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Abstract. Nonnegative Matrix and Tensor Factorization (NMF/NTF)
and Sparse Component Analysis (SCA) have already found many po-
tential applications, especially in multi-way Blind Source Separation
(BSS), multi-dimensional data analysis, model reduction and sparse sig-
nal/image representations. In this paper we propose a family of the
modified Regularized Alternating Least Squares (RALS) algorithms for
NMF/NTF. By incorporating regularization and penalty terms into the
weighted Frobenius norm we are able to achieve sparse and/or smooth
representations of the desired solution, and to alleviate the problem of
getting stuck in local minima. We implemented the RALS algorithms in
our NMFLAB/NTFLAB Matlab Toolboxes, and compared them with
standard NMF algorithms. The proposed algorithms are characterized
by improved efficiency and convergence properties, especially for large-
scale problems.

1 Introduction and Problem Formulation

Nonnegative Matrix Factorization (NMF) and its multi-way extensions: Non-
negative Tensor Factorization (NTF) and Parallel Factor analysis (PARAFAC)
models with sparsity and/or non-negativity constraints have been recently pro-
posed as promising sparse and quite efficient representations of signals, images, or
general data [1,2,3,4,5,6,7,8,9,10]. From a viewpoint of data analysis, NMF/NTF
provide nonnegative and usually sparse common factors or hidden (latent) com-
ponents with physiological meaning and interpretation [4,7,11]. NMF, NTF and
SCA are used in a variety of applications, ranging from neuroscience and psy-
chometrics to chemometrics [1,2,7,8,9,10,11,12,13,14].

In this paper we impose nonnegativity and sparsity constraints, and possibly
other natural constraints, such as smoothness for the following linear model:

Y = AX + E, (1)
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where Y ∈ R
I×T is a matrix of the observed data or signals, A ∈ R

I×R
+ is

a mixing or basis matrix, X ∈ R
R×T
+ represents unknown sources or hidden

(nonnegative and sparse) components, and E ∈ R
I×T represents a noise or error

(residuum) matrix. Usually, in BSS applications: T >> I ≥ R, and R is known
or can be estimated using SVD. Our objective is to estimate the mixing (basis)
matrix A and the sources X, subject to nonnegativity and sparsity constraints.

The above model can be extended to the 3D PARAFAC2 or NTF2 model in
which a given tensor Y ∈ R

I×T×K is decomposed to a set of matrices X, D and
{A1, A2, ..., AK} with nonnegative entries [9,15,16,17]. The NTF2 model can be
described as

Y k = AkDkX + Ek, (k = 1, 2, . . . , K) (2)

where Y k = Y :,:,k = [yitk]I×T ∈ R
I×T are frontal slices of Y ∈ R

I×T×K , K
is a number of frontal slices, Ak = [airk]I×R ∈ R

I×R
+ are the basis (mixing

matrices), Dk ∈ R
R×R
+ is a diagonal matrix that holds the k-th row of the

D ∈ R
K×R
+ in its main diagonal, and X = [xrt]R×T ∈ R

R×T
+ is a matrix repre-

senting the sources (or hidden nonnegative components or common factors), and
Ek = E:,:,k ∈ R

I×T is the k-th frontal slice of the tensor E ∈ R
I×T×K represent-

ing error or noise depending upon the application. The objective is to estimate
the set of nonnegative matrices {Ak}, (k, . . . , K), D and X, subject to some
non-negativity constraints and other possible natural constraints such as sparse-
ness and/or smoothness. Since the diagonal matrices Dk are scaling matrices
they can be usually absorbed by the matrices Ak by introducing the column-
normalized matrices Ak := AkDk, so usually in BSS applications the matrix X
and the set of scaled matrices A1, . . . , AK need only to be estimated. It should be
noted that the 3D PARAFAC2 and the corresponding NTF2 models1 can be eas-
ily transformed to a 2D non-negative matrix factorization problem by unfolding
(matricizing) tensors. Such 2D models are equivalent to a standard NMF model.
In fact, the 3D PARAFAC2 model can be represented as column-wise unfolding.
The unfolded system can be described by a single system of the matrix equation:
Y = AX + E, where Y = [Y 1; Y 2; . . . ; Y K ] ∈ R

IK×T is a column-wise (verti-
cal) unfolded matrix of all the frontal slices Y k, A = [A1; A2; . . . ; AK ] ∈ R

IK×R
+

is a column-wise unfolded matrix of the slices Ak representing (the frontal
slices), and E = [E1; E2; . . . ; EK ] ∈ R

IK×T is a column-wise unfolded matrix of
errors.

Solutions of NMF algorithms may not be unique, therefore it is often required
to impose additional data-driven natural constraints, such as sparsity or smooth-
ness. Moreover, many existing algorithms for NMF are prohibitively slow and
inefficient, especially for very large-scale problems. For large-scale problems a
promising approach is to apply the Alternating Least Squares (ALS) algorithm
[1,8]. Unfortunately, the standard ALS algorithm and its simple modifications
suffer from unstable convergence properties, giving often not optimum solution,
1 Analogously, NTF1 model described by a set of the matrix equations Y k =

ADkXk + Ek, k = 1, 2, . . . , K, can be transformed to the standard NMF problem
by row-wise unfolding.
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and they are characterized by high sensitivity to near-collinear data [1,4,8,10].
The main objective of this paper is to develop efficient and robust regularized
ALS (RALS) algorithms. For this purpose, we exploit several approaches from
constrained optimization and regularization theory, and propose additionally
several heuristic algorithms.

2 Regularized ALS Algorithms

The most of known and used adaptive algorithms for NMF are based on alternat-
ing minimization of the squared Euclidean distance expressed by the Frobenius
norm: DF (Y ||A, X) = 1

2‖Y − AX‖2
F , subject to nonnegativity constraints of

all the elements in A and X. Such a cost function is optimal for a Gaussian
distributed noise [12,11].

In this paper we consider minimization of more general and flexible cost func-
tion that is a regularized weighted least-squares function with sparsity penalties:

D
(α)
F (Y ||AX) =

1
2
‖W−1/2(Y − AX)‖2

F + αAs ||A||L1 + αXs ||X ||L1

+
αAr

2
||W−1/2ALA||2F +

αXr

2
||LXX||2F , (3)

(usually subject to additional constraints such as nonnegativity constraints)
where W ∈ R

I×I is symmetric positive definite weighting matrix2, αAs ≥ 0 and
αXs ≥ 0 are parameters controlling a sparsity level of the matrices, and αAr ≥ 0,
αXr ≥ 0 are regularization coefficients. The penalty terms ||A||L1 =

∑
ir |air |

and ||X||L1 =
∑

rt |xrt| enforce sparsification in A and X, respectively, and
sparseness can be adjusted by αAs and αXs. The regularization matrices LA

and LX are used to enforce a certain application-dependent characteristics of
the solution. These matrices are typically unit diagonal matrices or discrete ap-
proximations to some derivative operator. Another option is to use the following
setting: αXrL

T
XLX = AT (I − ASAT

S )A where AS contains the R first prin-
cipal eigenvectors of the data covariance matrix RY = (Y T Y )/I = UΣUT

associated with the R largest singular values [2]. It is worth noting that both
matrices LT

XLX ∈ R
R×R and LALT

A ∈ R
R×R are in general symmetric and

positive definite matrices.
The gradients of the cost function (3) with respect to the unknown matrices

A and X are expressed by

∂D
(α)
F (Y ||AX)

∂A
= W−1(AX − Y )XT + αAs SA + αAr W−1A LALT

A, (4)

∂D
(α)
F (Y ||AX)

∂X
= AT W−1(AX − Y ) + αXs SX + αXr LT

XLX X, (5)

2 W −1/2 = V Λ−1/2V T means in Matlab notation W −1/2 = inv(sqrtm(W )) and
‖W −1/2(Y − AX)‖2

F = tr
�
(Y − AX)T W −1(Y − AX)

�
.
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where SA = sign(A) and SX = sign(X) 3. In the particular case for a NMF
problem the matrices SA, SX will be transformed to the matrices ĒA and ĒX

of the same dimension with all the entries equal to ones.
By equalizing the gradients (4)-(5) to zero, we obtain the following fixed-point

regularized ALS algorithm

A ← (Y XT − αAsWSA)(XXT + αAr LALT
A)−1 (6)

X ← (AT W−1A + αXr LT
XLX)−1(AT W−1Y − αXs SX). (7)

In order to achieve high performance, the regularization parameters αAr ≥ 0
and αXr ≥ 0 are usually not necessarily fixed but rather should be dynam-
ically changed in time, depending how far we are from the desired solution.
For example, we may gradually decrease exponentially the regularization coef-
ficients during a convergence process. We found by computer experiments that
quite a good performance for small-scale problems can be achieved by choosing
αAr(k) = αXr(k) = α0 exp(−k/τ) with typical values α0 = 20 and τ = 50 and
LT

XLX ≈ ĒX where Ē means a matrix with all ones entries4. For large-scale
problems α0 should be higher.

An alternative approach is to keep the regularization parameters fixed and
try to compensate (reduce) their influence by additional terms as the algorithm
converges to the desired solution. For this purpose let us consider the following
simple approach [4,10]. It is easy to note that the equation (7) can be re-written
in the equivalent form as

(AT W−1A + αXr LT
XLX)Xnew = AT W−1Y − αXs SX (8)

In order to compensate the regularization term αXr LT
XLXXnew we can add to

the right-hand side the similar term αXr LT
XLXXold which gradually compen-

sates the regularization term when X → X∗, i.e.

(AT W−1A + αXr LT
XLX)Xnew = AT W−1Y − αXs SX + αXr LT

XLXXold

The magnitude of the bias (or influence of the regularization term) is a function
of the difference between Xold and Xnew. As the algorithm tends to converge
to the desired solution X∗, this difference is gradually decreasing, and the effect
of regularization and bias is smaller and smaller.

Hence, after simple mathematical manipulations our RALS algorithm can
take the following general and flexible form:

A ← (Y XT − αAsWSA + αAr ALALT
A)(XXT + αAr LALT

A)+, (9)
X ← (AT W−1A + αXrL

T
XLX)+(AT W−1Y − αXsSX + αXrL

T
XLXX),

(10)
3 sign(X) means a componentwise sign operation (or its robust approximation) for

each element in X .
4 In this case, to drive the RALS algorithm rigorously, we have used the following mod-

ified regularized cost functions: 0.5‖Y −AX‖2
F +αX‖X‖L1 +0.5αXr tr{XT ĒX}+

αA‖A‖L1 + 0.5αAr tr{AĒAT }.
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where A+ means Moore-Penrose pseudo-inverse of A. It should be noted that
the proposed algorithm for W = I and for all the regularization coefficients
setting to zero (αAs = αAr = αXs = αXr = 0) simplifies to the standard ALS.
On the other hand, if we take all the regularization parameters equal to zero and
W = RE = (EET )/I, where the error matrix E = Y −AX is evaluated in each
iteration step, we obtain the extended BLUE (Best Linear Unbiased Estimated)
ALS algorithm. Finally, in the special case when W = I and matrices LALT

A

and LT
XLX are diagonal our algorithm is similar to the MALS (modified ALS)

proposed by Wang et al in [10], and Hancewicz and Wang in [4].

3 Implementation of RALS Algorithms for NMF

On the basis of the above consideration we have developed and implemented in
MATLAB the following RALS algorithm for the NMF, especially suitable for
large-scale problems:

Outline of the RALS algorithm for NMF

– 1a. Set the initial values of matrices W , LA, LX and parameters αAs, αXs,
αAr, αXr,

– 1b. Set the initial values of A, (e.g., multi-start random initialization, or
eigenvalue decomposition (SVD), ICA, or dissimilarity criteria [15,4,8],

– 2a. Calculate the new estimate of Xnew from Y and Aold using iterative
formula (10),(set SX = ĒX),

– 2b. Xnew = max{Xnew, 0} (set negative values to zero or alternatively
to a small positive value, typically, ε = 10−16). Impose additional optional
natural constraints on rows of X such as low-pass filtering or smoothness,

– 3a. Calculate the new estimate of Anew from (9), (set SA = ĒA),
– 3b. Anew = max{Anew, 0} (set negative values to zero or to a small posi-

tive value ε). Impose some additional finite constraints such as clustering or
smoothness,

– 3c. Normalize each column of Anew to unit length l1-norm,
– 4. Repeat the steps (2) and (3) until convergence criterion is reached.

The above algorithm with a suboptimal set of the default parameters have been
implemented in our NMFLAB and NTFLAB [15].

Further improvement of the RALS algorithm has been achieved by applying a
hierarchical multi-layer system with multi-start initialization [13,15] which can
be implemented as follows: In the first step, we perform the basic decomposition
(factorization) Y = A1X1 using the RALS algorithm. In the second stage, the
results obtained from the first stage are used to perform the similar decompo-
sition: X1 = A2X2 using the same or different set of parameters, and so on.
We continue our factorization taking into account only the last achieved compo-
nents. The process can be repeated arbitrarily many times until some stopping
criteria are satisfied. In each step, we usually obtain gradual improvements of
the performance. Thus, our model has the form: Y = A1A2 · · · ALXL, with the
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(a) (b)

(c) (d)

Fig. 1. Example 1: (a) Original 6 sources of Mandelbrot fractal images; (b) Observed
12 mixed images (uniformly distributed random mixing matrix); (c) Estimated sources
using the standard Lee-Seung algorithm with Kullback-Leibler divergence (SIR = 6.4,
7.6, 0.2, 3.7, -0.2, 7.3 [dB], respectively); (d) Estimated source images using RALS
algorithm (SIR = 50.61, 128.1, 17.6, 41, 16.6, 13.1 [dB], respectively) given by (6)–(7)
with parameters: W = I (identity), αAr = αAs = αXs = 0, LT

XLX = Ē and αXr

given by the exponential rule with αXr = 20 exp(−k/50).
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(a) (b)

Fig. 2. Example 1: Histograms of 100 mean-SIR samples from Monte Carlo analysis
performed with the algorithms: (a) standard ALS; (b) RALS with the same parameters
as in Fig. 1.

basis nonnegative matrix defined as A = A1A2 · · ·AL. An open theoretical issue
is to prove mathematically or explain more rigorously why the multilayer dis-
tributed NMF/NTF system results in considerable improvement in performance
and reduces the risk of getting stuck at local minima. An intuitive explanation
is as follows: the multilayer system provides a sparse distributed representation
of basis matrix A, which in general can be a dense matrix. So even a true basis
matrix A is not sparse it can be represented by a product of sparse factors. In
each layer we force (or encourage) a sparse representation. On the other hand,
we found by extensive experiments that if the basis matrix is very sparse, most
NTF/NMF algorithms have improved performance (see next section). However,
not all real data provides sufficiently sparse representations, so the main idea is
to model any data by a distributed sparse hierarchical multilayer system. It is
also interesting to note that such multilayer systems are biologically motivated
and plausible.

4 Simulation Results

In order to confirm validity and high performance of the proposed algorithm
we extensively tested it for various sets of free parameters and compared them
with standard NMF algorithms. We illustrate the performance by giving only
two examples. In the first example (see Fig. 1), we used 6 images which were
mixed by a uniformly distributed randomly generated mixing matrix A ∈ R

12×6.
We found by the Monte Carlo analysis performed for 100 runs that our RALS
algorithm (with the exponentially decaying regularization term for the matrix
X) significantly outperforms the standard ALS (see Fig. 2).

In the second example, the 9 sparse nonnegative signals (representing syn-
thetic spectra) have been mixed by the mixing matrix A ∈ R

18×9. Additive
Gaussian noise with SNR = 20 dB has been added. In this case the standard
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Example 2: (a) Original 9 source signals; (b) Observed 18 mixed signals (uni-
formly distributed random mixing matrix) with SNR = 20 dB; (c) Estimated sources
using the standard Lee-Seung algorithm with Kullback-Leibler divergence (SIR = 3.7,
8.2, 3.6, 6.1, 4.5, 2.9, 5.2, 5.8, 2.2 [dB], respectively) with 1 layer; (d) Estimated sources
using the standard Lee-Seung algorithm with Kullback-Leibler divergence (SIR = 6.9,
6.6, 6.7, 18.2, 14, 8.7, 7.6, 5.8, 15.9 [dB], respectively) with 3 layers; (e) Estimated
source images using the RALS algorithm (SIR = 18.2, 12.2, 21.1, 20.7, 22.5, 19.1, 21.3,
19.9 [dB], respectively) given by (9)–(10) with 1 layer and for the following parameters:
W = RE, αAr = αAs = 0, αXs = αXr = 0.1, LT

XLX = I; (f) Estimated source images
using the same RALS algorithm (SIR = 19.4, 17.4, 21.5, 22.6, 17.9, 18.5, 22.2, 21.6,
22.2 [dB], respectively) with 3 layers.
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NMF algorithms completely failed to estimate the original sources while the
RALS algorithm successfully estimates all the sources. We observed a consid-
erable improvement in performance applying the multilayer procedure with 10
initializations in each layer.

We also performed the test on large-scale problems, increasing the number of
observations in the second example to 1000. The mixing matrix A ∈ R

1000×9 was
randomly chosen. For such a case we got the elapsed times and mean-SIRs given
in Table 1. It should be noted than the ISRA and EMML algorithms (which are
the basic Lee-Seung multiplicative algorithms that minimize the Frobenius norm
and Kullback-Leibler divergence, respectively) failed to estimate the original
components.

Table 1. Performance of the NMF algorithms for a large-scale problem with 1000
observations and 9 nonnegative components

Algorithm Elapsed time [s] Mean-SIRs [dB]
RALS 16.6 SIR > 43
ISRA 36 SIR < 10

EMML 81 SIR < 16

5 Conclusions and Discussion

In this paper we proposed the generalized and flexible cost function (controlled
by sparsity penalty and flexible multiple regularization terms) that allows us to
derive a family of robust and efficient alternating least squares algorithms for
NMF and NTF. We proposed the method which allows us to automatically self-
regulate or self-compensate the regularization terms. This is a unique modifica-
tion of the standard ALS algorithm and to the authors’ best knowledge, the first
time this type of constraints has been combined together with the ALS algorithm
for applications to NMF and NTF. The performance of the proposed algorithm
is compared with the ordinary ALS algorithm for NMF. The proposed algorithm
is shown to be superior in terms of performance, component resolution ability,
speed and convergence properties, and ability to be used for large-scale problems.
The proposed RALS algorithm may be also promising for other applications, such
as Sparse Component Analysis and EM Factor Analysis because it overcomes the
problems associated with ALS, i.e. the solution of RALS tends not to get trapped
in local minima and will generally converges to the global desired solution.
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