
Q. Wang, D. Pfahl, and D.M. Raffo (Eds.): ICSP 2007, LNCS 4470, pp. 12–24, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The REMIS Approach for Rationale-Driven Process
Model Evolution

Alexis Ocampo and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

{ocampo, muench}@iese.fraunhofer.de

Abstract. In dynamic and constantly changing business environments, the need
to rapidly modify and extend the software process arises as an important issue.
Reasons include redistribution of tasks, technology changes, or required
adherence to new standards. Changing processes ad-hoc without considering
the underlying rationales of the process design can lead to various risks.
Therefore, software organizations need suitable mechanisms for storing and
visualizing the rationale behind process model design decisions in order to
optimally introduce future changes into their processes. This paper presents
REMIS (Rationale-driven Evolution and Management Information System), a
prototype tool we have developed for providing support to process engineers
during the task of collecting the reasons for process changes, introducing the
changes, and storing them together in a process model evolution repository.
Additionally, we present lessons learned with REMIS during the evolution of a
reference process model for developing service-oriented applications.

Keywords: Process evolution, rationale, process management, prototype tool,
resource description framework.

1 Introduction

Process models can be used to guide developers, automate and improve processes,
support management and execution, and store experience [8]. Changing these models
in organizations is typically a complex and expensive task [25]. Process engineers are
faced mainly with the following challenges: a) to rapidly update the process model so
that the organization can keep up with its business environment; b) to introduce
changes that are realizable and acceptable for practitioners; c) to introduce changes
that are consistent or do not affect the process model consistency. Achieving a
compromise that satisfies such challenges usually depends on the information
available for rapidly judging if a change is consistent and can be easily adopted by
practitioners. Having information about the rationales of the process design at hand
can be of great help to process engineers for overcoming the previously mentioned
challenges. Currently, the common situation is that there is a lack of support for
systematically evolving process models. Combined with other facts such as budget
and time pres-sure, process engineers often take shortcuts and therefore introduce
unsuitable or inconsistent changes or go through a long, painful update process.

 The REMIS Approach for Rationale-Driven Process Model Evolution 13

It has been shown that systematically describing the relationships between an
existing process and its previous version(s) is very helpful for efficient software
process model evolution [2]. Such relationships should denote differences between
versions due to distinguishable modifications. One can distinguish the purpose of
such modifications if one can understand the rationale behind them.

In the product domain, rationale has been defined as the justification for a decision
by software product designers, who have done extensive research on capturing,
organizing, and analyzing design rationales [9]. By making rationale information
explicit, decision elements such as criteria, priorities, and arguments can improve the
quality of software development decisions. Additionally, once new functionality is
added to a system, the rationale models enable developers to track those decisions that
should be revisited and those alternatives that have already been evaluated.

The situation is not much different in the process modeling domain, where this
topic seems to be less developed, or not yet considered relevant by software process
engineers. We are currently working on transferring rationale concepts into the
process modeling domain. We do this based on the assumption that the rationale for
process changes can be used for understanding the history of software process
changes, for comprehensive learning, and for supporting the systematic evolution of
software processes. The research roadmap we are following consists of the following
steps: a) identification of a taxonomy of reasons for process change (documented in
[26]); b) definition of a structured conceptual model of rationale; c) definition of a
method that provides guidance on how to perform systematic process evolution
supported by rationale; d) implementation of a prototype; e) validation of the concepts
and the approach in process evolution projects. The steps are performed iteratively so
that the experience acquired in the evolution projects can be used for fine tuning the
concepts and the approach.

The research work described in this article consists of the definition of concepts
and the implementation of the REMIS prototype that can be used for collecting
information about the rationale underlying process changes and as tool support for
systematically evolving a software process model. This is one of very few attempts
per-formed so far whose goal is to connect the reasons for changes to the actual
history of a process model. Section 2 presents a retrospective of work performed on
rationale concepts and methods as well as on tools suitable for collecting the rationale
of processes and products. Section 3 presents a characterization of the rationale
support tools. Section 4 presents the current conceptual model. Section 5 describes the
REMIS prototype and its most relevant features. Section 6 presents the experience
and lessons learned from a practical application in industry where we used REMIS.
Section 6 presents a summary and future research work.

2 A Retrospective of Rationale-Driven Approaches and Tools

The design rationale research community has invested much effort into developing
concepts, methods, and techniques for capturing, retrieving, and analyzing the
reasoning behind design decisions. The initiators of the field were Kunz and Rittel
[15], who developed the IBIS method based on the principle that the design process
for complex problems is basically a conversation among stakeholders (e.g., designers,

14 A. Ocampo and J. Münch

customers, implementers). They started looking at the conversational process of
arguing about complex problems during the design of buildings and cities. Each
stakeholder contributed with his experience to the resolution of design issues. This
approach was oriented to promote debate as a mechanism to provide a means for
understanding the other’s view and, in consequence, to obtain a more comprehensive
view of the complex problem. IBIS led the way for approaches such as the Design
Space Analysis proposed by McLean et al. [20] and better known as QOC, the
Procedural Hierarchy of Issues (PHI) approach [22], and the Decision Representation
Language (DRL) [17].

These approaches are called argumentation-based approaches because they focused
on the activity of reasoning about a design problem and its solution [9]. Afterwards,
these argumentation-based approaches were transferred to the mechanical engineering
and software engineering fields and applied to design problems. Tools were
considered an important factor for successfully managing rationale information. Most
tools supporting argumentation-based approaches are hypertext-based systems that
connect all pieces of information through hyperlinks, e.g., gIBIS [7], SYBIL [18], and
the recently developed Compendium [6].

2.1 Software Engineering and Rationale

Dutoit et al. [9] introduce the term Software Engineering Rationale, claiming that this
term is more useful for discussing rationale management in software engineering.
They emphasize that the software development life cycle contains several activities
where important decisions are taken, and where rationale plays an important role. In
software engineering, most approaches have contributed to the rationale domain by
providing new ideas and mechanisms to reduce the risk associated with rationale
capture. Such approaches were conceived having in mind the goal of providing short-
term incentives for those stakeholders who create and use the rationale. For example,
SCRAM [34], an approach for requirements elicitation, integrates rationale into
fictitious scenarios that are presented to users or customers so that they understand the
reason for them and provide extra information. They can immediately see the use and
benefit of rationale. Something similar happens in the inquiry cycle [27], which is an
iterative process whose goal is to allow stakeholders and developers to work together
towards a comprehensive set of requirements.

Most of the approaches developed for Software Engineering Rationale offer tool
support provided as either adaptations or extensions of specific requirements and
development tools, e.g., SEURAT [5], Sysiphus [10], DRIMER [29], or the Win-Win
Negotiation Tool [38]. SEURAT integrates into a development environment a sort of
plug-in for rationale capturing especially enhanced with an ontology of rationale
terms and a rationale checking mechanism that guides developers in efficiently
collecting rationale information and showing them at once the benefits of it. A similar
short-term incentive strategy is adopted by Sysiphus, but in a collaborative modeling
environment. DRIMER [29] is a software development process and tool for applying
design patterns. It provides storage and retrieval of patterns application examples and
their rationale. Designers who are looking for a pattern can better understand how to
use it by looking at the rationale. Finally, the Win-Win negotiation tool, which

 The REMIS Approach for Rationale-Driven Process Model Evolution 15

supports the corresponding model, is an example of rationale as a driver of a software
development project [4]. The set of requirements to be implemented in each iteration
is decided by following the Win-Win model, where issues, i.e., disagreements
between parties, with different win conditions are discussed. Options are proposed
and an agreement is taken. Win conditions are prioritized and scheduled to iterations
based on risks. Other examples of tools are REMAP [31] and C-ReCS [13].

2.2 Process Modeling and Rationale

Little work has been done in other areas apart from design and requirements. One of
them is the process modeling area. Here, the need and value have been identified, and
a couple of research initiatives have been followed with the goal of generating
rationale information from project-specific process models. One approach developed
by Dellen et al. [11] is Como-Kit. Como-Kit allows automatically deducing causal
dependencies from specified process models. Such dependencies could be used for
assessing process model changes. Additionally, Como-Kit provides a mechanism for
adding justifications to a change. The Como-Kit system consists of a modeling
component and a process engine. Como-kit was later integrated with the MVP
approach [3]. The MVP approach consists of the MVP-L language and the MVP-E
system, which supports the modeling and enactment of software processes. The result
of such an integration effort was the Minimally Invasive Long-Term Organizational
Support platform (MILOS) [37], [21]. MILOS enables the modeling of both
algorithmic and creative processes, the collection of data for the purpose of process
guidance, and experience management. Sauer presented a procedure for extracting
information from the MILOS project log and for justifying project development
decisions [33]. According to Sauer, rationale information could be semi-automatically
generated. However, the approach does not capture information about alternatives that
were taken into account for a decision.

Weber et al. [39] introduce an agile process mining framework that supports the
whole process life cycle as well as continuous adaptation to change. The framework
combines three different domains, namely process mining [36], adaptive process
management (PM) [32], and conversational case-based reasoning (CCBR) [39].
Changes are registered in change logs during project execution. Changes can be refer-
enced to cases in a case-base. A case represents a concrete ad-hoc modification of one
or more process instances. A case consists of a textual problem description, a set of
question-answer pairs, and the solution. The process engineer can provide information
on the case so that future analysis for understanding the context of and the reasons for
discrepancies between process models and related instances are possible.

3 Characterization of Rationale Tool Support

Table 1 provides an overview of the diversity of tools implemented for providing
rationale support to a given approach.

16 A. Ocampo and J. Münch

Table 1. Tool Support

Approach Tool/Prototype Support
Category 1

IBIS [15] gIBIS[7], Compendium [6]
Design Space Analysis (QOC) [20] Compendium [6]
The Decision Representation Language (DRL) [17] SYBIL [18]
Inquiry Cycle Potts et al.- [27] Active HyperText Prototype [28]

Category 2
Contribution Structures- Gotel and Finkelstein - [16] Contribution Manager Prototype [16]
Como-Kit [11] Como-Kit System [11]
Agile Process Mining - Weber et al. - [39] ADEPT [32] + CBRFlow [45]

Category 3
Hierarchy of Issues (PHI) [22] JANUS [12], PHIDIAS [23]
REMAP - Ramesh and Dhar- [31] REMAP System [31]
C-ReCS - Klein [13] C-ReCS System [13]
SEURAT- Burge and Brown - [5] SEURAT System [5]
Sysiphus- Dutoit and Paech - [10] Sysiphus [10]
WinWin - Boehm et al.- [4] WinWin Negotiation Tool [38]
DRIMER - Pena-Mora and Vadhavkar - [29] SHARED-DRIMS [29]

These tools can be classified into three major categories: tools that support
debate/argumentation; tools that support editing work and rationale documentation;
and tools that support integrated editing work and debate/argumentation.

Category 1 - Support for debate/argumentation: The main feature of the tools in
this group is to support the collaborative debate of complex problems. Rationale
capture, management, and visualization are important functionalities of these tools.
Visualization is implemented with graphical browsers that connect each rationale
piece of information as hypertext. Usually, these tools provide a linking mechanism to
reference the external artifact being discussed. Examples are: gIBIS [7], SYBIL [18],
Compendium [6], and the Active Hypertext Prototype [28].

Category 2 - Support for editing work and rationale documentation: This group
consists of tools that incorporate rationale as important additional information, but
whose main feature is to provide support for users on the task they are performing.
The front end in these tools is the specialized task editor. Possibilities for capturing,
generating, visualizing, or retrieving rationale information for a given task or task
element are provided. Examples are: Contribution Manager Prototype [16], Como-Kit
System [11], and the integration of ADEPT [32] and CBRFlow [39].

Category 3 - Support for integrated editing work and debate/argumentation: The
main rationale behind these tools is to avoid the criticism of the costs involved with
capturing rationale and its intrusiveness by seamlessly integrating
debate/argumentation into the collaborative work. Usually, these tools provide
mechanisms to easily switch from the task editor to the rationale editor and to
visualize both the task and its rationale in one place. The set of tasks and its rationale
is conceived as a whole and therefore, changes to each task propagate to all users.

 The REMIS Approach for Rationale-Driven Process Model Evolution 17

Some task editors are specialized according to the activity as in the case of
requirements or design, while some others have attempted to provide a more
“generic” task editor. Examples of such tools are: JANUS [12], PHIDIAS [23],
REMAP [31], C-ReCS [13], SEURAT [5], Sysiphus [10], WinWin Negotiation Tool
[38], and SHARED-DRIMS [29].

4 Process Rationale Concepts and Prototype

The following is a conceptual model that can be considered a second version of our
attempt to understand the information needs for capturing the rationale behind process
changes (see Figure 2). The results of our first attempt have been documented in [26].
We decided to start with a small set of concepts that will be refined in time. The
reason for keeping the model as simple as possible comes from the criticism regarding
the high costs of capturing rationale information. We wanted to avoid these high costs
and find those appropriate concepts needed to describe the rationale for process
changes.

4.1 Concepts

We decided to take the basic concepts of the argumentation-based approaches and
connect them to three entities that were relevant for us, i.e., event, changes, and
process element (the non-shadowed classes in Fig 1).

Fig. 1. Rationale Model (UML static structure diagram)

An event is considered to be the trigger of issues. Events can happen inside
(internal) or outside (external) a given organization. Examples of different types of
internal events are: new/updated process engineering technology (e.g., a new process
modeling technique); new/updated regulatory constraints; Examples of different types
of external events are: responses to failures to pass internal or external appraisals,
assessments or reviews (e.g., changes needed to address a failure in passing an FDA
audit); new/updated best practices emerging from "lessons learned" in just-completed
projects (e.g., a new "best practice" approach to handling design reviews).

18 A. Ocampo and J. Münch

Issues are problems that are related to a (part of a) process and that need to be
solved. Issues are stated usually as questions in product-oriented approaches. In this
work, the question has the purpose of forcing process engineers to reason about the
situation they are facing. Additionally, an issue also contains a long description, a
status (open, closed) and a discussion. The discussion is intended for capturing the
emails, memos, letters, etc. where the issue was treated by process engineers.
Additionally, an issue can be categorized by a type. This type can be selected from a
classification of issues that needs to be developed or customized for an organization
[26]. The classification can be used as a basis, which should be refined continuously
based on experience gained from process evolution projects.

Alternatives are proposals for resolving the issue. Alternatives can be captured with
subject (short description) or long descriptions. Alternatives are evaluated and
assessed regarding their impact and viability by process engineers.

Finally, a resolution chooses an alternative whose implementation causes changes
to the process models. At the same time, one resolution could lead to opening more
issues. Note that a resolution has a subject (short description), a long description, and
a justification. The justification is intended for capturing a summary of the analysis of
the different alternatives, the final decision, and the pro-posed changes. Changes are
the result of implementing the decision captured in the resolution. They are performed
on process elements. Some examples of changes performed to process elements are:
activity x has been inserted; artifact y has been deleted; activity x has been moved to
be a sub-activity of activity z.

4.2 Prototype and Technical Infrastructure

This section presents the current state of the REMIS prototype, which we developed
with the goal of supporting our work concerning the systematic evolution of a process
model. It is important to mention that ideas behind REMIS were taken from previous
research work, where we developed an approach for evolving a text-based process
description within the aerospace domain [2]. Our solution relies on the fact that
modern word processing programs increasingly support the Extensible Markup
Language (XML) as a document format [24]. As an open format, XML can be
processed using a variety of widely available tools, including high-level libraries that
can be invoked from most modern programming languages. Using the interpreted,
object-oriented Python programming language [19], we developed a parser that is
able to navigate through the XML-specific version of the ASG process model
description, identifying the section headings and rationale information tables, and
moving information to and from the process evolution repository as necessary. This
functionality allowed us to update a database (i.e., the process evolution repository)
automatically after a set of changes, and to check the data for consistency before
doing any further editing.

We have used the Resource Description Framework (RDF) as a basis for
representing both process and rationale information in the process evolution
repository. In brief, RDF was originally designed for representing metadata about
Web resources, such as the title, author, modification date of a Web page, and
copyright. However, it is possible to generalize the concept of “Web Resource” and
say that RDF can be used to represent “things” that are identifiable. We see the

 The REMIS Approach for Rationale-Driven Process Model Evolution 19

Process element

Process element id

Change description
Event reference

Issue reference

Resolution reference

Process element's
attributes

Fig. 2. Rationale Information Integrated into the Process Model

rationale as metadata about processes. Fig. 2 shows an excerpt of the ASG process
model description as seen by the process engineer. It can be observed that the
document contains a section for rationale information references and a section for the
actual process description of attributes. The actual rationale information can be
documented in special tables at the end of the document. The process engineer can
then introduce the rationale information, perform the changes in the respective parts
of the document, and then establish a reference to the corresponding rationale.

Such metadata can be queried for describing the evolution of processes. RDF’s
conceptual model allows describing ‘things’ by using statements and models such as
nodes and arcs in a graph. We use the RDF/XML syntax [14] for storing and querying
RDF graphs in the database.

Fig. 3 presents the REMIS’ user interface and the main functionality offered. This
functionality supports the method we have designed so far for systematically
changing a process model. Let us assume that the process engineer(s) or person(s)

20 A. Ocampo and J. Münch

Fig. 3. Prototype Tool Support

responsible have identified an issue. Let us assume that the process engineer(s) or
person(s) responsible have identified an issue. First, he/they should extract the current
version from the process evolution repository (step 1 in Fig. 3).

This can be done using the REMIS function, which, given a parameter with the
desired version, generates a word document from the process evolution repository.

The process engineer can document the event, the identified issue, the alternatives
proposed to solve the issue, and the resolution taken (see Fig. 2). Once this is done,
the process engineer can change the process model, and reference the changes to the
just documented rationale. After having performed all changes, he can use the load
functionality from REMIS (step 2 in Fig. 3). Once this is done, the process engineer
can update the process in the process evolution repository with the new changes. He
can do this by using the REMIS functionality that updates the process information and
the corresponding rationale (step 3 in Fig. 3). This functionality is implemented in
such a way that REMIS compares the current version in the repository with the just
loaded and changed version, identifies the changes, and stores the new version with
its corresponding rationale information in the process evolution repository. We have
included as additional functionality the possibility to export the process model or the
rationale information to RDF models. This function was implemented for giving the
user the possibility to visualize the information in RDF-capable tools such as Protegé
[30] or for making queries to the RDF models with languages such as SPARQL [35].

5 Experience and Lessons Learned

The environment where we applied our conceptual model and tool corresponds to the
Adaptive Services Grid (ASG) project [1]. The ASG project was intended to develop

 The REMIS Approach for Rationale-Driven Process Model Evolution 21

a software infrastructure that enables design, implementation, and use of applications
based on adaptive services, namely the ASG platform. We were in charge of defining,
establishing, evaluating, and systematically evolving the development process applied
in the project to develop the platform. Development activities were performed, for
instance, within the ASG project by several teams from different companies,
universities, and research institutes. Development teams ranged from two-person
teams consisting of a PhD student and a master student to ten professional
programmers. Development teams were not collocated and team members spoke
different native languages.

The software process was described in terms of activities, artifacts, roles, and tools,
which are concepts that correspond to process element shown previously in Fig. 1.
The resulting process model includes both textual descriptions and diagrams that
illustrate the relationships between the entities of the model in a graphical way (e.g.,
workflows and role-specific views).

The ASG reference process model was developed mainly in 5 iterations. This
means that there are 5 versions of the model. At certain points in time, we interviewed
developers about the current process model version. Such interviews were taken as a
basis for performing changes to the process model. We discussed the interviews,
decided on the changes, and documented their rationale. Then we proceeded to per-
form the approved changes. These activities were supported by the REMIS prototype.

The final version contained 26 processes, 31 artifacts, 10 roles, and 11 tools. 353
changes to the model were performed in total from version 1 to version 5. These
changes correspond to 15 issues identified from the interviews. The interviews were
designed to elicit from developers important aspects such as the current problems and
improvement suggestions, which could be directly mapped to the issues and
alternatives. One major concern we had was the difficulty involved in first discussing
and then performing the changes to the model. At the beginning, it was hard for us,
acting as process engineers, to get accustomed to this way of work. However, after
having discussed a couple of issues, we felt more comfortable and saw the advantages
of it. REMIS assured that all relationships established in the Word document between
process changes and rationale were kept and stored in the process evolution
repository. REMIS also assured the consistent storage of different versions of the
process model. The information stored in the process evolution repository allowed us
to answer questions such as: Which process elements were affected by a change?
Which process element was affected by the highest number of changes? Which issue
had the largest impact on a process? Which are still unresolved issues? Which type of
issues demand the highest number of changes?

Concerning the visualization, it was important for us that before changing a
process model, we could see previous changes, where they were introduced, and why.
This way, we could better justify our new changes. REMIS supported us by
generating a given version of the process together with its rationale information as a
Word document. Another mechanism to visualize the information was querying the
RDF models exported from the tool, or the RDF models stored in the process
evolution repository. We used internally developed tools for that purpose. We
observed that the amount of information in one visualization graph or table can
become overwhelming and difficult to read. We are currently investigating how to
minimize this problem.

22 A. Ocampo and J. Münch

6 Summary and Outlook

This article presented the current results of our research work towards a systematic
mechanism for rationale supported process evolution. In particular, we described the
REMIS prototype developed for proving our conceptual model.

Despite certain difficulties arising from applying our concepts and prototype for
the first time to a practical, real world project, we consider our results quite
satisfactory. REMIS proved to be suitable for the set of problems at hand, and showed
the potential for being applicable to future similar problems. REMIS helped process
engineers in connecting the reasons for changes to the process model and in
consistently storing both in one place.

We think that our technology choice played a central role for the success of this
initial prototype trial. First of all, being able to produce easily processable XML
documents directly from a standard Word processing application was instrumental to
many of the tasks we performed in the project. On the one hand, using a standard
word processor (as opposed to a specialized process modeling application) not only
made our work easier and more comfortable, but also allowed us to interact with other
stakeholders in a straightforward way. On the other hand, having such documents
readily available in XML form provided us with a wide choice of technologies to
analyze and process the data.

During our work, we identified several open research questions. One of them deals
with the visualization of the large amount of information stored in the process
evolution repository. We are currently investigating mechanisms that facilitate such
visualization, e.g., we are trying to identify a set of “most wanted queries” based on
the special interests of organizations interested in managing process evolution. Such
queries can be deduced from the goals of the organization and reduce the scope of the
information to be analyzed.

Acknowledgments. We would like to thank all ASG project members who
participated in the interviews as well as Sonnhild Namingha from Fraunhofer IESE for
preparing the English editing of this paper. This work was partially supported by the
German Federal Ministry of Education and Research (V-Bench Project, No.01| SE 11 A).

References

1. ASG: Adaptive Services Grid. Integrated Project Supported By the European Commision.
Available at: http://asg-platform.org/cgi-bin/twiki/view/Public

2. Armbrust O, Ocampo A, Soto M. Tracing Process Model Evolution: A Semi-Formal
Process Modeling Approach. In: Oldevik, Jon (Ed.) u.a.: ECMDA Traceability Workshop
(ECMDA-TW) 2005 - Proceedings. Trondheim, 2005, 57-66.

3. Bröckers A, Lott, C.M, Rombach H.D, Verlage M. MVP-L Language Report Version 2.
Technical Report 265/95, Department of Computer Science, University of Kaiserslautern,
Germany, 1995.

4. Bohem B, Egyed A. Kwan J, Port D, Shah A, Madachy R. Using the WinWin Spiral
Model: A Case Study. IEEE Computer, vol 31, no 7, pp 33-44, 1998.

 The REMIS Approach for Rationale-Driven Process Model Evolution 23

5. Burge J, Brown D.C. An Integrated Approach for Software Design Checking Using
Rationale. In: Gero, J (ed) Design Computing and Cognition ’04. Kluwer Academic
Publishers, Netherlands, pp. 557-576, 2004.

6. Compendium Institute. http://www.compendiuminstitute.org/.
7. Conklin J, Begeman M.L. gIBIS: A Hypertext Tool for Exploratory Policy Discussion.

ACM Transactions on Office Information Systems, vol. 6, no. 4, pp. 303-331. 1988.
8. Curtis, B., Kellner, M. I., Over, J. 1992. Process modeling. Commun. ACM 35, 9 (Sep.

1992), 75-90.
9. Dutoit A. (Ed), McCall R. (Ed.), Mistrík I.(Ed.), Paech B. (Ed.). Rationale Management in

Software Engineering. Berlin: Springer-Verlag, 2006.
10. Dutoit A, Paech B. Rationale-Based Use Case Specification. Requirements Engineering

Journal. vol. 7, no 1, pp. 3-19, 2002.
11. Dellen B, Kohler K, Maurer F. Integrating Software Process Models and Design

Rationales. In. Proceedings of 11th Knowledge-Based Software Engineering Conference
(KBSE ’96), Syracuse, NY, pp. 84-93, 1996.

12. Fischer G, Lemke A, McCall R, Morch A. Making Argumentation Serve Design. In
Moran TP, Carroll JM (eds) Design Rationale, Concepts, Techniques and Use, Lawrence
Erlbaum Associates, Mahwah, NJ, 267-294.

13. Klein M. An Exception Handling Approach to Enhancing Consistency, Completeness, and
Correctness in Collabora-tive Requirements Capture. Concurrent Engineering Research
and Applications, vol 5, no 1, pp. 37-46. 1997.

14. Klyne, G., Carroll., J eds.: Resource Description Framework (RDF): Concepts and
Abstract Syntax W3C Recom-mendation 10 February 2004. Available at:
http://www.w3.org/TR/rdf-concepts/

15. Kunz W, Rittel H. Issues as Elements of Information Systems. Working Paper No. 131,
Institut für Grundlagen der Plannung, Universität Stuttgart, Germany, 1970.

16. Gotel O, Finkelstein A. Contribution Structures. In: Proceedings International Symposium
on Requirements Engi-neering, IEEE, York, pp. 100-107, 1995.

17. Lee, J. A Qualitative Decision Management System. In P.H. Winston & S. Shellard (eds.)
Artificial Intelligence at MIT: Expanding Frontiers, Vol.1, pp. 104-133, MIT Press,
Cambridge, MA, 1990.

18. Lee, J. SIBYL: a Tool for Managing Group Design Rationale. In Proceedings of the 1990
ACM Conference on Computer-Supported Cooperative Work (Los Angeles, California,
United States, October 07 - 10, 1990). CSCW '90. ACM Press, New York, NY, 79-92.

19. Lutz, M.: Programming Python (2nd Edition). O'Reilly & Associates, Sebastopol,
California (2001)

20. MacLean A, Young R.M., Belloti V, Moran T. Questions, Options, and Criteria: Elements
of Design Space Analy-sis. Human-Computer Interaction, Vol. 6, pp. 201-250, 1991.

21. Maurer F, Dellen B, Bendeck F, Goldmann S, Holz H, Kötting B, Schaaf, M. Merging
Project Planning and Web-Enabled Dynamic Workflow Technologies. IEEE Internet
Computing (2000), Vol. 4(3), pp.65-74.

22. McCall, R. PHIBIS: Procedural Hierarchical Issue-Based Information Systems.
Proceedings of the Conference on Architecture at the International Congress on Planning
and Design Theory, American Society of Mechanical Engi-neers, NY, pp. 17-22, 1987.

23. McCall R, Bennett P, D’Oronzio P, Oswald J, Shipman F.M, Wallace N. PHIDIAS:
Integrating CAD Graphics into Dynamic Hypertext. In Streitz N, Rizk A, André J (eds),
Hypertext: Concepts, Systems and Applications, Cam-bridge University Press, N.Y, pp.
152-165.

24 A. Ocampo and J. Münch

24. Merz, D.: XML for Word Processors. IBM Developer Works: 25 February 2004.
Available at: http://www-128.ibm.com/developerworks/library/x-matters33/

25. Nejmeh B.A, Riddle W.E. The PERFECT Approach to Experience-based Process
Evolution. Advances in Com-puters, M. Zelkowitz (Ed.), Academic Press, 2006

26. Ocampo A, Münch J.: Process Evolution Supported by Rationale: An Empirical
Investigation of Process Changes. In: SPW/ProSim 2006 - Proceedings. Berlin Springer-
Verlag Lecture Notes in Computer Science 3966, pp.,334-34, 2006.

27. Potts C, Bruns G. Recording the Reasons for Design Decisions. In Proceedings of the 10th
International Conference on Software Engineering (ICSE’10). Los Alamitos, CA, pp.
418-427, 1988.

28. Potts, C. and Takahashi, K. An Active Hypertext Model for System Requirements. In
Proceedings of the 7th interna-tional Workshop on Software Specification and Design
(Redondo Beach, California, December 06 - 07, 1993). IEEE Computer Society Press, Los
Alamitos, CA, pp. 62-68, 1993.

29. Pena-Mora F, Vadhavkar S. Augmenting Design Patterns with Design Rationale. Artificial
Intelligence for Engi-neering Desgin, Analysis, and Manufacturing, vol 11, pp. 93-108,
1996.

30. Protegé: Ontology Editor. 06 January 2006. Available at: http://protege.stanford.edu/
31. Ramesh B, Dhar V. Supporting Systems Development by Capturing Deliberations During

Requirements Engineer-ing. IEEE Transactions on Software Engineering, vol 18, no 6, pp.
498-510, 1992.

32. Reichert M, Dadam P. ADEPTflex - Supporting Dynamic Changes of Workflows Without
Losing Control. Journal of Intelligent Information Systems 10, 93- 29, 1998.

33. Sauer T. Project History and Decision Dependencies. Diploma Thesis. Univer-sity of
Kaiserslautern 2002.

34. Sutcliffe A, Ryan M. Experience with SCRAM, a Scenario Requirements Analysis
Method. In Proceedings of the 3rd International Conference on Requirements Engineering,
Colorado Springs, CO, pp. 164-173, 1998.

35. SPARQL: Query Language for RDF. 06 January 2006. Available at: http://www.w3.org/
TR/ rdf-sparql-query/

36. v.d. Aalst W, van Dongen B, Herbst J, Maruster L, Schimm G, Weijters A: Workflow
mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 27,
237-267 2003.

37. Verlage M, Dellen B, Maurer F, Münch J, A Synthesis of Two Process Support
Approaches, Proceedings of the 8th International Conference on Software Engineering and
Knowledge Engineering (SEKE’96), pp. 59-68, Lake Tahoe, Nevada, USA, June 10-12,
1996.

38. WinWin. The Win Win Spiral Model. Center for Software Engineering University of
Southern California http://sunset.usc.edu/research/WINWIN/winwinspiral.html

39. Weber B, Rinderle S, Wild W, Reichert, M. CCBR–Driven Business Process Evolution.
Int’l Conf. on Case-Based Reasoning (ICCBR’05), pp. 610-624, Chicago, August 2005.

	Introduction
	A Retrospective of Rationale-Driven Approaches and Tools
	Software Engineering and Rationale
	Process Modeling and Rationale

	Characterization of Rationale Tool Support
	Process Rationale Concepts and Prototype
	Concepts
	Prototype and Technical Infrastructure

	Experience and Lessons Learned
	Summary and Outlook
	References

