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Abstract. The paper describes the application of an artificial neural network in natural lan-
guage text reasoning. The task of knowledge discovery in text from a database, represented 
with a database file consisting of sentences with similar meanings but different lexico-
grammatical patterns, was solved with the application of neural networks which recognize the 
meaning of the text using designed training files. We propose a new method for natural lan-
guage text reasoning that utilizes three-layer neural networks. The paper deals with recognition 
algorithms of text meaning from a selected source using an artificial neural network. In this pa-
per we present that new method for natural language text reasoning and also describe our re-
search and tests performed on the neural network.  

Keywords: Knowledge Discovery, Artificial Neural Networks, Natural Language Processing, 
Artificial Intelligence. 

1   Introduction 

For linguistic research, there is a need for consciously created and organized collec-
tions of data and information that can be used to carry out knowledge discovery in 
texts and to evaluate the performance and effectiveness of the tools for these tasks. 
Knowledge discovery in text is the non-trivial process of identifying valid, novel, po-
tentially useful, and ultimately understandable patterns in unstructured textual data 
[14,15]. These patterns are unknown, hidden or implicit in semi-structured and un-
structured collections of text. Below are some of the kinds of knowledge discovery 
tasks that many subject disciplines are interested in: 

• Identification and retrieval of relevant documents from one or more large collec-
tions of documents. 

• Identification of relevant sections in large documents (passage retrieval). 
• Co-reference resolution, i.e., the identification of expressions in texts that refer to 

the same entity, process or activity. 
• Extraction of entities or relationships from text collections. 
• Automated characterization of entities and processes in texts. 
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• Automated construction of ontologies for different domains (e.g., characterization 
of medical terms). 

• Construction of controlled vocabularies from fixed sets of documents for particular 
domains. 

The need to construct controlled vocabularies for subject domains has meant that 
terminological extraction from corpora has become an important process in tasks re-
lated to knowledge discovery in text [14]. 

The proposed system for knowledge discovery in text uses neural networks for 
natural language understanding in Fig. 1. 
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Fig. 1. Steps involved in proposed knowledge discovery in text  

The system consists of a selected data source, 3-layer artificial neural networks, 
network training sets, letter chain recognition algorithms, syntax analysis algorithms, 
as well as coding algorithms for words and sentences. 

2   The State of the Art 

Knowledge discovery is a growing field: There are many knowledge discovery meth-
odologies in use and under development. Some of these techniques are generic, while 
others are domain-specific. 

Learning algorithms are an integral part of knowledge discovery. Learning tech-
niques may be supervised or unsupervised. In general, supervised learning techniques 
enjoy a better success rate as defined in terms of usefulness of discovered knowledge. 
According to [1,2], learning algorithms are complex and generally considered the 
hardest part of any knowledge discovery technique. Machine discovery is one of the 
earliest fields that has contributed to knowledge discovery [4]. While machine dis-
covery relies solely on an autonomous approach to information discovery, knowledge 
discovery typically combines automated approaches with human interaction to assure 
accurate, useful, and understandable results. 

There are many different approaches that are classified as knowledge discovery 
techniques [16]. There are quantitative approaches, such as the probabilistic and sta-
tistical approaches. There are approaches that utilize visualization techniques. There 
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are classification approaches such as Bayesian classification, inductive logic, data 
cleaning/pattern discovery, and decision tree analysis [2,4]. Other approaches include 
deviation and trend analysis, genetic algorithms, neural networks, and hybrid ap-
proaches that combine two or more techniques. 

The probabilistic approach family of knowledge discovery techniques utilizes 
graphical representation models to compare different knowledge representations [7]. 
These models are based on probabilities and data independencies. The statistical ap-
proach uses rule discovery and is based on data relationships. An inductive learning 
algorithm can automatically select useful join paths and attributes to construct rules 
from a database with many relations [3]. This type of induction is used to generalize 
patterns in the data and to construct rules from the noted patterns. 

Classification is probably the oldest and most widely-used of all the knowledge 
discovery approaches [3,7,16]. This approach groups data according to similarities or 
classes. There are many types of classification techniques e.g. the Bayesian approach, 
pattern discovery and data cleaning, and the decision tree approach. 

Pattern detection by filtering important trends is the basis for the deviation and 
trend analysis approach. Deviation and trend analysis techniques are normally applied 
to temporal databases [4,6]. 

Neural networks may be used as a method of knowledge discovery. Neural net-
works are particularly useful for pattern recognition, and are sometimes grouped with 
the classification approaches. A hybrid approach to knowledge discovery combines 
more than one approach and is also called a multi-paradigmatic approach. Although 
implementation may be more difficult, hybrid tools are able to combine the strengths 
of various approaches. Some of the commonly used methods combine visualization 
techniques, induction, neural networks, and rule-based systems to achieve the desired 
knowledge discovery. Deductive databases and genetic algorithms have also been 
used in hybrid approaches. 

2   Method Description 

In the proposed knowledge discovery system shown in Fig. 2, sentences are extracted 
from the database. The separated words of the text are the input signals of the neural 
network for recognizing words [5]. The network has a training file containing word 
patterns. The network recognizes words as the sentence components, which are repre-
sented by its neurons in Fig. 3. The recognized words are sent to the algorithm for 
coding words [12]. Then, the coded words are transferred to the sentence syntax 
analysis module. It is equipped with the algorithm for analyzing and indexing words. 
The module indexes words properly and then they are sent to the algorithm for coding 
sentences [13]. The commands are coded as vectors and they are input signals of the 
sentence recognition module using neural networks. The module uses the 3-layer 
Hamming neural network in Fig. 4, either to recognize the sentence in order to find 
out its meaning or just does not recognize the sentence. The neural network is 
equipped with a training file containing patterns of possible sentences whose mean-
ings are understood. 
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Fig. 2. Scheme of the proposed system for knowledge discovery in text 
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Fig. 4. Scheme of the 3-layer neural network for sentence recognition 

Because of the binary input signals, the Hamming neural network is chosen (fig. 5) 
which directly realizes the one-nearest-neighbour classification rule [9, 10, 11]. Each 
training data vector is assigned a single class and during the recognition phase only a 
single nearest vector to the input pattern x is found and its class Ci is returned. There 
are two main phases of the operation of the expert-network: training (initialization) 
and classification. Training of the binary neural network consists of copying reference 
patterns into the weights of the matrix Wpn, as follows (1):  

pixw ii ≤≤= 1,  (1)

where p is the number of input patterns-vectors x, each of the same length n, wi is the 
i-th row of the matrix W of dimensions p rows and n columns. For given n the compu-
tation time is linear with the number of input patterns p. 

The goal of the recursive layer N2. is selection of the winning neuron. The charac-
teristic feature of this group of neurons is a self connection of a neuron to itself with a 
weight mii=1 for all 1 ≤i ≤p, whereas all other weights are kept negative. Initialization 
of the N2. layer consists in assigning negative values to the square matrix Mpp except 
the main diagonal. Originally Lippmann proposed initialization [8] (2):  

lkforlkforpm klkl =≠+−−= − 1,)1( 1 ξ  

1,,1 >≤≤ pplkwhere  

(2)
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where ξ  is a random value for which | ξ |«(p-1)-1. However, it appears that the most 

efficient and still convergent solution is to set equal weights for all neurons N2. which 
are then modified at each step during the classification phase, as follows (3):  

lkforlkfortptm kkl =≠−−== − 1,)()( 1ε  

1,,1 >≤≤ pplkwhere  

(3)

where t is a classification time step. In this case the convergence is achieved in p-1-r 
steps, where r>1 stands for the number of nearest stored vectors in W. 

In the classification phase, the group N1. is responsible for computation of the bi-
nary distance between the input pattern z and the training patterns already stored in 
the weights W. Usually this is the Hamming distance (4):  

piwzDnWzb iHi ≤≤−= − 1),,(1),( 1  (4)

where ]1,0[∈ib  is a value of an i-th neuron in the N1. layer, },...,1,0{),( nwzD iH ∈  is a 

Hamming distance of the input pattern z and the i-th stored pattern wi (i-th row of W). 
In the classification stage, the N2. layer operates recursively to select one winning 

neuron. This process is governed by the following equation (5):  
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where ai[t] is an output of the i-th neuron of the N2. layer at the iteration step t, ϕ is a 
threshold function given as follows (6):  

otherwisexforxx 0,0)( >=ϕ  (6)

Depending on the chosen scheme (2)-(3) of the mij weights in (5), we obtain differ-
ent dynamics of the classification stage. The iterative process (5) proceeds up to a 
point where only one neuron has value different than 0 – this neuron is a winner. 
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Fig. 5. Structure of the Hamming neural network as a classifier-expert module 
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3   Research Results 

The dataset for the tests carried out contained a database of 1500 sentences, files con-
sisting of 522 letter chains, 87 word training patterns and 510 sentence meaning train-
ing patterns. 
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Fig. 6. Sentence meaning recognition rate as a set of words recognized earlier 
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Fig. 7. Sensitivity of word recognition: minimum number of letters of the word being recog-
nized to number of word component letters 
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Fig. 8. Sensitivity of sentence meaning recognition: minimum number of words of the sentence 
being recognized to number of sentence component words 

The first test measured the performance of the sentence meaning recognition with 
the sentence recognition module using artificial neural networks as a set of words rec-
ognized earlier in Fig. 6. 

As shown in Fig. 7, the ability of the implemented neural network for word recog-
nition to recognize the word depends on the number of letters. The neural network re-
quires a minimum number of letters of the word being recognized as its input signals. 
As shown in Fig. 8, the ability of the neural network for sentence meaning recognition 
to recognize the sentence depends on the number of sentence component words. De-
pending on the number of component words of the sentence, the neural network re-
quires a minimum number of words of the given sentence as its input signals. 

4   Conclusions and Perspectives 

Knowledge discovery is a rapidly expanding field with promise for great applicabil-
ity. Knowledge discovery purports to be the new database technology for the coming 
years. The need for automated discovery tools had caused an explosion in research. 

The motivation behind using the binary neural networks in knowledge discovery 
comes from the possible simple binarization of words and sentences, as well as very 
fast training and run-time response of this type of neural networks. Application of bi-
nary neural networks allows for recognition of sentences in natural language with 
similar meanings but different lexico-grammatical patterns, which can be encountered 
in documents, texts, vocabularies and databases. The presented methods can be easily 
extended. 
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It is anticipated that commercial database systems of the future will include knowl-
edge discovery capabilities in the form of intelligent database interfaces. Some types 
of information retrieval may benefit from the use of knowledge discovery techniques. 
Due to the potential applicability of knowledge discovery in so many diverse areas 
there are growing research opportunities in this field. 
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