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Abstract. In this paper, two new notions called core-concept and core-concept lattice are  
proposed and applied to collaborative recommendation system. The core-concept lattice is con-
structed based on the core-concept, which is extracted from rating matrix between users and 
items in collaborative recommendation systems. Compared with traditional FCA, it is obvi-
ously that the extraction of core-concept very easy and fast. We present the improved nearest 
neighbors algorithm, it use core-concept lattice as an index to the recommendation’s ratings 
matrix. The improved nearest neighbors algorithm could remarkably accelerate finding the 
nearest neighbors. Therefore, it could evidently improve efficiency of recommendation.  

1   Introduction 

As the continuously developing of internet technology, internet has become an impor-
tant tool which be used to retrieve information. But the rapidly expanded World Wide 
Web also causes the overloading problem of information. So, how to help users find 
the information efficiently and conveniently has become the concerned research.  

Recommendation system is a special class of personalized systems that aim at  
predicting a user’s interest on available products and services by relying on previ-
ously rated items or item attributes [1]. Current common approaches for personalized 
recommendation systems are the content-based filtering (CBF) and collaborative fil-
tering (CF) [2, 3, 4, 5]. 

Content-based filtering makes predictions upon the assumption that a user’s previ-
ous preferences or interests are reliable indicators for his/her future behavior. CBF re-
quires that items are described by attributes, and is typically applied upon text-based 
documents, or in domains with structured data [6, 7].  

On the other hand, Collaborative filtering operates upon the assumption that if a 
user A and B rates some items similarly, they share similar tastes and hence will rate 
other items similarly. Collaborative filtering is applicable to any type of content [6], 
while it can also capture concepts that are hard to represent, such as quality and taste 
[8]. Additionally, collaborative filtering does not restrict the spectrum of recommen-
dations to items similar to the ones that the user has previously evaluated. Collabora-
tive filtering has been acknowledged as the most successful and most widely  
implemented recommendation technique to date [9, 10]. For these reasons, we will 
focus on the collaborative filtering strategy in this paper. 
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Collaborative filtering approaches can be distinguished into two major classes: 
model-based and memory-based [3, 11]. Model-based methods develop a model, 
which is applied upon the target user’s ratings to make predictions for unobserved 
items.  

In contrast to model-based, memory-based methods operate upon the entire  
database of users to find the closest neighbors of the target user and weight their rec-
ommendation according to their similarities. The fundamental algorithm of the  
memory-based class is the nearest neighbors (denoted as NN, hereafter); it can be de-
scribed as a process divided in three steps as follows, for more details, sees [1, 12]:  

1. Measurement of similarities between the target and the remaining users. A typi-
cal measure of similarity is the Pearson correlation coefficient. 

2. Selection of the neighbors who will serve as recommenders. 
3. Prediction based on the weighted average of the neighbors’ ratings, weighted by 

their similarity to the target user. 

The efficiency of computing similarity between all users in huge data must very 
low. For solving low efficiency of finding the nearest neighbors, the method of For-
mal Concept Analysis (FCA) was put forward in [13]. It regard rating matrix as for-
mal context, based context, concept lattice was established as index, therefore accel-
erate finding the nearest neighbors. Experiment in [13] has proved feasibility of this 
method, but extract formal concept in formal context and establish concept lattice are 
also time-consuming. 

Based above questions, aiming at collaborative recommending systems, we present 
core-concept and core-concept lattice in this paper. It obviously that extraction of 
core-concept is easier and faster than formal concept. Then we can do the work of 
collaborative recommendation on the basis of this method, and solve the low effi-
ciency of finding the nearest neighbors ultimately. 

We introduce relevant knowledge of FCA and present the approach of constructing 
core-concept lattice in section 2. Then, in section 3 we present how to apply core-
concept lattice to collaborative recommending systems and propose the improved 
nearest neighbors algorithm. We conclude in section 4 with a look into the future. 

2   Formal Concept Analysis 

Formal Concept Analysis (FCA) is a mathematical method for analyzing binary rela-
tions, it’s a power tool which used to analyze data and extract knowledge from formal 
context by concept lattice. 1982, concept lattice was first introduced by Wille [14], it 
established on the basis of FCA in theory. In FCA, data are structured into formal 
concepts, which form a concept lattice, ordered by a subconcept–superconcept rela-
tion. At present, FCA has been extensively applied in several areas such as knowledge 
discovery [15], software engineering [16] and case-based reasoning [17]. 

2.1   Formal Context and Formal Concept 

First, we recall some basic notions of FCA. The definitions and theorems in this sub-
section are quoted from [14, 18, 19, 20, 21]. 
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Definition 1. A formal context is a triple K: = (G, M, I) where G and M are sets and I 
⊆ G×M is a binary relation. The elements of G are called objects and the elements of 

M are called attributes. The inclusion (g, m) ∈ I is read “object g has attribute m”. 

For A ⊆ G, we define 

A′ : = {m∈M |∀ g∈A: (g, m) ∈ I}; 

and for B ⊆ M, we define dually 

B′ : = {g∈G |∀ m∈B: (g, m) ∈ I}; 

In this paper, we assume that all sets are finite, especially G and M. 

Definition 2. A formal concept is a pair (A, B) with A ⊆ G, B ⊆ M, A′ =B and B′ =A. 
(This is equivalent to A ⊆ G and B ⊆ M being maximal with A×B ⊆ I.) A is called ex-
tent and B is called intent of the concept. 

Definition 3. The set of all concepts of a formal context  together with the 
partial order (A1, B1) ≤  (A2, B2): ⇔ A1 ⊆ A2 (which is equivalent to B1 ⊇ B2) is 
called concept lattice of . 

The fundamental theorem of FCA [14] shows that each concept lattice is a com-
plete lattice, and that the set of its intents is a closure system [18]. 

Theorem 1. (Fundamental Theorem of FCA). Let :  (G, M, I) be a formal context. 

Then  is a complete lattice in which infima and suprema can be described as 
follows:  

 

Table 1. A binary formal context 

 a b c d e f 
1 ×  ×     ×  
2 ×  ×    ×   
3 ×  ×  ×     
4 ×   ×    ×  
5 ×  ×   ×  ×  ×  
6 ×  ×  ×  ×   ×  

Definition 4. if (A,B) and (C,D) are two concepts of , (A,B)≤(C,D) iff A ⊆ C (or, 

equivalently, D ⊆ B). (A, B) is called sub-concept of (C, D), and (C, D) is called su-
per-concept of (A, B). 

Table 1 describes a binary formal context. G={1, 2, 3, 4, 5, 6}，M={a, b, c, d, e, f }, I 
depicts objects in G have attributes in M. 
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Fig. 1. The concept lattice that corresponds to the formal context in Table 1 

2.2   Core-Concept and Core-Concept Lattice 

In this subsection, we put forward definition of core-concept and core-concept lattice 
at first, then explain how to extract core-concepts and construct core-concept lattice.  

Definition 5. A core-concept is a pair (A, B) with A ⊆ G, B ⊆ M. Gg ∈∀ , let E= 

{g}, then EB ′= and EA ′′= . A is called extent and B is called intent of the core-
concept.  

Definition 6. The set )(Kℜ of all core-concepts of a formal context K together with 

the partial order (A1, B1) ≤  (A2, B2): ⇔ A1 ⊆ A2 (which is equivalent to B1 ⊇ B2) 

is called core-concept lattice of K. Then )(Kℜ  is a complete lattice after adding in-
fima and suprema. 

According to Definition 5, we could fast process the objects that correspond to the 
formal context in Table 1 one by one. The core-concept extracted from Table 1’s for-
mal context and the corresponding core-concept lattice is shown as follows: 

(156, abf); (25, abe); (36, abc); (46, acf); (5, abdef); (6, abcdf). 

 

Fig. 2. The core-concept lattice that corresponds to the context in Table 1 
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The concise format [13, 21] of Fig. 2’s core-concept lattice is shown in Fig. 3. In 
this lattice, the node labeled object denote a core-concept. Its extent is read from the 
descendants, and intent is read from the ancestors.  

The number of core-concept is not better than the number of objects. It obviously 
that core-concept is formal concept all the same, but all core-concepts just a subset of 
whole formal concept.  

 

Fig. 3. The concise format core-concept lattice 

3   Applying Core-Concept Lattice to Collaborative 
Recommendation 

We apply core-concept lattice to collaborative recommendation for accelerating 
search for the nearest neighbors of target user. Aiming at collaborative recommenda-
tion, we propose the concept of core-concept and core-concept lattice. The core-
concept lattice can then act as an index [13] to the ratings matrix to speed up the 
search for neighbors. Compared with traditional method of FCA, the all core-concepts 
just a subset of whole formal concept, however, based on Definition 5 and 6, each ob-
ject must have a corresponding node in the concise format core-concept lattice, so it 
can completely predict and recommend for all users.  

3.1   Obtaining Core-Concept and Core-Concept Lattice in Collaborative 
Recommendation 

Core-concept requires a formal context, i.e., a binary relation between objects and at-
tributes. An example of a ratings matrix for music is shown as Table 2. We take users 
to be objects and items to be attributes, the rating matrix shown in Table 2 correspond 
to a multi-value formal context.  

Literature [13] states a Hypothesis: Users who rate the same items tend to rate 
items the same. For simplifying the computation and basing on the Hypothesis [13], 
we produce a formal context from the ratings matrix: a cell contains × iff ru,i ≠^. The 
formal context that corresponds to Table 2 ratings matrix is shown as a cross-table in 
Table 3. 
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Table 2. A rating matrix for music 

 Angel Vincent Incomplete Ghetto 
John 5 ^ ^ 2 
David ^ ^ 3 4 
Nick 2 5 ^ 2 
Anna 2 5 4 2 
Christina ^ 4 ^ 2 
Billy 4 3 4 ^ 
Jordan 4 5 ^ 3 

Table 3. The context that corresponds to the rating matrix in Table 2 

 Angel Vincent Incomplete Ghetto 

John   ×     ×  

David     ×   ×  

Nick   ×    ×    ×  

Anna   ×    ×    ×   ×  

Christina    ×    ×  

Billy   ×    ×    ×   

Jordan   ×    ×    ×  

According to the section 2.2, the core-concept extracted from Table 3’s formal 
context and the concise format core-concept lattice is shown as follows: 

{Anna, (Incomplete, Ghetto, Angel, Vincent)}; 
{(Billy, Anna), (Incomplete, Angel, Vincent)}; 
{(Nick, Jordan, Anna), (Ghetto, Angel, Vincent)}; 
{(David, Anna), (Incomplete, Ghetto)}; 
{(John, Nick, Jordan, Anna), (Ghetto, Angel)}; 
{(Christina, Nick, Jordan, Anna), (Ghetto, Vincent)}. 

 

Fig. 4. The concise format core-concept lattice 
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3.2   Using Core-Concept Lattice to Find the Nearest Neighbors 

Here we introduce how to use core-concept lattice to improve NN. Before computing 
the similarities between the target and the remaining users, we use core-concept lat-
tice to reduce the number of remaining users. The improved nearest neighbors algo-
rithm (denoted as INN, hereafter) shows as follows: 

neighbor: The set of users who have not zero similarity with target 
user.  
nearest_neighbor: The set of users who will recommend to the target 
user. 
target_user.subset: The set of users who is sub-node in core-concept 
lattice of the target user. 
target_user.superset: The set of users who is super-node in core-concept 
lattice of the target user. 
target_user.accompanier: The set of users who share the same node in 
core-concept lattice with the target user. 
N: The number of nearest neighbors. 
m: The number of all users.  
Begin 
  Input: target_user;  
  Output: nearest_neighbor;  
  neighbor={};  
  nearest_neighbor={}; 
  for each user in target_user.subset do 
  begin 
    X←user;  

    X. similarity ← similarity (target_user,X);  

    neighbor←X;  
  end;  
  for i:1→m do 
  begin 
    if ( remain_user(i) in neighbor ) or (remain_user (i)  
       in target_user.superset) or (remain_user (i) in   
              target_user.accompanier) then  
      continue;  
    else  
    if has_parent(remain_user (i), target_user) then   
    begin 
      X← remain_user (i);   

      X. similarity ← similarity (target_user,X);  

      neighbor←X;  
    end;  
  end;  
nearest_neighbor=Select(neighbor, N);  
end. 

Given the target user, INN first walks core-concept lattice to find the neighbors 
who could recommend. It gets rid of the users who have no effect on the target user, 
but doesn’t debase the accuracy and coverage. 

There are conclusions about who could or not recommend to the target user. By us-
ing INN, it can visit the users’ node of core-concept lattice in a most-likely order. 
Here we introduce how to find the candidate nearest neighbors, and give an example 
of recommending to Nick in the core-concept lattice depicted in Fig. 4: 

a) If users shares one and the same node with target user, they have no addi-
tional ratings and so can’t be the nearest neighbors. For Nick, according to 
Fig. 4, Jordan can’t recommend new music to him. 
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b) If users’ node is the super-node of target user’s node, the items they has rated 
is a subset of the items which target user has rated, so they can’t recommend 
to the target user. In Fig. 4, Christina and John can’t be used to make recom-
mendation for Nick. 

c) If users haven’t a common super-node with the target user, they have no co-
rated items with target user, so they can’t recommend to the target user.  

d) The sub-nod should firstly considered, because may be they have the most 
similarity with target user. Thus Anna should take into account above all. 

e) The node used to recommend should considered from the lowest level up, be-
cause the lower level the users locate, the more similarity the users and target 
user have.    

Firstly, INN could remarkably reduce the numbers of the candidate user. Then it 
just need to compute similarities between the target user and a very few remaining us-
ers to find the nearest neighbors. The nearest neighbors’ rating can then be used either 
to make predictions in the case where an objective item is also supplied, or to recom-
mend items rated by the neighbors but not yet rated by the target user.  

Based on the core-concept lattice, INN distinctly speeds up the search for the near-
est neighbors. INN does considerably less work than NN, but both guarantee accuracy 
and coverage results equal to NN.  

4   Conclusions 

In this paper, aiming at collaborative recommendation system, we present two new 
concepts—core-concept and core-concept lattice, and have shown how core-concept 
lattice can be applied to collaborative recommendation system. It’s time-consuming 
and troubled to extract formal concept in traditional FCA, however, compared with 
traditional FCA, our approach can obviously reduce the time of extracting concept, the 
extraction of core-concept is fast and easy. Though the number of all core-concepts 
less than whole formal concepts, it is enough for collaborative recommendation.  

The method of traditional collaborative recommendation is first acquiring users’ 
similarity matrix from users’ rating matrix. By contrast, we build a core-concept lat-
tice from a cross-table that is derived from the original ratings matrix when finding 
the neighbors. On the basis of core-concept lattice, we propose INN to predict and 
recommend, it doesn’t need to compute the similarity between target user and all the 
other users, after finding the neighbors who have effect on the target user by using the 
core-concept lattice, it just needs to compute the similarity between the target and a 
very few candidate users. INN distinctly reduce the cost of finding the nearest 
neighbors, and also guarantee accuracy and coverage results equal to NN. 

In the future works, we will apply INN to practice in collaborative recommenda-
tion system and prove its efficiency ulteriorly.  
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