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1. Introduction 

In order to investigate the probability of cracking of hardening concrete in terms 
of the maximal allowable crack width, a full-scale concrete element has been 
evaluated. For this, evaluation, In order to investigate this issue, a concrete ele-
ment has been simulated which measures a thickness of 1m and a height of 3m. 
The length deformations of the wall are considered to be fully restraint by 100%. 
The ambient conditions are taken into account, as well as the concrete mix pa-
rameters (see Table 1). TEMPSPAN, which is an acronym for TEMPeratuur (tem-
perature) and SPANningen (stresses), is used to calculate the hardening stresses 
which develop during hardening. 

2. Cracking criterions 

Cracking criterions are used to define the moment of cracking of a hardening 
concrete element. A very commonly used criterion is the strength criterion. This 
criterion describes the ratio between the actual tensile stress and the actual tensile 
strength at the moment of cracking: 

 
ctmf
σξ =  (1) 

For the tensile splitting strength of a normal strength concrete, Lokhorst [1] devel-
oped an experimentally-based refinement for this criterion For this he discovered 
that the uniaxial tensile strength is 0.9 * tensile splitting strength: 

 
spctmctm ff ,*9.0=  (2) 
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Where: fctm = uniaxial tensile strength 
  fctm,sp = mean concrete tensile splitting strength 

With accounting for the rate of loading, this criterion holds: 

 Cracking criterion = spctmshortspctmlongspctm fff ,,,,, 75.085.09.09.0 ⋅≅⋅⋅=⋅  (3) 

Experiments (on plain concrete) have shown a stress/strength ratio at failure 
ranging between 0.75 for slow loading and 0.88 for fast loading. For high strength 
reinforced concrete, Sule [2] developed a cracking criterion, based on the 5% 
failure criterion. For this she also accounted for the rate effects and assumed 
a standard deviation of 0.09 times the standard deviation: 

 Cracking criterion spctmf ,6.0 ⋅=  (4) 

In practise an often used criterion is: 

 Cracking criterion = spctmctm ff ,45.05.0 ⋅=⋅  (5) 

3. Level II: First Order Second Moment Method 
(FOSM) 

In order to investigate the influence of different cracking criterions on the required 
amount of reinforcement a Level II First Order Second Moment Method (FOSM) 
and a Monte Carlo approach has been conducted. The average results of the hard-
ening stress and strength development calculated with TEMPSPAN, representing 
an element in the middle of the wall, are provided in Fig. 1. 

Due to its simplicity, the so called first order second-moment method is a very 
frequently used method for calculating the probability of cracking. This method 
uses the first two moments, i.e. mean value and standard deviation, which repre-
sent the stresses and strengths of the hardening process. Assuming the resistance R 

 
Fig. 1. Mean stress and strength 
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and the load S to be the second-moment random variables which exhibit a normal 
distribution with coefficients of variation of 10% and 8%, respectively, and that 
cracking occurs, at an average stress level of 75% of the actual tensile splitting 
strength, the probability of failure of the first crack occurrence is: 
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Where: 
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For this particular case, without any variation, the element in the center of the 
wall will crack 83 hrs after casting (see Fig. 2). With variations for the stress and 
strength assumed to be 10% and 8%, the probability of cracking, starts to increase 
from 0% after 76 hrs to 100% after 90hrs (figure 2). 

4. Crack width calculations 

When assuming a not completely developed cracking pattern, the crack width can 
be calculated from the strain difference between the concrete and the reinforce-
ment at the moment cracking of the concrete. For the maximum crack width, it 
holds that: 
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Fig. 2. Probability of failure. 
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in which: 
 φ: – diameter of the reinforcement bars [mm] 
 ωs: – reinforcement ratio [%] 
 ES: – modulus of elasticity of the reinforcement [MPa] 
 σscr: – steel stress in the crack [MPa] 
 fctm:  – tensile strength of the concrete [MPa] 
 n:  – ratio between elastic modulus and reinforcement [–] 

The steel stress in the crack can be calculated by: 
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For example, for an actual tensile strength (2.5 MPa) and actual modulus of 
elasticity at the moment of cracking (36,7 GPa), the reinforcement ratio, needed to 
control the maximum crack width at 0.20mm, is calculated at a value of 0.966% 
for reinforcement bars of φ12mm. With an adopted cracking criterion was acc. (3). 

For a representative range of cracking criterions, ranging from 0.5 to 0.8, the 
minimum required reinforcement has been calculated. The results are presented in 
figure 3. For lower values of the cracking criterion (= 0.75 * fctm,sp/ σ), lower val-
ues oft the reinforcement ratio, needed to obey the ultimate crack width of 
0.20mm1. This can be attributed to the lower tensile strength and modulus of elas-
ticity at younger ages of the concrete (see Fig. 3). So, in case it is uncertain which 
cracking criterion should be allowed, it is recommended use a higher cracking 
criterion, which implicitly results in a higher reinforcement ratio. 
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Fig. 3. Minimum required reinforcement ratio’s for different cracking criterions. 

                                                           
1  For this calculations an arbitrary value for the ultimate crack width has been 

adopted. 

ξ 
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5. Level III: Monte Carlo approach (MC) 

The Level III probability of failure is determined by means of a Monte Carlo ap-
proach. With this calculation procedure, all probability density functions of all 
strength and load variables are considered. It links the cracking reliability of an 
element directly to the probability density functions of the stochastic input pa-
rameters. Results of previous tests (and other data) can be used to establish the 
probability density functions of the input parameters of the early age cracking 
problem. This probability distribution knowledge can than be used to generate 
samples of the numerical data. A flow chart of a Crude Monte Carlo approach as 
used in [3,4] is shown in Fig. 4. The flowchart also indicates the level of the par-
tial safety factor (PSF) and the level of the first order second moment (FOSM). 

The simulation results are used to estimate a probability of failure of 
a particular sample. Since all input parameters are considered as random variables, 
the estimated probability itself can be treated as a random variable as well [5]. The 
uncertainty in the estimation of the probability decreases as the total number of 
simulations increases. For a required reliability of 95% (Vp=0.05) and a maximum 
relative error of 0.1, the required number of simulations should exceed [5, 6]: 
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For an arbitrary estimated average probability of failure of 0.5, the number of 
simulations required for this calculation should be at least n > 400. With 28 ran-
dom distributed variables (See Table 1), this number becomes 400*28=11200 
uniformly distributed random numbers. 
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Fig. 4.: Flowchart of the Monte Carlo approach. 
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Table 1. Input data for the Monte Carlo Approach 

Variable Mean 
value 

Stand. 
Dev. 

Variable Mean 
value 

Stand. 
Dev. 

Material parameters External parameters 
dens_gravel [kg/m3] 2650 26.5 windspeed [m/s] 2 0.2 
dens_sand [kg/m3] 2650 26.5 mean_surr. temp [K] 293 2 
dens_cement [kg/m3] 3150 31.5 ampl_surr. temp [K] 10 2 
Ea [KJ/mol] 45.7 4.113 initial_concrete_temp [K] 293 2 
alpha_c [K-1] 1.2*10-5 4.8*10-7 construction_width [m] 1.00 0.005 
Q_max [kJ/kg cement] 440 9.4 construction_height [m] 3.00 0.005 
Density_concrete [kg/m3] 2500 25 Restraint [-] 1.00 0.1 
lambda_formwork [W/mK] 0.17 0.017 d_formwork [m] 0.02 0.001 
R [J/mol.K] 8.315 0.8315 Calculation parameters 
Mix parameters d_age [-] 0.35 0.035 
Air [%] 1 0.1 n_tension [-] 0.30 0.03 
Gravel [kg] 695 6.95 n_compression [-] 0.30 0.03 
Sand [kg] 1236 12.36 Emod_aggregate [MPa] 55000 5500 
Cement [kg] 350 3.5 Emod_particle[MPa] 55000 5500 
Water [kg] 150 1.5 E_fictitious [MPa] 31000 3100  

The simulations performed by the level III calculation results in sets of data, 
which consist of a cracking time, tensile strength of the concrete at the cracking 
time, modulus of elasticity of the concrete at the cracking time and other data. This 
data can be used to the calculated crack width for each run (acc. to eq. 8). With these 
crack widths, a probability function can be constructed. For this function, most fre-
quently used cracking criteria (ξ) (from 0.5 to 0.75) are adopted, representing prob-
abilities of failure of 1−3 and 0.5, respectively (see Fig. 5) [1]. The results of these 
probabilities of crack exceedance are provided in Fig. 6. From the results it can be 
observed that when assuming an arbitrary allowable maximum crack width of 0.2 
mm and when applying the crack-width as provided by equation (8), the probability 
of exceedance curves show that there still is a substantial risk that larger cracks will 
be found in a structure. Especially for the lower stress/strength ratios, i.e. 0.5 (crack-
ing criterion ξ), the probability on larger cracks increases substantially. This shows 
that in case of critical structures, viz. water tight structures, the cracking criterion in 
relation to the desired maximum crack width should be treated carefully. 

Fig. 5. Probability of failure versus maximum allowable stress/strength ratio 
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Fig. 6. Probability of crack exceedance for different levels of crack criterions. 

6. Conclusions 

For lower cracking criterion, less reinforcement is required for obeying the allow-
able cracking width. Whenever high reinforcement ratios are available in 
a structure, a relatively high allowable level of the cracking criterion can be 
adopted as well. 

A Monte Carlo approach can be applied to calculate the crack width distribu-
tions for hardening concrete elements. The probability of exceeding provides the 
opportunity to calculate the ultimate crack width that can likely develop in a struc-
tural element. 
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