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Abstract. Classical decision-theoretic planning methods assume that the probabilistic model 
of the domain is always accurate. We present two algorithms rLAO* and qLAO* in this pa-
per. rLAO* and qLAO* can solve uncertainty Markov decision problems and qualitative 
Markov decision problems respectively. We prove that given an admissible heuristic function, 
both rLAO* and qLAO* can find an optimal solution. Experimental results also show that 
rLAO* and qLAO* inherit the merits of excellent performance of LAO* for solving uncer-
tainty problems.  

1   Introduction 

In the field of decision-theoretic planning, the theory of Markov decision processes 
has received much attention as a nature work for modeling and solving complex de-
cision problems [1]. But up to now, researchers have focused on the “classical” 
models of MDP approach, in which uncertainty in the consequences of the actions 
are represented with probabilities, and the satisfaction of agents are represented by 
a numerical, additive utility function. However, when planning modeling experts 
are modeling the real world problems, transition probabilities for representing the 
consequences of the actions are not always accurate [5]. Only incomplete quantita-
tive information can be obtained for modeling the uncertainty. Existing work shows 
that uncertainty is sometimes represented as a set of possible models, each assigned 
a model probability [17]. This representation can be simplified by assigning each 
model an equal probability [2, 18]. In this paper, we focus on the method used in 
[5], representing model uncertainty by allowing each probability in a single model 
to lie in an interval. On the other hand, sometimes we can only obtain ordinal, 
qualitative information rather than quantitative information about uncertainty. 
That’s why researchers have advocated several qualitative versions of decision the-
ory [8, 9, 10]. In this paper, we focus on qualitative decision theory frame work 
based on possibility theory, which gave rise to the definition of the possibilistic 
Markov decision processes framework [19].    

Over the past ten years, approaches to solving MDPs without evaluating complete 
states have been developed. LAO* algorithm has been proved to be one of the most 
efficient methods among them [13,15]. Our aim is to extend LAO*’s capability to 
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solve planning problems under uncertainty with incomplete information. rLAO* and 
qLAO* are algorithms that can solve MDPs with uncertainty probability and possi-
bilistic MDPs respectively. We prove that given an admissible heuristic function, both 
rLAO* and qLAO* can find an optimal solution. Experimental results also show that 
rLAO* and qLAO* inherit the merits of excellent performance of LAO* for solving 
uncertainty problems. 

2   Background 

Decision-theoretic planning problems can be formalized into a special class of MDPs 
called stochastic shortest-path problems [3]. It can be defined as a turple 
<S,s0,G,A,T,c>, where S is a finite set of state space; s0∈S is an initial state; G⊆S is a 
set of goal states; A is the set of available actions; To each action a∈A applied in state 
s is assigned a probability distribution p(.|a). Formally, the system’s dynamics can be 
described by the transition function T, defined as: T(s,a,s’) = Pr(st+1 = s’| st = s, at = a); 
the rewards or the cost of taking action a in state s are denoted by c(s,a). A policy π, 
applied in the initial state s0, defines a Markov chain that can be regarded a solution to 
SSPs. The aim for solving SSPs amounts to finding an optimal, stationary policy, i.e., 
a function π: S→∏(A) that minimizes the expected cost J* incurred to reach a goal 
state. Optimal policy can be obtained as the unique solution of the fixed optimal 
Bellman equation:   
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Now we turn back to Markov decision problems with uncertainty probability. 
Sometimes, we can only obtain incomplete quantitative information for transition 
probabilities. We follow the representation method used in [5], thus considering inter-
val-based uncertainty MDPs. MDPs with uncertainty probability can also be defined 
as a turple <S,s0,G,A,T,c>, where for lack of information, transition probability in this 
framework is only known to be in an interval.  This leads to two extended version of 
Bellman function to get the solution to a MDP with uncertainty probability, in the 
pessimistic and optimistic case respectively.: 
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In practical problems, especially in Artificial Intelligence applications, sometimes 
we could obtain ordinal, qualitative information rather than quantitative information 
about uncertainty. This gave rise to the introduction of qualitative decision theory. 
Possibilistic Markov decision problems might be the one used most widely among 
them [8, 9, 10]. In possibilistic MDPs, uncertainty about the effects of an action a  is  
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represented by a possibility distribution π: S→(L,>), where L is a bounded, linearly 
ordered valuation set. [8] have proposed two qualitative decision criteria. In [11] pos-
sibilistic qualitative decision theory has been extended to finite horizon, multi-stage 
decision procedure. [19] extends the framework by admitting stationary, optimal poli-
cies in the infinite horizon case. The possibilistic counterpart of Bellman Equation is 
described as follows equation (4) and (5). Equation (4) indeed corresponds to an op-
timistic attitude in front of uncertainty, whereas equation (5) is pessimistic (cautious). 
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3   rLAO* 

We first discuss how to extend LAO*’s ability for solving MDPs with uncertainty 
probability. According to equation (2) and (3), the only difference between solving 
MDPs and MDPs with uncertainty probability is just to find the best/worst model. 
Algorithm 1 has shown how to find a worst model or best model in equation (2) and 
(3), namely that how to calculate the value of the state. To make things clear, we 
shall use an example to illustrate the problem. Suppose the current state is s, via exe-
cuting action a, the consequent state is s0, s1, s2, with uncertainty probabilities [0.3, 
0.4], [0.2, 0.3], [0.4, 0.5] respectively. Suppose the cost of a is 1 and the values of s0, 
s1, s2 are 5, 10, 9. Note that the probability in this example is uncertainty and the 
combinations of probabilities of these three transition satisfying constraint (4) are in-
finite, for example (0.3, 0.3, 0.4), (0.31, 0.29, 0.4). So  in our algorithm, we only 
consider the best case where, in this model, the probability combination will mini-
mize the value of the policy; while in the worst case, the probability combination we 
adopt will maximize the value. Since J(s) = p1*5 + p2*10 + p3*9 + 1, satisfying p1+ 
p2+ p3=1. The idea of algorithm 1 is plain and direct, for example, in order to maxi-
mize J, we should make p2 (which value is biggest) big enough, then p3 (which is 
only smaller than p2), then p1. In order to minimize J, things are just reverse. So in 
this example, in the best model, the probabilities for p1, p2, p3 are (0.4,0.1,0.5), while 
in the worst case, they are (0.3, 0.5, 0.2).  

Algorithm 1 BestModel (WorstModel)  

1. Suppose ),...,( ''
1 kssR = is the set of reachable states set by apply a in s. Sort R by its 

value (topdown for worst model, downtop for best model).bound =1, i=1, let 
min
ip and max
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7.   for all },...,1{ kri +∈ do 

8.    min' )( rrr psP ←  

9.   end for 

To avoid missing relevant states, we adopt the method introduced in (Buffet 2005), 
to make sure that each state should be assigned a positive probability. Now we de-
scribe rLAO* algorithm for solving MDPs with uncertainty probability. 

Algorithm 2 rLAO* 
1. The explicit graph G initially consists of the initial state S. 
2. While the best solution graph has some non-terminal tip state: 

− Expand best partial solution: Expand some non-terminal tip state n of the best 
partial solution graph and add any new successor states to G. For each new state 
s’ added to G by expanding n, if s’ is a goal state then J(s’) = 0, else J(s’)= h(s) 

− Update state costs and mark best actions: 
• Create a set Z that contains the expanded state and all of its ancestors in the 

explicit graph along marked action arcs. (i.e., only include ancestor states 
from which the expanded state can be reached by following the current best 
solution.) 

• %For optimistic case: for all the states in set Z, Perform  value iteration using 
backup of equation (2) to update their state costs and determine the best action 
for each state. %For pessimistic case: for all the states in set Z, Perform  value 
iteration using backup of equation (3) to update their state costs and determine 
the best action for each state. 

3. Convergence test: perform value iteration on the states in the best solution graph. 
Continue until one of the following two conditions is met. (i) If the error bound 
falls below ε, go to step 4. (ii) If the best current solution graph changes so that it 
has an unexpanded tip state, go to step 2. 

4. Return an optimal solution graph. 

Theorem 1. If the heuristic evaluation function h is admissible and Pessimistic value 
iteration is used to perform the cost revision step of rLAO*, then: 

(1) J(s)≤J*(s)for every state s at every point in the algorithm; 
(2) J(s) converges to within ε of J*(s) for every state s of the best solution graph, after 
a finite number of iterations. 

Proof. (1) The proof is by induction. Every state Gi ∈  is assigned an initial heuristic 
cost estimate and J(s)= h(s) ≤J*(s) by the admissibility of the heuristic evaluation 
function. We make the inductive hypothesis that at some point in the algorithm, 
J(s)≤J*(s) for every state. If a backup is performed for any state s, 
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where the last equation restates the equation (2). 
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(2)It’s obvious that rLAO* terminates after a finite number of iterations if the implicit 
graph G is finite, or equivalently, the number of states in the MDP with uncertainty 
probability is finite. Because the graph is finite, rLAO* must eventually find a solu-
tion graph that has no non-terminal tip states. Performing Pessimistic value iteration 
on the states in this solution graph makes the error bound of the solution arbitrary 
small after a finite number of iterations, by the convergence proof of pessimistic value 
iteration. 

Theorem 2. If the heuristic evaluation function h is admissible and optimistic value 
iteration is used to perform the cost revision step of rLAO*, then: 

(1) J(s)≤J*(s) for every state s at every point in the algorithm; 
(2) J(s) converges to within ε of J*(s) for every state s of the best solution graph, after 
a finite number of iterations. 

Proof. The proving procedure is similar to theorem 1. 

4   qLAO* 

Now we discuss how to extend LAO*’s ability for solving possibilistic MDPs. Notice 
that quotation (4) and (5) are aim to find an optimal, stationary policy that will maxi-
mize (not minimize) the expected cost J* incurred to reach a goal state. Although we 
can easily change them by exchange the aggregate operator min and max to obtain a 
possibilistic counterpart of equation (1), we don’t do that in order to be compatible 
with [19]. We slightly change the definition of the value of states, i.e. for s∈G, 
J(s)=1L, and J(s) = 0L for other cases. They can be represented as follows:    
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This falls into possibilistic planning framework introduced in [6] have introduced 
counterpart versions of Value Iteration algorithm for solving possibilistic MDPs 
and proved both of the algorithms converge to Q* in a finite number of steps. For 
the limits of pages, we shall not present Algorithm qLAO* here. Instead we intro-
duce the main idea. qLAO* algorithm differs with LAO* and rLAO* mainly in step 
2 and step 3. Because qLAO* only knows qualitative possibilistic information, it re-
lies on a “possibilistic” dynamic programming algorithm, which have been intro-
duced as algorithm 7 and algorithm 8. In this sense, qLAO* also assume that a util-
ity function u on S is given, that express the preference of the agent on the states 
that the system shall reach and stay in. And qLAO* converges only when the resid-
ual is zero. Now we prove qLAO* shares the properties of AO*, LAO*. Given an 
admissible heuristic function, all state costs in the explicit graph are admissible  
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after each step and qLAO* converges to an optimal solution both in optimistic case 
and in pessimistic case. 

Theorem 3. If the heuristic evaluation function h is admissible and Possibilistic value 
iteration is used to perform the cost revision step of qLAO*, then: 

(1) J(s)≤J*(s) for every state s at every point in the algorithm; 
(2) J(s) converges to J*(s) for every state s of the best solution graph, after a finite 
number of iterations. 

Proof. We only prove the optimal case, for pessimistic case, things are similar. 
(1) The proof is by induction. Every state Gs ∈  is assigned an initial heuristic cost es-
timate and J(s)=h(s) ≤J*(s) by the admissibility of the heuristic evaluation function. 
We make the inductive hypothesis that at some point in the algorithm, J(s)≤J*(s) for 
every state. If a backup is performed for any state i , 
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(2)It’s obvious that qLAO* terminates after a finite number of iterations if the implicit 
graph G is finite, or equivalently, the number of states in the possibilistic MDP is fi-
nite. Because the graph is finite, qLAO* must eventually find a solution graph that 
has no non-terminal tip states. Performing Pessimistic value iteration on the states in 
this solution graph makes the error bound of the solution to zero after a finite number 
of iterations, by the convergence proof of possibilistic value iteration. 

5   Experimental Results of rLAO* and qLAO* 

To evaluate the performance of rLAO* and qLAO*, we integrated them into the 
LAO* code that is also used in [4]. We examine the performance of LAO* on the 
racetrack problem used in [1].  
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Fig. 1. Comparision of rLAO*, qLAO* and rVI, qVI 
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We test rLAO* on different kinds of maps. When the race car is driven opti-
mally, it avoids large parts of the track as well as dangerous velocities. Table 1 has 
shown the comparison results of pessimistic rLAO*, optimistic qLAO*, standard 
LAO* in terms of running time, convergence expected cost value and number of 
relevant states. The results have shown that rLAO* inherit the merits of excellent 
performance of LAO* for solving uncertainty problems. We compare rLAO* with a 
robust value iteration (VI) algorithm. Note that our algorithm is orders of magnitude 
faster than VI. Figure 1(a) has shown the experimental results. We also imple-
mented a qualitative version of LAO*. For convenience, we set the preference de-
gree of each state to be 1L. This means this falls into the frame work of possibilistic 
planning. To our surprise, it runs very fast, and most of the problem can be solved 
within 0.1 seconds. The reason is the times for iteration is rather small. In figure 
1(b), we can see that qLAO* can remove most nodes compared with qualitative 
value iteration. 

Table 1. Comparison of LAO*, wLAO*, bLAO*. Value, RS, TM  denote expected cost value, 
numbers of relevant states and running time respectively. 

 LAO* 
wLAO*(worst 

model) 
bLAO*(best 

model) 
problem value RS TM value RS TM value RS TM 
Ring-1 5.43 221 0.03 5.68 221 0.031 5.21 221 0.031 
Ring-2 7.70 631 0.172 8.06 631 0.172 7.34 631 0.188 
Ring-3 10.38 2814 1.204 10.68 2867 1.218 10.15 2704 1.002 
Ring-4 14.96 14593 13.798 15.51 15857 28.473 14.46 14573 13.716 

Racetrack1 5.40 1435 0.328 5.62 1429 0.423 5.20 1435 0.391 
Racetack3 8.22 658 0.109 8.94 734 0.174 7.57 689 0.11 
Racetack4 14.54 8941 10.455 15.28 9529 11.875 13.79 9186 9.906 
Racetack5 9.95 892 0.627 11.07 6167 3.128 9.02 1567 0.313 
Racetack6 13.66 21285 33.376 14.21 22376 39.389 13.24 21545 34.076 
Square-1 4.31 121 0.015 4.48 121 0.016 4.15 121 0.015 
Square-2 5.41 810 0.124 5.62 810 0.157 5.20 810 0.125 
Square-3 7.51 4041 0.875 7.78 4206 0.894 7.25 3994 0.875 

Y-Y 13.76 3280 1.486 14.37 3506 1.717 13.30 3329 1.737 
Y-1 13.76 3280 4.611 14.37 3506 6.077 13.30 3329 4.084 

6   Conclusions 

In this paper, we discuss how to extend LAO*’s ability to solve uncertainty Markov 
decision problems and qualitative Markov decision problems. We propose two algo-
rithms, namely, rLAO* and qLAO*. Both of these algorithms can find the optimal so-
lution, given an admissible heuristic function. Preliminary results show that these al-
gorithms inherit the merits of excellent performance of LAO* for solving uncertainty 
problems. Indeed LAO*, rLAO*, qLAO* are indeed complementary rather than op-
posite. For example, when the agent is put into a totally strange environment, it may 
only have qualitative information, thus it calls the qLAO* algorithm. After more  
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information is gathered, it may have incomplete quantitative information, then rLAO* 
can be called. After the agent have total knowledge about the environment, it can use 
LAO* to guide its navigation. In this sense, rLAO* and qLAO* play important roles 
to make LAO* applicable. 
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