of instance x. PβXi contains all 

indiscernible categories satisfying the β condition in decision class i and iX contains 

the complement instances of Xi in the table. The union of all β-lower approximations 
in all decision classes is called the β-positive region of the table which contains 
original classification of the table and can be denoted as POS(T, C, β) = 

iDd XC
i β∈U . We can take Table 1 as an example. If β=1/3, CβX2 contains {x7, x9, 

x10, x11} and the β-positive region of Table 1, POS(T, C, 1/3), contains {x1, x2, x7, x8, 
x9, x10, x11}. 

A β-certain reduct preserves the classification of each decision class in the original 
table under the admissible error β and is defined as 

Definition 1. Let T = (U, C, D) be a decision table, β is a user defined admissible 
error, P ⊆ C, and P≠∅ . P is a β-certain reduct of table T such that 

∀ Di∈D, PβDi = CβDi and ∅≠⊂∀ QPQ , , QβDi ≠ CβDi 

Definition 1 shows β-certain reducts preserve the classification of each decision class 
in the β-positive region and this indicates all indiscernible categories in the β-positive 
region must retain the original classification and none of the indiscernible categories 
based on these reducts in the non-β-positive region can be accepted under β condition. 
If β=1/3, original classification of each decision class in the β-positive region are 
CβD1={x1, x8}, CβD2={x7, x9, x10, x11}, and CβD3={x2}. The attribute set {c1, c2, c3} in 
Table 1 preserve the original classification of each decision class and no subsets of 
attribute from {c1, c2, c3} can preserve the original classification of each decision 
class in the β-positive region of Table 1. As a result, {c1, c2, c3} is a β-certain reduct 
of Table 1. Attribute set {c3, c4} is another β-certain reduct of Table 1. In this paper, β 
criterion is used to represent the majority inclusion relation with the admissible error 
β for an indiscernible category and a two-phase β-certain reducts generation is 
developed. In the next section, the first phase of the β-certain reducts generation is 
presented to find the initial solutions of the β-certain reducts. 
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3   First Phase of the β-Certain Reducts Generation 

The first phase of the β-certain reducts generation finds initial solutions for the  
β-certain reducts and these solutions can be derived from searching the certain reducts 
in a consistent pseudo decision table. Pseudo decision table is proposed by Wang [11] 
to replace the original table in generating certain reducts. Wang [11] applied a 
consistent pseudo decision table to replace the original decision table by converting 
the decision classes of all inconsistent categories in the original table to a new 
decision class. Certain reducts of the original table are generated by merging 
candidate attributes into an attribute set recursively until they reach all consistencies 
of the pseudo decision table with minimal number of condition attributes. The search 
of consistencies of the table is based on the sort and the generation of any certain 
reduct of consistent or inconsistent decision table takes O(k2n log n) [11]. The 
generation of certain reducts can be further improved if the hash data structure 
proposed by Wang [12] is applied. Two hash tables can be created from the hash-
based pseudo decision table and the search of consistencies for any attribute set of the 
table takes O(kn). The generation of any certain reduct based the hash data structure 
proposed by Wang [12] is reduced to O(k2n). 

Before we present the certain reducts generation in the consistent pseudo decision 
table, proposition 1 is proposed to show any subset of attributes can not be a β-certain 
reduct if indiscernible categories containing instances from the β-positive and non- 
β-positive region exist using the given subset of attributes. 

Proposition 1. Let T = (U, C, D) be a decision table, β is a user defined admissible 
error, x∈U, P ⊆ C, and P≠∅ . Any subset of P can not be a β-certain reduct 
if ∃ IP(x), IP(x)={X ∪ Y | X ⊆ POS(T, C, β), Y ⊆ {U \ POS(T, C, β)}, X≠∅ , Y≠∅ } 

Proposition shows initial solutions of the β-certain reducts contain no indiscernible 
category having instances from both the β-positive and the non-β-positive region. The 
proof of proposition 1 is trivial. If an indiscernible category has instances from both 
the β-positive and the non-β-positive region, this category is either accepted or 
rejected under the β criterion and this will move instances from β-positive region to 
non-β-positive region or from non-β-positive region to β-positive region. This violates 
the definition of the β-certain reduct. 
β-positive region of Table 1 contains {x1, x2, x7, x8, x9, x10, x11} when β=1/3. The 

attribute set {c1, c2, c4} can not be an initial solution of the β-certain reducts because 
an indiscernible category, {x1, x3, x4, x5, x6}, containing instances from both the  
β-positive and the non-β-positive region. Category, {x1, x3, x4, x5, x6}, does not satisfy 
the β criterion and it moves instance x1 from the β-positive to the non-β-positive 
region. Any subsets of {c1, c2, c4} can not be an initial solution of the β-certain 
reducts. To generate initial solutions from proposition 1, a consistent pseudo decision 
table is constructed from the original table by assigning all instances in the β-positive 
region to one decision class and assigning all other instances in the non-β-positive 
region to another decision class. Proposition 2 shows initial solutions of β-certain 
reducts of the original table are the certain reducts of the consistent pseudo decision 
table. 



 Two-Phase β-Certain Reducts Generation 391 

Proposition 2. Let T = (U, C, D) be a decision table and T1 = (U, C, D′ ) is its 
consistent pseudo decision table by assigning all instances in POS(T, C, β) to one 
class and assigning all other instances in {U \ POS(T, C, β)} to another class. Any 
certain reduct of T1 is the initial solution of β-certain reducts of table T. 

The correctness of the proposition 2 can be shown by proving any proper subset of the 
certain reduct of T1 satisfy the proposition 1. We know this is true because any proper 
subset of certain reducts of T1 causes inconsistencies and this shows indiscernible 
categories containing instances from both the β-positive and the non-β-positive region 
of table T exist. This proves proposition 2. 

In generating certain reducts of T1, we use the concept of the current rules size, 
CRS, proposed by Wang [11] and it can be applied to generate certain reducts of 
consistent and inconsistent tables. CRS excludes false candidates from generating 
certain reducts. Next, the definition of CRS and related propositions are introduced. 

Definition 2. Let T = (U, C, D) be a decision table and P ⊆ C. The current rules size 
of P, CRS(P), is derived by adding the size of the positive region, |POSP(D)|, and the 
number of inconsistent categories using P where POSP(D) contains instances which 
are certainly classified using P. [11] 

Proposition 3. Let T = (U, C, D) be a consistent pseudo decision table and P ⊆ C. 
[11] 

(a) An attribute a∈{C-P} can not be a candidate of the certain reducts starting 
with P if CRS(P ∪ {a}) = CRS(P). 

(b) If S is a set of candidate attributes derived from proposition 3.a for certain 
reducts starting with P and we merge an attribute a∈S into P. New candidate 
attributes for certain reducts starting with P ∪ {a} can be found in S-{a}. 

(c) If attribute a∈{C-P} satisfies proposition 3.a for certain reducts starting 
with P, we say a is not a candidate attribute of P if ∃ q∈P such that CRS({P-
{q}} ∪ {a})=CRS(P ∪ {a}). 

Proposition 3 finds candidate attributes for a subset of attributes P in generating 
certain reducts and certain reducts generation using CRS finds reducts by merging 
candidate attributes into an attribute set until the CRS value is equal to the table size. 
Example of applying proposition 3 to generate certain reducts will be shown in 
section 4 and we will skip the algorithm in this paper. User can refer Wang’s paper 
[11] for more details. Having generated initial solutions of the β-certain reducts, we 
will present the second phase of the β-certain reducts generation. 

4   Second Phase of the β-Certain Reducts Generation 

The second phase of β-certain reducts generation takes the initial solutions from the 
first phase and the second pseudo decision table is constructed using categories in the 
original β-positive region. After we create the second pseudo decision table, certain 
reducts of the second pseudo decision table are generated using proposition 3 by 
merging attributes into the initial solutions until all categories in the second pseudo 
decision table become consistent. Certain reducts of the second pseudo decision table 
are β-certain reducts if all sub categories based on these certain reducts in the  
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non-β-positive region of the original table are totally rejected under the β criterion. 
Next, proposition is proposed to show the condition of certain reducts of the second 
pseudo decision table to become β-certain reducts of the original table. 

Proposition 4. Let T = (U, C, D) be a decision table. T2 = (U ′ , C, D ′′ ) contains all 
instances in POS(T, C, β) and T2 is a consistent pseudo decision table by assigning all 
instances in CβDi to class i for each decision class. Certain reducts of T2 are β-certain 
reducts of T if all sub categories based on these certain reducts in the non-β-positive 
region of T are totally rejected under β criterion. 

The proof of proposition 4 is trivial. Certain reducts of T2 contain minimal number of 
attributes to ensure the original classification of each decision class. Any subset of 
certain reducts of T2 generates inconsistent categories which contain instances from 
different decision classes of the original classification of T. Under the majority 
inclusion relation in VPRS, some inconsistent categories will be moved to the non-β-
positive region if they violate the β criterion or instances in some categories will 
change their original classification if categories satisfy the β criterion. From both 
cases, they violate the definition of the β-certain reduct. In order to say certain reducts 
of the second decision table are β-certain reducts, we have to make sure none of sub 
categories based on these certain reducts in the non-β-positive region of T are 
accepted under the β criterion. This proves proposition 4. To apply proposition 4 to 
generate all β-certain reducts, we have to show all β-certain reducts can be generated 
using proposition 4 and this is shown in proposition 5. 

Proposition 5. Let T = (U, C, D) be a decision table. T2 is the consistent pseudo 
decision table of T generated from proposition 4. All β-certain reducts of T are subset 
of all certain reducts of T2. 

All β-certain reducts of T preserve the original classification of each decision class in 
the β-positive region of the original table. Proposition 5 is proved. 

Table 2. The second pseudo decision table of Table 1 

U c1 c2 c3 c4 D 
x1 1 1 1 2 1 
x8 3 1 1 2 1 
x7 2 1 2 2 2 
x9 1 2 1 3 2 
x10 1 2 1 3 2 
x11 1 2 1 3 2 
x2 1 1 2 4 3  

Table 3. Non-β-positive region of Table 1 

U c1 c2 c3 c4 D 
x3 1 1 3 2 1 
x4 1 1 3 2 1 
x5 1 1 3 2 2 
x6 1 1 3 2 2  
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An example of two-phase β-certain reducts generation is shown using Table 1. If 
β=1/3, attribute c3 is the only initial solution from the first phase. The second 
consistent pseudo decision table of Table 1 is shown in Table 2 by assigning all 
instances in the category, {x9, x10, x11}, in the β-positive to decision class 2. Initial 
solution {c3} is not a β-certain reduct of Table 1 because inconsistent categories, {x1, 
x8, x9, x10, x11} and {x2, x7}, exist in Table 2. From the definition 2, CRS(c3) of Table 2 
is 2. When proposition 3.a is applied to the initial solution {c3}, three candidate 
attributes {c1, c2, c4} are found and the attribute set {c3, c4} is a certain reduct of Table 
2 because the value of CRS({c3, c4}) is equal to the size of Table 2 and attribute c3 is 
indispensable. Next, attribute c1 is merged into attribute c3 and attribute c2 is the only 
candidate for {c3, c1} based on proposition 3.a for CRS({c3, c1})=4 and CRS({c3, c1, 
c2})=7. Attribute set {c3, c1, c2} is another certain reduct of Table 2 because CRS({c3, 
c1, c2}) is equal to the size of Table 2 and no attribute in {c1} satisfies proposition 3.c. 
Table 2 contains two certain reducts, {c1, c2, c3} and {c3, c4}. Certain reducts of  
Table 2 are applied to Table 3 which contains instances in the non-β-positive region 
of Table 1 and all sub categories based on the certain reducts of Table 2 are totally 
rejected under the β criterion. Two β-certain reducts, {c1, c2, c3} and {c3, c4}, are 
found for Table 1 with β = 1/3. 

Next, the algorithm of the two-phase β-certain reducts generation is presented. 

Algorithm. Two-phases β-certain reducts generation 

‘T = (U, C, D) is a decision table 
Construct the first and the second pseudo decision tables T1 and T2; 
FOR each certain reduct, R, in T1 DO 
 IF R is not a β-certain reduct THEN 
 FOR each certain reduct, S, of T2 generated by merging attributes from {C-R} 

into R using proposition 3 in T2 DO 
 IF all sub categories based on S in the non-β-positive region of T are total 

rejected under the β criterion THEN 
 S is a β-certain reduct; 
 ELSE 
 S is not a β-certain reduct; 
 END 
 END 
 END 

END 

5   Conclusion 

In this paper, a two-phase β-certain reducts generation algorithm is presented. In the 
first phase, we find certain reducts of the first pseudo decision table and set them as 
initial solutions of β-certain reducts. The second phase takes initial solutions from the 
first phase and β-certain reducts are found by generating certain reducts of the second 
pseudo decision when all sub categories based on these certain reducts in the  
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non-β-positive region are totally rejected under the β criterion. No verification is 
needed when β-certain reducts are found. 
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Abstract. This paper discusses the relationship between formal con-
texts and set-valued information systems, and indicates that each formal
context can be transformed into a set-valued information system. The
extensions of the object concepts in a formal context are equivalent to
the dominance classes in the set-valued information system induced by
the formal context. It is proved that the granular reduct in a formal con-
text is equivalent to the attribute reduct in the set-valued information
system. And then a comparative study of the two kinds of reduct in a
formal context is presented. Finally the characteristics of three types of
granular attributes in a formal context are analyzed.

Keywords: Formal contexts, set-valued information systems, granular
reduct, attribute reduct, attribute characteristics.

1 Introduction

Rough set theory (RST) is proposed by Pawlak Z. in 1982 [1]. It provides a
new mathematical approach to deal with inexact, uncertain or vague knowledge.
The rough set theory that based on the conventional indiscernibility relation is
not useful for analyzing incomplete information. By an incomplete information
system (IIS), we mean a system with unknown data or partly-known data. In
the real world, many information systems (IS) are incomplete. In this situation,
some attributes values may be subsets of attributes domain. This kind of system
can be regarded as a set-valued information system (a set-valued IS).

Formal concept analysis(FCA) is proposed by Wille R. in the same year [2].
The basis of FCA are formal concepts and concept lattices. A concept lattice
is an ordered hierarchical structure of formal concepts which are induced by a
binary relation between a set of objects and a set of attributes.

Although RST and FCA are different theories, they have much in common, in
terms of both goals and methodologies. Many efforts have been made to compare
and combine the two theories [3-8]. Düntsch and Gediga study various forms of
set approximations via the modal-style operators [3]. Saquer and Deogun present
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a novel approach for approximating concepts in the framework of formal con-
cept analysis [4]. Yao introduces the notion of rough set approximations into
formal concept analysis, and presents a comparative study of rough set the-
ory and formal concept analysis [5,6]. Wolff studies the differences between the
”partition oriented” rough set theory and the ”order oriented” formal concept
analysis [7].

In this paper, we discuss the relationship between formal contexts and set-
valued information systems, and show that each formal context can be trans-
formed into a set-valued IS. The relationship between the extensions of the object
concepts in a formal context and the dominance classes in the set-valued IS in-
duced by the formal context is investigated, and then proved that the granular
reduct in a formal context is equivalent to the attribute reduct in the set-valued
IS induced by the formal context. The relationship between the two kinds of
reduct in a formal context is studied. The characteristics of three types of gran-
ular attributes in a formal context are analyzed.

2 Preliminaries

First, to make this paper self-contained, the involved notions both in FCA and
RST are introduced (see[8-10]).

2.1 Basic Definitions in Formal Concept Analysis

A formal context is a triplet (U, A, I), where U = {x1, x2, · · · , xn} is a nonempty
finite set of objects and A = {a1, a2, · · · , am} is a nonempty finite set of at-
tributes, and I is a relation between U and A, which is a subset of the Cartesian
Product U × A, (x, a) ∈ I means that object x has attribute a. In this paper,
(x, a) ∈ I is denoted by 1, and (x, a) �∈ I is denoted by 0. This, a formal context
can be represented by a table only with 0 and 1.

For X ⊆ U , B ⊆ A, we define a pair of dual operators (see [2]):

X∗ = {a ∈ A| ∀x ∈ X, (x, a) ∈ I},

B∗ = {x ∈ U | ∀a ∈ B, (x, a) ∈ I}.

A pair (X, B), X ⊆ U, B ⊆ A, is called formal concept of the context (U, A, I)
if X∗ = B, B∗ = X. X is called the extension and B is called the intension of
the formal concept (X, B). For an object x ∈ U , (x∗∗, x∗) is called the object
concept. Correspondingly, for an attribute a ∈ A, (a∗, a∗∗) is called the attribute
concept.

The set of all formal concepts forms a complete lattice called a concept lattice
and is denoted by L(U, A, I).

For x ∈ U and a ∈ A, we denote {x}∗ = x∗ and {a}∗ = a∗.
The basic extension set {x∗∗|x ∈ U} is called the granules of the concept

lattice L(U, A, I). Obviously, {x∗∗|x ∈ U} forms a cover of the set of objects U .
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Definition 1. Let (U, A, I) be a formal context. For any C ⊆ A, we can obtain
a formal context (U, C, IC) which is called a sub-context of (U, A, I), where IC =
I ∩ (U × C).

For X ⊆ U , B ⊆ C,

X∗C = {a ∈ C| ∀x ∈ X, (x, a) ∈ I},

B∗C = {x ∈ U | ∀a ∈ B, (x, a) ∈ I}.

Clearly, X∗C = X∗ ∩ C and X∗A = X∗.(see [10])

Definition 2. Let (U, A, I) be a formal context. An attribute subset B ⊆ A
is referred to as a granular consistent set of (U, A, I) if x∗B∗B = x∗A∗A for all
x ∈ U . And if for any E ⊂ B, E is not a granular consistent set of (U, A, I), B
is referred to as a granular reduct in (U, A, I). (see [10])

Granular reduct in a formal context is the smallest attribute subset that
preserves the granules of the concept lattice.

Let (U, A, I) be a formal context, x ∈ U , and a ∈ A. We denote

x∗
a =

{
{a}, (x, a) ∈ I,
∅, otherwise.

And for B ⊆ A, note

R∗
B = {(x, y) ∈ U × U |x∗

a ⊆ y∗
a, ∀a ∈ B}.

Let (U, A, I) be a formal context and (x, y) ∈ U × U. Define

M∗(x, y) = {a ∈ A|(x, y) /∈ R∗
a}.

M∗(x, y) is referred to as the granular discernibility attribute set of x and y in
(U, A, I) and M∗ = {M∗(x, y)|(x, y) ∈ U×U} is called the granular discernibility
matrix of (U, A, I). (see [10])

2.2 Set-Valued Information Systems

A set-valued information system (see [11]) is a triple (U, A, F ), where U =
{x1, x2, · · · , xn} is a nonempty finite set of objects called universe and A =
{a1, a2, · · · , am} is a nonempty finite set of attributes,

F = {fa|a ∈ A},

where fa : U −→ P0(Va)(a ∈ A) is an attribute value function, Va is a domain
of attribute a, P0(Va) is the whole nonempty subsets of Va.

Let (U, A, F ) is a set-valued IS, ∀B ⊆ A, define a relation as follow:

R⊆
B = {(xi, xj) ∈ U × U |fa(xi) ⊆ fa(xj) (∀a ∈ B)}.

The relation is called a dominance relation ,and note

[xi]
⊆
B = {xj ∈ U |(xi, xj) ∈ R⊆

B)} = {xj ∈ U |fa(xi) ⊆ fa(xj) (∀a ∈ B)}

called dominance class.
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Definition 3. Let (U, A, F ) be a set-valued IS. A set B ⊆ A is an attribute
consistent set of (U, A, F ) if R⊆

B = R⊆
A. If B is an attribute consistent set, and

no proper subset of B is consistent, then B is referred to as an attribute reduct
in (U, A, F ).

Denote
D(xi, xj) = {a ∈ A|fa(xi) �⊆ fa(xj)} (xi, xj ∈ U).

D(xi, xj) is called the discernibility attribute set with respect to the relation R⊆
A ,

D = {D(xi, xj)|(xi, xj) ∈ U ×U} is called the attribute discernibility matrix with
respect to R⊆

A. (see [8])

3 The Set-Valued Information System Induced by a
Formal Context

Let (U, A, I) be a formal context, define a map as follow:

fa(x) =
{

{0, 1}, (x, a) ∈ I,
{0}, (x, a) �∈ I.

Then a set-valued IS (U, A, F ) can be obtained from the formal context (U, A, I).
(U, A, F ) is called the set-valued information system induced by (U, A, I). Obvi-
ously, R∗

B is equivalent to R⊆
B.

Example 1. A formal context (U, A, I) is shown as Table 1, the set-valued IS
(U, A, F ) induced by (U, A, I) is shown as Table 2.

Table 1. A Formal Context (U,A, I)

a b c d e

x1 1 0 1 1 1
x2 1 0 1 0 0
x3 0 1 0 0 1
x4 0 1 0 0 1
x5 1 0 0 0 0
x6 1 1 0 0 1

Proposition 1. Let (U, A, I) be a formal context. Then

y ∈ x∗A∗A iff y∗A ⊇ x∗A (x, y ∈ U).

Proposition 2. Let (U, A, I) be a formal context, (U, A, F ) is the set-valued
information system induced by (U, A, I). Then x∗A∗A = [x]⊆A(x ∈ U).
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Table 2. The Set-Valued IS Induced By (U, A, I)

a b c d e

x1 {0,1} {0} {0,1} {0,1} {0,1}
x2 {0,1} {0} {0,1} {0} {0}
x3 {0} {0,1} {0} {0} {0,1}
x4 {0} {0,1} {0} {0} {0,1}
x5 {0,1} {0} {0} {0} {0}
x6 {0,1} {0,1} {0} {0} {0,1}

Remark. From Proposition 2 we can immediately conclude that Definition 3
and Definition 2 are equivalent, i.e. the granular consistent set of a formal context
is equivalent to the attribute consistent set of the set-valued IS induced by the
formal context.

Corollary 1. Let (U, A, I) be a formal context, B ⊆ A. If R∗
B = R∗

A, then
x∗B∗B = x∗A∗A.

Corollary 2. Let (U, A, I) be a formal context, then
(1) if B1 ⊆ B2 ⊆ A, R∗

B1
⊇ R∗

B2
⊇ R∗

A.
(2) if B1 ⊆ B2 ⊆ A, x∗B1∗B1 ⊇ x∗B2∗B2 ⊇ R∗A∗A.
(3) I= {x∗B∗B|x ∈ U} constitute a covering of U (B ⊆ A).

4 A Comparative Study of Two Kinds of Reduct in a
Formal Context

This section gives the relationship between the granular reduct and the attribute
reduct in a formal context. We first introduce the definition of the attribute
reduct in a formal context (see [9]).

Let (U, A1, I1) and (U, A2, I2) be two formal context. We say (U, A2, I2) is
extension coarser than (U, A1, I1) if for any (X, B) ∈ L(U, A2, I2), there exists
(X, B′) ∈ L(U, A1, I1) and denoted by

L(U, A1, I1) ≤ L(U, A2, I2).

If L(U, A1, I1) ≤ L(U, A2, I2) and L(U, A2, I2) ≤ L(U, A1, I1), we say that
L(U, A1, I1) and L(U, A2, I2) are isomorphic, and denoted by

L(U, A1, I1) ∼= L(U, A2, I2).

Definition 4. Let (U, A, I) be a formal context. A set B ⊆ A is an attribute
consistent set of (U, A, I) if L(U, B, IB) ∼= L(U, A, I). If B is an attribute consis-
tent set of (U, A, I), and no proper subset of B is consistent, then B is referred
to as an attribute reduct in (U, A, I).



400 X.-X. Song and W.-X. Zhang

An attribute reduct in a formal context is a minimal attribute subset preserv-
ing immovable of the structure of the concept lattice. That is the same lattice
structure can be obtained through a reduced attribute.

Let (U, A, I) be a formal context, (Xi, Bi), (Xj , Bj) ∈ L(U, A, I). The dis-
cernibility attributes set between (Xi, Bi), (Xj , Bj) are defined by

DIS((Xi, Bi), (Xj , Bj)) = Bi ∪ Bj − Bi ∩ Bj .

and
D = (DIS((Xi, Bi), (Xj , Bj)), (Xi, Bi), (Xj , Bj) ∈ L(U, A, I))

is called the discernibility matrix of the context.

Definition 5. Let (U, A, I) be a formal context. We define (U, A, Ic) as follow:
for any x ∈ U and a ∈ A, if (x, a) �∈ I, then (x, a) ∈ Ic. (U, A, Ic) is called the
complement formal context of (U, A, I).

Proposition 3. Let (U, A, I) be a formal context, (U, A, Ic) be the complement
formal context of (U, A, I). Then the granular reduct in (U, A, I) is equivalent to
the granular reduct in (U, A, Ic).

Proposition 4. Let (U, A, I) be a formal context, (U, A, Ic) be the complement
formal context of (U, A, I). Then the attribute reducts in (U, A, I) and (U, A, Ic)
are all the granular reducts in (U, A, I).

Example 2. Table 3 shows the complement formal context (U, A, Ic) of the
formal context (U, A, I) described by Table 1, Table 4 gives the discernibility
matrix of the set-valued IS induced by the formal context (U, A, I).

Table 3. The complement formal context (U, A, Ic) of the Table 1

a b c d e

x1 0 1 0 0 0
x2 0 1 0 1 1
x3 1 0 1 1 0
x4 1 0 1 1 0
x5 0 1 1 1 1
x6 0 0 1 1 0

From Table 4, we can obtain B1 = {a, b, c, d} and B2 = {a, b, c, e} are reducts
in the set-valued IS presented by Table 2. So they are also the granular reducts
in the formal context (U, A, I) presented by Table 1. The conclusion is consistent
with the conclusion obtained in [10].

Analogously, we can obtain that B1 = {a, b, c, d} and B2 = {a, b, c, e} are also
the granular reducts in the complement formal context (U, A, Ic).

We can also obtain that the attribute reduct in formal context (U, A, I) pre-
sented by Table 1 is B1 = {a, b, c, d}, and the attribute reduct in the complement
formal context (U, A, Ic) presented by Table 3 is B2 = {a, b, c, e}.
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Table 4. The discernibility matrix of set-valued IS induced by (U, A, I)

x\y x1 x2 x3 x4 x5 x6

x1 de acd acd cde cd
x2 ac ac c c
x3 b be be
x4 b be be
x5 a a
x6 b be a a be

5 The Granular Attributes Characteristics in a Formal
Context

Let B = {Bk|k ≤ l} is the set of all granular reducts in a formal context (U, A, I),
denote

C =
⋂

k≤l

Bk, K =
⋃

k≤l

Bk − C, J = U − (K ∪ C),

C is called the set of granular core attribute in (U, A, I), K is called the set
of granular relative indispensable attribute in (U, A, I), J is called the set of
granular dispensable attribute in (U, A, I).

Proposition 5. Let (U, A, I) is a formal context, then the follow conclusions
are equivalent :

(1) a is granular core attribute;
(2) ∃x, y ∈ U, M∗(x, y) = {a};
(3) R∗

A−{a} �⊆ R∗
A;

(4) x∗(A−{a})∗(A−{a}) �⊆ x∗A∗A.

Proposition 6. Let (U, A, I) is a formal context, then the follow conclusions
are equivalent :

(1) a is a granular dispensable attribute;
(2) R∗(a) ⊆ R∗

a, where R∗(a) = ∪{R∗
B−{a}|R∗

B ⊆ R∗
A, B ⊆ A};

(3) ∪{x∗(B−{a})∗(B−{a})| x∗B∗B ⊆ x∗A∗A, B ⊆ A} ⊆ x∗a∗a.

Proposition 7. Let (U, A, I) is a formal context, then
(1) a is granular core attribute iff R∗

A−{a} �⊆ R∗
A;

(2) a is granular relative indispensable attribute iff R∗
A−{a} ⊆ R∗

A, and R∗(a) �⊆
R∗

a;
(3) a is granular dispensable attribute iff R∗(a) ⊆ R∗

a.

6 Conclusion

Formal concept analysis (FCA) and Rough set theory (RST) are two different
methods for knowledge representation and knowledge discovery. They can be
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studied in a common framework. In this paper, the relationship of a formal con-
text and a set-valued IS is investigated. It is showed that each formal context can
be transformed into a set-valued IS, and then proved that the granular reduct
in a formal context is equivalent to the attribute reduct in the set-valued IS
induced by the formal context. A comparative study of two kinds of reduct in a
formal context is discussed.
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Abstract. We discuss descriptors and templates within relational in-
formation systems. We provide examples how to use attribute-specific
similarity measures to equip standard information systems with rela-
tional structures. We introduce new types of descriptors, which take
an advantage of available relations, forming cliques or stars of inter-
related attribute values. We also show how to build relational templates
from collections of such relational descriptors. We illustrate the proposed
framework with possible applications.

Keywords: Descriptors, Templates, Relational Information Systems.

1 Introduction

The notion of a template occurs frequently in the data mining literature, to
describe multi-feature regularities that are highly supported across the whole
data or specific for particular data groups [4,5,7]. Within the framework of rough
sets and information systems [8,14], templates are understood as conjunctions
of descriptors built over particular attributes [11,12]. It should be then obvious
that specification of a descriptor should depend on the attribute’s data type,
possibly with different types of descriptors involved into the same template. By
now, however, there is no significant research on this topic.

One of possibilities to handle different data types within a unified framework
is to equip attributes with relations over their domains, specific for real values,
multi-sets, attributes with missing values etc. [1,6,18,19,20]. It leads to relational
information systems [3] and to the need of extending basic concepts of rough sets
and data mining to deal with different kinds of relations.

In [21], we extended the notion of a template towards dealing with tolerance
relations in data. We basically noticed that, although tolerances (similarities)
have been already widely studied for information systems [9,17,24], nobody con-
sidered them in the context of efficient representation and search of templates.
Tolerances, however, are not sufficient to model many real-life data challenges,
e.g., those related to temporal or preference-based attributes [19]. In this pa-
per, we provide a more general framework for defining descriptors and templates
within systems with different types of relations.

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 403–410, 2007.
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2 Information Systems and Templates

In rough set theory [13,14,15], data is represented by information system A =
(U, A), with the universe U of objects and the attribute set A. Each a ∈ A is a
function a : U → Va. Va is the value set of a. Each B ⊆ A induces indiscernibility
relation IND(B). We say that x, y ∈ U are indiscernible with respect to B, if
and only if a(x) = a(y) for each a ∈ B. For each x ∈ U , its attribute values form
an elementary pattern (information signature) InfB(x) = {(a, a(x)) : a ∈ B}.
Hence, (x, y) ∈ IND(B) ⇔ InfB(x) = InfB(y). By INF (A) = {InfB(x) : x ∈
U, B ⊆ A} we denote the set of all signatures occurring in A.

One of the tasks of data mining is searching for patterns in data [4,5,7]. We
consider one kind of such patterns – templates, which are propositional formulas
T =

∧
(ai = vi), where ai ∈ A, ai �= aj for i �= j, and vi ∈ Vai [11,12]. Assuming

A = {a1, . . . , am}, card(A) = m, one can represent any template

T = (ai1 = vi1) ∧ . . . ∧ (aik
= vik

) (1)

by m-dimensional vector, where each p-th position is either vp, if p = i1 . . . ik,
or “*” (don’t care symbol) otherwise. We say that x ∈ U satisfies the descriptor
(a = v) if a(x) = v. Further, x satisfies (matches) the template T if it satisfies
all the descriptors of T . By ‖T ‖A we denote the T ’s semantics, i.e., the set
of all x ∈ U that satisfy T . By length(T ) we denote the number of different
descriptors (a = v) occurring in T . By suppA(T ) = card(‖T ‖A), we denote T ’s
support. The set of all templates having non-empty support in A is in one-to-one
correspondence with the set of signatures INF (A).

The above ideas can be extended onto generalized templates T =
∧

(ai ∈ Vi),
where Vi ⊆ Vai . As before, we can write:

T = (ai1 ∈ Vi1 ) ∧ . . . ∧ (aik
∈ Vik

). (2)

The difference here is that we consider many-valued descriptors. We say that
x ∈ U satisfies a generalized descriptor (a ∈ V ) if a(x) ∈ V . As before, x
satisfies the generalized template T if it satisfies its descriptors.

Length and support of generalized templates are defined in the same way. The
quality, however, requires more study. In the case of simple templates T , the
quality is a function of support and length. For example, if we search for strong
patterns in the whole information system, it could be the product of suppA(T )
and length(T ). In the case of generalized templates, the quality function should
additionally take into account precision of particular descriptors. Intuitively, by
a precise descriptor (a ∈ V ) we mean the one with relatively low cardinality of
V . Formally, precision sA of descriptor (a ∈ V ) in A is defined as follows:

sA((a ∈ V )) =

{
card(Va)−card(V )

card(Va)−1 card(Va) �= 1
1 card(Va) = 1

(3)

Consequently, precision of generalized template T is defined as

SA(T ) =
∑

(a∈V )∈T

sA((a ∈ V )) (4)
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If all descriptors in T are fully precise, then SA(T ) equals to its length. Generally,
we can consider quality of T as a function of its support and precision. Often,
after identifying the objects satisfying T , it turns out that some of T ’s descriptors
(a ∈ V ) can be precisiated, i.e. replaced by (a ∈ V ′), V ′

� V , without decreasing
T ’s support. Generalized templates with non-empty support, fully precisiated in
the above sense, are in one-to-one correspondence with generalized signatures –
the elements of INF ∗(A) = {InfB(X) : X ⊆ U, B ⊆ A}, where InfB(X) =
{(a, a(X)) : a ∈ B} and a(X) = {a(x) : x ∈ X}.

3 Similarities and Relational Information Systems

If the only information about objects is their signature, we naturally use indis-
cernibility relation to deal with. Moreover, as indiscernibility is an equivalence
relation, it enables to easily operate with disjoint classes of indiscernible objects.
However, in many cases this approach can be insufficient to deal with data, for
example, when we have real-valued attributes and objects tend to potentially
differ from the others. The indiscernibility classes could be then too specific,
few-element sets, disabling efficient data-based knowledge representation.

One of solutions is based on similarity measures δa : Va × Va → [0, 1], a ∈ A.
The ranges could obviously differ – we normalize them to [0, 1] for simplicity.
Different attributes can be equipped with different measures. We can consider,
e.g., distances between values. We can define similarities for fuzzy sets, multi-
sets, ordered domains, and other complex attributes [1,2,3,19].

Once similarity measures are defined for particular attributes, there are var-
ious possibilities to extend indiscernibility. We list a few examples (cf. [12]).

Example 1. For B = {a1, ..., ak} and functions δi, i = 1, ..., k, we put:

1. (x, y) ∈ r
(1)
B (w0) ⇔ ∀i=1,...,kδi(ai(x), ai(y)) ≥ w0

2. (x, y) ∈ r
(2)
B (w1, . . . , wk) ⇔ ∀i=1,...,kδi(ai(x), ai(y)) ≥ wi

3. (x, y) ∈ r
(3)
B (w0) ⇔

∏k
i=1 δi(ai(x), ai(y)) ≥ w0

4. (x, y) ∈ r
(4)
B (w0, w1, . . . , wk) ⇔

∏k
i=1 δi(ai(x), ai(y))wi ≥ w0

For w0, w1, ..., wk ∈ [0, 1) (again we normalize for simplicity [12]), if we assume
that δi(v, v) = 1 and δi(v1, v2) = δi(v2, v1), then all relations in Example 1
are tolerances over the universe U , i.e., they are reflexive, symmetric, but not
necessarily transitive. The rough set approach can be, obviously, extended onto
any type of binary relation [9,18,23,24], not necessarily tolerance. (For example,
similarity does not need to be symmetric, i.e., δi(v1, v2) �= δi(v2, v1).) On the
other hand, tolerances are certainly most popular relations applied to generalize
indiscernibility [10,12,17,19].

Relations can be defined for any B ⊆ A at the level of objects (like we did in
examples above), their signatures, or even whole sets of (generalized) signatures.
In any case, we would like such relations to satisfy some properties, e.g., the
following monotonicity, here formulated for relations defined over objects:

∀B,C⊆A∀x,y∈UB ⊆ C ∧ (x, y) ∈ rC ⇒ (x, y) ∈ rB . (5)
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Such property is important because we usually assume that if objects are indis-
cernible with respect to a larger set of attributes, then they remain indiscernible
also after removing some attributes. Let us note that all relations in Example 1
satisfy (5) for normalized similarities and weights. However, we do not even need
to assume symmetry of similarities here.

Instead of constructing multi-attribute relations from local, single-attribute
similarity measures, we can also define single-attribute relations first and then
induce the multi-attribute ones automatically as their conjunctions, i.e.:

(x, y) ∈ rB ⇔ ∀a∈B(a(x), a(y)) ∈ ra. (6)

Certainly, such an approach has less expressive power in defining relations.

Example 2. The first two relations in Example 1 can be constructed as follows:

1. (x, y) ∈ r
(1)
B (w0) ⇔ ∀i=1,...,k(x, y) ∈ ri(w0)

2. (x, y) ∈ r
(2)
B (w1, ..., wk) ⇔ ∀i=1,...,k(x, y) ∈ ri(wi)

where, for any ai ∈ B, we put (x, y) ∈ ri(w) ⇔ δi(ai(x), ai(y)) ≥ w. However,
the last two relations in Example 1 cannot be built in this way.

On the other hand, formula (6) enables us to control better particular attributes
and descriptors, and remains far more straightforward extension of the notion
of indiscernibility. Any family of relations rB, B ⊆ A defined by (6) satisfies
monotonicity property (5). In particular, if relations ra are tolerances over Va,
then rB defined by (6) is always a tolerance over U .

Consequently, from now on, we consider relational information systems A =
(U, A, R), where R = {ra : a ∈ A, ra ⊆ Va × Va} is the set of binary relations
corresponding to attributes a ∈ A. Let us note, that we do not require any ra ∈ R
to meet additional criteria, even reflexivity. Nor, ra is required to be related with
any other relation – it is related only with particular attribute and its domain. In
the simplest case, each ra can be an indiscernibility relation. In general, however,
each a ∈ A can be equipped with ra of different properties. For example, in the
context of missing value analysis there are considered binary relations which are
reflexive only, transitive only, or reflexive and transitive [3,6,20]. Relation ra can
be also a preference order relation [19].

4 Templates in Relational Information Systems

Let us now present, how to extend the notion of (generalized) template to the
relational case. Additional relational structures enable to form a wide range of
types of patterns to be extracted from data, reflecting the nature of particular
attributes. Let A = (U, A, R) and B ⊆ A, card(B) = k, be given. We define a
relational template over A as a conjunction of relational descriptors, i.e.:

T = (ai1 , Vi1)
(#) ∧ . . . ∧ (aik

, Vik
)(#), (7)

where # determines the type of descriptor and it may be actually different for
different attributes in B. Let us list some examples of interpretations of #:
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– (a, V )(0) denotes a simple descriptor (a = v), i.e., V = {v}
– (a, V )(1) denotes a generalized descriptor (a ∈ V )
– (a, V )(2) denotes a strong clique, i.e., ∀v,v′∈V (v, v′) ∈ ra ∧ (v′, v) ∈ ra

– (a, V )(2
′) denotes a weak clique, i.e., ∀v,v′∈V (v, v′) ∈ ra ∨ (v′, v) ∈ ra

– (a, V )(3) denotes a strong star, i.e., ∃v∈V ∀v′∈V (v, v′) ∈ ra ∧ (v′, v) ∈ ra

– (a, V )(3
′) denotes a weak star, i.e., ∃v∈V ∀v′∈V (v, v′) ∈ ra ∨ (v′, v) ∈ ra

– (a, V )(3
′′) denotes a directed star, i.e., ∃v∈V ∀v′∈V (v′, v) ∈ ra

One can imagine other types too. Descriptor’s type determines the type of pat-
tern to be extracted from data. For example, when choosing clique-like descrip-
tors, we search for patterns of values fully related to each other with respect
to the given relation. The notion of descriptor’s satisfiability can also vary de-
pending on the type of descriptor and requirements. On one hand, we can define
satisfiability very strictly, e.g., saying that x ∈ U satisfies (a, V )(2), iff a(x) is
strongly related with all elements of a in terms of ra. On the other hand, the
support of (a, V )(#) may be measured also in many other ways, depending on
the context. For example, we may say that x ∈ U satisfies descriptor:

– (a, {v})(0) iff a(x) = v, but also, e.g., iff (a(x), v) ∈ ra ∨ (v, a(x)) ∈ ra

– (a, V )(1) iff a(x) ∈ V , but also, e.g., iff ∃v∈V (a(x), v) ∈ ra ∧ (v, a(x)) ∈ ra

– (a, V )(3
′′) iff ∃v∈V ∀v′∈V ∪{a(x)}(v′, v) ∈ ra, but also iff ∃v∈V (a(x), v) ∈ ra

When we visualize different concepts of satisfiability for particular types of de-
scriptors, we obtain different shapes. For example, in the first case above, we
can obtain a totally homogeneous class {x : a(x) = v}, but also a larger star of
objects with values strongly related to v. In the second case, we can obtain a
generalized class {x : a(x) ∈ V }, but also a collection of stars around particular
elements of V . In the third above case, we can obtain a star of objects with
values related to the central v ∈ V , but also a kind of snowflake with elements
related either directly to the center or to one of its neighbors in V .

Let T =
∧

{(a, V )(#)} be a relational template. As before, we say that x ∈ U
satisfies T if it satisfies its all descriptors. The support of T , suppA(T ), is defined
as number of objects that satisfy T and length of T is simply the number of its
descriptors. Analogously to generalized templates, we should take into account
precision of particular descriptors. Formula for precision should depend on the
type of descriptor. For # = 0, 1 we may use standard definitions from Section 2.
For structured types of relational descriptors, i.e., # = 2, 2′, 3, 3′, 3′′, we suggest
the following formula, where V ⊆ Va is said to be #-valid with respect to ra, if
(a, V )(#) actually satisfies the requirements of a given type of descriptor:

s(#))A((a, V ) =

{
card(V )
card(Va) V is #-valid w.r.t. ra

0 otherwise
(8)

When feasible, we can also use Vmax – a maximal strong/weak clique/star with
respect to ra such that V ⊆ Vmax – instead of Va in (8). Unlike in case of
generalized descriptors (a ∈ V ), penalized for card(V ), now we would like to
operate with possibly large sets V , of course until they remain #-valid. From this
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perspective, the above descriptors are more like single-valued than generalized
ones. We could also consider generalized relational descriptors as the sets of
cliques or stars. However, such examples are beyond the scope of this paper.

5 Algorithms for Relational Templates Generation

Given precision of relational descriptors, we can generalize the formula (4) onto
the case of relational templates. As noted before, the quality of template T ,
here denoted as Q(T ), may become a function of T ’s support, suppA(T ), and
precision, SA(T ). For example, we may consider Q(T ) = suppA(T ) · SA(T ). To
generate T we can use a greedy algorithm that tries to add descriptors that
maximize Q(T ). We assume that for each attribute there is chosen type (#) of
required descriptor and definition of its support.

We start with an empty T and iteratively find either a new descriptor to
be added to T or a value that would extend an existing descriptor. We repeat
those steps till some stopping criteria are satisfied, e.g., quality of template is
significantly decreasing in consecutive steps or it reaches some required level.

Algorithm 1 Relational template generation
Input: relational information system A = (U, A, R), quality threshold th
Output: Relational template T

1. T = Tnext = ∅
2. while Q(T ) < th begin
3. for each a ∈ A begin
4. Choose optimal value v ∈ Va

5. if there is no descriptor in T corresponding to a then
6. Ttemp = T ∪ {(a, {v})#}
7. else
8. Ttemp = T \ (a, V )(#) ∪ (a, V ∪ {v})(#)

9. if Q(Ttemp) > Q(Tnext) then
10. Tnext = Ttemp

11. end for
12. T = Tnext

13. end while

In the first few iterations of the algorithm, T is usually constructed from one-
value descriptors. Then the value sets are being extended. Let us note that
the choice of optimal value for a given attribute (Step 4) strongly depends on
type (#) of the corresponding descriptor. For example, for # = 0, once some
descriptor is added to T the corresponding attribute is not considered any longer.
If descriptor is of type 1 (generalized descriptor) then next iterations of the
algorithm can possibly decrease its precision. For # = 2, value v must form a
clique with all values already chosen in previous steps. Analogously, for star-like
descriptors we choose v that is in the corresponding relation with value that was
chosen at first. To choose optimal value in Step 4 several known strategies can
be adopted (see [10]) but they are specific to the type of descriptor.
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The ideas presented above can be utilized by other algorithms [12,10]. One
of the most natural extensions is to make the choice of optimal descriptor non-
deterministic. Basing on qualities of k best descriptors, for some integer k, we
can define their probabilities that can be used in the selection process.

One can also consider the case where T initially contains some one-value
descriptors. Those descriptors are generated from some randomly chosen base
object x ∈ U . Then, in each iteration we can either add or remove descriptors.
There can be defined several strategies of adding and/or removing descriptors
which are well known in the literature, e.g., sequential forward search (SFS),
sequential backward search (SBS), remove l – add r [5].

Yet another modification can be based on following a permutation of A while
choosing the consecutive attributes, for which optimal descriptors are being con-
structed and added to a template. We refer the readers to [11,22], where the
algorithms for searching for optimal attribute permutations are presented.

6 Conclusions

We provided a framework for representing and extracting descriptors and tem-
plates within relational information systems. We discussed examples of how
attribute-specific relations can be created and then used for descriptors’ and
templates’ formation. Both the lists of such examples and of algorithms extract-
ing relational templates from data remain open. Relational information systems
and their special cases (e.g., relational decision tables) may be also considered
with respect to other types of regularities and knowledge/decision models, not
necessarily based on templates. We believe that the proposed framework can be
applied also to other models, not only related to rough set methodology.
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Research Center at the Polish-Japanese Inst. of Information Technology and by
grant 3T11C00226 from Polish Ministry of Sci. Research and Higher Education.
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5. J. H. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag, Germany, 2001.

6. J. W. Grzyma�la-Busse. Incomplete data and generalization of indiscernibility
relation, definability, and approximations. In D. Slezak, G. Wang, M. Szczuka,
I. Duntsch, and Y. Yao, editors, Rough Sets, Fuzzy Sets, Data Mining and Granu-
lar Computing RSFDGrC, LNAI, 3641, pp. 244–253, 2005. Springer-Verlag.
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18. D. Ślȩzak and P. Wasilewski. Granular sets: Foundations and case study of toler-
ance spaces. 2007. In preparation.
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Abstract. A fundamental data modeling problem in geographical in-
formation systems and spatial database systems refers to an appropriate
treatment of the vagueness or indeterminacy features of spatial objects.
Geographical applications often have to deal with spatial objects that
cannot be adequately described by the determinate, crisp concepts ex-
clusively available in these systems since these objects have an intrinsi-
cally indeterminate and vague nature. The goal of this paper is to show
that rough set theory can be leveraged in an elegant manner to seam-
lessly model this kind of spatial data. Our approach introduces novel
rough spatial data types for rough points, rough lines, and rough regions
that can be employed as attribute types in database schemas. These
data types are part of a data model called ROSA (ROugh Spatial Alge-
bra). Their formal framework is based on already existing, general, exact
models of crisp spatial data types, which simplifies the definition of the
rough spatial model. In addition, we obtain executable specifications for
the operations on rough spatial objects; these can be immediately used
as implementations. This paper gives a formal definition of the three
rough spatial data types as well as some basic operations.

Keywords: Spatial database, spatial vagueness, rough spatial data type.

1 Introduction

Geographical information systems (GIS) and spatial database systems (SDBS)
are currently confronted with two main data modeling problems. Beside an ap-
propriate integration of the temporal aspect, the feature of spatial vagueness
or spatial indeterminacy is inherent to many geometric and geographic data [1].
The current mapping of spatial phenomena of the real world to exclusively crisp,
i.e., precisely determined, spatial objects has turned out to be an insufficient ab-
straction process for many geographic applications. So far, applications based
on indeterminate spatial data cannot be supported by current GIS and SDBS.

These systems assume, often contrary to reality, that the positions of points,
the locations and routes of lines, and the extent and hence the boundary of
� This work was partially supported by the National Science Foundation under grant

number NSF-CAREER-IIS-0347574.
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regions are precisely determined and universally recognized. Examples are es-
pecially man-made spatial objects (e.g., monuments, highways, buildings) and
immaterial spatial objects (e.g., countries, districts, land parcels with their po-
litical, administrative, and cadastral boundaries). We denote this kind of entities
as crisp or determinate spatial objects.

However, to an increasing degree, there are many geometric applications in
which positions of points are not exactly known, the locations and routes of
lines are unclear, and regions do not have sharp boundaries, or their boundaries
cannot be precisely determined. Examples are social or natural phenomena (e.g.,
terrorists’ refuges and escape routes, population density, unemployment rate, soil
quality, vegetation, oceans, oil fields, biotopes, deserts). We denote this kind of
entities as rough or indeterminate spatial objects.

In GIS and SDBS1, spatial data types (see [2] for a survey) like point, line, or
region provide fundamental abstractions for modeling the structure of geomet-
ric entities, their relationships, properties, and operations. This paper presents
an object model for defining rough spatial data types for rough points, rough
lines, and rough regions. We use the term rough for the characterization of these
types since we leverage concepts of rough set theory [3] as a formal framework.
The types are part of a novel data model called ROSA (Rough Spatial Algebra).
The model rests on “traditional” (i.e., exact) modeling techniques and extends,
rather than replaces, the current theory of SDBS and GIS. Further, moving from
an exact to a rough domain does not necessarily invalidate conventional (com-
putational) geometry for executing spatial operations; it is merely an extension.
Hence, current exact object models can be considered as special cases of our
rough spatial object model. We show in this paper that all rough spatial data
types and some main rough spatial operations can be defined generically, i.e.,
without type-specific definitions. Since our rough spatial data types and oper-
ations are based on their crisp counterparts and can be expressed by them, we
obtain executable specifications that can be directly used as an implementation.
In this paper, we do not aim at developing a type system with a “complete”
set of operations and predicates. The goal is more to demonstrate the power,
simplicity, and expressiveness of our rough spatial data model.

Section 2 discusses related work. Section 3 informally introduces the concept
of rough spatial objects and motivates it by giving some application examples.
Section 4 gives a generic definition of rough spatial data types and rough spatial
operations. Finally, Section 5 draws some conclusions and addresses future work.

2 Related Work

The problem of spatial vagueness, indeterminacy, uncertainty and imprecision
with their many different nuances and diversities has been a research topic in
GIS (but not SDBS) for a long time. As a trend, GIS clearly advocate fuzzy set
theory [4] as an appropriate formal framework for solving this problem. Despite
1 It is important to understand that SDBS deal exclusively with vector data in contrast

to image databases that exclusively handle raster data.
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many concepts and ideas, unfortunately, no overall and satisfying solution has
been found so far. In particular, the implementation of fuzzy concepts turns out
to be rather difficult in the spatial domain.

We regard rough set theory [3] as an appropriate, alternative option and com-
promise for representing spatial vagueness. This approach is based on represent-
ing a set X by a pair of determinate lower and upper approximations. From the
lower approximation, we know that its elements belong definitely to X . The up-
per approximation is the set of elements that possibly belong to X . In this paper,
we demonstrate how this concept can be seamlessly transferred to a model of
rough spatial objects. The use of rough sets for representing vague spatial data
has been proposed before in a few publications [5,6,7]. These approaches have
in common that they are based on image data but not on vector data.

A benefit of the fact that the lower and upper approximations of a set are crisp
implies for the transferal to the spatial domain that we can leverage the existing
definitions, techniques, data structures, and algorithms of exact spatial object
models. As an example, in the past, we have developed the ROSE (Robust Spatial
Extension) Algebra [2,8], which provides crisp spatial data types like point, line,
and region together with a comprehensive collection of spatial operations and
predicates. Such an algebra (type system) can be taken to define our Rough
Spatial Algebra ROSA and to obtain an executable specification of rough spatial
operations.

3 What Are Rough Spatial Objects?

As indicated before, our concept of rough spatial objects necessitates a general,
underlying crisp spatial object model which incorporates the determinate spatial
data types point, line, and region. These data types must be defined in a way so
that they are closed under (appropriately defined) geometric union, geometric
intersection, geometric difference, and geometric complement operations. Such
crisp type systems have, e.g., been formally defined in [2,8,9,10], and we will
leverage them in this paper. Informally, these models represent a point object
as a finite set of individual points, a line object as a finite set of disjoint blocks
where each block represents a finite set of curves, and a region object as a finite
set of disjoint, connected areal components called faces possibly with disjoint
holes (see Figure 1). Examples of point objects are collections of lighthouses,
collections of junctions, and collections of landmarks. Examples of line objects
are streets, railways, and waterways. Examples of regions are districts, land
parcels, and parks.

The central idea of rough spatial objects is to represent them by a lower ap-
proximation, which specifies those object parts that definitely belong to the
rough spatial object, and an upper approximation, which, in addition, speci-
fies those object parts that possibly partially or completely belong to the rough
spatial object. As an illustrating example, we consider a homeland security sce-
nario to introduce our concept for dealing with spatial vagueness and to demon-
strate its usability. Secret services (should) have knowledge of the whereabouts of
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Fig. 1. Examples of a crisp point object (a), a crisp line object (b), and a crisp region
object (c). Each collection of components forms a single crisp spatial object.

terrorists. For each terrorist, some of their refuges are precisely known, some are
not and only conjectures. We can model these locations as a rough point object
where the precisely known locations are called the lower point approximation
and all possible locations are called the upper point approximation. Secret ser-
vices are also interested in the routes a terrorist takes to move from one refuge
to another. These routes can be modeled as rough line objects. Some paths have
definitely been identified as terrorist routes. They form the lower line approxi-
mation of the rough line object. All possible paths that terrorists can have taken
yield its upper line approximation. Knowledge about areas of terroristic activi-
ties is also important for secret services. From some areas it is well known that
a terrorist operates in them; we call them the lower region approximation. From
other areas we can only assume that they are the target of terroristic activity.
We summarize all possible areas in the upper region approximation. Figure 2
gives some examples. Grey shaded areas, straight lines, and grey points indi-
cate lower approximations; areas with white interiors, dashed lines, and white
points refer to vague parts and form the upper approximations together with
the determinate parts.

Based on this scenario and taking into account spatial vagueness, we are able
to pose interesting queries. We can ask for the locations where any two terrorists
have taken the same refuge. We can determine those terrorists that operated in
the same area. We can compute the locations where routes taken by different
terrorists crossed each other. Many further queries are possible. Vague concepts
offer a greater flexibility for modeling properties of spatial phenomena in the real

� � � � � � � � �

Fig. 2. Examples of a rough point object (a), a rough line object (b), and a rough
region object (c). Each collection of components forms a single rough object.
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world than determinate concepts do. Still, vague concepts comprise the modeling
power of determinate concepts as a special case.

In this sense, many scenarios can be found that could make meaningful use
of the concept of rough spatial objects. They all have in common that a rough
spatial object (e.g., a rough line) is described by a pair of two crisp spatial
objects (e.g., two crisp lines) where the first object is topologically contained
in or inside of the second object. The first crisp spatial object, called the lower
object approximation, describes the determinate parts of the rough spatial object,
i.e., the parts that definitely and always belongs to the rough object. The second
crisp spatial object, called the upper object approximation, describes the possible
parts of the rough spatial object, i.e., the parts that definitely or perhaps belong
to the rough object.

4 A Generic Definition of Rough Spatial Data Types and
Rough Spatial Set Operations

Based on the motivation in the previous section, in Section 4.1, we first intro-
duce some needed concepts from crisp (i.e., determinate) spatial type systems.
Afterwards, we give a formal definition of rough spatial data types and rough
spatial set operations (Section 4.2). An interesting observation is that these def-
initions can be given in a generic manner, i.e., type-specific considerations are
unnecessary.

4.1 Crisp Spatial Data Types and Crisp Spatial Set Operations

Since rough sets are based on the concept of sets, the first issue is how crisp
spatial objects can be modeled as sets. In this paper, we are exclusively dealing
with two-dimensional spatial objects in the plane. Hence, crisp spatial objects are
formally defined as point sets and subsets of the Euclidean space R2 that have to
satisfy certain topological constraints in order to be well defined for geographic
applications. The definition of the crisp spatial data types point, line, and region
[10] is based on point set theory and point set topology [11]. We obtain:

(i) point = {P ⊂ R2 | P is finite}
(ii) line = {L ⊂ R

2 | (a) L =
⋃n

i=1 fi([0, 1]) with n ∈ N0
(b) ∀ 1 ≤ i ≤ n : fi : [0, 1] → R

2 is a continuous
mapping

(c) ∀ 1 ≤ i ≤ n : |fi([0, 1])| > 1}
(iii) region = {R ⊂ R

2 | (a) R is regular closed
(b) R is bounded
(c) The number of connected sets of R is finite}

A set is regular closed if it is equal to the closure of its interior [11]. The above
definition gives an unstructured view of crisp spatial objects. Another equivalent
definition leads to a structured view [10], which we only describe informally here.
The unstructured and structured views for the data type point coincide. A line
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object is assembled from a finite number of connected components called blocks ;
each block contains a finite number of curves. A region object consists of a finite
number of disjoint faces ; each face possibly contains a finite number of disjoint
holes. An illustration of these informal descriptions is shown in Figure 1.

For α ∈ {point, line, region}, each type α is closed under the geometric set
operations union (⊕ : α × α → α), intersection (⊗ : α × α → α), and difference
(	 : α × α → α) [10]. The partial order (α, ⊆) is a distributive lattice (α, ⊕, ⊗).
But it is not a complemented lattice, and consequently not a Boolean algebra,
since the spatial data types are not closed under the operation complement (∼).
That is, ∀ v ∈ α : ∼v /∈ α. The identity of ⊗ is denoted by 1, which corresponds
to R2. The identity of ⊕ is presented by 0, which corresponds to the empty
spatial object (empty point set). The geometric set operations of the type point
are equal to the standard set operations. The operation ⊕ is equal to the set
operation ∪ for the types line and region. The geometric operations ⊗ and 	
require a regularization step so that they cannot produce geometric anomalies.

4.2 Rough Spatial Data Types and Rough Spatial Set Operations

Syntactically, the extension of a crisp spatial data type to a corresponding rough
spatial type is given by a type constructor ρ as follows:

ρ(α) = α × α ∀ α ∈ {point, line, region}

That is, each rough spatial data type is represented as a pair of correspond-
ing crisp spatial data types. For example, for α = point we obtain ρ(point) =
point × point, which we also name rpoint. Accordingly, the data types rline and
rregion are defined. For a rough spatial object R = (R, R) ∈ ρ(α), we call R ∈ α
the lower object approximation of R, and R ∈ α denotes the upper object ap-
proximation of R.

Semantically, the lower (minimal, guaranteed) object approximation repre-
sents the determinate, crisp part of R, i.e., the area which definitely belongs to
R. The upper (maximally possible, speculative) object approximation describes
the potential spatial extent of R. Hence, we know that 1−R = R

2 −R does defi-
nitely not belong to R. Therefore, the area of spatial determinacy is R∪(R2−R).
The area of spatial vagueness extends over R − R. It represents the indetermi-
nate, vague part of R, i.e., the area for which we cannot say with any certainty
whether it or parts of it belong to R or not. Maybe it or parts of it belong to R,
maybe this is not the case. We could also say that this is unknown or unclear.
Note that, in general, R − R /∈ α and R 	 R ∈ α hold. To enable the intended
semantics described above, we require:

∀ α ∈ {point, line, region} ∀ R = (R, R) ∈ ρ(α) : R ⊆ R

In the spatial domain, subset relationships are expressed by so-called topolog-
ical relationships [10], which characterize the relative position of spatial objects
to each other. Examples of such relationships are disjoint , meet , and overlap. As
[10] shows, the subset relationship depends on the combination α × α of spatial
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data types considered and corresponds to several topological relationships. In
an abbreviated form, on the basis of so-called clustered topological relationships
(indicated by a subscript ‘c’), the above requirement can be rewritten as:

∀ α ∈ {point, line, region} ∀ R = (R, R) ∈ ρ(α) :
equalc(R, R) ∨ insidec(R, R) ∨ coveredByc(R, R)

For α = point, we obtain three (unclustered) topological relationships, for
α = line ten relationships, and for α = region five relationships.

Let points : ρ(α) → R

2 be an auxiliary function that yields the (unknown)
point set of a rough spatial object R = (R, R) ∈ ρ(α). We can conclude that

R ⊆ points(R) ⊆ R

If R = R, R is either the empty rough spatial object 0 = (∅,∅) or corresponds
to the crisp spatial object R. The 1-element is 1 = (R2,R2) and corresponds to
the Euclidean plane. Even if we do not know the exact point set of R, we assume
and require that points(R) is not arbitrary but compatible to α, i.e.,

points(R) ∈ α and points(R) 	 R ∈ α

Using the characteristic function χ deciding about the existence or non-
existence of an element in a set, we obtain χ(p) = 1 for all p ∈ R, χ(p) = 0
for all p ∈ R2 − R, χ(p) = 1 ∨ χ(p) = 0 for all p ∈ R − R, and χ(p) = 1 for
all p ∈ points(R) ∈ α. Note the deliberate use of set-theoretic operations. In
particular, possible common boundary points of R and R 	 R are mapped to 1.

Let R = (R, R), S = (S, S) ∈ ρ(α). We then define the geometric set opera-
tions union, intersection, and difference on rough spatial objects as follows:

R union S = (R ⊕ S, R ⊕ S)
R intersection S = (R ⊗ S, R ⊗ S)

R difference S = (R 	 S, R 	 S)

The equalities and subset relationships used in the following are derived from
[3]. For the operation union, we define the lower object approximation in a
more pessimistic and stricter way since R ⊕ S ⊆ R ⊕ S. For the upper object
approximation, there is no difference since R ⊕ S = R ⊕ S. For the operation
intersection, we are rather optimistic for the upper object approximation since
R ⊗ S ⊇ R ⊗ S. For the lower object approximation, R ⊗ S = R ⊗ S holds. For
the operation difference, for the lower object approximation, we must subtract
both the intersecting determinate and indeterminate parts of S from R. Only
the result of this computation can be definitely part of the difference of R and
S. For computing the upper object approximation, we only have to subtract
the definite parts of S from R since they can definitely not belong to R. The
particular reason why all operations make use of R, R, S, and S is that these
approximations are known and can be used in an implementation.
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5 Conclusions

In this paper, we have made a first step towards a simple but expressive data
model of points, lines, and regions that is capable of describing many different
aspects of spatial vagueness. It is based on rough set theory and a canonical
extension of determinate spatial data models. This facilitates the treatment of
rough and exact objects in one single model. Since our approach is based on exact
spatial modeling concepts, it allows us to build upon existing work and simplifies
many definitions. In particular, we can leverage already existing implementations
of crisp spatial type systems (like the ROSE Algebra) to realize rough spatial
objects with only minimal effort by executable specifications.

The data model presented in this paper is part of ROSA, our Rough Spatial
Algebra. So far, ROSA is incomplete. We plan to supplement it by further spatial
operations, topological predicates, directional predicates, numerical operations,
and more. A later step refers to the implementation of ROSA on the basis of our
ROSE Algebra and to the embedding of ROSA into a database query language.
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Abstract. From the classic view in which a concept consists of the set of
extents and the set of intents, a concept learning system extended from a
formal context is introduced and two concepts such as an under concept
and an over concept are defined. Any pair of subsets from extents and
intents in this concept learning system can be changed to an under or an
over concept. Further it can be changed to a concept by learning from
the set of extents or from the set of intents. It is proved that the concept
learned in this framework is an optimal concept. This process of learning
a concept describes the recognizing ability from unclear to clear.

Keywords: Concept learning system, Formal context, Formal concept
analysis, Learning models.

1 Introduction

Learning theory is original used to the empirical study from the behaviorist
paradigm in psychology. Later, computational learning theory developed and
applied by many scholars coming from other fields such as computer science,
mathematics etc. Their studies focused on learning-theoretic epistemology in-
clude logical reliability [1,2] and means-ends epistemology [7].

Concept learning was primarily a function of contiguity and stimulus-response
generalization. Merrill described a model that focuses on attributes and examples
[3]. One of the major goals of this model was to reduce three typical errors in
concept formation: undergeneralization, overgeneralization and misconception.
Tennyson suggest a model for concept teaching that has three stages [11], this
model acknowledges the declarative and procedural aspects of cognition.

There are many theoretical views of concepts, concept formation and learning
[5,9,10,12]. The classical view treats concepts as a pair of sets of necessary and
sufficient conditions [13,16], in which every concept is described as two parts, the
intent and the extent. The intent of a concept consists of all attributes that are
valid for all those objects to which the concept applies. The extent of a concept
is the set of objects which are concrete instances of the concept.

In my view, the essences of concept learning are investigative strategies of
concept formations. Different strategies will deduce different combinations of
objects and attributes. These combinations may be approximated recognizing
to a concept [4,6,8,14]. I try to introduce a concept learning system based on
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thoughts of Yao [15], and define some special combinations which can be ap-
proximated to a concept. For any pair of subsets from objects and attributes
in this learning system, an under concept, an over concept and a concept can
be obtained by learning from models established in this paper. This process of
learning a concept describes the recognizing ability from unclear to clear.

The paper is organized as follows. Section 2 recalls basic definitions of the
formal concept. Section 3 introduces a concept learning system extended from
a formal context and gives definitions of under and over concepts. Section 4
establishes models which can be learned to form concepts. Section 5 concludes
the paper.

2 Formal Concept

Definition 1. Let U be a finite set of objects, A be a finite set of attributes,
and I ⊆ U × A be the set of relations between objects and attributes, then the
triple (U, A, I) is called a formal context. Further, if ∀x ∈ U, ∃a1, a2 ∈ A, such
that (x, a1) ∈ I, (x, a2) /∈ I, and ∀a ∈ A, ∃x1, x2 ∈ U , such that (x1, a) ∈
I, (x2, a) /∈ I, then the formal context is called regular.

A regular formal context describes an object has at least one attribute and
reversely an attribute is possessed by at least one object. For simplicity, we
suppose the formal context mentioned in this paper is regular.

Let (U, A, I) be a formal context, if X ⊆ U, B ⊆ A, we define algorithms on
the set of objects and the set of attributes as follows:

X∗ = {a ∈ A : ∀x ∈ X, (x, a) ∈ I}. (1)
B∗ = {x ∈ U : ∀a ∈ B, (x, a) ∈ I}. (2)

X∗ represents the set of objects X having common attributes from A and B∗

represents the set of attributes B is possessed by the objects from U .
Obviously, if X, X1, X2 ⊆ U, B, B1, B2 ⊆ A and ∅U , ∅A denote empty set on

U, A respectively, then these two operators have the following properties:

(1) U∗ = ∅A, ∅∗A = U, ∅∗U = A, A∗ = ∅U .

(2) (X1 ∪ X2)∗ = X∗
1 ∩ X∗

2 , (B1 ∪ B2)∗ = B∗
1 ∩ B∗

2 .

(3) X∗∗ ⊇ X, B∗∗ ⊇ B.

Definition 2. Let (U, A, I) be a formal context, ∀X ⊆ U, B ⊆ A, if X∗ =
B, B∗ = X, then (X, B) is called a formal concept.

A formal concept is a pair of subsets from objects and attributes, in which objects
and attributes are reflected each other uniquely. Generally, the set of objects is
called the extent and the set of attributes is called the intent.
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3 Concept Learning System

Definition 3. Let U be a finite set of objects, A be a finite set of attributes,
L : 2U → 2A is called an extent-intent operator if L satisfies:

L(∅U ) = A, L(U) = ∅A. (3)
L(X1 ∪ X2) = L(X1) ∩ L(X2) (X1, X2 ⊆ U). (4)

and H : 2A → 2U is called an intent-extent operator if H satisfies:

H(∅A) = U, H(A) = ∅U . (5)
H(B1 ∪ B2) = H(B1) ∩ H(B2) (B1, B2 ⊆ A). (6)

if the two operators further satisfy:

H(L(X)) ⊇ X, L(H(B)) ⊇ B. (7)

Then the quadruplet (U, A, L, H) is called a concept learning system.

A concept learning system has following properties:

(1) X1 ⊆ X2 ⇒ L(X2) ⊆ L(X1).
(2) B1 ⊆ B2 ⇒ H(B2) ⊆ H(B1).
(3) L(H(L(X))) = L(X), H(L(H(B))) = H(B).

Theorem 1. Let (U, A, I) be a formal context, if L(X) = X∗, H(B) = B∗, then
(U, A, L, H) forms a concept learning system. Conversely, if (U, A, L, H) is a
concept learning system, there exists a formal context (U, A, I), ∀X ⊆ U, B ⊆ A,
such that X∗ = L(X), B∗ = H(B).

Proof. A formal context changed to a concept learning system is obviously. We
prove the converse side. Denote I = {(x, a) : x ∈ H({a})}. For B ⊆ A, we have

B∗ = {x ∈ U : ∀a ∈ B, (x, a) ∈ I}
= {x ∈ U : ∀a ∈ B, x ∈ H({a})}
= {x ∈ U : x ∈

⋂

a∈B

H({a}) = H(B)}

= H(B).

If x ∈ H({a}), then L({x}) ⊇ L(H({a})), therefore L({x}) ⊇ {a} by formula
(7), i.e. a ∈ L({x}) and vice versa. Then I = {(x, a) : a ∈ L({x})}. Similarly
for X ⊆ U , we have X∗ = L(X).

From Theorem 1, a concept learning system is corresponded to a formal context,
i.e. it is an extension from a formal context.

Denote all concepts in (U, A, L, H) by C = {(X, B) : L(X) = B, H(B) = X}.
Let (X1, B1), (X2, B2) ∈ C and (X1, B1) ≤ (X2, B2) represents X1 ⊆ X2, then
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(C, ≤) is a partial order relation and forms a complete lattice. The meet and join
of the two concepts are defined as:

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, L(H(B1 ∪ B2))). (8)
(X1, B1) ∨ (X2, B2) = (H(L(X1 ∪ X2)), B1 ∩ B2). (9)

We call (X1, B1) as a sub-concept of (X2, B2), conversely call (X2, B2) as a
sup-concept of (X1, B1).

Definition 4. Let (U, A, L, H) be a concept learning system, ∀X ⊆ U, B ⊆ A,
(X, B) is called an under concept if L(X) ⊆ B, H(B) ⊆ X, and (X, B) is called
an over concept if L(X) ⊇ B, H(B) ⊇ X.

Denote all under and over concepts as:

CUN = {(X, B) : L(X) ⊆ B, H(B) ⊆ X}. (10)
COV = {(X, B) : L(X) ⊇ B, H(B) ⊇ X}. (11)

(CUN , ≤) or (COV , ≤) doesn’t form a partial order relation, but the meet operator
(8) and the join operator (9) also hold.

Theorem 2. Let (U, A, L, H) be a concept learning system, ∀X ⊆ U, B ⊆ A,
under concepts are obtained by:

(H(L(X)), L(X) ∪ B) ∈ CUN . (12)
(X ∪ H(B), L(H(B))) ∈ CUN . (13)

Proof. Because L(H(L(X)))=L(X) ⊆ L(X)∪B and H(L(X)∪B) = H(L(X))∩
H(B) ⊆ H(L(X)), then (H(L(X)), L(X)∪B) ∈ CUN by formula (10). Similarly,
(X ∪ H(B), L(H(B))) ∈ CUN .

Theorem 3. Let (U, A, L, H) be a concept learning system, ∀X ⊆ U, B ⊆ A,
over concepts are obtained by:

(X ∩ H(B), B ∪ L(X)) ∈ COV . (14)
(X ∪ H(B), B ∩ L(X)) ∈ COV . (15)

Proof. Because X ∩ H(B) ⊆ X and X ∩ H(B) ⊆ H(B), then L(X ∩ H(B)) ⊇
L(X)∪L(H(B)) ⊇ L(X)∩B. And H(B∪L(X)) = H(B)∩H(L(X)) ⊇ H(B)∩X .
Thus (X ∩ H(B), B ∪ L(X)) ∈ COV by formula (11). Similarly, (X ∪ H(B), B ∩
L(X)) ∈ COV .

Example 1. A formal context (U, A, I), where U = {1, 2, 3, 4}, A = {a, b, c, d},
I ⊆ U × A.

From Theorem 1, there exists a concept learning system (U, A, L, H), in which
L(X) = X∗, H(B) = B∗, corresponding to the formal context (U, A, I). All
concepts C, under concepts CUN and over concepts COV are illustrated in Fig.1,
Fig.2 and Fig.3.
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Table 1. A formal context

U a b c d

1 1 0 1 1
2 1 1 0 0
3 0 0 1 0
4 1 1 0 0

,U

124,a 13,c

24,ab 1,acd

, A

Fig. 1. All concepts C

,U

124,a 124,ab

12,ac 12,ad 14,ac 14,ad 24,ab 13,c 13,ac 13,ad

12,acd 14,acd 13,acd

1,acd

, A

Fig. 2. All under concepts CUN

,U

124,a

24,a 24,b 24,ab 12,a 14,a 13,c

2,ab 4,ab 3,c 1,acd

, A

Fig. 3. All over concepts COV

4 Concept Learning Models

For a concept learning system (U, A, L, H), ∀X ⊆ U, B ⊆ A, a pair (X, B) can
be changed to an under or over concept by Theorem 2 or 3, but it is just a
partial acquaintance with a concept. This section, we further study how it can
be changed to a concept.

Theorem 4. Let (U, A, L, H) be a concept learning system, ∀X1 ⊆ U, B1 ⊆
A, H(B1) �= ∅, a pair (X1, B1) can be changed to a concept by learning from the
set of extents:

Xn = Xn−1 ∪ H(Bn−1) (n ≥ 2) (16)
Bn = L(Xn) (n ≥ 2) (17)

then there must exist m, such that (Xm, Bm) ∈ C.
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Proof. Suppose (X1, B1) /∈ C. Due to Bn = L(Xn) (n ≥ 2), we have H(Bn) ⊇
Xn. Xn is monotonic non-decreased, U is a finite set, so there must exist m,
such that Xm+1 = Xm. Then Xm+1 = Xm = Xm ∪ H(Bm), i.e. H(Bm) ⊆ Xm.
Therefore, H(Bm) = Xm, i.e. (Xm, Bm) ∈ C.

Theorem 5. Let (U, A, L, H) be a concept learning system, ∀X1 ⊆ U, B1 ⊆
A, L(X1) �= ∅, a pair (X1, B1) can be changed to a concept by learning from the
set of intents:

Bn = Bn−1 ∪ L(Xn−1) (n ≥ 2) (18)
Xn = H(Bn) (n ≥ 2) (19)

then there must exist m, such that (Xm, Bm) ∈ C.

Proof. It can be proved similarly as Theorem 4.

Theorem 6. Let (U, A, L, H) be a concept learning system, ∀X1 ⊆ U, B1 ⊆
A, L(X1) �= ∅, H(B1) �= ∅, denote:

CEX(X1, B1) = {(X, B) : X ⊇ X1 ∪ H(B1)}. (20)
CIN (X1, B1) = {(X, B) : B ⊇ B1 ∪ L(X1)}. (21)

Then ∀(X, B) ∈ CEX(X1, B1), (Xm, Bm) ≤ (X, B) holds, where (Xm, Bm) from
Theorem 4. And similarly, ∀(X, B) ∈ CIN (X1, B1), (Xm, Bm) ≥ (X, B) holds,
where (Xm, Bm) from Theorem 5.

Proof. Suppose (X, B) ∈ CEX , because X ⊇ X1∪H(B1), then X ⊇ X1, X ⊇ B1,
therefore, X ⊇ X2. Due to B2 = L(X2) ⊇ L(X) = B, consequently, H(B2) ⊆
H(B) = X , so X ⊇ X2∪H(B2). For n ≥ 1, we have X ⊇ Xn∪H(Bn). Thus X ⊇
Xm, i.e. (Xm, Bm) ≤ (X, B). Similarly, ∀(X, B) ∈ CIN (X1, B1), (Xm, Bm) ≥
(X, B) holds.

Example 2. For the concept learning system (U, A, L, H) illustrated in Example 1,
if X1 = {12}, B1 = {ab}, due to L(X1) = L(12) = {a}, H(B1) = H(ab) =
{24}, a pair (X1, B1) isn’t an under or over concept. Using the above learning
process, a concept (124, a) and a concept (24, ab) are obtained by Theorem 4 and
Theorem 5. And we know that (124, a) and (24, ab) are minimal sup-concept and
maximal sub-concept respectively in Fig.1.

If ∀X1 ⊆ U, B1 ⊆ A, (X1, B1) ∈ CUN , then a concept can also be learned by
following models.

Theorem 7. Let (U, A, L, H) be a concept learning system, ∀X1 ⊆ U, B1 ⊆
A, H(B1) �= ∅, a concept can be obtained by learning from the set of extents:

Xn = Xn−1 ∩ H(Bn−1) (n ≥ 2) (22)
Bn = L(Xn) (n ≥ 2) (23)

then there must exist m, such that (Xm, Bm) ∈ C.
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Proof. It can be proved similarly as Theorem 4.

Theorem 8. Let (U, A, L, H) be a concept learning system, ∀X1 ⊆ U, B1 ⊆
A, L(X1) �= ∅, a concept can be obtained by learning from the set of intents:

Bn = Bn−1 ∩ L(Xn−1) (n ≥ 2) (24)
Xn = H(Bn) (n ≥ 2) (25)

then there must exist m, such that (Xm, Bm) ∈ C.

Proof. It can be proved similarly as Theorem 4.

Theorem 9. Let (U, A, L, H) be a concept learning system, ∀X1 ⊆ U, B1 ⊆
A, L(X1) �= ∅, H(B1) �= ∅, denote:

CEX(X1, B1) = {(X, B) : X ⊆ X1 ∩ H(B1)}. (26)
CIN (X1, B1) = {(X, B) : B ⊆ B1 ∩ L(X1)}. (27)

Then ∀(X, B) ∈ CEX(X1, B1), (Xm, Bm) ≥ (X, B) holds, where (Xm, Bm) from
Theorem 7. Then ∀(X, B) ∈ CIN (X1, B1), (Xm, Bm) ≤ (X, B) holds, where
(Xm, Bm) from Theorem 8.

Proof. It can be proved similarly as Theorem 6.

Example 3. For the concept learning system (U, A, L, H) illustrated in Example 1,
we choice X1 = {12}, B1 = {ad} in Fig.2. Then (12, ad) is an under concept. Using
the above learning process, a concept (1, acd) and a concept (124, a) are obtained
by Theorem 7 and Theorem 8. And we know that (1, acd) and (124, a) are maximal
sub-concept and minimal sup-concept respectively in Fig.1.

5 Conculsion

The problem of concept learning originated from cognitive science has been paid
attention to many researchers in many other fields. We study the problem of
concept formations based on the theory of formal concept analysis. A concept
learning system is extended from a formal context and two kinds of concepts are
defined in this system. Any pair (X, B) in this system not only can be changed
to the two concepts and also can be changed to a concept. This process simulates
different investigative strategies of concept formations.
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Abstract. Ontologies are of vital importance to the successful realization of 
semantic Web. Currently, the existing concepts in ontologies are not approxi-
mate but clear. However, in real application domains many concepts are diffi-
cult to define explicitly. In order to fulfill semantic Web, it’s not only necessary 
but also important to study approximate concepts and approximate ontologies 
generated from the approximate concepts. In this paper, based on the principle 
of granular computing, a granulation model for representing approximate on-
tologies was constructed. Then algorithms for capturing approximate concepts 
and generating approximate ontologies were proposed and illustrated with a real 
example.  

Keywords: Concept approximation, granular computing, ontologies. 

1   Introduction 

Generally, an ontology is an explicit, agreed specification about a shared conceptuali-
zation. It gathers a set of concepts that are considered relevant to a given domain. 
However, in real application domains many concepts are difficult to define explicitly. 
Recently, some researchers have studied how to transfer the representation of ontolo-
gies from the distinguished logistic categorization into fuzzy and approximate struc-
ture. Stoilos and Straccia used fuzzy theory to extend fuzzy concepts and fuzzy  
axioms, and fulfilled the reasoning about imprecise concepts and roles [1,2,3]. Do-
herty [4] also constructed a formal framework for defining approximate concepts, 
approximate ontologies and approximate operations based on generalizing rough set 
theory. Stepaniuk and Skowron [8] studied granulated information systems and granu-
lar approximate space, and discussed the granular framework of approximation and 
dependency relationship between concepts.  

Though ontologies are now widely used in the information technology community. 
Several barriers must be overcome before ontologies become practical and useful 
tools. A critical issue is the ontology construction, i.e., the task of identifying, defin-
ing, and entering the concept definitions. In case of large and complex application 
domains this task can be lengthy, costly, and controversial. Therefore, Many tech-
niques of machine learning have been applied to constructing ontologies from data 
sources with different types like structural, semi-structural or non-structural data 
sources [15]. 
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A comprehensive methodology for developing ontologies includes ontology cap-
ture, ontology coding and integrating existing ontologies. Ontology capture mainly 
involves the identification of the key concepts and relationships in the domain of 
interest; The main objectives of this paper are to build a granulation model for repre-
senting approximate concepts and approximate ontologies, and present algorithms for 
automatically generating approximate ontologies based on granular computing from 
information tables. 

The rest of the paper is organized as follows. In the second section, based on 
granular computing, a granulation model for representing approximate ontologies is 
introduced. In the third section, algorithms for capturing approximate concepts and 
generating approximate ontologies are described. A real world example that proves 
the algorithms useful is illustrated in the fourth section. Finally the paper gives con-
clusion and directs the future work. 

2   Granulation Model for Approximate Ontologies  

Generally, an ontology O (called lightweight ontology) can be defined as a 3-tuple: 
),,( RICO = , where C is a set of classes, which define the concepts used to the real 

object description; I is a set of instances, which represents the instance of the concept 
defined in the set of classes; R is a set in relations on the set of classes. So, capturing 
concepts and their relations from the given data source is a main procedure in con-
structing the ontology of the domain of interest. In the paper, we discuss the generat-
ing of approximate ontologies from information tables or structural data sources. We 
firstly create a granulation model of approximate ontologies. 

Definition 1. (Information Table) Let IT = (U, A, V, f) be an information table, where 
U is the universe of discourse objects, },...,{ 1 AaaA = is a set of attributes, 

},...,{
1 Aaa VVV =  is a set of attribute values, and f: VAU →×  is an information 

function. 

Definition 2. (Tolerance Function) Let τ : ]1,0[→×UU  be a tolerance function on 

universal set U, such that Uyx ∈∀ , ，τ (x, x)=1 andτ (x, y)=τ (y, x). 

Definition 3. (Parameterized Tolerance Relation) Given a tolerance function, the 
parameterized tolerance relation is defined as: τp={(x, y)| pyx ≥),(τ }, 

where ]1,0[∈p  is a real number called threshold value.  

Definition 4. (Tolerance Space) A tolerance space is defined as a 3-tuple TS=<U,τ, p>. 

Definition 5. (Tolerance Class) Let UY ⊆  be a tolerance class satisfying 
Yyxyx p ∈∀ ,|τ . 

Definition 6. (Neighborhood Function) Neighborhood Function with respect toτ p is 

defined as: )}',(|'{)( uuUuUun p

def
p ττ ∈=∈  

Considering a tolerance relation between sets, we introduce the following definitions. 
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Definition 7. (Extension Inclusion Function) Let 3-tuple TS=<U, τ, p> be a tolerance 

space and UUU ⊆21 , , then an extension inclusion function on the tolerance space TS 

is defined as：
φ

τ

ν
≠∈∃∈

=
1|1|

|)]}2(1[2|11{|

121 {),(
Uif

U

upnuuUu

otherwise

def

TS UU  

Definition 8. (Power Tolerance Space) Let 3-tuple TS=<2U, τ, p> be a power toler-

ance space, such that (1) )},(),,(min{),(,2, 12212121 UUUUUUUU TSTS

def
U νντ =∈  (2) p∈ [0, 1] 

Definition 9. (Extension Neighborhood Function) An extension neighborhood func-

tion is defined as )',(|2')2( uuuun p

U
def

Up ττ ∈=∈ U  

Information granulation is a grouping of elements based on their indistinguishability, 
similarity, proximity or functionality [13]. This definition does not reflect the fact that 
information granules should be considered as being semantically distinct from the 
granulated entities. However, on practical point of view, information granulation 
should be considered as a semantically meaningful grouping of elements. So, in our 
research, we define a concept granule as follows: 

Definition 10. (Concept Granule) Let 3-tuple CG=(EG,IG,RG) be a concept granule, 
where EG is the extension of the concept granule, IG is the intension of the concept 
granule, RG is the abstract representation or the semantic representation of the con-
cept granule, standing for some classifying (or fuzzy classifying) characters. 

The EG is related to a tolerance class or a neighborhood. IG and RG are specified 
according to the context of application domains. For example, let U be a set of stu-
dents, and EG is a subset of U, if IG is a condition that satisfies 

6'| ≤∈ gradestudentsEGx , then RG may be denoted by “pupil” to reflect the ab-

stract meaning of EG. In this paper, IG denoted by a vector stands for the center point 
of the concept granule. RG is described by a 2-tuple and stands for the meaning of the 
concept granule. In the given real world example of this paper, IG and RG are gener-
ated by function operations. We call concept granules generated from the tolerance 
space as approximate concepts. 

Definition 11. (Granularity of Concept Granule) Let ),,( 1111 rgigegG =  and 

),,( 2222 rgigegG =  are two concept granules, if 21 egeg ⊆ , namely G1 included in 

G2, then we call that the granularity of the G1 is finer than that of the G2 in the intent of 
the concept granule, in other words, the intent of the G1 is more concrete than that of 
the G2 or the granularity of the G2 is coarser than that of the G1, denoted by 21 GG p . 

The granularity of concept granules not only reflect the inclusion relation between 
concept granules, but also show that there is a hierarchy among concept granules. 

Definition 12. (Concept super-granule and sub-granule) Let ),,( 1111 rgigegG = and 

),,( 2222 rgigegG =  are two concept granules. If 21 GG p , then the G2 is defined as a  
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concept super-granule of G1, and G1 is a concept sub-granule of G2. If there does not 
exist a concept granule ),,( 3333 rgigegG = , such that 231 GGG pp , 31 GG ≠  

and 32 GG ≠ , then G2 is called as the direct concept super-granule of G1 (parent-granule, 

for short), and G1 is the direct concept sub-granule of G2 (child-granule, for short). 

Definition 13. (Approximate Ontology) Let TS=（U, τ, p） be a tolerance space, then 
3-tuple ),,( pTS CGUO τ=  is defined as an approximate ontology on the tolerance 

space, where CG is a set of concept granules (or approximate concepts). 

3   Algorithms for Approximate Ontologies Building 

After a granulation model of approximate ontologies is introduced, in this section, 
capturing approximate concepts and generating approximate ontologies are discussed. 
Firstly, according to the given tolerance relation and the given tolerance threshold 
value, information granules, called the initial concept granules, are formed. Secondly, 
we try to obtain new concept granules on the basis of existing concept granules by 
computing each extension neighborhood function until no new concept granule is 
formed. Finally, we can build approximate ontologies by generating the tree structure 
of concept granules. 

Let IS= (U, A, V, f) be an information table, where the number of individuals is 
|U|=N，the number of attributes is |A|=M. Supposing every attribute is a quantitative 
attribute and the attribute values of the uth individual is denoted by ],...,[ 1 uMu vv , 

then the intension of the concept granule is described by IG[1,…,M]. 

3.1   Generating Intension and Abstract Meaning of Concept Granules 

Function F_IG(u): 
Input: the extension of concept granules; 
Output: the intension of concept granules; 
F_IG (EG) {IG [1… M] = [0… 0] ；//initiate the intension of a concept granule 

For all u∈EG do { IG[1... M] =IG[1… M] + ],...,[ 1 uMu vv ;} 

IG[1,...,M]=IG[1,…,M]/|EG|; // |EG| is the cardinality of set EG 
Return IG[1,...,M];} 

Function F_RG(u):  
Input: the extension of concept granules  
Output: the abstract meaning of concept granules 
F_RG(EG){Min=Max=0; 

For all u∈EG do{If Min>( uMuu vvv +++ ...21 ) then Min= uMuu vvv +++ ...21  

Else if Max<( uMuu vvv +++ ...21 ) then Max= uMuu vvv +++ ...21 } 

return {Min, Max};} 
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3.2   Capturing Approximate Concepts and Generating Approximate Ontologies 

Algorithm 1.Capturing the initial concept granules from the given information table 

Input: information table (U, A, V, f), (let |A|=M,|U|=N), tolerance functionτand toler-
ance threshold value p. 
Output: the set CG0 of the initial concept granules  
Algorithm description: 
{  CG0={};i=1; 

For all u1∈U do{   
EG={u}；//initiate the extension of a concept granule 
while (all u2∈U and u1<>u2) do{ 
  if (τ(u1,u2)>p) then { 

EG=EG ∪ {u2}; 
}}} 

IG[1,...,M]=F_IG(EG); //generate the intension of the concept granule 
RG=F_RG(EG); //generate the abstract meaning of the concept granule 
G=(EG,IG,RG); //generate the concept granule 
CG0=CG0 ∪ G; 

} 

Algorithm 2.Generating new concept granules that belong to the domain ontology from the 
initial concept granules 

Input: the initial concept granules  
Output: all concept granules  
Algorithm description: 
{ CG=the set that composes of the extension of concept granules in the initial concept 
granules CG0 

C1={}; 
Do{ For all u∈CG do{ 

New_EG= )(un pτ
;//extension neighborhood function  

If New_EG∉CG then { //if it is a new concept granule 
C1=C1 ∪ New_EG; CG=CG ∪ New_EG} 

else  New_EG={};  
 } 
}while New_EG!={} 
for all EG∈C1 do{  //compute the intension and abstract meaning of new concept 

granule  
New_IG=F_IG(EG); 

    New_RG=F_RG(EG); 
    G=(New_EG,New_IG,New_RG); CG0=CG0 ∪ G;}  
CG0=CG0 ∪ U; 
} 

Algorithm 3.Constructing tree structure of concept granules 

Input: the set CG0 of concept granules 
Output: every parent concept granule of concept granules 
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Note: something like X_EG stands for the extension of the concept granule X, and 
f(u∈CG0) means the parent concept granule of the concept granule u. 
Algorithm description: 
{ f(root)={}；//the root node has no parent concept granule 

Temp=CG0-{root}; Temp1=CG0; 
For all u∈Temp do{ 

    f(u)=root;//initiate the parent concept granule of the concept granule u. 
Temp1=Temp1-{u}; 

  While temp1!={} do { 
u1∈Temp1; temp1=temp1-{u1} 
if (u_EG ⊂ u1_EG and u1_EG ⊂ f(u)_EG) then f(u)=u1 

    }}} 
From the above analysis, it is clear that the worst time complexity of the algorithms 

is O(N2), where N is the number of individuals in a given information table. 

4   A Real World Example 

The information table about students’ assessments is showed as follows. Having been 
preprocessed, every domain of attribute values is classified into five grades (that is  
1, 2, 3, 4, 5). The bigger the number is, the higher assessment the students would get. 
Let IS=(U, A, V, f) stand for the information table, where U={1,2,3,4,5, 
6,7,8,9,10,11,12}, A={moral, discipline, practice}, and the values of attributes  
V={1, 2, 3, 4, 5}. 

Table 1. Information table 

No. Moral Discipline Practice 
1 2 4 1 
2 2 4 1 
3 2 2 1 
4 2 4 1 
5 4 2 4 
6 2 2 4 
7 4 4 4 
8 4 4 1 
9 2 2 1 
10 4 4 4 
11 4 2 4 
12 2 4 4 

In order to compute conveniently, according to the characters of the real world ex-
ample, this paper defines the tolerance relation as follows: 

Nyxuu
M

i

i

M

i

i ∑∑
==

−−=
11

21 1),(τ ，where Uuu ∈21 , ， xi is the ith attribute value of 

individual u1, and yi is the ith attribute value of individual u2. Let the tolerance parame-
ter p=0.8. 
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According to the tolerance relation and the neighborhood function, we can obtain 
tolerance classes as follows:  

n(1)=n(2)=n(4)={1,2,3,4,6,8,9};n(3)=n(9)={1,2,3,4,9}; 
n(5)=n(11)=n(12)={5,6,7,8,10,11,12};n(6)=n(8)={1,2,4,5,6,8,11,12};n(7)=n(10)= 

{5,7,10,11,12} 
According to algorithm 1, the set of the initial concept granules is: 

CG0={({1,2,3,4,6,8,9}, (2.29,3.13,1.43),{5,9}), ({1,2,3,4,9}, (2,3.2,1), {5,7}), 
({5,6,7,8,10,11,12}, (3.43,3.14,3.57),{8,12}), ({1,2,4,5,6,8,11,12}, (2.75,3.25,2.5), 
{7,10}), ({5,7,10,11,12}, (3.6,3.2,4), {10,12})} 

From algorithm 2, the set of new concept granules is: 
C1={({1,2,4,5,6,7,8,10,11,12}, (3,3.4,3),{7,12})}, And the set of concept granules is: 

CG0 = {({1,2,3,4,6,8,9}, (2.29,3.13,1.43), {5,9}), ({1,2,3,4,9}, (2,3.2,1), {5,7}), 
({5,6,7,8,10,11,12}, (3.43,3.14,3.57), {8,12}), ({1,2,4,5,6,8,11,12}, (2.75,3.25,2.5), 
{7,10}), ({5,7,10,11,12}, (3.6,3.2,4), {10,12}), ({1,2,4,5,6,7,8,10,11,12}, (3,3.4,3), 
{7,12}), ({1,2,3,4,5,6,7,8,9,10,11,12}, (2.83,3.17,2.5),{5,12})} 

By using algorithm 3, the tree structure of concept granules is constructed, as 
shown in figure 1. 

 

Fig. 1. Approximate ontology obtained from the given information table 

From figure 1, it’s obvious that the concepts and their relations are represented. 
And it is convenient to capture the student’s general assessments in the context of the 
information table, namely, the concepts of the real world example can be classified to 
six concepts which are called lower, lower-middle, middle, upper-middle, middle/ 
upper-middle and good, respectively. 

5   Conclusion and Future Work 

Approximate ontologies are the generalization of standard ontologies, and are also 
considered essential to the success of the semantic Web. In this paper, a granulation 
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model for the representation of approximate ontologies is built. Based the principle of 
granular computing, algorithms for capturing approximate concepts and generating 
approximate ontologies are proposed and illustrated with a real example. It shows that 
the proposed algorithms are useful and effective. 

Further work involves some aspects, such as perfecting the algorithms, studying 
the general framework of approximate ontologies based on granular computing and 
doing experiments, etc. 
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Abstract. In fuzzy set theory, inclusion measure indicates the degree to
which a given fuzzy set is contained in another fuzzy set. Many inclusion
measures taking values in [0,1] have been made in the literature. This
paper proposes a series of fuzzy-valued inclusion measures which, by a
relation view, are reflexive, antisymmetric and T -transitive where T is
a left-continuous triangular norm; In addition, they possess most of the
axiomatic properties which are postulated by Sinha and Dougherty for
an inclusion measure. Fuzzy-valued similarity measures are also defined
by the fuzzy-valued inclusion measures; They have T -transitivity and
properties introduced by Liu for a similarity measure. Lastly two meth-
ods for inference in approximate reasoning based on the fuzzy-valued
inclusion measure and the fuzzy-valued similarity measure are studied.

Keywords: Fuzzy-valued inclusion measure, Fuzzy-valued similarity
measure, Fuzzy inference.

1 Introduction

Inclusion measure is an important concept in the area of fuzzy sets. It is a gen-
eralization of the existed approximate reasoning, such as probability reasoning,
fuzzy inference, evidential reasoning and so on [1]. It has also been introduced
successfully into rough set theory in [2-7] and fuzzy concept lattice theory in [8].
It surfaces in knowledge discovery, tuning rules and determining the coincidence
measure of rules in fuzzy logic. A related concept is a measure of similarity be-
tween two fuzzy sets. The similarity measure is a relation which can be seen as
a fuzzification of a crisp equivalence relation.

The study of inclusion measure is developed by at least two ways, namely
the constructive and axiomatic approaches. In the constructive approach, the
inclusion measures were constructed by fuzzy implication operators and condi-
tional probability [1-4,9-13]. The constructive approach is suitable for practical
applications of inclusion measure [2-4,9-10].

On the other hand, the axiomatic approach is appropriate for studying the
structures of inclusion measure. In this approach, a set of axioms [9,10,13,14] are
used to characterize inclusion operators that are the same as the ones produced

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 435–442, 2007.
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by using the constructive approach . Sinha and Dougherty [13] first listed nine
axiomatic properties that a reasonable inclusion measure should have.

Although the inclusion measures mentioned in these papers have been used
successfully for various applications, they have shortcomings. First, they lack
transitivity. In [15], B.De Baets et al. mentioned that it was surprising that the
fuzzy inclusion measure of Kosko[16] and Fan et al. [10] were even not Z - tran-
sitive. In [17], A.Kehagias et al. proposed that it was reasonable to assume that
when fuzzy set A is included in fuzzy set B to a degree x and B is included
in fuzzy set C to a degree y, then A is included in C to a degree equal to or
greater than min(x,y). As for crisp set, we know the inclusion relation has tran-
sitivity, namely, A ⊆ B, B ⊆ C ⇒ A ⊆ C. We think it’s natural that fuzzy
inclusion measure should have transitivity at some degree. In addition, scalar
inclusion measures may be quite sensitive to small changes in the membership
of elements (sometimes even of a single element) to the fuzzy sets considered
[17]. So it is an interesting question whether an inclusion measure can be in-
troduced which is transitive and not overly sensitive to the membership of sin-
gle elements. A.Kehagias et al. introduced a L-fuzzy valued transitive inclusion
measure I (A,B) which took values in a partial order set of vectors composed of
0 and 1. This paper will show L-fuzzy valued inclusion measure in [17] is too
special to show difference between fuzzy sets.

In section 2, the basic notions are introduced. In section 3, the proposed
generalized fuzzy-valued inclusion measures prove to be T -transitive and satisfy
most of the axioms postulated by Sinha and Dougherty. Example illustrates
fuzzy-valued inclusion measure defined by us can show the difference between
fuzzy sets. The related fuzzy-valued similarity measures are defined by the T -
transitive fuzzy-valued inclusion measure and their properties are discussed. In
section 4, we propose a method for inference in approximate reasoning based
on the fuzzy-valued inclusion measure and the fuzzy-valued similarity measure.
Section 5, the conclusion.

2 Preliminaries

By an implicator we mean a function I : I2 → I satisfying I (1, 0) = 0 and
I (1, 1) = I (0, 1) = I (0, 0) = 1.

Some axioms have been postulated by Smets and Magrez [18] as axiomatically
appropriate for an implicator. Such as Hybrid Monotonicity: ∀(x, y) ∈ [0, 1]2,
I (., y) is decreasing, yet I (x, .) is increasing; Confinement Principle(CP prin-
ciple): ∀(x, y) ∈ [0, 1]2, x ≤ y ⇐⇒ I (x, y) = 1 and Border Principle: ∀x ∈
[0, 1], I (1, x) = x.

An R-implicator (residual implicator) based on a left-continuous t-norm T if
for every x, y ∈ [0, 1], I (x, y) = sup{γ ∈ [0, 1], T (x, γ) ≤ y}.

Proposition 1. ([19]) Every R-implicator is Hybrid monotonic, Border and CP.

In the following sections, (F (X), ≤) is a partial order set where A ≤ B ⇔
A(xi) ≤ B(xi), ∀xi ∈ X = {x1, x2, ..., xn}, [a] = (a, ..., a); A ∩ B and A ∪ B are
denoted by (A ∩ B)(x) = min(A(x), B(x)) and (A ∪ B)(x) = max(A(x), B(x)).



Fuzzy-Valued Transitive Inclusion Measure 437

Definition 1. A fuzzy relation R is a T -transitive fuzzy relation iff R(A, C) ≥
supB∈F(X) T (R(A, B), R(B, C)), for all A, B, C ∈ F (X); A fuzzy relation R is
called a fuzzy T similarity relation if it is reflexive, symmetric and T -transitive;
R is a T -fuzzy order relation if it is reflexive, antisymmetric, and T -transitive.

3 T -Transitive Fuzzy-Valued Inclusion Measure,
Similarity Measure

3.1 Fuzzy-Valued Inclusion Measure

A. Kehagias et al [17] gave some examples to show that the locally determined
scalar inclusion measure enjoyed many properties at the cost of great sensitivity
to isolated membership values of two fuzzy sets. They defined a global fuzzy in-
clusion measure in the sense that the influence of the membership of one element
is averaged over all elements as follows:

Definition 2. [17] For all A, B ∈ F (X), the measure of inclusion of A in B
is a fuzzy relation, denoted by I(A, B). The value of I(A, B) is defined for each
x ∈ X by Ix(A, B) = 1 iff A(x) ≤ B(x) and Ix(A, B) = 0 else.

Example 1. Three fuzzy sets A, B, C, A = 0.1/x1 + 0.8/x2 + 0.9/x3, B =
0.1/x1 + 0.1/x2 + 0.1/x3 and C = 0.1/x1 + 0.79/x2 + 0.89/x3. Then we have
I(A, B) = (1, 0, 0) = I(A, C) = (1, 0, 0).

It is obvious that the inclusion measure ignored the great difference between
fuzzy sets B and C.

From the above analysis, we propose a series of fuzzy-valued inclusion mea-
sures which keep the transitivity pointed out in [17]. In addition, these inclusion
measures are more precise to show the difference between fuzzy sets and possess
most of axioms made for inclusion measure in [13].

Definition 3. For all A, B ∈ F (X), a fuzzy-valued inclusion measure is de-
noted by

I(A, B) : F (X) × F (X) → F (X) (1)

where I(A, B)(x) = I(A(x), B(x)) = I (A(x), B(x)) for each x ∈ X and I a
R-implicator.

Example 2. Continuing with the fuzzy sets in example 3.1, we take �Lukasiewicz
implicator IL(x, y) = min(1, 1 − x + y). We have I(A, B) = (1, 0.3, 0.2) ≤
I(A, C) = (1, 0.99, 0.99) which displays the difference between B and C.

Lemma 1. Let a, b, c ∈ [0,1], T is a left-continuous t-norm , then we have
supb∈[0,1] T (I (a, b), I (b, c)) ≤ I (a, c) where I is the R-implicator based on T .

Theorem 1. For all A, B, C, D ∈ F (X), I is a finite index set, the inclusion
measure I(A, B) defined by formula (1) has the following properties:
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(I1)I(A, B) = [1] ⇔ A ≤ B;(I2)A ≤ B ⇒ I(B, C) ≤ I(A, C);(I3)A ≤ B ⇒ I
(C, A) ≤ I(C, B);(I4)I(A,

⋂
i∈I Bi) =

⋃
i∈I I(A, Bi);(I5) I(

⋃
i∈I Ai, B) =

⋂
i∈I

I(Ai, B);(I6)if [1/2] ≤ A, then I(A, Ac) = [0] ⇔ A = X;(I7) I(A, B) ≤ I(A ∩
C, B ∩ C);(I8)I(A, B) ≤ I(A ∪ C, B ∪ C);(I9) I(A, B) ≤ I(T (A, C), T (B, C))
(I10)

⋃
i∈I I(A, Bi) ≤ I(A,

⋃
i∈I Bi);(I11)

⋃
i∈I I(Ai, B) ≤ I(

⋂
i∈I A, Bi);(I12)I

(A, B) ∩ I(C, D) ≤ I(A ∩ C, B ∩ D);(I13)I(A, B) ∩ I(C, D) ≤ I(A ∪ C, B ∪ D);
(I14)∩i∈II(Ai, Bi) ≤ I(∩i∈IAi,∩i∈IBi);(I15)∩i∈II(Ai, Bi) ≤ I(∪i∈IAi, ∪i∈IBi).

Proof. (I1)For all A, B ∈ F (X), A ≤ B ⇔ A(x) ≤ B(x), ∀x ∈ X, then
Ix(A(x), B(x)) = I (A(x), B(x)) = 1, so I(A, B) = [1]. We can easily get I2-I5,
I7-I15 by the properties of R-implicator and t-norm. We just show the proof of
I6 as follows:

(I6) When A=X, we have I (X(x), ∅(x)) = 0, then: I(X, ∅)(x) = I (X(x),
∅(x)) = I (1, 0) = 0. Namely I(X, ∅) = [0]. On the contrary, for [1/2] ≤ A
and I(A, Ac) = [0], which implies I(A, 1 − A)(x) = 0, ∀x ∈ X. Suppose that
A �= X , then there exists some x ∈ X satisfies then we have 1/2 ≤ A(x) < 1 and
0 < 1 − A(x) ≤ 1/2. By the border property and hybrid monotonic property of
I , we have I(A, 1−A)(x) = I (A(x), 1−A(x)) ≥ I (1, 1−A(x)) = 1−A(x) �= 0.
It is a contradiction to I(A, Ac) = [0]; So the suppose is not true, namely, A = X .
By properties of t-norm and R-implicator, it’s not difficult to prove the rest.

Remark 1. I(A, B) defined by formula (1) has most of the axioms postulated in
[13] by Theorem 1.

Theorem 2. I(A, B) defined by formula (1) is a T -fuzzy order relation on
F (X).

Proof. Take any A, B, C ∈ F (X). We have the following.
1. Reflexivity: For ∀x ∈ X , we have A(x) ≤ A(x), then I(A, A)(x) = I (A(x),

A(x)) = 1 ⇒ I(A, A) = [1].
2. Antisymmetry: For all B, A ∈ F (X), I(A, B) = I(B, A),namely I(A, B)(x)

= I(B, A)(x). For any x ∈ X , A(x) and B(x) must satisfy one of the two condi-
tions: A(x) ≤ B(x) or A(x) ≥ B(x). So we suppose A(x) ≤ B(x) is true, then
we have that I (B(x), A(x)) = I(B, A)(x) = I(A, B)(x) = I (B(x), A(x)) = 1,
then we get B(x) ≤ A(x) by the CP principle. Combined with the suppose that
A(x) ≥ B(x), then we have A(x) = B(x), for all x ∈ X . Namely, we have A = B.

3. T -transitivity: By Lemma 3.1, for all A, C ∈ F (X) and ∀x ∈ X , we
have supB∈F(X) T (I (A(x), B(x)), I (B(x), C(x))) ≤ I (A(x), C(x)). Namely,
for ∀A, C ∈ F (X), supB∈F(X) T (I(A, B)(x), I(B, C)(x)) ≤ I(A, C)(x). That
mean supB∈F(X) T (I(A, B), I(B, C)) ≤ I(A, C).

Since some kind of transitivity of fuzzy-valued inclusion measure is the require-
ment of the rational generalization of crisp inclusion relation, we have proved that
the fuzzy-valued inclusion measure has T -transitivity and many good properties.

3.2 Fuzzy-Valued Similarity Measure

Model recognition and rule matching are common to expert system, fuzzy control
and fuzzy neural network. The similarity measure is employed to determine
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whether a model or a rule should be matched with the expectation. Many authors
[20-25]have paid much attention to the theoretic study and application of fuzzy
similarity measure.In this section, we first state definition of Liu [23].

Definition 4. ([23]) A fuzzy-valued function S : F (X) × F (X) → F (X) is
called a fuzzy-valued similarity measure, if S has the following properties:

(SP1) S(A, A) = [1], ∀A, B ∈ F (X);
(SP2) S(A, B) = S(B, A), ∀A, B ∈ F (X);
(SP3) S(D, Dc) = [0], ∀D ∈ P(X);
(SP4) ∀A, B, C ∈ F (X), if A ≤ B ≤ C, then S(A, C) ≤ S(A, B) ∩ S(B, C).

Definition 5. For all A, B ∈ F (X), we define S(A, B) = T (I(A, B), I(B, A))
which is determined by

S(A, B)(x) = T (I(A, B)(x), I(B, A)(x)) (2)

for each x ∈ X, where I is a fuzzy-valued inclusion measure defined by formula
(1) and T is a left continuous t-norm.

Theorem 3. For all A, B ∈ F (X), S(A,B) defined by formula (2) is a fuzzy-
valued similarity measure.

Proof. (SP1) and (SP2) are obviously true.
(SP3) For D ∈ P(X) and ∀x ∈ X , we have I(D, Dc)(x) = 0(x ∈ D) or

I(Dc, D)(x) = 0(x ∈ Dc). So S(A, B)(x) = T (I(D, Dc)(x), I(Dc, D)(x)) = 0,
then: S(D, Dc) = [0], ∀D ∈ P(X);

(SP4) ∀A, B, C ∈ F (X), if A ≤ B ≤ C, then S(A, C) = T (I(A, C), I(C, A))
= I(C, A). By the same way, we have S(A, B) ∩ S(B, C) = I(B, A) ∩ I(C, B).
Since I(C, A) ≤ I(B, A), I(C, A) ≤ I(C, B), we get S(A, C) ≤ S(A, B)∩S(B, C).

Theorem 4. For all A, B ∈ F (X), I(A, B) is a fuzzy-valued inclusion measure
defined by formula (1), then S(A, B) = I(A, B)∩I(B, A) is a fuzzy T -similarity
relation on F (X) where T is a left-continuous t-norm and I is the R-implicator
based on T .

Proof. For all A, B, C ∈ F (X), it’s obvious that S(A, B) = I(A, B)∩ I(B, A) is
reflexive and symmetric. Now we show S is T -transitive, ∀x ∈ X, T (S(A, B)(x),
S(B, C)(x))=T (I(A, B)(x)∧ I(B, A)(x), I(B, C)(x)∧ I(C, B)(x))≤T (I(A, B)
(x), I(B, C)(x)) ≤ I(A(x), C(x)). By the same way, we get T (S(A, B)(x), S(B, C)
(x)) ≤ T (I(B(x), A(x)), I(C(x), B(x)))≤I(C(x), A(x)). So we have supB∈F(X)
T (S(A, B), S(B, C)) ≤ S(A, C).

Corollary 1. The similarity measure denoted by S(A, B) = I(A, B) ∩ I(B, A)
satisfies that S(A, C) = I(A, B) ∩ I(B, C) for ∀A ≤ B ≤ C.

Proof. Let T = ∧, we have S(A, C) = I(A, B) ∩ I(B, C) by Theorem 3 and
Theorem 4.
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Theorem 5. For all A, B, C, D ∈ F (X), S(A, B) = I(A, B) ∧ I(B, A)) where
I is the index set, I is a R-implicator. we have:

(S1)S(X, ∅) = S(∅, X) = [0], S(∅, ∅) = S(X, X) = [1].
(S2)S(A, B) = [1] ⇔ A = B.
(S3)S(A, B) ∩ S(C, D) ≤ S(A ∩ C, B ∩ D).
(S4)S(A, B) ∩ S(C, D) ≤ S(A ∪ C, B ∪ D).
(S5)

⋂
i∈I S(Ai, Bi) ≤ S(

⋂
i∈I Ai,

⋂
i∈I Bi)

(S6)
⋂

i∈I S(Ai, Bi) ≤ S(
⋃

i∈I Ai,
⋃

i∈I Bi)

It is not hard to prove Theorem 5 by the properties of implicator and fuzzy-
valued inclusion measure.

4 Method for Inference in Approximate Reasoning Based
on Fuzzy-Valued Inclusion Measure and Fuzzy-Valued
Similarity Measure

Approximate reasoning is the process or processes by which a possible imprecise
conclusion is deduced from a collection of imprecise premises. In this subsection
we present an algorithm for obtaining the conclusion of the GMP(generalized
modus ponens):

If x is A then y is B
If x is A′

y is B′

Definition 6. Let I(A1, A2) and S(A1, A2) be fuzzy-valued inclusion measure
and similarity measure defined by formulas (1) and (2) respectively; For fuzzy
sets A, A′ ∈ F (X) and B ∈ F (Y ), the conclusion is generated in the following
ways:

B′(y) =
∧

xi∈X

T (B(y), I(A′, A)(xi)), (3)

B′′(y) =
∧

xi∈X

T (B(y), S(A′, A)(xi)). (4)

By the properties of fuzzy-valued inclusion measure, similarity measure and
T-norm, such as the T -transitivity, T (x,

∨
i∈I yi) =

∨
i∈I T (x, yi) and so on, it

is not difficult to obtain the following properties.

Proposition 2. The fuzzy inference rule defined by formula (3) has the follow-
ing characteristics:

(P1) If A′ = A, then B′ = B; (P2) If A′ < A, then B′ = B;
(P3) For all A′, A, then B′ ≤ B; (P4) If A′

1 ≤ A′
2, then B′

1 = B′
2;

(P5) If A1 ≤ A2, then B′
1 ≤ B′

2; (P6) If B′(y) =
∧

xi∈X T (B(y), I(A′,
⋃n

j=1
Aj)(xi)), B′

j(y) =
∧

xi∈X T (B(y), I(A′, Aj)(xi)), then
⋃n

j=1 B′
j ≤ B′;
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(P7) If B′(y) =
∧

xi∈X T (B(y), I(A′,
⋂n

j=1 Aj)(xi)), B′
j(y) =

∧
xi∈X T (B(y),

I(A′, Aj)(xi)), then
⋃n

j=1 B′
j ≤B′; (P8) If B′(y)=

∧
xi∈X T (B(y), I(

⋃n
j=1 A′

j , A)
(xi)), B′

j(y) =
∧

xi∈X T (B(y), I(A′
j , A)(xi)), then B′ ≤

⋂n
j=1 B′

j ;
(P9) If B′(y) =

∧
xi∈X T (B(y), I(

⋂n
j=1 A′

j , A)(xi)), B′
j(y) =

∧
xi∈X T (B(y),

I(A′
j , A)(xi)), then

⋃n
j=1 B′

j ≤ B′;
(P10) If B′

C(y) =
∧

xi∈X T (B(y), I(A′ ∪ C, A ∪ C)(xi)), then B′ ≤ B′
C ;

(P11) If B′
T (y) =

∧
xi∈X T (B(y), I(T (A′, C), T (A, C))(xi)), then B′ ≤

B′
T ;
(P12) If B′(y)=

∧
xi∈X T (B(y), I(A′, A)(xi)), B′′(y)=

∧
xi∈X T (B1(y), I(A,

A1)(xi)), B′′′(y)=
∧

xi∈X T (B1(y), I(A′, A1)(xi)), then
∧

y∈Y T (B1, T (B′, B′′))
≤ B′′′.

Proposition 3. The fuzzy inference rule defined by formula (4) has the follow-
ing characteristics:

(L1) If A′ = A, then B′′ = B; (L2) If A′ < A, then B′′ < B;
(L3) For all A′, A, then B′′ ≤ B; (L4) If A = D ∈ P(X), A′ = Dc, then

B′′ = ∅;
(L5) If B′′(y) =

∧
xi∈X T (B(y), S(A′,

⋂n
j=1 Aj)(xi)) and B′′

j (y) =
∧

xi∈X T

(B(y), S(A′, Aj)(xi)), then B′′ ≤
⋃n

j=1 B′′
j ;

(L6) If B′′(y) =
∧

xi∈X T (B(y), S(
⋃n

j=1 A′
j , A)(xi)) and B′′

j (y) =
∧

xi∈X T

(B(y), S(A′
j , A)(xi)), then B′′ ≤

⋃n
j=1 B′′

j .

5 Conclusion

We have introduced a group of fuzzy-valued transitive inclusion measures which
are less sensitive to the small change of the membership value of single point
and have proved that they are T -fuzzy order relation. They possess most of the
axioms postulated by Sinha and Dougherty. Furthermore, fuzzy-valued similarity
measure defined by fuzzy-valued inclusion measure has proved to be the rational
generalization of relation of equality. Finally, two methods for fuzzy inference
based on the fuzzy-valued inclusion measure and the fuzzy-valued similarity
measure have been introduced and studied in detail.
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Abstract. Model composition is an important problem in model man-
agement. In this paper, we propose a new method to support model
composition in multi-dimensional data spaces. We define a model as a 6-
tuple with input interface and output interface. An algorithm for model
composition and execution is given. Moreover, the method has been ap-
plied into a practical project. The running statistics showed that there
had been 105 instances of model composition, and 89 decision problems
had been effectively solved.

Keywords: Decision Support System, Model Management, Model
Composition, Multi-dimension Data.

1 Introduction

Model-base is at the heart of Decision Support System (DSS), which consists
of dialogue component, database and model-base. Model is viewed as computer
executable program that typically requires data inputs[1]. For certain decision-
making situations, a sequence of models is executed in order to solve a decision
problem. Typically, inputs to a model in the sequence are obtained from outputs
of other models upstream in the sequence and from database retrievals. The
problem of composing a sequence of models is known as the model composition
problem[2].

Data Warehouse (DW) and On-Line Analytical Processing (OLAP) are su-
pporting technology for analytical processing. DSS integrated with DW and
OLAP is known as DW-based DSS[3]. There are historical mass data organized
in the form of multi-dimension in DW. The model execution based on DW
improves the analytic ability of DSS. Multi-dimensional data became the main
data source for models. Therefore, it is very important for integrating DW with
DSS to research model composition in multi-dimension spaces. At present, the
data source of OLAP comes directly from DW or database. But some useful data
can not be obtained from DW, which has to be gotten by model computation.
Model computation embedded in OLAP is helpful to improve analytical ability.
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Few papers on model composition are available in the literature[2,4]. There
are mainly four types of logical representation of composite models: relational,
graphical, knowledge-based, or script-based. In the relational approach[5], mod-
els are treated as virtual relations whose tuples are generated on demand. Two
models are linked together by joining their corresponding virtual relations, there-
by facilitating model composition. The relational approach does not provide
any mechanisms to differentiate between two models that map the same in-
puts to outputs, even when they differ on underlying assumptions and map-
ping functions. In the graphical approaches[6,7], the interconnection of models
is represented by the graphs so that to form the composite models. Models
are viewed as nodes or edges of a graph. Graphical representations with the
notable exception of Basu and Blanning[7] are typically weak in representing
domain knowledge such as model preconditions or assumptions. In knowledge-
based approaches[8], models are represented as components of a knowledge base
and various reasoning mechanisms are used to construct composite models.
Knowledge-based approaches are capable of representing model preconditions,
model assumptions, and specifications pertaining to model input and output. In
script-based approaches[9], model composition is achieved via predefined scripts.
These scripts specify the sequence of model executions and data-formatting
requirements.

In [10], Chari presented a new theoretical construct called filter spaces as
the basis to support the capabilities of model composition. The filter spaces
provide a means to represent constraints on data, and support for an inferential
mechanism to determine if a collection of database and model resources satisfy
stated constraints on data. But, the filter spaces must work only in relational
data environment. We extended the approach to support multi-dimensional data.

This paper is organized as follows. Section 2 gives the representations of the
model. Model composition in multi-dimension data environment are presented
in section 3. Moreover, an algorithm for model composition and execution is
given. Section 4 shows the results the method applied into a practical project.
Finally, a conclusion is drawn.

2 Model Representations

In [11], we proposed a novel dimension model to support the modeling of irregular
dimensions by defining a partial mapping from a child level to a parent level.
We defined the operations of the isomorphism, project, select, join, union and
intersection of multi-dimensional data set, as well as the dimension aggregation,
roll-up and drill-down operations. The related concepts and notions in this paper
can refer to [11].

Domain knowledge about models and data is used in selecting the “right”
models and data during model composition and execution. This knowledge can
be represented in DSS using a meta language. In [10], Chari presented an ap-
proach to support model composition based on the relational data. He de-
fined the meta language as a first-order logic language. The related concepts,
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such as the filter clause, filter list, etc, were given. A filter clause is a binary
predicate P (x1, x2) when P ∈ {LT (<), LE(≤), EQ(=), GT (>), GE(≥)} and
x1,x2 are non-predicate terms. Or a filter clause is a disjunctive form of the
binary predicates above. Usually, it needs more than one filter clauses to rep-
resent model assumptions and data scope in the practice problem. The filter
clauses of the same problem are conjunctive relation. A set of these filter clauses
is called filter list, which is in the conjunctive normal form. Furthermore, the
filter space is used to describe data scope. It is in fact the value set of variables
satisfied the filter list.

Chari[10] presented the approach of model composition in the relational data
environment, but not in multi-dimensional data spaces. So we extend his ap-
proach to support multi-dimensional data. The relational data is viewed as a
simple situation of multi-dimensional data[11]. Namely our approach can sup-
port both relational data and multi-dimensional data.

Definition 1. The multi-dimensional data interface is a 4-tuple MDI = (Ω, L,
Λ, Σ) where,

(1)Ω = {d1, d2, · · · , dn} is a set of dimensions, where di is a dimension;
(2)L = {(di, ldi)|di = (Di, ≺i) ∈ Ω, ldi ∈ Di, 1 ≤ i ≤ n} is a set, and di is on

the level ldi ;
(3)Λ = {m1, m2, · · · , mk} is a set of the facts, and mj = (Mj , agrj), (1 ≤

j ≤ k);
(4)Σ = {P1,P2, · · · , Pk} is a filter list including dimension variables

The definition 1 shows the multi-dimensional data set C = (Ω, Λ, f) has mul-
tiple MDIs, and every MDI provides data for different queries. By rolling-up
or drilling-down, the dimensions are associated with their levels specified by L.
Then, the data set specified by the MDI can be gotten by the operations, such
as project, select etc, on C.

Definition 2. A model M is a six-tuple, M = (N, I, O, A, F, S), where N is
a string to identify the model, I is the MDI set representing model input data,
O is the MDI set representing model output data, A is a filter list representing
model assumptions, which are not related to model inputs, F is the filter list
representing constraints among model inputs, S is a string encoding the physical
location and access method of the model executable.

A model includes the model identifier, followed by model input, output, as-
sumptions, and model access information. For the set of model input MDIs, let
I = (MDIi

1, MDIi
2, · · · , MDIi

s),MDIj = (Ωi
j , L

i
j , Λ

i
j, Σ

i
j), j = 1, 2, ..., s, s is the

number of model input MDIs. EveryΣi
jcan be satisfied and has the maximum

dimensional property. Furthermore, two model inputs cannot have different filter
clauses of Type 1b[10], namely the filter clauses with same predicate symbol and
variable. This requirement maintaining the consistency among model inputs im-
poses restrictions on the type of models being represented. For the set of model
output MDIs, let O = (MDIo

1 , MDIo
2 , · · · , MDIo

t ) ,MDIo
j = (Ωo

j , Lo
j , Λ

o
j , Σ

o
j ),

j = 1, 2, ..., t, t is the number of model output MDIs. Every Σo
j can be satisfied
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and has the maximum dimensional property. And any Σo
j has additional binding

clauses [10] from
s⋃

k=1
Σi

kand F such thatΣo
j ⊇

s⋃
k=1

Σi
k ∪ F . F can only contain

clauses of Type 1a[10]. F is satisfied when |F | �= 0. Model assumptions not re-
lated to model inputs are specified in A. The clauses in A are represented as
well-formed formulas, thus, automated reasoning is possible during model selec-
tion. The location as well as the access method of a model is encoded as a string
represented by S.

Definition 3. Given two MDIs , MDI1 = (Ω1, L1, Λ1, Σ1) and MDI2 = (Ω2,
L2, Λ2, Σ2), MDI1 matches with MDI2 ,denoted by MDI1 ⊆ MDI2 ,if and
only if:

(1) Ω1 = Ω2 , MDI1 has the same dimensions with MDI2 ;
(2) L1 = L2 , the same dimensions of MDI1 and MDI2 are on the same

levels;
(3)Λ1 ⊆ Λ2, the fact set of MDI1 is contained in the fact set of MDI2 ;
(4) Σ1 is covered in Σ2

MDI1 ⊆ MDI2 shows that MDI2 can provide data for MDI1. If MDI1is
a multi-dimensional data query or a input data interface of a model, MDI2
satisfies MDI1 .

Theorem 1. Given a MDI of a query q, MDIq = (Ωq, Lq, Λq, Σq) and Σq is
satisfiable. C = (Ω, Λ, f) is a multi-dimensional data set. If Ωq ⊆ Ω, Λq ⊆ Λ,
C provides data for MDIq.

Proof. For the multi-dimensional data set C = (Ω, Λ, f), because Ωq ⊆ Ω, we
suppose that there are t dimensions di1 , di2 , · · · , dit ∈ Ω, but di1 , di2 , · · · , dit /∈
Ωq. For each dij , we can delete it from Ω by dimension aggregation Agg(C, dij , h,
all) ,where h is any hierarchy attribute of dij . Then we get the new multi-
dimensional data set Ca = (Ωa, Λ, fa). Since Λq ⊆ Λ, we can project Ca on Λq,
suppose Project(Ca, Λq) = Cp = (Ωa, Λq, fp). By properly rolling-up or drilling-
down, the dimensions of Cp can locate on their levels specified by Lq. Since Σq

is satisfiable, it is deduced the multi-dimensional data set matching with MDIq

by Select(Cp, Σ
q).

3 Model Composition and Execution Algorithm

Model composition and execution entails searching the domain knowledge for
data sources in response to the query. The algorithm matches the query to multi-
dimensional data sets in DW. If the multi-dimensional data set can’t provide data
for the query, it will examine whether there are combined multi-dimensional data
sets to satisfy the query. Otherwise, it will match the query to the model output
MDIs. If a relevant model is found, it takes one of the model input MDIs as
another query and continues the above process. Once all the model input data
is obtained, the model will execute and output the result data. The algorithm
will not stop until the original query is satisfied.



Model Composition in Multi-dimensional Data Spaces 447

Given a multi-dimensional data query q. Let MDIq = (Ωq , Lq, Λq, Σq) be the
MDI of q, and Σq is satisfiable. Suppose MStack is a stack to save the models.
Fstack is a stack to store the constraints among the model inputs. InputDataS-
tack is used to store MDIs of the model inputs. Let MDIx be temporary vari-
able of the multi-dimensional data set interface, MDResultSequ be a sequence
to hold the result multi-dimensional data. The initial values are all NULL. Let
MDIx = MDIq

Step 1: Search for the multi-dimensional data matching with MDIx in the
domain knowledge. For a data set C = (Ω, Λ, f):

1.1 If Ωq ⊆ Ω ,Λq ⊆ Λ
(1) For ∀di ∈ Ω and di /∈ Ωq , run the aggregation operation on a dimensional

hierarchy of di :Agg(C, di, h, all) = (Ωa, Λ, fa), and ignore the dimension of di.
Let Ωa = Ωq .

(2) For ∀(di, ldi) ∈ Lq , do rolling-up or drilling-down to make di locate on
the level ldi .

(3) Do the project operation: Project((Ωa, Λ, fa), Λq) = C′ .
(4) Do the operation Select(C′, Σq) = Cq.
(5) Bring data from Cq to data buffer area, go to step 4.

1.2 If Ωq ⊆ Ω,Λq ∩ Λ = π �= ∅ ,
(1) For ∀di ∈ Ω and di /∈ Ωq , run the aggregation operation on a dimensional

hierarchy of di :Agg(C, di, h, all) = (Ωa, Λ, fa), and ignore the dimension of di.
Let Ωa = Ωq .

(2) For ∀(di, ldi) ∈ Lq, make di to locate on the level ldi by rolling-up or
drilling-down.

(3) Do the project operation: Project((Ωa, Λ, fa), Λq) = C′ .
(4) Do the operation: Select(C′, Σq) = Cq.
(5) Take data from Cq to data buffer area, let Λ′ = Λq − π , MDIx =

(Ωq, Lq, Λ′, Σq) , go to step 1, continue to search for the data set matching with
MDIx.

Step 2: Search for the model which output interface matches with MDIx . If
successful, the model M is found, customize the model to obtain the MDI set of
all model inputs as well as an updated set of interinput model constraints FSet.
Push M into the MStack, push all model input MDIs into InputDataStack, Push
FSet into FStack. Otherwise, go to step 6.

Step 3: Pop a MDI from InputDataStack to MDIx, go to step 1.

Step 4: If MStack is not empty, pop a model from MStack to M, else go to step 6.

Step 5: Examine whether the data in the buffer area satisfy the inputs of the
model M. If successful, take the data in the buffer area to the inputs of model
M and execute model M, save the outputs data into the buffer area. Go to step
4. If failed, push M into MStack, and go to step 3.

Step 6: Deal with the data in the buffer area, output the results and exit.
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4 Implementation

Grain Management Information Intelligent Decision Support System (GMI-IDSS)
is a DSS based on DW for grain trade. The DW-based subsystem of OLAP is one of
its subsystems. We implement our model composition approach in its subsystem.
The domain knowledge and model composition algorithm are implemented using
Visual Prolog, whereas models are implemented in Visual C++. The database
and data warehouse used in the subsystem are respectively Sybase ASE12.5 and
Sybase IQ. We implement the decision model base by model dictionary and model
files. Model dictionary is saved in data-base. Model files are stored in the file
system. OLAP functions are implemented in Business Objects 5.0.

natural language query editor 

Natural language understanding processor

OLAP 
engine

Model 
composition

execution engine

Decision results 
output

Grain DW
Decision
Model
base

Domain
knowledge 
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Query
analysis 

processor
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Decision results interpretation

Multi-dimensional 
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Problem
 processing 
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D
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Fig. 1. Architecture of the sub-system

The subsystem architecture is showed in Fig. 1. There are 3 parts: Intelligent
Human-Machine Interface(IHMI), Problem Processing System(PPS) and deci-
sion results output. The task of the intelligent human-machine interface is to
analyze the information of users’ characteristic and the information about what
users expect. The query analysis processor in PPS processes the interior form
of the inputs by using the knowledges in the domain knowledge base. If the
grain data warehouse provides the data for the query (user’s inputs), the OLAP
engine processes the inputs and extracts data from the grain DW. The results
are showed in multi-dimensional data view. If a model or model composition is
needed to solve the user’s query, model composition and execution engine will
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give the answer. The PPS sends the result data to the decision result output
part. This part shows the results data and the explaining text to help users
understand the results.

GMI-IDSS has run for more than one year. The running statistics of GMI-
IDSS showed that there had been 105 instances of model composition, and 89
decision problems had been effectively solved by GMI-IDSS. The model com-
position approach can solve the practical problem effectively. It has important
practicability and application value. Table 1 shows some of composite models
GMI-IDSS generated.

Table 1. Some composite models that GMI-IDSS generated

Problem Model number Component model Runtime Applied
P1 1 M1 00:01:05 yes
P2 2 M2,M3 00:00:17 yes
P3 5 M4,M5,M6,M7,M8 00:10:45 yes
P4 3 M9,M10,M11 00:01:24 yes
P5 3 M4,M5,M12 00:07:29 yes
P6 4 M4,M5,M6,M12 00:09:08 yes
P7 2 M13,M14 00:02:31 yes

In Table 1, P1 is the problem of forecast for grain production of Jilin province
of China,P2 is the problem of making decision of grain inventory updating by-
turns,P3 is the problem of forecast for grain inventory,P4 is the problem of al-
lotting and dispatching grain, P5 is the problem of making the plan of purchase
grain,P6 is the problem of making the plan of grain sales, P7 is the problem of
analysis of every variety of grain cost in every grain depot in every year. And M1
denotes artificial neural network forecast model, M2 denotes data classification
model, M3 denotes rule inference model, M4 denotes forecast model for grain
production,M5 denotes forecast model for grain price, M6 denotes forecast model
of grain demand, M7 denotes model of grain inventory updating by-turns, M8
denotes EOQ model, M9 denotes grain allot model, M10 denotes graph search
model, M11 denotes integer programming model, M12 denotes dynamic program-
ming model, M13 denotes mathematical statistics model, M14 denotes grain cost
analysis model.

5 Conclusion

Model composition is the core problem of model management in DSS. In this
paper, we introduce a new approach of model composition in multi-dimensional
data spaces. A 6-tuple with input interface and output interface, which are rep-
resented by multi-dimensional data interface, is defined. An algorithm for the
model composition and execution is presented. The algorithm can find relevant
data set, and select appropriate models, and automate model composition and
execution by searching the domain knowledge. The method has been applied
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into a practical project named “GMI-IDSS”. The running statistics of GMI-
IDSS showed that the model composition approach can solve many problems
effectively so that we believe it will have important application prospect.

The DW schema is the relational schema when all multi-dimensional data
sets in the DW are relational schema[11]. Our approach can not only work in
multi-dimensional data spaces, but also work in relational data environment. So,
Chari’s approach[10] is a special case of our method.
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Abstract. One of the key problems of knowledge discovery is knowledge re-
duction. Concept lattice is an effective tool for data analysis and knowledge 
processing. The existing works on attribute reduction in concept lattice have 
mainly been focused on static database. This paper presents an incremental  
approach to identify reductions from dynamic database. The properties of at-
tributes are discussed within the framework of equivalence classes and the de-
terminant theorem of attribute reduction is presented. Based on the theorem, the 
reductions can be easily derived. The experimental results validate the effec-
tiveness of the approach. 

Keywords: concept lattice, knowledge reduction, equivalence classes. 

1   Introduction 

Formal concept analysis (FCA) [1] is a field of applied mathematics based on a lat-
tice-theoretic formalization of the notions of concept and conceptual hierarchy. In 
FCA, a pair of sets of objects and sets of attributes common to these objects is called 
a concept. The family of all concepts is structured in the form of a lattice called  
concept lattice. The hierarchy of concepts in a lattice can be interpreted as the possi-
bility to generalize or specialize a concept. As an effective tool for data analysis and 
knowledge processing, concept lattice has been widely used in many fields [8~14,19], 
such as machine learning, information retrieval, software engineering and knowledge 
processing. 

Concept lattice is formulated based on formal context, which is a binary relation 
between a set of objects and a set of attributes. The abundant relationship between 
attributes makes some attributes have no effect on the discovery of knowledge. These 
attributes should be reduced without modifying the lattice structure. The notion of 
attribute reduction in concept lattice is to find minimal attributes set that can deter-
mine all concepts and their hierarchy structure [2].  

Since first introduced by Wille R in 1980s, concept lattice has been extensively  
researched over the past two decades [3-6,8-10,23]. Ganter [2] presents reducible  
attributes and objects from the point of view of row and column of formal context. 
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Wille [1] provides an approach that employs “up-down” arrow to purify formal context. 
Li et al. [7] discuss the properties of the irreducible objects on extent closure system and 
present an approach to classify and reduce attribute. Zhang et al [15,18] study the theory 
of attribute reduction in concept lattice. They take the idea similar to Skoworn and 
Rauszer’s discernibility matrix [20]. To build Zhang’s discernibility matrix for a given 
context, the user needs to compute the set of all concepts. 

These works have mainly been focused on static database. In many practical cases, 
the databases are dynamic and may be modified by adding new dataset. In this paper 
we present an incremental approach to compute the attribute reduction in concept 
lattice. The properties of attributes are discussed and the determinant theorem of re-
duction in concept lattice is presented within the framework of equivalence classes. 
Based on the determinant theorem, we can easily derive the set of all reductions. 

This paper is organized as follows: The next section describes the basic notions of 
formal concept analysis. Section 3 presents the attribute reduction in concept lattice 
within the framework of equivalence classes. In Section 4, an incremental approach 
for attribute reduction in concept lattice is proposed. Section 5 provides the experi-
mental results and the final section contributes to the conclusions. 

2   Formal Concept Analysis 

Formal concept analysis [1,2] is a mathematical technique used for identifying mean-
ingful groupings of objects that have common attributes.  

Concept analysis starts with a formal context K=(O,A,I), where O and A are finite 
sets of objects and sets of attributes, respectively, and I ⊆ O×A is a binary relation 
between O and A.  

Let X ⊆ O, the set of common attributes of the objects contained in X is defined by 

X'= {a∈A | ∀ o∈X, (o,a)∈ I } (1) 

Similarly, let Y ⊆ A, the set of common objects of the attributes contained in Y is: 

Y*:= {o∈O | ∀ a∈Y, (o,a)∈ I} (2) 

Table 1. Example of formal context (O,A,I) 

 a b c d e
1 × × × ×
2 ×

 
(O1,A,I1) 

3 × × ×
4 × × ×
5 × × × ×

 
(O2,A,I2) 

6 ×

A pair of sets of objects and sets of attributes (X,Y) is called a concept if X'=Y and 
Y*=X. That is, a concept is a maximal collection of objects sharing common attrib-
utes. X is called the extent and Y is called the intent of (X,Y). 

The set of all concepts of a given formal context forms a partial order via 

1 1 2 2 1 2 1 2( , ) ( , )X Y X Y X X Y Y≤ ⇔ ⊆ ⇔ ⊇  (3) 
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The set of all concepts and the partial order ‘≤’ form a concept lattice L(K). 
Table 1 gives an example of a formal context K=(O,A,I), where O={1,2,3,4,5,6} 

and A={a,b,c,d,e}. There’re six concepts: (123456,Ø), (1256,a), (1345,bc), (15,abce), 
(34,bcd) and (Ø,abcde). The lattice is shown in Fig.1. 

 

              Fig. 1. L(O,A,I)                             Fig. 2. L(O,D1, 1DI ) 

3   Attribute Reduction in Concept Lattice 

It has been proved that the reduction in concept lattice can be transformed into the 
reduction of formal context while the hierarchy of concepts is not changed [1]. In this 
section, we will discuss the reduction from the point of view of formal context. 

Let K=(O,A,I) be a formal context. For AD∀ ⊆ and ID=I∩(O×D), KD=(O,D,ID) is 
also a formal context. It’s easy to prove that for any concept (U,Z)∈L(KD), there 
exists (X,Y)∈L(K) such that X=U. 

Definition 1. Let K=(O,A,I) be a formal context and D ⊆ A. For KD=(O,D,ID) and ∀  
(X,Y)∈L(K), If there exists a concept (U,Z)∈L(KD) such that X=U, then D is called a 
consistent set in L(K). And further, if { }D d− is not a consistent set for d D∀ ∈ , then D 

is called a reduct of L(K) [18]. 

The reduct certainly exists for any concept lattice but unnecessary exclusively. 

Definition 2. Let Red={Di| Di is a reduct, i∈J}(J is an index set) be the set of all reducts 
in L(K), C= i

i J

D
∈
∩ , R= i i

i J i J

D D
∈ ∈

−∪ ∩ , U= i
i J

A D
∈
∪－ . 1) If a∈C, then a is a core attribute;  

2) If a∈R, then a is a dispensable attribute; 3) If a∈U, then a is a unnecessary attribute 
[7,18]. 

The attribute that is not a core attribute is called a reducible attribute, which is either a 
dispensable attribute or an unnecessary attribute.  

Theorem 1. Let K=(O,A,I) be a formal context. For D ⊆ A, D is a consistent set in 
L(K) iff (a*'∩D)*=a* for ∀ a∈A-D. And further, D is a reduct iff (d*'∩(D -{d}))*≠d* 
for d D∀ ∈ . The proof is referred to [15,18]. 

It directly follows that a A∀ ∈ , a is a core attribute iff (a*'∩(A-{a}))*≠a*. 
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Definition 3. Let K=(O,A,I) be a formal context. For ∀ a,b∈A, a is equivalent to b iff 
a*=b*. The equivalence class of a in K is denoted as [a]={b∈A | b*=a*}. 

The attributes set A can be divided into several disjoint subsets with equivalence rela-
tion. Each subset is an equivalence class of an attribute. 

By definition 3, if a is a reducible attribute for ∀ a A∈ , then the attributes con-
tained in [a] are also reducible attributes. 

For a given formal context K, if a is a dispensable attribute in K, then [a] ⊃ {a}. 
However, the contrary assertion is not necessarily true.  

Theorem 2. Let K=(O,A,I) be a formal context. For ∀ a∈A,  
1) a is an unnecessary attribute ⇔ (a*'∩(A-[a]))*=a* 
2) a is a dispensable attribute ⇔ [a] ⊃ {a} and (a*'∩(A-[a]))*≠a* 

Proof. 1) ( )⇒  Obviously, for any reduct D, D ⊆ A-[a]. Thus, a*=(a*'∩D)* 

⊇ (a*'∩(A-[a]))* ⊇ a*, i.e., (a*'∩(A-[a]))*=a*. 

( )⇐  Suppose that a is not an unnecessary attribute, there certainly exists a reduct 

D such that a D∈ . Let M=a*'∩(A-[a]). Because M=M∩(A-{a})=(M∩ 

(D-{a}))∪(M∩(A-D)), thus M*=(M∩(D-{a}))*∩(M∩(A-D))*. Since M ⊆ a*', we have 

that (M∩(D-{a}))* ⊇ (a*'∩(D-{a}))*.  For ∀ e∈M∩(A-D), we have that e∈M, 
a* ⊂ e* and a*' ⊃ e*'. Hence, a∉e*' and (e*'∩D)*= (e*'∩(D-{a}))* ⊇ (a*'∩ 

(D-{a}))*. By definition, (M∩(A-D))* =
( )

*
e M A D

e
∈ ∩ −
∩ , thus (M∩(A-D))* ⊇ (a*'∩ 

(D-{a}))*. Therefore, M* ⊇ (a*'∩(D-{a}))*. By Theorem 1, it follows that (a*'∩ 
(D-{a}))* ⊃ a* since D is a reduct. That is, M* =(a*'∩(A-[a]))* ⊃ a*. But it is in 
contradiction with the given condition. Thus, a is an unnecessary attribute.  

2）Follows immediately from 1).                  ▋ 

The set of all dispensable attributes R for a given context K=(O,A,I)  can be trans-

formed into the union of disjoint equivalence classes of attributes, 
1

n

i
i

R R
=

=∪ , where 

∃ a∈R, Ri=[a],  and Ri∩Rj= ∅  1≤i,j≤n. Let F=R1×R2×…×Rn={{f1,f2,…,fn} | fi∈Ri, 
1≤i≤n}}, we will prove that Lemma 1 and Theorem 3 hold. 

Lemma 1. Let K=(O,A,I) be a formal context. For ∀ a∈A, Fi∈F, (a*'∩R)*= 
( a*'∩Fi)*. 

Proof. Suppose that Fi={{fi1,…,fin} | fik∈Ri,1≤k≤n} for ∀ Fi∈F. Then, for ∀ a∈A, 

we have (a*'∩R)*=
1

( * )*
n

i
i

a R
=

′∩∩ =
1

({ })*
n

ik
i

f
=
∩ =(a*'∩Fi)*.                  ▋ 

Theorem 3. Let K=(O,A,I) be a formal context, and C be the set of all core attributes 
of L(K). Let Red be the set of all reducts, then Red={Fi∪C | ∀ Fi∈F}. 

Proof. Let U be the set of all unnecessary attributes. Since A-Fi∪C=(R-Fi)∪U, we 
have a*=(a*'∩(R∪C))*=(a*'∩R)*∩(a*'∩C)*=(a*'∩Fi)*∩(a*'∩C)* for ∀ a∈U. That 
is, a*=(a*'∩(Fi∪C))*; for ∀ a∈R-Fi, we have a*=(a*'∩R)*=( a*'∩Fi)*. Hence, 
Fi∪C is a consistent set in L(K). 
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In addition, for any a∈Fi∪C. If a∈C, then (a*'∩(Fi∪C-{a}))*≠a*; If a∈Fi and 
(a*'∩(Fi∪C-{a}))*=a*, then a must be an unnecessary attribute. It contradicts with 
the definition of R. Thus, Fi∪C is a reduct. It’s easy to prove that each reduct can be 
denoted by the form of Fi∪C.                ▋ 

4   An Incremental Approach for Attribute Reduction in Concept 
Lattice 

In many practical cases, the database will be modified by appending some new data. 
Rather than computing the reducts from scratch we present an incremental approach 
to obtain the reducts in concept lattice. The basic notion of our incremental approach 
is to perform independent computation on the new part of the dataset, and then join 
the results to obtain the new reducts. 

Definition 4. Let K1=(O1,A,I1) and K2=(O2,A,I2) are two contexts with common attrib-
utes. If O= O1∪O2 and I=I1∪I2, then K=(O,A,I) is also a formal context. K is called 
the vertical merger of K1 and K2.  

Two cases exist for the join of O1 and O2: O1∩O2=Ø and O1∩O2≠Ø. In this paper, we 
assume that O1 and O2 are two disjoint sets.  

The formal context formed by adding new dataset can be regarded as the vertical 
merger of the original context and the new part. 

Definition 5. Let K=(O,A,I) be a formal context. For a∈A , the super set of a is de-
fined by Ea:  Ea ={ b∈A | b* ⊃ a*}. 

Let K=(O,A,I) is the vertical merger of K1 and K2. For the sake of simplicity, the map-
ping * on objects set and ' on attributes set in K1,K2,K are denoted by *1,*2,* and '1, '2, ', 
respectively. For any attribute a, the equivalence class and superset of a in K1,K2,K are 
denoted by [a]1,[a]2,[a] and E1,E2,E, respectively. Then, we have that a*= a*1∪a*2. 

Theorem 4. Let K is the vertical merger of two contexts K1 and K2. For any attribute 
a, if a is a core attribute in K1 or K2, then a is also a core attribute in K. 

Proof. Assume that the set of core attributes in K1 and K2 are denoted by C1 and C2, 
respectively. For ∀ a∈C1∪C2, if a ∈ C1, then (a*'∩(A-{a}))*1=(a*1'∩a*2'∩ 
(A-{a}))*1 ⊇ (a*1'∩(A-{a}))*1 ⊃ a*1. Therefore, (a*'∩ (A-{a}))* = (a*'∩ (A-{a})) 
*1∪ (a*'∩(A-{a}))*2 ⊃ a*; The proof is similarly for a ∈ C2.                        ▋ 

Theorem 5. Let K is the vertical merger of K1 and K2. For any attribute a, a is an un-
necessary attribute in K if one of the following conditions holds. 

1) [a]1∩E2≠∅  and (([a]1∩E2)∪(E1∩E2))*2=a*2 

2) [a]2∩E1≠∅  and (([a]2∩E1)∪(E1∩E2))*1=a*1 

3) ([a]1∩E2)∪( [a]2∩E1)= ∅  and (E1∩E2)*1=a*1 and (E1∩E2)*2=a*2B 

Proof. If a is an unnecessary attribute in K, then a*=(a*'∩(A-[a]))*. Since a*= 
a*1∪a*2, we need to prove that a*1=(a*'∩(A-[a]))*1=(a*1'1∩a*2'2∩(A-[a]))*1 and 
*2=(a*'∩(A-[a]))*2=(a*1'1∩a*2'2∩(A-[a]))*2, which follow directly from the above 
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three conditions. Further, if a is an unnecessary attribute, then a is also a reducible 
attribute in K1 and K2. Therefore, at least one of the three conditions holds.        ▋ 

The following corollaries are simple consequence of the above Theorem. If a is not an 
unnecessary attribute in K, 

Corollary 1. If [a]1∩[a]2 ⊃ {a}, then a is a dispensable attributes in K. 

Corollary 2. If [a]1∩[a]2={a}, then a is a core attribute in K. 

The set of core attributes C and the set of dispensable attributes R in K are: 

C= C1∪C2∪{ a∈A-C1∪C2 | [a]1∩[a]2={a}, (a*'∩(A-{a}))*≠a* }.  
R= { a∈A-C | [a]1∩[a]2 ⊃ {a}, (a*'∩(A-[a]))*≠a* } 

Thus, by Theorem 3, we can easily obtain the set of all reducts in L(K). 

Example. The formal context K in Table 1 is formed by the merger of K1=(O1,A,I1) 
and K2=(O2,A,I2). The attributes a,d are core attributes in K1 and K2. The attributes b,c 
are dispensable attributes in K since [b]={bc} and E1=E2=Ø. Since [e]={e} and 
E1=E2={abc}, thus e is an unnecessary attribute. Therefore, the reducts in L(K) are 
D1={abd} and D2={acd}. Figure 2 shows the lattice L(O,D1,ID1). 

5   Experimental Results 

In this section, we will evaluate the incremental algorithm in comparison with the 
discernibility matrix-based algorithm in [18]. The two algorithms were implemented 
in Java and the experiments were performed on a table PC with P B4B1.6MHz, 512MB 
memory and Windows 2000 installed. The same data structure was used for each 
algorithm in order minimize its effect on the performance.  

Fig. 3 illustrates the behavior of the two algorithms. The CPU time measured for 
the incremental algorithm is the total time necessary to compute the reducts by adding 
the objects one by one using the incremental process. The experiments were done 
with ||A||=20,40 and ||O|| varies from 20 to 120. The number of attributes possessed by 
each object has an upper limit of 5.  

In Fig.3, the discernibility matrix-based algorithm outperforms the incremental al-
gorithm although the difference is relatively small while the values of ||O|| is enough 
smaller. There is always a crossover point, beyond which the incremental algorithm 
becomes the best. This crossover point depends on the density of the relation. When 
the number of attributes is increased, the crossover point becomes bigger.  

Table 2. The six datasets collected from UCI library 

Datasets Objects Attributes k
Vote 435 32 16 
hypothyroid 106 228 57 
audiology 226 161 69 
soybean 687 133 35 
flag 194 300 27 
hepatitis 155 364 19 



 An Incremental Approach for Attribute Reduction in Concept Lattice 457 

||A ||=20

||O||
Incremental
Discernibility Matrix

||A ||=40

||O||
Incremental
Discernibility Matrix

 

Fig. 3. CPU time for simulation with uniform distribution 

Table 2 shows the six dataset collected from UCI library, where k is the average 
number of attributes possessed by objects. Figure 4 shows the results of the two algo-
rithms. It's clear that the incremental algorithm outperforms the discernibility matrix-
based algorithm. Because the discernibility matrix is constructed on concepts, the 
measured CPU time is bigger than 5s except the datasets vote and hypothyroid. How-
ever, the incremental algorithm has a more stable behavior than the discernibility 
matrix-based algorithm, which is an important consideration for applications.  

The above results show that the incremental approach is a more attractive algo-
rithm if good performance and stable behavior are an application requirement. We can 
take advantage of the incremental approach when the dataset is dynamic. 

 

6   Conclusions 

Concept lattice is an effective tool for knowledge discovery. The attribute reduction in 
concept lattice makes the discovery of knowledge easier and the representation  
simpler. This paper discusses the properties of attributes based on the notion of 
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equivalence classes and presents an incremental approach. The experimental results 
validate the effectiveness of the approach.  

This paper is mainly focused on the vertical merger of contexts. We plan to explore 
the approach for the formal contexts formed by horizontal merger. In addition, rough 
set theory and formal concept analysis offer related and complementary approaches 
for data analysis and knowledge processing. They are all formulated based on the 
notion of context. We plan to compare the similarities and differences in the two theo-
ries from the point of view of reduction in the future. 
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Abstract. Generating concept lattice is investigated for long years.
Whether formal concepts and concept lattice can be generated in topo-
logical space for objects set G or attributes set M of a formal context
F = (G, M, I) is an interesting problem. In this paper, our discussions
are concentrated on constructing a topology for M of F , the topology is
generated by an approximation space on M . Then there exists one-to-
one mapping between the approximation space on M and the topology
for M , and it is obtained that attributes of each formal concept is open
set in the topological space.

Keywords: Concept Lattice, Approximation Space, Topological Space.

1 Introduction

Formal concept analysis (FCA) presented by Wille [1] is a discipline that stud-
ies the hierarchical structures induced by a binary relation between a pair of
sets. As the core of a mathematical theory of FCA, formal concepts or concept
lattices can be used to represent relationship between objects and attributes or
conceptual hierarchies which are inherent in data. FCA is now considered as
the mathematical backbone of conceptual knowledge processing (CKP), a the-
ory located in computer science, having as task to provide methods and tools
for human oriented, concept-based knowledge processing [13]. FCA starts with
a formal context T , also called (conceptual) information systems [2]-[4]. Nowa-
days, FCA is widely adopted by data analysis (see for instance, [5]-[7]), informa-
tion retrieval (see for instance, [8]-[12]), knowledge discovery (see for instance,
[13]-[15]), ontology engineering (see for instance [13], [16]-[19], [23]).

A formal context is expressed by F = (G, M, I), in which, G and M be
nonempty finite sets and I : G×M −→ {0, 1} a binary relation. ∀g ∈ G is called
object, ∀m ∈ M is attribute. I(g, m) = 1 means that g has m. Let

↑ : 2G −→ 2M , X↑ = {m ∈ M | ∀g ∈ X, I(g, m) = 1}, (1)
↓ : 2M −→ 2G, Y ↓ = {g ∈ G| ∀m ∈ Y, I(g, m) = 1}. (2)

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 460–467, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In F = (G, M, I), a formal concept is a pair (A, B) ∈ 2G × 2M such that
A↑ = B and B↓ = A. The set A is called its extent, the set B its intent.
Denote that LF is the set of all formal concepts, then (LF , ∨, ∧) is called the
formal concept lattice of F = (G, M, I), it is a complete lattice. Generating
concept lattices is investigated for long years (see for instance, [23]-[27]). In
generating formal concepts or concept lattice, the follows closure properties
are important [20]-[23]: Given F = (G, M, I) and (A, B) ∈ (LF , ∨, ∧), then
A↑ = ((A↑)↓)↑ and B↓ = ((B↓)↑)↓. ↓↑: M −→ M is closure operator on
M , the set H↓↑ = {B ⊆ M | ↓↑ (B) = B} is a closure system on M and
(LF , ∨, ∧) = {(B↓, B↓↑)|B ⊆ M}. The properties make us to generate concept
lattice by attributes set (or objects set) of F = (G, M, I). Whether formal con-
cepts and concept lattice can be generated in topological space for objects set
G or attributes set M of F = (G, M, I) is an interesting problem. In this pa-
per, our discussions are concentrated on constructing a topology for attributes
set M .

2 Approximation Space on M of T = (G, M, I)

The follows relation on M is used to obtain an approximation space on M .

Definition 1. Let F = (G, M, I) be a formal context. ∀m ∈ M , denotes

Mm = {m′ ∈ M |∀g ∈ {g ∈ G|I(g, m) = 1}, I(g, m′) = 1}, (3)

then a binary relation on M induced by Mm(m ∈ M) is as follows, ∀m1, m2 ∈ M ,

RM (m1, m2) =
{

1, if m2 ∈ Mm1 ,
0, if m2 /∈ Mm1 .

(4)

Example 1. [21] F = (G, M, I) is a formal context, where G = {1, 2, 3, 4, 5, 6,
7, 8}, M = {a, b, c, d, e, f, g, h, i} and I be described by Table 1.

Table 1. The binary relation of F = (G, M, I)

a b c d e f g h i

1 × × ×
2 × × × ×
3 × × × × ×
4 × × × × ×
5 × × × ×
6 × × × × ×
7 × × × ×
8 × × × ×
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Fig. 1. Concept (or Galois) lattice corresponding to F = (G, M, I)

Its concept lattice is showed in Fig. 1. According to (3) and (4), then Ma =
{a}, Mb = {a, b}, Mc = {a, c}, Md = {a, d}, Me = {a, c, d, e}, Mf = {a, d, f}, Mg

= {a, g}, Mh = {a, g, h}, Mi = {a, c, g, h, i}, and the binary relation RM on M
induced by Mm(m ∈ M) is as follows

RM a b c d e f g h i
a 1 0 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 0 0
c 1 0 1 0 0 0 0 0 0
d 1 0 0 1 0 0 0 0 0
e 1 0 1 1 1 0 0 0 0
f 1 0 0 1 0 1 0 0 0
g 1 0 0 0 0 0 1 0 0
h 1 0 0 0 0 0 1 1 0
i 1 0 1 0 0 0 1 1 1

Property 1. Let F = (G, M, I) be a formal context. ∀m ∈ M , Mm is defined by
(3) and m2 ∈ Mm1 , then Mm2 ⊆ Mm1 .

Proof. According to (3), Mm2 = {m′ ∈ M |∀g ∈ {g ∈ G|I(g, m2)=1}, I(g, m′) =
1}. By m2 ∈ Mm1 , then ∀g ∈ {g ∈ G|I(g, m1) = 1} and I(g, m2) = 1 hold,
this means {g ∈ G|I(g, m1) = 1} ⊆ {g ∈ G|I(g, m2) = 1}. Hence, ∀m′ ∈ Mm2 ,
m′ is such that ∀g ∈ {g ∈ G|I(g, m1) = 1}, I(g, m′) = 1 =⇒ m′ ∈ Mm1 , i.e.,
Mm2 ⊆ Mm1 .

Property 2. Let F = (G, M, I) be a formal context. RM is defined by (4), then
RM is a reflexive and transitive relation on M .

Proof. (1) ∀m ∈ M , according to (3), m ∈ {m′ ∈ M |∀g ∈ {g ∈ G|I(g, m) =
1}, I(g, m′) = 1} = Mm, i.e., RM (m, m) = 1, RM is reflexive.
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(2) ∀m1, m2, m3 ∈ M , let RM (m1, m2) = 1 and RM (m2, m3) = 1, then
m2 ∈ Mm1 and m3 ∈ Mm2 . According to Proposition 1, m3 ∈ Mm2 ⊆ Mm1 , this
means RM (m1, m3) = 1, i.e., RM is transitive.

From Example 1, generally, RM is not symmetrical relation on M .

Definition 2. Let F = (G, M, I) be a formal context. (M, RM ) is called an
approximation space of F = (G, M, I), and ∀B ⊆ M , RM (B) and RM (B), which
are called upper approximation and lower approximation of B about (M, RM ),
respectively, are defined as following, in which, Mm is defined by (3).

RM (B) = {m ∈ M |B ∩ Mm �= ∅}, RM (B) = {m ∈ M |Mm ⊆ B}, (5)

If RM is an equivalence relation, then Mm is a equivalent class, and ∀B ⊆ M ,
RM (B) = {m ∈ M |[m]RM ∩B �= ∅}, RM (B) = {m ∈ M |[m]RM ⊆ B}, which are
Pawlak’s upper approximation and lower approximation. The follows lemmas
(Lemma 1-3) have been discussed in [29]-[31].

Lemma 1. For any R ⊆ M × M , B, B1, B2 ⊆ M , (1) R(M) = M , R(∅) = ∅;
(2) If B1 ⊆ B2, then R(B1) ⊆ R(B2), R(B1) ⊆ R(B2); (3) R(B1 ∩ B2) =
R(B1) ∩ R(B2), R(B1 ∪ B2) = R(B1) ∪ R(B2); (4) The pair (R, R) is dual, i.e.,
R(B) =∼ R(∼ B), where ∼ B = M − B, R and R are defined by (5).

Lemma 2. Let R be an arbitrary relation on M . (1) R is reflexive ⇐⇒ ∀B ⊆
M , (a) R(B) ⊆ B; (b) B ⊆ R(B). (2) R is transitive ⇐⇒ ∀B ⊆ M , (a)
R(R(B)) ⊇ R(B); (b) R(R(B)) ⊆ R(B). (3) If R is reflexive and transitive,
then (a) R(R(B)) = R(B); (b) R(R(B)) = R(B) hold.

Lemma 3. Let M be a nonempty finite set and R ⊆ M × M a reflexive and
transitive relation on M . ∀Bj ⊆ M , j ∈ I (I is an index set),

R(
⋃

j∈I

R(Bj)) =
⋃

j∈I

R(Bj). (6)

If R ⊆ M × M is a reflexive and transitive relation on M , then ∀m ∈ M , define

Mm = {m′ ∈ M |R(m, m′) = 1} (7)

Property 3. Let M be a nonempty finite set, R a reflexive and transitive relation
on M . The relation RM on M is decided by (4) according to (7), then RM = R.

Proof. ∀m1, m2 ∈ M , RM (m1, m2) = 1 ⇐⇒ m2 ∈ Mm1 ⇐⇒ R(m1, m2) = 1.

3 Topology for M Induced by Approximation Space
(M, RM)

In [28], fuzzy topologies which are generated by approximation space based on
reflexive and transitive fuzzy relation are discussed. Here, classical topology is
generated by (M, RM ).
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Theorem 1. Let F = (G, M, I) be a formal context. TRM = {RM (B)|B ⊆ M}
is a topology for M , and (M, TRM ) a topological space. TRM is called the topology
generated by approximation space (M, RM ).

Proof. (1) By (1) of Lemma 1, RM (M) = M ∈ TRM holds. (2) If RM (B1),
RM (B2) ∈ TRM , by (3) of Lemma 1, RM (B1)∩RM (B2) = RM (B1 ∩B2) ∈ TRM

holds. (3) If RM (Bj) ∈ TRSM
, j ∈ I (I is an index set), by Proposition 2

and Lemma 3,
⋃

j∈I RM (Bj) = RM (
⋃

j∈I RM (Bj)) ∈ TRM holds. According to
(1)-(3), TRM is a topology for M , and (M, TRM ) a topological space.

Theorem 2. Let F = (G, M, I) be a formal context. TRM = {RM (B)|B ⊆ M}
is a topology for M . ∀B ⊆ M , RM (B) = i(B) = ∪{RM (B′)|RM (B′) ⊆ B},
RM (B) = c(B) = ∩{∼ RM (B′)| ∼ RM (B′) ⊇ B}, where i and c are interior
operator and closure operator of (M, TRM ).

Proof. (1) By ∪{RM (B′)|RM (B′) ⊆ B} ⊆ B, consequently, RM (∪{RM (B′)|
RM (B′) ⊆ B}) ⊆ RM (B). By Lemma 3, RM (∪{RM (B′)|RM (B′) ⊆ B}) =
∪{RM (B′)| RM (B′) ⊆ B}, so, ∪{RM (B′)|RM (B′) ⊆ B} ⊆ RM (B). By Lemma
2, RM (B) ⊆ B, RM (B) ⊆ ∪{RM (B′)|RM (B′) ⊆ B} holds, hence, ∪{RM (B′)|
RM (B′) ⊆ B} = RM (B).

(2) By (1) and the duality of RM and RM , RM (B) =∼ RM (∼ B) =∼
(∪{RM (B′)|RM (B′) ⊆∼ B}) = ∩{∼ RM (B′)| ∼ RM (B′) ⊇ B} = c(B).

Theorem 3. Let TRM = {RM (B)|B ⊆ M} be a topology. ∀m1, m2 ∈ M ,
RM (m1, m2) = 1 ⇐⇒ m1 ∈ c({m2}).

Proof. By Definition 1 and Theorem 2, RM (m1, m2) = 1 ⇐⇒ m2 ∈ Mm1 ⇐⇒
{m2} ∩ Mm1 �= ∅ ⇐⇒ m1 ∈ RM ({m2}) ⇐⇒ m1 ∈ c({m2}).

Example 2. Continues Example 1. According to (5) and Theorem 2, for at-
tributes g and h, c({g}) = RM ({g}) = {m ∈ M |{g} ∩ Mm �= ∅} = {m ∈ M |g ∈
Mm} = {g, h, i}, c({h}) = RM ({h}) = {m ∈ M |{h} ∩ Mm �= ∅} = {m ∈ M |h ∈
Mm} = {h, i}, and RM (g, h) = 0 ⇐⇒ g /∈ c({h}), RM (h, g) = 1 ⇐⇒ h ∈ c({g}).

Corollary 1. Let R be a reflexive and transitive relation on M , TR = {R(B)|
B ⊆ M} the topology. ∀m1, m2 ∈ M , define a relation RTR(m1, m2) = 1 if and
only if m1 ∈ c({m2}), then R = RTR .

4 Approximation Spaces Generated by Topology for M

In this section, discussions are focused on how to generate approximation space
(M, R) by a topology T for M . Let i and c are interior operator and closure
operator of topological space (M, T ), respectively. Defining a binary relation RT

on M as follows: ∀m1, m2 ∈ M ,

RT (m1, m2) = 1 ⇐⇒ m1 ∈ c({m2}). (8)

Theorem 4. The relation RT on M decided by (8) is reflexive and transitive.

Proof. (1) ∀m ∈ M , due to m ∈ c({m}), RT (m, m) = 1 holds, i.e., RT is re-
flexive. (2)∀m1, m2, m3 ∈ M , let RT (m1, m2) = 1 and RT (m2, m3) = 1, then
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m1 ∈ c({m2}) =
⋂

∼B∈T {B|B ⊇ {m2}} and m2 ∈ c({m3}) =
⋂

∼B′∈T {B′|B′ ⊇
{m3}}, hence, m1 ∈

⋂
∼B∈T {B|B ⊇ {m2}} = (

⋂m3 /∈B
∼B∈T {B|B ⊇ {m2}})

⋂

(
⋂m3∈B

∼B∈T {B|B ⊇ {m2}}). Suppose that there exists B such that ∼ B ∈ T, m3 ∈
B and m2 /∈ B, then m2 /∈

⋂
∼B′∈T {B′|B′ ⊇ {m3}} =⇒ m2 /∈ c({m3}), a contra-

diction. Hence,
⋂m3∈B

∼B∈T {B|B ⊇ {m2}}) =
⋂

∼B′∈T {B′|B′ ⊇ {m3}} = c({m3}),
this means that m1 ∈ c({m3}) holds, i.e, RT (m1, m3) = 1, RT is transitive.

Based on the theorem, (M, RT ) is an approximation space, called the approxi-
mation space generated by T . ∀m ∈ M , denotes Mm = {m′|RT (m, m′) = 1}.

Theorem 5. Let T be a topology for finite set M and the relation RT decided
by (8). ∀B ⊆ M , 1. RT (B) = c(B); 2. RT (B) = i(B). In which, RT and RT are
decided by (5).

Proof. Firstly, ∀m′ ∈ M , according to (5), RT ({m′}) = {m ∈ M |{m′} ∩ Mm �=
∅} = {m ∈ M |m′ ∈ Mm} = {m ∈ M |RT (m, m′) = 1} = c({m′}).

(1) ∀B ⊆ M , B =
⋃

m∈B{m}. According to Lemma 1 and finiteness of M ,
RT (B) = RT (

⋃
m∈B{m}) =

⋃
m∈B RT ({m}) =

⋃
m∈B c({m}) = c(

⋃
m∈B{m})

= c(B).
(2) By the duality of RT and RT , i and c, and (1), it is obtained that

RT (B) =∼ RT (∼ B) =∼ c(∼ B) = i(B).

Corollary 2. Let T be a topology on M , RT the relation decided by (8), then
TRT = {RT (B)|B ⊆ M} = T .

Proof. ∀B ⊆ M , B ∈ T ⇐⇒ B = i(B) ⇐⇒ B = RT (B) ⇐⇒ B ∈ TRT .

Corollary 3. There exists one-to-one mapping between Γ = {R|R is a reflexive
and transitive relation on M} and Σ = {T |T is a topology for M}.

Proof. Define F : Γ −→ Σ such that F (R) = TR. Firstly, if R1 �= R2, then
TR1 �= TR2 . Otherwise, R1 = RTR1

= RTR2
= R2 due to Corollary (1), a

contradiction, this means F is injective. On the other hand, ∀T ∈ Σ, RT is a
reflexive and transitive relation on M according to Theorem 4, i.e., RT ∈ Γ and
F (RT ) = TRT = T due to Corollary 2, consequently, F is surjective.

Theorem 6. let F = (G, M, I) be a formal context. ∀B ⊆ M , RM (B↓↑) = B↓↑.

Proof. Firstly, RM (B↓↑) ⊆ B↓↑ is trivial. On the other hand, ∀m ∈ B↓↑, accord-
ing to (1), (2) and (3), ∀g ∈ B↓, I(g, m) = 1, and Mm = {m′ ∈ M |∀g ∈ {g ∈
G|I(g, m) = 1}, I(g, m′) = 1}. Hence, ∀m′ ∈ Mm and ∀g ∈ B↓, I(g, m′) = 1,
this means m′ ∈ B↓↑, i.e., Mm ⊆ B↓↑ =⇒ m ∈ RM (B↓↑) =⇒ B↓↑ ⊆ RM (B↓↑),
and RM (B↓↑) = B↓↑ holds.

Theorem 6 means that for every formal concept (B↓, B↓↑) of a formal context
F = (G, M, I), its attribute set B↓↑ must be an open set in topological space
(M, TRM ), i.e., B↓↑ ∈ TRM . This property makes us to generate formal concepts
in topology for M .

Example 3. Continues Example 1. For formal concept (6, {a, c, d, e, f}), i({a, c, d,
e, f}) = RM ({a, c, d, e, f}) = {a, c, d, e, f}.
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5 Conclusion

In this paper, a topology for M of F = (G, M, I) is generated. An interesting
conclusion is that attributes of each formal concept is open set in the topological
space. Next, generating formal concepts and concept lattice in the topological
space will be considered.
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Abstract. Flow Graphs proposed by Z. Pawlak are a very useful tool
for reasoning from data. In this paper, an application of flow graphs is
presented. We use them to mine rules describing component changes in
the consecutive time windows which a given temporal information sys-
tem is split into. Such rules can be helpful for predicting future changes
of components in the system and what follows, predicting the future
behavior of the analyzed system.

1 Introduction

One of the important aspects of data mining is the analysis of data changing
in time (temporal data). Many of the systems change their properties as time
goes. Then, some models of systems constructed for one period of time must be
reconstructed for another period of time. Different methodologies of soft com-
puting are used for prediction with temporal data, e.g., neural networks, rough
sets. In our approach, we are interested in rough sets. We assume that modeled
systems are described by temporal information systems (objects of such systems
are ordered in time). We observe the behavior of modeled systems in consecutive
time windows which temporal information systems are split into. Observation of
changes enables us to determine the so-called prediction rules which can be used
to predict future changes of models. In some of our earlier papers we consid-
ered models in the form of colored Petri nets built on the basis of decomposed
information systems (see [3], [8]). Decomposition of an information system S
is a division of S into smaller, relatively independent subsystems. Components
obtained in this way represent some modules of S linked inside by means of
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functional dependencies (cf. [6]). Components of information systems are de-
fined on the basis of functional relative reducts. Therefore, an important thing
is to determine how functional relative reducts change in the consecutive time
windows. On the basis of the obtained knowledge we can predict future changes
of functional relative reducts. At the beginning, we assume that all the time
windows (which a given temporal information system S is split into) include the
same number of objects and the shift between any two consecutive time windows
is constant. In order to determine prediction rules of changes of components we
carry out the steps briefly described as follows. We split a given temporal infor-
mation system S = (U, A) into time windows of the same length preserving a
constant shift between two consecutive time windows. We obtain a set S of all
the time windows. Next, for each time window from the set S and each attribute
a ∈ A, we compute a set of all functional relative reducts. We obtain a data
table (called a temporal table of functional reducts) whose columns are labeled
with attributes from A whereas rows - with consecutive time windows from S.
The cells of such a table contain sets of functional relative reducts. For each
attribute a ∈ A, we build a temporal decision system. Attributes of this system
are labeled with the consecutive time windows (the last attribute is treated as a
decision). The number of consecutive time windows taken into consideration is
set by us. Each row represents a sequence of sets of functional relative reducts
which appeared in consecutive time windows. For each attribute a ∈ A, we mine
prediction rules from the temporal decision system. In order to do it we can use
prediction matrices described in [7]. In this paper, we propose flow graphs as a
tool for mining such rules.

2 Preliminaries

In this section, we present some notions used in the paper.

Temporal Information Systems. A temporal information system is a kind of
an information system S = (U, A), with a set U of objects ordered in time, i.e.,
U = {ut : t = 1, 2, . . . , n}, where ut is the object observed in time t. By a time
window on S of the length λ in a point τ we understand an information system
S′ = (U ′, A′), where U ′ = {uτ , uτ+1, . . . , uτ+λ−1}, 1 ≤ τ , τ +λ−1 ≤ n, and A′ is
a set of all attributes from A defined on the domain restricted to U ′. The length
λ of S′ is defined as λ = card(U ′). In the sequel, the set A′ of all attributes
in any time window S′ = (U ′, A′) on S = (U, A) will be marked, for simplicity,
with the same letter A like in S. By start(S′) we denote the start point of S′,
i.e., start(S′) = τ , and by end(S′) we denote the end point of S′, i.e., end(S′) =
τ + λ − 1. If we have two time windows Si, Sj on the temporal information
system, then a shift between Sj and Si is defined as ρ = start(Sj) − start(Si).

Decomposition of Information Systems. Each information system can be
decomposed into subtables called components of this system. The components
define, in a sense, the strongest functional modules of the system linked inside
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by means of functional dependencies. Decomposition of information systems was
discussed in [3], [6], [8]. Here, we recall only the most relevant notions. Let S =
(U, A) be an information system. In S there can exist a functional dependency
between attributes from A−{a} and the attribute a, where a ∈ A, i.e., the values
of attributes from A − {a} uniquely determine all values of the attribute a. We
denote this fact by (A−{a}) ⇒ {a}. Sometimes, it may occur that {a} depends
functionally not on the whole set A − {a} but on its subset B ⊂ (A − {a}). If
B is minimal with respect to inclusion, then B is called a functional {a}-reduct
(relative reduct) of the set of attributes A − {a}. The set of all functional {a}-
reducts of A − {a} in the information system S = (U, A) will be denoted as
FunReda(S). By subsystem S′ = (U ′, A′) of the information system S = (U, A)
we understand a system satisfying the following requirements: U ′ ⊆ U , A′ =
{a′ : a ∈ B ⊆ A}, a′(u) = a(u) for u ∈ U ′ and Va′ = Va for a ∈ A. Let
S = (U, A) be an information system. An information system S∗ = (U∗, A∗)
is called a normal component of S if and only if S∗ is a subsystem of S and
A∗ = X ∪ Y , where Y = {a ∈ A : X ∈ FunReda(S)}. An information system
S∗ = (U∗, A∗) is called a degenerated component of S if and only if S∗ is a
subsystem of S and A∗ = {a} and there does not exist any normal component
S′ = (U ′, X ′ ∪ Y ′) of S such that a ∈ X ′ ∪ Y ′. By components we understand
both normal components and degenerated components.

Flow Graphs. Flow graphs have been defined by Z. Pawlak [4], [5] as a tool
for reasoning from data. A flow graph is a directed, acyclic, finite graph G =
(N, B, σ), where N is a set of nodes, B ⊆ N × N is a set of directed branches
and σ : B → [0, 1] is a flow function. An input of a node x ∈ N is the set I(x) =
{y ∈ N : (y, x) ∈ B}, whereas an output of a node x ∈ N is the set O(x) =
{y ∈ N : (x, y) ∈ B}. σ(x, y) is called a strength of a branch (x, y) ∈ B and it
is also denoted as str(x, y). We define the input and the output of the graph G
as I(G) = {x ∈ N : I(x) = ∅} and O(G) = {x ∈ N : O(x) = ∅}, respectively.
The input and the output of G consist of external nodes of G. The remaining
nodes of G are its internal nodes. For each internal node x ∈ N the throughflow
of x is determined as δ(x) = δ+(x) = δ−(x), where δ+(x) =

∑
y∈I(x)

σ(y, x) and

δ−(x) =
∑

y∈O(x)
σ(x, y). For each branch (x, y) ∈ B we define also cer(x, y) =

σ(x,y)
δ(x) (certainty) and cov(x, y) = σ(x,y)

δ(y) (coverage), where δ(x) 
= 0 and δ(y) 
=
0. A directed path [x . . . y] between nodes x and y in G, where x 
= y, is a
sequence of nodes x1, x2, . . . , xn such that x1 = x, xn = y and (xi, xi+1) ∈
B, where 1 ≤ i ≤ n − 1. For each path [x1 . . . xn] we define cer[x1 . . . xn] =
n−1∏
i=1

cer(xi, xi+1) (certainty), cov[x1 . . . xn] =
n−1∏
i=1

cov(xi, xi+1) (coverage) and

str[x1 . . . xn] = δ(x1)cer[x1 . . . xn] = δ(xn)cov[x1 . . . xn] (strength). A connection
< x, y > from the node x to the node y is a set of all paths from x to y in G.
For each connection < x, y > we define cer < x, y >=

∑
[x...y]∈<x,y>

cer[x . . . y]
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(certainty), cov < x, y >=
∑

[x...y]∈<x,y>

cov[x . . . y] (coverage) and str < x, y >=
∑

[x...y]∈<x,y>

str[x . . . y] (strength). We can associate a rule r in the form of x ⇒ y

with each branch (x, y) ∈ B in G, where x is a predecessor of r, whereas y is a
successor of r. The rule r is characterized by three factors: str(x ⇒ y) (strength),
cer(x ⇒ y) (certainty) and cov(x ⇒ y) (coverage). Each path [x1 . . . xn] in
G determines a sequence of rules x1 ⇒ x2, x2 ⇒ x3, . . ., xn−1 ⇒ xn. This
sequence can be interpreted by a single rule in the form of x1 ∧ x2 ∧ x3 ∧ . . . ∧
xn−1 ⇒ xn, characterized by three factors: cer(x1 ∧ x2 ∧ x3 ∧ . . . ∧ xn−1 ⇒
xn) = cer[x1 . . . xn], cov(x1 ∧ x2 ∧ x3 ∧ . . . ∧ xn−1 ⇒ xn) = cov[x1 . . . xn] and
str(x1 ∧ x2 ∧ x3 ∧ . . . ∧ xn−1 ⇒ xn) = δ(x1)cer[x1 . . . xn] = δ(xn)cov[x1 . . . xn].
Analogously, each connection < x, y > in G determines a single rule in the form
of x ⇒ y, characterized by three factors: cer(x ⇒ y) = cer < x, y >, cov(x ⇒
y) = cov < x, y > and str(x ⇒ y) = δ(x)cer < x, y >= δ(y)cov < x, y >.

3 Mining Prediction Rules of Component Changes

In this section, we present a new approach to mining prediction rules of com-
ponent changes in the consecutive time windows. Let S = (U, A) be a temporal
information system, where A = {a1, a2, . . . , am}, m = card(A). We assume that
time windows (which S is split into) satisfy the following conditions: (1) the
first object of the first time window S1 is simultaneously the first object of S,
i.e., start(S1) = start(S), (2) all time windows have the same length λ, (3)
the shift between any two consecutive time windows is constant and equal to ρ.
Assuming these conditions we denote by Windρ

λ(S) the set of all time windows
which S is split into. Therefore, we have Windρ

λ(S) = {S1, S2, . . . , Sω}, where
S1 = (U1, A), S2 = (U2, A), ..., Sω = (Uω, A). Windρ

λ(S) is also ordered in time,
i.e., S1, S2, . . . , Sω are consecutive time windows.

In order to mine prediction rules of component changes in the consecutive
time windows in S we can execute stages given below. At the beginning, we set
the following input parameters: λ - the length of time windows, ρ - the shift
between two consecutive time windows, κ - the period of prediction (the length
of the sequence of time windows taken into consideration).

Stage 1. We split a given temporal information system S into time windows
with length λ and shift ρ. As a result of that, we obtain a set of time windows
Windρ

λ(S) = {S1, S2, . . . , Sω}. Obviously, the time windows can overlap.

Stage 2. For each time window Si ∈ Windρ
λ(S), where 1 ≤ i ≤ ω, for each

attribute a ∈ A, we compute the set FunReda(Si) of all functional {a}-reducts
of A − {a} in Si. As a result of that, we obtain a data table called a temporal
relative reduct table of S, denoted by TRRT (S). A scheme of such a table
is shown in Table 1. The rows of TRRT (S) are labeled with names of time
windows from Windρ

λ(S), whereas the columns - with attributes from A. Entries
of TRRT (S) include the families of adequate relative reducts.
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Table 1. A scheme of temporal relative reduct table TRRT (S)

Windρ
λ(S)/A a1 . . . am

S1 FunReda1(S1) . . . FunRedam(S1)

S2 FunReda1(S2) . . . FunRedam(S2)

. . . . . . . . . . . .

Sω FunReda1(Sω) . . . FunRedam(Sω)

Stage 3. For each attribute a ∈ A, we determine the set
⋃

FunReda(S) of all
functional {a}-reducts appearing in time windows from the set Windρ

λ(S), i.e.,⋃
FunReda(S) = FunReda(S1) ∪ FunReda(S2) ∪ . . . ∪ FunReda(Sω).

Stage 4. For each attribute a ∈ A, we build the so-called temporal decision
system TDSa = (Us, At), shown in Table 2, as follows. At includes κ−1 condition
attributes marked with t1, t2, . . ., tκ−1 and one decision attribute marked with
tκ. For each sequence 〈Sδ, Sδ+1, . . . , Sδ+κ−1〉 of consecutive time windows in
Windρ

λ(S), where 1 ≤ δ ≤ ω − κ + 1 and ω = card(Windρ
λ(S)), we create one

object sδ in Us such that t1(sδ) = FunReda(Sδ), t2(sδ) = FunReda(Sδ+1), . . .,
tκ(sδ) = FunReda(Sδ+κ−1). The values of attributes in TDSa are the sets of
functional relative reducts. Obviously, ω = κ + η − 1.

Table 2. A scheme of temporal decision system TDSa

Us/At t1 t2 . . . tκ

s1 FunReda(S1) FunReda(S2) . . . FunReda(Sκ)

s2 FunReda(S2) FunReda(S3) . . . FunReda(Sκ+1)

. . . . . . . . . . . . . . .

sη FunReda(Sη) FunReda(Sη+1) . . . FunReda(Sκ+η−1)

Stage 5. For each attribute a ∈ A, we build the so-called temporal flow graph
TFGa as follows. Let us denote by FunRedt1

a the family of sets of functional
relative reducts which is a value set of an attribute t1 in TDSa. Analogously,
let us assume notation FunRedt2

a , ..., FunRedtκ
a for t2, ..., tκ, respectively. We

can write a set of nodes of TFGa as N = N1 ∪ N2 ∪ . . . ∪ Nκ, where N1 con-
tains nodes representing sets of functional relative reducts from FunRedt1

a , N2
contains nodes representing sets of functional relative reducts from FunRedt2

a ,
and so on, Nκ contains nodes representing sets of functional relative reducts
from FunRedtκ

a . For each branch (FunRedtδ
i , FunRed

tδ+1
j ) of TFGa, where

FunRedtδ
i ∈ FunRedtδ

a and FunRed
tδ+1
j ∈ FunRedtδ+1

a , we can compute
a strength factor str(FunRedtδ

i , FunRed
tδ+1
j ) = card(X∩Y )

card(Us)
, a certainty factor

cer(FunRedtδ
i , FunRed

tδ+1
j ) = card(X∩Y )

card(X) , and a coverage factor cov(FunRedtδ
i ,

FunRed
tδ+1
j ) = card(X∩Y )

card(Y ) , where X = {s ∈ Us : tδ(s) = FunRedtδ

i } and

Y = {s ∈ Us : tδ+1(s) = FunRed
tδ+1
j } for δ = 1, 2, . . . , κ − 1. Each branch

(FunRedδ
i , FunRedδ+1

j ) of TFGa represents a prediction rule of the form: IF
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Table 3. An information system S describing weather processes

U/A temp dew hum wind press

d1 50 31 40 8 2982
d2 58 31 61 10 2906
d3 50 47 77 0 2906
d4 58 47 70 0 2906
d5 58 47 61 10 2906
d6 58 47 70 10 2906
d7 58 47 77 10 2906

U/A temp dew hum wind press

d8 50 47 77 6 2906
d9 50 40 70 6 2906
d10 50 40 77 8 2906
d11 50 40 77 6 2906
d12 50 47 70 6 2982
d13 50 40 77 4 2982
d14 38 31 61 8 3004

FunRedδ
i , THEN FunRedδ+1

j . The meaning of such a rule is the following. If a set
of functional relative reducts FunRedδ

i for an attribute a appears in the time win-
dow Sδ, then a set of functional relative reducts FunRedδ+1

j for an attribute a will
appear in the time window Sδ+1 with a certainty cer(FunRedtδ

i , FunRed
tδ+1
j ).

This rule is also characterized by a strength str(FunRedtδ
i , FunRed

tδ+1
j ) and

a coverage cov(FunRedtδ
i , FunRed

tδ+1
j ). Analogously, one can build prediction

rules corresponding to the paths or the connections in TFGa taking the defini-
tions recalled in Section 2 into consideration.

The presented approach has been implemented in the ROSECON system [9] -
a computer tool for automatized discovering Petri net models from data tables as
well as predicting their changes in time. Computing functional relative reducts
has an exponential time complexity with respect to the number of attributes in
information systems. Constructing flow graphs has a polynomial time complexity
with respect to the number of functional relative reducts.

4 An Example

This section includes an example illustrating the proposed approach. Let us con-
sider an information system describing weather processes: temperature (marked
with temp), dew point (marked with dew), humidity (marked with hum), wind
speed (marked with wind), and pressure (marked with press). Global states ob-
served in our system are collected in Table 3 representing an information system
S = (U, A), for which: a set of objects (global states) U = {d1, d2, . . . , d14}, a
set of attributes (processes) A = {temp, dew, hum, wind, press}, sets of attribute
values (local states of processes): Vtemp = {38, 50, 58} [F], Vdew = {31, 40, 47} [F],
Vhum = {40, 61, 70, 77} [%], Vwind = {0, 4, 6, 8, 10} [mph], Vpress = {2906, 2982,
3004} [100×in]. We assume the following values of parameters: λ = 7, ρ = 1 and
κ = 4. A fragment of a temporal table of functional relative reducts TRRT (S) is
shown in Table 4. A temporal decision system TDStemp for the attribute temp
is shown in Table 5. Each cell with ∅ means that the functional relative reduct is
an empty set (i.e., values of a suitable attribute does not depend on the values
of the remaining attributes). A fragment of a flow graph for the attribute temp
is shown in Figure 1. This graph enables us to mine different rules concerning
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Table 4. A temporal table of functional relative reducts (fragment)

Windρ
λ(S)/A temp . . . press

S1 {hum, wind} . . . {temp, dew}, {hum}, {wind}
S2 {hum, wind} . . . ∅
S3 {hum, wind} . . . ∅
S4 {wind} . . . ∅
S5 {wind} . . . ∅
S6 {wind} . . . {temp, dew, hum},{dew, hum, wind}
S7 {wind} . . . {dew, hum, wind}
S8 {dew},{hum},{press} . . . {dew, hum, wind}

Table 5. A temporal decision system for the attribute temp

Us/At t1 t2 t3 t4

s1 {hum, wind} {hum, wind} {hum, wind} {wind}
s2 {hum, wind} {hum, wind} {wind} {wind}
s3 {hum, wind} {wind} {wind} {wind}
s4 {wind} {wind} {wind} {wind}
s5 {wind} {wind} {wind} {dew}, {hum}, {press}

Fig. 1. A flow graph expressing prediction rules for the attribute temp (fragment)

component changes in the consecutive time windows. In order to do it we can
take branches, paths or connections in the obtained graph (see Section 2). For
example, if we take the first branch, then we get a rule as follows. If a functional
relative reduct of the attribute temp is {wind} in the given time window, then a
functional relative reduct of temp is also {wind} in the next time window with
certainty equal to 1, coverage equal to 0.67 and strength equal to 0.4. On the
basis of the obtained rule, we can predict that a fragment (corresponding to the
functional relative reduct {wind}) of the structure of a current net model will
be preserved in a net model constructed for the next time window.
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5 Conclusions

In this paper we have presented the use of flow graphs to mine prediction rules of
component changes in the consecutive time windows of a temporal information
system. Such rules can be helpful to predict future behavior of a modeled system.
In general, flow graphs are a suitable tool for mining rules describing changes of
different kinds of elements (such as cores, reducts, components, etc.) in time win-
dows of temporal information systems. The future goals include, among others,
reduction of obtained flow graphs and building flow graphs for complex temporal
information systems.
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Abstract. Rough set theory and approximation spaces introduced by
Zdzis�law Pawlak provide a framework for modelling social as well as
technical conflicts. This is especially relevant in domains such as re-
quirements engineering, an essential phase of software development. The
socio−technical conflict model makes it possible to represent social con-
flicts (as conflict degrees) and technical conflicts (interaction between is-
sues) in a unified framework. Reasoning about conflict dynamics is made
possible by approximation spaces and conflict patterns. An illustrative
example of such a framework is presented. The contribution of this pa-
per is a formal socio− technical model and two approaches to reasoning:
vectors of conflict degrees and approximation spaces.

Keywords: Approximation spaces, conflicts, rough sets, requirements
engineering.

1 Introduction

Rough set theory and approximation spaces introduced by Zdzis�law Pawlak pro-
vide frameworks for modelling conflicts. It is customary to represent conflicts
arising between agents having differing opinions on various issues (ex: in gov-
ernment, industry) in terms of a voting framework [7,10]. However, there is a
need to consider whether the issues themselves are in conflict (i.e., contradictory
issues). This is particularly acute in requirements engineering, which provides
an appropriate mechanism for understanding what a customer wants, analyzing
need, negotiating a reasonable solution, specifying a solution unambiguously, val-
idating a specification, and managing requirements that are transformed into an
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operational system1. In other words, we need to model a combination of complex
conflict situations where there are social conflicts (due to differing stakeholder
views) and technical conflicts (due to inconsistent requirements). A requirements
interaction framework for social and technical conflicts and conflict dynamics as-
sessment with risk patterns was introduced in [15]. In this paper, we present a
formal socio-technical conflict model STCM that facilitates i) representation
of the two types of conflicts, ii) introduction of vectors of conflict degrees, iii)
reasoning about conflicts with approximation spaces and conflict patterns. Con-
flict dynamics assessment provides a means of determining the scope of system
functionality relative to social and technical conflicts.

This paper is organized as follows. In Sect. 2, we introduce a rough set based
socio-technical conflict model and define a vector of conflict degrees. The basic
architecture describing the methodology for constructing a decision table for
requirements conflicts is presented in Sect. 3. We illustrate the socio-technical
model in the context of a home lighting automation system in Sect. 3.1, followed
by a discussion of approaches to conflict dynamics with approximation spaces
in Sect. 3.2. In Sect. 3.3, we outline a new approach based on vectors of conflict
degrees in the context of requirements engineering.

2 Socio-Technical Conflict Model

In this section, we introduce a model for social and technical conflicts. Such a
model would be useful in applications such as requirements engineering, there
are conflicts arising due to a) differing opinions about what requirements are
necessary to be developed and b) requirements that are in conflict since they are
contradictory. This is quite common since there could be many subsystems and
specification of a requirement in one subsystem may contradict another require-
ment in a different subsystem. A conflict framework that includes i) conflicts
arising due to differing opinions by agents regarding issues also called social
conflicts and ii) conflicts arising due to inconsistent issues also called technical
conflicts was first presented [15]. Formally, a socio-technical conflict model is
denoted by STCM = (U, B, Ag, V ), where U is a nonempty, finite set called the
universe, where elements of U are objects, B is a nonempty, finite set of conflict
features of objects, Ag = {ag1, . . . , agn} represents agents that vote, V denotes
a finite set of voting function v on conflict features, where v : Ag → {−1, 0, 1}.
Elements of U and conflict features B are domain dependent. For example, in
requirements engineering, the objects can be software requirements and conflict
features can be scope negotiation parameters such as risk, or priority. Basic con-
flict theory concepts and an in-depth discussion of the social conflict model can
be found in [10,13,14].

In a rough set approach to conflicts, STCM can be represented as a decision
system where (U, B, sc, tc) with two decision features sc and tc representing
social conflict degree and technical conflict degree. The two decision features are
1 Thayer, R.H and Dorfman, M: Software Requirements Engineering, IEEE Computer

Society Press (1997).
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complex decisions. The social conflict is derived as a result of voting [15] where
sc = Con(CS) of the conflict situation CS = (Ag, v) defined by

Con(CS) =

∑
{(ag,ag′): φv(ag,ag′)=−1} |φv(ag, ag′)|

2�n
2 � × (n − �n

2 �) (1)

where n = Card(Ag). For a more general conflict situation CS = (Ag, V ) where
V = {v1, . . . , vk} is a finite set of voting functions each for a different issues the
conflict degree in CS (tension generated by V ) can be defined by (2).

Con(CS) =
∑k

i=1 Con(CSi)
k

, (2)

Equations 1 and 2 offers deeper insight into structure of conflicts, enables anal-
ysis of relationship between stakeholders and requirements being debated. In
particular, coalitions (like-minded team members) and conflict degrees amongst
coalitions are important to find ways for reducing tension and negotiation. The
technical conflict tc represents the degree of inconsistency and is determined by
domain experts or by an automated tool to detect inconsistency in specification
of issues. An illustration of determination of tc and sc is given in Section 3.1.

2.1 Vectors of Conflict Degrees

Let us consider a decision table DT = (U, B, sc, tc) introduced in the previous
section. We can consider this table as a table with a vector of two decisions sc, tc.
The value vectors of these decisions are partially ordered (using the component
wise ordering ≤). For a given vector v of conflict degrees, we consider sets {x ∈
U : InfB(x) ≤ v} and {x ∈ U : InfB(x) ≥ v}, called the ≤-class relative to v
and the ≥-class relative to v, respectively (see, e.g., [4]). If the measurements
associated with the members of the sets of features from B are also , e.g., linearly
ordered, then one can search, e.g., for patterns defined by the left hand sides of
the rules with the following form:

l∧

j=1

bi ≥ vi −→ (sc, tc) ≥ (v, v′).

Such patterns can be used to define approximations of the above defined classes
[4]. Another possibility is to define a metric on a vector of conflict degrees and
use the values of such a metric as a cumulative conflict degree. We now give an
exemplary STCM and conflict dynamics assessment in the context of require-
ments engineering.

3 Illustration: Requirements Engineering

In a typical requirements engineering process, one of the main goals is to formu-
late functional and non-functional requirements for the subsequent development
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Fig. 1. Requirements Framework

of the system. The basic architecture for requirements framework will be briefly
explained in this section. The methodology shown in Fig. 1 is composed of the
following steps:

– Step 1: Derive Requirements R which constitute U and conflict features B
such as effort, importance

– Step 2: Compute conflict degree sc for each requirement from R as a result
of voting by stakeholders on conflict features B

– Step 3: Determine degree of overlap between requirements based on trace
dependency In this paper, we assume that this information is obtained by
an requirements management tools such as those listed in 2.

– Step 4: Determine tc based on the degree of overlap, type of requirements
and the extent to which requirements conflict or cooperate

– Step 5: Construct decision table STCM

– Step 6: Assess conflict dynamics with approximation spaces, conflict patterns

Note that in theory, steps 2 and 3 can be performed in parallel. However, in
practice, it is better to get agreements between stakeholders about the specific
requirements before exploring inconsistencies between them. A complete example
of the problem of achieving agreement (minimal social conflict) on high-level
system requirements for a home lighting automation system3 was described in
[10]. Due to space restrictions, we refer the reader to [15] for a detailed discussion
on the process of construction of STCM decision table for a single high-level
requirement (R1- Custom Lighting Scenes).

2 See http:/www.incose.org
3 D. Leffingwell, D. Widrig: Managing Software Requirements, Addision-Wesley, 2003.
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3.1 System Requirements: Socio Technical Model

Table 1 represents the STCM with two complex decision features sc and tc
derived from two sources of conflicts.

Table 1. Socio-Technical Conflict Model

R1 E I S R T sc tc

r1.1 M H N L Y L WC
r1.2 M H N L Y M VWC
r1.3 H M N M Y L NC
r1.4 L H Y L Y L SC
r1.5 M H P H Y M WC
r1.6 M L P H N H VWC

Elements of U are detailed requirements for R1, the conflicts features B are
scope negotiation parameters: Effort, Importance, Stability, Risk and Testabil-
ity. The conflict degree sc is classified as follows: L (low conflict degree ≤< 0.3),
M (0.3 ≤ medium conflict degree ≤ 0.7) and H (conflict degree > 0.7). The
assessment of tc = {SC, WC, V WC, NC} represents the degree of requirements
interaction: strong conflict, weak conflict, very weak conflict and no conflict re-
spectively. Briefly, the approach is based on a generic model of potential conflict
and cooperation which highlights the nature of added requirements on other fea-
tures of the system [3]. For example, if a requirement adds new functionality to
the system, it may have i) no effect(0) on the overall functionality ii) negative
effect (-) on efficiency iii) positive effect(+) on usability iv) negative effect(-)
on reliability v) negative effect(-) on security vi) no effect(0) on recoverability
vii) no effect(0) on accuracy and viii) no effect(0) on maintainability. This
model is very general and is a worst best-case scenario. In practice, one must
take into account the degree of overlap between requirements and the type of
requirement since it has a direct bearing on the degree of conflict or coopera-
tion. Trace dependencies based on scenarios and observations are used to arrive
at the degree of overlap [2]. Technical conflict model is designed to capture in-
formation from requirements traceability4. Requirements traceability involves
defining and maintaining relationships with artifacts created as a part of sys-
tems development such as architectural designs, requirements, and source code
to name a few. In this paper, we restrict the artifact information to other re-
quirements as an aid to identifying conflicting (or cooperating) requirements [2].
The exemplary domain for degree of overlap and conflict degrees are due to
[3]. In addition, we assume that an automated requirements traceability tool
makes it possible to automatically extract i) conflicts and cooperation informa-
tion amongst requirements and ii) trace dependencies. The degree of overlap
between requirements and the conflict degrees are to a large extent manually
assessed.

4 IEEE Std. 830-1998.
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3.2 Conflict Dynamics Assessment with Approximation Spaces

This section introduces social and technical conflict analysis and conflict resolu-
tion with approximation spaces. Let DS = (Ureq, B, sc, tc), where Ureq is a non-
empty set of requirements, B is a non-empty set of scope negotiation parameters
(conflict parameters), and decision sc denotes social conflict, decision tc denotes
technical conflict (see Table 1). By SCi we denote the decision class correspond-
ing to the decision i, i.e., SCi = {u ∈ Ureq : sc(u) = i}. Hence, SCi consists of
the requirements from Ureq with the social conflict level i. By TCj we denote the
decision class corresponding to the decision j, i.e., TCj = {u ∈ Ureq : tc(u) = j}.
Hence, TCj consists of the requirements from Ureq with the technical conflict
level j. For any boolean combination of descriptors over DS and α, the seman-
tics of α in DS is denoted by ‖α‖DS , i.e., the set of all objects from U satisfying
α [8]. In what follows, i = L and SCL denote a decision class representing a
low degree of social conflict between stakeholders. A generalized approximation
space GASSC = (Ureq, NB, νSC

B ) with the neighborhood function NB(r) and the
coverage function νSC

B for social conflict can be defined as in (3) [13]. Assuming
that the lower approximation B∗SCL represents an acceptable (standard) level
of social conflict during negotiation, we are interested in the values νSC

B in (3).

νSC
B (NB(r), B∗SCL) =

|NB(r) ∩ B∗SCL|
|B∗SCL| , (3)

considered in the context of a decision system DS for neighborhoods NB(r) and
standard B∗SCL for conflict negotiation. Analogously, we define GASTC with
coverage function νTC

B for technical conflicts. What follows is a simple example
of how to set up a lower approximation space relative to two decisions shown in
Table 1:

B={Effort, Risk, Testability}, SCL ={r ∈ U : sc(r)=L} = {r1.1, r1.3, r1.4},
B∗SCL = {r1.3, r1.4}, NB(r1.1) = {r1.1, r1.2}, NB(r1.3) = {r1.3},
NB(r1.4) = {r1.4}, NB(r1.5) = {r1.5}, NB(r1.6) = {r1.6},
νSC

B (NB(r1.1), B∗SCL) = 0, νSC
B (NB(r1.4), B∗SCL) = 0.5,

νSC
B (NB(r1.5), B∗SCL) = 0, νSC

B (NB(r1.3), B∗SCL) = 0.5,
νSC

B (NB(r1.6), B∗SCL) = 0.

B = {Effort, Risk, Testability}, TCV WC = {r ∈ U : tc(r) = V WC ∨ tc(r) =
NC} = {r1.2, r.1.3, r1.6},
B∗TCV WC = {r1.3, r1.6}, νTC

B (NB(r1.1), B∗TCV WC) = 0,
νTC

B (NB(r1.3), B∗TCV WC) = 0.5, νTC
B (NB(r1.4), B∗TCV WC) = 0,

νTC
B (NB(r1.5), B∗TCV WC) = 0, νTC

B (NB(r1.6), B∗TCV WC) = 0.5.

Based on the experimental rough coverage values, we can set a threshold th for
acceptance of r such that acceptable neighborhoods have the following property:

∀NB ∈ GASsc, GAStc . (νsc
B > th) ∧ (νtc

B > th).
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In our example we assume th = 0.3. Consequently, only one requirement r1.3 sat-
isfies the criteria with almost no disagreement between stakeholders and requiring
no change to the specification of requirement r1.3. On the other hand, there is also
minimal disagreement on requirements r1.4. However, its specification is inconsis-
tent with other requirements in the system (or other subsystems) and needs to be
changed. Requirement r1.6 has to be renegotiated due to high social conflict.

3.3 Conflict Dynamics Assessment with Vectors of Conflict Degrees

In Sect. 2.1 we have outlined of the problem of approximation of conflict degree
classes by some patterns defined by features from the set B. The approach
requires using the ordering on feature value sets and methods developed in,
e.g., [4]. In particular, the method for the so called tr-reducts discussed in [14]
can be extended on this case. This approach makes it possible to analyze the
dynamical changes of conflict degrees defined by patterns when some conditions
from them are dropped. In this way, one can analyze the changes of vectors
of conflict degrees defined in the socio-technical model. In particular, one can
select important features which can not be eliminated if one would like to keep
the vector of conflict degrees below a given threshold.

4 Related Works

Basic ideas of conflict theory in the context of rough sets are due to [7]. The re-
lationships between the approach to conflicts and information systems as well as
rough sets are illustrated in [10,13,14]. Inconsistent requirements (technical con-
flicts) using classifiers based on rough sets can be found in [6]. Recent research
with approximate reasoning about vague concepts in conflict resolution and ne-
gotiations between agents (information sources) [5,9], requirements negotiation
decision model [1], trace-dependency for identifying conflicts and cooperation
among requirements [3], requirements interaction management [17] provide a
basis for comparison of the proposed approach and also points to the usefulness
of a unified framework for software requirement conflict analysis and negotiation.

5 Conclusion

This paper presents an approximation-space based socio-technical conflict model
STCM for two complementary types of conflicts. We also introduce vectors of
conflict degrees which take into account dual complex decisions. We suggest
reasoning about conflicts with approximation spaces and conflict patterns. The
conflict dynamics assessment approach aids in i) selecting important features
and ii) provides a mechanism to determine the scope of system functionality
that takes into account social and technical conflict.
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Based Time-Frequency Analysis of Radar
Emitter Signals�
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Abstract. This paper uses an improved quantum-inspired genetic al-
gorithm (IQGA) based time-frequency atom decomposition to analyze
the construction of radar emitter signals. With time-frequency atoms
containing the detailed characteristics of a signal, this method is able
to extract specific information from radar emitter signals. As IQGA has
good global search capability and rapid convergence, this method can
obtain time-frequency atoms of radar emitter signals in a short span of
time. Binary phase shift-key radar emitter signal and linear-frequency
modulated radar emitter signal are taken for examples to analyze the
structure of decomposed time-frequency atoms and to discuss the dif-
ference between the two signals. Experimental results show the huge
potential of extracting fingerprint features of radar emitter signals.

Keywords: Quantum-inspired genetic algorithm, time-frequency atom
decomposition, radar emitter signal, feature analysis.

1 Introduction

Feature extraction takes a very important part in pulse train deinterleaving,
type recognition and individual identification of radar emitters. In [1,2], fea-
ture extraction for deinterleaving radar emitter pulse trains was discussed. In
[3,4], intra-pulse modulation features were extracted from several advanced radar
emitter signals. With the rapid development of modern electronic warfare tech-
nology, specific radar emitter identification arouses great interest. In [5-7], sev-
eral feature extraction methods for radar emitter signals were presented. These
features are characteristic of the overall view of radar emitter signals.

Time-frequency atom decomposition (TFAD), also known as matching pursuit
or adaptive Gabor representation, is able to decompose any signal into a linear
expansion of waveforms selected from a redundant dictionary of time-frequency
atoms that well localized both in time and frequency [8,9]. Unlike Wigner and
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Cohen class distributions, the energy distribution obtained by TFAD does not
include interference terms. Different from Fourier and Wavelet orthogonal trans-
forms, the information in TFAD is not diluted across the whole basis [8,10,11].
Therefore, TFAD can be used to capture the natural features (local and detailed
characteristics) of radar emitter signals, thus, TFAD can be applied to extract
the key features from advanced radar emitter signals to identify some specific
radar emitters. However, the necessary dictionary of time-frequency atoms being
very large, the computational load is extremely high and consequently becomes
the main problem of TFAD.

In this paper, an improved quantum-inspired genetic algorithm (IQGA) is
introduced into TFAD to extract some detailed features from advanced radar
emitter signals. Based on the concepts of quantum computing, quantum-inspired
genetic algorithm (QGA) falls into the latest category of unconventional com-
putation. Due to some outstanding advantages such as good global search ca-
pability, rapid convergence and short computing time [10,11], QGA is able to
accelerate greatly the process of searching the most satisfactory time-frequency
atom in each iteration of TFAD. So this method makes TFAD easy to extract
time-frequency atom features from radar emitter signals. In the next section,
IQGA is presented briefly. Next, time-frequency analysis of radar emitter sig-
nals is discussed. In Section 4, some experiments are conducted on radar emitter
signals. Finally, some conclusions are listed.

2 IQGA

In [10], an improved quantum-inspired genetic algorithm was presented. IQGA
uses quantum bit (Q-bit) phase to update the rotation angels of quantum gates
(Q-gates) to generate the individuals at the next generation. The evolutionary
strategy is simple and has only one parameter to adjust. Also, migration and
catastrophe operators are employed to strengthen search capability and to avoid
premature phenomena. The structure of IQGA is shown in Algorithm 1 and the
brief description is as follows.

(i) Some parameters, including population size n, the number v of variables,
the number m of binary bit of each variable and evolutionary generation
g, are set. The initial value of g is set to 0.

(ii) Population P (g)={pg
1, p

g
2, · · · , pg

n}, where pg
i (i = 1, 2, · · · , n) is an arbi-

trary individual in population and pg
i is represented as

pg
i =

[
αg

i1|α
g
i2| · · · |α

g
i(mv)

βg
i1|β

g
i2| · · · |β

g
i(mv)

]
. (1)

where αg
ij = βg

ij = 1/
√

2 (j = 1, 2, · · · , mv), which means that all states
are superposed with the same probability.

(iii) According to probability amplitudes of all individuals in P (g), observation
states R(g) is constructed by observing P (g).
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Algorithm 1. Algorithm of IQGA
Begin

(i) Initial values of parameters; % Evolutionary generation g=0;
(ii) Initializing P(g); %
(iii) Generate R(g) by observing P(g); %
(iv) Fitness evaluation; %
(v) Store the best solution among P(g) into B(g);

While (not termination condition) do
g=g+1;

(vi) Generate R(g) by observing P(g-1); %
(vii) Fitness evaluation; %
(viii) Update P(g) using quantum rotation gate; %
(ix) Store the best solution among P(g) and B(g-1) into B(g);

If (migration condition)
(x) Migration operation;

End if
If (catastrope condition)

(xi) Catastrope operation;
End if

End
End

(iv) Each individual is evaluated.
(v) The best solution in P (g) at generation g is stored into B(g).
(vi) According to probability amplitudes of all individuals in P (g − 1), ob-

servation states R(g) is constructed by observing P (g − 1). This step is
similar to step (iii).

(vii) This step is the same as step (iv).
(viii) In this step, the probability amplitudes of all Q-bits in population are

updated by using Q-gates given in (2).

G =
[
cos θ − sin θ
sin θ cos θ

]
. (2)

where θ is the rotation angle of Q-gate and θ is defined as θ = k · f(α, β),
where k is a coefficient whose value has a direct effect on convergent speed
of IQGA. f(α, β) is a function for determining the search direction of
IQGA to a global optimum. The look-up table of f(α, β) is shown in
Table 1, in which ξ1 = arctan(β1/α1) and ξ2 = arctan(β2/α2), where α1,
β1 are the probability amplitudes of the best solution stored in B(g) and
α2, β2 are the probability amplitudes of the current solution.

(ix) The best solution among P (g) and B(g − 1) is stored into B(g).
(x) Migration operation is used to introduce new and better individuals to

quicken the convergence of IQGA. Migration operation is performed only
on the stored best individual instead of all individuals.

(xi) If the best solution stored in B(g) is not changed in some generations,
catastrophe operation should be performed.
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Table 1. Look-up table of function f(α, β) (Sign is a symbolic function)

ξ1 > 0 ξ2 > 0 f(α, β)
ξ1 ≥ ξ2 ξ1 < ξ2

True True +1 -1
True False sign(α1 · α2)
False True -sign(α1 · α2)
False False sign(α1 · α2) -sign(α1 · α2)

ξ1, ξ2 = 0 or π/2 ±1

3 Time-Frequency Analysis of Radar Emitter Signals

In our prior work [10,11], the effectiveness of IQGA was validated by using
radar emitter signals, and some useful guidelines for setting the parameters were
drawn up from extensive experiments, and the detailed steps of IQGA based
TFAD was described. In this section, we aim at time-frequency atom analysis
of radar emitter signals. Figure 1 shows a binary-phase shift-key (BPSK) radar
emitter signal with noise.

0 100 200 300 400 500 600 700 800 900 1024
-150

-100

-50

0

50

100

150

Time [s]

A
m

p
lit

u
d
e

(a) Time-domain signal

Time [s]

F
re

qu
en

cy
 [H

z]

200 400 600 800 1000
0.2

0.22

0.24

0.26

0.28

(b) Time-frequency distribution

Fig. 1. A BPSK radar emitter signal with noise

IQGA based TFAD is applied to decompose the BPSK radar emitter signal
and resemblance coefficient method [3] is used to the correlation ratio Cr to
compute the correlation between the original signal f and the restored signal fr

with parts of decomposed time-frequency atoms.

Cr =
〈f, fr〉

‖f‖ · ‖fr‖
. (3)

Figure 2(a) illustrates the correlation ratio curve of the first 100 iterations.
As can be seen from the correlation ratio curve, there is a steep increase at
the first 10 iterations, after which the correlation ratio curve rises slowly. At it-
eration 10, the correlation ratio amounts to 0.97. We uses the first 10 decomposed
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Fig. 2. Experimental results of BPSK radar emitter signal

time-frequency atoms to reconstruct the radar emitter signal and give the time-
frequency distribution of the reconstructed signal in Fig.2(b). In this paper,
time-frequency atom uses Gabor function:

gγ(t) =
1√
s
g(

t − u

s
) cos(νt + ω) . (4)

where the index γ=(s, u, ν, ω) is a set of parameters and s, u, ν, ω are scale,
translation, frequency and phase, respectively. g(·) is a Gauss-modulated window
function as

g(t) = e−πt2 . (5)

The setting of parameters of Gabor time-frequency atom can be referred to
[11]. To demonstrate the detailed structure of the first 10 atoms, we list their
parameters in Table 2, in which the 10 atoms are labelled as 1 to 10.

Table 2. Parameters of 10 Gabor atoms of BPSK radar emitter signal

1 2 3 4 5 6 7 8 9 10

s 57.67 57.67 57.67 57.67 57.67 57.67 57.67 57.67 57.67 57.67
u 0 0 0 0 0 0 0 0 0 0
ν 106.89 106.29 107.49 105.47 106.84 107.92 106.02 104.82 105.36 109.12
ω 2.09 4.19 5.76 5.76 4.71 1.05 4.71 5.76 4.71 4.71

To analyze further time-frequency atoms of radar emitter signals, a linear-
frequency modulated (LFM) radar emitter signal is employed to conduct the
next experiment. The noised LFM radar emitter signal is shown in Fig.3. We use
IQGA based TFAD to decompose the LFM radar emitter signal and resemblance
coefficient method to evaluate the correlation between the original signal and the
restored signal with parts of decomposed time-frequency atoms. The change of
correlation ratio of the first 100 iterations is illustrated in Fig.4(a), in which the
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Fig. 3. A LFM radar emitter signal with noise
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Fig. 4. Experimental results of LFM radar emitter signal

correlation ratio climbs to 0.86 at iteration 30. The first 30 decomposed time-
frequency atoms are applied to reconstruct the LFM radar emitter signal and
Fig.4(b) shows the time-frequency distribution of the reconstructed signal. In
Table 3, the parameters of Gabor atoms are given to demonstrate the detailed
structure of the first 30 atoms whose labels are from 1 to 30.

As can be seen from Fig.1 to Fig.4, Tables 2 and 3, several conclusions can
be drawn. First of all, IQGA based TFAD is able to decompose radar emitter
signals into linear expansion of waveforms selected from redundant dictionary
of time-frequency atoms. Next, BPSK radar emitter signal is approximated by
only 10 time-frequency atoms, while LFM radar emitter signal need at least 30
time-frequency atoms. BPSK radar emitter signal is easier to represent by time-
frequency atoms than LFM radar emitter signal. Also, each atom characterizes a
part of radar emitter signal. Therefore, these time-frequency atoms are a certain
features of radar emitter signals. Finally, Table 2 and Table 3 show the much
difference between BPSK radar emitter signal and LFM radar emitter signal. In
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Table 3. Parameters of 30 Gabor atoms of LFM radar emitter signal

1 2 3 4 5 6 7 8 9 10

s 17.09 17.09 25.63 7.59 7.59 11.39 7.59 11.39 38.44 38.44
u 34.17 17.09 25.63 0 0 0 0 0 38.44 38.44
ν 41.19 38.80 37.26 26.06 24.82 27.86 24.00 30.34 36.20 35.47
ω 2.62 4.71 6.28 2.62 1.05 3.67 5.76 2.09 4.71 1.05

11 12 13 14 15 16 17 18 19 20

s 11.39 7.59 11.39 11.39 38.44 38.44 38.44 11.39 25.63 25.63
u 0 0 0 0 38.44 38.44 38.44 0 0 0
ν 28.96 23.17 32.27 31.44 34.57 33.59 32.93 27.03 21.33 22.43
ω 3.14 3.67 4.71 0.52 4.71 1.57 3.14 3.14 5.24 2.09

21 22 23 24 25 26 27 28 29 30

s 38.44 38.44 38.44 38.44 38.44 38.44 38.44 38.44 38.44 17.09
u 0 0 0 0 0 0 0 0 0 0
ν 14.71 15.04 15.85 19.94 14.38 15.45 20.92 17.24 17.57 21.88
ω 3.14 5.76 4.71 6.28 0.52 2.09 3.67 5.76 1.57 0.52

Table 2, there is nearly no change of s and u. The values of s and ν are more
than 50 and 100, respectively. In contrast, Table 3 shows great difference from
Table 2. The values of s and u vary in a certain range in Table 3. All values
of s and u are below 40. There is no value above 45 in parameter ν. It is the
difference that indicates the difference between BPSK and LFM radar emitter
signals. So we can use the difference to recognize different radar emitter signals.

4 Concluding Remarks

By introducing IQGA into TFAD, time-frequency atoms of radar emitter signals
are easy to obtain. Analyzing the structure of time-frequency atoms of BPSK
radar emitter signal and LFM radar emitter signal, this paper discusses the dif-
ference between BPSK radar emitter signal and LFM radar emitter signal. Con-
taining plenty of detailed characteristics, time-frequency atoms of radar emitter
signals may be used as the features to recognize different radar emitters. In the
future work, we will use this method to extract fingerprint features from specific
radar emitters and to analyze other signals such as fault signals and harmonic
signals in power system.
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Abstract. Parameter setting, especially the angle of Q-gate, has much
effect on the performance of quantum-inspired evolutionary algorithm.
This paper investigates how the angle of Q-gate affects the optimization
performance of real-observation quantum-inspired genetic algorithm.
Four methods, including static adjustment methods, random adjustment
methods, dynamic adjustment methods and adaptive adjustment meth-
ods, are presented to bring into comparisons to draw some guidelines
for setting the angle of Q-gate. Comparative experiments are carried out
on some typical numerical optimization problems. Experimental results
show that real-observation quantum-inspired genetic algorithm has good
performance when the angle of Q-gate is set to lower value.

Keywords: Quantum computing, genetic algorithm, quantum-inspired
genetic algorithm, parameter setting.

1 Introduction

Quantum-inspired genetic algorithm (QGA) is a novel unconventional computa-
tion method. QGA is a combination of genetic algorithm and quantum comput-
ing. It uses the concepts and principles of quantum computing, such as quantum-
inspired bit (Q-bit), quantum-inspired gate (Q-gate) and quantum operators in-
cluding superposition, entanglement, interference and measurement. In the lit-
erature, there are two main types of QGA. One is the binary-observation QGA
(BQGA) presented in [1]. The other is the real-observation quantum-inspired ge-
netic algorithm (RQGA) introduced in [2]. Extensive experiments verifies that
QGA has the advantages of much better global search capability and much
faster convergence only with a small population size over conventional genetic
algorithm [1-4]. However, parameter setting has much effect on QGA. In [5,6],
some experiments were conducted to discuss the choice of parameters in BQGA.
But there is relatively little or no research on the effects of different settings for
the parameters of RQGA.

This paper presents four methods to investigate the effects of parameter set-
ting of Q-gate on the performance of RQGA. The four methods include static
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adjustment, random adjustment, dynamic adjustment and adaptive adjustment.
We use some typically numerical optimization problems to do comparative ex-
periments to obtain some useful guidelines for setting the angle of Q-gate in
RQGA.

2 Parameter Adjustment Methods

Extending two states ’1’ and ’0’ to an arbitrary pair of states between ’1’ and
’0’ in quantum system, a real-observation quantum-inspired genetic algorithm
was proposed to solve globally numerical optimization problems with continu-
ous variables [2]. RQGA uses a Q-gate to drive the individuals toward better
solutions and eventually toward a single state corresponding to a real number
varying between 0 and 1. The value k of Q-gate angle has a direct effect on
convergent speed of RQGA. If k is too large, the search grid of RQGA would
be very large and the solution may diverge or converge prematurely to a local
optimum. On the contrary, if it is too small, the search grid of RQGA would
be very small and RQGA may fall in stagnant state. Hence, the choice of k is
very important for RQGA. In the following description, we will present four pa-
rameter adjustment methods, including static adjustment, random adjustment,
dynamic adjustment and adaptive adjustment, to investigate the effect.

2.1 Static Adjustment Method

According to Def.2 in [2], Q-gate angle k varies between 0 and π/2. In static ad-
justment method, Q-gate angle k is a constant in the whole process of searching
a globally optimal solution. But how to preset the constant value is the subse-
quent problem. Intuitively, we always want to choose the best value in the range
[0, π/2] as the value of k. To determine the best Q-gate angle k, this paper uses
some test functions to carry out experiments, in which k changes from 0 to π/2
and the other condition keep unchangeable. In each test, Q-gate angle k is preset
to a constant value. The terminal condition of RQGA is the maximal evolution-
ary generation. In the experiments, the mean best values and standard devia-
tions for each value of k are recorded and finally two curves of the mean best
values and standard deviations for all values of k can be obtained. According to
the experimental results, the best value of k is the one that achieves the optimal
solution and the smallest standard deviation, which is chosen as the value of k.

2.2 Random Adjustment Method

RQGA is a kind of probabilistic optimization methods, in which there must
be randomness. This randomness is not correspondent with fixed k in static
adjustment method. Hence, random adjustment method is used to determine
Q-gate angle k. In this method, instead of presetting a fixed value, Q-gate angle
k can be chosen randomly between 0 and π/2 in the process of searching the
optimal solution. In each experiment, the value of k is generated by using a
random function.
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2.3 Dynamic Adjustment Method

In random adjustment method, there is a sort of blindness for setting Q-gate an-
gle k. To overcome the blindness of random adjustment method, another method
called dynamic adjustment method is employed to determine Q-gate angle k. In
this method, Q-gate angle k is defined as a variable. Of course, there are many
definitions for k. Here, an example for defining Q-gate angle k is as follows.

k =
π

2
e−

mod(g,b)
a . (1)

where mod(g, b) is a function for calculate the remainder after g is divided by
the constant b and g is the evolutionary generation. a is also a constant. In this
method, the initial value of k is equal to π/2 and then k varies from π/2 to
0, which indicates RQGA begins with large grid to search the optimal solution
and then the search grid declines gradually to 0 as the evolutionary generation
g increases to b. When the evolutionary generation g amounts to b, the value of
k come back to π/2. In this paper, b and a are set to 100 and 10, respectively.

2.4 Adaptive Adjustment Method

Dynamic adjustment method gives RQGA a changing trend of searching the
optimal solution from coarse to fine. In dynamic adjustment method, Q-gate
angle k varies as evolutionary generation. As a matter of fact, Q-gate angle k
should be adjusted by the diversity of population in RQGA, that is to say, Q-
gate angle k should be adjusted by the convergent state of RQGA. When there
is much difference between the individuals, Q-gate angle k may change slowly, in
contrast, Q-gate angle k may change quickly when little difference exists between
the individuals. Therefore, adaptive adjustment method is applied to determine
the value of k in the process of searching the optimal solution.

In RQGA, the diversity of population is related to probability amplitudes of
Q-bits. In [2], the probability amplitude of a Q-bit is defined by a pair of numbers
(α, β) as

[α β]T . (2)

where α and β satisfy normalization equality |α|2+ |β|2 = 1. |α|2 and |β|2 denote
the probabilities that the qubit will be found in A state and in B state in the
act of observing the quantum state, respectively. The probability amplitudes of
n Q-bits are represented as

[
α1|α2| · · · |αn

β1|β2| · · · |βn

]
. (3)

If there are n individuals in RQGA, we just need n Q-bits to represent the n
individuals. In the n Q-bits, the standard deviation of probability amplitudes
can embody well the diversity of population.

According to the definition of Q-bit, α and β range between 0 and 1. So the
standard deviation of α or β of n individuals also varies between 0 and 1. Thus,
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a function of the standard deviation of probability amplitudes of n individuals
can be used to adjust the Q-gate angle k. The function is written as

k =
π

2
(1 − S) . (4)

where S is the standard deviation of α of n individuals.

3 Experiments

Some comparative experiments are carried out to investigate the effects of the
above four parameter adjustment methods on the performance of RQGA. In this
paper, 10 functions f1 − f10, whose global minima are 0, are applied to conduct
the comparative experiments. These functions are

(I) Sphere function

f1(x) =
N∑

i=1

x2
i , −100.0 ≤ xi ≤ 100.0, N = 30 . (5)

(II) Ackley function

f2(x) = 20 + e − 20 exp
(

−0.2
√

1
N

∑N
i=1 x2

i

)
− exp

(
1
N

∑N
i=1 cos (2πxi)

)

−32.0 ≤ xi ≤ 32.0, N = 30

. (6)

(III) Griewank function

f3(x) =
1

4000

N∑

i=1

x2
i −

N∏

i=1

(
xi√

i

)
+ 1, −600.0 ≤ xi ≤ 600.0, N = 30 . (7)

(IV) Rastrigin function

f4(x) = 10N +
N∑

i=1

(x2
i − 10 cos (2πxi)), −5.12 ≤ xi ≤ 5.12, N = 30 . (8)

(V) Schwefel function

f5(x) = 418.9829N −
N∑

i=1

(
xi sin

(√
|xi|

))
, −500.0 ≤ xi ≤ 500.0, N = 30 . (9)

(VI) Schwefel’s problem 2.22

f6(x) =
N∑

i=1

|xi| +
N∏

i=1

|xi|, −10 ≤ xi ≤ 10, N = 30 . (10)
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(VII) Schwefel’s problem 1.2

f7(x) =
N∑

i=1

⎛

⎝
i∑

j=1

xj

⎞

⎠
2

, −100 ≤ xj ≤ 100, N = 30 . (11)

(VIII) Schwefel’s problem 2.21

f8(x) = max
i=1

{|xi|, 1 ≤ i ≤ 30}, −100 ≤ xi ≤ 100 . (12)

(IX) Step function

f9(x) =
N∑

i=1

(�xi + 0.5�)2, −100 ≤ xi ≤ 100, N = 30 . (13)

(X) Quartic function, i.e. noise

f10(x) =
N∑

i=1

ix4
i + random[0, 1), −1.28 ≤ xi ≤ 1.28, N = 30 . (14)

In RQGA, both the population size and the parameter Cg are set to 20. Static
adjustment method is first employed to determine the best value of Q-bit angle
k. In the range [0, π/2], we conduct the experiment 50 times repeatedly every
0.02π interval. The maximal generation is set to 500. The mean best solutions
and the standard deviations are recorded for each experiment. Experimental
results are given in Fig.1, in which solid-line and dash line represent the mean
best solutions (MBS) and standard deviations (STD), respectively. The given
values in the abscissa in Fig.1 should be multiplied by π.

In the same environment as static adjustment method, RQEA are performed
50 independent runs for random adjustment method (RAM), dynamic adjust-
ment method (DAM) and adaptive adjustment method (AAM), for each test
function, respectively. The mean best values and the standard deviations are
recorded for each test function. Experimental results are listed in Table 1, in
which m, σ, g and p represent the mean best, the standard deviation, the max-
imal number of generations and the population size, respectively. The results
are averaged over 50 runs. The best results shown in Fig.1 of static adjustment
method (SAM) for each test function are also listed in Table 1 so as to bring
into comparison with the other three methods.

Figure 1 shows that different values of Q-gate angles make RQGA obtain
different mean best solutions and standard deviations for different functions.
Generally speaking, RQGA has good performance when Q-gate angle is less
than 0.1π. According to this conclusion, we decrease the value π/2 to 0.1π in
random adjustment method, dynamic adjustment method and adaptive adjust-
ment method, and redo the above experiments. Table 2 lists the experimental
results. From Tables 1 and 2, it can be seen that dynamic adjustment method is
superior to random adjustment method and is inferior to adaptive adjustment
method. The experimental results in Table 2 are better than those in Table 1.
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Table 1. Comparisons of four adjustment methods

g p SAM RAM DAM AAM

f1 500 20 m 0.04 12.33 20.35 8.24
σ 0.05 27.12 49.48 19.23

f2 500 20 m 0.03 1.29 1.06 0.85
σ 0.03 2.43 1.01 0.99

f3 500 20 m 0.14 0.81 0.92 0.83
σ 0.18 0.40 0.31 0.37

f4 500 20 m 0.02 3.65 2.95 2.08
σ 0.05 6.86 6.19 3.19

f5 500 20 m 0.19 43.97 7.58 3.68
σ 0.53 254.16 21.38 4.92

f6 500 20 m 0.14 1.09 1.02 1.75
σ 0.17 1.03 1.05 6.60

f7 500 20 m 0.16 21.17 11.28 12.68
σ 0.33 38.05 20.98 25.90

f8 500 20 m 0.03 0.35 0.32 0.32
σ 0.03 0.40 0.28 0.29

f9 500 20 m 0 10.80 5.40 3.60
σ 0 25.54 11.64 9.85

f10 500 20 m 2.0 × 10−3 0.03 0.01 0.01
σ 1.8 × 10−3 0.13 9.6 × 10−3 0.01

Table 2. Experimental results after decreasing k

g p SAM RAM DAM AAM

f1 500 20 m 0.04 7.37 10.04 2.60
σ 0.05 14.70 21.55 4.33

f2 500 20 m 0.03 0.63 0.54 0.74
σ 0.03 1.01 0.48 0.97

f3 500 20 m 0.14 0.62 0.75 0.68
σ 0.18 0.49 0.37 0.55

f4 500 20 m 0.02 2.38 2.72 1.90
σ 0.05 2.54 4.62 2.17

f5 500 20 m 0.19 4.08 2.72 2.81
σ 0.53 6.92 4.34 5.85

f6 500 20 m 0.14 0.91 0.73 1.04
σ 0.17 0.73 0.62 1.11

f7 500 20 m 0.16 17.30 1.88 10.98
σ 0.33 40.52 3.07 20.00

f8 500 20 m 0.03 0.28 0.17 0.30
σ 0.03 0.30 0.14 0.28

f9 500 20 m 0 9.60 0 2.73
σ 0 20.50 0 9.05

f10 500 20 m 2.0 × 10−3 0.01 0.01 0.01
σ 1.8 × 10−3 8.1 × 10−3 5.3 × 10−3 8.9 × 10−3
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Fig. 1. Experimental results of functions f1 − f10
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4 Concluding Remarks

As an unconventional evolutionary computation algorithm, real-observation
quantum inspired genetic algorithm has better performance than conventional
genetic algorithm, but the performance of RQGA depends a considerable ex-
tent on its parameter setting. Q-gate angle is the most important parameter in
RQGA. So this paper presents four methods for setting the Q-gate angle. Apart
from the four methods, including static adjustment method, random adjustment
method, dynamic adjustment method and adaptive adjustment method, are dis-
cussed in detail, some comparative experiments are carried out to investigate the
advantages and disadvantages of them. This work is helpful to improve further
the performance of RQGA.
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Abstract. Penalty functions are often used to handle constrained optimization 
problems in evolutionary algorithms. However, most of the penalty adjustment 
methods are based on mathematical approaches not on evolutionary ones. To 
mimic the biological phenomenon of the values judgment, we introduce the 
rough set theory as a novel penalty adjustment method. Furthermore, a new 
marriage selection is proposed in this paper to modify the multiple-evaluation 
genetic algorithm. By applying rough-penalty and marriage-selection methods, 
the proposed algorithm generally is both effective and efficient in solving sev-
eral constrained optimization problems. The experimental results also show that 
the proposed mechanisms further improve and stabilize the solution ability.  

Keywords: Rough set theory, penalty function, marriage selection, genetic al-
gorithm, MEGA. 

1   Introduction 

Recently, genetic algorithms (GAs) have become well-known stochastic methods of 
global optimization based on the evolution theory of Darwin [1]. It would seem that 
further investigations are needed in order to deal with the real-world constraint prob-
lems. One of the most common approaches is the penalty function approach. By  
introducing penalty terms into the objective function, a constrained optimization prob-
lem can be transformed into an unconstrained one [2]. Many recent studies focus on 
combining GAs and penalty functions to solve the constrained optimization problems, 
such as the static penalty (SP) [3], the dynamic penalty (DP) [4] and the adaptive 
penalty (AP) methods [5]. However, most of the modified GAs are based on mathe-
matical strategies but neglect the biological evolutionary approaches. 

By mimicking the biological processes of the values judgment and the spouse selec-
tion, this paper proposes two novel mechanisms to enhance the multiple-evaluation 
genetic algorithm (MEGA) [6]. The first mechanism is a rough penalty (RP) method 
which applies the rough set theory (RST) as a new penalizing strategy. Blending the 
RPs with the traditional global penalty can imitate the libertarianism and enlarge the 
genetic diversity. The other modification is a marriage selection operation which  
combines with the conventional GA selection to mimics the volition mating process. 
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Compared with the experimental results in the literatures, the proposed algorithm can 
enhance the exploration and exploitation abilities of the traditional GAs. 

The rest of this paper is organized as follows. Section 2 briefly describes the RST 
and penalizing strategies. The main processes of the modified MEGA are described in 
Section 3. In Section 4, the experiment results and performance assessments are pre-
sented. Finally, the paper concludes with a summary of the results in Section 5. 

2   Rough Set Theory and Penalizing Strategy 

2.1   Rough Set Theory 

Zdzislaw Pawlak proposed the RST in the early 1980's [7]. The rough set analysis 
approximates the main components of concepts to assist decision making [8].  

Definition 1: Information system. An information system (IS) is denoted as a triplet 
),,( fAUT = , where U  is a non-empty finite set of objects and A  is a non-empty 

finite set of attributes. Information function f  maps an object to its attribute, i.e. 

aa VUf →:  for Aa ∈∀ , where aV  is called domain of an attribute a. A posteriori 

knowledge is expressed by one distinguished attributed and denoted by d. A decision 
system (DS) is a IS of the form )},{,( fdAUDT ∪= , where Ad ∉  is used as su-

pervised learning. The elements of A are called conditional attributes.  

Definition 2: Indiscernibility. For any attribute set AB ⊆ , an equivalence relation 

induced by B is determined as { })()(,),()( 2 yfxfBaUyxBIND aaT =∈∀∈= . The 

relation )(BINDT  is called the B-indiscernibility relation. The equivalence classes of 

the B-indiscernibility relation are denoted as )(xI B . 

Definition 3: Set Approximation. Let UX ⊆ and AB ⊆  in an IS T, the B-lower and 

B-upper approximations of X are defined as { }XxIUxXB B ⊆∈= )(  and 

{ }φ≠∩∈= XxIUxXB B )(  respectively. XB  is the set of objects that belongs to X 

with certainty, whereas XB  is the set of objects that possibly belongs to X. 

Definition 4: Reducts. If r
DTDTDT XXX ,,, 21 L  are the decision class of DT, the set 

rXBXB ∪∪L1  is called the B-positive region of DT and is denoted by )(dPOSB . 

A subset AB ⊆  is a set of relative reducts of DT if and only if )()( dPOSdPOS CB =  

and { } BbdPOSdPOS CbB ∈∀≠− ),()( . 

2.2   Conventional Penalty Methods 

This paper adopts a two-stage penalizing mechanism: one is called global penalty (GP) 
and the other is called rough penalty (RP). The GP can be one of the conventional pen-
alty methods used to penalize constraint violations of each infeasible solution. The pro-
posed RP applies the RST to enhance the exploration ability of the MEGA. 
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For illustration, the following minimization problem is used in this section: 

Minimize    )( jXF
r

,     (1) 

   s.t. ,0)( ≤jk Xg
r

 mk ,...,2,1= . (2) 

The jth chromosome n
jnjjj RxxxX ∈= ),,,( 21 L

r
 encodes a vector of n variables for 

numerical problems. Function )( jXF
r

 is the fitness of jX
r

. The kth constraint viola-

tion of jX
r

 denoted as )( jk Xg
r

. 

Several penalizing strategies have been proposed in literatures. According to the 
degree of constraint violation, penalty coefficient should be determined carefully. The 
SP applies each static penalty coefficient to each constraint and adjusts penalty coef-
ficients empirically [3]. To adjust penalty coefficient automatically, the DP modifies 
penalty coefficient only depending on the number of generation [4]. Furthermore, the 
AP decreases the penalty coefficient if all the best individuals of the past H iterations 
are feasible and increases otherwise. That is, by reducing the penalty coefficient, the 
algorithm can increase search ability and find better solutions in infeasible space [5].  

In this paper, the GP mixes the DP with AP and formulates the fitness function as: 

( )∑
=

×+=
m

k
jktjj XgXFXGP

1

2
)](,0max[)()(

rrr
λ , (3) 

where notation 0>tλ  is an adaptive penalty coefficient for the tth generation. 

2.3   Penalty Method Based on the Rough Set Theory 

The proposed RP method enhances the genetic diversity by introducing a rough pen-
alty concept to each individual. It is clear that penalty adjustment is difficult to adapt 
suitably. Therefore, this paper finds the better penalizing strategy by using the attrib-
ute reduction concept in the RST. 

To construct a decision table of rough set, the population in the tth generation can 

be denoted as { }pXXXtX
r

L
rr

,,,)( 21= , where p is the number of individuals in a 

population. Each individual is treated as an object in DT, and each constraint viola-

tion, )( jk Xg
r

, mk ,,1L= , is a condition attribute. Thus, the { }( )fdGUDT ,, ∪=  

consists of a condition set { }mgggG ,,, 21 L=  and a decision attribute { }1,0=dV . For 

minimization problem, the decision value of each object is assigned by: 

⎪⎩

⎪
⎨
⎧

≥
<

=
))(()(  if

))(()(  if
    
,0

,1
)(

tXGPXGP

tXGPXGP
Xf

avj

avj
jd

r

r
r

 (4) 

where ∑
=

=
p

j
jav XGP

p
tXGP

1

)(
1

))((
r

.  

According to the definition of a reduct of the RST, it is a minimal subset of penal-
ized constraints that enables us to classify objects with better fitness (decision values 
are 1) and those with worse fitness (decision values are 0). Thus, significant constraints 
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can be decided by a constraint reduction algorithm which is a drop-and-add heuristic 
and is similar to the attribute reduction algorithm proposed by Fan Li et al. [8]. The 

fitness function with RP, denoted as )( jXRP
r

, is composed of zero-one relationship 

variables tkμ  and penalty coefficients jα  and is formulated as: 

The adjustment criterion of penalty coefficient jα  is that a higher degree of feasibil-

ity in individual j implies a larger value of penalty coefficient jα .  

3   Modified Multiple-Evaluation Genetic Algorithm 

To solve constrained optimization problems, we proposed a modified MEGA. The 
MEGA is an effective and efficient GA for solving numerical problems [6]. By syn-
thesizing the rough penalty method and marriage selection, the modified MEGA can 
effectively solve constrained optimization problems. The main components of the 
modify MEGA are described in this section. 

3.1   Coding Mechanism 

Because of the numerical property of test functions, the coding mechanism represents 

a problem solution as a chromosome n
jnjjj xxxX ℜ∈= ),,,( 21 L , where jix  is the 

value of the ith decision variable in the jth solution [6].  

3.2   Two-Stage Selection Operation 

The two-stage selection operation consists of a traditional global selection and a pro-
posed marriage selection. The global selection mimics the biologic selective pressure  
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Fig. 1. An illustration of the marriage selection operation 
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proposed by Darwin and uses fitness )( jXGP
r

 as a discriminator to guide the evolu-

tion process. Higher quality chromosomes are therefore selected for recombination. 
The stochastic universal selection is used in the modified MEGA.  

To imitate the libertarianism of spouse selection, this paper proposes a marriage se-
lection to assist with the global selection. In the nature world, several male animals 
always pay court to a female animal. The female evaluates all of the candidates ac-

cording to its own judgment criterion )( jXRP
r

 and then selects the strongest male to 

become its spouse. The judgment criteria of the female animals may not be the same 
as the evolution criteria of Nature; however, the judgment criteria provide the genetic 
diversity. An illustration of the marriage selection is depicted in Fig. 1. 

3.3   Recombination Operation 

The MEGA proposes an improved evaluation-based crossover that combines two 
selected parents to produce an offspring by randomly introducing isolation, manipula-
tion and reintroduction of gene splicing techniques [6]. Furthermore, the MEGA  
sequentially applies the uniform and Gaussian mutations become the two-stage muta-
tion to enhance both exploration and exploitation abilities [6].  

3.4   Replacement Operation and Termination of Evolution  

In this paper, the successive generation is generated by three processes. Firstly, the 
modified MEGA uses the replacement-with-elitism scheme that reduces genetic drift 
by ensuring that the best two chromosomes are allowed to pass their traits to the next 
generation. Secondly, the 50% of child chromosomes are produced by the crossover 
operation. Finally, the mutation operation constructs other child chromosomes.  

4   Numerical Experiments 

4.1   Implementation and Comparison 

Eleven well-known numerical constrained problems are adopted to evaluate the effec-
tiveness and efficiency of the modified MEGA [9]. In this paper, the GP blending the 
DP (C=500, α =2) and the AP ( 1c =2, 2c =5, H=0.04×expected iterations, and initial 

penalty = 100) adjusts penalty coefficient iteratively [4] [5]. Environment settings are 
that the population size is 20, the maximum iteration is 2000, the crossover rate is 0.5 
and the elitism size is 2.  

Table 1 depicts the experiment results obtained by the modified MEGA. Compared 
with three existing algorithms [10] [11] [12], the modified MEGA can find the near-
optimal solutions for 8 test functions out of 11 constrained problems. Especially, the 
proposed algorithm can solve these difficult problems by using purely evolutionary 
mechanisms. That is, this study succeeds in exploring the evolutionary effect on GAs 
without using any enforcement optimization technique.  
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Table 1. Comparison of experiment results among the four algorithms 

Function 
Optimum 

value 
Runarsson and 

Yao [10]  
Farmani and 
Wright [11]  

Venkatraman 
and Yen[12]  Our Algorithm 

Min G1 -15 -15.0000 -15.0000 -14.9999 -15.0000 

Max G2 0.803533 0.803015 0.802970 0.803190 0.782294 

Max G3 1.0 1.0000 1.0000 1.0000 0.987980 

Min G4 -30665.5 -30665.539 -30665.500 -30665.5312 -30665.5381 

Min G5 5126.4981 5126.4970 5126.9890 5126.5096 5126.5999 

Min G6 -6961.8 -6961.814 -6961.800 -6961.1785 -6961.8139 

Min G7 24.306 24.307 24.480 24.41098 24.816882 

Max G8 0.095825 0.095825 0.095825 0.095825 0.095825 

Min G9 680.63 680.63 680.64 680.7622 680.648016 

Min G10 7049.33 7054.32 7061.34 7060.5529 7116.2168 

Min G11 0.75 0.75 0.75 0.7490 0.7499  

Table 2. Comparison of computational effort among the four algorithms 

Function 
Evaluation 

Runarsson and 
Yao [10] 

Farmani and 
Wright [11] 

Venkatraman 
and Yen [12] 

Our Algorithm 

Complexity 350000 1400000 50000 40000 

Table 3. Comparison of experiment results between the MEGA with different selections 

Function 
Without Marriage Selection 

   Mean      (Standard deviation) 
With Marriage Selection 

    Mean     (Standard deviation) 
Min G1 -13.8094 (1.832577) -14.4082 (0.959480) 

Max G2 0.563624 (0.176093) 0.590444 (0.163281) 

Max G3 0.790955 (0.253056) 0.925572 (0.003991) 

Min G4 -30658.5348 (11.641451) -30662.6311 (8.871769) 

Min G5 7394.9556 (4167.4932) 5236.6209 (168.5924) 

Min G6 -6959.9666 (1.915056) -6960.3141 (1.443794) 

Min G7 28.1753 (2.579041) 27.8582 (1.923737) 

Max G8 0.095825 (1.34e-17) 0.095825 (1.96e-17) 

Min G9 680.9923 (0.120896) 680.9796 (0.183393) 

Min G10 10353.997 (1230.0397) 9624.551 (1405.4830) 

Min G11 0.833126 (0.083372) 0.795698 (0.068678) 
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For further comparison, the four functions are also analyzed by the standard com-
plexity evaluation defined as (population size)*(number of generations). We depict 
the result of complexity evaluations in Table 2. The time complexity of the modified 
MEGA is significantly lower than that of others. To summarize, the comparisons 
emphasize that the modified MEGA is both effective and efficient in solving con-
strained numerical problems by introducing a rough penalty function and a marriage 
selection.  

 

Fig. 2. Evolution curves of the MEGA with different selections on functions G1 and G7 

4.2   Performance Assessment of the Modified MEGA 

To evaluate the effect of the proposed marriage selection, we manipulate these ex-
periments by using the MEGA without/with the marriage selection mechanism and 
reveal the results in Table 3. The evolution curves of the MEGA with/without mar-
riage selection on two sampling problems are also depicted in Fig. 2. 

The results in Table 3 show that introducing the marriage selection mechanism can 
decrease the standard deviation and achieve better solution. That is, using the RP 
marriage selection can improve the solution ability of the MEGA and stabilize the 
solution quality. In Fig. 2, we can observe that the MEGA without marriage selection 
always converges quicker than that with marriage selection in the earlier generations. 
However, the former algorithm easily jumps into a local optimal solution and stops to 
explore in the later generations. To summarize, the RP marriage selection mechanism 
can enlarge the genetic diversity to improve the exploration ability of the MEGA. 

5   Conclusion 

To the best of our knowledge, the proposed algorithm is the first research that synthe-
sizes the rough set theory and the penalty method in a genetic algorithm to solve con-
strained problems. In this paper, we also imitate the biologic spouse selection  
phenomenon and propose a novel marriage selection operation to enhance genetic 
diversity. The proposed algorithm is tested on eleven benchmark functions and com-
pared with three existing algorithms. The experiment results indicate that the modified 
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MEGA is able to find most of the near-global solution and outperform other three 
algorithms dramatically. Furthermore, the performance assessments also conclude that 
introducing the proposed marriage selection in the MEGA can stabilize and enhance 
the searching ability for the constrained optimization problems. 
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Abstract. Seldom is it practical to completely automate the discovery
of the Pareto Frontier by genetic programming (GP). It is not only diffi-
cult to identify all of the optimization parameters a-priori but it is hard
to construct functions that properly evaluate parameters. For instance,
the “ease of manufacture” of a particular antenna can be determined but
coming up with a function to judge this on all manner of GP-discovered
antenna designs is impractical. This suggests using GP to discover many
diverse solutions at a particular point in the space of requirements that
are quantifiable, only a-posteriori (after the run) to manually test how
each solution fares over the less tangible requirements e.g.“ease of manu-
facture”. Multiple solutions can also suggest requirements that are miss-
ing. A new toy problem involving collision avoidance is introduced to
research how GP may discover a diverse set of multiple solutions to a
single problem. It illustrates how emergent concepts (linguistic labels)
rather than distance measures can cluster the GP generated multiple
solutions for their meaningful separation and evaluation.

Keywords: Genetic Programming, Multiple Solutions.

1 Introduction

The need to discover multiple solutions to a problem is ubiquitous. Mathematics
can serve to illustrate that not all problems can be recast as the search for the
global minimum and unique solution. Many problems have multiple solutions all
of which equivalently satisfy the question(s). For example:

– Finite in number: “how can two lines co-exist?” with three answers: parallel
and not touching; crossing and touching at one point; or perfectly aligned
and touching at every single point.

– Countably infinite as when the problem is to find whole numbers (integers)
that satisfy x2 + y2 = z2.

– Uncountably infinite as with linear system of equations Ax = b for m equa-
tions and n unknowns when n > m if it is recognized to be under-determined
(if over-determined, m > n, it may be regularized [1]).

J.T. Yao et al. (Eds.): RSKT 2007, LNAI 4481, pp. 508–517, 2007.
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Questions of this world are hardly specific and admit a great number of possible
answers. For instance, a university president wants to get more students to use
the library. He is not particularly bothered how this is done provided certain
norms are kept to (e.g. library must not introduce unacceptable literature). The
likelihood is always for the existence of many acceptable alternatives that attract
the same result.

Moreover, much problem solving activity is directed at defining the problem,
e.g. helping a child with autism can feel this way. Also a problem can become
solved without its clear definition. In the personal investment known as classical
Freudian psychoanalysis [2] a therapist listens and ventures only very rarely to
reflect connections that induce insights over years of daily hourly sessions, while
the patient on the couch talks (with no visibility of the analyst sat behind him).
Eventually the patient experiences the fantasies that sabotage his behaviour
and in doing so the brain’s neuronal network rearranges to allow him to take
advantage of opportunities, restoring optimism and happiness. Psychology is a
next frontier for application of genetic programming (GP) mixed with natural
language processing, virtual reality, pattern matching, and wearable devices. At
singularity [3] this setup may advance a portable Freudian analyst.

Multiple solutions are present in design optimization when Quality Function
Deployment (QFD) links up to the needs of the customer. If one is to use GP or
a similar tool to search for the optimal design then one has to recognize that:

1. The literature [4] is vast on multiple solutions and the Pareto Front. How-
ever, even when all of the requirements are agreed a-priori to form a multi-
dimensional space for solution evaluation, even at a single point in this space
there will exist multiple and diverse solutions that are equivalent because di-
mensions (considerations) which matter always escape the analysis.

2. In practice, some of the most important requirements can never be quantified
for use by the fitness function of GP.

The first point is illustrated with soccer. Match requirements may be: entertain-
ment value at 8, fair play at 9, and winning, yet important differences in play
strategy can and will achieve this same targets mix. Their differences get studied
a-posteriori after their creation. One needs to obtain the solutions first to see
that a new consideration makes them less equivalent, or more plausible in the
case of scientific theories.

To explain the second point consider that almost anything can be turned into
an antenna, although only a few antenna designs (such as the Yagi-Uda and heli-
cal) are listed in the Johnson handbook [5]. The requirements space may include:
range, gain at frequency; weight; impedance matching, most of which are handled
with a simulator (e.g. with the Livermore code [6]). However, a very important
parameter is its “ease of manufacture” and while one can determine the ease of
manufacture of a particular antenna design: should it be made in China? does it
require a soldering process in France? it is difficult to produce a function for GP
to evaluate this for an arbitrary antenna. A poor function is not desirable as it
can restrict the creativity of GP. This suggests that GP produce a great number
of solutions to review the intangible requirements a-posteriori and manually.
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Environmental Modelling also needs discovery of multiple solutions. Flooding
models are aggregations of many approximate sub-models (soil, run-off, etc.).
When an event is not predicted by the overall model, it is often necessary to back
track and to calibrate the component sub-models. Immediately, one is faced with
many plausible ways in which the flood might have occurred, and the required
information to determine this conclusively needs to be identified (so that it may
be gathered next time around). Bioinformatics also needs discovery of multiple
explanations and models as living systems have evolved so much redundancy.

The rest of this paper: (a) introduces a new “toy problem” that has a finite
number of multiple solutions; (b) arranges GP to discover many of these solu-
tions; (c) examines how are the multiple solutions to be clustered when there are
so many of them? This paper is a first attempt at research that looks to bring
the repository of information that is the population in GP and the concept of
genetic diversity in GP for the discovery of multiple solutions.

2 An Illustrative Toy Problem

Table 1 completely describes the toy problem which has a railway track with
numbered positions and locomotives or engines as pieces that are moved on a
board game as in Fig. 1. A number of fast and slow engines co-exist on the
track. The passage of time is uniform and discrete, and its unit is the epoch.
Fast engines need one epoch whereas slow engines need two epochs to advance
one position. The track contains a number of railroad points (switches) that can
be set to allow trains to travel along shortcuts to another part of the track.
A shortcut is activated by setting its entry point enabling engines to escape
collision with other engines. The program evolved by GP: (a) takes information
about the state of the points at shortcuts and about the location of the engines;
(b) it decides whether to set the points - it may set many points in different
parts of the track as it is being executed; (c) the same program is evaluated at
each epoch but the results can differ because engine positions and the state of
points will change from epoch to epoch.

The solution to the toy problem is to avoid all engine collisions for a target
number of epochs. This is achieved by evolving a program that sets points at
each epoch. If there is no collision, then the corresponding GP generated strategy
is a solution. The toy problem is only devised as an illustration.

Points indicated by a black number on a white background (see Fig. 1) are
active whereas points indicated by a white number on a black background are
passive. A passive point is automatically set not to upset the engine running on
the track and to admit trains coming onto the track. However, an active point is
set by the control program that is evolved by GP to divert the engine to the short
cut or not. For example, only an engine travelling against the numbering system
may use 222 to exit at 79 (see Fig. 1). However, only when travelling with the
direction of the track numbering system may an engine use 20 to travel to 112.

Initial conditions are crucial, and care must be taken not to set up the prob-
lem to have no solution as engines may be headed for an inevitable crash. This
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Fig. 1. (Top) Behaviour of the point types with direction of travel: passive (left) and
active (right). For an explanation see text. (Middle) The railway track. (Bottom):
engine starting positions and directions of motion.
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work considered engines that ran at two constant speeds. These start from set
locations and directions of travel (with or against the numbering system of the
track). Engines occupy one position only as illustrated in Figure 1 and pre-
scribed in Table 1. In the table, if engine i is positioned to move with increasing
track numbering then gtrain[i][0] = 1 else gtrain[i][0] = −1. The array element
gtrain[i][2] indicates whether the engine is fast (‘0’) or slow (‘1’).

Each point enabled shortcut to another part of the track has a length in track
segments that is not shown in Fig. 1. An engine using the shortcut will cover a
fixed number of track segments and epochs before emerging from the shortcut to
rejoin the track. Information about shortcuts is held in glink [shortcut][property]
with initial values in Table 1. Properties are: an ID number; a track direction of
allowed access (1 is with increasing position numbering and -1 is with decreasing
numbering); entry position; exit or position of the passive point; length between
entry and exit in number of discrete track segments: note from Fig. 1 that for
example shortcut at position 5 has to be longer than the others as it crosses
another part of the track by means of a bridge (generally, lengths correspond to
the diagram but not particularly: e.g. shortcut ID 12); ‘swap’ indicates whether
on arrival the engine travels in a reverse direction from how it was going originally
(in the track numbering sense), e.g. to enter shortcut ID 2 the engine must be
travelling against the numbering system but emerges from the shortcut at node
132 travelling with the numbering system, and this is indicated by the value ‘1’;
indicates whether or not the point starts with its value set, indicated by ‘1’, to
guide the engine off the main track.

The fitness measure is the number of epochs achieved without crashing nEA

minus the target desired ‘crash free’ number of epochs nET (e.g. nET = 30,000):
f = nEA − nET .

The fitness is computed as in the pseudo-code in table 2 which considers two
options. In the first, the program is halted when the solution is achieved. The
second is the simplest method for generating new solutions: when the problem is
solved, all previous (phenotype or expressed) solutions are checked. If the solu-
tion is different and therefore a new solution, it is written to file. The individual
is given the worst possible fitness to discourage it from genetically participating
in further evolution. Note that a new solution may differ by the number and pro-
gramme of execution of points but may not be considered a different solution,
as we are only interested in operational differences (differences in the motion of
engines) checking for differences in phenotypes not genotypes.

3 Numerical Experiments and Discussion

A typical solution takes around 600 epochs to organize the engines such that they
are all moving in the same direction, and the path of the slow engine is isolated
from the path of the other four as in Fig. 3. However, in some observed cases,
after some 2600 epochs the control program succumbs to a flaw. The particular
position of some of the trains causes the control program to open the point at
236 (Fig. 1) allowing two fast engines to move into the inside track in a direct
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Table 1. Summary of the toy problem. Array gtrain[engine][property] holds informa-
tion on an engine’s direction of motion, position; speed; in-junction (position counter
inside the shortcut); and the 56 GP terminals TrainInfo(0 : 55) can pick this up.
Array glink [shortcut][property] holds information about points: start node; end node;
point setting; and the 221 GP terminals SignalInfo(0 : 220) pick this up. Which
engine or signal this information is for depends on the value of a that is randomly se-
lected for each terminal created to make up the GP population at run start. Function
JunctionSet(A,B) uses the difference between its first argument and the location of
points (array elements glink[0..21][1]) to select a point, and the sign of its second
argument tells whether to flip the point or leave it unaltered.

Parameters for engines: array gtrain[engine][property].

gtrain [ i ] [ j ] i=0 i=1 i=2 i=3 i=4 i=5

direction of motion j=0 -1 1 1 1 -1 -1
cell position j=1 13 119 146 52 214 199
speed: fast 0; slow 1) j=2 1 0 0 0 0 0
in-junction (working counter) j=3 0 0 0 0 0 0

Description of each junction: array GP Parameters
glink [junction][property] (see text). parameter description

glink j=0 j=1 j=2 j=3 j=5 j=4 pop size 10000
[i ] [ j ] access start end length swap? set? mate radius 10000
i=0 -1 18 104 3 0 0 max. nodes 1000
i=1 1 20 112 3 0 0 max. init. depth 6
i=2 -1 34 132 6 1 0 steady-st. tourn. kill=2; breed=4
i=3 1 44 186 2 0 0 fitness measure f = nEA − nET

i=4 1 49 190 2 0 0 terminals TrainInfo
i=5 1 56 136 6 0 0 SignalInfo
i=6 -1 64 201 3 0 0 reals in .01 steps:
i=7 -1 77 163 3 1 0 +ve range (.01,1.0)
i=8 1 83 230 2 0 0 -ve range (-1.0,-.01)
i=9 1 93 7 3 0 0 functions JunctionSet(a, b)
i=10 -1 102 10 3 0 0 protected % + - *
i=11 1 108 138 3 1 0 avg(a, b) = (a + b)/2
i=12 -1 125 39 6 0 0 no elitism 70% cross-over
i=13 1 129 179 3 1 1 20% mutation
i=14 1 143 103 3 1 0 JunctionSet(A,B)
i=15 -1 152 100 3 1 0 C is jct closest to fabs(A)
i=16 1 166 205 6 1 1 IF B > 0 THEN
i=17 1 168 140 3 1 0 IF glink[C][4] = 0 THEN
i=18 1 193 56 3 0 0 glink[C][4] = 1
i=19 1 209 72 3 0 0 ELSE
i=20 -1 222 79 3 0 0 glink[C][4] = 0
i=21 -1 236 157 5 1 0 END IF

END IF

TrainInfo SignalInfo

atom value corresponding array value atom value corresponding array value

0 ≤ a < 10 gtrain [a/2][0] 0 ≤ a < 66 glink [a/3][1]
10 ≤ a < 30 gtrain [(a − 10)/4][1] 66 ≤ a < 110 glink [(a − 66)/2][2]
30 ≤ a < 40 gtrain [(a − 30)/2][2] 110 ≤ a < 220 glink [(a − 110)/5][4]
40 ≤ a < 55 gtrain [(a − 40)/3][3]
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Fig. 2. Fitness versus generation (10,000 generates in steady state GP) plots for two
parallel independent runs (pid). Typical progression of maximum and average fitness
in a pid shows that fitness improves in jumps. The right pid illustrates an “eureka”
moment, when GP suddenly discovers an outstanding solution (fitness = 0.0) at an
early generation of the pid.

collision with the slow moving engine. Thus, for a solution to hold for all time it
must consider all possible and relevant conditions (as in an exhaustive test, or
in a formal software proof).

The solution described in the left side of Fig. 3 (top) is by no means the
only way to avoid collision for thousands of epochs. Multiple solutions exist.
Searching for a single solution to this toy problem gives an idea as to the na-
ture of the search. This was undertaken using the fitness evaluation measure
on the left hand side of Table 2. Observation of the maximum convergence and
average convergence of different parallel independent runs over the course of
50 generations reveals that the fitness for the best of generation individual is
characterized by flat periods and sudden jumps while the progression of the av-
erage fitness is soother as illustrated for two parallel independent runs in Fig. 2.
Sometimes the evolution experiences an “Eureka moment” when it discovers a

Table 2. Pseudo-code describing two options for the fitness evaluation of a new in-
dividual in steady-state GP: (left) aiming for one solution; (right) aiming for many
equivalent solutions. Visualisation stores the position of every engine at every epoch
in a file. NotFoundAlready effects a complete numerical comparison of files to determine
if the same solution has appeared. MAXFLOAT is a very large number.

InitialiseTrains InitialiseTrains
InitialiseRailway InitialiseRailway
BEGIN LOOP (iE = 1 to nET) BEGIN LOOP (iE = 1 to nET )
MoveTrains MoveTrains
IF CheckforCrash THEN IF CheckforCrash THEN
f = iE − nET f = iE − nET

RETURN RETURN
END IF END IF
EvaluateGPchrome EvaluateGPchrome

END LOOP END LOOP
Visualisation IF NotFoundAlready THEN Visualisation
f = 0.0 solved! f = −MAXFLOAT solved and punished!
RETURN RETURN
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Fig. 3. (Top) Left: Desirable and robust this solution first gets engines to follow one
another and next isolates the slow one from segregating both groups in independent
tours (tours are indicated in black). Right: In an alternative solution which was ob-
served to avoid a crash for 2121 epochs, slow and fast sets of engines move back and
forth between the tours on the left and those on the right side of the figure. (Middle)
Solution discovered is good for at least 3000 epochs. Follow in order from top left,
bottom left to top right is the complex tour of the fast engine (the circled node starts
that portion of the tour). The figure on the bottom right is the tour of the slower
engine. This solution has excellent timing with point switching that allows all engines
to cover a great part of the track. (Bottom) This more involved discovered solution
holds for at least 3000 epochs. From top left, bottom left, to top right is the tour by
the fast engine. The tours may be repeated or switched to according to the position
of the slow engine. It covers the entire track (figure on the bottom right) ‘unaware’ of
the existence of the other engines.
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solution that holds probably for ever (e.g. for at least thirty thousand epochs).
The classic solution sees the fast engines travelling the inner tour and the slow
engine travelling the outer tour. Very rarely such a solution will appear in the
initial population in one of the 10,000 individuals generated by the ramp half
and half method at maximum depth of 6 (table 1). On average, at most two to
three new (operationally different) solutions are obtained inside a parallel inde-
pendent run over fifty generations. In Fig. 2 such solutions correspond to the
jumps in the maximum fitness.

Searching for multiple solutions is accomplished in a crude way by the fitness
evaluation scheme on the right hand side of Table 2. The toy problem has nET ,
an objective or free parameter: desired number of ‘collision free’ epochs. When
this was set to 1500 epochs, an intricate solution emerged which was verified for
at least 3000 epochs (Fig. 3 (middle)). Another solution also emerged which sees
the slow engine covering the entire track (no use of junctions) while the other
four faster engines stay out of its way (Fig. 3 (bottom)).

When the free parameter was set to 10, 000 epochs this produced five unique
solutions, all of them valid for at least 30, 000 epochs (probably valid for all
time). Upon visualization they contain all of the tactics illustrated in Fig. 3.

It was found (cannot present details for reasons of space) that even by multiple
independent runs the standard GP search for one solution cannot be relied on to
produce a number of unique solutions (especially at a value of the free parameter
≥ 10, 000). Unique solutions can occur by chance in the initial population, and
may or may not arrive in parallel independent runs. However, using the fitness
evaluation measure on the right hand side of Table 2 is much more successful
at producing a large number of unique solutions in a single run of GP. Even if
the free parameter nET is increased to 10, 000 epochs (essentially asking for all
time) it is possible to obtain five unique solutions with a single run of GP (many
more unique solutions probably exist). As nET is increased not only are other
phenotypic variants produced, but also the phenotypes use completely different
strategies to avoid engine collision.

4 Conclusions

This paper explained why multiple solutions are important and introduced a toy
problem that is particularly useful for understanding how to efficiently generate
many solutions: GP must set points on a railway track to prevent an engine
collision for a number of time steps.

It demonstrated: (a) generating multiple solutions using one run of GP; (b)
using the phenotype to check for the uniqueness of the solution, and (c) how
emergent behaviour of the solutions can help to cluster these solutions. The con-
cept of distance between solutions that equally solve the problem is subtle. It
is submitted that the concept of a norm or simple distance measure is not very
meaningful. Utility is more meaningful. Namely, should a problem be solved by
a large number of solutions, then as users of these solutions we tend to cluster
them into groups to discuss their relative merits. Any particular clustering may
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be motivated by a need, or a mental model that alerts us to certain differences
or combined difference and not to others. In the toy problem example, solution
visualization triggers linguistic descriptions in the mind of an observer for clus-
ters of solutions such as “solutions where the slow engine covers the whole track,
pretends as if the fast engines did not exist, and these stay out of its way”.
Linguistic descriptions [10] help to identify apparent tactics or strategies that
can be attributed to recognizable and emergent features of the solution.

GP formulations capable of maximizing discovery of solutions probably should
consider techniques that aim to maintain diversity in a run, e.g. the method
in [7] is motivated by the objective of sustaining innovation throughout a run;
the method in [8] uses ‘operational equivalence’ and multi-run to harvest promis-
ing solution components and [9] extended this idea to subroutines. These and
other methods should be adapted to satisfy the goal of diverse multiple solution
generation.
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Abstract. Rough set based knowledge reduction is an important method
for feature selection. Ensemble methods are learning algorithms that con-
struct a set of base classifiers and then classify new objects by integrat-
ing the prediction of the base classifiers. In this paper, an approach for
selective ensemble feature selection based on rough set theory is pro-
posed, which meets the tradeoff between the accuracy and diversity of
base classifiers. In our simulation experiments on the UCI datasets, high
recognition rates are resulted.
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1 Introduction

Rough set is a valid theory for data mining. The most advantage of rough set is its
great ability for attribute reduction (feature selection). It has been successfully
used in many domains such as machine learning, pattern recognition, intelligent
data analyzing and control algorithm acquiring, etc [1][2][3][4][5]. Based on the
feature selection, some classifiers can be built. There are always over one re-
duction for an information system. Thus, it is a problem to choose a suitable
reduction or integrate several reductions into a system to get better performance.

Ensemble learning has been a hot research topic in machine learning since
1990s’[6]. Ensemble methods are learning algorithms that construct a set of base
classifiers and then classify new objects by integrating the prediction of the base
classifiers. An ensemble system is often much more accurate than each base clas-
sifier. Ditterrich proved the effectiveness of ensemble methods from the viewpoint
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of statistic, computation and representation in [7]. As a popular machine learn-
ing method, ensemble methods are often used in pattern recognition, network
security, medical diagnosis, etc [7][8][9][10].

A necessary and sufficient condition for an ensemble system to be more ac-
curate than any of its base classifiers is that all base classifiers are accurate
and diverse. An accurate classifier is one that has an error rate less than ran-
dom guessing on new instances. Two classifiers are diverse if they make different
prediction errors on unseen objects [7]. Besides accuracy and diversity, another
important issue for building an efficient ensemble system is the choice of the
function for combining the predictions of the base classifiers. There are many
techniques for the integration of an ensemble system, such as majority voting,
weighted voting, reliability-based weighted voting, etc [8].

There are many methods proposed for ensemble. The most popular way for
ensemble is to get different subset of the original dataset by resampling the train-
ing data set many times. Bagging [9], boosting [10] and cross-validation are all
such ensemble methods. These methods work well especially for unstable learn-
ing algorithms, such as decision trees, neural network. Some other methods are
also studied, such as manipulating the output targets [11], injecting randomness
into classifiers [12]. Besides these methods, there is another effective approach
for ensemble, which uses different feature subsets, and is usually called ensemble
feature selection [13]. Ensemble feature selection (EFS) is also a classical en-
semble method. It takes different feature subset as the input features for a base
classifier construction.

There are two methods for generating base classifiers and integrating the
predictions of base classifiers. One is called direct strategy, the other is called
over producing and choosing strategy. The direct strategy aims to generate an
ensemble of base classifiers directly in the training period. The over producing
and choosing strategy is also called selective ensemble, which creates a lot of base
classifiers at first, and then chooses a subset of the most suitable base classifiers
and generates the final prediction.

In this paper, based on rough set theory and ensemble learning theory, a
selective ensemble feature selection method is proposed. The rest of this paper
is organized as follows. In Section 2, based on the basic concepts and methods
of rough set theory and the diversity of ensemble learning, an algorithm for
selective ensemble feature selection is proposed. Simulation experiment results
are illustrated in Section 3. Finally, conclusion and future works are discussed
in Section 4.

2 Ensemble Feature Selection Based on Rough Set
Theory

2.1 Basic Concept of Rough Set Theory

Rough set (RS) is a valid mathematical theory for dealing with imprecise, un-
certain, and vague information. It has been applied successfully in such fields as
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machine learning, data mining, pattern recognition, intelligent data analyzing
and control algorithm acquiring, etc, since it was developed by Professor Pawlak
in 1980s [1][2]. Some basic concepts of rough set are introduced here for the
convenience of following discussion.

Def.1 A decision information system is a formal representation of a data set to
be analyzed. It is defined as a pair s = (U, R, V, f), where U is a finite set of
objects and R = C ∪ D is a finite set of attributes, C is the condition attribute
set and D = {d} is the decision attribute set. With every attribute a ∈ R, set of
its values Va is associated. Each attribute a determines a function fa : U → Va.

Def.2 For a subset of attributes B ⊆ A, an indiscernibility relation is defined
by Ind(B) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B}.

Def.3 The lower approximation B−(X) and upper approximation B−(X) of a
set of objects X ⊆ U with reference to a set of attributes B ⊆ A may be defined
in terms of equivalence classes as follows:
B−(X) =

⋃
{E ∈ U/Ind(B)|E ⊆ X}, B−(X) =

⋃
{E ∈ U/Ind(B)|E ∩X �= Φ}.

They are also called as the B− lower and B− upper approximation respec-
tively. They can also be defined as follows:

B−(X) = {x ∈ U |[x]B ⊆ X , B−(X) = {x ∈ U |[x]B ∩ X �= Φ}.
Where, [x]B ∈ U/Ind(B) is the equivalence class of object induced by the set

of attributes B ⊆ A.

Def.4 POSP (Q) =
⋃

x∈U/Ind(B) P−(X) is the P positive region of Q, where P
and Q are both attribute sets of an information system.

Def.5 A reduction of P in an information system is a set of attributes S ⊆ P
such that all attributes a ∈ P − S are dispensable, all attributes a ∈ S are
indispensable and POSS(Q) = POSP (Q). We use the term REDQ(P ) to denote
the family of reductions of P . COREQ(P ) =

⋂
REDQ(P )is called as the Q-core

of attribute set P .

Def.6 The discernibility matrix MDC={cij}n∗n of an information system S is
defined as:

cij =
{

{a ∈ C : x(i) �= x(j)}, D(xi) �= D(xj)
0 , D(xi) = D(xj)

i = 1, 2, ..., n. (1)

Where, D(xi) is the value of the decision attribute. Based on the dicernibility
matrix, all possible reducts can be generated. An attribute reduction algorithm
based on dicernibility and logical operation is proposed in [3]. The detailed al-
gorithm is introduced in Algorithm 1.

Any attributes combination of C0 as well as a conjunctive term of P ′ can be
an attribute reduction of the original information system. All possible reducts of
the original information system can be generated with the Algorithm 1. Using
these reducts, classifiers could be built which have the same classification ability
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Algorithm 1. Attribute reduction algorithm based on dicernibility matrix
and logical operation
Input : An information system S with its discernibility matrix MDC.
Output: Reduction of S.
1. Find all core attributes (C0) in the discernibility matrix MDC. Redu = C0.
2. Find the set (T ) of elements (Cij ’s) of MDC that is nonempty and does not
contain any core attribute. T = {Cij : Cij ∩ C0 = Φ ∧ Cij �= Φ}.
3. Each attribute is taken as a Boolean variable. A logic function (P ) is generated
as the Boolean conjunction of disjunctions of each components belonging to
element (Cij) of T . That is, P=∧ij{∨k{ak} : ak ∈ Cij ∧ Cij ∈ T}.
4. Express the logic function P in a simplified form (P ′) of a disjunction of
minimal conjunctive expressions by applying the distributivity and absorption
laws of Boolean algebra.
5. Choose suitable reduction for the problem.

as the original whole decision table. Therefore, these classifiers can be taken as
candidate base classifiers of an ensemble system.

2.2 Diversity in Ensemble Method

2.2.1 Measurement of Diversity in Ensemble
Theoretically speaking, if base classifiers are more diverse between each other,
an ensemble system will be more accurate than its base classifiers. There are a
number of ways to measure the diversity of ensemble methods. Some of them
are called pairwise diversity measures, which are able to measure the diversity
in predictions of a pair of classifiers, and the total ensemble diversity is the av-
erage of all the classifier pairs of the ensemble. For example, plain disagreement,
fail/non-fail disagreement, Q statistic, correlation coefficient, kappa statistic and
double fault measures [14][15][16]. Some others are called non-pairwise diversity
measures, which measure the diversity in predictions of the whole ensemble only.
For example, the entropy measure, measure of difficult, coincident failure diver-
sity, and generalized diversity [14][15][16].

The double fault measure (DF) can characterize the diversity between base
classifiers. It is the ratio between the number of observations on which two
classifiers are both incorrect. It was proposed by Giacinto in [17]. It is defined
as follows.

Divi,j =
N00

N11 + N10 + N01 + N00 . (2)

Where, Nab is the number of instances in the data set, classified correctly (a=1)
or incorrectly (a=0) by classifier i, and correctly (b=1) or incorrectly (b=0) by
classifier j. The denominator in (2) is equal to the total number of instances N .

2.2.2 Relationship Between Diversity Measure and Integration Method
As discussed above, there are many diversity measure and integration meth-
ods. What is the relationship between a diversity measure and an integration
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method? Is it effective when we choose a diversity measure and an integration
method randomly for an ensemble system? The relationship between diversity
measure and integration method is a hot research topic in ensemble learning
[14][15][16][18]. In [18], the relationship between 10 diversity measures and 5
integration methods were discussed. It was found that there was little corre-
lation between the integration methods and diversity measures. In fact, most
of them showed independent relationship. Only the double fault measure and
the measure of difficult showed some correlations greater than 0.3. The measure
of difficult showed stronger correlation with the integration methods than the
double fault measure. Unfortunately, it was more computationally expensive.

In this paper, the double fault measure and integration method of majority
are used in this proposed ensemble method since they showed higher correlation
and they both have lower computation complexity.

2.3 Selective Ensemble Feature Selection Base on Rough Set
Theory (SEFSBRS)

Based on rough set theory and the diversity measure of the double fault mea-
sure, a selective ensemble feature selection method based on rough set theory is
proposed here.

Firstly, all possible reducts are generated based on the discernibility matrix of
a training set. All candidate base classifiers are generated with the reducts. Sec-
ondly, based on the diversity measure defined in Equation (2), all base classifiers
are clustered on validation set, and then, a pair of base classifiers, which are the
most diverse among two clusters, are chosen from each two clusters. Therefore,
the classifiers which are more accurate and more diverse among all the classifiers
are chosen for the ensemble system. At last, the majority voting is taken as the
integration method for ensemble, and the final prediction can be taken on the
testing set. The detailed algorithm is introduced in Algorithm 2.

Algorithm 2. Selective ensemble feature selection base on rough set theory
Input : Decision tables of the training set, validation set and testing set.
Output: Final ensemble prediction.
Apply Algorithm 1 on the training set to generate its all reducts.
Construct all the classifiers using the reducts.
for each classifier do

Calculate div(i,j) of each two classifiers on the validation set according
to Equation (2).

end
Based on all div(i, j), all classifiers are clustered.
for each two clusters do

Select a pair of classifiers which are the most diversity among all
pairwise classifiers of the two clusters.

end
Generate the final prediction of the ensemble system based on the majority
voting of the selected classifiers on the testing set.
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3 Experiment Results

Several experiments have been done on UCI data sets to test the validity of the
proposed method. The data sets used are shown in Table 1.

Table 1. Datasets used in the experiments

Dataset Data size Concept Condition attribute

Breast Cancer Wisconsin 699 2 9
Vote 435 2 16
Iris 150 3 4

Credit screening 690 2 15

Several comparative experiments are done.
The first experiment is done using the proposed method (SEFSBRS).
The second experiment uses an ensemble strategy based on all the classi-

fiers. It is named ensemble all in this paper. It includes the following steps. All
the possible classifiers are created based on all reductions generated from the
dicernibility matrix at first. Then, final prediction is obtained based on all the
classifiers.

The third experiment is based on the feature selection algorithm of MIBARK
[19]. A reduct is generated using the MIBARK algorithm. Then, a classifier is
constructed according to the reduct. The final prediction is gotten using the
single classifier only.

The forth experiment is based on the feature selection algorithm proposed in
[20], the detailed experiment process is similar to the third one.

The fifth experiment is based on SVM, and the detailed experiment process
is similar to the third one too.

Each dataset is divided into a training set, a validation set and a testing set
for all the experiments. Each set contains 60%, 20%, and 20% of the total data
set respectively. The 5- fold validation method is carried out for each dataset.
The correct recognition rates of each method for these datasets are shown in
Table 2.

From the experiment results, we can find that the proposed method (SEFS-
BRS) is valid. It can get high recognition rate. By comparing SEFSBRS and
Ensemble all, we can find that the selective ensemble is almost as accurate as

Table 2. Experiment results

Dataset SEFSBRS Ensemble all MIBARK Feature selection SVM

Breast Cancer Wisconsin 96.37% 96.23% 70.97% 87.23% 86.40%
Vote 94.10% 94.00% 91.11% 78.98% 87.14%
Iris 84.13% 86.44% 72.37% 50.83% 94%

Credit screening 68.60% 68.87% 41.63% 19.69% 56%
Average 85.80% 86.39% 69.02% 59.18% 80.89%
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the ensemble using all possible candidate classifiers. Sometimes, it can get higher
accuracy. However, SEFSBRS often use less classifiers than Ensemble all. So, it
will be more efficient in real application. By comparing SEFSBRS, MIBARK,
and Feature selection, we can find that the ensemble is more accurate. It proves
that the ensemble of base classifiers is more effective than a single classifier. We
can also find that the ensemble method even over performs SVM in most cases.
Thus, the method can be taken as a useful method in machine leaning, pattern
classification, etc.

4 Conclusion and Future Works

In this paper, a selective ensemble feature selection method based on rough set
theory is proposed. All candidate classifiers for ensemble are produced based on
the disernibiltiy matrix. The classification ability of each base classifiers is guar-
anteed. For the purpose of selecting uncorrelated base classifiers for ensemble,
cluster method is used. It can ensure more diversity on the selective classifiers.
Experiment results show its validity.

In the future, the proposed method will be used in real pattern recognition
problems, such as emotion recognition. At the same time, improvement of the
proposed method should be discussed too.
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Abstract. To find earthquake precursory items that are closely relative
to earthquake is very important for earthquake prediction. Rough Set
Theory is an important tool to process imprecise and ambiguous infor-
mation. In this paper, the discernibility matrix approach based on Rough
Set Theory is optimized to find all possible rough reducts with reduced
time and space complexity. Furthermore, this approach is applied to an-
alyze the dependency among earthquake precursory items. After several
experiments, some most important precursory items are found, while
some items are considered to be redundant. The results maybe provide
the researches with the direction on the relationship between earthquake
precursory items and earthquake.

Keywords: Rough Reducts, Discernibility Matrix, Earthquake Precur-
sory Items, Earthquake Prediction.

1 Introduction

Earthquake prediction is a difficult problem that has not been solved in the
world and is still in experiential stage [1]. So far, the main earthquake prediction
method is to draw an analogy between the earthquake cases and the present
observed anomalies (exceptional natural phenomena such as water level changes
and increases in concentrations of Radon gas in deep wells). However, strong
uncertainty exists between anomalies and earthquake. The anomalous situations
vary greatly from different earthquakes. One anomaly unnecessarily happened
before an earthquake, and an earthquake may not certainly erupt following the
anomalies. In addition, the identification of anomalies is also very uncertain.
It is difficult to say that the observed anomalies just are the factors caused
earthquake because many different factors can cause an earthquake. These un-
certainties bring difficulty to earthquake prediction and make the prediction ac-
curacy rather low. Therefore, finding the anomalies correlative to the gestation
of earthquake and analyzing the relationship between earthquake and anoma-
lies are very important and necessary. Through researches of various observation
means, people have reported dozens or even hundreds of earthquake precursory
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items to describe the anomalies. Earthquake Cases in China [2] has reported
41 precursory items of seismometry including seismic belt (band), seismic gap
(segment), seismicity pattern, etc. and other 71 precursory items of precursor,
for instance, fixed leveling (short leveling), mobile leveling, ranging tilt, appar-
ent resistivity, and so on. These precursory items reflect the time, space and
intensity characteristics of earthquake activities from different aspects. Mean-
while, certain relativity may also exist among them, which has been proved by
earthquake researches [3,4,5,6,7]. But, to our knowledge, none of them analyze
the relationship between earthquakes and all these precursory items and the
relationship among the precursory items.

Rough Set is a theory developed in recent years as an important tool to deal
with imprecise and ambiguous information. Since Z.Pawlak raised Rough Set
Theory (RST) in 1982 [8], more and more researchers began to study the theory
and have achieved a great deal of successes. Not only did they build the math-
ematical model of RST, but also proposed some valuable algorithms on many
areas [9,10]. As a hot topic of RST, attributes reduction aims to find the redun-
dant (unimportant) attributes and then delete them. So, the RST is a suitable
tool to analyze the independency of earthquake precursory items. This paper pro-
poses an improved attribute reduction approach based on discernibility matrix
and called Optimized Discernibility Matrix based Approach (ODMA). Further-
more, ODMA is applied to analyze the earthquake precursory items, remove the
unimportant ones, and then get those independent ones and their relationship.
This research maybe provides the guidance on the direction of seismic study and
the relationships among the physical parameters. As a result, the accuracy of
earthquake prediction are bound to improve.

The rest of this paper is organized as follows. In Section 2, details of ODMA
are described. In Section 3, experiments are performed on earthquake dataset.
Finally, conclusions are drawn in Section 4.

2 Optimized Discernibility Matrix Based Approach

Popular attribute reduction algorithms are mainly summarized to four cate-
gories: attribute reduction algorithm based on discernible matrix and logical
calculation, attribute reduction algorithm based on mutual information, heuris-
tic algorithm of attribute reduction, and attribute reduction algorithm based
on feature selection [11]. The main aim of them is to find minimal or optimal
reducts for the sake of satisfying application requirements or avoiding so-called
combination explosion of reducts search. However, in order to analyze the inde-
pendency of earthquake precursory items, all the attribute reduction sets need
to be found out. Therefore, the so-called Optimized Discernibility Matrix based
Approach (ODMA) is proposed based on the existed discernibility matrix ap-
proach [11,12,13]. Here, the definition of discernibility matrix is given firstly.

Definition 1. An information table DT is the tuple:

DT =(U ,AT ,V )
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where AT =C ∪ D is a finite nonempty set of attributes, C={ak | k=1,2,...,m } is
the set of the condition attributes, D={d} is the set of the decision attributes, d
/∈ C, U=(x1, x2, . . ., xn) is a finite nonempty set of objects. V is a nonempty set
of values for the attributes in AT . Suppose ak(xi) ∈ V is the value on attribute
ak of the i-th object xi, then the discernibility matrix, which stores attributes
that differentiate any two objects of the universe, can be defined by:

dij =
{

{ak ∈ C|ak(xi) �= ak(xj)}, if d(xi) �= d(xj),
0, otherwise.

(1)

where dij denotes matrix element (i,j), i,j ∈[1..n] .

The ODMA can be described as the following steps.

Step 1: Rearrange dataset/decision table so that the objects with identical
class label are neighborly distributed.

It is time-consuming to calculate discernible matrix. In ODMA, the objects
with identical class label are neighborly distributed so that the objects in the
same clustered area need not be compared and the corresponding element is
zero-valued in the matrix. As a result, the time cost is reduced to some extent.

Step 2: Calculate the discernible matrix defined as formula (1), if empty ele-
ment is detected, report inconsistency.

Step 3: Express each non-empty element of discernible matrix in the form of
disjunctive item defined as follows:

cij = ∨
a ∈ dij �= 0ai. (2)

where ai denotes the i-th attribute in dij .
Step 4: Convert discernible matrix into conjunctive normal forms expressed

by discernibility function defined as follows:

f(a1, a2, ..., am) = ∧{∀ cij |1 � j � i � |U |, cij �= ∅}. (3)

Step 5: Calculate core attribute sets and remove all core-containing disjunctive
items in conjunctive normal form (Core attribute refers to the disjunctive item
in matrix such that |cij | = 1 ).

Step 6: Remove all supersets in the conjunctive normal form defined in
formula (3).

Step 7: Convert the conjunctive normal form into disjunctive normal form by
using heuristic searching techniques as follows in order to eliminate combina-
tional search.

1. Heuristic knowledge 1: Once the attribute subset on the current search path
is a superset of existing ones, stop the depth search and redirect to next
attribute on the same layer. After having completed the searching on the
current layer, go back to the upper layer and continue searching.
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2. Heuristic knowledge 2: Suppose the completed search path from the root
node to current layer is ’path’. Check the current attribute. If it’s already
exist in ’path’, stop searching at the following attribute of this layer, which
has not appeared in ’path’. Generate a conjunction item once searching to
the bottom of the tree.

3. Heuristic knowledge 3: Sort the disjunctive items in ascending order by their
number of attributes and the attributes of each item in descending order by
their appeared frequency.

Step 8: Extract all conjunctive items out of the disjunctive normal form gen-
erated in Step 7, and then add the core attribute sets into each conjunctive item.
All the generated conjunctive items are saved as reducts.

3 Analysis of the Independency of Earthquake Precursory
Items by Using ODMA

There are four kinds of relationship between anomalies and earthquake: a. earth-
quake erupted with anomalies; b. earthquake erupted without anomalies; c.
anomalies observed but no earthquake follows; d. no anomalies and no earth-
quake. Then the four usual situations in practice of prediction can be summa-
rized as follows.

1. Anomalies observed, a and c constitute a complete set.
2. Earthquake erupted, a and b constitute a complete set.
3. No anomalies observed, b and d constitute a complete set.
4. No earthquake erupted, c and d constitute a complete set.

In practice, relation d has no value, so the situations 3 and 4 have no signifi-
cance to researchers. We just focus on the commonly existing situation 1 and 2.
Regrettably, there is so far no counter-cases (i.e. c. anomalies observed but no
earthquake erupted) were made and situation 1 contained c is an incomplete set
in fact. Therefore, we can only study situation 2.

Universe. After being removed the earthquake cases without anomalies, the
total 191 earthquake cases in China from 1966 to 1999 [2] constitute the universe.

Condition Attributes. 41 seismological earthquake precursory items and 71
other precursor ones, with exception of the precursory item number because it is
not a physical parameter, are used as condition attributes and their values come
from anomalies recorded in each earthquake case. However, some anomalies were
really observed before the eruption of earthquakes, some were added after the
eruption of earthquake. It is difficult to distinguish. There are only two options:
(1) whether the earthquake is predicted or not, if the anomalies are recorded
then the value of the responding earthquake precursory item equals 1. (2) the
value of the responding earthquake precursory item equals 0 if the earthquake is
not predicted. However, there may be some special earthquake cases, which don’t
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belong to the two above situations, that the values of their condition attributes
are equal to 0 but prediction type is different. In this paper, we didn’t take such
special cases into consideration.

Decision Attributes. Take the prediction situation as decision attribute. Two
kinds of description are alternative to earthquake prediction: (1) predicted and
unpredicted. (2) long-term prediction, medium-term prediction, short-term pre-
diction, imminent earthquake prediction, and no prediction.

3.1 Analysis of Earthquake Precursory Items of Seismometry (1)

Earthquake precursory items of seismometry refer to the precursory information
of the strong earthquake in the precursors or earthquake records (earthquake
map and earthquake catalog), which are observed by seismology method. In the
first analysis method, we divide simply earthquake prediction into two categories,
i.e. predicted or not predicted. If predicted, assign the decision attribute to 1,
else 0. The condition attributes are the following 41 seismometry earthquake
precursory items:

1: seismic belt (band), 2: seismic gap (segment), 3: seismicity pattern (tem-
poral, spacial, quiescence or activation), 4: precursory earthquake (or swarm),
5: swarm activity, 6: index of seismic activity (comprehensive index A, seismic
entropy, degree of seismic activity and fuzzy degree of seismic activity), 7: seis-
mic magnitude factor Mf-value, 8: fractal dimension of capacity, 9: earthquake
rhythm, 10:strain release (energy release), 11: earthquake frequency, 12: b value,
13: h value, 14: seismic window, 15: earthquake deficiency, 16: induced foreshock,
17: foreshock, 18: exponential (A(b) value) of earthquake situation, 19: seismic
concentration (concentration degree, spacial concentration degree, band concen-
tration degree), 20: time interval between earthquakes, 21: composite fault plane
solution of small earthquakes, 22: symbolic contradiction ratio of P-wave onsets,
23: stress drop of earthquake, 24: circumstance stress, 25: quality factor (value),
26: wave velocity (wave velocity, wave velocity ratio), 27: S-wave polarization,
28: seismic coda wave (sustained time ratio, attanuation coefficien, attanuation
rate), 29: amplitude ratio, 30: microseisms, 31:seismic wave form, 32: total area of
fault plane (Σ(t)), 33: regulatory ratio of small earthquakes, 34: seismic informa-
tion deficiency (Iq), 35: seismic inhomogenous degree (GL value), 36: Algorith-
mic Complexity (C(n), Ac), 37: parameter of seismic gap, 38: area of earthquake
coverage (A value), 39: E, N and S elements, 40: η value, 41: D value.

If the above-mentioned earthquake precursory item is recorded in the earth-
quake case, its value equals 1, else 0. For example, in the 16 September 1994
Taiwan Strait earthquake, seismic belt and background seismic and gestation
gap with abnormity have been recorded, so we assign 1 to the first and second
condition attributes. By this means, for any earthquake case, a sequence with
41 elements whose value is 1 or 0 is produced as an object in the decision table.
Then, apply ODMA on the decision table and get the following five reducts:

{1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 17, 26, 28, 29, 31, 33}, {1, 2, 3, 4, 6, 10,
11, 12, 13, 14, 15, 17, 21, 26, 28, 29, 33}, {1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 17,



Using Rough Reducts to Analyze the Independency of Earthquake 531

20, 26, 28, 29, 33}, {1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 17, 18, 26, 28, 29, 33},
{1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 26, 28, 29, 33}.

The attributes of 5, 7, 8, 9, 19, 22, 23, 24, 25, 27, 30, 32, 34, 35, 36, 37,
38, 39, 40, and 41 never appeared are redundant (i.e. absolutely unnecessary
attributes). On the contrary, the attributes of 1, 2, 3, 4, 6, 10, 11, 12, 13, 14,
15, 17, 26, 28, 29, and 33 appeared in all the five sets are kernel attributes (i.e.
absolutely necessary attributes).

3.2 Analysis of Earthquake Precursory Items of Seismometry (2)

The way to get the condition attributes in this analysis is same as that in Sect.
3.1. But the decision attribute is divided into five types: long-term prediction,
medium-term prediction, short-term prediction, imminent earthquake predic-
tion, and no prediction. If none of the first four types is predicted for an earth-
quake, it means no prediction. So, we can use four binary digits to describe the
decision attribute. If one of the prediction type is reported, its corresponding
binary digit is assigned to 1, or 0. Take the 16 September 1994 Taiwan Strait
earthquake as an example, as only the medium-term prediction is reported, its
decision attribute should be 0100. There are only 16 different kinds of combi-
nation of these five types: 1111 means all the four former stages are predicted,
..., 0000 means none of the four stages is predicted. A decision table is built
based on above rule. This decision table is composed of the objects, which are
the 45-length strings of ’0’ or ’1’. Finally, 15 reducts as follows are gained:

{1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 17, 26, 28, 29, 31, 33, 40, 41}, {1, 2, 3, 4,
6, 10, 11, 12, 13, 14, 15, 17, 21, 26, 28, 29, 33, 40, 41}, {1, 2, 3, 4, 6, 10, 11, 12,
13, 14,15, 17, 20, 26, 28, 29, 33, 40, 41}, {1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 17,
18, 26, 28, 29, 33, 40, 41}, {1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 26, 28, 29,
33, 40, 41}, {1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17, 26, 28, 29, 31, 33, 40}, {1,
2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17, 21, 26, 28, 29, 33, 40}, {1, 2, 3, 4, 6, 7,
10, 11, 12, 13, 14, 15, 17, 20, 26, 28, 29, 33, 40}, {1, 2, 3, 4, 6, 7, 10, 11, 12, 13,
14, 15, 17, 18, 26, 28, 29, 33, 40}, {1, 2, 3, 4,6, 7, 10, 11, 12, 13, 14, 15, 16, 17,
26, 28, 29, 33, 40}, {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 26, 28, 29, 31, 33,
40}, {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 21, 26, 28, 29, 33, 40}, {1, 2, 3,
4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 20, 26, 28, 29, 33, 40}, {1, 2, 3, 4, 5, 6, 10, 11,
12, 13, 14, 15, 17, 18, 26, 28, 29, 33, 40}, {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15,
16, 17, 26, 28, 29, 33, 40}.

The attributes of 8, 9, 19, 22, 23, 24, 25, 27, 30, 32, 34, 35, 36, 37, 38, and 39
are redundant, and the attributes of 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17,
26, 28, 29, 33, and 44 are kernel attributes.

3.3 Analysis of Earthquake Precursory Items of Precursors

For the sake of completeness, we do the similar experiments on the earthquake
precursory items of precursors as the ones of seismometry. In a similar way to
Sect. 3.1, attributes of 1, 8, 9, 11, 12, 22, 30, 31, 33, 55, 59 and 69 are selected
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as the most necessary attributes. The same result is also obtained in the similar
method to Sect. 3.2. The above numbers correspond to the precursors:

1: fixed leveling (shortleveling), 8: ranging tilt, 9: fault creep, 11: roving grav-
ity, 12: apparent resistivity, 22: radon in groundwater, 30: ground water level,
31: ground water level and lake water level, 33: water temperature, 55: electric
induction stress, 59: piezo-capacity strain, 69: macroscopic phenomena.

4 Conclusion and Discussion

In this paper, an improved approach called ODMA (Optimized Discernibility
Matrix based Approach) is proposed through resorting objects and employing
heuristic searching techniques in order to reduce the time cost. Then ODMA is
applied to the analysis of earthquake precursory items. Some valuable results are
acquired. From the crossover set of the absolutely essential attributes in Sect.
3.1 and Sect. 3.2, only 16 out of the 41 widely used seismometry precursory
items are absolutely essential attributes. They are seismic belt (band), seismic
gap (segment), seismicity pattern (temporal, spacial, quiescence or activation),
precursory earthquake (or swarm), index of seismic activity (comprehensive in-
dex A, seismic entropy, degree of seismic activity, and fuzzy degree of seismic
activity), strain release (energy release), earthquake frequency, b value, h value,
seismic window, earthquake deficiency, foreshock, wave velocity (wave velocity,
wave velocity ratio), seismic coda wave (sustained time ratio, attenuation coef-
ficient (a), attenuation rate p), amplitude ratio, and regulatory ratio of small
earthquakes. The other 25 items are compatible to the above 16 items or can
be included by them. From the results in Sect. 3.3, in the 70 precursory predic-
tion items, 12 items, i.e. fixed leveling (short leveling), ranging tilt, fault creep,
roving gravity, apparent resistivity, radon in groundwater, ground water level,
ground water level and lake water level, water temperature, electric induction
stress, piezo-capacity strain, and macroscopic phenomena are absolutely essen-
tial and independently attributes, other 58 precursory items are not essential.
Therefore, only 28 of the 111 earthquake precursory items are absolutely es-
sential attributes, and the others are not essential and they are compatible to
the above 28 precursory items or can be included. Furthermore, the following
conclusions can be drawn:

1. In the gestation stage of earthquake, the above 28 precursory items may show
the primary physical characters of earthquake, and they are independent,
with the implication that we can know the real reason for the eruption of
the earthquake after finding a same physical process that can simultaneously
produce all the 28 precursory items.

2. As the above 28 precursory items are the most important factors for the
eruption of earthquake, blindness of investigation can be avoided and the
cost of earthquake prediction will be reduced sharply by only concentrating
on the research of them.

In this paper, we do a primary research on the analysis of the dependency
among earthquake precursory items. We know some earthquake precursory items



Using Rough Reducts to Analyze the Independency of Earthquake 533

can be ulteriorly divided into several items, such as the index of seismic activity
embodies comprehensive index, seismic entropy, degree of seismic activity, and
fuzzy degree of seismic activity. These items may be dependent to each other
or in hierarchy relationship. But we cannot do an in-depth study based on the
materials available from the Earthquake Cases in China. In our future work,
more information needs to be collected to solve this problem.
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ence Foundation of China (No. 70502020 and 20503015) and China Earthquake
Administration (No. 104090).
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Abstract. Complex diseases such as stroke and cancer involve a wide range of 
biological parameters with respect to the systems involved and disease 
progression.  Computational models of such diseases have led to new insights 
into the mechanism of action which have resulted in the development of novel 
therapeutic intervention strategies.  Such models are generally quite complex 
because they incorporate a wide range of relevant biological variables and 
parameters. In this paper, we examine a biologically realistic computational 
model of acute ischaemic stroke with respect to the variable and parameter 
space using rough sets. The aim of this investigation was to extract a set(s) of 
variables and relevant parameters that predict in a qualitative fashion the final 
extent of tissue damage caused by a “typical” ischameic stroke. 

Keywords: computer simulation, cortical spreading depression, data mining, 
ischaemic stroke, and rough sets. 

1   Introduction  

The underlying mechanism for stroke is ischemia characterised by a transient or 
permanent reduction in cerebral blood flow in an area supplied by a blood vessel to an 
area of the brain. The World Health Organisation (1998) defined severe cerebral 
ischaemia (stroke) as: “a syndrome of rapidly developing clinical signs of focal or 
global disturbance of cerebral function, with symptoms lasting 24 hours or longer or 
leading to death, with no apparent cause other than of vascular origin”.  The economic 
impact of stroke is staggering in both developed and developing countries.  Wolfe 
estimated 4.5 million deaths a year from stroke world-wide with over nine million 
survivors and an overall incidence rate of 0.2 – 0.25 % [15]. Stroke per se is the 
leading cause of disability in adults, the second most important cause of dementia and 
third most important cause of death in developed countries [15]. The burden of stroke 
on healthcare systems around the world are staggering both in terms of the required 
resources with an estimated costs of 2–30 billion US dollars per year [15]. For these 
reasons, pathophysiology of stroke has been an area of active research.  

The brain is the organ with the highest oxygen demand in the body, consuming 20% 
of the cardiac output.  An ischemic event in the brain results in hypoxia (reduced tissue 
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oxygen levels) and hypoglycaemia (reduced tissue glucose levels) leading to irreversible 
cell damage (stroke) in a few minutes if perfusion is not restored  [1]. Cerebral 
ischaemia triggers a multitude of events of which three primary pathways have been 
reported to result in tissue damage: excitotoxicity, inflammation and apoptosis. These 
pathways form a complex series of pathophysiological events that evolve in time and 
space (see Figure 1). Together, these damage generating pathways, termed the ‘Post 
Ischemic Cascade,’ have been extensively studied using both in vitro and in vivo 
models to identify possible therapeutic targets in the treatment of stroke [3].  

The three major pathways in the Post Ischemic Cascade are brought about by the 
interactions of numerous cellular components (e.g. transcription factors, caspases) 
that have been recently identified and grouped by the functional roles these cellular 
components play in normal physiology [3].  Several laboratories have employed DNA 
microarray analysis in order to attempt to elucidate a set of genes that may be 
responsible for the ensuing pathophysiologic pathways [14]. These studies have 
provided some insight into the genes that are dysregulated – but generally the number 
of dysregulated genes are too numerous to be useful directly.  Other laboratories are 
employing Magnetic resonance Imaging (MRI) as a tool for investigating the 
temporal and spatial dynamics of relevant pathophysiological events – both in humans 
and in animal models of stroke [5,7].  Although some useful information has been 
gleaned from these studies – they have not as yet lived up to their promise of 
delivering a comprehensive definition of the events occurring in the PIC.   Part of the 
difficulties encountered in these studies is the inability to control the variables – 
which are by definition not known with certainty.  Which systems are affected – to 
what degree – the causal relationships between the multitude of systems involved 
makes this an extremely difficult multi-optimisation task.    

The ability to perform computer modelling of complex phenomena has been with 
us for decades now.  There are numerous complex meteorological models that involve 
massively parallel computational facilities that are in daily use for weather prediction 
One of the key advantages of a computational model is the ability to control every 
variable and parameter.   Computational models of diseases/pathophysiologies require 
incorporation of both temporal and spatial evolution of the relevant state variables.  A 
critical task is to identify exactly what the critical state variables should be.  This task 
must be informed by the scientific question at hand – the model should be as simple 
as necessary – but not too simple.  

The first computational model of stroke and related phenomenon was reported in 
the literature by Tuckwell and Miurma in 1981[11].  This model attempted to capture 
some of the dynamics of tissue damage expansion – using a simplified diffusion 
process.  Reggia has presented a 2D model which include potassium dynamics 
suitable for the incorporation of some of the relevant biological events reported in 
ischemic stroke [4,8]. Revett et al. have proposed a biologically rich model with 
several key variables that incorporates the relevant spatial and temporal dynamics (see 
below and [10] for details).  Other models have incorporated the same basic strategy 
employed in [10], incorporating a particular hypothesis into their system [2,11,12,13].  
The problem with many of these models is that though they are phenomenologically 
correct in many of the details – the variable and/or parameter space tends to be large 
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and have remained unexplored.  The primary aim of this paper is to explore the rich 
state variable/parameter space of the stroke model proposed by this author to 
determine the relationship between particular state variables and the extent of tissue 
damage resulting from an ischaemic stroke.  In the next section of this paper, we 
describe the stroke model in some detail, followed by a brief discussion of rough sets, 
followed by a results section.  The principal results of this work are discussed in the 
conclusion section, with the addition of future works. 

2   Stroke Simulation 

The computational model of stroke employed in this study is a simulation that 
incorporates both the spatial and temporal evolution of key variables that have been 
reported in the literature to be critical in the development and evolution of tissue 
damage [3,5].  Since stroke is confined to brain tissue, we simulated a 2D hexagonally 
tessellated network of cortex – in essence a 2D cellular automata with drop-off 
boundary conditions.  Embedded within each cell of the CA is a set of state variables 
that will be updated during the course of the simulation.  The dynamics of the system 
is implemented via a series of equations (ordinary and partial differential) that 
describe phenomenologically the behaviour of these variables as reported in the 
literature.  Updating of the state equations is performed using a Forward Euler method 
in order to reduce the computational time (the results have been corroborated using a 
4th order Runge-Kutta method).  The spatial and temporal steps in the model are such 
that each cell occupies 0.125 mm and each update represents 13 msec (see [9,10] for 
details).  The values of each of the state variables are recorded at some particular 
spatial location(s) and at specific time intervals, which are stored for subsequent 
graphical display and analysis (see Figure 1).  reader is referred to [10,11] for details). 

Normal 

Ischaemic core

Penumbra

 

Fig. 1. A depiction of the relationship between the ischaemic core, the surrounding penumbra, 
and normal tissue. Note these regions are not drawn to scale. 

Each state variable is set to their initial value at the start of the simulation and are 
updated until a stopping criteria has been reached (generally a certain amount of 
simulated time – typically on the order of 2-4 hours – depending on the particular 
requirements of the experiment).  A time consuming aspect of this type of simulation 
is the determination of parameter values – which in this case were “discovered” by 
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hand.  There are 60 parameters in this model – each modulating a particular facet of 
the state variable behaviour (due to space constraints, the details are omitted and the 
interested 

Since stroke is caused by a reduction in the blood supply to a particular region of 
the brain, the primary variable to consider is the cerebral blood flow.  Each region of 
the simulated cortex has a local blood flow level.  The literature reports that there are 
three compartments which differ in their blood flow levels: the ischaemic core, the 
penumbra, and the surrounding normal tissue.  These compartments are depicted in 
Figure 2.  The ischaemic core is the central region in Fig 2 which has essentially no 
blood supply and hence will die (become infarcted) within 2-3 minutes if the blood 
supply is not restored.   Surrounding the ischaemic core is the penumbra – a region 
that has reduced blood supply, but sufficient resources to maintain vitality provided 
there are no further compromising events.  The penumbra is surrounded by tissue that 
has normal blood flow levels which usually survives.  In addition to tissue death in 
the ischaemic core, experimental models of stroke and clinical results indicate that 
tissue surrounding the ischaemic core (e.g. the penumbral tissue) may also undergo 
infarction [3,5].   The final amount of tissue damage is largely determined by the 
extent of the expansion of the infarct into the penumbra. Understanding the 
mechanisms underlying tissue damage expansion into this region is of paramount 
clinical importance, as it may lead to new therapeutic measures that reduce post-
infarct debilitation. While great progress has been made in this area during recent 
years [1,3,7], the mechanisms by which focal ischemia evolves into infarction and the 
factors which determine the ultimate extent of the infarct are still unsettled. The 
prolonged reduction of blood supply in the peri-infarct region may gradually lead to 
progressive tissue damage via numerous pathological metabolic pathways, yet the 
relative importance of these factors remains controversial [3,7].   

This expansion process is incorporated into the model presented in this paper, 
yielding results that are consistent with major literature reports on the subject.   What 
one would like to know is which variables are involved – and how are they modulated 
by relevant parameters.  These parameters (and their values) are not free in this model 
– they represent actual biological processes that have been reported in numerous 
literature reports.   But literature reports provide a snapshot of the variables and 
parameters – and are valid only under the given experimental conditions in which 
they were measured.  

Clinically relevant information with respect to variables/parameters under a wide  
operating range that occurs in real populations would be very useful in developing 
rational therapeutic strategies. This information is potentially available from 
simulation studies – provided the model it is based on is correct and sufficiently 
comprehensive. The question is how to extract this information from the simulation.   

In this work, we employ rough sets as a methodology for extracting values for 
variable/parameters (attributes) that influence the behaviour of the simulation in 
specific ways. Since the variable space is large (16 state variables and 60 parameters), 
we focused on the relationship between cerebral blood flow and the resulting tissue 
damage.  
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Fig. 2. A sample of the major state variables recorded over time at a particular location (a cell 
at radius 3 from the edge of the ischaemic core). The x-axis represents time in hours and the  
y-axis indicates abbreviations for 7 key state variables. 

3   Methodology 

The first stage of processing the data for use with rough sets is to create a decision 
table [6].   The attributes of this table were the relevant variables and parameters that 
relate to blood flow.  The binary decision class represented whether or not tissue 
damage expanded beyond a certain point into the ischaemic core (‘1’) or not (‘0’).  To 
populate the records within the decision table, a large number of simulations were run 
while varying the values of parameters through automatic programme control.  A 
large amount of processing power was required – since there are a large number of 
equations that are updated.  We simulated a section of brain tissue composed of a 
square lattice of 256x256 cells (simulating 32x32mm of 2D tissue) – each cell 
containing the full complement of variables, equations, and parameters.  Each time 
step represents 13 msec, and we wanted to allow  sufficient time for damage to occur 
– therefore each simulation iterated for 106 iterations, amounting to approximately 3.6 
of simulated time. This value was in accordance with our own work with this 
simulation and consistent with experimental models of stroke [7].  On a fast Pentium 
IV (3.06 GHz and 1024 MB DDR ram), 106 iterations is completed in approximately 
90 minutes.  We therefore ran the simulations on a cluster of 40 Pentium IVs 
(equipped as per above) for a total of 96 hours, yielding a total of 6,400 simulations.  
We then examined the damage resulting from each simulation and classified them as 
either a (‘0’) or (‘1’) based on whether the damage encroached sufficiently into the 
penumbra.  A programme was written that would that determined the extent of the 
damage and set a threshold that was initially set to a radius of 5 cells (out of 40) 
around the ischaemic core.  The programme then extracted the records and assigned 
the appropriate decision value.  It was desired that the results would yield 
approximately equal numbers of 0s and 1s.  If this was not the case, then the threshold 
would be changed accordingly (decreased if too many 0s and vice versa for too  
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many 1s).  From this particular study, the radius was set to 3 cells. This resulted in 
46% (2,944) objects with a ‘0’ decision class and 3,456 objects belonging to decision 
class ‘1’. Please note all attributes in the decision table were discretised using the 
‘Global’ method within RSES 2.2. Note the dataset was complete – so imputation was 
not necessary. 

With the ability to create the decision table – the critical issue is to decide which 
variables to record and which parameters to vary. In order not to bias the decision 
table, all variables were included in the decision table (yielding 26). In addition, all 
parameters relevant to blood flow (6 in this case) were varied randomly from an 
initial control condition. The control condition was one that generated results that 
were consistent with published reports and were directly acquired from literature – 
and so forms our gold standard (mean values).  Values for parameters were varied 
plus/minus the mean by the addition of random noise between 10 and 100% of the 
mean values 

4   Results 

The principal result from the rough sets analysis was the set of rules that were 
generated. These rules relate the extent of tissue expansion into the penumbra with 
respect to parameters controlling the blood flow.  In order to estimate the accuracy of 
the rule set, we validated the results using 10-fold cross validation. The resulting 
classification accuracy was 92.3% based on the decision rule classification strategy.  
We also applied several other classification techniques available in RSES 2.2, the 
results of which are depicted in table 1.  

Table 1. Classification accuracy with respect to the classification technique 

 Decision rules (All)   92.3% 
Decision rules (LEM)   90.3% 
k-NN   88.9% 
LTF-C   89.7% 

With an acceptable accuracy level, the critical result from this study is the rule set 
– which should provide information regarding the specific variables/parameters and 
their values that predict whether or not tissue damage will expand significantly into 
the penumbra. The number of rules generated was on the order of 987 – a fairly large 
number of rules. The rules were filtered based on support and the accuracy was  
re-tested with the filtered rule set and the values are reported in Table 2. 

Table 2. Number of rules as a function of support filtering and the resulting classification 
accuracy 

   Support Threshold    Number of Rules Accuracy 

Support: 1-2     1,784    93.1% 
Support: 1-3        895    91.8% 
Support: 1-4        271    94.6% 
Support: 1-5         72    89.3% 
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As can be seen from Table 2, the accuracy is fairly consistently high, and the 
number of rules are reasonable - especially when removing rules with low support 
between 1-5 (89.3%). Although no clear trend exists from the data in Table 2, it is 
clear that the number of rules can be significantly reduced without a significant drop 
in classification accuracy.  We therefore focus on the rules obtained when removing 
support between 1-5. The attributes (state variables and/or parameters) yield sets of 
values that can be used in conjunction with this model to explain under what 
circumstances stroke progresses into the surrounding penumbra.  

5   Conclusions 

In this preliminary study, we employed rough sets as a tool to extract the values of 
attributes that determined whether or not a stroke would progress beyond a certain 
position within the surrounding penumbra. The decision table that was employed in 
this was the result of a computer simulation based on a biologically realistic 
computational model of acute ischaemic stroke. The model incorporates the temporal 
and spatial dynamics of key state variables that have been reported to occur in animal 
models of stroke. The parameters in the model were initially selected by a pain-
staking manual search. What was sought in this study was to determine which 
variables/parameters were and their values were important predictors of progressive 
tissue damage. Rough sets provides – in part through the discretisation process – a 
range of values that preserves the behaviour of the model.   

The results from this study are encouraging – to the author’s knowledge this is the 
first attempt to apply rough sets to a biologically realistic model of a disease. It is a 
feasible step to apply this same methodology to other biologically realistic model of 
diseases such as cancer. One key advantage of this approach is the ability to vary the 
attribute values in a rational way. In most applications of data mining, one works with 
a snapshot of the data – without the ability to alter the data in any significant way.   
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Abstract. Rough Set Theory (RST) is an induction based decision-making 
technique, which can extract useful information from attribute-value (decision) 
table. This study introduces RST into pavement management system (PMS) for 
maintenance and rehabilitation (M&R) strategy induction. An empirical study is 
conducted by using the pavement distress data collected from 7 county roads by 
experienced pavement engineers of Taiwan Highway Bureau (THB). For each 
road section, the severity and coverage of existing distresses and required M&R 
treatment were separately recorded. The analytical database consisting of 2,348 
records (2,000 records for rule induction, and 348 records for rule testing) are 
established to induce M&R strategies. On the basis of the testing results, total 
accuracy and total coverage for the induced strategies are as high as 88.7% and 
84.2% respectively, which illustrates that RST certainly can reduce distress 
types and remove redundant records to induce the proper M&R strategies. 

Keywords: Rough set theory (RST), Pavement management system (PMS), 
Maintenance and rehabilitation (M&R). 

1   Introduction 

Various distress types would occur to pavement because of dynamic loading, 
overweighed trucks, weak foundation, improper mix design, change of climates, etc 
[1]. Pavement distress survey records the severity and coverage of existing distress 
types in order to adopt proper maintenance and rehabilitation (M&R) treatments. It is 
extremely important that if proper M&R treatments can be implemented at right time 
for specific distress type. Proper M&R treatments can not only save long-term 
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expense but keep the pavement above an acceptable serviceability [2, 3]. However, 
M&R strategies are usually made by engineers’ subjective judgments. The objective 
of this study is to utilize Rough Set Theory (RST) in dealing with enormous distress 
data to induce proper M&R strategies for decreasing M&R judgment errors and 
improving the efficiency of decision-making process in pavement management 
system (PMS). 

2   Rough Set Theory (RST) 

In this section, the basic concept of RST is presented. Rough set, originally proposed 
by Pawlak [4], is a mathematical tool used to deal with vagueness or uncertainty. 
More detailed discussion about the process of RST can refer to the literatures [5-7]. 
The original concept of approximation space in rough set can be described as follows. 
Given an approximation space ( ),apr U A= , where U  is the universe which is a 

finite and non-empty set, and A  is the set of attributes. Then based on the 
approximation space, we can define the lower and upper approximations of a set. 

Let X  be a subset of U , and the lower and upper approximation of X  in A  are 
conceptualized as Eq. (1) and (2), respectively. 

( ) ( ){ }| , /apr A x x U U Ind A X= ∈ ⊂  . (1) 

( ) ( ){ }| , /apr A x x U U Ind A X= ∈ ∩ ≠ ∅  . (2) 

where ( ) ( ) ( ) ( ){ }/ , , , ,i j i jU Ind A x x U U f x a f x a a A= ∈ ⋅ = ∀ ∈ . 

Eq. (1) represents the least composed set in A  containing X , called the best lower 
approximation of X  in A , and Eq. (2) represents the greatest composed set in A  
contained in X , called the best upper approximation. After constructing upper and 
lower approximations, the boundary can be represented as 

( ) ( ) ( )BN A apr A apr A= −  . (3) 

According to the approximation space, we can calculate reducts and decision rules. 
Given an information system ( ),I U A=  then the reduct, ( )RED B , is a minimal set 

of attributes B A⊆  such that ( ) ( )B Ar U r U=  where 

( ) ( )
( )

i
B

card BX
r U

card U
= ∑  . (4) 

denotes the quality of approximation of U  by B . 
Once the reducts have been derived, overlaying the reducts on the information 

system can induce the decision rules. A decision rule can be expressed as θ∅ ⇒ , 
where ∅  denotes the conjunction of elementary conditions, ⇒  denotes ‘indicates’, 
and θ  denotes the disjunction of elementary decisions. 
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The advantage of the induction based approaches such as RST is that it can provide 
the intelligible rules for decision-makers (DMs). These intelligible rules can help 
DMs to realize the contents of data sets. In the following empirical study, enormous 
records from pavement distress surveys are used to calculate reducts of distress types 
and to induce M&R strategies. 

3   Empirical Study: Pavement M&R Strategy Induction 

Although the development and implementation of M&R strategies for pavement is 
important, literature addressing this issue is limited. Colombrita et al. [8] build a 
multi-criteria decision model based on Dominance-based Rough Set Approach 
(DRSA) to provide highway agencies with a decision support system for more 
efficient M&R budget allocation. In the empirical study, 18 distress types and 4 M&R 
treatments provide as the attributes and decision variables, respectively. With the data 
collected from 2,348 asphalt-surfaced road sections, RST is employed to induce M&R 
strategies. Rough Set Exploration System (RSES) package is utilized to execute 
analyses [9, 10]. RSES is a software tool that provides the means for analysis of 
tabular data sets with use of various methods, in particular those based on RST. 

3.1   Pavement Distress Survey and M&R Treatments 

Pavement distress survey is conducted for the purpose of monitoring the existing 
pavement condition and making the appropriate M&R decisions. Generally, the 
severity and coverage should be separately identified and recorded for each distress 
type on one road section. For accurate, consistent, and repeatable distress survey, one 
comprehensive distress survey manual is required for clarifying the definition, 
severity, and coverage of each distress type. In the empirical study, pavement distress 
survey was carried out following the Distress Identification Manual for the Long-
Term Pavement Performance Program issued by Federal Highway Administration 
(FHWA) in June 2003 [11]. Furthermore, the required M&R treatment for each road 
section was decided according to the Standardized M&R Guidance which is issued by 
Taiwan Highway Bureau (THB) and used in various highway authorities in Taiwan. 

3.2   Data Description 

Pavement distress surveys were conducted on seven county roads with asphalt surface 
in Chung-Li Engineering Section of THB by 8 experienced pavement engineers. The 
seven county roads (110, 112, 112A, 113, 113A, 114 and 115) are located in northern 
Taiwan. Engineers conducted surveys by walking or driving. The distress information 
and required M&R treatment for each road section were recorded. The totally 
collected 2,348 records (2,000 records are randomly selected for training dataset; the 
rest of 348 records are for testing dataset) are utilized in the empirical study, which 
are integrated as Table 1. The first column in Table 1 shows the record numbers, 
column 2 to column 19 illustrate the 18 distress types, and the last column refers to 
the required M&R treatment (decision variable). The details are described as follows: 
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Table 1. Summary of analytical database 

Rec. D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18M&R 
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 1 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 1 
3 2 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 
4 2 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 
5 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
6 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
7 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
8 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
9 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

10 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
11 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
12 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
13 5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 
14 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 
15 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
: : : : : : : : : : : : : : : : : : : : 
: : : : : : : : : : : : : : : : : : : : 

2345 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
2346 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
2347 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
2348 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

• The empirical study explores 18 common distress types in Taiwan, which are 
represented from D1 to D18: D1. Alligator Cracking, D2. Block Cracking, D3. 
Longitudinal Cracking, D4. Transverse Cracking, D5. Edge Cracking, D6. 
Reflection Cracking, D7. Pothole, D8. Bleeding, D9. Rutting, D10. Corrugation, 
D11. Lane/Shoulder Drop-off, D12. Depression, D13. Structure Drop-off, D14. 
Utility Cut Patching, D15. Shoving, D16. Manhole Drop-off, D17. Patching 
Deterioration, D18. Raveling. Figure 1 shows examples of distress types. 

• The severity levels of distress are classified as L (low), M (moderate), and H 
(high). The coverage levels of distress are classified as A (local), B (medium), and 
C (extensive). Therefore, there are nine combinations (LA, LB, LC, MA, MB, 
MC, HA, HB, HC) of severity and coverage which are represented by number 1 to 
9 respectively, and plus 0 represents no distress. For example, “D1 = 2” denotes 
Alligator Cracking occurs with low severity and medium coverage. Figure 2 
shows examples of distress types with different severity and coverage 
combinations. 

• M&R treatments for asphalt pavement used in the empirical study are classified as 
four types, which are represented as number 1 to 4 referring to no M&R required, 
localized M&R (such as full-depth patching, crack sealing, etc.), global M&R 
(such as fog seal, slurry seal, aggregate surface treatment, etc.), and major M&R 
(such as milling, hot recycling, heater scarifying, AC overlay, reconstruction, etc.) 
respectively. Figure 3 shows examples of M&R treatments. 
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 D1. Alligator cracking D3. Longitudinal cracking D6. Reflection cracking 

   
 D7. Pothole D11. Lane/shoulder drop-off D14. Utility cut patching  

Fig. 1. Examples of distress types 

(a)  (b)  

Fig. 2. (a) Alligator cracking with high severity and extensive coverage (“D1 = 9”); (b) 
Patching with high severity and medium coverage (“D17 = 8”) 

(a) (b) (c)  

Fig. 3. M&R treatments: (a) Full-depth patching; (b) Hot recycling; (c) AC overlay 

3.3   Induction of M&R Strategies 

First of all, reduct calculation is conducted using exhaustive algorithm [12] in RSES. 
Two reduct sets with 14 attributes each are obtained and shown below. The 13 
attributes (cores) obtained from intersection of the two reduct sets are D1, D2, D3, 
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D4, D5, D6, D7, D8, D10, D11, D13, D14, D16. It is found that D12. Depression, 
D17. Patching Deterioration and D18. Raveling are not shown in both reduct sets. 

• D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D13, D14, D16 
• D1, D2, D3, D4, D5, D6, D7, D8, D10, D11, D13, D14, D15, D16 

Then, M&R strategies are induced based on the calculated reducts by randomly 
selecting 2,000 out of 2,348 records. The exhaustive algorithm [12] in RSES is 
chosen again to construct all minimal decision rules. Hence the induced 83 M&R 
strategies are shown in Table 2. For example, the first and second row in Table 2 
represent the first and second M&R strategy, which match with 525 records (most 
records) and 315 records, respectively: 

• IF (D1=2) 
(That is, Alligator Cracking occurs with low severity and medium coverage.) 
THEN the required M&R treatment will be no M&R required (450 records) or 

localized M&R (75 records) 
• IF (D1=1) & (D5=1) 

(That is, both Alligator Cracking and Edge Cracking occur with low severity and 
local coverage.) 
THEN the required M&R treatment will be no M&R required (315 records) 

The exhaustive algorithm may be time-consuming due to computational 
complexity. Therefore approximate and heuristic solutions such as genetic or Johnson 
algorithms [12], which allow setting initial conditions for number of reducts to be 
calculated, required accuracy, coverage and so on, can be considered in the future. 

Table 2. Summary of induced 83 M&R strategies 

No. of Rule (1-83) Match M&R Strategies 
1 525 (D1=2) => {M&R={1[450],2[75]}} 
2 315 (D1=1)&(D5=1) => {M&R=1[315]} 
3 210 (D1=1)&(D3=1) => {M&R={1[175],2[35]}} 
4 192 (D1=1)&(D3=1)&(D4=2) => {M&R={1[132],2[60]}} 
5 176 (D1=2)&(D5=1) => {M&R=1[176]} 
: : : 
: : : 

3.4   Testing of M&R Strategies 

The rest of 348 records are used to conduct testing analyses focusing on the induced 
83 M&R strategies. The results are shown in Table 3 and discussed as follows. Note 
that 1, 2, 3, and 4 are represented as no M&R required, localized M&R, global M&R, 
and major M&R, respectively. Rows in Table 3 correspond to actual (required) 4 
M&R treatments while columns represent decision values as returned by induced 83 
M&R strategies (classifier). 
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Table 3. Testing results of induced 83 M&R strategies 

 Predicted Treatments 
 1 2 3 4 No. of obj. Accuracy Coverage 

1 171 2 3 3 201 0.955 0.891 
2 5 69 5 5 111 0.821 0.757 
3 2 3 15 3 27 0.652 0.852 
4 0 1 1 5 9 0.714 0.778 

Actual 
Treat. 

True positive 
rate 

0.961 0.920 0.625 0.313    

Total number of tested objects: 348 
Total accuracy: 0.887 
Total coverage: 0.842 

• The values on diagonal represent correctly classified cases. If all non-zero values 
in Table 3 appear on the diagonal, we conclude that classifier makes no mistakes 
for the testing data. 

• Accuracy: Ratio of correctly classified objects from the class to the number of all 
objects assigned to the class by the classifier. For instance, 0.955 = 
171/(171+2+3+3), 171 represents the number of records whose actual M&R 
treatment is 1 (no M&R required) as the same with the predicted M&R treatment 
by 83 M&R strategies. If the predicted treatment is 2 (2 records), 3 (3 records), 
and 4 (3 records), this must be incorrect. 

• Coverage: Ratio of classified (recognized by classifier) objects from the class to 
the number of all objects in the class. That is, for all M&R treatments, the ratio of 
strategies which can be recognized to carry out prediction (including incorrect 
prediction). For instance, 0.891 = (171+2+3+3)/201. 

• True positive rate: For each M&R treatment, the ratio of treatment which can be 
correctly predicted by 83 M&R strategies. For instance, 0.961 = 171/(171+5+2). 

• Total accuracy: Ratio of number of correctly classified cases (sum of values on 
diagonal) by 83 M&R strategies to the number of all tested cases. For instance, 
0.887 = (171+69+15+5)/(171+2+3+3+5+69+5+5+2+3+15+3+1+1+5). 

• Total coverage: Total coverage equals 1 which means that all objects have been 
recognized (classified) by 83 M&R strategies. Such total coverage is not always 
the case, as the induced classifier may not be able to recognize previously unseen 
object. If some test objects remain unclassified, the total coverage value is less 
than 1. For instance, 0.842 = (171+2+3+3+5+69+5+5+2+3+15+3+1+1+5)/348. 

Note that total accuracy must be defined depending on the correct M&R treatment 
prediction. From the testing results, the total accuracy is as high as 0.887 and the total 
coverage is 0.842. Therefore, the 83 M&R strategies can be used to reliably reason 
M&R treatments in practice. 

4   Conclusions 

The purpose of pavement distress survey is to assist engineers in making proper M&R 
decisions. Proper M&R treatments can save long-term expense and keep the 
pavement above an acceptable serviceability. However, M&R strategies are usually 
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made by engineers’ subjective judgments. In the study, we have demonstrated the 
successful application of RST to the problem of inducing 83 M&R strategies by using 
2,348 actual data (2,000 records for rule induction, and 348 records for rule testing). 
On the basis of the testing results, total accuracy and total coverage for the induced 
strategies is as high as 88.7% and 84.2% respectively, which illustrates that RST can 
easily reduce distress types and remove redundant records from enormous pavement 
distress data to induce proper M&R strategies. The induced M&R strategies can 
decrease M&R judgment errors and assist engineers to reliably reason M&R 
treatments. The efficiency of decision-making process in pavement management 
system (PMS) can be improved as well. The M&R strategies induced in this study 
provide a good foundation for further refinement when additional data is available. 
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Abstract. This article proposes alternative classification rules for the
clubs in the Brazilian Soccer Championship employing Rough Sets The-
ory. A feature of the procedure adopted to determine the rough sets
is that it allows for attributes associated to intransitive relations. One
of such attributes is the result of direct confrontation. The classifica-
tion procedure follows three stages. First, the condition attributes are
ranked according to their importance for the official classification on
points. Then the condition attributes are sequentially applied to gen-
erate a classification. Finally the result of this sequential classification
is compared to the decision partition. The results obtained for different
sets of attributes and different years are consistent, with the number of
distinct classes obtained increasing with the quality of approximation.

Keywords: index of quality of approximation, importance measure,
tournament rules.

1 Introduction

Copying the European model, the Brazilian Soccer Championship has employed
during the last years a schedule of full confrontation between all clubs in two
turns. At the end of the year, predetermined numbers of clubs are selected, at the
upper and lower tails of the Standings Table, to international tournaments and
to descent to 2nd division championship. In the year of 2006, a similar structure
started to be employed also in the 2nd division. This kind of framework results
in a long championship with important decisions in the last rounds affected by
possible lack of interest in the matches by clubs already sacrificed by the descent
rule or that have already conquered the championship or any other ultimate
purpose. The fixed numbers of clubs descending and ascending may also lead to
unfair decisions, for instance transferring to the 2nd division a club that always
wins his matches against another that is kept in the elite group.

If we are able to manage flexible schedules in terms of number of clubs in the
championship, fairer rules may be applied to classify the clubs in such a way that
clubs in the same cluster would be kept together in the elite group or sent together
to the 2nd division. This article proposes classification rules to be applied in such
case. Three classification variables are considered: two attributes more directly
linked to the total number of points earned and, as a complementary attribute,
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the result of direct confrontation. This last variable does not determine an order
relation in the set of clubs, since it lacks the transitive property. In [8] is developed
a classification approach that allows for incorporating this kind of attribute.

The new classification procedure follows three stages. First, measures of im-
portance of the condition attributes are determined and the attributes are ranked
according to the values of such measures. The evaluation according to each at-
tribute is then successively applied to rank the options, the ties according to
the attribute considered the most important being eliminated according to the
second most important, the ties remaining after that eliminated by the third
attribute and so on. Finally, the classification so generated is compared to that
determined by the decision attribute. At this last step, ties according to all con-
dition attributes should be kept but new ties may be generated to eliminate the
contradictions between the two classifications.

Different sets of condition variables were applied. Besides the result of direct
confrontation and the number of goals scored, were alternatively considered the
number of goals taken, the number of losses and the number of wins. As tactical
reasons make the number of goals taken increase with the number of goals scored
and the championship points computation rule sets a distance of two points
between a win and a tie and of only one between a tie and a loss, the number
of wins becomes more important for the classification on points than the other
attributes considered. The number of losses is the most important attribute when
it is employed but the overall quality of the model with it is found to be smaller
than that of the model with the number of wins replacing it. And the model
with the lowest quality of information is that with the number of goals taken.

In the next section the index of quality of approximation is presented. Section
3 deals with the measurement of importance. Section 4 develops the sequential
classification procedure. Finally, in Section 5 the clubs problem is addressed.
Concluding comments form Section 6.

2 Related Work

The approach here developed applies the quality of approximation framework of
Rough Sets Theory. The main interest of this work is benefiting from the flexi-
bility of the index of quality of approximation applied to employ more general
kinds of attributes to expand the initial decision classes.

Recent years have been filled with intense work on the derivation of association
and classification rules, especially suited to deal with large databases. Some
of these methods employ indicators and aggregation criteria similar to those
employed here. The present study shall be followed by analyses comparing its
results to results derived from the application of tools like C4.5 [6], CN2 [2],
RIPPER [3] and their developments.

On the other hand, the approach here taken may also be applied to larger
databases. The comparison to other methods in such context must also be done.
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3 The Index of Quality of Approximation

The index of quality of approximation proposed in [8] treats symmetrically the
condition and decision partitions. A binary relation is derived from the values
of each attribute isolated or set of attributes as in [7]. The index measures the
probability of agreement, in the comparison of an arbitrary pair of items, between
the two relations, that associated to the condition attributes and that associated
to the decision attributes. More precisely, the quality of the approximation of
the decision partition D by the set of condition attributes C is gauged dividing,
by the total number of pairs of comparable options, the sum of the number of
pairs of indiscernible options according to C which belong to the same class
according to D and the number of pairs discernible according to C which belong
to distinct classes according to D.

This definition may be set in a graph theory framework. Consider two graphs
with the same set of nodes. Each node represents an option. In the first graph,
two different nodes are linked if and only if the respective options belong to the
same class in the decision partition. This graph is represented by the indicator
function GD defined in the domain of pairs of options by GD(o1,o2) = 1 if
o1 and o2 are indiscernible in D and GD(o1,o2) = 0 otherwise. In the second
graph, analogously, two nodes are linked if and only if the respective options
are indiscernible according to the set of condition attributes. This second graph
is represented by the indicator function GC defined in the same domain by
GC(o1,o2) = 1 if o1 and o2 are indiscernible according to C and GC(o1,o2)
= 0 otherwise. The quality of information index is then defined by the ratio
ID(C) between the number of pairs of different options o1, o2 with GC(o1,o2) =
GD(o1,o2) divided by the total number of pairs of different options considered.

This definition may be easily extended to the case of dominance, treated by
[5], [7] and others in the context of Rough Sets Theory. The analogous index of
quality of approximation for an ordered classification D by a set of attributes
C will be obtained dividing, by the number of pairs of different elements of
the universe of options for which there is indiscernibility or there is dominance
according to C or according to D, the sum of the number of such pairs for which
there is concomitantly indiscernibility according to C and D with the number
of pairs with dominance in the same direction according to C and D.

4 The Importance Measures and the Criteria to
Determine Joint Dominance

Since the indices of quality of approximation above described, as well as the
classical ones, may be calculated for any subset of the set of condition attributes
C, their values may be combined to determine the effect on the quality of ap-
proximation of the inclusion or exclusion of one or more attributes. A measure
of this effect is Shapley value [10] brought to measure attributes importance by
[4]. It is determined, for attribute i, by

φi = (Σ(pK ∗ (ID(K ∪ i) − ID(K)))/n,
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where the sum is on K, for K varying along the subsets of C\{i}, n is the total
number of attributes in C, ID is the index of quality of information and the
weight pK is given by the inverse of the number of combinations of n-1 elements
in subsets with the cardinality equal to the cardinality of the subset K.

Replacing the weights in the computation of φi by equal weights, we have
Banzhaf values [1]. Shapley and Banzhaf values depend strongly on the value
of the index of quality of the approximation by the attribute alone. On the
contrary, the weight to be given to the gain of information due to each possible
inclusion of the attribute in the model should decrease as increases the number of
variables left out of the model when such inclusion occurs. In [9] new importance
measures that take this aspect into account were tested. In the application below
is employed, besides Shapley and Banzhaf values, a measure with increasing
weights derived from those in Shapley value by dividing pK by the factorial of
the cardinality of the complement of K with respect to C\{i}. This results in
weights inversely proportional to the number of permutations of n elements in
subsets with the cardinality equal to that of C\K, instead of the number of
combinations.

Another important aspect to be taken into account in the computation of
importance values is the form of evaluation of joint dominance. To be able to
classify all pairs of options, it will be here assumed joint dominance of one
option o1 over another option o2 according to a set of attributes if the number
of attributes in this set for which o1 is preferable to o2 is larger than the number
of attributes for which o2 is preferable to o1. If these numbers are equal, the
options are considered indiscernible. By this way, every pair of different options
enters the comparison.

This suits the present application, where the condition attributes are chosen
by their ability to contradict each other. If agreement between a larger number
of the attributes is required, then the possibility of determining dominance or
indiscernibility will be very small. Other definitions of joint dominance may be
adopted, labeling as incomparable certain pairs of options. These would not
be counted neither in the numerator nor in the denominator of the indices of
quality of approximation. This may lead to unsuitably small denominators in
some computations.

5 The Sequential Classification Procedure

For the kind of application here envisaged, the modeler looks for condition at-
tributes that together are able to help to explain the decision table but iso-
lated do not provide considerable information about each other. For this reason
they are evaluated by their importance value. The importance value of a given
condition attribute measures the presence in it of an aspect important for the
decision classification and not present in the other condition attributes. Then,
taking them together will hardly allow for partitioning the options in a suitable
number of classes. Opposing the partition so generated to the decision partition
would increase even more the chance of contradictions.
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On the other hand, if we consider each condition attribute isolated, it will
agree with the decision attribute in the matter concerning that particular aspect
that makes it important and the chance of such agreement will be higher as
higher its importance value. And, if one such attribute is unable to separate two
objects that are discernible in the decision partition, it may be expected that
one of the other condition attributes, taken isolatedly, would be able to do it by
considering another relevant aspect.

Taking this into account, the classification procedure here adopted is com-
posed of the following three steps: 1) rank the condition attributes according to
their importance values; 2) classify according to the most important condition
attribute; inside each equivalence class of this first classification, classify accord-
ing to the condition attribute with the second highest importance value; proceed
likewise until all condition attributes with positive importance have been consid-
ered. 3) Compare the classification so generated to the decision classification and
eliminate the contradictions by considering indiscernible those options that are
indiscernible according to each of them or present opposed dominance relations.

This procedure results in larger classes than those in the decision partition.
But the successive elimination of the attributes, associated with the entrance
in operation of the attributes from the most important to the less important,
results in a large chance of useful results. Besides, its sequential character makes
it very easy and fast to apply. And the rules it engenders, contemplating the
condition attributes in a fixed order, are easy to understand. It applies, also, by
the same way in the context of symmetric instead of antisymmetric relations,
being enough to substitute discernibility for dominance where it appears.

6 Data Analysis

In this section the techniques described in the previous sections are employed
to develop a framework to classify clubs at the end of a championship. It is
assumed that the clubs match each other at least once along the championship.
The decision variable is the number of points earned. The main goal is to offer a
precise classification rule that might substitute for the presently applied rule that
select to descend the four last clubs on points. The data analyzed are provided
by the results of Brazilian National Championships, from 2003 to 2006. Before
2003, the championship model included a playoffs season. Playoffs result in a very
different motivation for scoring goals and winning games along the championship.

Besides classifying on points earned in wins and ties, the League employs the
number of wins and the balance of goals as untying criteria. To determine how
these variables more essentially affect the performance of the clubs, we may try
to identify factors related to offensive and defensive skills. The offensive power
is naturally measured by the number of goals scored.

The defensive ability is more difficult to access. To take a symmetric point of
view, we may consider first, with a negative sign, the number of goals taken. But
a favorable balance of offensive and defensive power may lead to large numbers
of goals pro and against the team. The strength of the defense is forged to assure
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that the team will not be beaten when the offensive power is not enough, so that
the ability of avoiding defeats is a more natural way to access it than the number
of goals suffered. If there were proportionality between the vectors of wins and ties
or if one of these vectors were constant, there would be precise correlation between
number of games lost and number of points. However this is not the case.

To explain the final ranking the number of games lost or won leave almost the
same space to be filled by the other variables in the model proposed. Because
the League assigns 3 points for win and only one for tie, sets of condition at-
tributes with the number of wins replacing the number of losses presents a higher
quality of approximation. Nevertheless, this asymmetric punctuation may be ex-
aggerated and, taking into account our goal of contradicting to some extent the
decision classification if from such contradiction may result sensible enlarging of
the partition classes, models with the number of losses and not the number of
wins may be more attractive.

Direct confrontation appears as a complement for the above-considered at-
tributes by bringing into consideration the aspects of the teams structure that
affect each pair of clubs particularly. There are patterns of preparation of each
team that affect differently their performance against certain others. These per-
formance relations are not transmitted transitively, since the preparation of a
given club to face two different clubs does not affect the way these clubs match
each other. The importance values here found lead to the conclusion that this
factor has an influence in the final points classification distinct from those cap-
tured by the other attributes studied.

Table 1 shows the importance measures for the different attributes in the
model with losses, goals scored and direct confrontation as condition attributes.
Similar results were found for models with other attributes. The values along
each column show small variation through time. The application of increasing
weights brings, in general, the smaller values and Shapley values are the highest,
reflecting the higher or lower importance given by each form of calculation to the
index of quality of information of the attribute isolated. It is also noticeable that
in all models the increasing weights value for direct confrontation is sometimes
higher than Banzhaf value, confirming that, even though less influent isolatedly,
this attribute has a specific contribution.

The same ranking of attributes and rough classes determination procedure
was applied to the 2nd division championship, that in 2006 started to employ an
analogous schedule, with absence of playoffs and ascent and descent decision on
points. The results were similar, with smaller importance values suggesting that
the attributes considered may be less important for the 2nd division.

As was to be expected, the number of classes in the final classification increases
as the attributes with higher importance values enter the model. During the 4
years, the number of classes varies between 1 and 4 for the model with losses
replaced by goals taken, between 5 and 9 for the model with losses and between
10 and 15 for the model with wins instead of losses. The number of classes for
the unique decision attribute varies between 17 to 20.
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Table 1. Attributes Importance

year value losses goals dir.conf.
2003 increasing 0.29 0,18 0.06

Banzhaf 0.30 0.19 0.06

Shapley 0.38 0.27 0.14

2004 increasing 0.24 0.14 0.08

Banzhaf 0.25 0.15 0.07

Shapley 0.33 0.23 0.15

2005 increasing 0.28 0.22 0.03

Banzhaf 0.29 0.23 0.03

Shapley 0.37 0.31 0.11

2006 increasing 0.28 0.17 0.08

Banzhaf 0.29 0.18 0.08

Shapley 0.37 0.26 0.16

Table 2. Size of Descent Classes

year goals taken losses wins
2003 0 1 6

2004 0 2 1

2005 1 3 or 5 4

2006 1 2 4

Finally, the results of the classification process are exemplified in Table 2. This
table presents for each model the number of clubs in the lower class with size
closer to 4, the predetermined number of clubs presently selected to descent. For
the years of 2003, 2004 and 2006, the decision rule characterizing the descent
for the model with losses, goals scored and direct confrontation as condition
attributes, is: proportion of losses above .5.

For 2005 this rule identifies as the lowest a unitary class. The next class, with
3 clubs, would be formed by adding two clubs satisfying the rule: proportion of
losses equal to .5 and less than 1.25 goals scored per game. The following class,
with 5 clubs, would be formed adding those determined by the rule: .45 to .5
of losses and less than 1.25 goals scored per game. These are simple rules and
the constancy of the bound of .5 of losses seems to make this model able to
offer a perfectly feasible system. It may be interesting to notice that the 2005
season, which produced the different rule, was affected by a scandal involving
referees manipulation of results that provoked invalidation and repetition of
eleven matches.

7 Final Comments

A new index of quality of approximation was here employed. It has been used
to rank the attributes in terms of its importance in the presence of competing
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attributes, difference importance evaluation formulae being applied. The ranks
were then explored in a sequential strategy to combine preference criteria into
global dominance relations.

This approach was successfully applied to review the classification of the clubs
in the Brazilian Soccer Championship. A feature of the procedure employed is
its ability to deal with intransitive attributes, in the case studied represented by
the result of direct confrontation.

The models applied included three condition attributes. This number can be
raised without any computational problem as the ranking of the attributes to en-
ter the final classification procedure in a sequential manner makes this procedure
very fast. Measurement of importance is also very simple, what stimulates the
computation of different forms to access importance. It requires that the index
of quality of approximation be computed for all subsets of the set of condition
attributes, but this computation, based on the direct confrontation of binary
tables, is straightforward.
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References

1. Banzhaf, J. F.: Weighted Voting doesn’t work: a Mathematical Analysis, Rutgers
Law Review 19 (1965) 317–343

2. Clark, P. and Nibblett, T.: The CN2 Induction Algorithm, Machine Learning
Journal 3 (1989) 261-283

3. Cohen, W.: Fast Effective Rule Induction. Proceedings of ICML95 (1995) 115-123
4. Greco, S., Matarazzo, B., and Slowinski, R.: Fuzzy measures as a technique for

rough set analysis. Proceedings of the EUFIT’08 1 (1998) 99–103
5. Greco, S., Matarazzo, B. and Slowinski, R.: Rough Approximation of a Preference

Relation by Dominance Relations, EJOR (1999) 119 63–83
6. Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann, San

Francisco (1993)
7. Sai, Y, Yao, Y. Y. and Zhong, N.: Data analysis and mining in ordered infor-

mation tables. Proceedings of the IEEE ICDM 2001 (2001) 497–504
8. Sant’Anna, A. P.: Probabilistic Indices of Quality of Approximation. In Rough

Computing: Theories, Technologies and Applications, Idea Group Inc. (2007) in
press.

9. Sant’Anna, A. P. and Sant’Anna, L. A. F. P.: A Probabilistic Approach
to Evaluate the Exploitation of the Geographic Situation of Hydroelectric Plants.
Proceedings of ORMMES’06 (2006)

10. Shapley, L.: A value for n-person games. In Kuhn, H., Tucker, A., Contributions
to the Theory of Games II, Princeton University Press, Princeton (1953) 307–317



Rough Neuro Voting System for Data Mining:

Application to Stock Price Prediction

Hiromitsu Watanabe1, Basabi Chakraborty2, and Goutam Chakraborty2

1 Graduate School of Software and Information Science
Iwate Prefectural University, Japan
g236d012@edu.soft.iwate-pu.ac.jp

2 Faculty of Software and Information Science
Iwate Prefectural University, Japan

basabi@soft.iwate-pu.ac.jp, goutam@soft.iwate-pu.ac.jp

Abstract. This work proposes a rough neuro voting system with modi-
fied definitions of rough set approximations for knowledge discovery from
complex high dimensional data. Proposed modification of rough set con-
cepts has been used for attribute subset selection. Ensemble of neural
networks are used for analysing subspaces of data in parallel and a vot-
ing system is used for final decision. The rough neuro voting system is
used for stock price prediction with considering other influencing factors
in addition to day-to-day stock data. The proposed approach shows ef-
fective in predicting increment or decrement of the nextday’s stock price
from simulation experiment.

Keywords: Data Mining, Stock Price Prediction, Rough Neuro Voting
System, Neural Network Ensemble.

1 Introduction

Classical data anylysis techniques based mainly on statistics and mathematics
are no longer adequate for analyzing increasingly huge collection of data in va-
riety of domains. New intelligent data analysis methodologies are evolving for
discovery of knowledge from complex data bases. Though many successful ap-
plications of the above tools are reported in the literature [1], advanced hybrid
techniques are necessary for better understanding of the inherent knowledge in
the form of simple rules for high dimensional complex data. Soft computing
methodologies are widely used for solving real life problems as they provide a
flexible information processing capability for handling ambiguity, uncertainty
and incompleteness prevalent in real life data. Neural networks and rough set
theory are useful tools for classification and rule generation from raw data.

The basic task behind discovery of knowledge from raw data is to divide the
data set in the attribute space into different classes, and define the class bound-
aries by simple yet accurate rules. Most of the real world data with large number
of attributes comes with noises some of which are irrelevant to the decision under
consideration. In general, one major step is to find which attributes are impor-
tant. Depending on the method used for rule extraction the real valued data are
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to be put into a number of discrete levels. So for continuous data, the next step
is data discretization. The last step is to find simple rules relating a combination
of attribute values to a proper decision. The rules should be simple, small in
number and yet accurate enough to express most of the data available.

Rough set theory, proposed by Pawlak in 1981 [2], has shown promise in
handling vast amount of noisy data for extracting patterns in them. It can be
used in different steps of knowledge discovery, from attribute selection [3], data
discretization [4] to decision rule generation [5]. More recently, a comprehensive
rough set based knowledge discovery process is proposed in [6]. On the other
hand, all phases of knowledge discovery can also be accomplished by evolutionary
algorithms [7]. Rough and fuzzy set theory or artificial neural network (MLP),
genetic algorithm and their several integration as hybrid approaches have been
used for knowledge discovery and rule generation [8] [9] [10]. In this work
a rough neuro voting system has been proposed for knowledge extraction from
high dimensional complex data. The rough set is used for the selection of subsets
of attributes in the first step, an ensemble of neural network is used to extract
information from the selected subspaces of multidimensional data and a voting
system is used in the final step for decision. The proposed algorithm has been
used to analyse and predict stock price fluctuation.

2 Knowledge Extraction from Complex High Dimensional
Data

Analysis of real life complex multidimensional data such as stock market (finan-
cial) data, clinical or social data for knowledge extraction and prediction of future
behaviour is a difficult problem. Artificial neural networks are widely used for
such prediction of time series data. For financial time series with high dimension,
training a neural network with the whole set of multidimensional data is difficult
and time consuming, consequently the trained network cannot produce accurate
prediction. It is also true for other ill behaved, highly complex multidimensional
time series data. Most of the high dimensional complex data contains important
information clustered in a subspace of multidimensional space. Efficient selection
of the subspaces is extremely necessary for extracting important information for
analysis of the data in a reasonable time and computational complexity.

Now to deal with the problem, a rough neuro voting system has been proposed
in this work which contains three steps. In the first step an optimum number
of subspaces of multidimensional data for which the data is well behaved and
contains information for prediction is selected. To find the boundaries of these
subspaces, the concept of rough set theory is used. Rough set approach is one
of the efficient approaches for attribute reduction and rule generation from vast
noisy data. Unlike statistical correlation-reducing approaches, it relies only on
set operations, and requires no intervention. But it does not have the necessary
searching technique to find the best rules out of large number of possibilities.
This searching is especially important when the number of condition attributes
are still many, and each of them have a large number of discrete levels. Attribute
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subset selection is done here from the dependency and discriminant index de-
fined in rough set theory and a proposed modification of the concept for better
searching. In fact this step performs the attribute subset selection.

In the next step each subspace of data is used to train an artificial neural
network for knowledge extraction or prediction. An ensemble of neural network
is used in this step and in the final step the final decision is calculated from the
outputs of the ensemble of neural networks by voting.

3 Proposed Rough Neuro Voting System

3.1 Rough Set Preliminaries

According to rough set theory an information system is a four-tuple S =
(U, Q, V, f) where U , Q and V , non-empty finite sets, represents the universe
of objects, the set of attributes and the set of possible attribute values respec-
tively. f is the information function which, given an object and an attribute,
maps it to a value, i,e., f : U × Q → V . The set of attributes Q can be par-
titioned by two disjoint subsets, the condition attributes C and the decision
attributes D.

An indiscernibility relation is an equivalence relation with respect to a set
of attributes which partitions the universe of objects into a number of classes
in such a manner that the member of same classes are indiscernible while the
member of different classes are distinguishable (discernible) with respect to the
particular set of attributes. P being a subset of Q, P -indiscernibility relation,
denoted by IND(P ), is defined as,

IND(P ) = {(x, y) ∈ U × U : f(x, a) = f(y, a), for every feature a ∈ P}
U/IND(P ) denotes the set of equivalence classes of U induced by IND(P ),
also denoted as P ∗. The various terms defined above is explained below with the
example of an information system described in Table 1.

If P = {ht}, P ∗ = {{B, D, G}, {A, F, I}, {C, H}, {E}}. Similarly, when P =
{ht, hs}, P ∗ = {{B}, {D, G}, {F, I}, {A}, {C}, {H}, {E}}. Here the objects are
divided into two classes - good swimmer and bad swimmer. We will denote
the partitions, induced by condition attributes, as A∗ = {X1, X2, . . .}, and the
partitions induced by decision or concept attributes as B∗ = {Y1, Y2, . . .}.

For any decision partition Y induced by a subset of decision attributes B ,
and for any subset of condition attributes A, the A-lower (A) and the A-upper
(A) approximation of Y are defined as A(Y ) =

⋃
{X ∈ A∗ : X ⊆ Y } and

A(Y ) =
⋃

{X ∈ A∗ : X ∩ Y �= φ} The boundary region for the decision Y with
respect to the subset of attributes A is defined as BNDA(Y ) = A(Y ) − A(Y ).
POSA(Y ) = A(Y ) and NEGA(Y ) = U − A(Y ) are known as A-positive region
of Y and A-negative region of Y . Using the above example, when the objects
are partitioned by A = {ht}, and the concept is good swimmer, then Y =
{B, C, D, F, G, I}, A(Y ) = {{B, D, G}}, A(Y ) = {{B, D, G}, {C, H}, {A, F, I}},
POSA(Y ) = {{B, D, G}}, BNDA(Y ) = {{C, H}, {A, F, I}}, and NEGA(Y ) =
{{E}}.
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Table 1. An Example of an Information System

Universe of Attributes (Q)
Objects (U) Condition Attributes (C) Decision Attribute (D)

Name Height (ht) Hand Span (hs) Pulse Rate (pr) Swimming Ability (sa)

Andy (A) 180 (tall) 160 (medium) 84 (high) not good

Bill (B) 192 (very tall) 190 (very long) 64 (low) good

Conrad (C) 170 (medium) 189 (very long) 66 (low) good

David (D) 193 (very tall) 180 (long) 83 (high) good

Elliot (E) 162 (short) 159 (medium) 65 (low) not good

Fahad (F) 181 (tall) 191 (very long) 82 (high) good

Glenn (G) 194 (very tall) 179 (long) 86 (high) good

Harvey (H) 172 (medium) 161 (medium) 68 (low) not good

Inoue (I) 179 (tall) 192 (very long) 81 (high) good

Inexactness of a rough set is due to the existence of boundary region. The
greater the boundary region, the lower is the accuracy of any condition attribute
to infer a decision. In real life data, we usually end up only with boundary sets.
To deal with inexactness, two more terms, dependency (γA(B)) and discrim-
inant index (βA(B)) have been defined in rough set literature. γA(B) means
dependency of decision B on condition A. βA(B) means to what extent the par-
tition induced by attribute A matches the concept partition induced by B, both
positive and negative portions.

γA(B) is mathematically defined as

γA(B) =
|POSA(B∗)|

|U | (1)

βA(B) is defined as

βA(B) =
|POSA(B∗) ∪ NEGA(B∗)|

|U | =
|U − BNDA(B∗)|

|U | (2)

For the simple problem described in Table. 1, we have only one decision at-
tribute, D = {sa}. When A = {ht}, POSht(sa) = {{B, D, G}}, BNDht(sa) =
{{C, H}, {A, F, I}}, and NEGht(sa) = {{E}}. Then γht(sa) = 0.333 and
βht(sa) = 0.444. As the boundary region is there, the rule between height and
swimming ability can only be partially defined for the positive and negative re-
gions. We can partition the objects more precisely by adding one more attribute,
say hand span. Then A = {{ht}, {hs}}, and the boundary region vanishes im-
proving β{ht,hs}(sa) to its maximum value 1.0. It can be easily seen that the
discriminant index does not improve if we use A={ht, pr}. It is also interesting
to note that β{hs}(sa) is 1.0, or in other words the hand span attribute alone is
sufficient to make the decision of good or bad swimmer. Corresponding to the
three partitions of the objects by hand span attribute, i.e., {B, C, F, I}, {D, G},
and {A, E, H}, there are three rules which cover the whole data set. With real
world data, a β value of 1.0 is, in general, not possible.
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3.2 Proposed Measure for Attribute Selection

With real life data for a particular dicision we do not get a complete positive
or negative region. To extract some meaningful information even out of this
situation, we propose terms nD(A\B) and nN (A\B), for a partition induced by
the set of condition attributes A and a decision attribute B where B∗ = {Y1, Y2},
as follows:

nD(A \ B) =
∑

Xi∈A∗

|Xi| :
{(

|Xi ∩ Y1|
|Xi ∩ Y2|

∨ |Xi ∩ Y2|
|Xi ∩ Y1|

)
< ε

}
(3)

nN (A \ B) = N − nD(A \ B) (4)

ε is a fraction whose value is set to nearly 0 (say, ε = 0.2). |Xi| denotes the
cardinality of set |Xi| and N denotes the total number ofsample points. Though
the samples do not form a clear decision, they do describe some rules with high
degree of accuracy, nD means the number of samples that helps in decision mak-
ing and nN represent the samples that are not consistent with decision making.
If nD(A \ B) is a good proportion of N , we can say that the partitions induced
by the set of condition attributes in A are good features to take the decision B.
When it is not, we can conclude that the condition attributes in A has nothing
to do with the decision B. Those attribute combination are irrelevant. Following
conventional meaning of the term, we define confidence for the partition induced
by condition attribute subset A for decision B as,

confidence = βA(B) =
nD(A \ B)

nD(A \ B) + nN (A \ B)

3.3 Attribute Subset Selection

For attribule subset selection, we calculate the value of β for different combina-
tions of condition attributes and pick up those subsets of attributes with high
values of β. For high dimensional data, we need to consider a certain number of
attributes grouped together to restrict the search problem, we call this grouping
of attributes, as merging. If many attributes are merged, the partition becomes
smaller and the confidence is low. On the other hand, if we partition the sam-
ples using only single attributes the partition do not have any discriminating
power. So for a particular problem we need to consider the minimum number
of attributes to be merged to have a meaningful partition. This number is de-
pendent on the characteristic of the data and is heuristically chosen by some
experimentation.

3.4 Rule Extraction from Artificial Neural Network

Once these subsets of attributes are identified, the relation between the input
attributes and the output target is represented by feedforward multilayer artifi-
cial neural networks, one network for each such subset representing a subregion
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of the data. Neural network is chosen because it has the ability to learn com-
plex boundaries. The neural networks are trained using error back propagation
with data from their respective partitions. A particular neural network is like an
expert for knowledge extraction for prediction/ classification for data falling in
that partition. First we check if the data falls within such discriminating parti-
tions or not. If not, we conclude that discriminatory knowledge extraction is not
possible from that partition.

3.5 Voting System from Ensemble of Neural Network

Finally the aggregate of the outputs from the ensemble of neural networks are
taken as the final decision. The aggregation has to be done by averaging or
voting.

4 Simulation Experiments and Results

The proposed method has been used to predict fluctuation in share price.

4.1 Data Preparation

We chose consecutive 1000 days’ stock data of the automobile company TOY-
OTA, Japan. As day-to-day stock data cannot be predicted only from the stock-
price itself we consider several factors which give rise to a multidimensional data
set. The factors considered are:

1. The recent change of value of the company
2. The Nikkei stock average
3. The New York Dow Jones average
4. The exchange rate between Japanese yen and US $
5. The stock value of companies with same or similar product line
6. The Nikkei average in terms of US$
7. The deviation of long (or medium) term average from the present stock value

Altogether the data consists of 11 attributes, which are as follows:

– The variation of the stock value, today’s increase/decrease with respect to
previous day, i.e., our target. = C0

– The variation of the stock value, previous day’s increase/decrease of value
of the our target with respect to day before yesterday = C1

– The variation of stock value of Nissan on the previous day = C2
– The variation of US$ and Japanese Yen exchange rate on the previous day

= C3
– The variation of Dow Jones stock average on the previous day = C4
– The variation of the Nikkei stock average on the previous day = C5
– The variation of the nikkei average in terms of US$ value = C6
– The deviation of long term average in positive direction = C7
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– The deviation of long term average in negative direction = C8
– The deviation of short term average in positive direction = C9
– The deviation of short term average in negative direction = C10

The task is to predict whether the stock price will be up or down from today
to tomorrow by using the past values of the multidimensional time series.

4.2 Simulation Experiment

We compared the performance of prediction using only neural network trained
by error-backpropagation and our proposed rough neuro voting system.

ANN parameters were as follows:

– Number of input nodes: 11
– Number of output node: 1
– Number of hidden nodes: 15
– Training rate: 0.01
– Number of train data: 998
– Number of test data: 200
– Number of training epochs: 10000

We used all the available data to train the ANN. Out of them 200 randomly
selected data were used for testing. Three sets of test data were used, and the
experiment has been repeated for 50 times. We used the same data set for pre-
diction by our proposed system. For attributes C1 to C6, we divide the data
into 4 discrete levels, large positive, positive, negative, and large negative. C7
to C10 are already discretized to values 1 and 0. We merged 3 attributes and
considered 11C3 = 165 subsets of attributes for subset selection. The parameters
are as follows:

– Number of data available: 998
– Number of test data: 200
– Number of condition attributes: 11
– Number of decision attribute: 1
– Number of attributes marged to create partition: 3
– Number of data partitions: 5
– Number of input nodes of ANN: 3
– Number of output node of ANN; 1
– Number of hidden nodes: 5
– Training rate :0.01
– Number of training epochs: 100000

From the results of this experiment it is found that the percentage of correct
classification improved for the rough neuro voting (RNV) system (78% for all
data partitions) than ANN ( Average 67% with a maximum of 64% and minimum
52.5%) and the result is much more stabilized. For any financial system, as we
need to predict only for the next day, where as all the previous data are available,
we can rely with a very high degree on RNV system output.
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5 Conclusion

In this work we proposed a rough neuro voting system for extraction of knowledge
for prediction or discrimination of high dimensional complex data. We applied
our proposed scheme for stock market prediction. Forecasting stock price is a
complex problem and does not depends on the past stock values only. There
are other factors which demand analysis of multidimensional data with different
chracteristics of the attributes. Though artificial neural networks are powerful
for extracting information from raw data, large complex high dimensional data
poses serius problems for computational time and complexity.

In our work we used concepts from rough set theory and proposed some mod-
ifications to handle real world data for finding proper subset of attributes. This
facilitates to divide the data into smaller subspaces for analysing individually
and in parallel with lesser computation time and complexity. Finally from the
ensemble of neural networks the final decision can be achieved by aggragation
or voting of the outputs from the individual network. It is shown that the pre-
diction result with our proposed scheme is better than the result from neural
network alone. Though there are various points to be explored further for more
correct prediction, the simulation results show that the proposed rough neuro
voting system is a practical approach to tackle problems with complex high
dimensional data like stock price analysis.
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Abstract. Many real world tasks involve the need to order alternatives
based on specifications of preference over subsets of the alternatives,
the problem of preference based alternative ordering. Examples include
dancing championship adjudication, Eurovision Song Contest decision-
making, collaborative filtering and meta-search engines. One usual solu-
tion to this problem consists in allocating scores to the alternatives and
aggregating the scores to generate ranks for all alternatives. Examples of
this solution include competition adjudication. Another solution involves
generating ranks from different sources for all the alternatives and then
adding the rank values of each alternative to give the Borda scores for
this alternative. The Borda scores are then used to order the alterna-
tives. Examples include elections and meta-search engines. The problem
with these two approaches is, the scores or ranks are sometimes hard to
determine (e.g., collaborative filtering).

In this paper we take the view that relative preferences over alterna-
tives (e.g., one alternative is preferred to another) are easier to obtain
than absolute scores or ranks. We consider an alternative approach to
this problem where, instead of using absolute scores or ranks, we use
relative preferences over subsets of the alternatives to generate a total
ordering that is maximally agreeable with the given preferences.

We consider a set of preference specifications over all or part of the
alternatives. For every pair of alternatives we calculate the probability
that the two alternatives should be placed in an order. Then the Order-

By-Preference algorithm is used to construct a total ordering for all
the alternatives, which is guaranteed to be approximately optimal.

Keywords: Alternative ordering, weak order, preference, neighbour-
hood counting.

1 Introduction

In many real world tasks we need to rank order things, alternatives, by a group
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or part of the alternatives and the aim is to find a total ordering1 over all alter-
natives that maximally agrees with all individual preferences, where every pair
of alternatives is ordered with respect to their ranks. We call this the problem
of preference based alternative ordering. Some examples include:

– adjudicating competitions: where a group of adjudicators each produces a
rank ordering of the competitors, the preference of one adjudicator, and the
overall rank ordering, a total ordering, is decided based on the preferences
of all adjudicators.

– Eurovision Song Contest: the judging committee of each participating coun-
try rank order only 10 other countries, leaving the remaining countries
equally at the bottom. Here the preferences are over a subset of the al-
ternatives, and the aim is to generate a total ordering of all participating
countries that maximally agrees with all the preferences.

– Cooperative filtering or recommendation systems: where preferences over a
selection of products in a category are given by the recommenders, and the
aim is once again to rank order the products based on preferences.

– Meta-search engine (whose goal is to combine the rankings of several WWW
search engines): where, given a search query, N search engines each produces
a ranking of documents resulting in N rankings altogether. The goal is to
generate a single ranking that agrees best with all the N rankings. This
application is similar to the Eurovision application.

One solution to this problem allocates absolute scores to the alternatives. One
example is the adjudication of competitions. Another solution involves generat-
ing rank values from different sources for all the alternatives and then adding
the rank values of each alternative to give the Borda scores [2,3] for this alterna-
tive. The Borda scores are then used to order the alternatives. Examples include
elections and meta-search engines. The problem with these two solutions, where
absolute numbers (scores or ranks) are used, is the numbers are usually hard to
determine and are sometimes given without absolute certainty.

In this paper we take the view that relative preferences over alternatives are
easier to obtain than absolute numbers. So we consider an alternative approach
to this problem where, instead of using absolute numbers, we use relative and
qualitative preferences over subsets of the alternatives to generate a total order-
ing that is approximately maximally agreeable with the given preferences. In our
approach, we consider a set of preference specifications over all or part of the
alternatives. For a pair of alternatives we calculate the probability that the two
alternatives should be placed in this order. Then the Order-By-Preference

algorithm [4] is used to construct a total ordering for all the alternatives, which
is guaranteed to be approximately optimal.

1 We use the term “total order” here only to emphasise that the alternatives are pair-
wise comparable by a voting system, although in reality some alternatives may not
be comparable. In this sense it may be more appropriate to understand the term as
“weak order” [1].
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2 Learning to Order Things

One very related work is the paper [4]. This paper presents an online (or in-
cremental) algorithm to learn a preference function from voters, and a greedy
ordering algorithm to generate an approximately optimal total order (i.e., ap-
proximately maximally agrees with a preference function).

The preference function used in [4] is a linear combination of a set of N
primitive preference functions:

PREF (u, v) =
N∑

i=1

wiRi(u, v) (1)

The primitive preference functions Ri are provided by ranking voters. Online
learning framework was adopted in which the weight wi assigned to each ranking
voter Ri is updated incrementally.

If PREF (u, v) > PREF (v, u), then u is preferred to v. In this paper we will
consider another preference function – the probability that u is preferred to v.
The rest of the paper will discuss how to formulate and calculate this probability.

A special type of preference function is rank ordering. Let S be a totally
ordered set with ’>’ as the comparison operator. An ordering function into S
is a function f : X → S. The function f induces the preference function Rf ,
defined as

Rf (u, v) def=

⎧
⎪⎨

⎪⎩

1 if f(u) > f(v)
0 if f(u) < f(v)
1
2 otherwise

(2)

Rf is called a rank ordering for X into S. If Rf (u, v) = 1, we say that u is
preferred to v, or u is ranked higher than v.

The greedy ordering algorithm used in [4] is cited in Algorithm 2.1.

Algorithm 2.1. Order-By-Preference: generate an approximately op-
timal total order from pair-wise preferences.
Input. an instance set X; a preference function PREF
Output. an approximately optimal total ordering function ρ
Let V = X1

for each v ∈ V do φ(v) =
∑

u∈V PREF (v,u) −
∑

u∈V PREF (u, v)2

while V is not empty do3

Let t = arg maxu∈V φ(u)4

Let ρ(t) = |V |5

Let V = V − {t}6

for each v ∈ V do φ(v) = φ(v) + PREF (t, v) − PREF (v, t)7

end8
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3 A Probability Function

A central element in our approach is calculating the probability that one alter-
native is preferred to another. In this section we present a probability framework
for this purpose.

Let V be a set or data space, and F be a σ-field 2 on V or extended data space.
Consider a probability function P over V , which is a mapping from F to [0, 1]

satisfying the three axioms of probability [5]. For X ∈ F let f(X) be a non-
negative measure of X satisfying f(X1 ∪ X2) = f(X1) + f(X2) if X1 ∩ X2 = ∅.
As an example, we can take f(X) for the cardinality of X .

A probability function is defined in [6] as follows: G : F → [0, 1] such that,
for X ∈ F ,

G(X) =
∑

E∈F
P (E)f(X ∩ E)/K (3)

where K =
∑

E∈F P (E)f(E).
Each E ∈ F is called a neighbourhood and, if E overlaps with X (i.e. f(X ∩

E) �= 0), then E is called a neighbourhood of X .
Let D be a sample of data drawn from V according to probability distribution

P . It was shown in [6] that, if the principle of indifference is assumed and if
f(X) = |X | for X ∈ F , G can be estimated from D as follows:

Ĝ(t) =
1

nK

∑

x∈D

ncm(t, x) (4)

where ncm(t, x) is the number of such E ∈ F that covers both t and x, or, the
number of common neighbourhoods of t and x. Therefore the task of estimating
G probability is transformed into one of counting common neighbourhoods.

To compute ncm(t, x), we need to specify F in a way so that necessary infor-
mation (e.g., preference ordering information) can be taken into consideration
in the definition of neighbourhoods. For multivariate data, where the data space
V is defined by multiple attributes, a formula has been discovered to compute
ncm(t, x) [7,6] where both t and x are data tuples. For sequence data a dy-
namic program has been developed to compute ncm(t, x) where t and x are
sequences [8].

Our work in this paper is based on the premise that a preference specification
is treated as a sequence. Therefore we review the body of work on neighbourhood
counting for sequence – all common subsequences. This review is based mainly
on [8].

2 A σ-field F on V is a class of subsets of V , such that:

1. V ∈ F ;

2. If A ∈ F then A′ ∈ F , where A′ is the complement of A;

3. If A, B, · · · ∈ F , then A ∪ B ∪ · · · ∈ F .

One σ-field on V is the power set of V if V is finite.
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3.1 All Common Subsequences – A Brief Review

We let A be a finite set of symbols – an alphabet. A sequence α is an ordered set
{ai}n

1 = {a1, a2, · · · , an}, where ai ∈ A. For simplicity we also write the above
sequence as a1a2 · · ·an. A special sequence, empty sequence, is identified and
denoted by ε, which is an empty set. Therefore a data space V can be defined
as the set of all possible sequences generated by alphabet A.

Consider two sequences α and β. If α can be obtained by deleting zero or more
symbols from β, we say α is a subsequence of β. A neighbourhood of a sequence
is one of its subsequences. Readers are invited to consult [8] for the justification
of such a definition of neighbourhood.

If we want to use the G probability we need to compute the number of all
common subsequences of two sequences. A brute force approach is exponential
in the length of the sequence. A dynamic program is proposed in [8] through
which the number of all common subsequences can be computed in polynomial
time. This dynamic program is based on the following theorem.

Theorem 1. Consider two sequences, α = {a1, · · · , am} and β = {b1, · · · , bn}.
Let N(i, j) be the number of common subsequences of {a1, · · · , ai} and {b1, · · · , bj},
i.e., the prefixes of sequences α and β of lengths i and j. Then

N(i, j) = N(i − 1, j − 1) × 2, if ai = bj

N(i, j) = N(i − 1, j) + N(i, j − 1) − N(i − 1, j − 1), if ai �= bj

Consequently ncm(α, β) = N(m, n).

4 The Probability That One Alternative Is Before
Another

Let A be a finite set of alternatives, i.e., an alphabet; V be the set of all possible
preference orderings over all subsets of the alternatives, i.e., sequences without
repetition that are constructed of A; D be a subset of such preferences. Our
aim in this section is to estimate the probability that one alternative is before
another based on D. Such probability can be used as a preference function, as
discussed in Section 2. With a preference function available we can generate a
total ordering on the alternatives using the Order-By-Preference algorithm.

Let a, b ∈ A be two alternatives. We construct a two-word sequence α = ab.
Our task can then be formulated as calculating the G probability of the two-word
sequence α on the basis of a sample D of sequences.

According to Eq.(4) we have

Ĝ(α) =
1

nK

∑

x∈D

ncm(α, x) (5)

where K is a normalisation factor independent of α, n is the number of sequences
in D, and ncm(α, x) is the number of common subsequences of α and x.



Counting All Common Subsequences to Order Alternatives 571

5 Examples

In this section we present two examples. A toy example illustrates our approach
and a realistic example illustrates the capability and limitation of our approach.

5.1 A Toy Example

Suppose there are three voters: v1, v2, v3, and there are five alternatives a, b, c, d, e.
The preferences by individual votes are v1 : abcde, v2 : ab, aced, v3 : bc, aed.
Assuming equal weighting 3 of the voters we have a preference set D = {abcde, ab,
aced, bc, aed}.

Consider a query sequence q = ac. To calculate Ĝ(q) we need to calculate
ncm(q, x) for every x ∈ D, which is the number of all common subsequences of
q and x.

Consider x = abcde. The set of all subsequences of x is {∅, a, b, c, d, e, ab, ac, ad,
ae, bc, bd, be, cd, ce, de, abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde, abcd,abce,abde,
acde, bcde, abcde}. The set of all subsequences of ac is {∅, a, c, ac}. Therefore
ncm(ac, abcde) = 4. Similarly we have ncm(ac, ab) = 2, ncm(ac, aced) = 4,
ncm(ac, bc) = 2, and ncm(ac, aed) = 2. Therefore Ĝ(ac) = 1

NK (4+2+4+2+2) =
14

NK .
Similarly Ĝ(ab) = 14

NK , Ĝ(ad) = 15
NK , Ĝ(ae) = 15

NK , Ĝ(bc) = 13
NK , Ĝ(bd) =

12
NK , Ĝ(be) = 12

NK , Ĝ(cd) = 13
NK , Ĝ(ce) = 13

NK , and Ĝ(de) = 12
NK . Applying

the OrderByPreference algorithm we get the approximately optimal total
order 4: a, b, c, e, d, which agrees maximally with the individual preferences by
all three voters. A decision can then be made on the basis of this total order.

Note that the preference set D = {abcde, ab, aced, bc, aed} is the basis of com-
ing up with the preferred ordering, by using the Order-By-Preference algo-
rithm. To use this algorithm we need pair-wise preferences, which are calculated
from the preference set by our formalism presented in the paper.

5.2 Eurovision Song Contest

Table 1 is the score board of Eurovision Song Contest Final in 2005. 39 countries
took part and 24 went into the final as contestants. During the final the 24
contestants performed, and then the 39 countries cast their votes. A vote by
a country is a distribution of scores {1, 2, · · · , 8, 10, 12} to 10 contestants. The
final ranking of contestants is based on the aggregation of scores awarded by the
voting countries to the contestants. This is an application of a positional voting
method similar to the Borda score.

The “total” row is the aggregate scores gained by the contestants. The con-
testants are ordered from left to right in a descending order of the score. It is
clear the first three places were won by Greece, Malta and Romania.

3 In the case of un-equal weighting, frequency can be introduced so that higher
weighted voters are given higher frequency values.

4 This is a property of the OrderByPreference algorithm.
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Table 1: Scoreboard of Eurovision Song Contest 2005 – final

GR MA RO IS LA MD SM SZ DE NO CR HU TU BH RU AL FY CY SW UA SP UK FR GE
TOTAL 230 192 158 154 153 148 137 128 125 125 115 97 92 79 57 53 52 46 30 30 28 18 11 4

AL 12 4 5 3 0 0 6 0 0 0 2 0 8 0 0 10 7 0 0 0 0 1 0
AN 4 0 7 8 10 0 0 1 3 2 0 6 0 0 0 0 0 0 0 0 12 0 5 0
AU 4 5 6 1 0 2 12 0 0 0 8 0 7 10 0 3 0 0 0 0 0 0 0 0
BE 0 5 1 8 6 7 3 10 0 4 0 2 0 0 12 0 0 0 0 0 0 0 0 0
BG 12 8 7 6 5 1 0 0 4 3 0 2 10 0 0 0 0 0 0 0 0 0 0 0
BH 6 0 2 0 0 4 10 0 0 3 12 1 8 0 5 7 0 0 0 0 0 0 0
BU 12 0 8 0 0 6 4 0 0 1 2 5 3 0 0 0 7 10 0 0 0 0 0 0
CR 5 4 0 0 7 1 12 3 0 0 6 0 10 0 2 8 0 0 0 0 0 0 0
CY 12 6 8 0 1 2 10 4 0 3 0 7 0 0 0 0 0 0 0 0 5 0 0
DE 2 10 3 5 6 0 0 1 12 0 0 8 4 0 0 0 0 7 0 0 0 0 0
ES 0 4 0 1 10 6 0 12 5 8 2 3 0 0 7 0 0 0 0 0 0 0 0 0
FY 7 0 2 0 0 5 10 0 0 0 8 1 4 3 0 12 0 6 0 0 0 0 0
FI 3 8 0 5 4 0 0 10 2 12 1 0 0 0 7 0 0 0 6 0 0 0 0 0

FR 8 7 5 10 0 2 6 0 0 0 0 3 12 0 0 1 0 0 0 0 4 0 0
GE 12 8 0 5 7 1 3 4 6 0 2 0 10 0 0 0 0 0 0 0 0 0 0
GR 8 5 0 1 7 6 3 0 4 0 2 0 0 0 10 0 12 0 0 0 0 0 0
HU 12 5 10 8 1 4 2 3 6 0 7 0 0 0 0 0 0 0 0 0 0 0 0
IC 2 4 5 0 3 8 0 7 10 12 1 6 0 0 0 0 0 0 0 0 0 0 0 0
IR 2 10 5 6 12 0 0 3 7 4 0 0 0 1 0 0 0 0 0 0 0 8 0 0
IS 7 10 12 6 4 0 2 3 1 0 8 0 0 0 0 0 0 0 0 0 0 5 0

LA 0 5 0 2 8 1 12 4 6 7 3 0 0 10 0 0 0 0 0 0 0 0 0
LI 1 2 0 3 12 10 0 8 4 5 6 0 0 0 7 0 0 0 0 0 0 0 0 0

MA 6 7 8 10 2 0 1 3 5 0 0 0 0 0 0 0 12 0 0 0 4 0 0
MD 4 0 7 6 12 1 0 0 3 0 0 0 0 10 0 0 0 5 8 0 0 0 2
MO 0 5 4 12 0 0 6 8 10 0 7 0 0 0 0 0 1 0 3 0 0 0 0 2
NE 10 5 3 7 0 0 4 0 8 1 2 0 12 6 0 0 0 0 0 0 0 0 0 0
NO 4 10 6 5 8 0 0 3 12 2 0 0 7 0 0 0 0 1 0 0 0 0 0
PL 1 0 7 0 4 3 0 6 5 8 2 10 0 0 0 0 0 0 0 12 0 0 0 0
PO 3 0 12 5 6 10 0 4 1 0 0 2 0 0 0 0 0 0 0 7 8 0 0 0
RO 10 2 7 0 12 6 0 4 0 5 8 3 0 0 0 0 1 0 0 0 0 0 0
RU 4 12 0 8 5 10 6 7 0 0 1 3 0 0 0 0 0 0 2 0 0 0 0
SM 12 0 3 0 0 5 0 0 2 10 6 0 4 0 8 7 1 0 0 0 0 0 0
SL 2 1 0 0 7 3 10 6 0 4 12 0 0 8 0 0 5 0 0 0 0 0 0 0
SP 8 7 12 6 0 4 0 0 10 3 0 5 0 0 0 0 0 0 2 1 0 0 0
SW 12 6 2 1 3 0 4 5 10 8 0 0 0 7 0 0 0 0 0 0 0 0 0
SZ 7 3 0 1 0 0 12 0 0 8 0 6 5 0 10 2 0 0 0 4 0 0 0
TU 12 8 4 3 0 7 0 0 0 0 0 6 10 0 2 5 0 0 0 0 1 0 0
UA 0 10 0 7 1 12 3 5 0 6 8 2 0 0 4 0 0 0 0 0 0 0 0
UK 12 10 0 7 6 2 0 0 8 5 0 0 1 4 0 0 0 3 0 0 0 0 0

We applied our approach presented in the previous section and obtained a
ranking very similar to Table 1: GR, MA, TU, RU, SM, RO, LA, DE, IS, BH,
AL, SP, FY, MD, CY, UA, SZ, CR, HU, FR, NO, SW, UK, GE.

There is some difference between the two rankings. One possible explanation
is that the Order-By-Preference algorithm [4] is only able to produce an
approximately optimal ordering. However the benefit of our approach is that
there is no need to allocate scores, which can be hard to do.

6 Summary and Future Work

In this paper we consider the problem of preference based alternative ordering.
We argue that relative preferences over alternatives (e.g., one alternative is pre-
ferred to another) are easier to obtain than absolute scores or ranks. We consider
an approach to this problem where, instead of using absolute scores or ranks,
we use relative preferences over subsets of the alternatives to generate a total
ordering that is maximally agreeable with the given preferences.

We consider a set of preference specifications over all or part of the alterna-
tives. For every pair of alternatives we calculate the probability that the two
alternatives should be placed in an order. Then the Order-By-Preference

algorithm [4] is used to construct a total ordering for all the alternatives, which is
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guaranteed to be approximately optimal. This approach is demonstrated through
two examples: one toy example that illustrates how the method works and an-
other example that illustrates how effective the method is.

In future work we will compare this approach with various voting systems,
including other preference based alternative ranking methods (see, e.g., [9,1]).
We will also investigate how may Arrow axioms [10] our ranking method satisfies.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their comments, which help shape the present form of this paper.
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