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Abstract. Traditional data repositories are typically focused on the storage and querying of 
crisp-precise domains of data. As a result, current commercial data repositories have no facili-
ties for either storing or querying imprecise-approximate data. However, when considering  
scientific data (i.e. medical data, sensor data etc) value uncertainty is inherited to scientific 
measurements. In this paper we revise the context of “value uncertainty”, and examine common 
models related to value uncertainty as part of the OLAP model. We present our approach for 
extending the OLAP model to include treatment of value uncertainty as part of a multidimen-
sional model inhabited by flexible date and non-rigid hierarchical structures of organisation.  

1   Introduction 

In this paper we introduce the semantics of the Intuitionistic Fuzzy cubic representa-
tion in contrast to the basic multidimensional-cubic structures. The basic cubic opera-
tors are extended and enhanced with the aid of Intuitionistic Fuzzy Logic [1], [2].   

Since the emergence of the OLAP technology [3] different proposals have been 
made to give support to different types of data and application purposes. One of this is 
to extend the relational model (ROLAP) to support the structures and operations typi-
cal of OLAP. Further approaches [4], [5] are based on extended relational systems to 
represent data-cubes and operate over them. The other approach is to develop new 
models using a multidimensional view of the data [6].  

Nowadays, information and knowledge-based systems need to manage imprecision 
in the data and more flexible structures are needed to represent the analysis domain. 
New models have appeared to manage incomplete datacube [7], imprecision in the 
facts and the definition of fact using different levels in the dimensions [8].  

Nevertheless, these models continue to use inflexible hierarchies thus making it 
difficult to merge reconcilable data from different sources with some incompatibilities 
in their schemata. These incompatibilities arise due to different perceptions-views 
about a particular modelling reality. 

In addressing the problem of representing flexible hierarchies we propose a new mul-
tidimensional model that is able to treat with imprecision over conceptual hierarchies 
based on Intuitionistic Fuzzy logic. The use of conceptual hierarchies enables us to:  



12 E. Rogova and P. Chountas 

• define the structures of a dimension in a more perceptive way to the final 
user, thus allowing a more perceptive use of the system.  

• query information from different sources or even use information or prefer-
ences given by experts to improve the description of hierarchies, thereby  
getting more knowledgeable query results. We outline a unique way for in-
corporating “kind of” relations, or conceptual imprecise hierarchies as part of 
a Knowledge based multidimensional analysis (KNOLAP). 

2   Semantics of the IF-Cube in Contrast to Crisp Cube 

In this section we review the semantics of Multidimensional modeling and Intuitionis-
tic Fuzzy Logic and based on these we propose a unique concept named as Intuition-
istic Fuzzy Cube (IF-Cube). The IF-Cube is the basis for the representation of flexible 
hierarchies and thus flexible facts. 

2.1   Principles of Intuitionistic Fuzzy Logic 

Each element of an Intuitionistic fuzzy [1], [2] set has degrees of membership or truth  
(μ) and non-membership or falsity (ν), which don’t sum up to 1.0 thus leaving a de-
gree of hesitation margin (π). 

As opposed to the classical definition of a fuzzy set  given by A′ = {< x, µA′(x) > |x 
∈ X} where µA(x) ∈ [0, 1] is the membership function of the fuzzy set A′, an in-
tuitionistic fuzzy set  A is given by: 

A = {< x, µA(x),vA(x) > |x ∈ X} 

where: µA : X → [0, 1] and vA : X → [0, 1] such that 0< µA(x) + vA(x)<1 and µA(x) 
vA(x) ∈  [0, 1] denote a degree of membership and a degree of non-membership of x 
∈ A, respectively. 

Obviously, each fuzzy set may be represented by the following Intuitionistic fuzzy 
set 

A={<x, µA′ (x), (x), 1− µA′ (x)>|x ∈ X} 

For each intuitionistic fuzzy set in X, we will call πA (x) = 1 − µA(x) − vA(x) an in-
tuitionistic fuzzy index (or a hesitation margin) of x ∈ A which expresses a lack of 
knowledge of whether x belongs to A or not. For each x ∈ A 0<πA (x)<1. 

2.2   Overview of the Cube Model 

A logical model that influences the database design and the query engines is the multidi-
mensional-cubic view of data in the warehouse. In a multidimensional data model, 
there is a set of numeric measures that are the objects of analysis. Examples of such 
measures are sales, budget, etc. Each of the numeric measures depends on a set of di-
mensions, which provide the context for the measure. The attributes of a dimension may 
be related via a hierarchy of relationships. In the above example, the product name is re-
lated to its category and the industry attribute through a hierarchical relationship, see 
“Fig.1”. 
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Fig. 1. “Cube “Sales” – Rigid Hierarchies for Product, Location Time Dimensions” 

According to [6] a cube structure is defined as a 4-tuple, <D, M, A, f> where the 
four components indicate the characteristics of the cube. These characteristics are: 

a set of n dimensions D = {d1, d2, …, dn} where each di is a dimension name, ex-
tracted from a domain domdim(i). A set of k measures M = {m1, m2, …, mk} where 
each mi is a measure name, extracted from a domain dommeasure(i). The set of dimen-
sion names and measures names are disjoint; i.e., D ∩ M = 0. A set of t attributes A = 
{a1, a2, …, at} where each ai is an attribute name, extracted from a domain domattr(i). A 
one-to-many mapping f : D  A, i.e. there exists, corresponding to each dimension, a 
set of attributes.  

2.3   Semantics of the IF-Cube 

In contrast an IF-Cube is an abstract structure that serves as the foundation for the 
multidimensional data cube model. Cube C is defined as a five-tuple (D, l, F, O, H) 
where: 

• D is a set of dimensions 
• l  is a set of levels l1,…, ln, 
• A dimension di = (l ≤ O, l┴, l┬)  dom(di) where l = li i=1...n.     

li is a set of values and li ∩ lj = {}, 
 ≤ O is a partial order between the elements of l. 
To identify the level l of a dimension, as part of a hierarchy we use dl. 

   l┴: base level l┬: top level 
  for each pair of levels li and lj we have the relation  
  μij : li × lj  [0,1]    νij : li × lj  [0,1]   0 < μij + νij < 1 

• F  is a set of fact instances with schema F = {<x, μF(x) , νF(x)>| x∈ X }, 
where x=<att1, …,attn> is an ordered tuple belonging to a given universe X,   
μF(x) and νF(x)  are the degree of membership and non-membership of x in 
the fact table F respectively. 

• H  is an object type history that corresponds to a cubic structure( l, F, O, H′ ) 
which allows us to trace back the evolution of a cubic structure after per-
forming a set of operators i.e. aggregation.  

The example below provides a sample imprecise cube (D, l, F, O, H) i.e. sales and a 
conceptual non-rigid hierarchy product with reference to milk consisting  of   li,…, ln  

levels with respective levels of membership and non membership < μij νij, >  . 
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Fig. 2. “Imprecise Cube ‘Sales’ – Conceptual – Ontological, IF Hierarchy ‘Milk’ “ 

The defined IF OLAP Cube and the proposed OLAP operators allow us to:  

• accommodate imprecise facts  
• utilise conceptual hierarchies used for aggregation purposes in the cases of 

roll-up and roll down operations.  
• offer a unique feature such as keeping track of the history when we move be-

tween different levels of a hierarchical order.  

In the next section, the fundamental cubic operators are defined and explained with the 
aid of examples. The examples make use of cubic slices commonly known as fact tables. 
Each operator is presented in the following format: the operator’s name, symbol, textual 
description, input, output, mathematical description and an example of the operator. 

3   Cubic Operators 

Selection (Σ): The selection operator selects a set of fact-instances from a cubic struc-
ture that satisfy a predicate (θ). A predicate (θ) involves a set of atomic predicates (θ1, 
…, θn )  associated with the aid of logical operators p ( i.e. ∧, ∨, etc.) . The set of pos-
sible facts (cubic instances) that satisfy the θ  should carry a degree of membership μ 
and non-membership ν expressed as  

          F = {<x, min(μF(x), μ(θ (x))), max(νF(x), ν(θ (x))))> | x∈ X }   (1) 

This guaranties a resulting cube populated with fact instances that satisfy the predi-
cate (θ) either completely or to some degree of certainty.  

Input:      Ci =  (D, l, F, O, H) and the predicate θ  
Output:   Co= (D, l, Fo , O, H) where Fo ⊆  F and Fo={f | (f ∈F) ∧ (f satisfies θ) 
Mathematical notation:      ( )i oC C

θ
=∑  

Example: Find the sales amount of 1000 with membership of greater than 0.4 and non  
  membership of less than 0.3 for all products in all cities during 20044 

Σ(amount>1000 ∧ (μ>0.4  ∧  ν<0.3)  ∧ year=2004 )(Sales)=CResult 

Cubic Product ( ⊗ ):  This is a binary operator Ci1 ⊗  Ci2 . It is used to relate two 
cubes Ci1 and Ci2 assuming that D1 ⊆  D2  and  O1 , O2  are reconcilable partial orders. 
Thus, l1, l2 could lead to lo  being a ragged hierarchy.  
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TIME

LOCATION 
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Lon 

P4 

P3 

1000      850         1250          1100 
<μ=0.5     <μ=0.75    <μ=0.75     <μ=0.8 
ν=0.25      ν=0.2         ν=0.15       ν=0.2 
 

720     980         530             680 
<μ=0.4     <μ=0.5      <μ=0.4      <μ=0.8 
ν=0.2      ν=0.1         ν=0.2         ν=0.1 
 

1150     2400         2000          780 
<μ=0.5     <μ=0.2      <μ=0.7      <μ=0.6 
ν=0.4      ν=0.6         ν=0.1         ν=0.2 
 

1020     3020         4050          2200 
<μ=0.85     <μ=0.45    <μ=0.2      <μ=0.5 
ν=0.1      ν=0.28       ν=0.7         ν=0.5 

P2 

P1 

Oslo Rio Cape 
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Whole milk
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Milk
<0.8, 0.1>

Whole milk
<0.7, 0.1>

Condensed whole milk

Pasteurized milk Condensed milk
<0.4, 0.3>

Whole pasteurized milk
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Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2,l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) where  

         Do= D1 ∪ D2 ,   lo= l1 ∪ l2, Oo= O1 ∪ O2    Ho= H1 ∪ H2, Fo= F1 X F2 
                   Fo ={<<x, y>, min(μf1(x), μf2(y)), max(νf1(x), νf2(y),)>|<x, y>∈  X×Y}  
Mathematical notation: Ci1 ⊗  Ci2 = Co 

Example: Consider the two cubes we want to relate, Ci1: CSales and Ci2: CDiscounts. CDis-

counts  has the same dimensions as CSales except the measure amount is   not 
sale but is a discount. In that case the cubic product would be: 

p
CSales’  CDiscounts = CResult

ProdID StoreID Amount <μ, > ProdID StoreID Discount <μ, >
P1 S1 10 .7, .2 P2 S1 2 .5, .5
P2 S2 15 .5, .5 P3 S3 5 .3, .3

=
S.ProdID S.StoreID S.Amount D.ProdID D.StoreID D.Discount <μ, >

P1 S1 10 P2 S1 2 .5, .5
P1 S1 10 P3 S3 5 .3, .3
P2 S2 15 P2 S1 2 .5, .5
P2 S2 15 P3 S3 5 .3, .5  

 

Fig. 3. Fact-Sales’, Fact-Discounts and Fact-Result 

Join (Θ): It can be expressed using Cubic Product operator. Ci1 = (D1, l1, F1, O1, H1)) 
and Ci2 = (D2 ,l2, F2, O2, H2) are candidates to join if D1 ∩ D2 ≠ 0, 

Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2,l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) 

Mathematical notation: Ci1 Θ Ci2 = σp(Ci1 ⊗  Ci2) 
 
Union (∪): The union operator is a binary operator that finds the union of two cubes. 
Ci1 and Ci2 have to be union compatible. The operator also coalesces the value-
equivalent facts using the minimum membership and maximum non-membership.  
Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2,l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) where Do=D1=D2, lo=l1=l2, Oo=O1=O2, Ho=H1=H2, 
Fo= F1 ∪ F2  = { < x, max(μF1 (x), μF2(x)), min(νF1(x),νF2(x)) > | x ∈ X } 
Mathematical notation: Ci1 ∪ Ci2 = Co 
Example:  Consider the two cubes we want to relate, Ci1: CSales_North and Ci2: 

CSales_South,   in that case the union of these two cubes would be: 

   CSales_North  ∪ CSales_South = CResult 
ProdID StoreID Amount <μ, ν> ProdID StoreID Amount <μ, ν> 

P1 S1 10 .7, .2 ∪ P1 S1 10 .5, .5 
P2 S2 15 .5, .5 P3 S3 5 .3, .3 

    =     
 

S.ProdID S.StoreID S.Amount <μ, ν> 
P1 S1 10 .7, .2 
P2 S2 15 .5, .5 
P3 S3 5 .3, .3 

 

Fig. 4. Fact-Sales_North, Fact-Sales_South and Fact-Result 
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Difference (-):. The difference operator removes the portion of the cube Ci1 that is 
common to both cubes. Ci1 and Ci2 have to be union compatible 

Input:   Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) where Do=D1=D2, lo=l1=l2, Oo=O1=O2, Ho=H1=H2,    

Fo= F1 ∩ F2 = { < x, min(μF1(x),μF2(x)), max(νF1(x),νF2(x)) > | x ∈ X } 
Mathematical notation: Ci1 – Ci2 = Co 

Example: Consider the two cubes we want to relate, Ci1: CSales_North and Ci2: CSales_South,   
in that case the difference between North and South sale cubes would be: 

   CSales_North  – CSales_South = CResult 
ProdID StoreID Amount <μ, ν> ProdID StoreID Amount <μ, ν> 

P1 S1 10 .7, .2 - P1 S1 10 .5, .5 
P2 S2 15 .5, .5 P3 S3 5 .3, .3 

    =     

 

S.ProdID S.StoreID S.Amount <μ, ν> 
P1 S1 10 .5, .5 
P2 S2 15 .5, .5 

 

Fig. 5. Fact-Sales_North, Fact-Sales_South and Fact-Result 

3.1   Extended Operators 

Aggregation (A): An aggregation operator A is a function A(G) where G = {<x, μF(x) , 
νF(x)>| x∈ X }  where x=<att1, …,attn> is an ordered tuple belonging to a given uni-
verse X, {att1, …, attn} is the set of attributes of the elements of X,  μF(x) and νF(x)  are 
the degree of membership and non-membership of x. The result is a bag of the type 
{<x′, μF(x′) , νF(x′)>| x′∈ X }. To this extent, the bag is a group of elements that can be 
duplicated and each one has a degree of μ and ν.  

Input:  Ci =  (D, l, F, O, H) and the function A(G) 
Output: Co =  (D, lo, Fo , Oo , Ho) 

The definition of the extended group operators allows us to define the extended 
group operators Roll up (Δ), and Roll Down (Ω). 

 
Roll up (Δ): The result of applying Roll up over dimension di at level dlr using the 

aggregation operator A over a datacube Ci = (Di ,li ,Fi , O , Hi ) is another datacube  

Co = (Do ,lo ,Fo , O , Ho ). 
Input:       Ci = (Di ,li ,Fi , O , Hi ) 
Output:   Co = (Do ,lo ,Fo , O , Ho )     

         
An object of type history is a recursive structure H =  

 
 
 
The structured history of the datacube allows us to keep all the information when 

applying Roll up and get it all back when Roll Down is performed. To be able to apply 
the operation of Roll Up we need to make use of the IFSUM  aggregation operator.  

 
ω  is the initial state of the cube 
 
(l, D, A, H’)  is the state of the 
cube after performing an opera-
tion on the cube 
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Roll Down (Ω): This operator performs the opposite function of the Roll Up opera-
tor. It is used to roll down from the higher levels of the hierarchy with a greater de-
gree of generalization, to the leaves with the greater degree of precision. The result of 
applying Roll Down over a datacube Ci = (D, l, F, O, H) having H=( l’, D’, A’, H’ ) is 
another datacube Co= (D’, l’, F’, O, H’). 

Input:  Ci=(D, l, F, O, H)  
Output:  Co=(D’,l’, F’, O, H’) where F’  set of fact instances defined by operator A. 

To this extent, the Roll Down operative makes use of the recursive history structure 
previously created after performing the Roll Up operator. 

The definition of aggregation operator points to the need of defining the IF exten-
sions for traditional group operators [9], such as SUM, AVG, MIN and MAX. Based on 
the standard group operators, we provide their IF extensions and meaning. 
 

IFSUM : The IFsum aggregate, like its standard counterpart, is only defined for nu-
meric domains. Given a fact F defined on the schema X (att1, …,attn), let attn-1 defined 
on the domain U={u1 , …, un ). The fact F consists of fact instances Fi with 1 ≤  i ≤  m. 
The fact instances Fi are assumed to take Intuitionistic Fuzzy values for the attribute 
attn-1 for i = 1 to m  we have Fi[attn-1] = {<μi(uki), νi(uki)>/ uki | 1 ≤ ki  ≤ n } . The IFsum 

of the attribute attn-1 of the fact table F is defined by: 

IFSUM((attn-1)(F)) =  

{<u>/ y | (( u= m
i 1min = (μi(uki), νi(uki)) ∧ (y = ∑ =

km

kki kiu
1

) (∀ k1, …km : 1 ≤ k1, …km ≤ n))} 

Example:    IFSUM((Amount)(ProdID)) 
={<.8,.1>/10}+{(<.4,.2>/11),(<.3,.2>/12)}+{(<.5,.3>/13),(<.5,.1>/12)} 
={(<.8∧.4,.1∧.2>/10+11),(<.8∧.3, .1∧.2>/10+12)}+{<.5, .3>/13, <.5, .1>/12} 
={(<.4, .2>/21), (<.3, .2>/22)} + {<.5, .3>/13, <.5, .1>/12} 
={(<.4∧.5,.2∧.3>/21+13),(<.4∧.5,.2∧.1>/21+12),(<.3∧.5,.2∧.3>/22+13),(<.3∧.5,      
    .2∧.1>/22+12) = {(<.4, .3>/34), (<.4, .2>/33), (<.3, .3>/35), (<.3, .2>/34)} 
={(<.3, .3>/34), (<.4, .2>/33), (<.3, .3>/35)} 

 
IFAVG : The IFAVG aggregate, like its standard counterpart, is only defined for nu-

meric domains. This aggregate makes use of the IFSUM that was discussed previously 
and the standard COUNT.  The IFAVG  can be defined as: 

IFAVG((attn-1)(F) = IFSUM((attn-1)(F)) / COUNT((attn-1)(F)) 

Example:   IFAVG((Amount)(ProdID)) 
= IFSUM((Amount)(ProdID)) / COUNT((Amount)(ProdID)) 
= {(<.3, .3>/34), (<.4, .2>/33), (<.3, .3>/35)} / 3 
= {(<.3, .3>/11.33), (<.4, .2>/11), (<.3, .3>/11.66)} 

 
IFMAX : The IFMAX aggregate, like its standard counterpart, is only defined for nu-

meric domains. The IFsum of the attribute attn-1 of the fact table F is defined by: 
IFMAX((attn-1)(F)) =  

{<u>y|((u= m
i 1min = (μi(uki),νi(uki))∧(y= m

i 1max = (μi(uki),νi(uki)))(∀k1,…km :1≤k1,…km≤ n))} 
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Example:   IFMAX((Amount)(ProdID)) 
IFMAX={<.8,.1>/10},{(<.4,.2>/11),(<.3,.2>/12)},{(<.5,.3>/13),(<.5, 0.1>/120)} 
={(<.8∧.4,.1∧.2>/max(10,11)),(<.8∧.3,.1∧.2>/max(10,12)},{<.5,.3>/13,<.5, .1>/12} 
={(<.4,.2>/11),(<.3,.2>/12)},{<.5,.3>/13, <.5, .1>/12} ={(<.4∧.5,.2∧.3>/max(11,13)), 
(<.4∧.5,.2∧.1>/max(11,12)),(<.3∧.5,.2∧.3>/max(12,13)),(<.3∧.5,.2∧.1>/max(12,12)) 
={(<.4,.3>/13),(<.4,.2>/12),(<.3,.3>/13), (<.3,.2>/12)} = {(<.3,.3>/13),(<.3,.2>/12)} 
 

IFMIN : The IFMIN aggregate, like its standard counterpart, is only defined for nu-
meric domains. Given a fact F defined on the schema X (att1, …,attn), let attn-1 defined 
on the domain U={u1 , …, un ). The fact F consists of fact instances fi with 1 ≤  i ≤  m. 
The fact instances fi are assumed to take Intuitionistic Fuzzy values for the attribute 
attn-1 for i = 1 to m  we have fi[attn-1] = {<μi(uki), νi(uki)>/ uki | 1 ≤ ki  ≤ n } . The IFsum 

of the attribute attn-1 of the fact table F is defined by: 

IFMIN((attn-1)(F)) =  
{<u>/ y|(( u= m

i 1min =
(μi(uki),νi(uki))∧(y= m

i 1min =
(μi(uki),νi(uki)))(∀k1,…km :1≤ k1,…km≤ n))} 

We can observe that the IFMIN is extended in the same manner as IFMAX aggregate 
except for replacing the symbol max in the IFMAX definition with min. Once we have 
defined our Intuitionistic Fuzzy multidimensional model and have defined the IF cu-
bic-algebra, the concept of knowledge based OLAP is introduced. Ideally, in a 
Knowledge based OLAP environment for summarizing purposes it is desirable to use 
Intuitionistic Fuzzy hierarchies like milk see “Fig.2” instead of rigid hierarchies like 
Product in “Fig.1”.  

4   The Case for Knowledge Based OLAP-KNOLAP 

Concepts are used to describe how the data is organized in the data sources and to 
map such data to the concepts described in the Domain Ontology. These definitions 
are used to apply more extensively the business semantics described in the Domain 
Ontology, to support the rewrite of queries’ conditions and to combine OLAP features 
in this process. These semantics support the automatic recommendation of analysis 
according to the context of users’ explorations in order to guide the decision making, 
feature inexistent in current analytical tools. 

With respect to the Intuitionistic Fuzzy hierarchy milk, we try to express different 
ontological semantics, or “kind of” relations such as to what extent: 

• Condensed whole milk is a “kind-of” Whole milk? 
• Condensed whole milk is a “kind-of” Condensed milk? 
• Pasteurised whole milk is a “kind-of” Whole milk? 
• Pasteurised whole milk is a “kind-of” Pasteurised milk? 
• Pasteurised milk is ”kind-of” milk?  Etc. 

It is obvious from the above examples that if we wish to summarise the sales, for 
example, of products of “Pasteurised milk” we need to take into account as well the 
fact that “Whole Pasteurised milk” may also be treated as “Pasteurised milk” when 
applying i.e. the  IFSUM. 
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These observations led us to introduce the concept of closure of an Intuitionistic fuzzy 
set over a universe that has a hierarchical structure, which is a developed form defined 
on the whole hierarchy. Intuitively, in the closure of this Intuitionistic fuzzy set, the 
“kind of” relation is taken into account by propagating the degree associated with an 
element to its sub-elements more specific elements in the hierarchy. For instance, in a query, 
if the user is interested in the element Milk, we consider that all kinds of Milk, Whole 
milk, Pasteurized milk, etc. are of interest. On the opposite, we consider that the super-
elements (more general elements) of Milk in the hierarchy i.e. “Milk” are too general to be 
relevant for the user’s query. 

Let us consider the Intuitionistic fuzzy set M defined as: {Milk<0.8,0.1>, Whole-
Milk<0.7,0.1>, Condensed-Milk<0.4,0.3>}} which is presented in “Fig.6”. Then the 
next step is to calculate the <μ, ν> values for “Pasteurized milk”, “Whole Pasteurized milk 
” and “Condensed whole milk.” 

• If the hierarchical IF structure expresses preferences in a query, the choice of the 
maximum values for μ and minimum value ν from the pairs of values <μ, ν> 
from the parent elements to the sub elements allows us not to exclude any possi-
ble answer (high possibility necessity degrees). In real cases, the lack of answers to 
a query generally makes this choice preferable, because it consists of widening the 
query answer rather than restricting it.  

• If the hierarchical IF represents an ill-known concept, the choice of the maximum 
value for μ and minimum value ν allows us to preserve all the possible values, 
but it also makes the answer less specific. In a way, it also participates in 
enlarging the query, as a less specific datum may share more common values 
with the query (the possibility degree of matching can thus be higher, although 
the necessity degree can decrease). 

Milk
<0.8, 0.1>

Whole milk
<0.7, 0.1>

Condensed whole milk

Pasteurized milk Condensed milk
<0.4, 0.3>

Whole pasteurized milk

Milk
<0.8, 0.1>

Whole milk
<0.7, 0.1>

Condensed whole milk

Pasteurized milk Condensed milk
<0.4, 0.3>

Whole pasteurized milk

 

Milk
<0.8, 0.1>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<0.8, 0.1>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<0.8, 0.1>

Milk
<0.8, 0.1>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<0.8, 0.1>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<0.8, 0.1>  

Fig. 6. “IF Hierarchy ‘Milk’ ” Fig. 7. “Fully weighted Hierarchy ‘Milk’ ” 

“Fig.7” is a fully weighted Hierarchy after applying the maximum values for μ and 
minimum value ν from the pairs of values <μ, ν> from the parent elements to the sub ele-
ments, i.e. from (whole-milk, condensed-milk) to (condensed-whole-milk), from (milk) to 
(pasteurized milk), and from (whole-milk, pasteurized milk) to (pasteurized-whole-milk). 

The complete study of the hierarchical IF requires the formal definition of the IF 
hierarchical closure. We will further need to formally define the containment of an IF 
hierarchical set to another.  



20 E. Rogova and P. Chountas 

Furthermore if one wishes to consider multiple versions of evolving IF hierarchies, 
the similarity between different versions of IF hierarchical set in the geometrical 
framework introduced by [10], [11] needs to be examined as well. 

5   Conclusions 

In this paper we have presented a new multidimensional-cubic model named as the 
IF-Cube. The main contribution of this new model is that is able to operate over 
data with imprecision in the facts and the summarisation hierarchies. Classical 
models imposed a rigid structure that made the models present difficulties when 
merging information from different but still reconcilable sources. We introduce the 
automatic recommendation of analysis according to the context of users’ explorations 
in order to guide the decision making with the aid of Intuitionistic fuzzy set over a 
universe that has a hierarchical structure and the corresponding hierarchies.  

These features are inexistent in current OLAP tools. Furthermore we notice that 
our IF cube can be used for the representation of Intuitionistic fuzzy linguistic terms. 

There is a need to formally define the closure of Intuitionistic fuzzy set over a uni-
verse that has a hierarchical structure as well the containment between different ver-
sions of these sets. We also need to study the impact of imprecision with respect to 
star and snowflake data warehouse conceptual structures. Finally, a graphical way 
needs to be developed to represent the results of the operations in order to get 
a more intuitive way to read the information obtained.  
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