
O. Castillo et al. (Eds.): Theor. Adv. and Appl. of Fuzzy Logic, ASC 42, pp. 23–35, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007

Algorithm for Interpretation of Multi-valued Taxonomic
Attributes in Similarity-Based Fuzzy Databases

M. Shahriar Hossain and Rafal A. Angryk

Department of Computer Science, Montana State University,
Bozeman, MT 59717-3880, USA
{mshossain, angryk}@cs.montana.edu

Abstract. In this work we are analyzing our ability to discover knowledge from multi-valued
attributes (often referred in literature on fuzzy databases as collections [1-3]), that have been
utilized in fuzzy relational database models [4-7] as a convenient way to represent uncertainty
about the data recorded in the data tables. We present here implementation details and extended
tests of a heuristic algorithm, which we used in the past [8-11] to interpret non-atomic values
stored in fuzzy relational databases. In our evaluation we consider different data imprecision
levels, as well as diverse shapes of fuzzy similarity hierarchies.

Keywords: fuzzy relational databases, fuzzy collections, non-atomic symbolic values, data
mining.

1 Introduction

The dynamic growth of data mining research and applications [12] carries significant
importance for researchers working in areas related to fuzzy databases. Successful fu-
ture of unconventional database models becomes more and more dependent on the
development of consistent and time-efficient mechanisms for mining the data such da-
tabases are capable to store and process.

Fuzzy databases let the user reflect uncertainty about inserted information via the
insertion of multiple descriptors in every column of the data table. At the same time,
majority of currently available data mining algorithms allow the user to deal only with
atomic attribute values. This leads to the challenge of developing a mechanism allow-
ing consistent interpretation of the non-atomic values stored in the fuzzy databases.
This process can be interpreted as mapping (i.e. defuzzification) of fuzzy tuples (con-
taining collections of values) from tables in fuzzy relational databases into sets of
atomic records, which are compatible with 1NF definition and can be analyzed using
regular data mining techniques. We need to explain, that the term “defuzzification”
used in this paper should be interpreted in a broader context than typically used in the
fuzzy sets’ community (i.e. transformation of a fuzzy set to a single, crisp value). In
this work we will focus on problem of interpretation of multi-valued, nonnumeric en-
tries in the similarity-based fuzzy relational databases. We have decided to choose
this topic for our research as these types of entries appear in large number of applica-
tions, starting from multiple online surveys about customers’ preferences (e.g. mark

24 M.S. Hossain and R.A. Angryk

types of food you like), and finishing on reports from medical examinations (e.g. iden-
tify areas of pain, describe its severity, etc.). In this paper we will present a heuristics
allowing to transfer non-atomic symbolic values to the singleton forms, that can be
then interpreted by many regular data mining algorithms. At the very beginning of
this article, however, we want to emphasize that the point of this paper is not to argue
about accuracy or efficiency of the approach that has been used, but rather to raise
awareness of the problem, and to show that a defuzzification of uncertain data in simi-
larity-based fuzzy databases is achievable. In the next section, we provide a brief re-
view of the necessary background that covers the following areas: (1) fuzzy database
model incorporating usage of non-atomic values to reflect uncertainty, (2) taxonomic
symbolic variables and some of their properties, (3) our heuristics for interpretation of
non-atomic entries in the fuzzy tuples. In the section 3, we present implementation de-
tails of our approach, discuss the artificial data sets we created for testing, and finally
discuss results we obtained. Finally, in section 4, we briefly summarize conclusions
coming from our investigation and point out new directions of future research.

2 Background

2.1 Fuzzy Database Model

There are two fundamental properties of fuzzy relational databases, proposed origi-
nally by Buckles and Petry [4-5] and extended further by Shenoi and Melton [6-7]:
(1) utilization of non-atomic attribute values to characterize features of recorded enti-
ties we are not sure of, and (2) ability of processing the data based on the domain-
specific and expert-specified fuzzy relations applied in place of traditional equiva-
lence relations.

In fuzzy database model it is assumed that each of the attributes has its own fuzzy
similarity table, which contains degrees of similarity between all values occurring for
the particular attribute. Such tables can be also represented in the form of the similar-
ity hierarchies, named by Zadeh [13] partition trees that show how the particular val-
ues merge together as we decrease similarity level, denoted usually by α. Examples of
partition trees for the domains Country and Food-Type are presented in the figures 1
and 2, respectively.

2.2 Taxonomic Symbolic Variables and Their Analysis

In [14], Bock and Diday included a comprehensive collection of recent works related
to the extraction of statistical information from symbolic data. Based on the classifica-
tion presented in the book, the data type discussed in this paper should be character-
ized as generalized taxonomic symbolic variables. These types of data entries are ex-
pected to carry no quantitative meaning, but yet the values can be nonlinearly ordered
in a form of rooted, hierarchical tree, called by Diday [14] a taxonomy. Such variables
are called taxonomic or tree-structured variables. Zadeh’s partition trees [13], as pre-
sented in the figures 1 and 2, represent such taxonomies, allowing us to incorporate
fuzzy similarity relations not only to data querying, as it has been used in the past, but
also to the data analysis.

 Algorithm for Interpretation of Multi-valued Taxonomic Attributes 25

In [14], chapter six [15] has been devoted almost entirely to the problem of deriva-
tion of basic description statistic (in particular: medians, modes and histograms) from
multi-valued symbolic data. The authors propose transformation of non-atomic values
to collection of pairs in the format of (ξ , ϕ), where ξ stands for a singleton (i.e.
atomic) symbolic value, and ϕ represents ξ’s observed frequency. This is achieved by
extending the classical definition of frequency distribution. For a multi-valued vari-
able, the new definition states that the number reflecting the observed frequency (i.e.
count of ξ’s appearances in the data set) can be a positive real, instead of a positive in-
teger, as is the case for each single-valued variable.

The observed frequency distribution of a multi-valued variable Z, for a single data
point, can be now defined as the list of all values in the finite domain of Z, together
with the percentage of instances of each of the values in this data point. In [15], the
authors mention that other definition of frequency distributions can be proposed, sug-
gesting taking into account the natural dependencies between the symbolic values, as
reflected by the provided attribute’s taxonomy. This observation provided us with
motivation for the work presented below.

2.3 Similarity-Driven Vote Distribution Method for Interpretation of
Non-atomic Values

Following the rationale presented in the previous section, we attempted to develop a
simple method to transfer non-atomic values in the fuzzy records to the collection of
pairs including atomic descriptors and their fractional observed frequencies. In our
wok, however, we wanted to utilize background knowledge about attributes’ values,
which is stored in fuzzy databases in form of fuzzy similarity relations [13]. In this
section we present a simple example to introduce our approach.

We want a reader to assume for a moment that he/she needs to find a drugs’ dealer
who, as a not-confirmed report says (i.e. our fuzzy tuple), was recently seen in
{Canada, Colombia, Venezuela}. The most trivial solution would be to split the count
of observed frequency equally among all inserted descriptors, that is to interpret the
entry as the following collection {Canada|0.333, Colombia|0.333, Venezuela|0.333}.
This approach however does not take into consideration real life dependencies, which
are reflected not only in the number of inserted descriptors, but also in their similarity
(represented by a taxonomy of attribute values, which reflects our pre-defined fuzzy
similarity relation/table).

In our work we used a simple heuristics [8-11] letting us to replace the even
distribution of a vote with a nonlinear spread, dependent both on the similarity of
inserted values and on their quantity. Using the partition tree built from the fuzzy
similarity table (grey structure in Fig. 1), we can extract from the set of the originally
inserted values those concepts which are more similar to each other than to the
remaining values. We call them subsets of resemblances (e.g. {Colombia, Venezuela}
from the above example). Then we use them as a basis for calculating a distribution of
a database record’s fractions. An important aspect of this approach is extraction of the
subsets of resemblances at the lowest possible level of their common occurrence,
since the nested character of fuzzy similarity relation guarantees that above this α-
level they are going to co-occur regularly.

26 M.S. Hossain and R.A. Angryk

Our heursitc algorithm is pretty straightforward. Given (1) a set of values inserted
as a description of particular entity’s attribute, and (2) a hierarchical structure
reflecting Zadeh’s partition tree [13] for the attribute; we want to extract a table,
which includes (a) the list of all subsets of resemblances from the given set of
descriptors, and (b) the highest level of α-proximity of their common occurrence. We
then use the list to fairly distribute fractions of the original fuzzy database record.

Our algorithm uses preorder recursive traversal for searching the partition tree. If
any subset of the given set of descriptors occurs at the particular node of the concept
hierarchy we store the values that were recognized as similar, and the corresponding
value of α. An example of such a search for subsets of resemblances in a tuple with
the values {Canada, Colombia, Venezuela} is depicted in Fig. 1. Numbers on the links
in the tree represent the order in which the particular subsets of similarities were
extracted.

After extracting the subsets of resemblances, we apply a summarization of α
values as a measure reflecting both the frequency of occurrence of the particular
attribute values in the subsets of resemblances, as well as the abstraction level of these
occurrences. Since during the search the country Canada was reported only twice, we
assigned it a grade 1.4 (i.e. 1.0+0.4). For Colombia we get: Colombia|(1.0 + 0.8 +
0.4) = Colombia|2.2, and for the last value: Venezuela|(1.0 + 0.8 + 0.4) =
Venezuela|2.2.

At the very end we normalize grades assigned to each of the entered values:
Canada |(1.4/5.8) = Canada |0.24, Colombia |(2.2/5.8) = Colombia |0.38,Venezuela
|(2.2/5.8) = Venezuela |0.38. This leads to the new distribution of the record’s
fractions, which, in our opinion, more accurately reflects real life dependencies than a
linear-split approach.

Fig. 1. Subsets of Resemblances extracted from the Partition tree

3 Implementation of the Defuzzification Algorithm

The implementation of our defuzzification system is based on a class named
TreeNode, which contains only a single node of the fuzzy similarity hierarchy,
pointers to its immediate descendants, and some public methods to access them. Each

Colombia AustraliaMexicoCanada Venezuela

A
B

S
T

R
A

C
T

IO
N

 L
E

V
E

L

N.Zealand

Australia

Australia

Colombia AustraliaMexicoUSA Venezuela

USA

USA MexicoCanada Colombia N.Zealand

N.Zealand

N.Zealand

VenezuelaUSA MexicoCanada Colombia

Venezuela

Canada

α=1.0

α=0.8

α=0.4

α=0.0
{Canada, Colombia, Venezuela}|0.0

{Canada, Colombia, Venezuela}|0.4

{Colombia, Venezuela}|0.8 {Canada}|0.8

{Canada}|1.0 {Colombia}|1.0 {Venezuela}|1.0

(1)

(2)

(3)

(4)

(5) (6)

0.24 0.
38

0.
38

Canada, Colombia, Venezuela

 Algorithm for Interpretation of Multi-valued Taxonomic Attributes 27

French Greek Italian Chinese Sushi Barbeque Burger

French Greek Italian Chinese Shushi Barbeque Burger

French Greek Italian Chinese Shushi Barbeque Burger

{ } { } { } { } { } { } { }

=0.0

= ...

=1.0

Fig. 2. Object representation of a partition tree

descendant is an instance of the same class TreeNode. Hence, a TreeNode con-
tains pointers to descendent TreeNode. Descendents that do not point to any other
child node basically points to null TreeNode ({Ф}). This is depicted in Fig. 2.

The TreeNode class is given below for better illustration.

public class TreeNode {
 int childCount = 0;
 Vector nodeData = new Vector();
 Vector childrenNodes = new Vector();
 /* THIS IS NOT A BINARY TREE. SO IT CAN CONTAIN ANY NUMBER
OF CHILDREN. childrenNodes CONTAINS ELEMENTS OF TYPE
TreeNode */
 public TreeNode (Vector colon) {
 /* CREATES A NEW INSTANCE OF TreeNode*/
 nodeData = (Vector) colon.clone();
 childrenNodes = new Vector(); }
 public void addChild(TreeNode childNode){
 childrenNodes.add(childNode);
 childCount++; }
 public int getTotalChildren(){
 /* e.g., IN THE CASE OF A NODE WITH THREE DESCENDENTS,
THIS FUNCTION WOULD RETURN 3.*/
 return childCount; }
 public Vector getNodeVector (){
 /* RETURNS THE PARENT NODE */
 return nodeData; }
 public void setNodeAsLeaf (){
 childrenNodes.clear(); }
 public Vector getChildrenVector (){
 /* RETURNS THE CHILDREN NODES AS A VECTOR*/
 return childrenNodes; }
 public TreeNode getChild (int i){
 /* RETURNS i-th CHILD WHERE EACH CHILD ITSELF IS A
TreeNode*/
 return ((TreeNode) childrenNodes.get(i)); }
}//END OF public class TreeNode

28 M.S. Hossain and R.A. Angryk

The basic algorithm uses preorder recursive tree traversal (depth-first search, DFS)
for searching matching subsets in the partition tree. Our goal is to find at each node of
the partition tree the largest matching subset. The high level outline of the algorithm
is portrayed in the following code. List and TreeNode parameters of the parti-
tionTreeTraversal function are passed by reference where other parameters are
passed by value. The method clone()of an object returns entirely a new instance of
the cloned object to avoid changes to a referenced parameter while the referenced pa-
rameter is necessary to be kept intact for the upper levels of recursion. A Vector can
store a collection of entered attribute values, e.g. {French, Greek, Italian} and it can
be used as an instance of searchVector of the algorithm. Besides, a Vector can
also be a collection of other Vectors. On the other hand, a List is a collection of
Vectors e.g., during the first call of partitionTreeTraversal the parameter
sList should contain a sorted (descending order, based on the size of subsets) list of
all the possible subsets of searchVector except the empty subset ({Φ}). The op-
eration denoted by “–” in the algorithm below is considered a regular SetDifference
operation.

public Vector partitionTreeTraversal(List sList, TreeNode
masterNode, Vector
searchVector, int level){
 List subsetList = sList.clone();
 int totalChildren = masterNode.getTotalChildren();
 Vector masterVector = masterNode.getNodeVector();
 Vector subsetVector = GET THE LONGEST SUBSET FROM subset-
List THAT IS FOUND IN THE ROOT OF
masterNode;

 if (subsetVector.size()==0){
 return {Φ};
 }
 else if (subsetVector.size()==searchVector.size()){
 UPDATE THE CORRESPONDING ENTRY FOR EACH ELEMENT OF
searchVector or subsetVector WITH CORRESPONDING α–VALUE
OF level–TH LEVEL ;
 }
 else{ //IF PARTIALLY AVAILABLE
 ADD CORRESPONDING α-VALUE OF level–TH LEVEL TO THE
CORRESPONDING ENTRY FOR EACH ENTITY OF subsetVector ;
 }

 Vector resultVector = searchVector.clone();
 for (int i=0; i<totalChildren; i++){
 Vector temp =
 partitionTreeTraversal(subsetList, master-
Node.getChild(i), subsetVector,
level+1);
 subsetList = subsetList – (ALL SUBSETS THAT HAVE AT LEAST
ONE ENTITY OF temp);
 resultVector = resultVector – temp;
 if (resultVector == {Φ}) //NOTE:1

1 Do not traverse other branches because all entities are already found in the previously

traversed branches.

 Algorithm for Interpretation of Multi-valued Taxonomic Attributes 29

 break ;
 }
 if (totalChildren==0) /*IF masterNode IS A LEAF*/
 return subsetVector;
} //END OF public void partitionTreeTraversal

3.1 Analysis of the Algorithm

Let us assume that the average branching factor of the partition tree is b and the num-
ber of abstraction levels in the tree is d. If each node has b descendents, then the root
(level 1) has 1 node, level 2 has b nodes, level 3 has b3-1 nodes, …., level d has bd-1

nodes. Hence the total number of nodes, N in the tree is: ∑
=

−=
d

1k

1kbN , leading to

∑
=

=
d

1k

kbNb , where k reflects the current level of the partitionTreeTraver-

sal algorithm. The last equation produces the following result:

1db1)N(bNNb −=−=− , thus
1b

1db
N

−

−
= . Therefore, in the worst case when the

searchVector is dispersed in all the leaf nodes of the partition tree at dth level,

partitionTreeTraversal has to visit a total of
1b

1db

−

−
nodes which would re-

sult in a time complexity of O(db) which should not be alarming despite of exponen-
tial growth, as typically b<<N and d<<N in real-life data mining. The worst case
search scenario occurs when the imprecise attribute of the fuzzy record, stored in
searchVector, contains every element of the root node of the partition tree; in our
example – if the searchVector is {French, Greek, Italian, Chinese, Sushi, Barbe-
que, Burger}. In such case the traversal would occur to every subtree of the hierarchy
of Fig. 2. Such situation, however, should appear rather rarely as this type of entries is
used in fuzzy relational database only if total lack of knowledge concerning an attrib-
ute value occurs.

Obviously, the best case is when the entire searchVector is always found in
the first descendent of every node along the traversal trail starting from the root. This
case is possible only when the searchVector is atomic (as for example, {French},
considering the partition tree of Fig. 2) causing a traversal of a total of d nodes and
would result in a time complexity of O(d), where d denotes the depth of the tree. A
heuristics of having the longest node (containing maximum number of elements in a
certain level) always first may increase the probability that a concept is always dis-
covered in the left subtree.

The function partitionTreeTraversal is written in such a manner that it
avoids unnecessary branches while traversing the tree. For example, if the top level
searchVector is {French, Sushi, Barbeque} then the traversal would follow the
path depicted in Fig. 3 where the DFS traversal is marked by numbers 1 to 10. The
partition tree is shaded in Fig. 3 and the search vector is drawn in black. From this, it
becomes evident that the average case time complexity of the algorithm is highly

30 M.S. Hossain and R.A. Angryk

dependent on the dispersed characteristic of the searchVector. At level 1 the
whole searchvector is found; the algorithm then searches the entire
searchVector in the left-most branch of level 1, but it gets only a subset of
searchVector, this traversal is propagated upto level 4 to update the summariza-
tion of corresponding α-value for only relevant part of the original searchVector,
i.e. for {French}.

Level 3 contains pointers to children that are {Φ}, hence a traversal of level 4 indi-
cates search success of an atomic concept in level 3. The algorithm then searches for
{Sushi, Barbeque} in the middle branch at level 2, where again a subset {Sushi} is de-
tected. The search fails in level 3, in the left branch as it contains only {Chinese}, the
algorithm immediately returns to level 2 for the next branch and succeeds for {Sushi}
that goes upto level 4. The algorithm then continues the searching taking {Barbeque}
alone, at the right most branch of level 1 in the same way. It is evident from Fig. 3
that the unnecessary branches are always omitted by the partitionTreeT-
raversal algorithm. So the performance of the algorithm depends on the distribu-
tion of the searchVector in the partition tree. Average case is dominated by the
probability of the existence of a searchVector in a certain node at certain level.

French Greek Italian Chinese Sushi Barbeque Burger

French Greek Italian Chinese Sushi Barbeque Burger

French Greek Italian Chinese Sushi Barbeque Burger

{ } { } { } { } { } { } { }

French Sushi Barbeque

French

French

{ }

Chinese Sushi

Chinese Sushi

{ }

Barbeque

Barbeque

{ }

1
4

8

2

3

5 6

7

9

10

Level 1

Level 2

Level 3

Level 4

Fig. 3. Path traversed when the top level searchVector is {French, Sushi, Barbeque}. The
partition tree is drawn in light gray. The DFS traversal is marked with numbers from 1 to 10.

3.2 Impact of the Character of the Partition Tree on the Algorithm
Performance

The performance of the partitionTreeTraversal algorithm is influenced by
two factors: (1) degree of imprecision reflected by the number of entered attribute
values (i.e. by their number, and their similarity), and (2) the character of the partition
tree specified for this attribute. This section includes some tests on the performance of
the proposed algorithm when applied with different types of similarity trees.

Data Set and Partition Trees. The experiments have been conducted using some artifi-
cial datasets and different types of partition trees. Data were picked randomly from
the domain (domain size = 32 symbolic values), where the domain is defined as the
set of all values specified at the lowest (i.e. α=1.0) level of the partition tree. Number

 Algorithm for Interpretation of Multi-valued Taxonomic Attributes 31

=0.0

=0.5

=1.0

(c)

=0.0

=0.2

=1.0

=0.0

=0.8

=1.0

=0.0

=0.8

=1.0
(d)

=0.9

=0.0

=0.1

=1.0

=0.2

=0.0

=0.33

=1.0

=0.66

=0.0

=0.4

=1.0

=0.8

=0.0

=1.0

(b)

=0.0

=1.00
(e)

=0.03
=0.06

=0.09

=0.13
=0.16

=0.97
=0.94
=0.90

H4 H5 H6

H7 H8 H9 H10

H3

H11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

=0.0

=0.1

=0.2

=0.3

=1.0

=0.0

=0.7

=0.8

=0.9

=1.0

H1 H2

(a)

Fig. 4. Hierarchies used for testing. The hierarchies can be grouped as (a) H1, H2, (b) H3, (c)
H4, H5, H6, (d) H7, H8, H9, H10 and (e) H11. Each group possesses a look-alike partition tree,
but with different α-values.

of values in a fuzzy record (stored during defuzzification in searchVector), con-
sidered as 75% imprecise, was kept at the 75% the domain size (i.e. 24 values) to al-
low for the randomness in choice of values, when maintaining consistent number of
values. The number of records in each imprecise data file was 30000, so that the ran-
dom characteristic could be evenly distributed among the partition tree as the par-
titionTreeTraversal algorithm omits the unnecessary branches. Hence the

32 M.S. Hossain and R.A. Angryk

huge number of records ensures an average case traversal for the comparison purpose
in this experiment. Algorithm run times for different percentage of imprecise records
are recorded and plotted for different hierarchies.

The numeric values in the partition tree of Fig. 4 (a) are symbols to represent non-
numeric descriptive values like all other partition trees of the previous sections. Fig. 4
(a) contains two hierarchies with different α-values (H1 and H2) although their level-
wise construction is common. H1 is a distribution where the concepts are nested at the
higher levels and H2 is a distribution where concepts are nested at the lower levels of
the hierarchy according to the α-values. The same domain is used for different types
of hierarchies in Fig. 4 (b), (c), (d) and (e) although the numeric symbols are not ex-
plicitly presented in the trees. Fig. 4 portrays a total of eleven similarity hierarchies
(H1, H2, …, H11) which can be grouped in five categories and for each of the cate-
gory only a single similarity tree is drawn. H1 and H2 have a total of five levels in
their hierarchy but they differ in the α-values. Similarly, H4, H5 and H6 have three
levels where H7 to H10 contain four levels in their hierarchies. The hierarchy H3 of
(b) has only two levels (the root and the leaves), whereas the hierarchy H11 of (e) is a
dendrogram with a total of 32 levels. Some levels in the hierarchy of Fig. 4 (e) have
been omitted due to the limited space of this presentation. Obviously, Fig. 4 (e) pre-
sents the worst case possible among all the cases of Fig. 4 where every hierarchy
contains 32 concepts in the lowest level of the hierarchy. The performance behavior is
explained in the following subsection. Behavior of partitionTreeTraversal
Algorithm. The partitionTreeTraversal algorithm is applied to different
types of hierarchies of Fig. 4 with different percentage of imprecision of data. The
time required for the algorithm to traverse the partition tree is proportional to the per-
centage of imprecision of the data. Fig. 5 illustrates timing with two look-alike hierar-
chies, H1 and H2 with different nested characteristic depending on the α-values of
Fig. 4 (a). It is evident from Fig. 5 that the structure of these two hierarchies are al-
most the same because the partitionTreeTraversal algorithm traverses the
same nodes while storing and updating reported existence of concepts in the hierar-
chy. This is despite the fact that the generated vote’s fractions may be different, due to
different propagation of α’s within the tree. The algorithm is tested using nine other
hierarchies depicted in Fig. 4. Fig. 6 (a) is a plot of time at different percentage of im-
precision of data with the hierarchies H3 to H10 of Fig. 4(a). It is evident from Fig.
6(a) that the distribution of α-values among the levels does not have significant im-
pact on the partitionTreeTraversal algorithm. Because the algorithm trav-
erses the partition tree discretely depending on the number of levels rather than trav-
ersing in a continuous domain of α-values. A different algorithm that traverses
depending on the continuous domain of α-values (rather than depending on the num-
ber of levels) better performs for the hierarchies that have nesting at the top levels for
a downward search in the partition tree as it discovers most of the levels at the begin-
ning of the domain of α-values. The timing plots of H4, H5 and H6 follow almost the
same trend in the graph. Similarly, H7, H8, H9 and H10 also produce similar graphs
that are closely aligned in Fig. 6 (a). The trend of H3 is separate from the other lines
as it is a different hierarchy and performs the best as it has least number of levels in
its partition tree. As partitionTreeTraversal algorithm is a level dependent
depth-first search, it performs the same both for the hierarchies nested at high levels
and hierarchies nested at low levels. This behavior is reflected in Fig. 6 (a) because

 Algorithm for Interpretation of Multi-valued Taxonomic Attributes 33

Fig. 5. Comparison of timing with two hierarchies that have the same distribution of concepts
but different α-values. The hierarchies H1 and H2 are drawn in Fig. 4(a).

the hierarchies with the same tree are clearly grouped in the plot. The plot has three
groups because it includes three types of partition trees, (b), (c) and (d) of Fig. 4.

The three types of hierarchies are well separated in the plot of Fig. 6 (a).
Fig. 6 (b) shows that the hierarchy H11 takes the worst possible time compared to

all other hierarchies (H3 to H10). From the experiment, it becomes apparent that
partitionTreeTraversal is a number of levels-dependent search, where the
performance decreases with increase of the number of levels in the partition tree
which suggests flattering the partition trees (by making them more bushy), or inclu-
sion of new concepts without increment in the number of levels.

Impact of Conceptualization at Higher Levels and Lower Levels. Let us consider
the partition trees of Fig. 7 (a) and (b). The hierarchy of (a) starts splitting at high lev-
els of the tree generating low α-values whereas (b) splits at the comparatively low

Percentage of imprecision

0.
00

6.
25

12
.5

0

18
.7

5

25
.0

0

31
.2

5

37
.5

0

43
.7

5

50
.0

0

56
.2

5

62
.5

0

68
.7

5

75
.0

0

T
im

e
(m

s)

0

20x103

40x103

60x103

80x103

100x103

120x103

140x103

160x103

180x103

200x103

H3
H4
H5
H6
H7
H8
H9
H10

H11

Percentage of imprecision

0.
00

6.
25

12
.5

0

18
.7

5

25
.0

0

31
.2

5

37
.5

0

43
.7

5

50
.0

0

56
.2

5

62
.5

0

68
.7

5

75
.0

0

T
im

e
(m

s)

2x103

4x103

6x103

8x103

10x103

12x103

14x103

16x103

18x103

20x103

22x103

24x103

H3

H4
H5
H6

H7
H8
H9
H10

Fig. 6. (a) Plot for hierarchy H3 to H10 of Fig. 4 (b). Plot for hierarchy H3 to H11 of Fig. 4.

Percentage of imprecision

0.
00

6.
25

12
.5

0

18
.7

5

25
.0

0

31
.2

5

37
.5

0

43
.7

5

50
.0

0

56
.2

5

62
.5

0

68
.7

5

75
.0

0

T
im

e
(m

s)

10x103

12x103

14x103

16x103

18x103

20x103

22x103

24x103

26x103

H1
H2

34 M.S. Hossain and R.A. Angryk

Fig. 7. (a) A partition tree where the abstracts start to split at high levels. (b) A partition tree
where the abstracts split at low level. (c) Plot of runtime behaviors of partitionTreeT-
raversal algorithm with the hierarchies of (a) and (b) at different percentage of imprecision
of data.

level. Although both the hierarchies have 32 leaf nodes at the bottom of the tree, in
(b), they are concentrated fast at the bottom of the tree. In contrary, the other hierar-
chy possesses more concepts relatively at the top of the tree resulting in more inter-
mediate nodes at every level. The partitionTreeTraversal algorithm would
take more time in the case of Fig. 7 (a) compared to (b) as the algorithm needs to
traverse more nodes for traversing the hierarchy of (a). The resulting runtime behav-
iors with these two hierarchies with respect to percentage of imprecision of data are
plotted in Fig. 7 (c). The figure shows that the partitionTreeTraversal algo-
rithm performs better with the hierarchy of Fig.7 (b) than that of (a). This suggests
low branching factor near the root of the partition tree and comparatively higher
branching factor at the bottom.

4 Conclusions

The work presented in this paper shows that the fuzzy collections can be transferred
to the atomic values in the efficient way. The heuristic algorithm presented here al-
lows for transfer of fuzzy records that reflect uncertainty to the form that allows
analysis of such data via majority of regular data mining algorithms. Although, the
presented heuristic for counting fractions of records as frequencies of observed atomic
values might be questioned by statisticians, the technique in our opinion can be

(c)

α=0.0

α=0.1

α=1.0

α=0.2

(a)

α=0.0

α=0.8

α=1.0

α=0.9

(b)

Percentage of imprecision

0.
00

6.
25

12
.5

0

18
.7

5

25
.0

0

31
.2

5

37
.5

0

43
.7

5

50
.0

0

56
.2

5

62
.5

0

68
.7

5

75
.0

0

T
im

e
(m

s)

4x103

6x103

8x103

10x103

12x103

14x103

16x103

18x103

20x103

22x103

(a)
(b)

 Algorithm for Interpretation of Multi-valued Taxonomic Attributes 35

treated as a “proof of concept” that imprecise data does not has to be disregarded, but
can be mined in a regular matter. The task of discovery of the most appropriate data
defuzzification algorithms remains as the topic for future research.

References

[1] J.C. Cubero, N. Marín, J..M. Medina, O. Pons, M.A. Vila, "Fuzzy object Management in
an Object-Relational Framework", Proc. of 10th Intl. Conf. of Information Processing and
Management of Uncertainty in Knowledge-Based Systems, 2004, pp.1767—1774.

[2] Z. Ma (Ed.), “Advances In Fuzzy Object-oriented Databases: Modeling and Applica-
tions”, Idea Group Publishing, Hershey, PA, USA, 2004.

[3] F. Berzal, N. Marín, O. Pons, M.A. Vila, “Development of applications with fuzzy ob-
jects in modern programming platforms”, International Journal of Intelligent Systems, 20
(11), 2005, pp. 1117 – 1136.

[4] B.P. Buckles & F.E. Petry, “A fuzzy representation of data for relational databases”,
Fuzzy Sets and Systems, 7(3), 1982, pp. 213-226.

[5] F.E. Petry, “Fuzzy Databases: Principles and Applications”, Kluwer Academic Publish-
ers, Boston, MA, 1996.

[6] S. Shenoi and A. Melton, “Proximity Relations in the Fuzzy Relational Database Model”,
International Journal of Fuzzy Sets and Systems, 31(3), 1989, pp. 285-296.

[7] S. Shenoi, A. Melton, and L. T. Fan, “Functional Dependencies and Normal Forms in the
Fuzzy Relational Database Model”, Information Sciences, 60(1-2), 1992, pp. 1-28.

[8] R. Angryk, “Similarity-driven Defuzzification of Fuzzy Tuples for Entropy-based
Data Classification Purposes”, Proc. of 15th IEEE Int. Conf. on Fuzzy Systems
(FUZZ-IEEE ’06), Vancouver, Canada, July 2006, pp. 1490-1498.

[9] R. Angryk, “On Interpretation of Non-Atomic Values and Induction of Decision Rules in
Fuzzy Relational Databases”, Proc. of 8th Intl. Conf. on Artificial Intelligence and Soft
Computing, Zakopane, Poland, June 2006, in Series: Lecture Notes in Artificial Intelli-
gence (LNAI), Vol. 4029, Springer-Verlag, 2006, pp. 170-181.

[10] R. Angryk, F. Petry, R. Ladner, “Mining Generalized Knowledge from Imperfect Data”,
Proc. of 10th Intl. Conf. on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU ’04), Perugia, Italy, July 2004, pp. 739-746.

[11] R. Angryk, F. Petry, “Discovery of Abstract Knowledge from Non-Atomic Attribute Val-
ues in Fuzzy Relational Databases,” in: B. Bouchon-Meunier, G. Coletti, R. Yager (Eds.),
Modern Information Processing, From Theory to Applications, Elsevier, 2006, pp.
171-182.

[12] M. Kantardzic, J. Zurada, “New Generation of Data Mining Applications”, IEEE Press
and John Wiley, 2005.

[13] L.A. Zadeh, “Similarity relations and fuzzy orderings”, Information Sciences, 3(2), 1970,
pp. 177-200.

[14] H.–H. Bock, E. Diday (Eds.), “Analysis of Symbolic Data, Exploratory Methods for Ex-
tracting Statistical Information from Complex Data”, Springer, 2000.

[15] Bertrand, P. & Goupil, F. (2000), “Descriptive statistics for symbolic data”, in Analysis
of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Com-
plex Data (eds. H.-H. Bock and E. Diday), Berlin, Springer-Verlag, pp 103-124.

	Algorithm for Interpretation of Multi-valued Taxonomic Attributes in Similarity-Based Fuzzy Databases
	Introduction
	Background
	Fuzzy Database Model
	Taxonomic Symbolic Variables and Their Analysis
	Similarity-Driven Vote Distribution Method for Interpretation of Non-atomic Values

	Implementation of the Defuzzification Algorithm
	Analysis of the Algorithm
	Impact of the Character of the Partition Tree on the Algorithm Performance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

