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Abstract. A new method for modeling and knowledge extraction at each neuron of a neural 
network using type-I fuzzy sets is presented. This approach of neuron modeling provides a new 
technique to adjust the fuzzy neural network (FNN) structure for feasible number of hidden 
neurons and efficient reduction in computation complexity. Through repeated simulations of a 
crisp neural network, we propose the idea that for each neuron in the network, we can obtain 
reduced model with high efficiency using wavelet based multiresolution analysis (MRA) to 
form wavelet based fuzzy weight sets (WBFWS). Triangular and Gaussian membership func-
tions (MFs) are imposed on wavelet based crisp weight sets to form Wavelet Based Quasi 
Fuzzy Weight Sets (WBQFWS) and Wavelet Based Gaussian Fuzzy Weight Sets (WBGFWS). 
Such type of WBFWS provides good initial solution for training in type-I FNNs. Thus the pos-
sibility space for each synoptic connection is reduced significantly, resulting in fast and confi-
dent learning of FNNs. It is shown that propsed modeling approach hold low computational 
complexity as compared to existing type-I fuzzy neural network models. 

Keywords: extraction of fuzzy rules, fuzzy neural networks, neuro-fuzzy modeling Wavelet 
based multiresolution analysis. 

1   Introduction 

Fission of artificial neural networks [10] and fuzzy sets have attracted the growing 
interest of researchers in various scientific and engineering areas due to the growing 
need of adaptive intelligent systems to solve the real world problems. A crisp or 
fuzzified neural network can be viewed as a mathematical model for brain-like sys-
tems. The learning process increases the sum of knowledge of the neural network by 
improving the configuration of weight factors. An overview of different FNN archi-
tectures is discussed by [5] and [9]. It is much more difficult to develop the learning 
algorithms for the FNN than for the crisp neural networks. This is because the inputs, 
connection weights and bias terms related to a FNN are fuzzy sets; see [19] and [22]. 

The new technique in mathematical sciences called wavelets can be introduced to 
reduce the problem complexity as well as the dimensions so that a FNN may provide 
a fast track for optimization. Wavelet based MRA provides better analysis of complex 
signals than Fourier based MRA, see [7]. 
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Fig. 1. Structure of a crisp neural network 

Based on this approach of knowledge discovery for each synaptic connection, we 
can convert the probability concept of network connections into possibility percep-
tion. These sets provide the initial design for type-I neuro-fuzzy networks as dis-
cussed in [1], [3] and [11]. When jumbled with [20], this new approach assures lower 
computational complexity due to improved selection of seed values of the network. 
To our knowledge, the concept of obtaining WBFWS through crisp neural networks 
has not been investigated in the literature. The work is organized as follows. In sec-
tion 2 we have briefly discussed wavelet based multiresolution analysis technique. In 
section 3, we have given new approach for fuzzy modeling of network connections. In 
section 4, simulation experiments are presented. To determine accuracy of WBFWS, 
a comparison is also made between proposed WBFWS and Gaussian confidence in-
tervals for each hidden synaptic connection of the neural network. Finally, discussions 
and concussions are given in section 5. 

2   Wavelet Based Multiresolution Analysis 

In recent years, researchers have developed powerful wavelet techniques for the multi 
scale representation and analysis of signals see [6], [7] and [17]. These new methods  
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differ from the traditional Fourier technique. Wavelets localize the information in the 
time-frequency space which makes them especially suitable for the analysis of non-
stationary signals [15]. One important area of applications where wavelets have been 
found to be relevant is fuzzy neural systems is discussed in [9] and [14]. This whole 
area of research is still relatively new but is evolving very rapidly. We examine the 
very important property of wavelet transformation i.e. maximization of signal energy 
using data compression for FNNs. There are essentially two types of wavelet decom-
positions, Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform 
(DWT), see [21]. Continuous wavelets are usually preferred for signal analysis, fea-
ture extraction and detection tasks where as the second type is obviously more ade-
quate whenever it is desirable to perform some kind of data reduction or when the or-
thogonality of the representation is an important factor [7]. However, the choice 
between them is optional depending upon the computational considerations. We will 
use the decomposition in terms of DWT using Mallat’s pyramid algorithm which is 
faster than a CWT and obtained very satisfactory results. Let f (t) be a signal defined 
in ( )2L R   space, which denotes a vector space for finite energy signals, where R  is a 
real continuous number system. The wavelet transformation of f (t)  in terms of con-
tinuous wavelets is then defined as 

( ) ,, , a bCWT f a b fψ ψ= 〈 〉 = ( ) ( ),a bf t t dtψ
∞

∞
∫  
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( )tψ  is the base function or the mother wavelet with ,a b R∈  are the scale and 

translation parameters respectively. Instead of continuous dilation and translation, the 
mother wavelet may be dilated and translated discretely by selecting 0

ma a=  and 

0 0
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and the corresponding discrete wavelet transform is given by 

( ) ( ) ( ), ,, , m n m nDWT f m n f f t t dtψ ψ ψ
∞

−∞

= 〈 〉 = ∫  (3)

DWT provides a decomposition and reconstruction structure of a signal using 
MRA through filter bank. The role of mother scaling and mother wavelet functions 

( )tφ  and ( )tψ  are represented through a low pass filter L and a high pass filter H. 

Consequently, it is possible to obtain a signal f through analysis and synthesis by 

using wavelet based MRA [21]. 
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( ) ( ) ( ), , , ,
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∈ ≤ ≥ ∈

= +∑ ∑ ∑  (4)

where the sum with coefficients ,p nc  represents scaling or approximation coefficients 

and sums with coefficients ,m nd  represent wavelet or detail coefficients on all the 

scales between 0 and p . Data compression and energy storage in wavelets can be 

achieved by simply discarding certain coefficients that are insignificant.  We combine 
this property of wavelets with neural networks and found a special class of mother 
wavelets db4, the most appropriate based on our data. We studied the effect of crisp 
weights on different neurons by reducing them using wavelets according to their en-
ergy preservation.  

3   New Technique for Fuzzy Neural Network Synaptic Weights  

Methods of fuzzy logic are commonly used to model a complex system by a set of 
rules provided by the experts [1]. To form WBQFWS from crisp neural network, we 
can obtain an appropriate unique MF by applying fuzzy aggregation operations. 
Such aggregation operations allow modeling each free parameter by combining 
multiple possible alternatives, see [16] and [23]. As in our proposed method, each 
synaptic fuzzy weight is obtained by ordered selection from crisp simulations, thus 
we can also impose ordered weighted aggregation operation (OWA) on re-
simulated crisp neural networks. The quasi fuzzy weight sets follows all axioms of 
fuzzy aggregation functions like boundary condition, monotonicity, continuity, 
idempotency and strict buoyancy.  

Let [ ] [ ]: 0,1 0,1
n

h →  denote the fuzzy aggregation from n dimensional space to a 

unique value given as ( ) ( ) ( ) ( )( )1 2, , ..., nA x h A x A x A x=  for each x X∈ , where 

( )iA x  are fuzzy sets defined over X. Thus a quasi-fuzzy set A is defined as 

( ) ( ) ( )1 2 1 2 1 2min , , ..., , , ..., max , , ...,n n na a a h a a a a a a≤ ≤  (5)

for all n-tuples ( ) [ ]1 2, ,..., 0,1
n

na a a ∈ . We call ( )1 2min , , ...,l na a a a=  and 

( )1 2max , , ...,r na a a a= . For middle parameter, we define simple averaging of quasi 

fuzzy sets as  

( )
1

,
2

l r
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For simplicity, we have assumed 1α = . For FNN with WBQFWS, we can also in-
troduce non-symmetric fuzzy MFs by varying the parameterα .  
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4   Experiment 

A crisp neural network with three hidden and one output neuron is trained and re-
peated the simulations for 700 times with an average rate of 7 simulations before a 
successful simulation. Through wavelet decomposition, we reduced dimensions by 
preserving 95% of the energy of original signal. The decomposed signal at level 5 us-
ing db4 wavelets for one of the input weight vectors is shown in Fig. 2(a), and its 
compressed version along with original signal in Fig. 2(b). A threshold of 5% is used 
for the compression of signals, thus reducing the data dimensionality up to 50%. So 
that in place of high data requirements of QFWS in [4], we obtained better perform-
ance using WBFWS, see [2]. From Fig. 1, the parameters of triangular MF based 
WBQFWS are given in Eq. (1) and Eq. (2). Although other MF can also be used de-
pending upon the problem addressed.  

As most of the actuarial problems are full of fuzziness [24], thus skewed MFs like 
Gamma and Beta can also be imposed. In Fig. 5 and Fig. 6, we have shown Gaussian 
MF based modeling for synaptic connections of a neural network. 

In Table 1, results of WBQFWS provide superior mapping of weight space ob-
tained using repeated simulations of crisp neural network than 95% Gaussian confi-
dence interval.  Interesting to note that the mean and standard errors are similar up to 
five decimal places in WBQFWS showing consistency of proposed interval sets but 
not in the case of Gaussian bounds. When each of the 100 simulated values of 
weights are validated for significance then we observe considerable differences in 
the prediction capacity of two types of interval sets. Similarly, the 95% WBGFWS 
also perform better then 95% Gaussian intervals. In validation process, the proposed 
WBFWS provide more accurate bound as compared to 95% Gaussian confidence in-
tervals (less than 93% close sets) as show in Table 3 for WBQFWS and in Table 6 
for WBGFWS. 

 

 
Fig. 2. (a) Signal decomposition (b) original and compressed signals 
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Fig. 3. Wavelet based weights and corresponding triangular MF 

 

Fig. 4.  (a) Input weight matrix for first input vector, (b) Corresponding Gaussian MF 



736 T.A. Jilani and S.M.A. Burney 

 
Fig. 5. (a) Validation weight matrix for first input vector, (b) Corresponding Gaussian MF 

Table 1. A Comparison of WBQFWS and 95% Gaussian Confidence Intervals 

(a) WBQFWS (b) 95% Gaussian C. I. Weight posi-
tion 

(from Fig. 1) 
Min Max Mean S. E. 

Confidence 
Bound 

Mean S. E. 

W1(1,1) -1.92 3.09 -0.06 0.86 -1.52 1.40 -0.06 0.89 
W1(2,1) -1.37 3.36 -0.04 0.80 -1.39 1.30 -0.04 0.82 
W1(3,1) -2.09 3.13 -0.11 0.85 -1.56 1.33 -0.11 0.88 
W2(1,1) -2.90 3.22 0.26 1.20 -1.82 2.33 0.25 1.26 
W2(1,2) -1.98 3.13 0.19 1.09 -1.65 2.04 0.19 1.12 
W2(1,3) -2.26 2.92 0.31 1.03 -1.45 2.07 0.31 1.07 

Table 2. Validation of WBQFWS and 95% Gaussian Confidence Intervals 

(a) WBQFWS (b) 95% Gaussian C. I. Weight  
position  

(from Fig. 1) 
Min Max Mean S. E. Confidence 

Bound 
Mean S. E. 

W1(1,1) -1.92 3.09 -0.06 0.89 -1.52 1.40 -0.06 0.89 
W1(2,1) -1.37 3.36 -0.13 0.62 -1.16 0.88 -0.13 0.62 
W1(3,1) -2.09 3.13 -0.09 0.83 -1.46 1.27 -0.09 0.83 
W2(1,1) -2.90 3.22 -0.01 0.92 -1.52 1.52 -0.01 0.92 
W2(1,2) -1.98 3.13 0.09 1.13 -1.77 1.97 0.09 1.13 
W2(1,3) -2.26 2.92 0.39 1.12 -1.45 2.23 0.39 1.12 

Table 3. Number of Insignificant WBQFWS and Gaussian Confidence Interval 

Weight position (from Fig. 1) WBQFWS 95% Gaussian C.I 

W1(1,1) 1 5 
W1(2,1) 1 2 
W1(3,1) 1 7 
W2(1,1) 0 7 
W2(1,2) 0 13 
W2(1,3) 0 13 

Deficiency 0.43% 7.80% 
Accuracy through validation 99.57% 92.20% 
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Table 4. A Comparison of WBGFWS with 95% Gaussian Confidence Intervals 

(a) WBGFWS (b) 95% Gaussian C. I. Weight  
position 
(from Fig. 1) Min Max Mean S. E. 

Confidence 
Bound 

Mean S. E. 

W1(1,1) -1.92 3.09 -0.06 0.86 -1.52 1.40 -0.06 0.89 

W1(2,1) -1.37 3.36 -0.04 0.80 -1.39 1.31 -0.04 0.82 

W1(3,1) -2.09 3.13 -0.11 0.85 -1.56 1.3 -0.11 0.88 

W2(1,1) -2.90 3.22 0.26 1.21 -1.82 2.36 0.25 1.26 

W2(1,2) -1.98 3.13 0.19 1.09 -1.65 2.04 0.19 1.12 

W2(1,3) -2.26 2.92 0.31 1.04 -1.45 2.07 0.31 1.07 

Table 5. Validation of 95% WBGFWS and 95% Gaussian Confidence Intervals 

(a) 95% WBGFWS (b) 95% Gaussian C. I. Weight 
position 
(from Fig. 1) 

Confidence 
Bound 

Mean S. E. 
Confidence 

Bound 
Mean S. E. 

W1(1,1) -1.81 1.68 -0.06 0.89 -1.53 1.40 -0.06 0.89 

W1(2,1) -1.36 1.08 -0.14 0.62 -1.16 0.89 -0.15 0.63 

W1(3,1) -1.73 1.54 -0.09 0.83 -1.47 1.28 -0.09 0.84 

W2(1,1) -1.81 1.82 -0.01 0.92 -1.53 1.52 -0.00 0.93 

W2(1,2) -2.13 2.33 0.09 1.14 -1.77 1.97 0.09 1.14 

W2(1,3) -1.80 2.59 0.39 1.12 -1.45 2.24 0.39 1.12 
 

Table 6. Number of Insignificant WBGFWS and Gaussian Confidence Interval 

Weight position (from Fig. 1) 95 % WBGFWS 95% Gaussian C.I 
W1(1,1) 2 5 

W1(2,1) 1 2 

W1(3,1) 2 7 

W2(1,1) 1 7 

W2(1,2) 9 13 

W2(1,3) 8 13 

Deficiency 3.80% 7.80% 
Accuracy through  valida-

tion 96.20% 92.20% 

5   Conclusions 

Learning with compressed wavelet neural networks using fuzzy weights is efficient 
and demonstrates much higher level of generalization and shorter computing time as 
compared to FNNs. We described the architecture of WBFWS based FNN that pro-
vide better initial search for synaptic weights. For WBQFWS, results showed that less  
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than 1% chance of bound independent values is possible, thus providing above 99% 
accurate mapping, in comparison with Gaussian bounds that is below 93%.  

In the following, we have presented some aspects of WBFWS regarding the com-
putational complexity of learning in FNN, 

1. In FNNs, one of the methods of learning is based on level sets where each fuzzy 
synaptic connection is divided into υ intervals that satisfy fuzzy arithmetic opera-

tions. When assuming υ  level sets, we get 2υ parameters of the form 

( ) ( ) ( ){ }1 1 2 2, , , , ..., ,h hh h h h
L R L R L Rw w w w w wυ υ   

Using boundary conditions, monotonicity and weak buoyancy conditions of fuzzy 
weights, we can write 

1 2 1 2.... ...h hh h h h
L L L R R Rw w w w w wυ υ≤ ≤ ≤ ≤ ≤ ≤ ≤   

Thus in FNN with crisp inputs and fuzzy weights, we can define fuzzy MF for each 
synaptic connection using level sets using WBFWS. If a certain MF consists of k pa-
rameters, then total free parameters for a single fuzzy synaptic connection are 2kυ . 

For example in a FNN structure 10 3 1× ×  with triangular MF and 100 level sets con-

tains ( ) ( )10 3 3 2 100 3 3 2 100 19800× × × × + × × × =  free parameters to be tuned in each 

iteration. The computational complexity of even a very small FNN makes them nearly 
impossible to apply on small scale problems because due to very large number of free 
parameters of the network, see [8], [12] and [13]. We need huge amount of input data 
to minimize the performance function (usually Mean Square Error) and to control the 
degrees of freedom of the network, see [20]. Thus our proposed weight sets with lim-
ited possibility space gives faster and more reliable convergence of learning using 
level sets based FNNs. 

2. With the help of our proposed WBFWS, we can decide the architecture of a 
FNN. If for any connection 0h h

L Rw w= =  then that connection can be considered as 

dead connection resulting in a reduced model and thus raising the speed of learning 
in level sets based FNNs.  

6   Future Work 

Further improved identification of suitable MF is possible by determining the under-
lying probability structure of synaptic connections of a crisp neural network using 
non-parametric statistics like Kernel estimation and learning. Thus based on this idea, 
we can form fuzzy inference systems with varying rules based on neuron complexity. 
This may provide new research directions to compare different WBFWS based FNNs. 
For most of the actuarial problems with non-negative limits, we can propose SANFIS 
(Skewed Adaptive Neuro-Fuzzy Inference System) to give new impression for actuar-
ies towards this comparatively new field of modeling, forecasting and control. A 
comparison for most suitable wavelet and optimization algorithms with varying  
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learning parameters is also possible. As future work we will extend this concept on 
multivariate kernel estimation techniques, and type-II fuzz logic systems as worked 
by [18]. 
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