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Abstract. Systems of linear equations with elements being affine linear functions of fuzzy 
parameters are relevant to many practical problems. A method for solving such systems is 
proposed. It consists of two steps. First a finite number of parametric interval linear systems 
is solved using the direct method. Then membership functions of fuzzy solution elements are 
interpolated. Parameters are modeled by arbitrary fuzzy numbers with convex membership 
function and compact support. Conditions for existence of the fuzzy solution are given.  
The performance of the proposed method is presented using an illustrative example of truss 
structure. 

1   Introduction 

Many economical, financial, physical, engineering and electrical problems boil down 
to solution of linear systems of equations. When the problem characteristics are im-
precise, then the linear system of equations is no longer crisp. Imprecise or unknown 
values of the system parameters can be modeled using probability distributions, inter-
vals or fuzzy values. 

Several methods for solving linear interval system [13], [17] have been developed 
since '60s [11] when interval arithmetic became more and more popular. Most of 
these methods assume implicitly that system coefficients vary independently within 
the lower and upper bound of the corresponding intervals (such system will be called 
classical). Usually this is not the case. Moreover, the assumption of coefficients inde-
pendence makes many problem to be unsolvable [10]. This beget the need to develop 
methods for solving parametric linear systems [5], [6-9], [14], [18], [19] – parametri-
sation is used to eliminate drawbacks of interval arithmetic [13], especially the prob-
lem of dependency [3], [10]. Using the direct method proposed in [20] large systems 
of parametric linear equations with a lot of interval parameters can be solved effi-
ciently. Since the solution set of interval system is usually non-convex and has a very 
complicated shape, instead of the solution set itself, an outer and inner interval solu-
tions are computed. The best outer solution coincides with an interval hull solution. 

Some investigations have also been reported in literature on the solution of classi-
cal fuzzy linear systems [1], [3], [12]. However, based on the extension principle, the 
solution of fuzzy linear equations can be viewed as a result of series of solutions of 
a nested family of interval systems. Hence the problem of dependency is also rele-
vant to fuzzy linear systems. An optimization-based scheme for numerical solution 
of parametric fuzzy linear systems has been proposed in [16]. However, the approach 
appears to be difficult and inefficient for solving large systems of equations. The 
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search-based algorithm for solving parametric fuzzy linear systems was presented in 
[15]. In both paper considerations were restricted to triangular fuzzy numbers. 

In this paper an efficient method for solving parametric linear systems with ele-
ments linearly dependent on a vector of fuzzy parameters is proposed. In this context 
to solve means to compute an outer interval solution. Two major steps constitute the 
framework of the proposed methodology: 1) solve a finite number of linear systems 
with interval parameters corresponding to the α-cuts non-uniformly distributed on [0, 
1] interval; 2) interpolate membership functions of fuzzy solution elements with cubic 
splines. Non-uniform distribution of the α-cuts reflects the shape of the membership 
function of fuzzy parameters. Interpolation is used to compute approximations of the 
intermediate values of the membership functions of the fuzzy solution elements. 

Problem parameters are modeled by arbitrary fuzzy numbers with continous con-
vex membership function and compact support. Conditions for existence of the fuzzy 
solution are given. The performance of the proposed method is presented using an il-
lustrative example of parametric fuzzy linear system that arise in analysis of truss 
structures. 

2   Preliminaries 

A real compact interval { }axaRxaa ≤≤∈== |],[a . A family of real compact 

intervals will be denoted by IR. For an interval a define a midpoint 
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A square interval matrix A is an array of intervals: 

A = {aij}
n

ji 1, = ,  aij ∈ IR,  i, j = 1, …, n  . 

One column (n×1) interval matrix is just an interval vector. IRn, IRn×n will denote a 
family of interval vectors, respectively, square interval matrices. 

An interval matrix A ∈ IRn×n is regular (or non-singular) if all real matrices A ∈ A 
are non-singular. 

An interval matrix A ∈ IRn×n is called an H-matrix [13] (should not be confused 
with a Hadamard matrix) iff there exist u ∈ Rn, u > 0 such that 〈A〉u > 0. Here 〈A〉 is 
a real n×n matrix with entries: 
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and is called an Ostrovsky matrix [13]. 

Theorem 1 (Neumaier [13]). If A ∈ IRn×n is an H-matrix and B ⊆ A, B ∈ IRn×n, then 
B is an H-matrix. 

For an arbitrary set X ⊂ Rn an interval hull  X is defined as 

X = { }∩ YXIRY n ⊆∈ |   . 
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A convex fuzzy number a with compact support is defined by its membership 
function μa:R → [0, 1], such that: 

− there exist a unique m ∈ R with μa(m)=1, 

− a support supp(a) = Cl{x ∈ R | μa(x) > 0} is bounded in R, 

− μa is fuzzy convex on supp(a), 

− μa is upper semi-continous on R. 

The function μa is called fuzzy convex on supp(a) if 

μa(λx1+(1−λ)x2) ≥ min{μa(x1),μa(x2)}  , 

for 0 ≤ λ ≤ 1 and x1 ≠ x2. A family of convex fuzzy numbers with continous member-
ship function and compact support will be denoted by F. 

For a ∈ F, an interval corresponding to α-value of a membership function 

a(α) = { x | μa(x) ≥ α } ∈ IR, α ∈ (0, 1]  , 

is called a (weak) α-cut; a 0-cut is defined separately as a(0) = supp(a). 
For each α ∈ [0, 1], a(α) is compact and connected. A fuzzy number a ∈ F can be 

viewed as a nested family of α-cuts in a sense that 

a(α) ⊆ a(β),    for α > β  . 

A square fuzzy matrix A is an array of fuzzy numbers: 

A = {aij}
n

ji 1, = ,  aij ∈ F,  i, j = 1, …, n  .  

Fuzzy vector is a one column (n×1) fuzzy matrix. Fn, Fn×n will denote a family of 
fuzzy vectors, respectively square fuzzy matrices. 

Let A = {aij}
n

ji 1, = be a fuzzy matrix, then an α-cut 

A(α) = {aij(α)} n
ji 1, =  

is computed componentwise. A(α), 0 ≤ α ≤1, is an interval matrix. 

Corollary 1. Let A ∈ Fn×n. If A(0) is regular (an H-matrix), then A(α) is regular (an 
H-matrix) for each α ∈ [0, 1]. 

Proof: Obvious. 

3   Fuzzy Linear Systems 

The following matrix equation 

Ax = b  , (1)

with aij, bi ∈ F (i, j = 1, …, n), is called a fuzzy linear system. For a fuzzy linear sys-
tems different solution sets have been considered [3], [12]. Finally, three types of the 
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solutions can be distinguished: classical solution SC, marginal solutions SE and SI, and 

joint (or vector) solution SJ. Classical solution SC employs α-cuts and interval arith-

metic in order to work out the solution. Taking α-cuts of Eq. (1) the system 

)](),([)](),()][(),([
1

αααααα ii

n

j
jjijij bbxxaa =∑

=

 , (2)

for 0 ≤ α ≤1, 1 ≤ i ≤n, is obtained. Interval multiplication and addition is used to 
evaluate the left-hand side of Eq. (2). Hence, for each α ∈ [0, 1], the original n×n sys-
tem is transformed into a 2n×2n system. Eq. (2) is solved for ),(αjx )(αjx hoping 

they produce the α-cuts of fuzzy numbers xj. Buckley et al. [2], [3] point out that very 
often the classical solution doesn't exist, which is mainly due to the dependency prob-
lem. SE and SI solutions are obtained by solving the corresponding crisp system using 
Cramer's rules, and then evaluating the solution using extension principle, respec-
tively, interval arithmetic for each α-cut. The joint solution SJ, on which the paper is 
focused, is a fuzzy vector that coincides with united solution set [13] of linear interval 
systems for each α-cut. 

Set 

S(α) = {x ∈ Rn | Ax = b, A ∈ A(α), b ∈ b(α)} (3)

and define SJ, a fuzzy subset of Rn, by its membership function 

μSJ
(x) = 

⎩
⎨
⎧

∉
∈∈

)0(0

)0()},(|sup{

S

SS

x

xx αα
  . (4)

Theorem 2 (Buckley [3]). If A(0) is regular, then SJ is a fuzzy vector. 

To eliminate the dependency problem, parametric fuzzy linear systems are consid-
ered. 

4   Parametric Fuzzy Linear Systems 

A system 

A(p)x = b(p)  , (5)

where p ∈ Fk is a vector of fuzzy numbers, is called a parametric fuzzy linear system. 
The problem of solving the fuzzy system (5) can be transformed [15] into an equiva-
lent problem of solving a nested family of parametric linear interval systems 

A(p(α))x = b(p(α)),   α ∈ [0, 1]  . (6)

Interval solution set of a parametric interval linear system A(p)x = b(p), p ∈  IRk is de-
fined as 
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S(p) = {x ∈ Rn | Ax = b, A ∈ A(p), b ∈ b(p)}  . (7)

Theorem 3. If A(p) is regular, then interval solution of parametric interval linear sys-
tem exists. 

Proof: Obvious. 

Accordingly to (4) define the joint vector solution SJ(p) of the parametric system (5) 
by its membership function 

μSJ(p)(x) = μ(x | SJ(p)) = 
⎩
⎨
⎧

∉
∈∈

))0((0

))0(())},((|sup{

pS

pSpS

x

xx αα
  . (8)

Theorem 4. If A(p(0)) is regular, then the join solution of parametric fuzzy linear ex-
ists. 

Proof: See theorem (2). 

In what follows parametric linear systems with elements linearly dependent on ele-
ments of a vector of fuzzy parameters p ∈ Fk 

aij(p) = ω(i, j)Tp,     bj(p) = ω(0, j)Tp (9)

are considered, where ω ∈ (Rk})n×n is a matrix of real k-dimensional vectors. Ele-
ments of the induced family of parametric interval linear systems can be expressed as 

aij(p(α)) = ω(i, j)T p(α),     bj(p(α)) = ω(0, j)Tp(α)  , (10)

for α ∈ [0, 1]. Systems (6) will be solved using a direct method [20]. A brief descrip-
tion of the method is given in the next section. 

5   Description of the Direct Method 

An efficient direct method (DM for short) for solving parametric linear systems with 
elements linearly dependent on a set of interval parameters have been proposed in 
[20]. The method can be used to solve large systems with a lot number of interval pa-
rameters. The method is based on the following. 

Theorem 5 (Skalna [20]). Let A(p)x = b(p) with p ∈ IRk, R ∈ Rn×n, and x~ ∈ Rn. If 

C ∈ IRn×n given by formula 

Cij =∑
=

n

k
ik jkR

1

T),( pω .., (11)

is an H-matrix then 

S(p) ⊆ x~ + 〈C〉−1| Z |[-1, 1] (12)

with 
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It is recommended to choose R = A−1( p
�

) and x~ = A−1( p
�

)b( p
�

) so that C and Z are of 

small norms (see theorem 4.1.10 [13]). 

6   Illustrative Example 

Consider a 20-floor cantilever truss structure depicted in Fig. 1. There are 42 nodes, 
81 beams, full support at node 1 and partial support (sliding along Y-axis) at node 2. 
This results in 81 variables and 81 fuzzy parameters. Set Young's modulus 
E = 2.0×1011[Pa], cross section area A = 0.005[m2], and the length of the vertical 
beams L = 1[m]. 

 

Fig. 1. 20-floor cantilever truss structure 

To compute the displacements of the nodes, the following parametric fuzzy linear 
system 

K(s)d = Q(s)  ,  

has to be solved, where K(s) is a fuzzy stiffness matrix, Q(s) is a fuzzy vector of forces, 
d is unknown vector of fuzzy displacements, and s is a vector of fuzzy parameters. 

 

Fig. 2. Membership function of the fuzzy parameters 
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Assume the fuzzy parameters have the membership function (Fig. 2) given by  
formula 

μsij
(x) = 

⎪⎩

⎪
⎨
⎧ <<−−−−−−
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, 21
))((4)())((4 12

2
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where m1 = E·A·(1 − ε), m2 = E·A·(1 + ε), ε = 5%. 

The results produced by DM method (10 α-cuts), for two chosen coordinates x41, 
y41, are presented in Table 1. 

Table 1. Results of the DM method: 10 α-cuts 

α x41 y41 

0.0 [0.00568536, 0.00927714] [-0.331072, -0.0422026] 
0.1 [0.00633381, 0.00862869] [-0.260963, -0.112312] 
0.2 [0.00648488, 0.00847762] [-0.247216, -0.126059] 
0.3 [0.00661057, 0.00835193] [-0.236577, -0.136698] 
0.4 [0.00672633, 0.00823617] [-0.227446, -0.145829] 
0.5 [0.00683787, 0.00812463] [-0.219279, -0.153996] 
0.6 [0.0069482, 0.0080143] [-0.211839, -0.161436] 
0.7 [0.00705947, 0.00790303] [-0.205015, -0.16826] 
0.8 [0.007174, 0.0077885] [-0.198758, -0.174517] 
0.9 [0.00729645, 0.00766605] [-0.193018, -0.180257] 
1.0 [0.00748125, 0.00748125] [-0.186638, -0.186637] 

 

  
x41 y41 

Fig. 3. Comparison of the results of the DM method obtained for 10 α-cuts (gray thin line), 20 
α-cuts (black thin line) and 100 α-cuts (black thick line) 

The differences between the shapes of the membership functions (based on 10, 20 
and 100 α-cuts), depicted in the Fig. 3, are significant, especially for small values of 
α. The differences between the results of the DM method (451 α-cuts) and interpola-
tion, based on 25 points (α-cuts) of non-uniform distribution (Fig. 4), is quite neligi-
ble. The benefit of the interpolation is that once the coefficients of cubic functions are 
computed, the approximation of the fuzzy solution can be easily computed for any  
α-value. 
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x41 y41 

Fig. 4. Comparison of the results of the DM method for 451α-cuts with the results of interpola-
tion based on 25 points non-uniformly distributed on [0, 1] interval 

6   Conclusions 

Parametric linear systems with coefficients being affine linear functions of convex 
fuzzy parameters with compact support have been studied. A method for approximat-
ing the vector solution of such systems has been introduced. Conditions for existence 
of the vector solution have been given. It has been shown, using an illustrative exam-
ple of 20-floor cantilever truss structure, that the method can be applied to large sys-
tems with a lot of fuzzy parameters. The method is very efficient and is easy to im-
plement, which is very important for practical use. 
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