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Abstract. For graphs of various local complex degrees, this paper will investigate their fitting 
approach and conduct experiments by using the mixture processing method which is a combi-
nation of the Box dimension’s pretreatment with self-affine fractal interpolation function 
(AFIF). 
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1   Introduction 

As a new tool in data fitness and interpolation, fractals are always self-similar or self-
affine, which means the fractals’ local complexity is same as the whole. However, 
this property sometimes is a restriction of further application in the data fitness.  

This paper concerns a special class of fractals, AFIF. AFIF can simulate not only 
the graph of smooth function, but also can effectively and accurately fit rough curves 
and vibrating data, such as mountain range outlines, electrocardiograms ...etc [3]. It is 
a new interpolation tool after polynomials and splines. As for the general theory of 
fractal interpolation function and affine fractal interpolation function, the reader is re-
ferred to [1-6]. 

Based on above discussion, AFIF have same fractal dimension or same complex 
degree at each location. However, in the practical application, the graphic complex 
degrees and the sensitivities may be absolutely different when data respond to time in 
the disparate time periods. Thus, it is obvious that the fitting may not be effective if 
we directly use AFIF, which has the same complexity everywhere. 

Due to the defect of using only one fractal interpolation function in the data fit-
ting, in this paper we will use the mixture processing method, which is a combina-
tion of Box dimension’s pretreatment with AFIF, to conduct experimentation and 
analysis. Clustering analysis is adopted according to the each sub-graph’s box di-
mension. Then the sub-graphs are reconstructed together according to adjacent  Box 
dimension, and fractal interpolation is adopted separately. Finally, it is readjusted 
and resumed. 
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2   Fractal and Interpolation 

2.1   Fractal Dimension 

Definition 1. Let E  be a compact subset of 2R . Given ,0>δ  let )(ENδ  be the 

smallest cardinality of family of solid squares with side length δ such that the union 
of these squares covers E. 

If the limit 
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is called the Box dimension of E.  
 

Example 1. Smooth curve 
The graph of any smooth function has Box dimension 1. This result means that poly-
nomials and splines are too smooth to approximate the graph with high complexity. 
 

Example 2. C×C 

Let }each for  2or  0:3{
1
∑

∞

=

− ==
i

i
i

i iaaC , which is called standard Cantor set. 

Then CC ×  can be covered by n4  square of side n−3 , and we can check that  
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Example 3. Graph of continuous function 

For the graph E of a continuous function f, we let n−= 2δ , and  
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−=ω  is the oscillation of f restricted on 

the interval [a,b], and [x] denotes the smallest integer greater than or equal to x, for 
example, [3]= [2.5]=3.  Then there is a constant 1>C  such that 

δδδ CMNMC ≤≤−1 , and thus 
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It is easy to show that for any smooth function, we have δδ δ DMD ≤≤−1 for 

any δ , where D >1 is a constant, therefore the graph has Box dimension 1. 

2.2   Affine Fractal Interpolation Function 

Given points N
iii yx 0)},{( =  in the plane, we suppose 1 2{ , , , }Nω ω ω…  is an iterated 

function system satisfying 
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where 1|| <id  and )1,0(∈ia  for any i  with 1 i N≤ ≤ .  By (3) and (4), we notice 

that N
ii 1}{ =ω  is determined by N

iii yx 0)},{( =  and. We always call N
iid 1}{ =  vertical 

factors and N
iii yx 0)},{( =  interpolation points respectively. 

Definition 2. Suppose )(xf  is a continuous function on the interval ],[ 0 Nxx . Let  

])},[:))(,{( 0 Nxxxxfx ∈=Γ  

be the graph of )(xf . We say that )(xf  is an affine fractal interpolation  
function, if  

)(1 Γ=Γ = i
N
i ω∪  (5)

Example 4 
For AFIF defined by (3)-(5), the dimension ΓBdim of the graph Γ satisfies the fol-

lowing dimension formula ([1]):  
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Interpolation 
points 

(0,0.1),(0.5,0.8),(1,0.2) 

Vertical fac-
tors 

d1=0.5, d2=－0.2 

Fig. 1. An Example of AFIF 
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Remark 1: Formula (6) holds when the interpolation points do not lie in a line simul-

taneously and 1||
1

>∑ =

N

i id . Any connected part of the graph Γ of AFIF has the 

same dimension ΓBdim . 

3   Algorithm 

• Step 1: We divide the interval into several subintervals and thus obtain some  
sub-graph. 

• Step 2: By using formula (2) to estimate the dimension of each sub-graph. 
• Step 3: Clustering the sub-graphs according to their dimensions, we reconstruct 

some new graph kΓΓΓ ,, 21 , each of which is composed of some sub-graphs 

with adjacent values of Box dimension. In the process of reconstruction, we should 
make translation for each sub-graph along y-axis to ensure the connectedness of 
graph.  

• Step 4: For each new graph iΓ  in Step 3, we use AFIF to approximate it. 

• Step 5: Reconstruct these AFIFs to obtain an approximation of the original graph. 

 

Fig. 2. Original graph 

 

Fig. 3. Partition 
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4   Experimental Results 

The graph is a piece of the tendency picture of captial stock certificate. We use it as 
an example for fractal interpolation. 

Here we give a partition of the original graph to obtain 5 parts: a1, b1, a2, b2 and 
a3. By formula (2), we get  

dimB(Part a1) ≈0.37, dimB (Part a2)≈0.38, dimB (Part a3)≈0.38 
and  
dimB (Part b1)≈0.14 , dimB (Part b2)≈0.13. 
And thus we reconstruct the blow graphs. 

          

graph (a)           graph (b) 

Fig. 4. Reconstruction of graphs according to Box dimension  

 

Fig. 5. AFIF (a’) with respect 
to graph (a) 

Interpola-
tion 
points 

（0,0.1）,（0.5,0.85）,（1,0.6） 

Vertical 
factors 

d1=0.6, d2=-0.7 

 

 

Fig. 6. AFIF (a’) and graph (a) 
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Fig. 7. AFIF (b’) with respect to graph (b) 

Interpo-
lation 
points 

（0,0.1）（0.5,0.3）（1,0.2） 

Vertical 
factors 

d1=0.5, d2=0.6 

 

 

Fig. 8. AFIF (b’) and graph (b) 

 

 

 

Fig. 9. Reconstruction of AFIF (a’) and (b’) 

 

Fig. 10. Original graph (black) and graph of AFIFs with reconstruction (white) 
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