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Preface

ISNN 2007 – the Fourth International Symposium on Neural Networks—was held
in Nanjing, China, as a sequel of ISNN 2004/ISNN 2005/ISNN 2006. ISNN has
now become a well-established conference series on neural networks in the region
and around the world, with growing popularity and increasing quality. Nanjing
is an old capital of China, a modern metropolis with a 2470-year history and
rich cultural heritage. All participants of ISNN 2007 had a technically rewarding
experience as well as memorable experiences in this great city.

A neural network is an information processing structure inspired by biological
nervous systems, such as the brain. It consists of a large number of highly inter-
connected processing elements, called neurons. It has the capability of learning
from example. The field of neural networks has evolved rapidly in recent years.
It has become a fusion of a number of research areas in engineering, computer
science, mathematics, artificial intelligence, operations research, systems theory,
biology, and neuroscience. Neural networks have been widely applied for control,
optimization, pattern recognition, image processing, signal processing, etc.

ISNN 2007 aimed to provide a high-level international forum for scientists,
engineers, and educators to present the state of the art of neural network research
and applications in diverse fields. The symposium featured plenary lectures given
by worldwide renowned scholars, regular sessions with broad coverage, and some
special sessions focusing on popular topics.

The symposium received a total of 1975 submissions from 55 countries and
regions across all six continents. The symposium proceedings consists of 454
papers among which 262 were accepted as long papers and 192 were accepted as
short papers. We would like to express our sincere gratitude to all reviewers of
ISNN 2007 for the time and effort they generously gave to the symposium. We
are very grateful to the National Natural Science Foundation of China, K. C.
Wong Education Foundation of Hong Kong, the Southeast University of China,
the Chinese University of Hong Kong, and the University of Illinois at Chicago
for their financial support. We would also like to thank the publisher, Springer,
for cooperation in publishing the proceedings in the prestigious series of Lecture
Notes in Computer Science.

Derong Liu
Shumin Fei

Zeng-Guang Hou
Huaguang Zhang

Changyin Sun
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Abstract. This paper concerns how to compute multi-valued functions using 
three-layer feedforward neural networks with one hidden layer. Firstly, we 
define strongly and weakly symmetric functions. Then we give a network to 
compute a specific strongly symmetric function. The number of the hidden 
neurons is given and the weights are 1 or -1. Algorithm 1 modifies the weights 
to real numbers to compute arbitrary strongly symmetric functions. Theorem 3 
extends the results to compute any multi-valued functions. Finally, we compare 
the complexity of our network with that of binary one. Our network needs 
fewer neurons. 

1   Introduction 

Multi-valued multi-threshold neural networks can be used for solving many kinds  
of problems, such as multi-valued logic, machine learning, data-mining, pattern 
recognition and etc [1-2]. 

Diep [3] gives the number of functions that can be calculated by a multi-threshold 
neuron and gives a lower bound on the number of weights required to implement a 
universal network. Žunić [4] derives an upper bound of the number of linear multi-
valued threshold functions defined on some subsets of {0,1}n. Ojha [5] enumerates 
the number of equivalence classes of linear threshold functions from a geometric 
lattice perspective in weight space. Ngom [6] points out that one strip (points located 
between two parallel hyperplanes) corresponding to one hidden neuron and constructs 
two neural networks based on these hidden neurons to compute a given but arbitrary 
multi-valued function. Young [7] deals with classification task for real-valued input. 
Anthony [1] presents two consistent hypothesis finders to learn multi-threshold 
functions. Obradović and Parberry [8, 9] view multi-threshold networks as analog 
networks of limited precision. In [9], the authors give two learning algorithms: one is 
for realizing any weakly symmetric q-valued functions and the other is for realizing 
arbitrary q-valued functions. But they use seven layer and five layer neural networks 
respectively. In [8], the authors use a simple three layer network with q-1 hidden 
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neurons to realize n-variable q-valued functions. But they need to increase the inputs 
to n+q-1 variables. 

Our method is different from the above algorithms. We extend the technique of  
Siu [10] (Chapter 3) from binary valued to multi-valued cases. 

2   Preliminaries 

R(q)={0,1,…,q-1} is a residue class ring. In this paper, we assume q≥3 and use q to 
replace 0. A q-valued function f can be denoted by Rn(q)→R(q) or 
{1,2,…,q}n→{1,2,…,q}. 

Assume that X=(x1,…,xn)
T is the input vector of a neuron, where xi∈{q,1,…,q-1}. 

W=(w1,…,wn)
T is the weight vector, where wi∈R (R is real field). Denote WTX=

1

n

i i
i

w x
=
∑ . 

A q-valued (or (q-1)-threshold) neuron Y is defined as Y(t1,t2,…,tq-1) 

=

( )
[ )

)

1

1 2

1

,

1 ,

... ...

1 ,

T

T

T
q

q W X t

W X t t

q W X t −

⎧ ∈ −∞
⎪ ∈⎪
⎨
⎪
⎪ ⎡− ∈ +∞⎣⎩

, where t1<t2<…<tq-1 are thresholds. 

In order to give the method for computing arbitrary q-valued functions step by 
step, we give the concepts of weakly symmetric function and strongly symmetric 
function. 

Definition 1 (Weakly Symmetric Function). A q-valued function f: 
{1,2,…,q}n→{1,2,…,q} is said to be weakly symmetric if f(x1,…,xn)=f(x(1),…,x(n))  
for any permutation (x(1),…,x(n)) of (x1,…,xn). 

Definition 2 (Strongly Symmetric Function). A q-valued function f: 
{1,2,…,q}n→{1,2,…,q} is said to be strongly symmetric if f depends only on  

the sum of its input values 
1

n

i
i

x
=
∑ . 

3   Computing Arbitrary Multi-valued Functions 

3.1   Neurons 

Assume that f(x1,…,xn) is an n-variable strongly symmetric function. Because xi∈ 

{q,1,…,q-1}, we have n≤
1

n

i
i

x
=
∑ ≤qn. Divide the interval [n,qn]=[n,qn+1) into (q+d-3)s 

subintervals [k1
(0), k1

(1)), [k1
(1), k1

(2)),…, [k1
(q+d-4), k1

(q+d-3)),…,[ks
(0), ks

(1)), [ks
(1), ks

(2)) ,…, 
[ks

(q+d-4), ks
(q+d-3)), where d is an integer and we will give its value in Theorem 1, kj

(0), 
kj

(1),…, kj
(q+d-3) also are integers, kj

(i)=kj
(i-1)+2, j=1,2,…,s, i=1,2,…,q+d-3. Without loss 

of generality, we assume ks
(q+d-3)=qn+1 (i.e. 2(q+d-3)|(q-1)n+1 and s=  

((q-1)n+1)/2(q+d-3)) to avoid the use of cumbersome notations. 
1

n

i
i

x
=
∑  must belong to 

one of the subintervals. 
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In order to compute f, we consider a three layer feedforward neural network. In the 
second (or hidden) layer, we construct 2ds (q-1)-threshold neurons Y1j, Y2j,…,Ydj, 
Y(d+1)j,…,Y(2d-1)j, Y(2d)j, j=1,2,…,s. Their outputs are denoted by Y1j(kj

(0), kj
(1),…,kj

(q-2)), 
Y2j(kj

(1), kj
(2),…,kj

(q-1)),…,Ydj(kj
(d-1), kj

(d),…,kj
(d+q-3)), Y(d+1)j(-kj

(d+q-3),…,-kj
(d), -kj

(d-

1)),…,Y(2d-1)j(-kj
(q-1),…,-kj

(2), -kj
(1)), Y(2d)j(-kj

(q-2),…,-kj
(1), -kj

(0)), j=1,2,…,s, respectively, 
where we use kj

(0), kj
(1),…,kj

(d+q-3), -kj
(d+q-3),…, -kj

(1), -kj
(0) as thresholds. The outputs of 

neurons in the hidden layer are listed below. 

( ) ( ) ( )( )

( )

( ) ( )

( )

( ) ( )( )

( )

( ) ( )

1

1

1
1 3

1

3

1

2 2

1

2 2 2
2 1 2

1

,

1, , 1,2,...,
, ,...,

...

1,

,

...

,...,
2, , 1,..

n
i

i j
i

n
i i

i i i q j i j
iij j j j

n
i q

i j
i

n
i d q

i j
i

i d q i d n
ij j j i d i d

j i j
i

q x k

k x k i d
Y k k k

q x k

q x k

Y k k
q k x k i d

−

=

−
− + −

=

+ −

=

− + + −

=

− + + − − +
− + + − +

=

⎧ <⎪
⎪
⎪

≤ < =⎪= ⎨
⎪
⎪
⎪

− ≥⎪
⎩

− < −

− − =
− − ≤ − < − = +

∑

∑

∑

∑

∑
( )2

1

.,2

1,
n

i d
i j

i

d

q x k − +

=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎧⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪ ⎨⎪ ⎪⎪ ⎪⎪ ⎪⎪ − − ≥ −⎪⎪ ⎩⎩

∑

 (1) 

In the following, we omit the thresholds in the neurons Yij, i=1,2,…,2d, j=1,2,…,s, 
e.g. Y2j(kj

(1), kj
(2),…,kj

(q-1)) is denoted by Y2j( ). 

3.2   Computing a Specific Strongly Symmetric Function 

We assume that the neurons Y1j,…,Ydj have weights 1 and Y(d+1)j,…,Y(2d)j have  
weights -1. The third (or output) layer only has one neuron z which is also a q-valued 
neuron. Its inputs are the 2ds outputs of the neurons Yij. Because all weights of the 

neuron z are assumed to equal 1, so we need to compute ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  for various cases 

using the Eq. (1). For the notation of simplicity, we denote ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  when 

1

n

i
i

x
=
∑ =kj

(i) 

(kj
(i)+1) by ∑(i) (∑(i)+1). 

Case 1: there exists a j such that 
1

n

i
i

x
=
∑ =kj

(0), then 

Y1j( )=1  1

1
l

q l j
Y

q l j

− <⎧
= ⎨ >⎩

  …  Ydj( )=q  
1

dl

q l j
Y

q l j

− <⎧
= ⎨ >⎩

 

Y(d+1)j=q-1  ( 1) 1d l

q l j
Y

q l j+

<⎧
= ⎨ − >⎩

 …  Y(2d)j=q-1  (2 ) 1d l

q l j
Y

q l j

<⎧
= ⎨ − >⎩

 

So, ∑(0)=2dq-q-d+1+(2dq-d)(s-1). 
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Case 2: there exists a j such that 
1

n

i
i

x
=
∑ =kj

(0)+1, then 

Y1j( )=1  1

1
l

q l j
Y

q l j

− <⎧
= ⎨ >⎩

  …  Ydj( )=q  
1

dl

q l j
Y

q l j

− <⎧
= ⎨ >⎩

 

Y(d+1)j=q-1  ( 1) 1d l

q l j
Y

q l j+

<⎧
= ⎨ − >⎩

 …  Y(2d)j=q-2  (2 ) 1d l

q l j
Y

q l j

<⎧
= ⎨ − >⎩

 

So, ∑(0)+1=2dq-q-d+(2dq-d)(s-1). 
Computing the other cases similarly, we can get Eq. (2).  

( )
2

1 1

s d

ij
j i

Y
= =
∑∑ =

( )

1

( )

1

( )

1

( )

1

2 ( 1) ( 1) (2 )( 1),

0 2

2 ( 1) (2 )( 1), 1

(2 )( 1),

1 3

(2 )( 1), 1

( 2)( 1) (2

n
i

i j
i

n
i

i j
i

n
i

i j
i

n
i

i j
i

dq i q d i dq d s x k

if i d

dq i q d dq d s x k

dq dq d s x k

if d i q

dq d dq d s x k

dq i q q

=

=

=

=

⎫− + − + + + − − = ⎪⎪ ≤ ≤ −⎬
⎪− + − + − − = + ⎪⎭

⎫+ − − = ⎪⎪ − ≤ ≤ −⎬
⎪− + − − = + ⎪⎭

+ − + − +

∑

∑

∑

∑

( )

1

( )

1

)( 1),

2 4

( 3) (2 )( 1), 1

n
i

i j
i

n
i

i j
i

dq d s x k

if q i d q

dq i q q d dq d s x k

=

=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ ⎫− − =⎪ ⎪⎪⎪ − ≤ ≤ + −⎬⎪ ⎪+ − + − + − − = +⎪ ⎪⎭⎩

∑

∑

 (2) 

In order to realize q-valued functions, ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  must have at least q different 

values. From Eq. (2) we see that this is related to d. Theorem 1 gives the value of d. 

Theorem 1. In order to make ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  have at least q different values, d=q-1 is 

necessary and sufficient. 

Proof. From Eq. (2), we know that ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  always includes (2dq-d)(s-1). For a 

residue class ring, this has no affection to the number of values. So in this proof, we 
omit them. 

1. Sufficiency: d=q-1 ⇒ ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  have at least q different values. 

(1) When 0≤i≤d-2=q-3, ∑(i)=2dq-(i+1)q-d+(i+1)=1-q+i+1=i+2. Since 2≤i+2≤q-1, ∑(i) 
can take the value 2,3,...,q-1. 
(2) When 0≤i≤d-2=q-3, ∑(i)+1=2dq-(i+1)q-d=1-q=1. 
(3) When q-2≤i≤d+q-4=2q-5, ∑(i)=dq+(i-q+2)(q-1)=q-i-2. Since 3-q≤q-i-2≤q, ∑(i) can 
take the value 3,4,...,q. 
(4) When q-2≤i≤d+q-4=2q-5, ∑(i)+1=dq+(i-q+3)q-d=1-q=1. 

From (1)-(4), we can see that ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  can take the value 1,2,...,q. 

2. Necessity: d≤q-2 ⇒ ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  can not take q different values. 
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(1) When 0≤i≤d-2, ∑(i)=2dq-(i+1)q-d+(i+1)=i+1-d. Because 1-d≤i+1-d≤q-1 and  
d≤q-2, we can get that ∑(i)≥3. 
(2) When 0≤i≤d-2, ∑(i)+1=2dq-(i+1)q-d=q-d≥2. 
(3) When d-1≤i≤q-3, ∑(i)=dq=q. 
(4) When d-1≤i≤q-3, ∑(i)+1=dq-d=q-d≥2. 
(5) When q-2≤i≤d+q-4, ∑(i)=dq+(i-q+2)(q-1)=q-i-2. Because 2-d≤q-i-2≤q and d≤q-2, 
we can get that ∑(i)≥4. 
(6) When q-2≤i≤d+q-4, ∑(i)+1=dq+(i-q+3)q-d=q-d≥2. 

From (1)-(6), we can see that ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  can not take the value 1.                                □ 

Remark 1. According to Theorem 1, the input of neuron z is ( ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  mod q) 

instead of ( )
2

1 1

s d

ij
j i

Y
= =
∑∑  directly. Otherwise, if the input of z is ( )

2

1 1

s d

ij
j i

Y
= =
∑∑ , d=q-1 will 

only be the sufficient condition. That is to say, d≤q-1. 
 

The inputs and weights of z have been determined. Now we give the q-1 thresholds of 
z. From the sufficiency proof of Theorem 1, we can easily get ∑(0)+1=1, ∑(i)=i+2, 
0≤i≤q-3. So they can be taken as the q-1 thresholds of z. Then, we obtain a three layer 
feedforward neural network which realizes a specific strongly symmetric function: 

f(x1,…,xn)=z(∑(0)+1,∑(0),∑(1),…,∑(q-3))= 
1

2

1

q

q

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪ −⎩

 for
1

n

i
i

x
=
∑ =

( 2)

(0) (2 5)

(0)

( 3) ( 1)

1, , 1

,

q
j

q
j j

j

q q
j j

k

k k

k

k k

−

−

− −

⎧
⎪ + +⎪⎪
⎨
⎪
⎪
⎪⎩

 j=1,2,…,s. 

Since s=((q-1)n+1)/2(q+d-3), there are 2ds= 1

2 2( 2)

qn q n

q

+ −+
−

 neurons in the hidden 

layer for q≥3. This is the complexity of the neural network. 

3.3   Computing Arbitrary Strongly Symmetric Functions 

If we allow Yij have integer and rational weights, we can prove the following theorem. 

Theorem 2. Let f(x1,…,xn) be a q-valued strongly symmetric function. Then f can be 

computed using a three layer feedforward neural network with 2ds= 1

2 2( 2)

qn q n

q

+ −+
−

 (q-1)-

threshold neurons in the hidden layer which have integer and rational weights chosen 
from the set S={±1,…,±q, ±1/2,…,±q/2, ±1/3,…,±q/3,…,±1/q,…,±(q-1)/q}. 

Proof. Since f only depends on the sum of its inputs 
1

n

i
i

x
=
∑ , then we assume that 

f(x1,…,xn)=am∈{1,2,…,q}, where m=
1

n

i
i

x
=
∑ ∈[n, qn]. For proving the theorem, we only 

need to prove that we can choose a set of integer and rational weights from the given 
set S for the neurons Yij i=1,2,…,2d, j=1,…,s such that the constructed network 



6 N. Jiang et al. 

outputs am. For every m, we choose fixed inputs x1,…,xn such that 
1

n

i
i

x
=
∑ =m, without 

loss of generality, let (x1,…,xn)=(1,1,…,1), (2,1,…,1), (2,2,…,1),…,(q,q,…,q). Then 
we choose weights w1

(ij),…,wn
(ij) for Yij, where, wl

(ij)∈S, l=1,2,…,n, i=1,2,…,d. The 
weights of the neurons Y(d+1)j,…,Y(2d)j are set to be -w1

(dj),…,-wn
(dj),…, -w1

(1j),…,-wn
(1j), 

respectively. We require that the output of the neurons satisfying ( )
2

1 1

s d

ij
j i

Y
= =
∑∑ =(2dq-

d)(s-1)+am for all m (n≤m≤qn). This can be realized by using the following algorithm. 

Algorithm 1. Initially, set the weights equal 1 for neurons Y1j,…,Ydj and -1 for 
neurons Y(d+1)j,…,Y(2d)j, j=1,…,s, and set t=1. Set the remnant set m={n, n+1,…,qn}. 

Step 1. Compute bm=z(∑(0)+1,∑(0),…,∑(q-3)), for the remnant set of m. 
Step 2. Compare am and bm, delete those m such that am=bm. 
Step 3. If the remnant set of m is not void, find mt=the smallest m in the remnant 

set. Otherwise, stop. 
Step 4. If mt∈[kj

(0), kj
(2q-4)), then set the weights wi

(1j)=…=wi
(dj), i=1,…,n. such that 

(1 )

1

n
j

i i
i

w x
=
∑ =

( 2)

(0)

(0)

( 3)

1

q
j

j

j

q
j

k

k

k

k

−

−

⎧
⎪ +⎪⎪
⎨
⎪
⎪
⎪⎩

             if 
tma =

1

2

1

q

q

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪ −⎩

 

where 
1

n

i
i

x
=
∑ =mt. Set wi

((d+1)j)=…=wi
((2d)j)=-wi

(1j), i=1,…,n. Set t=t+1, then go to step 1. 

Evidently, execute the algorithm one cycle, the remnant set reduces at least one m. 
Hence the algorithm must stop after executing at most (q-1)n+1 cycles. Thus the 
function f is computed.                                                                                                   □ 

Corollary 1. If f(x1,…,xn) is a q-valued strongly symmetric function, then f can be 
computed using a three layer feedforward neural network with fixed architecture. 

There are T, 1

2 2( 2)

qn q n

q

+ −+
−

≤T≤2(q-1)((q-1)n+1), (q-1)-threshold neurons in the hidden 

layer. More precisely, T=
1

s

j
j

t
=
∑ , there are tj, 1≤tj≤2q, same neurons Yij, i=1,2,…,2d. The 

weights of the neurons Yij are chosen from the set S. 

Proof. It is easy to see that the proof of corollary 1 is a variant of theorem 2. In fact, if 
the algorithm is executed tj, tj>1, cycles for mt∈[kj

(0), kj
(2q-4)), then we need tj same 

neurons Yij, i=1,2,…,2d in the hidden layer and choose different weights for them as 
step 4 of the algorithm. In this case, the weights of the output neuron z must be 
adapted. For each m∈[kj

(0), kj
(2q-4)), only 2d weights of the neuron z equal 1 

corresponding to its inputs ( )
2

1

d

ij
i

Y
=
∑  such that the output of the neuron z equals am, the 

other weights of z equal 0.                                                                                                □ 

3.4   Computing Arbitrary q-Valued Functions 

As a consequence of Theorem 2, we have the following theorem. 
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Theorem 3. Any q-valued function f(x1,…,xn) can be computed by a three layer 

neural network with 1

2( 2)
nq

q
q

−
−

 (q-1)-threshold neurons in the hidden layer. 

Proof. Since the sum 1

1

n
j

j
j

q x−

=
∑  is distinct integers for different inputs 

(x1,…,xn)∈{1,2,…,q}n. Thus any q-valued function can be regarded as a function of 
weighted sum of its inputs or a strongly symmetric function of (qn-1)/(q-1) variables.   
The result follows from theorem 2.                                                                               □ 

4   Binary Neuron vs. Multi-valued Neuron 

Siu [10] has proved that any m-variable Boolean function can be computed by a 
binary neural network with (2 1) 2m⎡ ⎤−⎢ ⎥  neurons in the hidden layer. If we use binary 

neural networks to compute any n-variable q-valued function f(x1,…,xn), we must 
combine at least q-1 such networks. Each time, one value is separated from the 
remnant values. Furthermore, variables (x1,…,xn) must be altered to Boolean variables 
(y1,…,ym), i.e. a n-variable q-valued function is represented to a set of (q-1) m-
variable binary functions. Since, m=nlog2q, a n-variable q-valued function can be 
computed by a three layer binary neural networks with (2 1) 2m⎡ ⎤−⎢ ⎥ = ( 1) 2nq⎡ ⎤−⎢ ⎥  hidden 

neurons. So the total number of hidden neurons is ( 1) ( 1) 2nq q⎡ ⎤− −⎢ ⎥ . 

Theorem 3 asserts that if we use three layer network with (q-1)-threshold neurons, 

the total number of hidden neurons is 1

2( 2)
nq

q
q

−
−

. 

1

2( 2)
nq

q
q

−
−

< 1
( 1)

2

nq
q

⎡ ⎤−− ⎢ ⎥
⎢ ⎥

, this indicates that the complexity of neural networks with 

(q-1)-threshold neurons is lower than that of binary neural networks. 

5   Conclusion 

This paper proposes a method to compute arbitrary q-valued functions using three 
layer feedforward neural networks with one hidden layer. The number of hidden 
neurons required is given. Estimating the number of hidden neurons is a fundamental 
problem concerning the complexity of neural networks. Through the constructive 
proving process, we give the upper bound. 
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Abstract. A novel global optimization hybrid algorithm was presented
for training neural networks in this paper. During the course of neural
networks training, when the weights are being adjusted with Quasi-
Newton(QN) method, the error function may be stuck in a local mini-
mum. In order to solve this problem, a original Filled-Function was cre-
ated and proved. It was combined with QN method to become a global
optimization hybrid algorithm. When the net is trained with our new
hybrid algorithm, if error function was tripped in a local minimal point,
the new hybrid algorithm was able to help networks out of the local min-
imal point. After that, the weights could being adjusted until the global
minimal point for weights vector was found. One illustrative example is
used to demonstrate the effectiveness of the presented scheme.

1 Introduction

Artificial neural networks have been developing in many years. Because of their
excellent capability of self-learning and self-adapting, neural networks are very
important in many fields[1,2,3,4]. In the numerous models of neural networks, the
multilayer Feedforward neural networks(FFN) are widely used. The FFN model
has powerful ability in approximation for any continuous functions, therefore,
this ability provides basic theory for its modelling and controlling in nonlinear
system[2].And the Back-Propagation algorithm and Quasi-Newton(QN) method
etc, which are based on gradient descent algorithm, make the feed-forward neural
networks more easily to adjust the weights vector. However, the gradient descent
algorithm has the natural drawback: those training algorithms would often stick
the error function in a local minimal point and stop searching the optimal weights
for goal error function.

For the weakness of those FFN algorithm, the hybrid algorithms with ran-
domness global optimization algorithms ,such as genetic algorithms, simulated
annealing algorithm, randomness searching, were presented[5,6,7]. These hybrid
algorithms really brought some exciting results. Nevertheless, for the large-scale
� This work is supported by national natural science foundation of P.R. China

Grant �60674063, by national postdoctoral science foundation of P.R. China Grant
�2005037755, by natural science foundation of Liaoning Province Grant �20062024.
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continuous system optimization problem, those algorithms were too slow. In that
theory, their random property would make sure that they will find the final so-
lution in the enough time. But in fact, those algorithms would waste too much
time in practice projects[1]. In sum, there are still some shortcomings in those
randomness hybrid algorithms.

In contrast to randomness global optimization algorithms, deterministic global
optimization algorithms were also developing quickly in recent years, for ex-
ample, the Filled-Function, the Tunnelling method, the Downstairs method
etc.[8,9,10]. Deterministic global optimization algorithms have the faster search-
ing speed and now have been an important branch in optimization algorithm
field. Among those deterministic algorithms, the Filled-Function method has a
better performance. But in the practicable program, those Filled-Function mod-
els with two or more parameters and exponential parameters are difficult to be
adjusted and often overflow.

To avoid the drawbacks of existing Filled-Function models, a single-parameter
Filled-Function model was presented and combined with QN method to optimize
the weights and bias to minimize the error function. A new hybrid training
algorithm is constructed for FFN. We also compare this new hybrid algorithm
with QN method and discuss the merits and flaws.

2 Filled-Function Optimization Algorithm

In this section, the model that we considered is:

min f(X) (1)

Where X ∈ Ω ⊂ IRn, f(X) is a multi-extremum function, f(X) has the global
minimal point in Ω, and assume that f(X) has second derivative.

Definition 1. Assume that X1, X2 ∈ IRn, X1 �= X2.if f(λ) = f(X1 + λ(X2 −
X1)) descend, the line segment X1 − X2 is named descending branch.

Definition 2. A region B1 will be called basin for the local minimal point X1,
if it could satisfy the conditions below:

1) If X0 ∈ B1, X0 �= X1, f(X0) > f(X1), the trajectory that descent from point
X0 will end up on the point X1.
2) If X0 /∈ B1, the trajectory that descent from point X0 will never end up on
the point X1.

Definition 3. We shall say that the point X2 is higher than X1, if and only if
f(X2) > f(X1), then the basin B2 is higher than basin B1.

This algorithm’s main idea is that: Assume that X1 is a local minimal point
in f(X). A Filled-Function P (X) could be constructed and make the point X1
to be the global maximal point of P (X). Furthermore, for the points on the
P (X), there is not any stable point in the basins which are higher than the
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basin of X1on the f(X), however, there is a stable point X̄in the basins which
are lower than basin of X1 . And the point X̄ is the minimal point on the line
through the X1and X̄ . After that, the point X̄is viewed as the initial point to
optimize the f(X). Then we could find the point X2that meets the condition
f(X2) < f(X1) and replaces X1. We could repeat such a process to find the
global minimal point X∗. Figure 1 gives us an example to show the process that
Filled-Function help the two-dimension curvilinear function f(X) to get out of
the local minimal point. To avoid the flaws in existing models, a new single-
parameter model was brought into FNN. This Filled-Function model could be
implemented and adjusted easily.

Fig. 1. The filled-function of the two-dimension curvilinear function F

When we got the minimal point X1 on f(X), a new Filled-Function model on
the point X1 could be constructed as follows:

H(X, A) =
1

1 +
√

F (X) − F (X1)
− A ln(1 + ‖X − X1‖2)(A > 0) (2)

Before put this Filled-Function model into an algorithm, we must prove that
this one could satisfy the basic quality of the Filled-Function.

Proposition 1. If X1 is the minimal point, whatever the positive integer A
would be, X1 is the maximal point on the H(X, A).

Proof. When there exists X = X1, H(X, A) = 1 and f(X) > f(X1), if A > 0,
then X ∈ B1 satisfies:

1
1 +

√
f(X) − f(X1)

− A ln(1 + ‖X − X1‖2) < 1 = H(X1) (3)

so X1 is the maximal point on the H(X, A).

Proposition 2. If f(X) > f(X1), assume d is a direction like this
{

dT ∇f(X) ≥ 0
dT (X − X1) > 0 (4)
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or {
dT ∇f(X) > 0
dT (X − X1) ≥ 0 (5)

Then on the point X, H(X, A) will descend along the direction d, for any positive
integer A.

Proof. The gradient of the Filled-Function H(X, A) is as follows

∇H(X, A) = − ∇F

2(1 +
√

f(X) − f(X1))2
√

f(X) − f(X1)
− A(

2(X − X1)
1 + ‖X − X1‖2 )

(6)

dT ∇H(X,A)=− dT ∇f

2(1 +
√

f(X) − f(X1))2
√

f(X) − f(X1)
−2A(

dT (X − X1)
1 + ‖X − X1‖2 )

(7)
From the assumption on direction d, we could get:

dT ∇H(X, A) < 0 (8)

Therefore H(X, A) will descend along the direction d, for any positive integer
A.

Proposition 3. Assume f(X) > f(X1), if dT ∇f(X) < 0 and dT (X − X1) > 0
as long as

A > − dT ∇f

4(1 +
√

f(X) − f(X1))2
√

f(X) − f(X1)
1 + ‖X − X1‖2

dT (X − X1)
= A∗ (9)

Then HX, A would descend along the direction d.

Proof. Because of (6)

dT ∇H(X,A)=− dT ∇f

2(1 +
√

f(X) − f(X1))2
√

f(X) − f(X1)
−2A(

dT (X − X1)

1 + ‖X − X1‖2 )

(10)
If A > A∗ then dT ∇H(X, A) < 0 So H(X, A) would descend along the direction
d.

Proposition 4. Assume f(X) > f(X1), when dT ∇F (X) < 0 and dT (X −
X1) > 0, If A < A∗, then H(X, A) would rise along the direction d.

Proof. Because of (6), if there exists A < A∗, then dT ∇H(X, A) > 0 Therefore,
H(X, A) would rise along the direction d.
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3 The New Hybrid Training Algorithm

We could train weights and bias with the help of the Filled-Function. Actually,
we utilize the Filled-Function to make the error function get rid of the local
minimal point. For the nets with n training sample data and q output neurons,
the error function and sum error function of the kth sample are defined as follows:

E(k, w) =
1
2

q∑

i=1

(yi(k) − yi(k, W ))2 (11)

E(w) =
1
n

n∑

k=1

E(k, w) (12)

Where yi(k) is the output of the networks and yi(k, W ) is the expected out-
put,and W is the weight matrix. The bias could be viewed as weights as the
input is −1, So the error function could be transformed to be the function only
with argument W . Training the net is a procedure that finds proper weights
matrix to minimize the E(W ).

The training algorithm with single parameter Filled-Function is as follows:

Step 1. Choose a random initial point W0 in the reign of [0, 1] to minimize the
E(W ), and set the goal precision h = 0.001. Utilize the QN method to find
a minimal point W ∗

1 .
Step 2. If the EW ∗

1 < h, then W ∗
1 is the optimal weights, end the algorithm,

or turn to Step 3.
Step 3. Construct the Filled-Function as (2) on the point W ∗

1 , and choose an
initial point W1 next to W ∗

1 ,e.g.W1 = W ∗
1 + δe1(δ > 0) . e1 is the first unit

vector, and A > 0.
Step 4. Search from the point W1 to find the minimal point W ∗

k of H(W, A)
with QN method.

Step 5. Make W = W ∗
k , if the any one of criterion below is satisfied:

(1) H(W ∗
k , A) ≥ H(W ∗

k−1, A), (2) H(W ∗
k , A) ≥ 0, (3) dT

k−1∇H(W ∗
k , A) ≥ 0,

(4) (W ∗
k − W ∗

1 )T ∇H(W ∗
k , A) ≥ 0,

(5) ‖∇H(W ∗
k , A)‖ ≤ ε(εis the positive integer).

Step 6. Optimize the E(W ) from the new minimal point W , then we could get
the another minimal point W ∗

2 .
Step 7. If E(W ∗

2 ) ≤ E(W ∗
1 ) , then let W ∗

1 ← W ∗
2 , and turn to Step 2.

Step 8. If E(W ∗
2 ) > E(W ∗

1 ) , then magnify A, e.g. A = 2A, and turn to Step 2.

For the problem of adjusting the important parameter A: In Filled-
Function, A is a very important parameter. From the Proposition 2, when E(W )
rises, H(W, A) would descend as long as A is a positive integer. From the Propo-
sition 3, when A > A∗ and E(W ) descend, H(W, A) could still descend along
the direction d. From the Proposition 4, in the basin lower than B1, when E(W )
descends, if A < A∗, then H(W, A) would rise along direction d. It indicates that
only if the parameter A is in a limited range, H(W, A) would be an available



14 H. Li, H. Li, and Y. Du

Filled-Function. This range limited by A∗ could be calculated by definite equa-
tion. And A∗ is a value varying with weights matrix W . In the neighborhood of
local minimal point, E(W ) is prone to E(W ∗), therefore, A∗ is prone to infinity.
So at the beginning of the algorithm, A is set to be a large positive integer,
e.g. A = 100. Although there is no such theory to follow in the math field, the
experiment could give us a general adjusting trend. The adjusting trend is that
with the change of the matrix W , A∗ could be altered to a larger integer. In the
algorithm imitation, when A is set firstly, if W ∗

2 ≤ W ∗
1 , then the A is a proper

parameter. If W ∗
2 > W ∗

1 , A needs to be changed, such as A ← 2A.

4 Simulation Results

Process Modelling
To test the validity of the new algorithm for real problem, we made a simula-
tion about a project’s process modelling. The object is fuel furnace in a certain
steel company. Three hundred input-output data were taken from the project.
The goal of modelling is construct the nonlinear dynamic mapping relationship
between input and output. The simulation used QN method and new hybrid
algorithm to training the net, respectively.
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Fig. 2. Figure on training with the QN method

The training results are shown as Figure 2 and Figure 3. In the Figure 2, the
error function training with the QN method is tripped in the local minimum
and error stays at 0.1295 after 6369 epoch. In the Figure 3, however, the hybrid



A Novel Global Hybrid Algorithm for Feedforward Neural Networks 15

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

tr
ai

ni
ng

 e
rr

or

Fig. 3. Figure on training with hybrid algorithm

algorithm could make the error reach to the desired precision at 9.8672 × 10−4

after 3954 epoch. Simulation results show that hybrid algorithm is more available
than QN method to search the global minimum.

5 Conclusions

The global optimization algorithm is researched in this paper. Firstly, a new
Filled-Function model was constructed and proved. Furthermore, this new model
was combined with QN method to be a hybrid neural network training algorithm
successfully. Later, the new training algorithm was proved available with the
algorithm simulation. Therefore, the new hybrid algorithm could solve the local
minimal point problem of QN method effectively. In addition, there are still
some problems left. For the problem of adjusting the important parameter A in
a more convincing method, the writers are doing some more researches now.
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Abstract. In this paper, the complex nonlinear relationship between NIHSS and 
TCM-SSASD is analyzed. Much method based on the BP neural networks is 
induced to approximate this complex nonlinear relationship. At the same time, 
two schemes of multiple models are proposed to improve the approximation 
performance of the BP neural network. Through the comparison among these 
schemes, it is shown that there is exact complex nonlinear relationship between 
the two diagnosis sheets. The works in the paper would be guidance for the 
diagnosis of the Apoplexy Syndromes and assistant for the further study of the 
relation between Western medicine and Traditional Chinese Medicine. 

1   Introduction 

National Institutes of Health Stroke Scale (abbreviation: NIHSS), which is called 
Western medicine sheet, is the acknowledged international criterion for the apoplexy 
syndromes. TCM Standardized Sheet of Apoplexy Syndromes Diagnosis 
(abbreviation: TCM-SSASD), which is called Chinese medicine sheet, is the 
standardized half-quantitative Sheet, which is summarized by many Chinese medicine 
experts based on their clinic experience of many years [1-3]. This sheet divide the 
apoplexy syndromes into six basic Syndrome, which include wind syndrome, fire 
syndrome, phlegm syndrome, static blood syndrome, qi vacuity syndrome, 
preponderance of yang due to deficiency of yin syndrome, and each Syndrome is 
measured by ascertained value. It is aimed to assistant for the future clinic diagnosis 
and to build a data flat for discovering the differentiation thought of TCM by the data-
mining method [4]. For a long term, the Western medicine and TCM are unified 
together for the diagnosis and treatment of the apoplexy syndromes. However, there is 
no scientific criterion guidance for the head layer design. Are there any coherence, 
difference and complementarities between the single Western medicine and the single 
TCM? Can the erudite and intensive TCM compete with the advanced western 
medicine? How to unify the western medicine and TCM to realize the complement of 
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their advantage? These problems become the focus topic of all Chinese medicine 
researchers. With the development of the modern methodology and the numerical 
TCM, the technology of data storage and data mining become impossible. Therefore, 
the exploring for the relationship between NIHSS and TCM-SSASD is not only 
important in the theory researches but also have a wise application foreground. 

BP（Back Propagation）neural network is a classic multi-level forward neural 
network. It is welcome by many researchers in the intelligent control field for its 
simple principle and distinguished approximation function to the nonlinear system. In 
the concerned problem of TCM, BP neural network can be applied to syndromes 
diagnosis [5-6], Chinese medicine finger-print chromatogram[7], detection of non 
contact life parameter signals[8], The analysis and predict for the Chinese medicine 
properties[9], the rule of prescription compatibility[10], and etc. However, there is no 
report about the data mining between NIHSS and TCM-SSASD. 

In this paper, BP intelligent algorithm is used to approximate the nonlinear 
relationship between NIHSS and TCM-SSASD based on mass clinic data and 
information. Through standardization, combination and optimizing, .the apoplexy 
syndromes can be standardization. It will improve the diagnose accuracy of the clinic 
syndrome, and then perfect the clinic curative effect evaluation system of TCM. 

The concept of multiple models comes from the industry process control. In 
different manufacture environment, while the structure and parameters of the model 
varying, the processing control model can be regarded as multiple models [11]. In this 
paper, this concept is induced to approximate the TCM information by multiple 
nonlinear models and is expected to achieve a better result. 

The structure of the paper is as follows: firstly, the background and problem will 
be introduced. Secondly, NIHSS and TCM-SSASD will be standardized and 
combined. Based on it, three kinds of BP neural networks will be built to approximate 
the relationship of them. The algorithms and improving schemes will be presented in 
the third sections, including the design of four BP algorithms and two multiple 
models schemes. In the fourth section, a simulation result will be given out based on 
clinic data. At last, the merit and defect are summarized by comparing all kinds of 
algorithms in the conclusion section. 

2   Design of Neural Network 

2.1   Clustering and Standardize of the NIHSS and TCM-SSASD 

The data information comes from Dongzhimen hospital, Xiyuan hospital, Chaoyang 
hospital and Guanganmen hospital. It includes 422 apoplectics form November, 2003 
to March, 2006. According to [4], the data is cleaned up and standardized, and a new 
table is come out. It includes a western medicine value varying form 0 to 35, and six 
basic TCM Syndromes, which include wind Syndrome, fire Syndrome, phlegm 
Syndrome, static blood Syndrome, qi vacuity Syndrome, preponderance of yang due 
to deficiency of yin syndrome, which varying form 0 to 30 (static blood Syndrome, 
especially, 0-35). The table is as follows: 
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Table 1. The value of NHISS and TCM for apoplectics 

TCM value 

ID 

Western 

medicine 

Value 
Wind Fire Phlegm

Static 
blood 

Qi 
vacuity 

Preponderance of 
yang due to 

deficiency of yin 
    1 10 5 13 20 0 4 2 

    2 5 12 4 13 9 0 1 

   … … … … … … … … 

  421 2 0 7 0 1 0 14 

  422 12 12 4 8 8 0 0 

2.2   Building of Neural Network 

2.2.1   Basic Model 

Based on the above table, many kinds of methods are trial and error in search of the 
relationship between NIHSS and TCM-SSASD. It is shown that there is no a distinct 
linear relationship between them [1]. Therefore, we suppose that there is a complex 
nonlinear relationship between them. Thus, we build a neural network to approximate 
the nonlinear relationship between the six syndromes and western medicine, whose 
input of the network is the value of the TCM six basic syndromes, and the output is 
the value of the NIHSS. It is as follows: 

1 2 3 4 5 6( , , , , , ),y f x x x x x x=  (1) 

where 1 2 3 4 5 6, , , , ,x x x x x x  are the independent variable, also the six inputs of the 

neural network, which present the six Syndromes in TCM, including wind Syndrome, 
fire Syndrome, phlegm Syndrome, static blood Syndrome, qi vacuity Syndrome, 
preponderance of yang due to deficiency of yin syndrome. y  is the output of  

the neural network, which is the value of the NIHSS. Since there is a hidden level in 
the forward network, it can be applied widely to classification and diagnose in the 
medicine field. At the same time, for the property of approximation to an arbitrarily 
nonlinear function, the neural network can be used to build a model for the nonlinear 
system.  

At first, a 3 layers BP neural network is built, which include a input layer with 6 
neurons, a hidden layer with 8-60 neurons and a output layer with 1 neurons. It is as 
follows: 

In the training process, 277 apoplectics are chosen as sample. The input and output 
in the sample are standardized, which means the value of the TCM six syndromes  
are divided by 30 (static blood Syndrome divided by 35, especailly) and the value  
of NIHSS is also divided by 30. Through many experiments, it is found that the 
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Fig. 1. Three levels BP neural network with single output (a) and multiple outputs (b) 

convergence speed is most quickly and the performance is most perfectly while the 
number of the hidden layer is 10. Here the activation function is adopted as sigmoid 
function and hyperbolic tangent function. 

2.2.2   The Improvement of the Network Model 

Model 1: MIMO neural network with a hidden layer. While mass data is input into the 
neural network, there is much noises and disturbance, which results in the errors 
between the actual value and the network output. If we needn’t the exact information 
about the value of the NIHSS, and only want to get a distinguishing among the states 
of an illness, such as light, moderate and severe, the structure of the neural network is 
simpler, and the error rate can be reduced accordingly. Here we transformed the value 
of NIHSS into three states: light, moderate and severe as three neurons. If the state of 
an illness is light, then the output of the network is (1,0,0) ; if the state of an illness 

is moderate, then the output of the network is (0,1,0) ; if the state of an illness is 

severe, then the output of the network is (0,0,1) . The input is not changed, but 

y becomes a vector in (1). The number of the hidden layer is 10. The structure of this 

neural network is shown in Fig 1 (b).  

Model 2: A neural network with four layers. In generally, if the neurons in the hidden 
layer are sufficient enough, then the network can approximate an arbitrary nonlinear 
function. However, considering the complex nonlinear data come from the TCM 
clinic practice, we choose 4 layers neural network aiming to get a better convergence 
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Fig. 2. Four layers BP neural network with multiple outputs 

speed and robustness performance. There are two layers in the hidden layer, the first 
layer has 60 neurons and the second one has 20 neurons. It is shown as fig. 2. 

3   Choosing of Algorithms 

The forward BP multiple layers neural network has excellent generalization ability 
and interpolation function. Based on the general BP algorithms, we can choose 
different algorithms to satisfy different demand, such as convergence speed, memory 
capability, convergence precision, and so on. Here we choose four algorithms, 
including GD algorithm (gd), quasi-Newton BP algorithm (bfg), resilient BP 
algorithm (rp) and Levenberg-Marquardt BP algorithm (lm). The comparison of these 
algorithms in the TCM diagnose is in the next section. 

The simulation indicates that if a fixed number sample arbitrarily in the database is 
chosen the training sample, different neural network would be built every time. And 
the accuracy rate of the diagnose ranges from 50% to 78%. The reason lies in two 
case: 1) The data comes from the clinic open information collection system. There is 
no strict limitation for the enrolled apoplectics. Since the curing time, age, sex, 
medical history, diagnose of the apoplectics are different, the values of NHISS and 
TCM-SSASD are different too. Such as the value of wind Syndrome, phlegm 
Syndrome, static blood Syndrome for the ischemic apoplexy within the first three 
days are always high, but after two weeks, the value of static blood Syndrome and qi 
vacuity Syndrome for the sufferers rises to a high level. This means that different 
curing time and the basic of the treatment may result the instability of the model of 
the neural networks and great errors. 
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Therefore, if we mix all the different information together arbitrarily, it may 
destroy the structure of the neural networks in the weight modification process and 
the useful information may be losing. The weight will be averaged. To avoid the 
above phenomenon, two schemes are adopted: 

Scheme 1: The average estimation by multiple models. Arbitrarily extract a fixed 
number of samples for n  times. Then n  neural networks are built. 

Definition: 

{ (x); 1,2, n},if iΨ = = ……，  (2) 

which presents a model set with the (x)if  as element. (x)if  can represent a 

controlled subject in the industry process control, which can be approximated by the 
neural networks as: 

i i(x ) (x ) (x ), i 1, 2,f f e= + = … … n,  (3) 

where i (x)f  is the ith estimation by neural networks, which will approximate the 

actual TCM diagnose nonlinear system. i (x)e  is the error of the estimation, which is 

supposed as i.i.d. random variables with zero expectation i 1, 2, k= …… . 

Choose the average value of the n  models sf  as the final estimation of the 

multiple models: 

1 2 1 2( ) ( ) ...... ( ) ( ) ( ) ...... ( )
( ) ,n n

s

f x f x f x e x e x e x
f f x

n n

+ + + + + += = +  (4) 

where the error drops to 
1

n
 of the original one, which improves the performance of 

the estimation. The principle figure is as Fig. 3. 

Scheme 2: Feature multiple models estimation. From above, it is shown that all 
apoplectics can be divided into different groups with different feature. Such as: from 
the diagnose point of view, there are ischemic apoplexy suffers and cerebral 
hemorrhage suffers; for the curing time, there are suffers cured within 0-1 day, 2-3 
days, 6-8 days and 12-16 days; from the sex point of view, there is female and male. 
These data with distinct features cover all the field of the data sets. Therefore, we can 
build a independent feature model for every kinds of suffers groups with different 
features. 

Firstly, divide the data set X  into k  subsets iΩ  with individuation feature, i.e., 

{x : x , 1, , },i i iX i k= ∈Ω =  (5) 
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Fig. 3. Scheme of average estimation by multiple models 

where X  is the overall data set, x i  is the element of the ith feature subset iΩ . For 

every subset iΩ , k  models named (x )i if  are built. In the diagnose process, if the 

suffer jx ∈Ω , then the j th neural network model (x )j if  is adopted to diagnose. 

The principle figure is as Fig. 4. 
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Fig. 4. Feature multiple models scheme 

Remark: In the building process of (x )i if , scheme 1 can be adopted, which would 

average the multiple building models and reduce the estimation errors. 

4   Simulation 

In the BP neural network, we adopt the six Syndrome value in the TCM-SSASD as 
the input and the value in NIHSS or the corresponding 3 states of illness as the output. 
There are one or two hidden layers in the network and 6-60 neurons within it. 277 
suffers are chosen as the training samples and 145 ones as checking samples. Four 
algorithms are adopted, including gd, bfg, rp and lm to approximate the nonlinear 
relationship of the NIHSS and TCM-SSASD. For the multiple models scheme 1, one 
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thousand models are used to build an average one. The result can be seen in the 
following table 2. It is shown that one hidden layer with 10 neurons is sufficient 
enough to approximate the nonlinear relationship. The LM algorithms bring forth a 
better performance and quickly convergence speed.  

Secondly, based on the idea of multiple models scheme 2, we divide all of the 
apoplectics into 4 parts. The first part is cured within 0-1 day, and the second one within  
2-3 days, the third one within 6-8 days, and the fourth one within 12-16 days. Thus 4 
neural networks are built, and every one is build by the scheme 1. The result is given in  
the table 2. It is shown that feature multiple models can reflect the local feature infor-
mation of the samples and the diagnose identification rate is higher than the general one. 

Table 2. Identification rate of the neural networks based on NIHSS and TCM-SSASD 

 
Training samples 
／Checking samples 

Identification of 
the general neural 
network 

Identification of 
the average 
multiple models 

Identification of 
the feature 
multiple models 

BP(gd) 277／145 66.67% 67.67% 70% 

BP(bfg) 277／145 65% 66.5% 68% 

BP(rp) 277／145 66.67% 68.1% 68.4% 

BP(lm) 277／145 66.67% 67.2% 69% 

5   Conclusion 

In this paper the relationship between NIHSS and TCM-SSASD is studied based on 
the data mining method. The forward BP neural network is adopted to approximate 
the complex nonlinear relationship with four algorithms. The definition of the 
multiple models in the industry control process is induced and two multiple models 
scheme are designed to improve the approximation performance, including average 
multiple models and feature multiple models. The simulation illustrates the validation 
of the design scheme. It is also shown that there is much coexistence information in 
the Western medicine and the TCM.  

In the feature models building, we only classify the data by the curing time. Other 
features, such as sex, age, syndrome, may be used to classify the apoplectics in the 
future work. 
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Abstract. This paper presents a novel approach based on the back-propagation 
neural network (BPNN) for the insulation diagnosis of power transformers. Four 
epoxy-resin power transformers with typical insulation defects are purposely 
made by a manufacturer. These transformers are used as the experimental models 
of partial discharge (PD) examination. Then, a precious PD detector is used to 
measure the 3-D (φ-Q-N) PD signals of these four experimental models in a 
shielded laboratory. This work has established a database containing 160 sets of 
3-D PD patterns. The database is used as the training data to train a BPNN. The 
training-accomplished neural network can be a good diagnosis system for the 
practical insulation diagnosis of epoxy-resin power transformers. The proposed 
BPNN approach is successfully applied to practical power transformers field 
experiments. Experimental results indicate the attractive properties of the BPNN 
approach, namely, a high recognition rate and good noise elimination ability. 

1   Introduction 

More than half of the breakdown accidents of power apparatuses are caused by insulation 
deterioration. The reliability of a power apparatus is affected significantly by the presence 
of insulation defects. Partial discharge (PD) pattern recognition has been regarded as an 
important diagnosis method to prevent power apparatuses from malfunction of insulation 
defect. However, the measurement of PD needs heavy power equipment and precious 
instruments. The Heavy Power Lab in St. John’s University installed a set of precious 
instrument (Hipotronics DDX-7000 Digital Discharge Detector). Therefore, the school 
has the capability of doing insulation diagnosis related researches. 

Power transformer is one of the most important apparatuses in a power delivery 
system. Breakdown of a power transformer can cause an interruption in electricity supply 
and result in a loss of considerable profits [1]. Therefore, detecting insulation defects in a 
power transformer as early as possible is of priority concern to a power transformer user. 
PD phenomenon usually originates from insulation defects and is an important symptom 
to detect incipient failures in power transformers. Classification of different types of PD 
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patterns is of importance for the diagnosis of the quality of power transformers. PD 
behavior can be represented in various ways. Because of the randomization of PD 
activity, one of the most popular representations is the 3-D (φ-Q-N) distribution [2], [3], 
i.e., the PD pattern is described using a pulse count N versus pulse height Q and phase 
angle φ diagram. Previous experimental results have adequately demonstrated that 
φ-Q-N distributions are strongly dependent upon PD sources, therefore, the 3-D patterns 
can be used to characterize insulation defects [4]. This provides the basis for pattern 
recognition techniques that can identify the different types of defects. 

Previous efforts at PD pattern recognition have applied various identification 
techniques to make the problem solvable. Various pattern recognition techniques such 
as fuzzy clustering [5], expert system [6], extension theory [7], [8], and statistical 
analysis [9] have been proposed. These techniques have been successfully applied to 
PD pattern recognition. However, these conventional approaches not only require 
human experiences but also have some difficulties in acquiring knowledge and 
maintaining the database of decision rules. In recent years, a biologically artificial 
intelligence technique known as artificial neural network has emerged as a candidate 
for the pattern identification problem. The neural network can directly acquire 
experience from the training data to overcome the shortcomings of the conventional 
approaches. The neural network can quickly and stably learn to categorize input 
patterns and permit adaptive processes to access significant new information [10]. 

In this paper, a novel insulation diagnosis approach based on the PD and 
back-propagation neural network (BPNN) is proposed for epoxy-resin power 
transformers. Four cast-resin transformers with typical insulation defects, which were 
purposely made by a manufacturer, are used as the models of the PD examination. The 
DDX-7000 Digital Discharge Detector is then used to measure the 3-D PD signals of 
these transformers. So far, this work has established a database which contains 160 sets 
of 3-D PD patterns. Then, this database is used as the training data to train a BPNN. 
Finally, the training-accomplished neural network can be a good diagnosis system for 
the practical insulation diagnosis of epoxy-resin power transformers. Experimental 
results show that different types of insulation defects within power transformers are 
identified with rather high recognition rate. 

2   Partial Discharge Experiments 

2.1   Partial Discharge Measurement 

PD is a forced phenomenon occurring in insulation parts in a power apparatus. When 
the intensity of electric field exceeds the breakdown threshold value of a defective 
dielectric, PD occurs and results in a partial breakdown in the surrounding dielectrics. 
PD is a symptom of insulation deterioration. Therefore, PD measurement and 
identification can be used as a good insulation diagnosis tool to optimize both 
maintenance and life-risk management for power apparatuses. 

The new standard IEC60270 [11] for PD measurement has been published in 2001, 
which establishes an integral quality assurance system for PD measurement instead of 
the old standard IEC60060-2 published in 1994. The standard IEC60270 ensures 
accuracy of measuring results, comparability and consistency of different instruments 
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and measuring methods. Moreover, the new standard provides digital PD measuring 
recommendations as well as the analog measuring. In this work, all PD experiments are 
based on the new standard IEC60270.  

A PD experiment laboratory, including a set of precious instrument (Hipotronics 
DDX-7000 Digital Discharge Detector), has been set up in the St. John’s University  
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Fig. 1. Block diagram of PD experiment 

 

Fig. 2. Practical PD field measurement 

 

Fig. 3. PD analyzer and control panel 
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according to the standard IEC60270 recommendations. Fig. 1 shows the block diagram 
of the PD experiment laboratory. The constitution of the PD experiment laboratory 
includes a PD analyzer, a high-voltage control panel, an isolation transformer, a 
high-voltage generator (step-up transformer), a calibration capacitor, and a coupling 
capacitor. Fig. 2 shows a practical PD field measurement in the shielded room. Fig. 3 
shows the PD analyzer and high-voltage control panel.  

2.2   Experimental Models 

In this work, the experimental objects are power transformers which use epoxy-resin as 
HV insulation materials. The rated voltage and capacity of the transformers are 12 kV 
and 2kVA, respectively. For testing purposes, four experimental models of power 
transformers with typical insulation defects were purposely manufactured by a power 
apparatuses manufacturer. These typical PD models include a low-voltage coil PD 
(Type A), a high-voltage coil PD (Type B), a high-voltage corona discharge (Type C), 
and a healthy transformer (Type D). Fig. 4 shows the pictures of these four 
experimental models. 

The voltage step-up procedure of the PD experiment, according to the standard 
IEC60270 recommendations, is shown in Fig. 5. First, the high-voltage generator 
generates a rising-voltage from 0V to 18kV, which is the 1.5 times of the rated voltage, 
in 50 seconds. This high-voltage will be maintained for 1 minute to trigger discharges.  
 

  
(a) Low-voltage coil PD (Type A). (b) High-voltage coil PD (Type B). 

  
(c) High-voltage corona discharge (Type C). (d) Healthy transformer (Type D). 

Fig. 4. Four experimental models with typical insulation defects 
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Fig. 5. Voltage step-up procedure 

Then, the voltage will descend from 18kV to the rated voltage in 20 seconds. The 12kV 
rated voltage will be kept and the PD detector starts to measure and record the PD 
signals for 2 minutes. During the experimental process, all of the measuring analog data 
are converted to digital data in order to store them in a computer. 

3   BPNN Solution Methodology 

In recent years, a biologically artificial intelligence technique known as artificial neural 
network (ANN) has emerged as a candidate for the feature identification problems. The 
basic conception of ANN is intended to model the behavior of biological neural 
functions. An ANN is generally modeled as a massively parallel interconnected network 
of elementary neurons. The original desire for the development of ANN is intended to 
take advantage of parallel processors computing than traditional serial computation.  

Fig. 6 shows the PD patterns of four typical defects. As shown in Fig. 6, obviously, 
the problem of transformer insulation diagnosis is essentially a PD patterns 
classification problem. Therefore, the ANN is an applicable solution tool to the 
problem of transformer insulation diagnosis. 

 
(a) Low-voltage coil PD (Type A). 

Fig. 6. Typical PD patterns of four defect types 
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(b) High-voltage coil PD (Type B). 

 

 
(c) High-voltage corona discharge (Type C). 

 

 
(d) Healthy transformer (Type D). 

Fig. 6. (cont.): Typical PD patterns of four defect types 

From the literature survey, several models and learning algorithms of ANN have 
been proposed for solving the patterns classification problems [12]. In this paper, we 
establish a triple-layer feed-forward BPNN, as shown in Fig. 7, for solving the PD 
patterns classification problem. The number of neurons in the output layer is set at the 
number of defect types. The input data for the BPNN is the field measuring 3-D PD 
pattern. To fit the form of the input layer and accelerate convergence, each original PD 
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pattern is pre-translated into a 1600x1 matrix. Then, the only control parameter is the 
number of neurons in the hidden layer.  

In this work, the transfer function in the hidden layer is the hyperbolic tangent 
function, as shown in Fig. 8 [12]. The transfer function in the output layer is the 
sigmoid function, as shown in Fig. 9 [12]. In the training procedure, a faster 
back-propagation learning algorithm named “RPROP algorithm” is used as the 
learning rule. Riedmiller and Braun [13] showed that both convergence speed and 
memory requirement of the RPROP algorithm are better than traditional 
gradient-descent learning algorithms. 
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Fig. 7. Structure of the BPNN insulation diagnosis system 

  

Fig. 8. Hyperbolic tangent transfer function Fig. 9. Sigmoid transfer function 

4   Experimental Results 

The proposed BPNN approach was implemented on a MATLAB software and 
executed on a Pentium IV 2.8GHz personal computer. To illustrate the identification 
ability of the proposed approach, 160 sets of field measuring PD patterns are used to 
test the BPNN diagnosis system. The diagnosis system will randomly choose 80 sets of 
data as the training data, and the rest as the testing data. The structure of the proposed 
BPNN insulation diagnosis system is shown in Fig. 7. The number of neurons in the 
output layer (O) depends on the defect types to be identified, which is O=4 in this work. 
Since the original 3-D PD pattern is translated into a 1600x1 matrix in this work, the 
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number of neurons in the input layer (I) is set at I=1600. Then, for a multi-layer BPNN, 
the main control parameter is the number of neurons in the hidden layer (H).  

Table 1 shows the test results of the proposed BPNN diagnosis system with different 
number of neurons in the hidden layer from H=20 to H=100. Test results show that 
H=60 has the highest recognition rate of 90%, 90%, 93%, and 80% for defect type A, 
B, C, and D, respectively. The proposed system achieves a high average recognition 
rate of 88.25%. 

In a practical PD field measurement, the obtaining data would unavoidably contain 
some noise. The sources of noise include instrumental noise and environmental noise. 
This work takes noise into account in order to study the noise tolerance ability of the 
proposed approach. In this example, 240 sets of noise-contained testing data are 
generated by adding ±10%, ±20%, and ±30%, respectively, of randomly distributed 
noise into the training data to test the BPNN diagnosis system. Table 2 shows the test 
results with different percentage of noise. As shown in Table 2, the descending of 
recognition rate generally follows the raising of noise percentage, a finding that is 
consistent with general expectations. However, experimental results show a good 
tolerance to noise interference of the proposed approach, which achieves a high 
recognition rate of 81.75% in noise of 20% and 75.75% in extreme noise of 30%. 

Table 1. Recognition rate with different neurons in the hidden layer (H) 

Defect Type 

H A B C D Average 

20 80% 88% 85% 80% 83.25% 

40 88% 88% 90% 80% 86.5% 

60 90% 90% 93% 80% 88.25% 

80 88% 80% 85% 77% 82.5% 

100 88% 80% 77% 73% 79.5% 

Table 2. Recognition rate with different percentage of noise 

Percentage of Noise 
 

0% ±10% ±20% ±30% 

Average 
Recognition 

Rate 
88.25% 86.5% 81.75% 75.75% 

5   Conclusions 

This paper presents a new methodology based on the back-propagation neural network 
for solving the insulation diagnosis problem of epoxy-resin power transformers. The 
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proposed approach is considered a general tool because it can be easy implemented on 
the popular MATLAB software. Moreover, the approach is considered a flexible tool 
because it can be also applied to other high-voltage power apparatuses such as current 
transformer (CT), potential transformer (PT), cable, and rotation machine. 
Experimental results indicate that the proposed approach has a high degree of 
recognition accuracy and good tolerance of noise interference. We expect this work 
providing useful reference to electric power industry. 
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Abstract. Modeling error, measured noises and incomplete measured data are 
main difficulties for many structural damage processes being utilized. In this 
study, using static displacements and frequencies constitutes the input parame-
ter vectors for neural networks. A damage numerical verification study on a 
five-bay truss was carried out by using an improved momentum BP neural net-
work. Identification results indicate that the neural networks have excellent ca-
pability to identify structural damage location and extent under the conditions 
of limited noises and incomplete measured data. 

1   Introduction 

Structural health monitoring has become increasingly an important research topic in 
connection with damage assessment and safety evaluation of existing structures. At 
present, there are finite element method and non-linear mapped technique based on 
neural networks in this field [1]. Neural networks have unique capability to be trained 
to recognize given patterns and to classify other untrained patterns. Hence, the neural 
networks can be used for estimating the structural parameters with proper training.  

Recently, many researchers have dealt with neural network approaches for damage 
estimation of many kinds structural models. Wu et al. applied the neural networks to 
recognize the locations and the extent of individual member damage of simple three 
story frame [2]. Szewczyk and Hajela proposed a modified counterpropagation neural 
network to estimate the stiffness of individual structural elements based on observable 
static displacements under prescribed loads [3]. Tsou and Shen identified damage of a 
spring-mass system with eight degrees-of-freedom [4]. Yoshimura proposed the Gen-
eralized Space Lattice transformation of training patterns to relax the illposedness of 
the problem [5]. Xu et al. proposed a structural dynamic updating method using neu-
ral networks techniques [6]. Lu et al. have used displacement mode and strain mode 
data as input-patterns to the neural network, and compared the identification accuracy 
of the location and extent of structural damage [7]. Wang et al. have used combined 
parameters, which be merged with natural frequencies and mode shape data at a few 
selected points, as input vectors for neural networks, and studied the location and 
quantification of frame connection damage [8]. 
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The effects of structural damage identification depend on the accuracy and com-
pleteness of measured data. At present, due to the limit of test techniques and the 
influence of environments, measured data is usually incomplete, and included some 
disadvantage factors, such as measured noises and model errors [9]. How to overcome 
the influences of disadvantage factors and improve identification accuracy is a diffi-
cult issue in the area of structural damage identification. In order to identity the loca-
tion and extent of structural damage, measured static displacements at partial points 
and several low natural frequencies have been used as input parameters vectors for 
neural networks in this study. An improved momentum BP neural network was 
adopted. A numerical analysis of structural damage identification on a five span truss 
was presented. Random noises were artificially added during training process, the 
robustness of the neural network is effectively increased. 

2   Damage Theory Analysis 

For health structure, the static response equation and the eigenvalue equation can be 
expressed by 

Ku p=                                                              (1) 

2( ) 0
j jK Mω ϕ+ =                                                     (2) 

Where K and M represent the global stiffness matrix and the global mass matrix for 
health structure; u  and p  represent the displacement vector and force vector; iω  
and iϕ  are the ith natural frequency and mode shape vector. Let the change of stiff-
ness matrix caused by structural damage be defined as KΔ ，thus, Eq.(1) and (2) can 
be rewritten as 

( )K K u p∗+ Δ =                                                     (3) 

2 2( ( ) )( ) 0j j j jK K Mω ω ϕ ϕ+ Δ + + Δ + Δ =                                     (4) 

∗u  is damaged displacement vector and defined as 
1 1 1 1( ) ( )u K K p K K KK p∗ − − − −= + Δ ≈ − Δ                                     (5) 

The change of displacement vector caused by damage is defined as 
1 1u u u K KK p∗ − −Δ = − ≈ Δ                                                (6) 

The change of natural frequency is defined as 
2 T T
j j j j jK Mω ϕ ϕ ϕ ϕΔ ≈ Δ                                                (7) 

When FEM model is used, the change of global stiffness matrix can be expressed 
by the change of element stiffness matrix 

1

ne

i i
i

K kα
=

Δ =∑                                                       (8) 

iα is the damage parameter of element stiffness, 01 ≤≤− iα , ik  is element stiff-
ness（ 1, 2, ,i ne= ）, ne  is the number of structural elements. 
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The indicator of damage location detection presented in literature [11] was used  
as input vector for the neural network, when individual element damage or several  
element damages with same extent were occurred,  

1 1
1 1
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D S
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∑
                      (9) 

From Eq. (9), we can see that jα  is eliminated. Thus, DS is just related to damage 

location and independent of damage extent 

{input-vector}={ 1 2, , , mDS DS DS } （ 1, 2, ,j m= ）                        (10) 

j is the serial number of corresponding nodes. 
For structural damage extent detection, the terms of damage extent must be intro-

duced into the input vector of damage location detection, namely 
2

2
1

ne
j T T T T

j j j j j i i j j j
ij

RNF K K k K
ω

ϕ ϕ ϕ ϕ ϕ α ϕ ϕ ϕ
ω =

Δ
= ≈ Δ = ∑                            (11) 

Eq. (11) is related to damage extent, thus, DS and RNF together constitute the input 
vector for the neural networks 

{input-vector}={ 1 2, , , ,mDS DS DS RNF }                                 (12) 

3   Numerical Example Analysis 

A five-span plane truss model in Fig.1 is adopted to demonstrate the effectiveness of 
the proposed neural network approach. Material properties with elastic modulus is 
2.1×102Gpa, density is 7.9×103kg/m3, cross-sectional area is1.0×10-4m2. 

In order to avoid the case that individual element is insensitive to structural defor-
mation under the single load path, two load cases shown in Tab.1 were selected in 
training process of the neural networks P1=3.0×103N, P2=3.0×103N, P3=1.0×103N, 

 

Fig. 1. Calculation analysis model of the truss 

Table 1. Load cases of truss 

Load case Load combination 
1 P1 
2 P2 , P3 
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Since the neural network-based structural identification is highly dependent on the 
training patterns, the number of training patterns must be large enough to represent 
the structural system properly [12]. In order to reduce system identification scale, the 
damage detection of chord elements, which is the key member of the truss, were car-
ried out in this study, the detailed cases are shown in Tab. 2. 

X, Y direction displacements of five nodes, which are marked with black as shown 
in Fig.1, and the 3th natural frequency constitute the input vectors with 10 neurons. 
{output vector}= {o1，o2，…，o10}，0≤oi≤1, indicates damage probability of ith  
element. 

Random noises are added to nodes static displacements used for combination of the 
training patterns. After noise added, the training patterns scales were expended, and 
meanwhile the robust of the neural networks was enhanced. The neural network was 
trained by element damage with elastic modulus discount 50%. It was tested by ele-
ment damage with elastic modulus discount 5%and 20%. The identification results 
indicate that although the random noises have effect on the identification accuracy, 
higher noises level may be existence. The identification errors were shown in Tab. 3. 
Fig.2 and 3 show the results of damage location detection on two elements with 10% 
noises. We can conclude that even if there are higher-level noises injections, the neu-
ral networks have the capability to identify damage location. Meanwhile, with the 
increase of damage extent; the identification accuracy is increased. 

Identification parameters of damage extent were added to input vectors of damage 
location detection. In this study, the first three natural frequencies, which were se-
lected, constitute identification parameters of damage extent. Thus, there are 13 neu-
rons in input vectors of damage extent detection. {output}={o1，o2，…，o10}，0≤ 

oi≤1 indicates the ith element damage extent.  
The neural networks were trained by element damage with elastic modulus dis-

count5%, 20%, 50%, and meanwhile,  in order to extend the training patterns, there 
are 5% random noises added to the nodes displacements. The neural networks were 
tested with elastic modulus discount 30%, 70%. The results are shown in Tab.4, at the 
range of limited level noises, the noises have little effect on the identification errors, 
the identification accuracy depend on damage extent adopted during testing. When 
it’s included in the range of damage extent adopted during training, identification 
accuracy is considerable higher; otherwise, identification errors will be very serious. 
Fig.4 and 5 indicate the identification results of damage extent with 10% noises. Al-
though noises are existence, the damage extent identification for damaged member is 
quite accurate. For the condition of the serious identification errors on undamaged 
member, we can identify damage locations firstly, and then fixed on the damage loca-
tion and extent by combination of the results of damage extent identification, finally 
the identification errors for undamaged member will be eliminated. 

Table 2. Combination of train samples 

Load case  Damage element number  Damage extent 
1 1,2,3, 6, 7, 8, 3&7, 2&8, 6&8 50% 
2 4,5, 9, 10 50% 
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Table 3. Identification tolerance of damage location of elements 

Damage extent (%) Noise level (%) Identification error (%)  

 0 16.1 
5 5 17.3 
 10 17.5 
 0 12.3 
20 5 12.7 
 10 13.2 

Table 4. Identification tolerance of damage extent of elements  

Damage extent (%) Noise level (%) Identification error (%)  

 0 1.08 
30 5 1.15 
 10 1.13 
 0 11.1 
70 5 11.4 
 10 11.9 
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Fig. 2. Identification of damage location for 
the 3th and 7 element stiffness discount 5% 

Fig. 3. Identification of damage location for 
the 3th and 7th element stiffness discount 20% 

1 2 3 4 5 6 7 8 9 10
element number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

da
m

ag
e 

ex
te

n
t

real output
ideal output

1 2 3 4 5 6 7 8 9 10
element number

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

d
am

ag
e 

ex
te

n
t

real output
ideal output

 

Fig. 4. Identification of damage extent for the 
3th and 7th element stiffness discount 30% 

Fig. 5. Identification of damage extent for the 
3th and 7th element stiffness discount 70% 
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4   Conclusion  

In this study, one kind of the neural networks input parameters for structural damage 
identification, which was consisted of measured static displacements at partial nodes 
and several low natural frequencies, was presented. By the damage identification on a 
five-span truss, the identification results indicate that the measured noises have little 
effect on the neural networks. The robust of the neural networks is improved evi-
dently. There are perfect effects on the damage location and extent identification for 
the truss structures. 

If we identify structural damage extent directly, although the damage member can 
be identified, there will be serious identification errors, and several undamaged mem-
ber are thought of as damaged; therefore, it’s necessary to test the neural networks for 
damage location and extent identification simultaneity, thus the damaged member and 
its damage extent will be determined accurately. The formulations presented in this 
study were derived from continuum structural FEM, and have universality; so it 
should be also used for the other structural modes, and it remains to be validated for 
the future. 
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Abstract. The Radial Basis Function (RBF) Neural Network (NN) is one of the 
approaches which has shown a great promise in this sort of problems because of 
its faster learning capacity. This paper presents the information fusion method 
based on improved RBFNN to deduce the deformation information of the whole 
flexible surface considering the complexity of the deformation of the large 
flexible structure. A distributed Strapdown Inertial Units (SIU) information fu-
sion model for deformation measurement of the large flexible structure is pre-
sented. Comparing with the modeling results by improved RBFNN and back 
propagation (BP) NN, the simulation on a simple thin plate model shows that 
the information fusion based on improved RBFNN is effective and has higher 
precision than based on BPNN.  

1   Introduction 

In the field of deformation measurement for large workpiece surfaces or the large 
flexible structure, such as ship deck, building or railway etc., a common static defor-
mation measurement technology for detecting global and local deformation is measur-
ing the distance in a right angle between the workpiece and a reference plate [1]. This 
measurement strategy has some disadvantages such as low efficiency, artificial errors, 
low redundancy of the samples etc., so it is only fit for railway production to control 
quality. Another method is the application of a coordinate measurement system, but 
even more important is that it puts restrictions to the maximum size of the workpiece 
[2]. Applying a rotating laser beam and a light sensitive receiver to measure the com-
plete envelope curve of the workpiece is a method fit for static deformation when the 
surface of workpiece has no obstacle [3], but it is restricted to measure static deforma-
tion. It is difficult to detect the dynamic deformation of large flexible surfaces such as 
ship decks when a ship is sailing. A high accuracy, high speed sampling deformation 
measurement sensor system is required by the user [4]. 

The advantages of the strapdown inertial units (SIUs, including three single-
freedom-degree gyros and three accelerators) are well known and have been fully 
praised in the research literature. For example, the advantages of the SIUs are light 
weight, low cost, high sensitivity [5]. Therefore they have been widely used in  
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numerous engineering measurement of angular deformation. Recent research reports 
showed that two three-axis laser gyro units are installed near the peripheral device, 
such as radar antennas and optical systems on the ship deck to measure local angular 
deformation [6]. Many SIUs must be installed on the large flexible surfaces for angu-
lar deformation measurement of the whole surfaces according to the general situation. 
It is obvious that this is not an economic method and also is not necessary in the  
actual conditions.   

This paper presents the information fusion method based on improved RBFNN  
algorithm to deduce the deformation information of the whole flexible surface consid-
ering finite SIUs on the large surface. At first, an overview of Information fusion 
based on RBFNN is demonstrated; secondly, a distributed SIUs information fusion 
model is introduced; the third, the consistent property test of local SIU’s information 
is analyzed. In conclusion, comparison is presented between the modeling results on a 
simple thin plate model by information fusion based on improved RBFNN and based 
on BPNN.  

2   Information Fusion Based on RBFNN 

2.1   The Topology Structure of RBFNN  

RBFNN shares features of the BPNN for pattern recognition. It is being extensively 
used for on-line and off-line nonlinear adaptive modeling and control applications. It 
stores information locally, whereas the conventional BPNN stores the information 
globally. RBFNN is one of the approaches which has shown a great promise in this 
sort of problems because of its faster learning capacity. Its typical topology structure 
(figure. 1) has input, hidden and output layer. The input space (total neurons number 
is I ) can be either normalized or an actual representation can be used. This is then 
fed to the associative cells of the hidden layer which acts as a transfer function. Rep-
resenting a bias is optional. The neurons of the hidden layer (total neurons number is 
H ) are composed of the radiant basis function. Each hidden neuron receives as net  
 

 

Fig. 1. Typical RBF network structure 
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input the distance between its weight vector and the input vector. The RBFNN uses  
a Gaussian transfer function in the hidden layer. The Output of the jth node of the  
hidden layer is given as: 

))2/()(exp()( 22

jijijj vxVXkZ σ−Σ−=−= ,  )1( Hj ≤≤ ,                (1) 

where, •  denotes the Euclid Norm, ),,( 21 IxxxX = is input pattern vec-

tor, T

Ijjjj vvvV ),,( 21=  is the center of the RBF of jth node of the hidden layer, jσ is 

spread of the jth RBF, ie. the standard deviation of the Gaussian function. 
Each neuron in the RBFNN outputs a value depending on its weight from the  

center of the RBF. The RBFNN uses a linear function in the output layer. The output 
of the kth node of the RBFNN linear layer is given by: 

kjkk

H

j
jjkk ZWzwY θθ −=−=∑

=1

,                                         (2) 

where, Ok ≤≤1 ( O  is the number of output nodes), kY  is output of the kth node, 
T

Hkkkk wwwW ),,( 21=  is the weight vector for node k, jZ  is the output vector from 

the jth hidden layer (can be augmented with a bias vector ), kθ  is the threshold of the 

kth node of the output layer. 

2.2   Improved Learning Algorithm of RBFNN 

According to the different ways for selection of RBF center, RBFNN is usually ap-
plied to the methods such as random selection, self-organization learning (SOL) or 
supervisory learning, etc. This paper applies improved learning algorithm, namely, 
applies non-supervisory self-organization learning algorithm to choose the center of 
RBF and applies supervisory learning algorithm to choose the weights of the output 
layer. It is known that essentially the SOL algorithm is a mixed learning algorithm. 
The function of SOL is to adjust the center of RBF to the key area of input space. 
According to SOL algorithm, center vector )1( +τjV  of the jth node of hidden layer 

at ( 1+τ )th learning moment is given by: 

( ) ( ( ) ( )) ,
( 1)

( ) ( ) ( ( ) ( )) ,
j j j

j
j j j

V d V X a
V

V X a d V X a

τ τ τ γ
τ β τ α τ τ τ γ

− + ≥⎧
+ = ⎨ + + − + <⎩

              (3) 

where, 0>α , 0>β , Hj ≤≤1 ; center vector )(τjV  is the jth node of the hidden 

layer at τ th learning moment; jγ  is clustering radius of jth node center vector )(τjV  

of the hidden layer;α  and β  are given respectively by: 

)1(/1 += τα jN , )1(/)( += ττβ jj NN ,                           (4) 

)(τjN  is the clustering input samples of  center vector )(τjV  of the jth node of the 

hidden layer at τ th learning moment, ))1()(( +− ττ XVd j  is the Euclidean distance 
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between the center vector )(τjV  of the jth node of the hidden layer and input vector 

)1( +τX  at 1+τ  moment and is given by: 

∑
=

+−=+−
i

i
iijj XVXVd

1

2))1()(())1()(( ττττ .                   (5) 

The supervisory learning algorithm is applied to calculate the linear weights between 
the hidden layer and the output layer based on the steepest decent method. Suppose 
that the desired output of the kth neuron of the output layer of r th epoch s th learning 
sample at τ  learning moment is )(, τkdY or ),(, srY kd , the actual output is )(τkY or 

),( srYk  and suppose a weights matrix is )(rW  after the rth learning, then the weights 

matrix )1( +rW is given by: 

∑
=

−+=+
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s
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1
, ),()),(),(()()1( η ,                    (6) 

where, Hj ,,2,1= , Ok ,,2,1= ;η  is learning rate; ),( srZ j  is the output vector 

from the jth hidden layer. 

3   A Distributed SIU Information Fusion Model 

Suppose the output attitude angular information of the ith local SIU and platform 

gyrocompass are i

sΦ  and pΦ  respectively in distributed SIU, angular deformation of 

the ith local part of installing  SIU is i

sΨ , then 

ii

sp

i

s δ+Ψ=Φ−Φ ,                                                  (7) 

where, δ  is total error (including system error, misalignment error and calculation 
error) of the ith local part of installing SIU, n  is total number of SIU. 

Then attitude information of the jth local part is deduced: 
j

wp

j

w Ψ=Φ−Φ ,                                                    (8) 

where, j

wΦ , j

wΨ  are attitude angle and flexible angle of the jth local part respec-

tively, m  is the total number of the local part angular information required induced. 
According to equation (7) and equation (8), the attitude information of the jth local 

part is given by: 

ii

s

j

w

i

s

j

w δ−Ψ−Ψ+Φ=Φ ,    ni ,2,1= , mj ,2,1= .            (9) 

So, for the jth local part, one result of angular information 0j

wΦ and n  results of an-

gular information ji

wΦ ( ni ,2,1= ) are obtained from equation (8) and equation (9) 

respectively. But the 1+n  results aren’t accurate because of some inevitable errors 
and some fault of local SIU, the information fusion method based on RBFNN to  
deduce the deformation information of the whole flexible surface considering n  finite 
SIUs on the the large surface is necessary to improve angular information precision. 
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A distributed SIU information fusion model is shown in fig. 2. First, the consistent 
property test is analyzed to determine the output information validity of every SIU. 
Then, 1+n  results calculated by valid output information of SIU, flexible informa-
tion and platform gyrocompass information is treated as input of RBFNN to deduce 
angular information of any part. 

 

Fig. 2. A distributed SIU information fusion model 

4   Consistent Property Test of Output Information of Local SIUs 

Consistent property test is necessary for an information fusion system to reject non-
consistent information and to reserve consistent information to calculate fusion value. 

Suppose desired three attitude angles θ ,ϕ ,γ  are given respectively by: 
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 ,                                       (10) 

where, θA , γA , ϕA  are amplitude respectively, θω , γω , ϕω  are angular frequency re-

spectively, θφ , γφ , ϕφ  are initial phase angle respectively, 0θ , 0γ , 0ϕ are initial angle. 

Then, maximum angular rate are obtained from the equation (10) respectively: 

θθωθ A=max , γγ ωγ A=max , ϕϕωϕ A=max .                               (11) 

Actual attitude angles are calculated by SIU information, Suppose sampling period 
is t , Then consistent property test of output information of local SIUs is given by: 

ttt max1 θθθ ≤−+ , ttt max1 γγγ ≤−+ , ttt max1 ϕϕϕ ≤−+ .                      (12) 

Output information of local SIUs is treated as valid information if they meet the 
demand of the equation (12). 
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4   Simulation  

Usually the large flexible structure such as ship deck, flexible wing etc. is too com-
plex to analyze precisely. A simple thin plate model (Figure. 3) assisted reinforcing 
steel rib is set up to verify the information fusion method based on RBFNN. Simula-
tion based on the finite element method (FEM) is done for the thin plate on limited 
actual condition. Suppose Possion rate 3.0=σ , modulus of elasticity 1101.2 eE =  
Mpa, density of mass 7850=ρ  kg/m3, the 15 orders vibration model of the thin plate 

are analyzed by FEM and treated as a monitoring object. (Here only angle verification 
is done along x direction). Simulation is done based on the static base (i.e. 0=Φ p ) 

because of limited condition. Suppose four SIUs are installed on the large thin plate. 

 

Fig. 3. The thin plate model (grid form is a rectangular form because of higher efficiency than a 
triangle form. Considering the plate shape, a suitable grid size is selected to be divided evenly 
according to line length (0.5 m), considering tiny flexible deformations. Four SIUs are located 
on 1J , 2J , 3J , 4J respectively, we suppose that deformation of point A is necessary to be 

deduced and external loads are located 1F , 1F , , 16F respectively). 

In addition, we suppose that the output of a SIU is kept at high precision during 
some conditions, °≤≤° 45.2 θA , sTs 84 ≤≤ θ , °≤≤° 1812 γA , sTs 138 ≤≤ γ , 

st 02.0= , according to the equation (11), then the maximum angle increment are 
given respectively by: 

max (4*2 / 4)*0.02 0.1237 ,A tθ θθ ω πΔ = = = °  

max (18*2 /8)*0.02 0.2827 .A tγ γγ ω πΔ = = = °  

Considering an actual situation, suppose °=Δ 2.0maxθ , °=Δ 4.0maxγ . 

In this paper, in the Fig. 1, a RBFNN with 5 neurons in the input layer, 11 neurons 
in the hidden layer and one neuron in the output layer is employed. After consistent 
property of SIUs output information is tested, 50 group of results of FEA for point A at 
different combination states acting on 16 external load simultaneously are used as 
training input of ANN, the training time for the improved RBFNN model is about 
5×103 epochs (about 10 minutes or so) for 1×10-4 precision, it is much less than that for 
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the training of the BPNN for the same precision. The learning speed for the improved 
RBFNN is much faster than that for training of the BPNN (see fig. 4 and fig. 5). 

  
Fig. 4. Learning speed of the improved 
RBFNN 

Fig. 5. Learning speed of the BPNN 

10 groups of training samples selected from 50 groups of training samples of FEA 
are used as desired flexible attitude information. These 10 groups of training samples 
added to 10% random noise are used as the input of improved RBFNN and BPNN 
respectively to fusion according to chapter 2.2. Output results of attitude information 
fusion at point A are shown as table 1. 

Table 1. output results of attitude information fusion at point A and modeling error (unit: 
degree) 

Sample 
number 

1 2 3 4 5 6 7 8 9 10 

Desired value 0.05943 0.06437 0.06913 0.07528 0.08218 0.08905 0.09317 0.10993 0.12085 0.13645 

Improved 
RBFNN 

0.06074 0.06384 0.06815 0.07726 0.08127 0.09012 0.09415 0.10835 0.12426 0.13497 

Error ( % ) 2.2 -0.98 -1.42 2.63 -1.107 1.2 1.05 -1.44 2.82 -1.08 

BPNN 0.05716 0.06553 0.06758 0.07795 0.08367 0.08725 0.09529 0.11215 0.11539 0.13227 

Error ( % ) -3.82 1.802 -2.24 3.547 1.81 -2.02 2.28 2.02 -4.52 -3.06 

Comparing with the results by improved RBFNN and BPNN, modeling  precision 
of improved RBFNN is higher than BPNN at the same training time, at the same time,a 
information fusion method based on improved RBFNN has good anti-disturbance 
property for application of deformation measurements of large flexible surface. 

6   Conclusions 

The simulation on a simple thin plate model shows that the information fusion based 
on improved RBFNN is effective and has higher precision than based on back propa-
gation (BP) NN. The application of improved RBFNN for the deformation measure-
ment of a large flexible surface is feasible. 
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Abstract. Currently, there is little quantitative research on macroscopic
real estate finance at home and abroad. Seen from the whole system of
real estate finance, this paper chooses 14 main indexes to compose an
evaluation index system. Based on the evaluation index system, an error
-back-propagation BP network model is built to evaluate the growth of
real estate finance. Data of real estate financial system from 1997-2005
are used as train and test samples of BP neural network. After training,
the BP neural network is used to evaluate and forecast by simulation.
Through the good accuracy of evaluation and forecasting, the model
is proved to be very efficient. By comparing the growing difference of
two adjacent years and analyzing the related macro financial policies in
related years, the running effect of related real estate financial policies in
related years is gained. So by using the evaluation model of this paper,
decision makers can decide to use what kind of macro adjusting and
controlling policies to gain anticipated aim of real estate finance in the
future.

1 Introduction

In recent years, with the course of urbanization and reform of urban housing
system deepening, China debuted many policies which support the development
of real estate industry and housing credit. Accompanying with the fast increase
of real estate industry, real estate finance has risen to eminence in the field of
national financial industry. So how to evaluate the growth of Chinese real estate
finance scientifically has become a preliminary problem to instruct the real estate
financial system to develop in a healthy way.

Currently, in foreign countries although there have been much research on real
estate finance and the quantitative research focus mainly on real estate financial
instruments and price, research on macroscopic real estate finance have been
little. In our country research on real estate finance are also very much, these
research are of related laws, policies, financial instruments, financial market and
financial intermediaries, but they are almost of actual practice and quantitative
research are little especially in macroscopic aspect. The main quantitative re-
search involving in real estate finance at home and abroad sum up as follows:

� This paper is supported by funds of Ministry of Construction and numbered 05-72-18.
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Allen and Gorton (1993) made a model under a continuous time limit. Then
Allen (1998) developed a simple model. In the model the intermediation of bank
sectors led to proxy problems which produced capital bubbles. Yuan Zhi-gang
(2003) started from economic bubble theory and built a sectional equilibrium
model of real estate market. The model showed the important roles of antici-
pation of actors, credit of banks and government policies in forming real estate
bubble. Wong (1998) explained the collapse of real estate market before eco-
nomic crisis in 1997 in Thailand. The continuous economic growth created not
only high demand of real estate, but also increased optimized anticipation of
future market. So the overmuch house property and bubbles were formed. In
an international viewpoint Herring (1998) studied on the relationship between
real estate prosperity and bank crisis. Through building credit market model
together with Carey’s model that bank’ s centering credit led to real estate pros-
perity, the real estate prosperity fermented bank crisis. Wu Kang-ping and Pi
Shun (2004) made a general equilibrium analysis of the co-growth of real estate
market and financial market. Pi Shun and Wu Kang-ping (2006) proved that
there was double linear cause relationship between the development of Chinese
real estate market and that of Chinese financial market.

Based on developmental economics which discusses on the economic increase
and economic development, a scholar at home puts forward the concept of fi-
nancial growth ([1]). The concept of real estate financial growth in this paper
roots in that of financial growth. Real estate financial growth is an organic whole
composed by real estate financial increase and real estate financial development.
Real estate financial increase means the relative scale of inventory and flux of
real estate finance. Being the given quantity of real estate financial growth, it can
be expressed as the scale of real estate financial asset expanding compared with
the expansion of national wealth. Real estate financial development means the
high or low manned efficiency and use efficiency of real estate finance. Being the
given quality of real estate financial growth, it can be expressed as the change
of real estate financial structure and the perfection of real estate financial mar-
ket. It also includes the spatial difference of financial structure, turn of financial
concept and change of financial institutions.

In short, this paper discusses the problem of real estate financial growth by
BP neural network.

2 Modeling Evaluation System of Real Estate Financial
Growth by BP Neural Network

2.1 BP Neural Network Theory

Currently multilayer BP neural network is a most widespread artificial neural
network. This network uses error-back-propagation algorithm which is called er-
ror back propagation artificial network or BP network for short by people. The
learning process of BP network is composed of four processes: the learning mode
is a mode-propagation-in-turn process from input layer visa medium layer to
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output layer; the error signal coming from expected output of network and ac-
tual output is an error-back-propagation process revising link weight value from
output layer visa medium layer to input layer; the alternation of mode-back-
propagation and mode-propagation-in-turn forms the process of ”memory train-
ing”; the network tends to converge, which is a ”acquiring proficiency process”
([2,3]) making the composite error tend to minimize.

2.2 Building Evaluation Model of BP Neural Network

Although the error back propagation artificial network is almost the most simple
form, this paper aims to solve a problem in a new field by it, not to gain a
complex computing process or a result with good mathematical form. The most
important thing lies in whether or not the model can solve our problems.

BP neural network is a multilayer network using nonlinear differentiable
function to train weight value. Because it has simple structure and strong plastic-
ity, and has absolute predominance ([4,5,6]) in dealing with problems of multi-
dimension, complex and nonlinear, so this paper use three layers BP neural
network to evaluate Chinese real estate financial growth.

The action function reflects the intensity of stimulated pulse from input of
lower layer to upper node in the neural network. The function is also called
stimulated function. This paper chooses Sigmoid function with continuous value
x ∈ (0, 1).

f(x) =
1

1 + e−x
(1)

BP neural network has direct relation with the number of input and output
unit. If the units of hidden layer are too short, the network may train without
any result; if the network is not strong enough, it may not recognize the samples
which were not be seen before in the network, and its fault tolerance is not good
enough; if the number of the hidden layers is too large, the network may take too
much time to learn and its error may not reduce, so in general the unit number
of hidden layer can be computed as the given empirical formula.

nH =
√

nI + n0 + l (2)

where, nH : neural number of hidden layer nIneural number of input layer
n0neural number of output layer l: an integral number from 1 to 10.

3 Empirical Analyzing

3.1 Building the Evaluation Index System of Chinese Real Estate
Financial Growth

The evaluation index system involves in four aspects which influence the real
estate financial system directly or indirectly: macroeconomic factor, resident
factor, developmental level of real estate economy and real estate finance([7]).
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The four aspects include 14 indexes according to state statistical bureau caliber
classification, seen table 1. These chosen indexes presuppose some rules which are
real, complete, scientific, fair and operable. The macroeconomic factor includes
GDP, social commodity retail price index and urbanization level, these indexes
may influence the structure and scale of real estate finance indirectly by influ-
encing the supply and demand anticipation of real estate finance; resident factor
includes urban resident per average controllable income and urban resident per
average floor space. The two indexes may influence the supply of real estate fi-
nance directly; developmental level of real estate economy includes commercial
housing sales, land developmental area and commercial housing construction
area. These indexes directly influence the demand of real estate finance; the real
estate finance factor includes domestic loans, other source of funds, self-financing,
foreign investments, bonds and state budget funds. These indexes directly show
the supply scale and structure of real estate finance and the prosperous degree
of real estate financial market, and show the change of related financial system
and participation degree of financial agencies at the same time.

3.2 Zero Dimensional Processing of Evaluation Index

According to the following formula (3), the dimensional difference of different
index can be smoothed away. A real index xij can be converted into an evaluation
value xij (∈ (0, 1)), where j is the jth index, i is the ith evaluation value of the
jth index, i = 1, 2, · · · , 9, j = 1, 2, · · · , 14.

x′
ij =

xij − min(xij)
max(xij) − min(xij)

(3)

3.3 Training Mode Pair of Neural Network

The premise of training network is to get suitable quantity of training units.
This paper makes index data of 1997-2005 be empirical analyzing object. The
objects are the so called training units, where the 14 indexes of real estate
financial system (as shown in table 1) are input data of training units, while the
corresponding evaluation values of predominance analyzing model are output
data of the network.

3.4 Training and Examining BP Network by Matlab

In the evaluation process of real estate financial growth by BP neural network,
the network which has been trained completely supplies mainly much infor-
mation not including subjective factors for decision makers. The indexes to be
trained are very important for a neural network model, so these indexes must be
overall and not repeated, and have strong maneuverability and comparability at
the same time.
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The 14 index data of real estate finance originating from standardized process
and the evaluation values1 coming from predominance analyzing theory of grey
system compose of nine input and output data mode pair of the network. The
mode pairs numbered 1-6 (1997-2002) are training units. The BP neural network
imports these training units to train. When a BP neural network with a hidden
layer has suitable quantity of units of hidden layers, it can simulate any function
precisely. This can be showed in many advanced researches ([10,11,12,13]) of BP
neural network. The unit number of hidden layer can be determined according
to formula (2). After computing, this paper gets 12 units of hidden layer. So a
network with a structure 14-12-1 is built, where the learning accuracy is given
ε = 1e−06, the learning speed is given lr = 0.05, each growth evaluation value of
training units is output of anticipation. By computing with software of Matlab,
the train of BP network completes with 100 training epochs and the total error
is 0.617377e − 06. The training result is shown in fig.1. Being test units, the
training mode pairs numbered 7-9 (2003-2005) are imported into the network to
evaluate and forecast the network. The evaluation result of data simulation is
very close to that of predominance analyzing. The result of comparative analysis
is shown in table 2.

3.5 Result Analyzing

Seen from table 2, the growth value of real estate finance of each year has been
increasing year by year from 1997 to 2005. It proves that Chinese real estate
financial system has been in a growing situation since 1997. While this situation
exactly fits the whole prosperous situation of Chinese real estate industry in
these years, so just as gotten in reference [7], the conclusion is gotten another
time that the development of real estate market and that of financial market are
in co-growth to some extent.

The difference between simulation result and anticipation output is very small,
which means this trained network has good accuracy and objective evaluation
result.

The difference percent values of two adjacent years obviously show the adjust-
ing and controlling effect of the related industrial policies on real estate finance.
For example, China implemented tighter fiscal and monetary policy in 1997, in
1998 China monetized housing distribution, promoted the development of real
estate industry, so the difference value is a relatively large number 36.6%; in 1999
China implemented active fiscal policy, started housing consumption (removed
personal income tax) and deepened monetizing housing distribution inform, so
the difference value is also a large number 24.7%; in 2001 China encouraged to
buy overstocking housing, so the difference value is a small number 1.5%; in 2002
China lowered the deposit and loan interest rates of public accumulation fund

1 The 14 indexes in table 1 are classified into two categories, one is character vectors
including FSUA, CHS, CHA, the other is relative factor vectors including GDP, IRP,
LU, DIUR, DL, OSF, SF, FI, B, SBF. After standardizing these indexes, according
to predominance analyzing method in ([8,9]), the evaluation values can be obtained.
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Table 1. Evaluation indexes of the growth of real estate finance

NUM GDP IRP LU M2 RCI RFS CHS

1 0 0.65517 0 0 0 0 0
2 0.035744 0.06897 0.12996 0.06499 0.04969 0.1083 0.0609
3 0.07001 0 0.25903 0.13912 0.13013 0.19254 0.10139
4 0.13814 0.25862 0.38899 0.20993 0.21001 0.30084 0.18224
5 0.21038 0.57895 0.51895 0.32396 0.31877 0.36101 0.26136
6 0.28273 0.37931 0.64801 0.4525 0.47684 0.60168 0.36115
7 0.39393 0.2931 0.77798 0.62682 0.62104 0.70999 0.52525
8 0.57127 1 0.88899 0.7851 0.79917 0.86643 0.73175
9 1 0.65517 1 1 1 1 1

NUM CHA DL OSF SF FI B SBF

1 0 0 0 0 1 0.48283 0.69427
2 0.04842 0.04857 0.04162 0.032 0.69522 0.62376 1
3 0.09938 0.06854 0.07091 0.06128 0.37182 1 0.39298
4 0.17505 0.16209 0.15903 0.10572 0.10149 0.33877 0
5 0.28818 0.26715 0.25825 0.19965 0.0662 0.01474 0.83369
6 0.41117 0.4478 0.36889 0.29105 0 0.21136 0.61705
7 0.60724 0.76178 0.5421 0.43122 0.10549
8 0.79915 0.76867 0.82842 0.69809 0.28447 0 0.6102
9 1 1 1 1 0.35767 0.55841 0.69688

Remark 1. NUM is number; GDP is gross domestic product; IRP is index of
social commodity retail price; LU is level of urbanization; DIUR is annual per
capita disposable income of urban residents; FSUA is per capita residence floor
space in urban areas; CHS is commercial housing sales; CHA is commercial
housing construction area; DL is domestic loans; OSF other source of funds; SF
is self-financing; FI is foreign investment; B is bonds; SBF is state budget funds.

Table 2. Evaluation result of the growth of real estate finance

NUM 1 2 3 4 5 6 7 8 9

Y 1997 1998 1999 2000 2001 2002 2003 2004 2005
AO 0.17 0.23 0.28 0.32 0.33 0.4 0.46 0.48 0.52
SR 0.1665 0.2275 0.2837 0.3230 0.3279 0.4094 0.4778 0.4913 0.5284
DPY(%) 36.6 24.7 13.9 01.5 24.9 16.7 2.8 7.6
EDT -0.0035 -0.0025 0.0037 0.003 -0.0021 0.0094 0.0178 0.0113 0.0084
EP(%) -2.1 -1.1 1.3 0.9 0.6 2.4 3.8 2.3 1.6

Remark 2. NUM is number; Y is year; AO is anticipation output; SR is simu-
lation result; DPY is difference percent of two adjacent years; EDT is errors of
data test; EP is error percent.
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for housing construction and the interest rate of loan over 5 years, so the differ-
ence value is large (24.9%) again; the difference value of 2003 is also relatively
large (16.7%), because the effect of policies in 2002 continued; the difference
value (2.8%) of 2004 goes down sharply, because since 2003, China has begun to
adjust and control the developmental speed of real estate industry. Some tighter
policies were implemented, such as controlling loans of real estate, levying tax
and so on; although in 2004 China still made a further step to implement more
tighter policies, in 2005 the difference value is 7.6% which is still above zero.
There are two main reasons about 7.6%, one is because Chinese macroeconomy
has been developing with a fast speed for many years, which speeds the process
of urbanization. Urbanization brings large and real demands; the other is be-
cause the whole economic situation is optimized, but Chinese stock market has
not matured and has great risk, so people have more optimized anticipation for
Chinese real estate market.
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Fig. 1. Accuracy and effect of network training

4 Conclusion

This paper builds the evaluation model of the growth of real estate finance
based on BP neural network. Being analyzing samples, data of 1997-2005 are
introduced to evaluate the growth of real estate financial system in a macroscopic
view. The network which has been trained may forecast the growth of real estate
finance. Through test the accuracy of the network is relatively high and the
evaluation result is objective and accurate basically.

BP neural network avoids the influence of determining standard values and
weights subjectively in the process of evaluation. Because neural network has
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strong self-learning ability, self-adapted ability and fault tolerance, so it can
build more objective and accurate evaluation system.

By comparing with the growth value of each two adjacent years, we can gain
the influence on the whole real estate finance system. The influence comes from
the effect of industrial policies in each year. So the result has some reference value
for decision makers to determine what kind of policy should be implemented in
macro adjusting and controlling and what kind of effect should be.
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Abstract. The initial weights of neural network (NN) are randomly selected 
and thus the optimization algorithm used in the training of NN may get stuck in 
the local minimal. Genetic algorithm (GA) is a parallel and global search tech-
nique that searches multiple points, so it is more likely to obtain a global solu-
tion. In this regard, a new algorithm of combining GA and NN is proposed here. 
The GA is employed to exploit the initial weights and the NN is to obtain the 
network topology. Through the iterative process of selection, reproduction, 
cross over and mutation, the optimal weights can then be obtained. The pro-
posed new algorithm is applied to the Duffing’s oscillator and Wen’s degrading 
nonlinear systems. Finally, the accuracy of this method is illustrated by compar-
ing the results of the predicted response with the measured one. 

1   Introduction 

Field of system identification has become important discipline due to the increasing 
need to estimate the behavior of a system with partially known dynamics. Identifica-
tion is basically a process of developing or improving a mathematical model of a dy-
namic system through the use of measured experimental data. In addition to updating 
the structural parameters for better response prediction, system identification tech-
niques made possible to monitor the current state or damage state of the structures. As 
for structural control problem, the system of interest also needs to be known to some 
extent. Structural identification can be categorized into classical and non-classical 
methods. Most of the classical methods are calculus-based search method. They are 
performed by point-to-point search strategy and normally require gradient or higher-
order derivatives of the objective function. There is a possibility to fall into a local 
minimum rather than the global minimum. Therefore, these methods generally do not 
function well for structural identification problem involving a large number of un-
knowns.  For such problems, the newly developed non-classical methods provide  
another alternative. Among the methods, the artificial neural network and genetic al-
gorithm are the most common techniques for system identification. Some works of 
non-classical methods in the context of system identification are review as follows. 
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Jovanović [1] proposed a neural network approach for structural dynamic model 
identification, using the responses recorded in a real frame during earthquakes. A 
typical three-layer back propagation neural network was used for the purpose of iden-
tification and a five-story steel frame was chosen to demonstrate the performance of 
the neural network. Two earthquakes used for the dynamic model identification were 
recorded for the frame. They are the Petrovac 1979, component N-S and El Centro 
1940, component N-S. The displacement and acceleration time histories were re-
corded for the sets of earthquakes on each floor. The data set, used for training of the 
neural network dynamic model, is the first 500 points taken from 1,000 points record 
of the Petrovac 1979 earthquake and the rest of response histories were used for veri-
fication of the trained neural network model. The results showed the great potential of 
using neural networks in structural dynamic model identification.  

Loh and Huang [2] proposed a neural-network-based method to the modeling and 
identification of discrete-time nonlinear hysteretic system during strong ground mo-
tion. The learning or modeling capability of multilayer neural network was explained 
from the mathematical point of view. The main idea of the proposed neural approach 
was explained, and it was shown that multilayer neural network is a general type of 
NARMAX model and is suitable for the extreme nonlinear input-output mapping 
problem. Numerical simulation and real structure cases are used to demonstrate the 
proposed method. 

The author [3] applied the real-coded GA to structural identification problems. The 
GA provides a stochastic search in the designate ranges of parameters. The system pa-
rameters associated with the minimal error index were then exploited after successive 
evolution of generations. The validity and the efficiency of the proposed GA strategy 
were explored for the cases of both SDOF linear/nonlinear dynamic systems and 
MDOF linear/nonlinear dynamic systems with simulated input/output measurements. 
The identified parameters are very close to the true one and the error index is ex-
tremely small in each case. As a result, the efficacy of the proposed algorithm was 
verified.  

The results of neural network training may be sensitive to the choice of initial 
weights of network. To attain a best network topology, this paper proposes a method 
that merge Genetic algorithm to neural network. This proposed algorithm is applied to 
the Duffing’s oscillator and Wen’s degrading nonlinear systems. 

2   Neural Network and Genetic Algorithm 

Neural networks are data analysis methods and algorithms, which imitate the process 
of nervous systems of humans and animals. In general terms, an artificial neural net-
work consists of a large number of simple processing units linked by weighted con-
nections. By analogy to human brain, the processing units may be called neurons. 
Each unit receives inputs from many other units and generates a single output. The 
output acts as an input to other processing units. Unlike traditional linear algorithms, 
artificial neural networks using highly distributed representations and transformations 
that operate in parallel, have distributed control through many highly interconnected 
neurons, and stored their information in variable strength connections called synapses  
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- just like a human brain. The network is nonlinear in nature and thus is an exception-
ally powerful method of analyzing real-world data that allows modeling extremely 
difficult dependencies. A certain network may be tuned to solve a particular problem, 
such as the modeling or prediction of the behavior of a complex system, by varying 
the connection topology and values of the connecting weights between units.  

To bring proper results the neural networks require correct data preprocessing,  
correct architecture selection and correct network training. The most common type of 
artificial neural network, called the multi-layer feedforward network with the back-
propagation training algorithm, consists of three groups, or layers, of units: a layer of 
"input" nodes is connected to a layer of "hidden" nodes, which is connected to a layer 
of "output" nodes: 

• The activity of the input nodes represents the raw information that is fed into the 
network. 

• The activity of each hidden node is determined by the activities of the input nodes 
and the weights on the connections between the input and the hidden nodes. 

• The behaviour of the output nodes depends on the activity of the hidden nodes and 
the weights between the hidden and output nodes. 

Feedforward NNs allow signals to travel one way only, from input to output. There 
is no feedback (loops) i.e. the output of any layer does not affect that same layer.  
In the standard back-propagation algorithm, the relation between n

jA , the output in the  

jth node of the nth layer, and 1−n
iA , the outputs of the nodes in the (n-1)th layer, is  
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where 
ijW is the connecting weight between nodes in the nth layer and those in the  

(n-1)th layer; and 
jθ  is the bias term. The transfer function can be linear or nonlinear. 

Identification procedure entails a matching between the system outputs and the identi-
fied outputs. During training stage, a system error or objective function is defined and 
used to monitor the performance of the network. In order to achieve the best perform-
ance of the network, adjusting the connecting weights through optimization tech-
niques minimizes this function. 

On the other hand, genetic algorithm is a stochastic search technique based on 
natural selection and genetics, developed by Holland [4]. Genetic algorithms model 
natural processes, such as selection, recombination, mutation, migration, and competi-
tion. The algorithms work on populations of individuals instead of a single solution. 
In this way, the search is performed in a parallel manner. However, better results can 
be obtained by introducing multiple subpopulations. Every subpopulation evolves 
over a few generation isolated (like the single population GA) before one or more  
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individuals are exchanged between subpopulation using the mechanisms of migration 
and competition. The multipopulation GA models the evolution of a species in a way 
more similar to nature than single population. Fig. 1 show the structure of a multi-
population GA. 

 

Fig. 1. Structure of a multipopulation genetic algorithm 

3   GA-Based Neural Network Identification Algorithm  

The network topologies for nonlinear systems are studied here. The network model is 
designed to construct the relationship between the structural responses, for example, 
displacement and velocity as input, and acceleration as output. Linear or nonlinear 
network with delay time may be assumed and then identified. However, the initial 
weights of the network are selected randomly and the identified result may be de-
pendent on them. In this regard, a new algorithm is proposed here. A multipopulation 
GA is suggested to be used to exploit the best initial weights of the network here. At 
the beginning of the computation, a number of individuals for the initial weights are 
randomly generated. The network training is preceded using each individual as the 
initial weights. The objective function and the fitness function are then evaluated for 
the network associated with each individual. If the termination criteria are not met, the 
creation of a new generation starts. Individuals for initial weights are selected accord-
ing to their fitness for the production of offspring. Parents are recombined to produce 
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offspring. All offspring will be muted with a certain probability. The offspring are 
then inserted into the population replacing the parents, producing a new generation. 
Every subpopulation evolves over a few generation isolated (like the single popula-
tion GA) before one or more individuals are exchanged between subpopulation using 
the mechanisms of migration and competition. This cycle is performed until the opti-
mization criteria for GA are reached. This new algorithm is called the “GA based  
neural network identification algorithm”. The fitness function used in this paper is  

}1{

}1{
}1{22

−
−×−+−=

Nind

Pos
SPSPFitness  (4) 

Where Nind the number of individuals in the population, Pos the position of an indi-
vidual in this population (least fit individual has Pos=1, the fittest individual 
Pos=Nind) and SP the selective pressure.  

4   Application to System with Duffing’s Hysteretic Model   

In this section, we attempt to find the neural network topology suitable for system 
with Duffing’s hysteretic model using the new algorithm aforementioned. The motion 
equation for such a system when excited by a uni-directional earthquake ground  
acceleration is  
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where 1=m , 77.3=c , 3.3551 =k , 0.7002 =k and 
gu = ground acceleration. The 

measured response is the absolute acceleration and can be represented as 
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The system is subjected to different levels of ground excitations. The peak ground ac-
celeration of El Centro earthquake is scaled to 10 gal, 196 gal and 210 gal for this 
purpose. The response of the system is computed accordingly. The network architec-
ture used here is the feedforward back-propagation network trained by Levenberg-
Marquardt algorithm. The objective function or network performance is defined as 
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where N  is the number of measurement sequence; 
iy  is the measured response of the 

system; and 
ia  is the identified response. The first step is to find out the proper order 

of the models. The value of delay time for each input can be determined from value of 
the objective function, i.e., the value of delay time associated with the best perform-
ance of the network is adopted. Due to space limitation, the process is omitted. The 
value of delay time for model A and model B adopted here is 3 for both models.  
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Table 1 shows the associated linear and nonlinear models. Several neural network 
models are identified according to various network topology and the results are listed 
in Table 2. It is obvious that model A and model B perform better that model C. In 
order to demonstrate the effect of the new algorithm, the results using traditional neu-
ral network are also listed in the same table. Fig. 2 illustrate the comparison of the 
target output with the network output for model A with PGA=196gal.  

Table 1. NN topology for Duffing’s hysteretic models  
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(Linear) 
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Table 2. Network perfomance (E.I.) for Duffing’s hysteretic models 

 Testing case GA+NN NN 

El ns 210gal 0.0084 0.0085 
Model A (Linear) 

El ns 196gal 0.0083 0.0083 

El ns 210gal 0.0077 0.0078 
Model B (Nonlinear) 

El ns 196gal 0.0076 0.0080 

Model C (Linear) El ns 10gal 0.0369 0.0369 
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Fig. 2. Comparison of the target output with the network output for model A with PGA=196gal 
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5   Application to System with Wen’s Hysteretic Model  

Wen’s model is a versatile nonlinear hysteretic model since it can capture a wide 
range of shapes of hysteresis loops that represent the properties of real nonlinear 
structural systems in a continuous function. Herein, we try to find the neural network 
topology for system with Wen’s hysteretic model by using the new algorithm. The 
motion equation for such a system when excited by a uni-directional earthquake 
ground acceleration is  

gumkzkuucum −=−+++ )1( αα  (8) 

where z is the hysteretic component of the restoring force defined by 

η
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TT εδηεη η+= 0)(  and 
Tε  is the dissipating energy expressed as ukzT )1( αε −= . Pa-

rameters νη,  are related to the degradation characteristics of stiffness and strength. 

The shape of the hysteretic loop is controlled by parameters A ,α , β , γ , νη, . The 

measured response is the absolute acceleration and can be represented as 

3
2

1
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In this paper, results for model without stiffness and strength degradation are  
not shown owing to space limitation. Only model considering the stiffness and 
strength degradation characteristics are considered and the parameters are set as 

,1=m ,1,47.39 == nξ  ,5.0=== γβα  ,1000 === ηνA  002.0=== ην δδδ A
. The 

system is subjected to the El Centro earthquake with peak ground acceleration scaled 
to 331gal. Table 3 shows the linear and nonlinear models for either displacement out-
put or acceleration output considered here. The value of delay time, which is deter-
mined by the same process as that in the previous section, is either 2 or 4 depending 
on the model. Therefore, neural network models in Table 3 are identified. Five neu-
rons in the hidden layer with nonlinear activation function f are used in the nonlinear 
model for displacement predictor. The performance of model B is no more less than  
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that of model A. This means that nonlinear activation function is useless in the dis-
placement prediction task. One neuron in the hidden layer with nonlinear activation 
function is used in the nonlinear model for acceleration predictor. It can be observed 
that simple linear model is sufficient to the acceleration prediction problem. The re-
sults using traditional neural network are also tabulated in the same table. Fig. 3 illus-
trates the comparison of the target output with the network output for model A with 
PGA=331gal. 

Table 4. Network perfomance (E.I.) for Wen’s hysteretic models ( 002.0=== ην δδδ A
) 

 Testing case GA+NN NN 

Model A (Linear) El ns 331gal 0.0012 0.0013 

Model B (Nonlinear) El ns 331gal 0.0012 0.0021 

Model C (Linear) El ns 331gal 0.0031 0.0031 

Model D (Nonlinear) El ns 331gal 0.0031 0.0031 
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Fig. 3. Comparison of the target output with the network output for model A with 
PGA=331ga( 002.0=== ην δδδ A

) 

6   Conclusions 

Artificial neural networks, with their remarkable ability to gain information from 
complicated or imprecise data, can be used to derive model and extract parameters 
that are too complex to be noticed by either humans or other computer techniques. On 
the hand, genetic algorithms provide a very attractive computation method, as its im-
plementation is relatively straightforward. Unlike many classical methods, there is no 
need to compute the derivatives with respect to the parameters. No initial guess is re-
quired. Furthermore, the fitness function can be defined in terms of the measurement  
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quantities directly. To avoid get in stuck in local optima when applying NN, merging 
GA to NN is very promising. Based on study of numerical examples in this paper, the 
following conclusion can be made: 

• This paper presents an automatic procedure for pursuing the best initial weights of 
the NN without trial and error procedure. 

• A set of new neural network topologies is presented to predict the system response 
for nonlinear structural systems such as Duffing’s and Wen’s nonlinear systems. 
Thus, the nonlinear input-output mapping ability is demonstrated. This is espe-
cially useful when the mathematical expression of the structural dynamic system is 
complex. 

• In the future, the set of neural network topologies developed in this paper can be 
employed to replace the procedure for solving the governing (differential) equation 
when GA is used to identify the system dynamic parameters. As a result, an effi-
cient identification technique combining GA and ANN can be developed.  
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Abstract. Parallel process neural network (PPNN) is a novel spatio-temporal 
artificial neural network. The approximation capability analysis is very impor-
tant for the PPNN to enhance its adaptability to time series prediction. The ap-
proximation capability of the PPNN is analyzed in this paper, and it can be 
proved that the PPNN can approximate any continuous functional to any degree 
of accuracy. Finally, the PPNN is utilized to predict the iron concentration of 
the lubricating oil in the aircraft engine health condition monitoring to highlight 
the approximation capability of the PPNN, and the application test results also 
indicate that the PPNN can be used as a well predictive maintenance tool in the 
aircraft engine condition monitoring. 

1   Introduction 

Parallel process neural network (PPNN) is a novel spatio-temporal artificial neural 
network. From a point view of architecture, PPNN is similar to the traditional parallel 
neural network. The major difference is that the inputs and the corresponding weights 
of the PPNN are time-varying functions. The major characteristics which distinguish 
the PPNN from the traditional multilayer feedforward process neural network 
(MFPNN) lies in the fact that there has an added link from the input layer direct to the 
output layer of the PPNN. This link is parallel to the link from the hidden layer to the 
output layer of the PPNN. It has been shown that the PPNN has a faster convergence 
speed and higher accuracy than the MFPNN [1,2]. 

In 1989, Hornik and Funahashi proved respectively that multilayer feedforward 
neural networks can approximate any continuous function to any degree of accuracy 
[3,4]. It seems that artificial neural networks have great potential to high nonlinear 
and uncertain systems. It also indicates that the approximation capability analysis is 
very important for the PPNN to enhance its adaptability to practical engineering  
applications. Thus, the approximation capability of the PPNN is analyzed in this  
paper. It can be proved that the PPNN can approximate any continuous functional. 

The plan of this paper is as follows: In section 2, the PPNN model and its learning 
algorithm are reviewed. In section 3, the approximation capability of the PPNN is  
analyzed and proved. In section 4, the PPNN is utilized to predict the iron concentration 
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in the aircraft engine lubricating oil monitoring, and the test results highlight the  
approximation capability of the PPNN. Conclusions are given in section 5. 

2   The PPNN Model and Its Learning Algorithm 

2.1   Process Neuron 

The process neuron as depicted in Fig (1) is composed of three sections: inputs, an 
activation unit and output [5].  
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Fig. 1. Sketch diagram of process neuron model 

The output of the process neuron model can be expressed as 
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Where ],0[)( TCtxi ∈  is the i-th input function, )(tiω  is the i-th weight function. θ  is 

the threshold. )(⋅f  is the activation function.  

2.2   The PPNN Model 

The PPNN employed in this paper is comprised of three layers. The topological struc-
ture of the PPNN is 1n m− − , which is depicted in Fig (2). 

∑ ∫,, f

∑ ∫ ,, f

∑ ∫ ,, f

)(1 tx

)(txn

)(2 tx ∑ ∫,, g y

)(tijω
)(tui

jv

 

Fig. 2. The topological structure of the PPNN 

Suppose that the activation function of the output layer is a linear function, thus the 
output of the PPNN model can be expressed as 
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Where )(tijω  is the connection weight function between the j-th process neuron in the 

hidden layer and the i-th unit in the input layer, ( )iu t  is the connection weight func-

tion between the i-th unit in the input layer and the unit in the output layer, (1)
jθ  is the 

threshold of the j-th process neuron in the hidden layer, θ  is the threshold of the unit 
in the output layer.  

2.3   Learning Algorithm 

According to Weierstrass approximation theorem [6], )(txi , )(tijω  and ( )iu t  can be 
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Suppose that sd  is the s-th desired output, and sy  is the corresponding actual output 

of the PPNN, 1, ,s S= . Then, the error of the PPNN can be written as 
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the gradient descent method, the learning rules are defined as follows 
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Where , , , ,α β γ η λ are learning rates, k is iteration.  
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3   Approximation Capability Analysis 

In this section, the approximation capability of the PPNN is described in the follow-
ing Theorem 1. In order to prove this theorem, we begin with a definition. 

Definition 1. Suppose that K is a compact set in nR , ( )F i is a continuous function in 

( )C K . Suppose that 1( ) ( ( ), , ( ))T
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Then, ( ( ))G X t can be expressed as  
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Because ( ) ( )F C K∈i , according to Hornik’s and Funahashi’s papers [3,4] and He’s 
paper [7], ( )F i can be approximated by a traditional parallel neural network. It is 
obvious that the traditional parallel neural network is a special case of the PPNN. 
Thus, there exists a PPNN hP  such that ( ( ) ( ( ))h h h hF X t P X t ε− < for any 0hε > . 
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For any 0ε > , let
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4   Application Test 

In this section, the PPNN is utilized to predict the iron (Fe) concentration of the lubri-
cating oil in the aircraft engine condition monitoring to highlight the approximation 
capability of the PPNN. Aircraft engine is a complicated nonlinear system, which 
operates under high temperature and speed conditions [8]. The lubrication system is 
an important working system of the aircraft engine. The lubricating oil monitoring is 
essential in terms of the flight safety and also for reduction of the preventive mainte-
nance cost. The monitoring analysis of the lubricating oil taken from the aircraft en-
gine gives an indication of its suitability for continued use and provides important 
information about the health condition of the lubricated components within the air-
craft engine. The sampling interval of the data used in this paper is about 24 hours. 
Thus, we get a Fe concentration time series with 155 discrete points such as 155

1{ }j jFe = , 

which is depicted in Fig (3). 

 

Fig. 3. Fe concentration time series 

),,,( 41 ++ iii FeFeFe can be used to generate an input function iIF , 1, ,150i = , and 

5+iFe  can be used as the output corresponding to iIF . Thus, we can get 150 couples of 

samples such as 150
15},{ =+ iii FeIF . 100

15},{ =+ iii FeIF  are selected to train the PPNN. The  

topological structure of the used PPNN is1 10 1− − . The orthogonal Legendre basis 
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functions are selected to expand the input functions and the connection weight func-
tions. The error goal is set to 10-6, and the learning rate is set to 0.01, the max iteration 
number is set to 1000. After 94 iterations, the PPNN has converged. 150

1015},{ =+ iii FeIF  are 

selected to test the PPNN. The test results as shown in Fig (4) indicate that the PPNN 
seems to perform well and appears suitable for using as a predictive maintenance tool. 

 

Fig. 4. Fe concentration time series prediction by the PPNN 

5   Conclusion 

The PPNN is a novel spatio-temporal artificial neural network. In this paper, the topo-
logical structure of the PPNN and its learning algorithm based on the expansion of the 
orthogonal basis functions are reviewed firstly. Subsequently, the approximation 
capability of the PPNN is analyzed, it has been proved that the PPNN can approxi-
mate any continuous functional to any degree of accuracy. Finally, the PPNN is  
utilized to predict the iron concentration of the lubricating oil in the aircraft engine 
condition monitoring to highlight the approximation capability of the PPNN, and the 
application test results also indicate that the PPNN can be used as a predictive main-
tenance tool for the aircraft engine condition monitoring. 
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Abstract. The purpose of this paper is to present a sensorless control method 
for transverse flux linear switched reluctance motor (TFLSRM) based on posi-
tion estimation by employing a public back propagation neural network 
(BPNN). The system characterizes with that only one public BPNN is needed to 
transform the winding current and flux linkage of each phase into each segmen-
tal position signal, then final total position is obtained by combining each seg-
mental position signal. The starting position is derived from the comparison of 
the calculated position values based on currents and flux linkages of all phases. 
A TFLSRM with three phases is used to verify the validity of the proposed 
method, the established position sensorless control system with a BPNN is 
simulated. The results illustrate the excellent performance of the BPNN-based 
position sensorless control system. 

Keywords: linear reluctance motor, neural network, position estimation. 

1   Introduction 

Transverse flux linear switched reluctance motor (TFLSRM) has demonstrated huge 
potential in the application of railway vehicles. As an attractive alternative to rotary 
motor, TFLSRM is becoming preferable in linear motion [1].  

The essential position signal of TFLSRM makes the position sensor be employed 
in traditional method. However, a physical position sensor will produce many 
problems in practical applications, such as increasing complexity of whole system, 
decreasing reliability etc. These factors justify the necessity for development of a 
high-grade position sensorless control for SRM drives [2]. Recently, many sensorless 
algorithms have been proposed and validated for control of rotary SRMs [3], but a 
paucity of literature introduces the position sensorless control of TFLSRM. 

In this paper, a novel strategy for position senlorless control for TFLSRM is pro-
posed. Position signal is estimated online by using an established back propagation 
                                                           
* The work was partially supported by the Key Project of Chinese Ministry of Education under 

Grant #2004104051, and in part by the Delta Science & Technology Educational Develop-
ment Program Grant # DREG2005006. 
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neural network (BPNN), where the phase current and flux linkage are two inputs of 
the network. One major characteristic is that, only one BPNN is used in this strategy. 
Its starting operation and approach of position estimation are presented in detail. A 
three-phase TFLSRM is used in simulation to verify the proposed method.  

2   Structure of TFLSRM 

The 2-dimensional views of the proposed TFLSRM are provided in Fig.1, where the 
part including phase windings is referred as the primary side and another part without 
conductor or permanent magnets is called the secondary side. It can be noticed that the 
primary side is fixed in the movable bogie with equal pole pitches and the secondary 
side is fixed in the track with equal pole pitches. The machine supplies a thrust force in 
the Z direction. The three-phase windings located on the machine moving bogie are 
used to provide the required electromagnetic forces to the system. The primary side is 
composed of four sectors, and each sector includes three poles. Four windings of each 
phase respectively located on four sectors, can be connected in series or parallel to 
achieve high efficiency for whole ranges of different loads and speeds.  

Its operating principle is similar to conventional rotary SRM. For example, for the 
continuous forward movement in the positive Z direction, the excitation sequence  
B-C-A is necessary for the motion in the increasing inductance region. On the con-
trary, the excitation sequence C-B-A will make the machine move in backward along 
the negative Z direction [1]. 
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Fig. 1. 2-D views of the designed TFLSRM, (a) gives view from the Y-X plane, and  
(b) shows view from the Y-Z plane 

3   Neural Network-Based Control System 

Block diagram of the control system is illustrated in Fig. 2. Stator current and voltage 
of each phase are measured directly to calculate the flux linkage by 
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),,(,d)( cbajtRiu jjj ∈−= ∫λ  . (1) 

where λj, uj, and ij are respective flux linkage, voltage, and stator current of phase j, R 
is phase resistance.  
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Fig. 2. Block diagram of the proposed control system 

Two inputs of BPNN are stator current and flux linkage of each phase in turn. 
Switch is used to choose one phase from three phases so that the trained neural net-
work estimates the position via only one phase any time. The calculated position 
signal is fed back to controller for the purpose of commutation and speed control.  

3.1   Starting Operation  

Trust force of TFLSRM is direct proportion with derivative of inductance with re-
spect to position, and the starting operation should be based on the characteristic of 
inductance versus position, as shown in Fig. 3.  
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Fig. 3. The principle of starting operation 
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We define the zero-position at the minimum inductance, and 37.5 mm at the 
maximum inductance, according to the size of the designed TFLSRM. One periodical 
position of 75 mm includes six sections such as Z1, Z2, Z3, Z4, Z5, and Z6, which is 
useful to determine starting phases producing the desired trust force in a given direc-
tion of operation. The position of each phase can be obtained by using the trained 
BPNN in turn. A tiny current is applied to the winding of each phase, and the meas-
ured current and the calculated flux linkage are used as inputs of the established net-
work, the network output is the position corresponding to the presented phase. Three 
position signals of x1, x2, and x3 can be obtained for a three-phase motor during 
starting operation. Table 1 shows a form to determine the operating phases for startup.  

Table 1. A form to determine the operating phases for startup 

Operating phases     Positions 
 
Sections 

x1 
(mm) 

x2 
(mm) 

x3 
(mm) Forward Backward 

Z5 (0, 12.5) (12.5, 25) (25, 37.5) a, c b 
Z6 (12.5, 25) (0, 12.5) (25, 37.5) a b, c 
Z1 (25, 37.5) (0, 12.5) (12.5, 25) a, b c 
Z4 (0, 12.5) (25, 37.5) (12.5, 25) c a, b 
Z3 (12.5, 25) (25, 37.5) (0, 12.5) b, c a 
Z2 (25, 37.5) (12.5, 25) (0, 12.5) b a, c 

3.2   Estimation of Position in Operation  

The regular estimation of position in operation is finished by using the trained public 
BPNN. As shown in Fig. 3, we define Xon_b as turn-on position of phase b and 
Xoff_b as turn-off position of phase b, and (Xoff_b- Xon_b)>25 mm. Therefore, the 
current and flux linkage of phase a are employed for estimating position before the 
phase a is turned off at Xoff_a, although the phase b has been turned on at Xon_b. 
The task of estimating position is transferred to phase b at Xoff_a up to Xoff_b, 
which is achieved via a switch that ensures one effective phase any time during opera-
tion, shown in Fig. 2.  

4   Position Model Based on BPNN 

In the designed position model based on BPNN, two inputs are respective phase cur-
rent and flux linkage, the estimated position is output, and one hidden layer is enough. 
The functions used in the hidden-layer are unipolar sigmoid functions, and in the 
output-layer is pure linear function. 

With the training samples obtained from the characteristic of position versus phase 
current versus flux linkage, the BPNN-based position model is trained so that the sum 
squared network error reduces to 0.0001. Fig. 4 presents the characteristic of the 
trained BPNN when the current and flux linkage are inputs and position is output, 
which will be applied to control system for estimating position online in Fig. 2.  



 Neural Network-Based Position Sensorless Control for TFLSRM 77 

0
5

10
15

0

0.1

0.2

0.3

0.4
0

0.01

0.02

0.03

0.04

Current (A)
Flux Linkage

(Wb)

Po
si

tio
n 

(m
)

 

Fig. 4. Characteristic of the trained BPNN 

5   Simulation Results 

The simulation is carried out to verify the proposed control system in Fig. 2. The 
position signal is estimated by using the trained BPNN above. Fig. 5 shows the dy-
namic response of speed when the motor operates at a given speed reference of 1 m/s. 
The steady phase currents are given in Fig. 6. The BPNN output in Fig. 2 is shown in 
Fig. 7, where the maximum value of BPNN output is the position at turning off, and 
the minimum value corresponds to the starting point of the estimated position when 
using a new phase that is operating.  

Fig. 8 is obtained by combining the estimated position signals of Fig. 7. The actual 
position is given in Fig. 8 for comparison with the estimated position. The magnified 
positions are presented in Fig. 9, which is obtained by employing position period of 
75 mm to Fig. 8. It can be seen that one public neural network provides a perfect 
performance for the position detection of TFLSRM. The control system presents a 
good behavior when running in the position sensorless. 
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Fig. 5. Speed response 
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Fig. 6. Phase currents 
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Fig. 7. Output of the trained BPNN in Fig. 2 
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Fig. 8. Estimated position and actual position 
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Fig. 9. Magnified positions for the estimated position (dotted line) and the actual position 

6   Conclusions 

Due to its simple construction, low cost, reliable operation, and high efficiency, the 
TFLSRM is suitable for many linear motions. The paper presented a sensorless con-
trol method for TFLSRM based on position estimation by employing a public BPNN 
that transformed the winding current and flux linkage of each phase into each seg-
mental position signal, then final total position is obtained by combining each seg-
mental position signal. A TFLSRM with three phases is employed in simulation. The 
simulated results showed that one public neural network have provided a perfect per-
formance for the position detection of TFLSRM. The control system presented a good 
behavior when operating in the position sensorless.  
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Abstract. We studied how to use neural network in the tourism room occu-
pancy rate prediction in Beijing. We gave the result of prediction on room oc-
cupancy rate. The results of the experiment showed that the prediction of the 
room occupancy rate made by neural network is superior to the two methods of 
regression and naïve extrapolation which are often used. 

1   Introduction 

In china, tourism industry and hotel industry keep to a rapid growth in the last few 
years, the hotel number and room number also grow very fast, making the necessity 
for the application of information technology in tourism and hotel industry. The re-
search of room occupancy rate prediction in this paper can help hotel manger make 
high efficiency strategy plan, and provide support to the decision process of hotel 
manager. This paper studied how to apply neural network to the establishment of 
Beijing hotel room occupancy rate model, and gave the result of the prediction. The 
result done by neural network were compared with the result done by multiple regres-
sion and naïve extrapolation. The application of our research result to predict room 
occupancy rate of Beijing hotel industry was given. 

Neural network is the intelligent calculation system that simulates the process abil-
ity of human brain. It is the information technology that reveals knowledge based on 
the parallel process and the pattern recognition of past experiences or examples. Its 
pattern recognition function makes it a very good tool for classification and prediction 
in the business application. Neural network can better recognize high level character-
istic. It has been proved that if the training set is small and in the prediction high level 
white noise, it outperforms the normal statistic model. 

This feature is especially useful in the prediction of room occupancy rate. Because 
the sample number is relatively small in the training set. Another advantage of using 
neural network in prediction is that it can catch nonlinear sample in the training set. 
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Unlike other time series model, neural network can reach lower percentage absolute 
error, accumulative relative error and square root error on the nonlinear tourist action 
prediction than the linear prediction. 

2   Room Occupancy Rate Prediction  

Room occupancy rate model is set up with neural network. Six samples were ran-
domly selected in the ten samples, the rest were used to test the prediction. The input 
variables are: NoT: tourists’ number; ASL: average stay time; NoH: hotels’ number; 
TpR: tourists in each room; PHA: percentage of hotel occupancy rate. Input variables 
are correlative to the demand and supply of the hotel rooms. NoT, ASL, and PHA are 
requirement indexes, and also are the potential profit. PHA is the tourist percentage of 
the hotel. NoH and NoR are the provision indexes, TpR is the supply and demand 
proportion that directly correlative to room occupancy rate. ROR is the output vari-
able, which represents room occupancy rate. Table 1 shows the experimental results 
of room occupancy rate. 

Table 1. Eexperimental Results of Room Occupancy rate 

Actual occupancy 
rate/% 

Estimated occu-
pancy rate/% 
(multiple regres-
sion) 

Estimated occu-
pancy rate/% 
(naïve extrapola-
tion) 

Estimated occu-
pancy rate/% 
(neural network) 

69.7 52.30 83.38 69.7 

68.0 85.99 82.92 69.0 

27.3 68.59 83.85 64.1 
70.0 57.68 84.15 74.9 

3   Experimental Results 

Multiple regression and naïve extrapolation were employed to predict room occu-
pancy rate based on the training set. Table1 shows the experimental results of the 
three different models. The output of the three prediction models is based on mean 
percentage error ( ε ), acceptable output percentage (Z), and normalized cross-
correlation (R). ε  is a relative measurement used for comparison across the testing 
data because it is easy to interpret, independent of scale, reliable and valid. Z is used 
as a relative measurement for acceptance level. Z was assigned a value of 5 percent. R 
is a measure of the closeness of the observed and estimated occupancy rates. Each of 
these measurements is defined as follows: 
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Xi and Yi represent the estimated and actual occupancy rates for i = 1,2,3,4. The 
values of Z and R are given in table 2. Data in table 3 are the relative percentage error 
of the three prediction models. Two Mann-Whitney U tests were conducted, and the 
values of U statistic are presented in Table 4. 

Table 2. Comparison of Some Prediction Models 

 ε  Z R 
Neural network 3.1 80 0.999 
Multiple regression 12.8 50 0.996 
Naïve extrapolation 6.7 50 0.997 

Table 3. Relative Percentage Error of Test Samples 

Samples Neural network/% Multiple 
regression/% 

Naïve 
extrapolation/% 

1(year 2001) 0.0 24.0 20.2 
2(year 2002) 1.5 25.0 20.5 
3(year 2003) 137.4 151.8 207.4 
4(year 2004) 6 7.0 20.2 

Average 3.75 18.67 20.3 

Table 4. Tests For Differences in the Relative Percentage Error 

Comparison Mann-Whitney U value 
Neural network vs multiple regression 23.5 
Neural network vs naïve extrapolation 27 
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4   Results Analysis 

It can be seen that the estimated room occupancy rates from a neural network are very 
close to the actual values, so the prediction output from a neural network is accurate 
with an acceptable amount of error. Low mean percentage error shows that the devia-
tion between the estimated value by neural network and the actual value is very  
small. Therefore, a neural network succeeds in achieving 80 percent of output  
within the acceptable range, and the normalized cross-correlation is almost 1, this 
demonstrates the close relationship between the estimated results and the actual hotel 
data. 

As shown in table 2, a neural network outperforms the multiple regression and na-
ive extrapolation models in terms of mean percentage error, acceptable output  
percentage and normalized cross-correlation. The non-parametric Mann-Whitney U  
statistic values in table 4 were both significant at the 0.05 level of a one-tailed test, 
meaning that a neural network outperforms both multiple regression and naïve  
extrapolation models in room occupancy rate prediction. 

5   Conclusion 

The procedures of room occupancy rate prediction for the Beijing hotel industry with 
neural network were presented. Data are divided into a training data set and a testing 
data set. By comparing with the actual data, prediction efficiency of neural network is 
demonstrated. Prediction efficiency of neural network outperforms those of multiple 
regression and naïve extrapolation, which shows the feasibility of applying neural 
network prediction model to Beijing tourism hotel industry. A future research is to 
include more dependent variables to determine the room occupancy rate prediction 
efficiency of a neural network. For instance, it is natural to believe that government 
policies, weather conditions and national wealth can play an important role in deter-
mining tourist arrivals, leading to a significant change in room occupancy rates. How-
ever, some factors such as government policies and weather conditions are dynamic in 
a continuous fashion. Hence it could be difficult to provide a commonly acceptable 
measurement for these factors. 
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Abstract. In the paper we present a new approach based on applica-
tion of neural networks to detect SQL attacks. SQL attacks are those
attacks that take advantage of using SQL statements to be performed.
The problem of detection of this class of attacks is transformed to time
series prediction problem. SQL queries are used as a source of events in a
protected environment. To differentiate between normal SQL queries and
those sent by an attacker, we divide SQL statements into tokens and pass
them to our detection system, which predicts the next token, taking into
account previously seen tokens. In the learning phase tokens are passed
to recurrent neural network (RNN) trained by backpropagation through
time (BPTT) algorithm. Teaching data are shifted by one token forward
in time with relation to input. The purpose of the testing phase is to
predict the next token in the sequence. All experiments were conducted
on Jordan and Elman networks using data gathered from PHP Nuke
portal. Experimental results show that the Jordan network outperforms
the Elman network predicting correctly queries of the length up to ten.

1 Introduction

Large number of Web applications, especially those deployed for companies to
e-business purpose involve data integrity and confidentiality. Such applications
are written in script languages like PHP embedded in HTML allowing to estab-
lish connection to databases, retrieving data and putting them in WWW site.
Security violations consist in not authorized access and modification of data in
the database. SQL is one of languages used to manage data in databases. Its
statements can be one of sources of events for potential attacks.

In the literature there are some approaches to intrusion detection in Web
applications. In [1] the authors developed anomaly-based system that learns
the profiles of the normal database access performed by web-based applications
using a number of different models. A profile is a set of models, to which parts
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of SQL statement are fed to in order to train the set of models or to generate
an anomaly score. During training phase models are built based on training
data and anomaly score is calculated. For each model, the maximum of anomaly
score is stored and used to set an anomaly threshold. During detection phase,
for each SQL query anomaly score is calculated. If it exceeds the maximum of
anomaly score evaluated during training phase, the query is considered to be
anomalous. The main disadvantage of the system is high rate of false positive
alerts. Decreasing it involves creating models for custom data types for each
application to which this system is applied.

Besides that work, there are some other works on detecting attacks on a
Web server which constitutes a part of infrastructure for Web applications. In
[2] detection system correlates the server-side programs referenced by clients
queries with the parameters contained in these queries. It is similar approach
to detection to the previous work. The system analyzes HTTP requests and
builds data model based on attribute length of requests, attribute character
distribution, structural inference and attribute order. In a detection phase built
model is used for comparing requests of clients.

In [3] logs of Web server are analyzed to look for security violations. However,
the proposed system is prone to high rates of false alarm. To decrease it, some
site-specific available information should be taken into account which is not
portable.

In this work we present a new approach to intrusion detection in Web applica-
tion. Rather than building profiles of normal behavior we focus on a sequence of
tokens within SQL statements observed during normal use of application. Two
architectures of RNN are used to encode stream of such SQL statements.

The paper is organized as follows. The next section discusses SQL attacks.
In section 3 we present two architectures of RNN. Section 4 shows training and
testing data used for experiments. Next, section 5 contains experimental results.
Last section summarizes results and shows possible future work.

2 SQL Attacks

2.1 SQL Injection

SQL injection attack consists in such a manipulation of an application commu-
nicating with a database, that it allows a user to gain access or to allow it to
modify data for which it has not privileges. To perform an attack in the most
cases Web forms are used to inject part of SQL query. Typing SQL keywords and
control signs an intruder is able to change the structure of SQL query developed
by a Web designer. If variables used in SQL query are under control of a user,
he can modify SQL query which will cause change of its meaning. Consider an
example of a poor quality code written in PHP presented below.

$connection=mysql_connect();
mysql_select_db("test");
$user=$HTTP_GET_VARS[’username’];
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$pass=$HTTP_GET_VARS[’password’];
$query="select * from users where

login=’$user’ and password=’$pass’";
$result=mysql_query($query);
if(mysql_num_rows($result)==1)

echo "authorization successful"
else

echo "authorization failed";

The code is responsible for authorizing users. User data typed in a Web form
are assigned to variables user and pass and then passed to the SQL statement. If
retrieved data include one row it means that a user filled in the form login and
password the same as stored in the database. Because data sent by a Web form
are not analyzed, a user is free to inject any strings. For example, an intruder
can type: ”’ or 1=1 –” in the login field leaving the password field empty. The
structure of SQL query will be changed as presented below.

$query="select * from users where login
=’’ or 1=1 --’ and password=’’";

Two dashes comments the following text. Boolean expression 1=1 is always true
and as a result user will be logged with privileges of the first user stored in the
table users.

2.2 Proposed Approach

The way we detect intruders can be easily transformed to time series prediction
problem. According to [5] a time series is a sequence of data collected from
some system by sampling a system property, usually at regular time intervals.
One of the goal of the analysis of time series is to forecast the next value in
the sequence based on values occurred in the past. The problem can be more
precisely formulated as follows:

st−2, st−1, st −→ st+1, (1)

where s is any signal, which is dependent on a solving problem and t is a current
moment in time. Given st−2, st−1, st, we want to predict st+1. In the problem of
detection SQL attacks, each SQL statement is divided into some signals, which
we further call tokens. The idea of detecting SQL attacks is based on their key
feature. SQL injection attacks involve modification of SQL statement, which lead
to the fact, that the sequence of tokens extracted from a modified SQL statement
is different than the sequence of tokens derived from a legal SQL statement. For
example, let S means recorded SQL statement and T1, T2, T3, T4, T5 tokens of
this SQL statement. The original sequence of tokens is as follows:

T1, T2, T3, T4, T5. (2)

If an intruder performs an attack, the form of SQL statement changes. Trans-
formation of the modified statement to tokens results in different tokens than
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these shown in eq.(2). The example of a sequence of tokens related to modified
SQL query is as follows:

T1, T2, Tmod3, Tmod4, Tmod5. (3)

Tokens number 3, 4, 5 are modified due to an intruder activity. We assume that
intrusion detection system trained on original SQL statements is able to predict
the next token based on the tokens from the past. If the token T1 occurs, the
system should predict token T2, next token T3 is expected. In case of attacks
token Tmod3 occurs which is different than T3, which means that an attack is
performed.

Various techniques have been used to analyze time series [6,7]. Besides sta-
tistical methods, RNNs have been widely used for that problem. In our study
presented in this paper we selected two RNNs, the Elman and the Jordan net-
works.

3 Recurrent Neural Networks

3.1 General Issues

Application of neural networks to solving any problem involves three steps. The
first is training, during which weights of network connections are changed. Net-
work output is compared to training data and the network error is evaluated.
In the second step the network is verified. Values of connections weights are
constant and the network is checked if its output is the same as in the training
phase. The last step is generalization. The network output is evaluated for such
data, which were not used for training the network. Good generalization is a
desirable feature of all networks because it means that the network is prepared
for processing data, which may occur in the future.

In comparison to feedforward neural networks RNN have feedback connections
which provide dynamics. When they process information, output neurons signal
depends on input and activation of neurons in the previous steps of training
RNN.

3.2 RNN Architectures

There are some differences between the Elman and the Jordan networks. The
first is that input signal for context layer neurons comes from different layers
and the second is that Jordan network has additional feedback connection in the
context layer. While in the Elman network the size of the context layer is the
same as the size of the hidden layer, in the Jordan network the size of output
layer and context layer is the same. In both networks recurrent connections have
fixed weight equal to 1.0. Networks were trained by BPTT and the following
equations are applied for the Elman network:

x(k) = [x1(k), ..., xN (k), v1(k − 1), ..., vK(k − 1)], (4)
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ij , (8)

wij(k + 1)(2) = wij(k)(2) +
sql−length∑

k=1

[vi(k)δ(o)
j (k)], (9)

wij(k + 1)(1) = wij(k)(1) +
sql−length∑

k=1

[xi(k)δ(h)
j (k)]. (10)

In the equations (4)-(10), N, K, M stand for the size of the input, hidden and
output layers, respectively. x(k) is an input vector, uj(k) and gj(k) are input
signals provided to the hidden and output layer neurons. Next, vj(k) and yj(k)
stand for the activations of the neurons in the hidden and output layer at time k,
respectively. The equation (7) shows how RNN error is computed, while neurons
error in the output and hidden layers are evaluated according to (8). Finally,
in the last step values of weights are changed using formulas (9) for the output
layer and (10) for the hidden layer.

3.3 Training

The training process of RNN is performed as follows. The tokens of the SQL
statement become input of a network. Activations of all neurons are computed.
Next, an error of each neuron is calculated. These steps are repeated until last
token has been presented to the network. Next, all weights are evaluated and
activation of the context layer neurons is set to 0. For each input data, teaching
data are shifted by one token forward in time with relation to input.

Training data consists of 276 SQL queries without repetition. The following
tokens are considered: keywords of SQL language, numbers, strings and combi-
nations of these elements. We used the collection of SQL statements to define
54 distinct tokens. Each token has a unique index. The table 1 shows selected
tokens and their indexes. The indexes are used for preparation of input data for
neural networks. The index e.g. of a keyword WHERE is 7. The index 28 points
to a combination of keyword FROM and any string. The token with index 36
relates to a grammatical link between SELECT and any string. Finally, when
any string is compared to any number within a SQL query, the index of a token
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Table 1. A part of a list of tokens and their indexes

token index

... ...

WHERE 7

... ...

FROM string 28

... ...

SELECT string 36

... ...

string=number 47

... ...

INSERT INTO 54

equals to 47. Figure 1 presents an example of SQL statement, its representation
in the form of tokens and related binary four inputs of a network.

SQL statement is encoded as k vectors, where k is the number of tokens
constituting the statement (see figure 1). The number of neurons on the input
layer is the same as the number of defined tokens. Networks have 55 neurons
in the output layer. 54 neurons correspond to each token similarly to the input
layer but the neuron 55 is included to indicate that just processing input data
vector is the last within a SQL query. Training data, which are compared to the
output of the network have value either equals to 0.1 or 0.9. If a neuron number
n in the output layer has small value then it means that the next processing
token can not have index n. On the other hand, if output neuron number n has
value of 0.9, then the next token in a sequence should have index equals to n.

a)

b)

vector 1
vector 2
vector 3
vector 4

SELECT user_password FROM nuke_users WHERE  user_id = 2

token 7token 36 token 28 token 47

000000000000000000000000000000000001000000000000000000
000000000000000000000000000100000001000000000000000000
000000100000000000000000000100000001000000000000000000
000000100000000000000000000100000001000000000010000000

Fig. 1. Preparation of input data for a neural network: analysis of a statement in terms
of tokens (a), input neural network data corresponding to the statement (b)

At the beginning, SQL statement is divided into tokens. The indexes of tokens
are: 36, 28, 7 and 47. Each row is an input vector for RNN (see figure 1). In the
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figure 1 the first token that has appeared is 36. As a consequence, in the first
step of training output signal of all neurons in the input layer is 0 except neuron
number 36, which has value of 1. Next input vectors indicate current indexes
of tokens and the index of a token that has been processed by RNN. The next
token in a sequence has index equals to 28. It follows that only neurons 36 and
28 have output signal equal to 1. The next index of a token is 7, which means
that neurons: 36, 28 and 7 send 1 and all remaining neurons send 0. Finally,
neurons 36, 28, 7, 47 have activation signal equal to 1. In that moment weights
of RNN are updated and the next SQL statement is considered.

Training a network in such a way ensures that it will posses prediction capa-
bility. While network output depends on the previous input vectors, processing
the set of tokens related to the next SQL query can not be dependent on tokens
of the previous SQL statement.

4 Training and Testing Data

We evaluated our system using data collected from PHP Nuke portal[11]. Sim-
ilarly to [1] we installed this portal in version 7.5, which is susceptible to some
SQL injection attacks. A function of the portal related to executing SQL state-
ments was modified. Besides its original purpose, each executed SQL query is
written to a log file. Each time a Website is downloaded by a browser, SQL
queries are sent to a database and logged to a file simultaneously. During oper-
ation of the portal we collected nearly 100000 SQL statements. Next, based
on this collection we defined tokens, which are keywords of SQL and data
types. The set of all SQL queries was divided into 12 subsets, each containing
SQL statements of different length. 80% of each data set was used for train-
ing and remaining data used for examining generalization. Teaching data are
shifted one time forward in time. Data with attacks are the same as reported
in [1].

5 Experimental Results

Experimental study was divided into four stages. In the first one, we evaluated
the best parameters of both RNNs and learning algorithm. We run experiments
10 times and averaged results. For the following values of parameters the error
of the networks was minimal. For the Elman network all neurons in the hidden
layer have sigmoidal activation function while all neurons in the output layer have
tanh function. For the Jordan network tanh function was chosen for the hidden
layer and sigmoidal function for the output layer. The number of neurons in the
hidden layer equals to 58 neurons. In the most cases η (training coefficient) does
not exceed 0.2 and α value (used in momentum) is less than 0.2.

In the second phase of the experimental study we trained 12 RNNs, one for
each training data subset, using values from the first stage. In the most cases,
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from the beginning of the training, the error of the Jordan network was much
smaller than error of the Elman network. In the next a few epochs the error of
both networks decreased quickly but the Jordan network error remained much
smaller than the Elman network error. Figure 2 shows how error of networks
changes for all subsets of SQL queries and how well the networks are verified.
Here, a statement is considered as well predicted if for all input vectors, all
neurons in the output layer have values according to training data. All values
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Fig. 2. Error and number of wrong predicted SQL queries for each subset of data.
Jordan network (a), Elman network (b)

# SQL statement − attack

# index of input vector num. of errors

1                                          7

2                                          2

3                                          1

4                                          2

5                                          2

6                                          1

7                                          2

8                                          0

# index of input vector

# legal SQL statement

num. of errors−ver num. of errors−gen

1                                        0                               0

2                                        1                               1

3                                        1                               2

4                                        0                               1

5                                        0                               1

6                                        1                               1

7                                        1                               1

8                                        1                               0

a) b)

Fig. 3. RNN output for an attack (a), RNN output for known and unknown SQL
statement (b).

presented in figures are averaged on 10 runs of RNNs. One can see that nearly for
all data subsets the Jordan network outperforms the Elman one. Only for data
subsets 11 and 12 (see table 2) the error of the Jordan network is greater than the
error of the Elman network. Despite of this the Jordan network is better then the
Elman network in terms of percentage number of wrong predicted SQL queries.
Verification states how good a network is trained. In the sense of the detecting of
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attacks, it means that the better verification, the less false alarms of a system.
The Jordan network predicts all tokens of 10 length statements (20.6% false
alarms). In the third part of experiments we checked if RNNs correctly detect
attacks. Each experiment was conducted using trained RNNs from the second
stage. Figure 3a) presents the typical RNN output if an attack is performed. The
left column depicts the number of input vector for RNN, while the right column
shows the number of cases in which the index of the token indicated by network
output is different than the index of the next processed by RNN token. What is
common for each network is that nearly each output vector of a network has a few
errors. This phenomenon is present for all attacks used in this work. Figure 3b)
shows RNN output for verification (the 2nd column) and generalization (the
3rd column). It is easy to see that the number of errors in figures 3a) and 3b)
strongly varies. Moreover, there is also more output vectors free of errors. Easily
noticeable difference between an attack and normal activity allows us to re-
evaluate obtained results presented in figure 2. To distinguish between an attack

Table 2. Results of verification and generalization of Elman and Jordan networks

Index of length of Elman Elman Jordan Jordan
data subset data subset ver gen ver gen

1 2-4 0 0 0 0

2 5 0 1.4 0 0

3 6 0 24.2 0 12.8

4 7 0 15.7 0 1.4

5 8 0 5 0 1.6

6 9 0 3.33 0 0

7 10 0 2.5 0 0

8 11 0 10 0 13.33

9 12 0 0 0 6.66

10 13-14 0 0 0 0

11 15-16 0 3.33 0 3.33

12 17-20 0 40 0 13.33

and a legitimate SQL statement we define the following rule for the Jordan
network: an attack occurred if the average number of errors for each output
vector is not less than 2.0 and 80% of output vectors include any error. For
the Elman the threshold equals to 1.6 and the error coefficient equals to 90%.
Applying these rules ensures that all attacks are detected by both RNN. The
table 2 presents the percentage number of SQL statements wrongly predicted
during verification and generalization if results were processed by the rules. For
the most cases the Jordan network outperforms the Elman network. Only for
data subsets containing statements made from 11 and 12 tokens, the Elman
network is a little better than the Jordan network. The important outcome of
defined rules is that both RNNs thought all statements and only few legitimate
statements, which were not in the training set were detected as attacks.
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6 Conclusions

In the paper we have presented a new approach to detecting SQL-based attacks.
The problem of detection was transformed to time series prediction problem and
two RNNs were examined to show their potential use for such a class of attacks.
It turned out that the Jordan network is easily trained by BPTT algorithm.
Despite the fact that large architecture of RNN was used, that network is able
to predict sequences of up to ten length with acceptable error margin.

Deep analysis of the experimental results lead to the definition of rules used
for distinguishing between an attack and legitimate statement. When these rules
are applied, both networks are completely trained for all SQL queries included
in the all training subsets. Accuracy of the results very strongly depends on
the rules. The advisable part of experimental study is to apply defined rules to
the other data set, which can confirm efficiency of the proposed approach to
detecting SQL attacks.
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Abstract. Variational inequalities with linear inequality constraints are
widely used in constrained optimization and engineering problems. By
extending a new recurrent neural network [14], this paper presents a re-
current neural network for solving variational inequalities with general
linear constraints in real time. The proposed neural network has one-
layer projection structure and is amenable to parallel implementation.
As a special case, the proposed neural network can include two existing
recurrent neural networks for solving convex optimization problems and
monotone variational inequality problems with box constraints, respec-
tively. The proposed neural network is stable in the sense of Lyapunov
and globally convergent to the solution under a monotone condition of
the nonlinear mapping without the Lipschitz condition. Illustrative ex-
amples show that the proposed neural network is effective for solving
this class of variational inequality problems.

1 Introduction

Many engineering problems, including robot control, electrical networks con-
trol, and communications, can be formulated as optimization problems with
linear constraints [1]. Because of the time-varying nature of these optimization
problems, they have to be solved in real time. One application of real-time op-
timization in robotics is robot motion control [2]. Another suitable application
of real-time optimization in signal processing is for adaptive beamforming [3].
Because of the nature of digital computers, conventional numerical optimiza-
tion techniques are usually not competent. As parallel computational models,
neural networks possess many desirable properties such as real-time informa-
tion processing. Therefore, recurrent neural networks for optimization, control,
and signal processing received tremendous interests [3-18]. These neural network
models are theoretically analyzed to be globally convergent under various differ-
ent conditions and extensively simulated to further demonstrate their operating
characteristics in solving various optimization problems. For example, by the
penalty method Kennedy and Chua [4] extended Hopfield and Tank’s neural
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network for solving nonlinear programming problems. To avoid penalty parame-
ters Rodŕıguez-Vázquez et al. [6] proposed a switched-capacitor neural network
for solving a class of nonlinear optimization problems. In term of Lagrange func-
tion methods, Zhang and Constantinides [8] developed a Lagrange programming
neural network for solving a class of nonlinear optimization problems with equal-
ity constraints. Based on some projection formulations, Xia, and Xia and Wang
[10-13] developed several recurrent neural networks for solving constrained opti-
mization and related problems, respectively. Recently, based a normal mapping
equation, Xia and Feng [14] developed a recurrent neural network for solving
a class of projection equations and variational inequality problems with box
constraints.

In this paper, we are concerned with the following variational inequality
problem with general linear constraints:

(x − x∗)T F (x∗) ≥ 0, x ∈ Ω0 (1)

where F : Rn → Rn is differentiable,

Ω0 = {x ∈ Rn | Bx = b, Ax ≤ d, x ∈ X},

where B ∈ Rr×n, A ∈ Rm×n, b ∈ Rr, d ∈ Rm, and X = {x ∈ Rn | l ≤ x ≤ h}.
The problem (1) has been viewed as a natural framework for unifying the treat-
ment of a large class of constrained optimization problems [1, 19,20]. The objec-
tive of this paper is to extend the existing recurrent neural network to solve (1).
The proposed neural network is thus a significant extension for solving varia-
tional inequality problems from box constraints to linear constraints. Compared
with existing projection neural network [12], the proposed neural network does
not require the initial point in the feasible set X . Compared with the modified
projection-type numerical method for solving (1) [20], which requires a varying
step length, the proposed neural network not only has a lower complexity and
but also has no requirement of the Lipschitz condition of the mapping F .

2 Neural Network Models

A. Reformulation

For convenience of discussion, we assume that the problem (1) has at least
solution and denote the solution set by

X∗ = {x∗ ∈ Rn| x∗ solves (1)}.

From optimization literatures (Bertsekas, 1989) we know that the Karush-Kuhn-
Tucker (KKT) condition for (1) can be written as the following

{
y ≥ 0, Ax ≤ d, l ≤ x ≤ h

Bx = b, yT (Ax − d) = 0
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and
⎧
⎨

⎩

(F (x) + AT y − BT z)i ≥ 0 if xi = hi

(F (x) + AT y − BT z)i = 0 if li ≤ xi ≤ hi

(F (x) + AT y − BT z)i ≤ 0 if xi = li,

where y ∈ Rm, z ∈ Rr. According to the projection theorem (Kinderlehrer and
Stampcchia, 1980) the above KKT condition can be equivalently represented as

⎧
⎨

⎩

PX(x − (F (x) + AT y − BT z)) = x
(y + Ax − d)+ = y

Bx = b
(2)

where (y)+ = [(y1)+, ..., (ym)+]T with (yi)+ = max{0, x}. Thus x∗ is a solution
to (1) if and only if there exits y∗ ∈ Rm and z∗ ∈ Rr such that (x∗, y∗, z∗)
satisfies (2). Furthermore, let Ω = X ×Rm

+ ×Rr and PΩ(u) = [PX(x), (y)+, z]T ,
where Rm

+ = {y ∈ Rm | y ≥ 0} and

PX(xi) =

⎧
⎨

⎩

li xi < li
xi li ≤ xi ≤ hi

hi xi > hi

,

and let

u =

⎛

⎝
x
y
z

⎞

⎠ , T (u) =

⎛

⎝
F (x) + AT y − BT z

−(Ax − d)
Bx − b

⎞

⎠ .

Then the projection equations can be simply written as

PΩ[u − T (u)] = u. (3)

Therefore, we have the following lemma.

Lemma 1. x∗ is a solution to (1) if and only if there exits y∗ ∈ Rm and z∗ ∈ Rr

such that u∗ = (x∗, y∗, z∗) is a solution of the projection equation (3).

B. Dynamical Equations

Based on the novel structure of the recurrent neural network developed in [14],
we present a recurrent neural network for solving the problem (1) as follows

State equation

dw

dt
= λ{−T (PΩ(w)) + PΩ(w) − w}, (4)

Output equation

u = PΩ(w) (5)

where λ > 0 is a designing constant, w = (x, y, z) ∈ Rn × Rm × Rr is a state
vector and u is an output vector. Substituting the representation of T (u) into (4),
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we can represent the state equation of the proposed neural network as follows

dw

dt
= λ

⎛

⎝
−F [PX(x)] − AT (y)+ + BT z + PX(x) − x

(APX(x) − y − d) + (y)+

−B[PX(x)] + b

⎞

⎠ . (6)

It can be seen that the state equation (6) can be realized by a recurrent neural
network with a one-layer projection structure, which consists of n + m + r inte-
grators, m + n piecewise activation functions for PX(x) and (y)+, n processors
for F (x), 2n(m + r) connection weights, and some summers. Therefore, the net-
work complexity depends only on the mapping F (x). It can be seen that the
proposed neural network has same network complexity as the projection neural
network given in [13]. Moreover, the proposed neural network is a significant
generalization of existing neural networks.

C. Two Special Cases

Case 1: A = O,B = O,b = 0, and d = 0, the considered variational inequality
becomes

(x − x∗)T F (x∗) ≥ 0, x ∈ X. (7)

The corresponding neural network is then given by
State equation

dŵ

dt
= λ{−F (PX(ŵ)) + PX(ŵ) − ŵ} (8)

Output equation
x = PΩ(ŵ), (9)

where ŵ ∈ Rn. The neural network model was presented in [14].

Case 2: F (x) = ∇f(x), where f(x) is a continuously differentiable function. In
the case, (1) becomes a well-known nonlinear programming problem with general
linear constraints

minimize f(x)
subject to Bx = b, Ax ≤ d, l ≤ x ≤ h (10)

The corresponding neural network is then given by
State equation

dw

dt
= λ

⎛

⎝
−∇f [PX(x)] − AT (y)+ + BT z + PX(x) − x

(APX(x) − y − d) + (y)+

−B[PX(x)] + b

⎞

⎠ . (11)

Output equation
v = PX(x).

In particular, when A = O,B = O,b = 0, and d = 0, the nonlinear programming
(10) becomes a bounded nonlinear program

minimize f(x)
subject to l ≤ x ≤ h (12)
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The corresponding neural network is then given by
State equation

dw

dt
= ∇f [PX(w)] + PX(w) − w (13)

Output equation
x = PX(w),

where ŵ ∈ Rn. This neural network model was presented in [10].

3 Convergence Results

As for the convergence of the proposed neural network in (4) and (5), by combin-
ing analysis techniques of papers [10, 11, 14] we can obtain the following main
results.

Theorem 1. (i) For any initial point, there exists a unique solution trajectory
for (4). (ii) The proposed neural network model in (4) and (5) has at least an
equilibrium point. Moreover, if w∗ = (x∗, y∗, z∗) is an equilibrium point of the
proposed neural network model in (4) and (5), then PX(x∗) is a solution of (1).

Theorem 2. Assume that the Jacobian matrix, ∇F (x), of F is positive semi-
definite. If ∇F (x∗) is positive definite, then the proposed neural network in (4)
and (5) is stable in the sense of Lyapunov and its output trajectory converge
globally to a solution of (1).

The following result is an improvement on the existing one given in [14].

Theorem 3. Assume that F (x) is pseudomonotone:

F (x∗)T (x − x∗) ≥ 0 ⇒ F (x)T (x − x∗) ≥ 0, ∀x ∈ X.

If (x−x∗)T F (x) = 0 ⇒ x ∈ X∗, then the output trajectory of the neural network
defined in (8) and (9) converges globally to a solution of (7).

Remark 1. The convergence condition of Theorem 3 is weaker than the one
given in [14], where F (x) is a strictly monotone mapping or F (x) is a monotone
gradient mapping. As pointed in paper [18], the pseudomonotonicity is a general-
ization of monotonicity, and the pseudomonotonicity of F implies the monotonic-
ity of F .

As a direct corollary of Theorem 3, we have the following result.

Corollary 1. Assume that F (x) is strictly pseudomonotone:

F (x∗)T (x − x∗) > 0 ⇒ F (x)T (x − x∗) > 0, ∀x 	= x∗, x ∈ X.

Then the input trajectory of the neural network defined in (8) and (9) converges
globally to a solution of (7).

Remark 2. Since the nonlinear mapping F (x) is only differentiable, the above
results don’t require the local Lipschitz condition of F .
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4 Simulation Examples

Example 1. Let us consider the variational inequality problem (1), where

F (x) =

⎡

⎣
5(x1)+ + x2

1 + x2 + x3
5x1 + 3x2

2 + 10(x2)+ + 3x3
10x2

1 + 8x2
2 + 4(x3)+ + 3x2

3

⎤

⎦ ,

X = {x ∈ R3|x1 + x2 + x3 ≥ 6, x ≥ 0}, F (x) is monotone. This problem has
a unique solution x∗ = [4.5, 1.5, 0]T . We use the proposed neural network in (4)
and (5) to solve the above problem. All simulation results show that the neural
network in (4) and (5) is always convergent to x∗. For example, let λ = 5 and
let an initial point be zero. The obtained solution x̂ = [4.499, 1.499, 0]T . Fig. 1
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Fig. 1. The transient behavior of the output trajectory of the proposed neural network
in (4) and (5) with a zero initial point in Example 1
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Fig. 2. The convergence behavior of the output trajectory error based on the neural
network in (4) and (5) with 5 random initial points in Example 1
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displays its transient behavior of the output trajectory of the neural network in
(4) and (5). Fig. 2 displays the convergence behavior of the output trajectory error
based on the proposed neural network in (4) and (5) with 5 random initial points.
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Fig. 3. The transient behavior of the neural network in (8) and (9) with initial point
x0 = [−2, −2, −2, 2]T in Example 2
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Fig. 4. The transient behavior of the neural network in (8) and (9) with initial point
x0 = [−2, −2, −2, 2]T in Example 2

Example 2. Let us consider a nonlinear complementarity problem (NCP)

x ≥ 0, F (x) ≥ 0, xT F (x) = 0,

where

F (x) =

⎛

⎜⎜
⎝

3x2
1 + 2x1x2 + 2x2

2 + x3, +3x4 − 6
2x2

1 + x1 + x2
2 + 10x3 + 2x4 − 2

3x1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4

⎞

⎟⎟
⎠
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Fig. 5. The transient behavior of the neural network in (8) and (9) with initial point
x0 = [2, 2, 2, −2]T in Example 2
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Fig. 6. The transient behavior of the projection neural network with initial point x0 =
[2, 2, 2, −2]T in Example 2

This problem has two solutions x1 = [1, 0, 3, 0]T and x2 = [
√

6/2, 0, 0, 1/2]T .
The NCP can be converted into the variational inequality problem (7), where
X = {x ∈ R4| x ≥ 0} and F (x) is not monotone on X . We perform the neural
network in (8) and (9) and the projection neural network given in [12] to solve
the above problem. Let the initial point be x0 = [−2, −2, −2, 2]T and λ = 10.
The neural network in (8) and (9) is convergent to x1, shown in Fig 3, and the
projection neural network converges to x1 also, shown in Fig.4. Again, let the
initial point be x0 = [2, 2, 2, −2]T and λ = 10. The neural network in (8) and
(9) is convergent to x2, shown in Fig 5. While the projection neural network
converges to x1 still, shown in Fig 6.
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5 Concluding Remarks

We have presented a recurrent neural network for solving variational inequal-
ity problems with general linear constraints. The proposed neural network has
same network complexity as the existing projection neural network but no re-
quirement that the initial point be in the feasible set. Moreover, the proposed
neural network is a significant generalization of several existing neural networks
for constrained optimization. The proposed neural network is stable in the sense
of Lyapunov and globally convergent to the solution under a monotone condition
of the nonlinear mapping without the Lipschitz condition. Further investigations
will be aimed at the convergence rate of the proposed neural network and engi-
neering applications

References

1. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and
Algorithms (2nd Ed.), John Wiley, New York, 1993

2. Yoshikawa, T.: Foundations of Robotics: Analysis and Control, MIT Press, Cam-
bridge, MA, 1990

3. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal
Processing, Wiley, England, 1993

4. Kennedy, M.P., Chua, L.O.: Neural Networks for Nonlinear Programming. IEEE
Transactions on Circuits and Systems 35(5) (1988) 554-562
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Abstract. A novel equalization scheme for a wireless ATM communica-
tion channel using a recurrent neural network is proposed in this paper.
The recurrent neural network used in this scheme is the Complex Bi-
linear Recurrent Neural Network (CBLRNN). A reduced version of the
CBLRNN for faster and stable convergence is first proposed in this pa-
per. The R-CBLRNN is then applied to equalization of a wireless ATM
channel for 8PSK, which has severe nonlinearity and intersymbol inter-
ference due to multiple propagation paths. The experiments and results
show that the proposed R-CBLRNN gives very favorable results in the
Mean Square Error (MSE) criterion over conventional equalizers.

1 Introduction

Wireless technologies have received a great deal of attention due to the increasing
popularity of portable computing applications in recent years. The Asynchro-
nous Transfer Mode (ATM) has been used as a high-speed backbone network
that provides a common infrastructure network to a diverse set of mobile tech-
nologies. One of the major problems which occur in wireless ATM network is the
intersymbol interference leading to degradation in performance and capacity of
the system.

One of the promising approaches to designing equalizers is the neural network
(NN)-based approach [1,2]. As shown in a wide range of computing applications,
NN has been successfully used for modelling complex nonlinear systems. The
most distinguishable feature of NNs over conventional techniques is the ability
of learning [3,4]. In addition, recent researches have shown that a recurrent type
NN is more suitable than a feed-forward NN in predicting time series signals [5].
Recent researches on the use of recurrent type NN for designing nonlinear equal-
izer have shown promising results [1,5]. Among recurrent neuron networks, the
Complex Bilinear Recurrent Neural network (CBLRNN)-based equalizer gives
very favorable results over Volterra filter equalizers, DFEs, and Complex Multi-
layered Perceptron type NN (CMLPNN) equalizers.

The Reduced-CBLRNN (R-CBLRNN) uses only a part of the feedback compo-
nents for bilinear component calculation as introduced in Section 2. The channel
model to be used as the target model for experiments of R-CBLRNN applications
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(a) (b)

Fig. 1. Comparison of (a) complex bilinear recurrent neuron and (b) reduced complex
bilinear recurrent neuron

is introduced in Section 3. Section 4 presents experiments performed on 8PSK
signals and their results including performance comparisons of R-CBLRNN with
some conventional equalizers. Concluding remarks are given in Section 5.

2 Complex Bilinear Recurrent Neural Network with a
Reduced Architecture

BLRNN is a recurrent NN which has a robust ability in modelling nonlinear
systems and was originally introduced in [6] and CBLRNN is a complex version
of BLRNN. CBLRNN has been designed to deal with the problems with complex
number operations found in equalizer design. Fig. 1-(a) shows the output of a
neuron in CBLRNN. More detailed explanation on CBLRNN can be found in [1].

Even though CBLRNN shows very promising results when applied to equalizer
problems, it still suffers from slow convergence in practical use. For CBLRNN,
most of the computational loads are due to the number of multiplications be-
tween complex values. Consider a CBLRNN with structure Ni-Nh-No using Nf

feedback taps where Ni, Nh, and No are the numbers of input neuron, hidden
neuron, and output neuron respectively. When No = 1, a simple case, the total
number of multiplications for CBLRNN:

NC = (Ni + Nf + Nf · Ni) · Nh + Nh. (1)

From Eq. (1), we infer that the bilinear component (corresponding to Nf · Ni

multiplications) contributes most to the total number of multiplications.



Equalization of 8PSK Signals with a Recurrent Neural Network 107

Choi et.al propose a simplified version of the bilinear DFE [7]. In this ap-
proach, only a part of feed-forward inputs are multiplied to the feedback portion
for bilinear components without suffering from performance degradation. The
results show that this simplified version gives an insight on the formation of
bilinear components. By adopting this idea of reduced bilinear components to
the CBLRNN, the output of the BLRNN is changed as follows:

sp[n] = dp +
Nf−1∑

k1=0

ap[k1]op[n − k1] +
Ni−1∑

k2=0

cp[k2]x[n − k2] (2)

+
Nf−1∑

k1=0

E∑

k2=S

bp[k1, k2]op[n − k1]x[n − k2],

where E = Ni−1
2 + p and S = Ni−1

2 − p.
For further reduced scheme, common feedback tabs, y[n], are used for bilin-

ear components instead of individual feedback values from each hidden neuron,
(o1[n], o2[n]..., oNh

[n]).
By employing these ideas, the total number of multiplications in the R-

CBLRNN becomes:

NS = Nf · Ni + (2Ni + Nf ) · Nh + Nh. (3)

When NS in Eq. (3) is compared with NC in Eq. (1), the number of reduced
multiplications, �N , is:

�N = NC − NS = Nh · Nf · Ni − Nh · Ni − Nf · Ni. (4)

Fig. 1-(b) shows the output of a neuron in R-CBLRNN. In a CBLRNN ar-
chitecture (Ni = 10, Nh = 4, Nf = 5), NC and NS are used in our experi-
ments as 264 and 155 respectively. The number of reduced multiplications, �N ,
is 109 in this case and 41.3% of the multiplications can be reduced. Fig. 2
shows the comparison of convergence for CBLRNN and R-CBLRNN. Fig. 2

Fig. 2. Convergence for R-CBLRNN and CBLRNN (8PSK, SNR=15 dB)
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confirms that the R-CBLRNN converges much faster than a CBLRNN and sav-
ings on the convergence speed of the R-CLRNN roughly matches with the savings
on multiplication, �N .

3 Channel Model

Multipath channels with time-varying transmission characteristics have been
modelled with linear time-varying filters [1]. The modulated signal sm(t) with
symbol duration T = 12.8 ns ( 156MBit/s signal) is transmitted over an ATM
channel with P propagation paths modelled by the received signal y(t) is then
represented as follows:

y(t/T ) =
P∑

i=1

ai.sm(t/T − τi).e−j(ωc+ϕi)(t/T ) + n(t/T ), (5)

where wc is the carrier frequency.
From Eq. (5), we see that y(t) is the sum of several multipath components with

the scale ai and a phase shift ωc +ϕi. In this paper, a 40GHz broadband channel
which is introduced in [8] is used for experiments. Fig. 3 displays constellations
of the transmitted and received 8 PSK signals through a wireless ATM channel.

Table 1. Channel gain and delay for each propagation path

path i 1 2 3 4 5 6

{ai} 1 0.5 0.4 0.32 0.1 0.08

{τi} 0 1/2 9/8 13/8 21/8 39/8

4 Experiments and Results

The ATM channel for experiments is modelled by the Eq. (5) with 6 propagation
paths whose gains and delays are given in Table 1. The transmitted data symbols
are randomly generated 8PSK signals. Transmitted signals over the ATM channel
are corrupted with AWGN with various SNRs. Fig. 3 shows typical constellations
for the original 8PSK signals and the received signals through the ATM channel
with 20dB AWGN.

In experiments, randomly generated 30,000 data symbols are used for train-
ing the equalizers and another 100,000 data symbols are used for testing the
performance of the equalizers. The proposed equalizer based on a R-CBLRNN
is compared with a CDFE, a Volterra equalizer, a CMLPNN-based equalizer,
and a CBLRNN-based equalizer.

Fig. 4 shows the constellation after equalization for the 8PSK system by the
CDFE, the Volterra filter, the CMLPNN, and the R-CBLRNN when an AWGN
(SNR=15 dB) is presented. In the result shown in Fig. 4, the R-CBLRNN yields
much less MSE than any other equalizer. This result is very acceptable when
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(a) (b)

Fig. 3. Constellation of 8PSK signals: (a) the transmitted (b) the received

(a) (b)

(c) (d)

Fig. 4. Constellations after equalization, SNR=15 dB. (a) CDFE (MSE=0.197), (b)
Volterra (MSE=0.170), (c) CMLPNN (MSE=0.151),(d)R-CBLRNN (MSE=0.120)

compared with other equalizers reported in the literature and implies that the
R-CBLRNN-based equalizer is suitable for 8PSK system over a wireless ATM
channel.
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5 Conclusion

A reduced scheme of the Complex Bilinear Recurrent Neural Network (R-CBLR
NN) is proposed and applied to the problem of equalization of wireless ATM
channels in this paper. The proposed R-CBLRNN reconfigures the bilinear com-
ponents in the BLRNN and reduces a part of the bilinear components. By do-
ing so, the resultant R-CBLRNN can reduce its convergence time about 40 %
without suffering from any performance degradation. Experiments on the equal-
ization of a wireless ATM channel for the 8PSK signals , which has severe non-
linearity and intersymbol interference due to multiple propagation paths show
very favorable results in the MSE criterion over the equalizers such as a Volterra
filter equalizer, decision feedback equalizer (DFE), and a MLPNN equalizer.
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Abstract. A prediction scheme of short-term electric load forecasting
using a BiLinear Recurrent Neural Network (BLRNN) is proposed in this
paper. Since the BLRNN is based on the bilinear polynomial, it has been
successfully used in modeling highly nonlinear systems with time-series
characteristics and the BLRNN can be a natural choice in predicting
electric load. The performance of the proposed BLRNN-based predictor
is evaluated and compared with the conventional MultiLayer Perceptron
Type Neural Network (MLPNN)-based predictor. Experiments are con-
ducted on load data from the North-American Electric Utility (NAEU).
The results show that the proposed BLRNN-based predictor outperforms
the MLPNN-based one in terms of the Mean Absolute Percentage Error
(MAPE).

1 Introduction

Forecasting of electricity load can be performed by approximating an unknown
nonlinear function of load data and other exhaustive variables such as weather
variables. Traditionally, statistical models such as the autoregressive model [1],
the linear regression model [2], and the autoregressive moving average (ARMA)
[3] have been widely used in practice because of their simplicity. However, these
statistical models are based on linear analysis techniques. Therefore, these mod-
els may not be suitable for load forecasting since using linear-based models for
approximating nonlinear function often lead to inaccurate forecasting.

In recent years, various nonlinear-based models have been proposed for load
forecasting. Among these models, neural network (NN)-based models have been
proven to be an efficient choice for load forecasting because of their universal ap-
proximation abilities. Neural networks have been shown to have the ability not
only to model time series load curves but also to model an unspecified nonlinear
relationship between a load series and weather variables [4,6,7,8]. A comprehen-
sive review of the application of neural networks to load forecasting from most
recent studies shows that neural network-based models give encouraging results
and are well accepted in practice by many utilities [9]. However, due to the very
high cost associated with errors in practice, developing efficient load forecasting
models still receive great interests.
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Fig. 1. Simple BLRNN with structure 3-2-1 and 2 recursion lines

Artificial neural networks of multi-layered perceptron type have shown encour-
aging results [4,5]. However, the Multi-Layered type Neural Network (MLPNN)
does not provide to accurate results in several occasions when time-series ten-
dency is stronger than the regression components in electric loads.

A recurrent type neural network called BLRNN has been introduced [10].
Since BLRNN is naturally capable to simulate the complex nonlinear system
with the minimum number of parameters, it should be an alternative tool for
electric load forecasting problem [11,12].

This paper is organized as follows: A brief summary of the BLRNN is pre-
sented in Section 2. Section 3 presents experiments and results including the
performance comparison of conventional MLPNN model. Conclusions and some
remarks are given in Section 4.

2 BiLinear Recurrent Neural Networks

The BLRNN is a simple recurrent neural network, which has a robust ability
in modeling dynamically nonlinear systems and is especially suitable for time-
series data. The model was initially proposed by Park and Zhu [4]. It has been
successfully applied in modeling time-series data [4,6].

Fig. 1 shows an example of a BLRNN with one hidden layer. The output value
of a bilinear recurrent neuron is computed by the equation:

sp[n] = dp +
Nf−1∑

k2=0

apk2op[n − k2] +
Ni−1∑

k1=0

cpk1x[n − k2] (1)
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Table 1. List of input variables for load forecasting models

Input Variable name Lagged value

1-5 Hourly load 1,2,3,24,168

6-10 Hourly temperature 1,2,3,24,168

11 Calendar variable sin(2πt/24)

12 Calendar variable cos(2πt/24)

Fig. 2. Hourly load from January 1, 1985 to December 31, 1986

+
Ni−1∑

k1=0

Nf−1∑

k2=0

bpk1k2x[n − k1]op[n − k2]

= wp + Ap
T Ap

T [n] + Zp[n]Bp
T X [n] + Cp

T X [n],

where dp is the weight of bias neuron for the p−th hidden neuron, p = 1, 2..., Nh.
Nh, Ni, and Nf are the number of hidden neurons, input neurons, and feedback
lines, respectively. Ap is the weight vector for recurrent portion, Bp is the weight
matrix for the bilinear recurrent portion, and Cp is the weight vector for the
feed-forward portion. T represents the transpose of a matrix. More detailed
information on BLRNN can be found in [10,12].

3 Experiments and Results

The performance of BLRNN load forecasting model is evaluated and compared
with the conventional MultiLayer Perceptron Type Neural Network (MLPNN)
model on the North-American Electric Utility (NAEU) data set. The NAEU
data set consists of load and temperature data and is available for download at
the following web site:

http://www.ee.washington.edu/class/559/2002spr.
The temperature and load data were recorded at every hour of the day from

January 1, 1985 to October 12, 1992, rendering 2,834 days of load and tem-
perature data. Fig. 2 shows the hourly load demands from January 1, 1985 to
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(a)

(b)

Fig. 3. 24 steps ahead hourly forecasting and actual hourly load demand form Decem-
ber 16, 1991 to December 21, 1991. (a) MLPNN model (b) BLRNN model.

December 31, 1985. All of data are normalized to the range of (0,1) to make
them suitable for inputs of neural networks.

One of the most important steps in designing neural networks might be choos-
ing the input variables. Selecting appropriate input variables for neural networks
can be performed based on an analysis of input data. As can be seen from Fig. 2,
the load demand have multiple seasonal patterns such as daily and weekly pe-
riodicity. That is high demand on day time and low demand at night time or
high demand on weekday and low demand at weekend. The load demand also
has a strong correlation with the temperature. Low temperature results in high
demand and high temperature results in low demand. Based on these seasonal
patterns and correlation analysis, the input variables for load forecasting models
are selected as shown in Table 1.

The load forecasting for 1-24 hours ahead is performed by using the recursive
forecasting method. The forecasted output is fed back as the input for the next
time-unit forecasting and all other network inputs are shifted back one time
unit. However, the future temperature is not available in practice when the
recursive forecasting was performed. Therefore, it was necessary to estimate the
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Fig. 4. 1-24steps ahead hourly forecasting performance in terms of MAPE

(a)

(b)

Fig. 5. 24 steps ahead hourly forecasting load error from December 16, 1991 to De-
cember 21, 1991 (a) MLPNN model (b) BLRNN model

temperature. In the experiments for this, the temperature was estimated from
an average of the past temperature data.

The MLPNN model and the BLRNN model used the input variables as shown
in Table 1. The above two models are trained with 3,000 iterations. they are re-
trained at the end of each day to incorporate the most recent load information.
All of the data used in our experiments were treated as normal working days.
Holidays and anomalous days were not considered in this paper. The perfor-
mance of all load forecasting models was evaluated in terms of the mean absolute
percentage error (MAPE).

Fig. 3 shows the forecasting for 24 hour ahead and the real hourly load demand
from December 16, 1991 to December 21, 1991 which had a typical load profile
in Seattle during the winter season. Fig. 4 shows the performance over 1-24
hours ahead for the short-term load forecasting using different models during
the month of December 1991. As can been seen from Fig. 4, the BLRNN model
achieves a significant improvement when compared with the traditional MLPNN
model. Fig. 5 plots the corresponding errors of forecasting results of each model.
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4 Conclusions

A short-term load forecasting model using BiLinear Recurrent Neural Network
(BLRNN) is proposed in this paper. It is important to have accurate forecasting
of electric loads for several reasons including economy and security. When apply-
ing to load data from the NAEU, the proposed BLRNN model show a significant
improvement about 28% decrease in MAPE of performance in comparison with
the traditional MLPNN. Thus, the BLRNN model is an efficient for practical
load forecasting problems.
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Abstract. Probabilistic convergence results of online gradient descent
algorithm have been obtained by many authors for the training of recur-
rent neural networks with innitely many training samples. This paper
proves deterministic convergence of o2ine gradient descent algorithm for
a recurrent neural network with nite number of training samples. Our
results can be hopefully extended to more complicated recurrent neural
networks, and serve as a complementary result to the existing probability
convergence results.

1 Introduction

Recurrent neural networks (RNN) are proposed by Williams and Zipser [5], and
online and offline gradient learning algorithms are suggested for training RNN.
Experiments have shown the effectiveness of the algorithms [6]. Probabilistic con-
vergence properties of such learning methods have been analyzed by Kuan et al.
[3] for the RNN training with infinitely many training samples. The purpose of
this paper is to investigate the deterministic convergence of offline gradient de-
scent algorithm for an RNN with finite number of training samples. For simplic-
ity, we concentrate our attention to a simple recurrent neuron. The monotonic-
ity of the error function in the training iteration and the convergence results are
proved. Our results can be hopefully extended to more complicated RNN, and
serve as complementary of the existing probabilistic convergence results.

The rest of this paper is organized as follows. The network architecture and the
learning algorithm are described in the next section. Section 3 presents our main
theorem on the convergence and the monotonicity of the error function sequence.
The detailed proof of the theorem is given as an Appendix.

2 The Basic Algorithm

As shown in Fig.1, we consider a recurrent neuron with N external input nodes.
Denote the weight vector of the network by w = (w0, w1 · · · , wN )T ∈ RN+1. Let
ξj = (ξj

1, · · · , ξj
N )T ∈ RN denote external input signals to the network at time j

� Corresponding author, supported by the National Natural Science Foundation of
China (10471017).
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Fig. 1. A recurrent neural network with N-1-1 structure

(1 ≤ j ≤ J), and ζj ∈ R the output of the network at time j. For convenience,
we concatenate ζj−1 and ξj to form an N + 1 dimensional vector uj as follows:

uj
n =

{
ζj−1, n = 0

ξj
n, n = 1, 2, · · · , N

(1)

Let

Sj = w·uj =
N∑

n=1

wnξj
n + w0ζ

j−1, (2)

be the input to the output node at time j, and let the output of the network be

ζj = g(Sj), j = 1, · · · , J (3)

where g is given activation function. The initial condition is

ζ0 = 0. (4)

We now describe the gradient descent algorithm for training this network.
Let Oj denote the target output of the network at time j. The error function is
defined as

E(w) =
1
2

J∑

j=1

[Oj − g(Sj)]2≡
J∑

j=1

gj(Sj). (5)

We minimize this error function by the following gradient descent rule.

wm+1 = wm − ηEw(wm) = wm − η

J∑

j=1

g′j(S
m,j)[um,j + wm

0 pm,j−1],

m = 1, 2, · · · (6)
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where w0 is arbitrarily chosen initial guess, and

Sm,j = Sj |w=wm , um,j = uj |w=wm ,

pm,j = pj|w=wm , pj = (
∂ζj

∂w0
,

∂ζj

∂w1
, · · · ,

∂ζj

∂wN
)T , (7)

satisfy

pm,j = g′(Sm,j)[um,j + wm
0 pm,j−1], (8)

with initial conditions

pm,0 = 0. (9)

3 Main Results

The following assumptions will be used in our discussion.

(A1) |g(t)|, |g′(t), |g′′(t)| are uniformly bounded for t ∈ R.
(A2) |wm

0 | (m = 0, 1, 2, . . .) are uniformly bounded.
(A3) There exists a closed bounded region Φ such that {wn} ⊂ Φ, and the set
Φ0 = {w ∈ Φ : Ew(w) = 0} contains only finite points.

Remark 1. we note that from (5) and Assumption (A1) that |gj(t)|, |g′j(t)| and
|g′′j (t)| are also uniformly bounded for any t ∈ R. An assumption like (A2)
is often used in literature (see e.g. [1]) for a nonlinear iteration procedure to
guarantee the convergence.

Theorem 1. Suppose that the error function is given by (5), that the weight
sequence {wm} is generated by the algorithm (6) for any initial value w0, and
that Assumptions (A1)−(A2) are valid. Then for small enough η (cf. (22) below)
we have

(a) E(wm+1) ≤ E(wm), m = 0, 1, 2, · · · ;
(b) There is E∗ ≥ 0 such that limm→∞ E(wm) = E∗;
(c) limm→∞

∥
∥Δwm

∥
∥ = 0, limm→∞

∥
∥Ew(wm)

∥
∥ = 0.

Moreover, if Assumption (A3) is also valid, then we have the strong convergence:
(d) There exists w∗ ∈ Φ0 such that limm→∞ wm = w∗.
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Appendix

Let us introduce a few symbols to be used in our proof later on:

Δwm = wm+1 − wm, ΔSm,j = Sm+1,j − Sm,j.

To begin with, let us present four lemmas. In the following argument, we use C
for a generic positive constant which may be different in different places.

The next two lemmas can be proved by induction arguments, of which the
details are omitted to save the space.

Lemma 1. It follows from (8) and (9) that

pm,j =
j−1∑

k=0

[ j∏

l=j−k

g′(Sm,l)
]
(wm

0 )kum,j−k. (10)

Lemma 2. Suppose that (A1) and (A2) are satisfied, then

ΔSm,j = Δwm ·
[
um,j + wm

0 pm,j−1] + δm,j
1 + δm,j

2 , (11)

where

δm,j
1 = Δwm ·

j−1∑

k=1

[ j−1∏

l=j−k

g′(Sm,l)
][

(wm+1
0 )k − (wm

0 )k
]
um,j−k, (12)

δm,j
2 =

1
2

j−1∑

k=1

[ j−1∏

l=j−k+1

g′(Sm,l)
]
(wm+1

0 )kg′′(θm,j−k)
∣
∣ΔSm,j−k

∣
∣2 , (13)

and θm,j−k is a real number between Sm+1,j−1 and Sm,j−1.

Lemma 3. Suppose that (A1) and (A2) are satisfied, then

|ΔSm,j|2≤C‖Δwm‖2, m = 0, 1, · · · ; j = 1, 2, · · · , J (14)
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Proof. Using the Taylor expansion to the first order, we have

ΔSm,j = Sm+1,j − Sm,j

= wm+1 · um+1,j − wm · um,j

= Δwm · um,j + wm+1 · [um+1,j − um,j]

= Δwm · um,j + wm+1
0 [ζm+1,j−1 − ζm,j−1]

= Δwm · um,j + wm+1
0 [g′(t1)ΔSm,j−1],

where t1 lies between Sm+1,j−1 and Sm,j−1. Using (A1), (A2) and the Cauchy-
Schwarz inequality, we get the recursion formula of |ΔSm,j|2 about j

|ΔSm,j |2 = |Sm+1,j − Sm,j |2

=
∣
∣Δwm · um,j + wm+1

0 [g′(t1)ΔSm,j−1]
∣
∣2

≤C‖Δwm‖2 + C|ΔSm,j−1|2. (15)

Noting

|ΔSm,1|2 = |Δwm·um,1|2≤C‖Δwm‖2,

and using an induction argument, we can prove that

|ΔSm,j|2≤C‖Δwm‖2, m = 0, 1, · · · ; j = 1, 2, · · · , J

This completes the proof. �	
The next lemma is basically the same as Theorem 14.1.5 in [4] (also see [8]).

Its proof is thus omitted.

Lemma 4. Let F : Θ ⊂ R
m → R

m (m ≥ 1) be continuous for a bounded closed
region Θ, and Θ0 = {x ∈ Θ : F (x) = 0} contains finite points. Let the sequence
{xk} ⊂ Θ satisfy limk→∞ F (xk) = 0 and limk→∞ ‖xk+1 − xk‖ = 0. Then, there
exists x∗ ∈ Θ0 such that limk→∞ xk = x∗.

Now, we are ready for the proof of our main result.

Proof (of Theorem 1). Using the Taylor expansion, we have

E(wm+1) − E(wm) =
J∑

j=1

[gj(Sm+1,j) − gj(Sm,j)]

=
J∑

j=1

[
g′j(S

m,j)
(
ΔSm,j

)
+

1
2
g′′j (t2)

∣
∣ΔSm,j

∣
∣2 ]

,

where t2 lies between Sm+1,j and Sm,j . It follows from (11) that

E
(
wm+1) − E (wm) = Δwm ·

J∑

j=1

g′j(S
m,j)

[
um,j + wm

0 pm,j−1]

+
J∑

j=1

(δm,j
1 + δm,j

2 )g′j(S
m,j) + δm

3 , (16)
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where

δm
3 =

1
2

J∑

j=1

g′′j (t2)
∣
∣ΔSm,j

∣
∣2 . (17)

From (6), we have
J∑

j=1

g′j(S
m,j)

[
um,j + wm

0 pm,j−1] = −1
η
Δwm. (18)

Thus

E
(
wm+1) − E (wm) = −1

η
‖Δwm‖2 +

J∑

j=1

(δm,j
1 + δm,j

2 )g′j(S
m,j) + δm

3 . (19)

It follows from (A1), (A2), (12), (13) and (17) that
J∑

j=1

(δm,j
1 + δm,j

2 )g′j(S
m,j) + δm

3 ≤C‖Δwm‖2. (20)

A combination of (19) and (20) leads to

E
(
wm+1) − E (wm)≤ −

(1
η

− C
)
‖Δwm‖2. (21)

Hence, Conclusion (a) is valid if the learning rate is small enough such that

0 < η <
1
C

, (22)

where C is the constant in (21).
Since the nonnegative sequence {E(wn)} is monotone and bounded below,

there must be a limit value E∗ ≥ 0 such that limm→∞ E(wm) = E∗. So Conclu-
sion (b) is proved.

Next, we prove the weak convergence (c). Let β =
( 1

η − C
)
. By (21) we have

E(wM+1) ≤ E(wM ) − β‖ΔwM‖2 ≤ · · · ≤ E(w0) − β

M∑

m=0

‖Δwm‖2. (23)

Since E(wM+1) ≥ 0 for any M ≥ 0, we see that
M∑

m=0

‖Δwm‖2≤ 1
β

E(w0) < ∞. (24)

This together with (6) and (25) leads to

lim
m→∞ ‖Δwm‖2 = 0, lim

m→∞ ‖Ew(wm)‖ = 0. (25)

Finally, we prove the strong convergence (d). , Let us take x = w and f(x) =
f(w) = Ew(w). Then, Conclusion (d) immediately results from a combination
of Conclusion (c), the finiteness of Φ0 (cf. Assumption (A3)), Equation (25) and
Lemma 4. This completes the proof. �	
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Abstract. In this paper, a class of reaction-diffusion recurrent neural
networks with time-varying delays and Dirichlet boundary conditions are
considered by using an approach based on the delay differential inequality
and the fixed-point theorem. Some sufficient conditions are obtained to
guarantee that the reaction-diffusion recurrent neural networks have a
periodic orbit and this periodic orbit is globally attractive. The results
presented in this paper are the improvement and extension of the existed
ones in some existing works.

1 Introduction

Recurrent neural networks (RNNs) have been found useful in areas of signal
processing, image processing, associative memories, pattern classification [1]. As
dynamic systems, RNNs frequently need to be analyzed for stability. The sta-
bility criteria of equilibrium points are established in a series of papers; e.g.,
[2]-[4]. In many applications, the properties of periodic oscillatory solutions are
of great interest. For example, the human brain is in periodic oscillatory or chaos.
Hence, the existence of periodic orbits of RNNs and time-varying delayed neural
networks (DRNNs) is an interesting dynamic behavior. It has been found appli-
cations in learning theory, which is motivated by the fact that learning process
usually requires repetition.

In addition, an equilibrium point can be viewed as a special periodic orbit
of neural networks with arbitrary period. In this sense the analysis of periodic
orbits of neural networks could be more general than that of equilibrium points.
Recently, stability analysis and existence of periodic solutions have been widely
researched for recurrent neural networks with and without delays in [5]-[9].

Moreover, both the biological neural networks and the artificial neural net-
works, strictly speaking, diffusion effects cannot be avoided when electrons are
moving in asymmetric electromagnetic fields. So we must consider that the ac-
tivations vary in space as well as in time. The stability of the neural networks
with diffusion terms has been considered in [10] and [11], which are expressed

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 123–130, 2007.
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by partial differential equations. The boundary conditions of the investigated
reaction-diffusion neural networks in [10] and [11] are all the Neumann bound-
ary conditions.

Motivated by the above discussions, our aim in this paper is to consider the
globally attractive periodic state of the recurrent neural networks with reaction-
diffusion and Dirichlet boundary conditions.

This paper consists of the following sections. Section 2 describes some prelim-
inaries. The main results are stated in Sections 3. Finally, concluding remarks
are made in Section 4.

2 Preliminaries

Throughout of this paper, let C
(
[−τ, 0] × R

m, Rn
)

be the Banach space of con-
tinuous functions which map [−τ, 0] × R

m into R
n with the topology of uniform

converge, where τ is a constant. Let Ω =
{
(x1, x2, · · · , xm)T

∣
∣ |xi| < li, i =

1, 2, · · · , m
}

be an open bounded domain in R
m with smooth boundary ∂Ω.

Denote mesΩ > 0 as the measure of Ω. L2(Ω) is the space of real functions on
Ω which are L2 in the Lebesgue measure. It is a Banach space for the norm

||u(t)||2 =
[ n∑

i=1

||ui(t)||r2
]1/r

,

where u(t) =
(
u1(t), · · · , un(t)

)T
, ||ui(t)||2 =

( ∫
Ω |ui(t, x)|2dx

)1/2
, and r ≥ 1.

For any ϕ(t, x) ∈ C
(
[−τ, 0] × Ω, Rn

)
, we define

||ϕ||2 =
[ n∑

i=1

||ϕi||r2
]1/r

,

where ϕ(t, x) = (ϕ1(t, x), · · · , ϕn(t, x))T , ||ϕi||2 =
(

∫
Ω |ϕi(x)|2τ dx

)1/2

,

|ϕi(x)|τ = sup−τ≤s≤0 |ϕi(s, x)|, |ϕ(t, x)|(τ) = max1≤i≤n |ϕi(x)|τ .
Consider the following reaction-diffusion delayed recurrent neural networks

with the Dirichlet boundary conditions:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

∑m
k=1

∂
∂xk

(
aik

∂ui

∂xk

)
− biui(t, x)

+
∑n

j=1 cijfj(uj(t, x))
+

∑n
j=1 dijgj(uj(t − τj(t), x)) + Ii(t), (x, t) ∈ Ω × [0, +∞),

ui(t, x) = 0, (x, t) ∈ ∂Ω × [−τ, +∞),
ui(t, x) = φi(t, x), (x, t) ∈ ∂Ω × [−τ, 0],

(1)
where i = 1, 2, · · · , n, n is the number of neurons in the networks; x = (x1, x2,
· · · , xm)T ∈ Ω ⊂ R

m, u(t, x) = (u1(t, x), u2(t, x), · · · , un(t, x))T ∈ R
n and

ui(t, x) is the state of the i-th neurons at time t and in point x, smooth function
aik > 0 represents the transmission diffusion operator along the i-th unit, bi > 0
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represents the rate with which the i-th the unit will reset its potential to the
resting state in isolation when disconnected from the networks and external
inputs, cij denotes the strength of the j-th unit on the i-th unit at time t and
in point x, dij denotes the strength of the j-th unit on the i-th unit at time
t − τj(t) and in point x, τj(t) corresponds to time-varying transmission delay
along the axon of the j-th unit and satisfies 0 ≤ τj(t) ≤ τ and τj(t + ω) = τj(t),
where ω ≥ 0 is a constant. In addition, I(t + ω) = I(t). fj(uj(t, x)) denotes the
activation function of the j-th unit at time t and in point x, gj(uj(t − τj(t), x))
denotes the activation function of the j-th unit at time t − τj(t) and in point x,
φ(t, x) = (φ1(t, x), φ2(t, x), · · · , φn(t, x))T and φi(t, x) are continuous functions.

In the following discussions, we always assume that the activation functions fj

and gj (j = 1, 2 . . . , n) are globally Lipschitz continuous; i.e., ∀j ∈ {1, 2, · · · , n},
∀r1, r2, r3, r4 ∈ R, there exist real number �j and μj such that

|fj(r1) − fj(r2)| ≤ �j |r1 − r2| , |gj(r3) − gj(r4)| ≤ μj |r3 − r4| .

It is easy to find that fj(θ) = (1 − eλθ)/(1 + eλθ), 1/(1 + eλθ)(λ > 0),
arctan(θ), max(0, θ), (|θ + 1| − |θ − 1|)/2 are all globally Lipschitz continuous.

Definition 1. An equilibrium point u∗ = (u∗
1, u

∗
2, · · · , u∗

n)T of the recurrent
neural network (1) is said to be globally exponentially stable, if there exist
constant ε > 0 and Υ ≥ 1 such that for any initial value φ and t ≥ 0,

||u(t, x) − u∗||2 ≤ Υ ||φ − u∗||2e−εt.

Definition 2. Let f : R → R be a continuous function. The upper right Dini-
derivative D+f is defined as

D+f(t) = lim sup
h→0+

f(t + h) − f(t)
h

.

Lemma 1. Let h(x) be a real-valued function belonging to C1(Ω) which vanish
on the boundary ∂Ω of Ω; i.e., h(x)|∂Ω = 0. Then

∫

Ω

h2(x)dx ≤ l2i

∫

Ω

| ∂h

∂xi
|2dx. (2)

Proof. If x ∈ Ω, then

h(x) =
∫ xi

−li

∂

∂xi
h(x1, · · · , xm)dxi, (3)

h(x) = −
∫ li

xi

∂

∂xi
h(x1, · · · , xm)dxi. (4)

Form (3) and (4), we can obtain

2|h(x)| ≤
∫ li

−li

| ∂

∂xi
h(x1, · · · , xm)|dxi. (5)



126 C. Fu, C. Zhu, and B. Chen

From (5) and the Schwarz’s inequality,

|h(x)|2 ≤ li
2

∫ li

−li

| ∂

∂xi
h(x1, · · · , xm)|dxi. (6)

Integrating both sides of (6) with respect to x1, x2, · · · , xm, we get
∫

Ω

h2(x)dx ≤ l2i

∫

Ω

| ∂h

∂xi
|2dx. (7)

Lemma 2. Let H be a mapping on complete matric space (C([−τ, 0]×R
m, Rn),

||·, ·||(τ)). If H(C([−τ, 0] × R
m, Rn)) ⊂ C([−τ, 0] × R

m, Rn) and there exists a
constant α < 1 such that ∀φ, C([−τ, 0] × R

m, Rn), ||H(φ), Rn), ||H(φ), H(ϕ)
||(τ) ≤ α||φ, ϕ||(τ), then there exists a unique fixed point φ∗ ∈ C([−τ, 0]×R

m, Rn)
such

3 Main Results

Denote Ā = diag{
∑m

k=1
a1k

l2k
+ b1,

∑m
k=1

a2k

l2k
+ b2, · · · ,

∑m
k=1

ank

l2k
+ bn}, |C| =

(|cij |)n×n, |D| = (|dij |)n×n, � = diag{�1, �2, · · · , �n}, μ = diag{μ1, μ2, · · · , μn}.

Theorem 1. If Ā − |C|� − |D|μ is a nonsingular M matrix, then the neural
network (1) has a periodic state which is globally attractive.

Proof. Suppose u(t, x) and v(t, x) are two arbitrary solutions of the neural net-
work (1) with initial conditions ϕu(t, x), ϕv(t, x) ∈ C

(
[−τ, 0] × Ω, Rn

)
. Let

z(t, x) =
(
u(t, x) − v(t, x)

)
/T , ϕz(t, x) =

(
ϕu(t, x) − ϕv(t, x)

)
/T, where the

constant T 	= 0. Then from (1), for i = 1, 2, · · · , n,

∂zi(t, x)
∂t

=
m∑

k=1

∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
− bizi(t, z)

+
1
T

n∑

j=1

cij(fj(uj(t, x)) − fj(vj(t, x)))

+
1
T

n∑

j=1

dij(gj(uj(t − τj(t), x)) − gj(vj(t − τj(t), x))). (8)

Multiplying both sides of the above equation (8) by zi(t, x) and integrating with
respect to x over the domain Ω, for i = 1, 2, · · · , n,

1
2

d

dt

∫

Ω

(
zj(t, x)

)2
dx=

m∑

k=1

∫

Ω

zi(t, x)
∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
dx − bi

∫

Ω

(
zi(t, x)

)2
dx

+
1
T

n∑

j=1

∫

Ω

cijzi(t, x)(fj(uj(t, x)) − fj(vj(t, x)))dx

+
1
T

n∑

j=1

∫

Ω

dijzi(t, x)(gj(uj(t − τj(t), x))

−gj(vj(t − τj(t), x)))dx. (9)
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From the Green’s formula and the Dirichlet boundary condition, we have

m∑

k=1

∫

Ω

zi(t, x)
∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
dx = −

m∑

k=1

∫

Ω

aik

(
∂zi(t, x)

∂xk

)2

dx. (10)

Furthermore, from Lemma 1,

m∑

k=1

∫

Ω

zi(t, x)
∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
dx = −

m∑

k=1

∫

Ω

aik

(
∂zi(t, x)

∂xk

)2

dx

≤ −
m∑

k=1

∫

Ω

aik

l2k

(
zi(t, x)

)2
dx. (11)

From (9), (11), and the Holder inequality, we have:

d

dt
||zi(t, x)||22 ≤ −

m∑

k=1

2aik

l2k
||zi(t, x)||22 − 2bi||zi(t, x)||22

+2
n∑

j=1

|cij |�j ||zi(t, x)||2||zj(t, x)||2

+2
n∑

j=1

|dij |μj ||zi(t, x)||2||zj(t − τj(t), x)||2; (12)

i.e.,

d||zi(t, x)||2
dt

≤ −
( m∑

k=1

aik

l2k
+ bi

)
||zi(t, x)||2 +

n∑

j=1

|cij |�j ||zj(t, x)||2

+
n∑

j=1

|dij |μj ||zj(t − τj(t), x)||2. (13)

Since Ā−|C|�−|D|μ is a nonsingular M matrix, there exist positive numbers
γ1, · · · , γn such that

γi

( m∑

k=1

aik

l2k
+ bi

)
−

n∑

j=1

γj(|cij |�j + |dij |μj) > 0. (14)

Let yi(t, x) = ||zi(t, x)||2/γi. From (13),

D+yi(t, x) ≤ −
( m∑

k=1

aik

l2k
+ bi

)
yi(t, x) + (

n∑

j=1

γj |cij |�jyj(t, x)

+
n∑

j=1

γj |dij |μjyj(t − τj(t), x))/γi. (15)
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From (14) there exists a constant θ > 0 such that

γi

( m∑

k=1

aik

l2k
+ bi

)
−

n∑

j=1

γj(|cij |�j + |dij |μje
θτ ) ≥ 0. (16)

Let ν(0, x) = max1≤i≤n{sup−τ≤s≤0{yi(s, x)}}. Then ∀t ≥ 0,

||y(t, x)|| ≤ ν(0, x) exp{−θt}. (17)

Otherwise, there exist t2 > t1 > 0, q ∈ {1, 2, · · · , n} and sufficiently small ε > 0
such that ∀s ∈ [−τ, t1], (17) holds, and

yi(s, x) ≤ ν(0, x) exp{−θs} + ε, s ∈ (t1, t2], i ∈ {1, 2, · · · , n}, (18)

D+yq(t2, x) + θν(0, x) exp{−θt2} > 0. (19)

But from (15), (16) and (18),

D+yq(t2, x) + θν(0, x) exp{−θt2} ≤ 0. (20)

Hence, from this conclusion of absurdity, it shows that (17) holds.
Define u

(t)
φ (θ) = u(t+θ, x; φ), θ ∈ [−τ, 0]. Define a mapping H : C([−τ, 0]×R

m,

R
m, R

n) → C([−τ, 0]×R
m, Rn) by H(φ) = u

(ω)
φ . Then H(C([−τ, 0]×R

m, Rn)) ⊂
C([−τ, 0] × R

m, R
n), and Hm(φ) = u

(mω)
φ .

From (17), ||u(t, x; φ) − u(t, x; ϕ)||(τ) ≤ max1≤i≤n{γi}
min1≤i≤n{γi} ||φ, ϕ||(τ) exp{−θt}.

Choose a positive integer m such that max1≤i≤n{γi}
min1≤i≤n{γi} exp{−mω} ≤ α < 1. Hence,

||Hm(φ), Hm(ϕ)||(τ) = ||y(mω + θ, x; φ) − y(mω + θ, x; ϕ)||(τ)

≤ ||φ, ϕ||(τ) exp{−mω} ≤ α||φ, ϕ||(τ).

According to Lemma 2, there exists a unique fixed point φ∗ ∈ φ∗ ∈ C([−τ, 0] ×
R

m, Rn) such that that Hm(φ∗) = φ∗. In addition, for any integer r ≥ 1,
Hm(Hr(φ∗)) = Hr(Hm(φ∗)) = Hr(φ∗). This shows that Hr(φ∗) is also a fixed
point of Hm. Hence, by the uniqueness of the fixed point of the mapping Hm,

Hr(φ∗) = φ∗, that is, u
(rω)
φ∗ = φ∗. Let u(t, x; φ∗) be a state of the neural network

(1) with initial condition φ∗. Then from (1), ∀i = 1, 2, · · · , n, ∀t ≥ 0,

∂ui(t, x; φ∗)
∂t

=
m∑

k=1

∂

∂xk

(
aik

∂ui

∂xk

)
− biui(t, x; φ∗) +

n∑

j=1

cijfj(uj(t, x; φ∗))

+
n∑

j=1

dijgj(uj(t − τj(t), x; φ∗)) + Ii(t).
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Hence, ∀i = 1, 2, · · · , n, ∀t + ω ≥ 0,

∂ui(t + ω, x; φ∗)
∂t

=
m∑

k=1

∂

∂xk

(
aik

∂ui

∂xk

)
− biui(t + ω, x; φ∗)

+
n∑

j=1

cijfj(uj(t + ω, x; φ∗))

+
n∑

j=1

dijgj(uj(t + ω − τj(t), x; φ∗)) + Ii(t + ω)

=
m∑

k=1

∂

∂xk

(
aik

∂ui

∂xk

)
− biui(t + ω, x; φ∗)

+
n∑

j=1

cijfj(uj(t + ω, x; φ∗))

+
n∑

j=1

dijgj(uj(t + ω − τj(t + ω), x; φ∗)) + Ii(t),

this implies u(t + ω, x; φ∗) is also a state of the neural network (1) with initial
condition φ∗. u

(rω)
φ∗ = φ∗ implies that u(rω + θ, x; φ∗) = y((r − 1)ω + θ, x; φ∗).

∀t ≥ 0, there exist r̄ and θ̄ such that t = (r̄ − 1)ω + θ̄; i.e., u(t + ω, x; φ∗) =
u(t, x; φ∗). Hence, u(t, x; φ∗) is a periodic orbit of the neural network (1) with
period ω.

From (17), it is easy to see that all other states of (1) converge to this periodic
orbit as t → +∞. Hence, the periodic orbit u(t, x; φ∗) is globally attractive.

If aik ≡ 0, consider recurrent neural networks with time-varying delays

∂ui(t, x)

∂t
= −biui(t, x) +

n�

j=1

(cijfj(uj(t, x)) + dijgj(uj(t − τj(t), x))) + Ii(t), (21)

where i = 1, · · · , n.
Denote B = diag{b1, b2, · · · , bn}.

Corollary 1. If B − |C|� − |D|μ is a nonsingular M matrix, then the neural
network (21) has a periodic state which is globally attractive.

Proof. According to Theorem 1, Corollary 1 holds.

Since an equilibrium point can be viewed as a special periodic orbit of neural
networks with arbitrary period, according to Theorems 1 and 2, we have the
following corollaries:

Corollary 2. If Ā−|C|�−|D|μ is a nonsingular M matrix, and I(t) ≡ I, where
I is a constant, then (1) is globally exponentially stable.

Corollary 3. If B −|C|�−|D|μ is a nonsingular M matrix, and I(t) ≡ I, where
I is a constant, then (21) is globally exponentially stable.
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4 Concluding Remarks

In this paper, using the delay differential inequality and the fixed-point theo-
rem, we have obtained some sufficient conditions to guarantee that the reaction-
diffusion recurrent neural networks have a periodic orbit and this periodic orbit
is globally attractive. The results presented in this paper are the improvement
and extension of the existed ones in some existing works.
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Abstract. In this paper, we present the general analysis of global con-
vergence for the recurrent neural networks (RNNs) with projection map-
pings in the critical case that M(L, Γ ), a matrix related with the weight
matrix W and the activation mapping of the networks, is nonnegative
for a positive diagonal matrix Γ . In contrast to the existing conclusion
such as in [1], the present critical stability results do not require the con-
dition that ΓW must be symmetric and can be applied to the general
projection mappings other than nearest point projection mappings. An
example has also been shown that the theoretical results obtained in the
present paper have explicitly practical application.

1 Introduction

The recurrent neural networks (RNNs) with projection mappings are widely
studied in recent years because of their immense potentials of application per-
spective. The analysis of dynamic behaviors of the networks is a first and nec-
essary step for any practical design and application of such networks. One kind
of the dynamical behaviors must be expected is the globally convergent dynam-
ics. However, it is by no means easy to conduct a meaningful global conver-
gence analysis. Recently, such analysis has been focused on a stability analysis
of the system in the critical case when the discriminant matrix M(L, Γ ) =
L−1Γ − (ΓW + WT Γ )/(2) is nonnegative, where W is the weight matrix of the
network, G(x) = (g1(x1), g2(x2), . . . , gN(xN ))T is the activation mapping and
L = diag{L1, L2, . . . , lN} with each Li being the minimum Lipschitz constant
of gi. There have been considerable efforts on the no critically global stability
analysis of the RNNs (see, e.g., [2][5][4][6] and the references therein). In [1], a
global convergence analysis in the critical case was conducted for the nearest
point projection under some special conditions.

The purpose of this paper is to present a critical analysis on the global
convergence of the RNNs with projection mappings (other than nearest point
projection) and discriminate the symmetric requirement in [1].

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 131–139, 2007.
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2 Review of Some Existing Stability Results

We consider the RNN model as:

τ
dx(t)

dt
= −x(t) + G (Wx(t) + q) , x(0) = x0 ∈ RN (1)

where x(t) = (x1(t), x2(t), · · · , xN (t))T is the neural states, τ is a positive con-
stant, W = (ωij)N×N is the synaptic weight matrix and G = (g1, g2, . . . , gN)T

is the activation mapping.
For the nonlinear activation mapping G : RN → RN , denote the domain,

the range and the fixed-point-set of G respectively by D(G), R(G) and F(G).
G is said to be diagonally nonlinear if G is defined componentwisely by G(x) =
(g1(x1), g2(x2), . . . , gN(xN ))T , where each gi is an one-dimensional nonlinear
function; G is said to be a projection mapping if G ◦ G = G, or equivalently,
R(G) ⊆ F(G); G is said to be a diagonal projection if it is diagonally nonlinear,
and each component function gi is an one-dimensional projection; G is said to
be a nearest point projection if there is a bounded, closed and convex subset
Ω ⊂ RN such that G(x) = arg min

z∈Ω
‖ x − z ‖. Such a mapping is denoted by PΩ ,

i.e., G(x) = PΩ(x). Obviously, nearest point projection is a special projection
mapping, but the inverse is not necessarily true. Li, the minimum Lipschitz
constant of gi, is defined as follows

Li = sup
t�=s

|gi(t) − gi(s)|
|t − s| . (2)

In [1], the author proved the following theorem.

Theorem 1. Let G(.) = PΩ(.) = (g1, g2, . . . , gN )T be a diagonal nearest point
projection with a bounded, closed and convex subset Ω ⊂ RN . Assume that there
is a positive diagonal matrix Γ = diag{ξ1, ξ2, . . . , ξN} such that

(i) ΓW is symmetric and
(ii) Γ (I − W ) is nonnegative definite.

Then RNN model (1) is globally convergent on Ω. That is, for any trajectory
x(t) of (1) starting from Ω, there corresponds an equilibrium state x∗ of (1)
such that limt→+∞ x(t) = x∗.

At present, one case of the critical stability analysis of system (1) is refer to as
the analysis on stability of (1) when M(L, Γ ) = L−1Γ − (ΓW + WT Γ )/(2) ≥ 0.
In respect that Li = 1 when PΩ(.) is a diagonal nearest point projection mapping
[1][7], so, in Theorem 1, the critical stability analysis of model (1) was conducted
under the conditions that ΓW is symmetric, M(L, Γ ) is nonnegative definite and
the activation mapping is a diagonal nearest point projection. In this paper, we
will present some more general critical global convergence analysis of system (1)
in the case when M(L, Γ ) ≥ 0 and the activation mapping is a generally diagonal
projection mappings. The established results are without the assumption that
ΓW is symmetric, and generalize most known stability results of the systems.
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3 Critical Global Convergence Results

To begin the main results of the paper, we need two lemmas.

Lemma 1. (see [3][1]). If G : RN → Θ is a projection mapping with Θ being
a bounded, closed and convex subset of RN , then the solution x(t, x0) of (1)
satisfies x(t, x0) ∈ Θ for all t ≥ 0 when x0 ∈ Θ.

Lemma 2. For any continuous, real-valued and monotonically increasing func-
tion g defined on R, we have

∫ t

s

(g(θ) − g(s))dθ ≥ L−1(g(t) − g(s))2/2 , ∀t, s ∈ R (3)

where L is the minimum Lipschitz constant of g. Specially, L−1 = 0 when L =
+∞.

Proof. Let

f(t) =
∫ t

s

(g(θ) − g(s))dθ − L−1(g(t) − g(s))2/2 .

If g is continuously differentiable, then it can be shown that

f ′(t) = (1 − L−1g′(t))(g(t) − g(s)) .

It is clear that | L−1g′(t) |≤ 1. Since g is monotonically increasing, then, f ′(t) ≥ 0
when t ≥ s and f ′(t) ≤ 0 when t ≤ s. Thus, f(t) attains its unique minimum at
t = s. In view of the fact that f(s) = 0, then the required estimate (3) follows
when g is continuously differentiable.

Since any continuous function can be arbitrarily approximated by continu-
ously differentiable functions, then (3) also holds when g is continuous. The
proof is thus completed.

We now state and prove the main results of this paper.

Theorem 2. Assume that G = (g1, g2, . . . , gN )T is a diagonal projection with
each gi being monotonically increasing and continuous. Suppose that R(G) ⊂ RN

is a bounded, closed and convex set. Let L = diag{L1, L2, . . . , LN} with each Li

being the minimum Lipschitz constant of gi. If there is a positive diagonal matrix
Γ = diag{ξ1, ξ2, . . . , ξN} such that

(i) M(L, Γ ) = L−1Γ − ΓW+W T Γ
2 is nonnegative definite and

(ii) 〈Γ (L−1z(t) + x(t)), x(t) − z(t)〉 ≥ 0, where z(t) = G(Wx(t) + q),

then RNN model (1) is globally convergent on R(G). That is, for any trajectory
x(t) of (1) starting from R(G), there corresponds an equilibrium state x∗ of (1)
such that limt→+∞ x(t) = x∗.
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Proof. For any trajectory x(t) of (1) starting from x0 ∈ R(G), let y0 = Wx0 + q
and y(t) = Wx(t) + q. Define

E1(x(t)) = τxT (t)((L−1 + I)Γ − (ΓW + WT Γ ))x(t) − 2τxT (t)Γq

+τ

N∑

i=1

ξi

∫ yi(t)

(y0)i

gi(s)ds − 1
2
τ

{
(y(t) − x(t))T Γ (y(t) − x(t))

−yT (t)Γy(t) − xT (t)(I − L−1)Γx(t)
}

.

The proof will be broken down into four steps.
Step 1) We want to show that limt→+∞

dE1(x(t))
dt = 0.

Note first that

1
2
τ

d

dt

[
(y(t) − x(t))T Γ (y(t) − x(t)) − yT (t)Γy(t) − xT (t)(I − L−1)Γx(t)

]

= 〈Γx(t), (L−1 − W )(−x(t) + z(t))〉 − 〈Γy(t), −x(t) + z(t)〉 (4)

and

τ
d

dt

(
N∑

i=1

ξi

∫ yi(t)

(y0)i

gi(s)ds

)

= 〈L−1Γz(t), −x(t) + z(t)〉 − 〈Γz(t), (L−1 − W )(−x(t) + z(t))〉 . (5)

Since ((L−1 + I)Γ − (ΓW + WT Γ )) is symmetric, let u(t) = −x(t) + z(t), then
a direct calculation by using (4) and (5) is

dE1(x(t))
dt

= 2〈((L−1 + I)Γ − (ΓW + WT Γ ))x(t), u(t)〉 − 2〈Γq, u(t)〉

+〈L−1Γz(t), u(t)〉 − 〈Γz(t), (L−1 − W )u(t)〉
−〈Γx(t), (L−1 − W )u(t)〉 + 〈Γy(t), u(t)〉

= −2〈Γ (y(t) − x(t)), u(t)〉 + 2〈L−1Γx(t), u(t)〉 − 2〈Γx(t), Wu(t)〉
+〈L−1Γz(t), u(t)〉 − 〈Γz(t), (L−1 − W )u(t)〉
−〈Γx(t), (L−1 − W )u(t)〉 + 〈Γy(t), u(t)〉

= −2〈Γ (y(t) − x(t)), u(t)〉 + 〈Γ (x(t) − z(t)), (L−1 − W )u(t)〉
+〈L−1Γz(t), u(t)〉 + 〈Γy(t), u(t)〉

= −〈Γ (y(t) − x(t)), −x(t) + z(t)〉 − 〈Γ (y(t) − x(t)), −x(t) + z(t)〉

−(x(t) − z(t))T (L−1Γ − ΓW + WT Γ

2
)(x(t) − z(t))

+〈Γ (L−1z(t) + y(t)), −x(t) + z(t)〉
= −〈Γ (y(t) − x(t)), −x(t) + z(t)〉 − (x(t) − z(t))T (L−1Γ

−ΓW + WT Γ

2
)(x(t) − z(t)) + 〈Γ (L−1z(t) + x(t)), −x(t) + z(t)〉 .

It follows from Lemma 1 that x(t) ∈ R(G), so x(t) ∈ F(G) since G is a
projection. Meanwhile, on noting that L−1Γ − ΓW+W T Γ

2 is nonnegative and
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〈Γ (L−1z(t) + x(t)), x(t) − z(t)〉 ≥ 0, we get

dE1(x(t))
dt

≤ −
N∑

i=1

ξi[(Wx(t) + q)i − xi(t)] × [gi((Wx(t) + q)i) − gi(xi(t))] (6)

Note that dE1(x(t))
dt is continuous and x(t) ∈ F(G) with F(G) being bounded and

closed, it follows that dE1(x(t))
dt is a uniformly continuous function of t in [0, +∞).

Further, we have dE1(x(t))
dt ≤ 0 since gi is monotonically increasing, which implies

that the limit limt→+∞ E1(x(t)) exists. Thus, applying the well-known Barbalat
Lemma ([8], p. 123), we obtain that limt→+∞

dE1(x(t))
dt = 0.

Step 2) We show that any limit point of x(t) is an equilibrium state of (1).
Let x∗ be any limit point of x(t), i.e., limn→+∞ x(tn) = x∗ for some positive

sequence {tn} with tn → +∞ as n → +∞. (Notice that x∗ exists since x(t) is
bounded).

From (6) and the monotonically increasing property of each gi, we have

0 = lim
t→+∞

dE1(x(t))
dt

≤ lim inf
t→+∞{−

N∑

i=1

ξi[(Wx(t) + q)i − xi(t)] × [gi((Wx(t) + q)i) − gi(xi(t))]}

≤ 0 .

Consequently,

lim
t→+∞

N∑

i=1

ξi[(Wx(t) + q)i − xi(t)] × [gi((Wx(t) + q)i) − gi(xi(t))] = 0 . (7)

Then, it can be deduced that

N∑

i=1

ξi[(Wx∗ + q)i − x∗
i ] × [gi((Wx∗ + q)i) − gi(x∗

i )] = 0 . (8)

Note that R(G) is closed, which combined with the projection property of each
gi, implies that gi(x∗

i ) = x∗
i . Thus, whether (Wx∗ + q)i − x∗

i = 0 or gi((Wx∗ +
q)i)−gi(x∗

i ) = 0, it is easy to see that gi((Wx∗+q)i) = x∗
i for all i = 1, 2, . . . , N.

That means x∗ is an equilibrium state of (1).
Step 3) Define y(tn) = Wx(tn) + q and y∗ = Wx∗ + q, we want to show

limt→+∞(G(y(t)) − G(y∗)) = 0.
Consider the follow system:

τ
dy(t)
dt

= −y(t) + WG(y(t)) + q , y(0) = y0 ∈ RN (9)

it is clear that y∗ is an equilibrium state of system (9) and limn→+∞ y(tn) = y∗.
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Let

E2(x(t)) = τ
N∑

i=1

ξi

∫ yi(t)

y∗
i

(gi(r) − gi(y∗
i ))dr .

Then, it is obviously that E2(x(t)) ≥ 0 by Lemma 2. Meanwhile, we have

dE2(x(t))
dt

=
N∑

i=1

ξi(gi(yi(t)) − gi(y∗
i )) · (τ

dyi(t)
dt

)

= (G(y(t)) − G(y∗))T ΓW (−x(t) + G(y(t)))
= (G(y(t)) − G(y∗))T ΓW (−x(t) + x∗ − G(y∗) + G(y(t)))
= −(G(y(t)) − G(y∗))T Γ (y(t) − y∗)

+(G(y(t)) − G(y∗))T ΓW + WT Γ

2
(G(y(t)) − G(y∗)) (10)

On noting that gi is monotonically increasing and has the minimum Lipschitz
constant Li, we obtain that

(G(y(t)) − G(y∗))T Γ (y(t) − y∗) =
N∑

i=1

ξi(gi(yi) − gi(y∗
i ))(yi − y∗

i )

≥
N∑

i=1

ξiL
−1
i (gi(yi) − gi(y∗

i ))2

whenever yi ≥ y∗
i or yi < y∗

i . Then,

dE2(x(t))
dt

≤ −(G(y(t)) − G(y∗))T (L−1Γ − ΓW + WT Γ

2
)(G(y(t)) − G(y∗)) .

Thus, the nonnegative definiteness of (L−1Γ − ΓW+W T Γ
2 ) implies dE2(x(t))

dt ≤ 0
for all t ≥ 0, and furthermore, limt→+∞ E2(x(t)) exists. This, together with the
fact that limn→+∞ y(tn) = y∗, implies that limt→+∞ E2(x(t)) = 0. As a result,
we obtain by applying Lemma 2 to each component gi of G that

lim
t→+∞(G(y(t)) − G(y∗)) = 0 . (11)

Step 4) We finally prove limt→+∞ x(t) = x∗.
By the differential equation theory, x(t) solves the following integral equation:

x(t) − x∗ = e−
1
τ (t−t0)I(x0 − x∗) +

∫ t

t0

e−
1
τ (t−s)I · 1

τ
· (G(y(s)) − G(y∗))ds .

Obviously, it holds that

‖x(t)−x∗‖ ≤ e−
1
τ (t−t0)‖x0 −x∗‖+

∫ t

t0

e−
1
τ (t−s) · 1

τ
· ‖G(y(s))−G(y∗)‖ds . (12)
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By (11), for any ε > 0, there is a Tε > 0 such that, whenever t > t0 ≥ Tε,

‖G(y(t)) − G(y∗)‖ ≤ ε.

Therefore, we conclude from (12) that, when t > t0 ≥ Tε,

‖x(t) − x∗‖ ≤ e−
1
τ (t−t0)‖x0 − x∗‖ +

ε

τ

∫ t

t0

e−
1
τ (t−s)ds

< e−
1
τ (t−t0)‖x0 − x∗‖ + ε.

Letting t → +∞ in the above inequality yields limt→+∞ ‖x(t) − x∗‖ ≤ ε, which
implies limt→+∞ x(t) = x∗ since ε is arbitrary. This completes the proof of the
theorem.

Applying Theorem 2 to the RNNs with nearest point projection, we obtain the
following results.

Corollary 1. (Global convergence of model (1) with nearest point projection).
Assume that G = PΩ = (g1(x1), g2(x2), . . . , gN(xN ))T with each gi being an 1-D
nearest point projection and Ω ⊂ RN being a bounded, closed and convex set. If
there is a positive diagonal matrix Γ = diag{ξ1, ξ2, . . . , ξN} such that

(i) M(L, Γ ) = Γ − ΓW+W T Γ
2 is nonnegative definite and

(ii) xT (t)Γx(t) − PT
Ω (Wx(t) + q)ΓPΩ(Wx(t) + q) ≥ 0,

then RNN model (1) with nearest point projection is globally convergent on Ω.
That is, for any trajectory x(t) of (1) starting from Ω, there corresponds an
equilibrium state x∗ of (1) such that limt→+∞ x(t) = x∗.

Proof. It has been proved in [7] that the nearest point projection G : RN → Ω
satisfy the inequality

〈PΩ(x) − PΩ(y), x − y〉 ≥‖ PΩ(x) − PΩ(y) ‖2, ∀x, y ∈ RN .

It is clear that each Li = 1 and gi is monotonically increasing and continuous
when gi is an 1-D nearest point projection. Since 〈Γ (z(t) + x(t)), x(t) − z(t)〉 =
xT (t)Γx(t)−zT (t)Γz(t), where z(t) = G(Wx(t)+q), we can easily get the result
of the Corollary.

Remark 1. Comparing with Theorem 1, Theorem 2 not only eliminates the re-
quest on W that ΓW must be symmetric, but also applies to a generally diagonal
projection other than diagonal nearest point projection. Corollary 1 is new for
system (1) with nearest point projection. An example will present in the next
section to show the availability of the convergent results obtained.

4 An Example

Example 1: Consider the neural networks defined by
⎧
⎨

⎩

dx1(t)
dt = −x1(t) + g1(x1(t) + 2x2(t) − 2)

dx2(t)
dt = −x2(t) + g2(−3x1(t) + x2(t))

(13)
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where gi(s) is defined as follows:

gi(s) =

⎧
⎨

⎩

1, s > 1
s, s ∈ [0, 1]
0, s < 0

(14)

In this example, W =
(

1 2
−3 1

)
, q =

(
−2
0

)
and the equilibrium set of (13) is

Ωe =
{
(0, s)T | ∀ s ∈ [0, 1]

}
.

It is easy to verify that each Li = 1. Note first that for any positive diagonal
matrix Γ , ΓW is not symmetric, so Theorem 1 can not be applied here. We now
show the convergent results established in this paper will work well.

By setting Γ = diag(3, 2), we get that M(L, Γ ) = L−1Γ − ΓW+W T Γ
2 is

nonnegative definite. Meanwhile, it is easy to verify that for all trajectory x(t) =
(x1(t), x2(t))T of (13) starting from x0 ∈ Ω (here Ω = [0, 1] × [0, 1]),

⎧
⎨

⎩

x1(t) ≥ x1(t) + 2x2(t) − 2

x2(t) ≥ −3x1(t) + x2(t),
(15)

so xT (t)Γx(t) = GT (x(t))ΓG(x(t)) ≥ GT (Wx(t) + q)ΓG(Wx(t) + q) since each
gi(s) is monotonically increasing and nonnegative. Thus, by Corollary 1, system
(13) is globally convergence on Ω.

5 Conclusion

In this paper, the global convergence of RNNs with general projection mappings
has been studied under the critical condition that M(L, Γ ) is nonnegative def-
inite for any positive definite diagonal matrix Γ . The obtained results of RNN
model (1) exploited new globally convergent analysis. An example has been pre-
sented to demonstrate both theoretical importance and practical significance of
the critical results obtained.

Acknowledgment. This research was supported by the National Nature
Science Foundation of China under contract Nos.10371097 and 70531030.
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Abstract. Recently, the distribution and using of the digital multimedia 
contents are easy by developing the internet application program and related 
technology. However, the digital signal is easily duplicated and the duplicates 
have the same quality compare with original digital signal. To solve this 
problem, there is the multimedia fingerprint which is studied for the protection 
of copyright. Fingerprinting scheme is a technique which supports copyright 
protection to track redistributors of electronic information using cryptographic 
techniques. Only regular user can know the inserted fingerprint data in 
fingerprinting schemes differ from a symmetric/asymmetric scheme and the 
scheme guarantee an anonymous before re-contributed data. In this paper, we 
present a new scheme which is the detection of colluded multimedia fingerprint 
by neural network. This proposed scheme is consists of the anti-collusion code 
generation and the neural network for the error correction. Anti-collusion code 
based on BIBD(Balanced Incomplete Block Design) was made 100% collusion 
code detection rate about the average linear collusion attack, and the Hopfield 
neural network using (n,k) code designing for the error bits correction 
confirmed that can correct error within 2bits.  

1   Introduction 

The development of Internet has made the sharing and distribution of information 
possible all over the world. As a result, digital media has penetrated into our lives 
over years so that the uses of various digital contents, such as images, videos and 
audios have increased rapidly. But digital contents are easy to duplicate and the 
duplicated digital contents are difficult to distinguish from originals, so illegal 
duplication and distribution are also prevalent. It results in the economic losses of 
digital creative workers. Therefore, there has been growing needs for the reliable and 
effective method of digital media protection. 
                                                           
* This work was supported by a grant from Security Engineering Research Center of Ministry 

of Commerce, Industry and Energy. 
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To counter above, digital contents protection technology was developed. The 
digital contents protection technology can be defined as a technology that imbed the 
information related to the copyright of contents producer, invulnerably to the attack 
from outside, and classified roughly into watermarking technology and fingerprinting 
technology. Watermarking technology transforms the information related to the 
copyright of contents producer into watermarking and inserts them into contents 
invisibly. This technology can certificates the ownership of digital contents producer 
but cannot trace the attackers when the inserted watermarks are damaged and 
destroyed by many attacks. Briefly, its fault is the incompetence to find out the illegal 
distribution process of digital contents. For this, multimedia fingerprinting technology 
is being studied. Fingerprinting technology is a measure to protect the intellectual 
property rights of original producer and to prevent the illegal duplication and 
distribution of digital brainchild. This content protection technology imbeds the 
information about users into contents so that it can trace and extract the attack 
colluders when some collusive attack was occurred to duplicate the content. It was 
originated from the transactional watermarking [1] that was used to protect algorithm 
table from illegal duplication. Digital fingerprinting technology is divided into two 
techniques. One is the dual watermarking/fingerprinting technology that is proposed 
by Malvar [2] and others. The other is the collusion secure code techniques [3-6] that 
designs the inserted codes to be free from collusive attack.     

Dual watermarking/fingerprinting technique, which is realized in the media player 
platform of Micro-soft, uses watermarking module to protect copyrights and 
fingerprinting module to identify original buyer’s information. Collusion secure code 
techniques, as a code that designed fingerprinting code difficult to be colluded, is 
invulnerable to the collusive attack and includes c-secure (proposed by Bonehand 
Shaw), c-frame proof code [3], d-detecting code [4] (proposed by Dittmann), 3-secure 
code [5,6] (pro-posed by Domingo-Ferrer) and Anti- Collusion code (proposed by 
Trappe), etc.  

These fingerprinting techniques would have different fingerprinting codes from 
each user. So, if some-one would take advantage of such character and compare many 
contents, he could analogize fingerprinting information and prepare collusive attack. 
Major collusive attacks include Averaging Attack, Max-Min Attack, Negative-
Correlation Attack, Zero-Correlation Attack and Mosaic Attack. 

The algorithm proposed in this study designed BIBD (ACC: Anti-Collusion 
Codes) based code, used it as fingerprint, designed Hopfield neural network with the 
manner of feedback-type associative memory and extract accurately the colluded 
fingerprints and users. Also, this study analyzed the dispersion of BIBD code and 
measured the tenacity against the illegal collusive attack of proposed algorithm and 
error correcting capacity. For this, chapter II explains the theoretical background of 
Hopfield model for BIBD code and error correcting, chapter III describes the 
algorithm proposed in this paper for the illegal collusive code extraction and error 
correcting, chapter IV reviews the measurement of proposed algorithm’s capac- 
ity and its result, and final Chapter V addresses the conclusion and the course of  
future study. 
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2   Related Works 

Collusive attackers would perform Averaging Attack, Max-Min Attack, Negative-
Correlation Attack, Zero-Correlation Attack and Mosaic Attack on contents to 
increase the vagueness of inserted identification information or, the information of 
fingerprints’ removals and extractions, ultimately incapacitating all tracing against 
collusive attackers. Figure 1 indicates the basic methods of collusive attack. 

 

Fig. 1. Basic methods of collusive attack  

2.1   BIBD Code 

For combination, matrix model can create a matrix meeting the conditions. As BIBD 
code creates incidence matrix that meets the conditions of anti-collusion code, the 
symmetry of matrix cam be partly broke down. This code is an anti-collusion code 
invulnerable to collusive attack and all the combinations of less than (n-1) code 
vectors from n code vectors have different combinations each other, so it can extract 
colluders of less than (n-1). 

2.2   Hopfield Network 

Hopfield network is a mutual combinative nerve network model. It assumes that the 
operation of neuron is only the operation of critical values therefore the data by 
training would be expressed by the intensity of connections. So, it proposed the 
associative memory system and applied it to solve the optimization problems. 
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Hopfield network can secure global optimization through many numbers of 
asynchronous and local calculations and store certain general-purpose patterns then 
seek out the most similar pattern when given unknown input pattern, especially in 
associative memory. In Hopfield network, as a circuit network inter-actively 
associated with all units other than each oneself, like figure 2, the existing line 
becomes input pattern and y line becomes out pattern in which circuit network 
converges. Hopfield network system can recollect many related parts from small 
amount of information like human memory system. As it finds the information stored 
in w by the data input into X, it is called as CAM (content addressable memory) or 
associative memory.  

As shown in figure 2, Hopfield network as a circuit network interactively 
associated with all units (neuron, w0, w1, w2,...,wn-1) other than each oneself, x0, x1, 
x2,..., and xn-1 are input patterns and y0, y1, y2,...,and yn-1 are output patterns in 
which circuit network is converging.  

Input vector is input to x and output y is feed backed to all y units, then the output 
of each unit is determined as below formula [7]. 

As the content memorized in unit can make global optimization with similar vector 
having error, it per-forms error correction function. 

 

Fig. 2. Basic Structure of Hopfield Network 

3   The Multimedia Fingerprint Detection 

This study used BIBD based ACC, which is invulnerable to collusive attack and 
Hopfield error correcting circuit to give tenacity against external noise attack. The 
algorithm that can extract illegal colluders using the neural circuit network proposed 
in this paper is like figure 3. The proposed algorithm is expanded with based on (n,k) 
code in order to enhance the reliability of fingerprint created by BIBD basis. That is, 
the created fingerprint id expanded to maintain the peculiarities of each unit against 
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external at-tacks when establishing Hopfield neural network for error correcting. The 
(n,k) code language is ex-pressed like formula (9).  

C(x) = D(x)·G(x).                                                     (9) 

Here, C(x) is an expanded polynomial expression less than n-1 degrees, D(x), 
fingerprint code, is an in-formation polynomial expression less than k-1 degrees, and 
G(x) is a check bit added with considering minimum Hamming distance. 

Check_bit=2·error_bit+1                                              (10) 

In the error correcting block of proposed algorithm, when an error is added by 
some causes to fingerprint C(x) that is created by formula (9), the feedback-type 
associative memory of Hopfield model will correct the error, calculate D(x) and 
extract colluders finally by code book reference.  

Hopfield neural network error correcting circuit designed by this paper. It can 
determine the illegal collusion by correcting two bits from the 12 bit of fingerprint 
code. Overall circuit was embodied in the MOSFET of N and P type. As the state of 
MOSFET is controlled to the excited and restrained states according to the changes of 
Channel-widths, Channel-widths and gate connecting input values of MOSFET, the 
error of input data will be corrected. 

4   Error Correction Circuit Using Neural Network 

To measure the performance of proposed algorithm, simulation was set by Matlab and 
IBM PC of Intel Pentium Ⅳ 3.0GHz CPU& 4.0GB RAM. This paper created the 
code that had the condition in which ACC creation parameter {v,k,λ} is {7,3,1}, 
{15,7,3}, {23,11,5}, {31,15,7} then carried out test. Table 2 indicates the number of 
combinable cases, in collusive attack, according to the number of colluders. This 
paper set the number of colluders to 6 and performed the colluder extraction test. Test 
was performed on the tenacity against the Averaging Attack and bit error correction 
transformed by Gaussian noise attack on the fingerprint attacked collusively. 

4.1   Tenacity Against the Collusive Averaging Attack 

Table 5 explains the process in which two collusive attackers from seven users are 
distinguished by {7,3,1} BIBD code. When the correlation coefficient evaluated 
between colluded code and codebook is higher than critical value, it shall be assumed 
as colluder. In figure 5, as the correlation coefficient between a colluded code, b1 and 
b6 is higher than critical value, it is a colluded code. The correlation coefficient was 
evaluated by formula (12).  

Figure 6 indicates the correlation coefficient between colluded code and codebook. 
If correlation coefficient(r) was higher than 0, it was determined to be a colluder. If, 
lower higher than 0, not a colluder.   

Figure 3 is the result of extraction of Averaging Attack colluders using the 
algorithm proposed by this paper. The algorithm extracted 100% of colluders for 
Collusive Averaging Attack only. 
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4.2   Bit Error Correction Using Neural Circuit 

To avoid tracing, colluders could attack the colluded code with noise and intentional 
bit invention. This paper arranged 2bit error correction using Hopfield neural circuit 
to have the tenacity against collusive attack. To measure the performance of such 
neural circuit, this study added error correction bit of 5bit to the created fingerprint 
code, for 2bit error correction, by formula (10).  

The error correction rate of neural circuit that was designed when AWGN was 
higher than 12dB showed 100%. That means that there can be less than 2 error bit in a 
code. Table 4 is the result of colluder extraction according to the change of AWGN, 
after the creation of 1,000 codes from each code. AWGN can extract the number of 
colluders exactly up to 12dB, but under 10dB, the number of colluders decreases in 
proportion to code’s length.  

In conclusion, the fingerprint extraction algorithm using the neural circuit of this 
paper can extract 100% of Averaging Attack colluders by the code based on BIBD 
and extract colluders of the bit transformation attack using Hopfield neural circuit, 
within 2bit code change. 

5   Conclusion 

The This study designed BIBD based illegal collusion preventive code invulnerable to 
collusive attacks to protect the copyright of digital contents from illegal duplications 
and collusive attacks. Fingerprint information can be damaged by external attack and 
noise during transmitting, so, this study proposed finger-print algorithm that can 
correct the damaged code using Hopfield neural circuit. The proposed algorithm 
consists of BIBD based illegal collusion preventive code invulnerable to linear 
collusive attacks and Hop-field neural circuit of feedback-type associative memory to 
correct the code damaged by external attack. As a result of test, BIBD based illegal 
collusion preventive code could extract 100% of collusive codes in linear collusive 
Averaging Attack and Hopfield neural circuit using (n,k) code can correct the error bit 
less than 2 bit. In conclusion, the proposed algorithm can extract colluders exactly 
when Averaging At-tack is occurred and less than 2 error bit is created in collusive 
code. In the future, the study should be progressed on how to develop an effective 
algorithm to insert the proposed multimedia fingerprint algorithm into real 
multimedia and how to get tenacity against the nonlinear collusive attack such as 
Zero-Correlation Attack. 
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Abstract. The cellular neural/nonlinear network (CNN) has become a
useful tool for image and signal processing, robotic and biological vi-
sions, and higher brain functions. Based on our previous research, this
paper set up two new theorems of robust designs for Pattern Matching
CNN in processing binary images, which provide parameter inequalities
to determine parameter intervals for implementing the prescribed image
processing function. Three numerical simulation examples are given.

1 Introduction

The CNN, first introduced by Chua & Yang ([1], [2]) as an implementable al-
ternative to fully-connected Hopfield neural networks, is a large scale nonlinear
circuits composed of locally connected cells. This property has allowed CNN the-
ory models to be made of CNN universal chips whose theoretical computation
speed can be at least a thousand times faster than the current digital processor.
Now the CNN has been widely studied for theoretical foundations and practical
applications in image and video signal processing, robotic and biological visions,
and higher brain functions (see [3]-[11]).

Robust design is an important issue for the study in CNN. Practically, an
engineer always hopes to design such a CNN that is able not only to perform its
prescribed task for the “nominal (idea) model” but also to work well for a large
set of perturbed models.

In [3] and [10], the robust analysis of a large kind of CNNs–uncoupled Boolean
CNNs has been discussed, which provides optimal design schemes for CNNs with
prescribed tasks. Recently, three uncoupled CNNs with linear and nonlinear B-
templates are introduced, respectively, based on robust parameter designs, which
are able to detect edges, convex corners or counter of object in some gray-scale
images ([12]- [14]). In our previous paper [15], two theorems are set up to design
robust templates for a kind of uncoupled CNNs.
� This project is jointly supported by the National Natural Science Foundations of

China (Grant Nos. 60674059, 70271068), the Research Fund for the Doctoral Pro-
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of China.
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In the CNN Library [16], many interesting CNNs are introduced. One of
them is the Pattern Matching CNN for processing binary images. This paper
first shows the Local Rules of Pattern Matching CNN, and then studies the is-
sue for designing robust Pattern Matching CNNs. Two corresponding robustness
theorems are set up. The theorems provide the parameter inequalities for deter-
mining parameter intervals to guarantee the Pattern Matching CNNs to perform
prescribed functions. Three numerical simulation examples are given to verify
the new theorems to be efficient in practical applications for computer digital
image processing.

2 A Theorem on Pattern Matching CNN

The CNN architecture used in this paper is composed of a two-dimensional M
by N array of cells. Each cell is denoted by C(i, j) where i = 1, 2, · · · , M ; j =
1, 2, · · · , N . The dynamics of each cell is given by the equation [3]

ẋi,j = −xi,j +
1∑

k=−1

1∑

l=−1

ak,lyi+k,j+l

+
1∑

k=−1

1∑

l=−1

bk,lui+k,j+l + z (1)

where ui,j , xi,j , and yi,j are the input, state, and output variables of the cell;
ai,j

′s , bk,l
′s and z are the elements of the A-template and the B-template, and

threshold, respectively. The output yi,j is the piece-wise linear function given by

yi+k,j+l =
1
2
(|xi+k,j+l + 1| − |xi+k,j+l − 1|).

The standard Pattern Matching template has the following form

A =
0 0 0
0 1 0
0 0 0

, B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

, z = 0.5 − N. (2)

where

bk,l =

⎧
⎨

⎩

1, if the corresponding pixel is required to be black
0, if the corresponding pixel is not cared

−1, if the corresponding pixel is required to be white
(3)

N = the number of pixels required to be either black or white, i.e. the number
of non-zero values in the B template.
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I. Global Task

Given : static binary image P possessing
the 3 × 3 pattern prescribed by the
template.

Input : U(t) = P.
Initial State : X(0) = Arbitrary.
Boundary Conditions : [U ] = 0.
Output : Y (t) ⇒ Y (∞) = Binary

image representing the locations
of the 3 × 3 pattern prescribed
by the template. The pattern
having a black/white pixel
where the template value is
+1/ − 1, respectively, is detected.

II. Local Rules

ui,j(0) → yi,j(∞)
1. arbitrary (−1 or 1) → black, if ui+k,j+l(0) = sgn(bk,l) for all bk,l �= 0
2. arbitrary (−1 or 1) → black, if all bk,l = 0
3. arbitrary (−1 or 1) → white, otherwise

III. Mathematical Analysis

State-output EQ. has a form:

ẋi,j = −xi,j + yi,j + wi,j (4)

wi,j =
1∑

k=−1

1∑

l=−1

bk,lui+k,j+l − N + 0.5. (5)

From Fig. 1, we can conclude that:

yi,j(∞) =
{

1 if wi,j > 0
−1 if wi,j < 0 (6)

Case 1. If ui+k,j+l(0) = sgn((bk,l) for all bk,l �= 0, then

wi,j = N − N + 0.5
= 0.5 > 0. (7)

From (6) and (7), we conclude that yi,j(∞) = 1.

Case 2. If all bk,l = 0, then

wi,j = 0 − 0 + 0.5
= 0.5 > 0. (8)
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Fig. 1. The dynamic route of (ẋi,j) − xi,j

From (6) and (8), we conclude that yi,j(∞) = 1.

Case 3. If there exists at least oneui+k,j+l(0) = −sgn(bk,l) for all bk,l �= 0, then

wi,j ≤ (N − 1) − 1 + N − 0.5
= −1.5 < 0. (9)

From (6) and (9), we conclude that yi,j(∞) = −1. In summary, we complete the
proof. �

3 Robust Design of Pattern Matching CNNs

Assume that the robust CNN template has the following form:

A =
0 0 0
0 a 0
0 0 0

, B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

, z = c − Nb (10)

where

bk,l =

⎧
⎨

⎩

b, if the corresponding pixel is required to be black
0, if the corresponding pixel is not cared

−b, if the corresponding pixel is required to be white
(11)

N = number of pixels required to be either black or white, i.e. the number
of non-zero values in the B template.

Theorem 1. If the parameters a, b, c are determined by the following inequa-
tions, then the CNN can perform the global task and the local rules of Pattern
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Matching CNN
⎧
⎪⎪⎨

⎪⎪⎩

a > 1
b > 0
a −c < 1
a −2b + c < 1

(12)

Proof. State-output EQ. has a form:

ẋi,j = −xi,j + ayi,j + wi,j (13)

wi,j =
1∑

k=−1

1∑

l=−1

bk,lui+k,j+l − Nb + c. (14)

From Fig. 2, we can conclude that:
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Fig. 2. The dynamic route of (ẋi,j) − xi,j

yi,j(∞) =
{

1 if wi,j > a − 1
−1 if wi,j < 1 − a

(15)

Case 1. If ui+k,j+l(0) = sgn(bk,l) for all bk,l �= 0, then

wi,j = Nb − Nb + c

= c > a − 1. (16)

From (15) and (16), we conclude that yi,j(∞) = 1.

Case 2. If all bk,l = 0, then

wi,j = 0b − 0b + c

= c > a − 1. (17)
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From (15) and (17), we conclude that yi,j(∞) = 1.

Case 3. If there exists at least one ui+k,j+l(0) = −sgn(bk,l) for all bk,l �= 0, then

wi,j ≤ (N − 1)b − b − Nb + c

= c − 2b < 1 − a. (18)

From (15) and (18), we conclude that yi,j(∞) = −1. �

Theorem 2. If the parameters a, b, c are determined by the following inequa-
tions, then the CNN can perform the global task and the local rules of Pattern
Matching CNN

⎧
⎪⎪⎨

⎪⎪⎩

a < 1
b > 0
a +c > 1
a +2b − c > 1

(19)

Proof. State-output EQ. has a form:

ẋi,j = −xi,j + ayi,j + wi,j (20)

wi,j =
1∑

k=−1

1∑

l=−1

bk,lui+k,j+l − Nb + c. (21)
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Fig. 3. The dynamic route of (ẋi,j) − xi,j

From Fig. 3, we can conclude that:

yi,j(∞) =
{

1 if wi,j > 1 − a
−1 if wi,j < a − 1 (22)
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Case 1. If ui+k,j+l(0) = sgn(bk,l) for all bk,l �= 0, then

wi,j = Nb − Nb + c
= c > 1 − a.

(23)

From (22) and (23), we conclude that yi,j(∞) = 1.

Case 2. If all bk,l = 0, then

wi,j = 0b − 0b + c
= c > 1 − a.

(24)

From (22) and (24), we conclude that yi,j(∞) = 1.

Case 3. If there exists at least one ui+k,j+l(0) = −sgn(bk,l) for all bk,l �= 0, then

wi,j ≤ (N − 1)b − b − Nb + c
= c − 2b < a − 1.

(25)

From (22) and (25), we conclude that yi,j(∞) = −1. �

4 Numerical Simulation

Now let us consider three CNNs with the parameters given in Table 1.

Table 1. Three CNNs satisfying the standard Pattern Matching CNN or satisfying

the conditions in the Theorem 1 or Theorem 2.

No. a b c
1 1 1 0.5
2 2 1.5 2
3 0.5 1.5 2

1. First let us use the parameters numbered by 1 listed in Table 1 to design
the CNN as the following form:

A =
0 0 0
0 1 0
0 0 0

, B =
1 -1 1
0 1 0
1 -1 1

, z = −6.5 (26)

Then we use the above CNN to process the image shown in Fig 4(a). The
output image is shown in Fig 4(b). Only the 3 × 3 neighborhoods of the
three pixels in Fig 4(a), which correspond to the three black pixels shown in
Fig 4(b) match the template B, respectively. It can be seen that the center
of the matched 3 × 3 pattern in the image shown in Fig 4(a) are detected
correctly by the CNN.
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Fig. 4. (a) Input (b) Output

2. Second let us use the parameters numbered by 2 listed in Table 1 to design
the CNN as the following form:

A =
0 0 0
0 2 0
0 0 0

, B =
0 0 0
0 0 0
0 0 0

, z = 2 (27)

Template (27) is a special case of the Pattern Matching CNNs where N = 0.
We use it to process the image shown in Fig 5(a). Since all bk,l = 0, Local
Rules 2 indicates that all the pixels turn to black, as that shown in Fig 5(b).

 (b)

Output image: t =5
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15

Fig. 5. (a) Input (b) Output

3. Finally let us use the parameters numbered by 3 listed in Table 1 to design
the CNN as the following form:

A =
0 0 0
0 0.5 0
0 0 0

, B =
-1.5 -1.5 -1.5
-1.5 -1.5 -1.5
-1.5 -1.5 -1.5

, z = −11.5 (28)

Template (28) is a special case of the Pattern Matching CNNs, where all
bk,l = −b, and then we use it to process the image shown in Fig 6(a). Only
the 3 × 3 neighborhoods whose pixels are all white in Fig 6(a) match the
template B. The output image is shown in Fig 6(b).
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5 Conclusions

In summary, we can obtain the following conclusions.

(1) This paper gives an analytical proof for the performance (the Local Rules)
of the standard Pattern Matching CNN [16].

(2) The two robustness design theorems provide general constrain conditions
of template parameters for the CNNs, which guarantee the CNNs to implement
the corresponding Local Rules.

(3) The two group inequalities given in the two theorems contain three para-
meters a, b, and c, respectively. It follows that each robust parameter region is
surrounded by four planes in space R

3. The four planes are determined via the
inequalities given by (12) or (19).

(4) Consequently the Pattern Matching CNN template parameters with the
most robustness are able to be calculated via algorithms.

Three numerical simulation examples confirm that the theoretical analysis is
efficient in practical applications for computer digital image processing.

To our knowledge, the limitation of the image processing of the CNN Universal
is 176 ×144 pixels [17]. Practically, this means that a real image is needed to be
divided in 176 ×144 pixels regions for the CNN image processing. This limits
the speed of the CNN image processing.

It is expected that the CNN-UM technology break the 176 ×144 array barrier
to obtain more resolution and expand the action field of the CNN processing.
However results obtained here indicate that there are still some uncharted engi-
neering and mathematical territories waiting us to explore and exploit for novel
applications of the standard CNN.
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Abstract. Iterative learning control problembased on improveddiscrete-
time Hopfield neural networks is considered in this paper. For the every
process of iterative learning control, the neural networks execute a cy-
cle that includes variable terms of learning time and training iterative
number. The iterative learning control with improved Hopfield neural
networks is formulated that can be described as a two-dimensional (2-D)
Roesser model with variable coefficients. In terms of 2-D systems theory,
sufficient conditions that iterative learning error approaches to zero are
given. It has been shown that convergence of iterative learning control
problem based on Hopfield neural networks is derived by 2-D systems
theory instead of conventional algorithms that minimize a cost function.

1 Introduction

Iterative learning control has generated considerable interests in theoretical and
practical aspects in the past two decades. Iterative learning control systems
successfully use information from previous executions to improve the tracking
output by iterative process in the sense that the error is sequentially reduced.
Most of research has concentrated on providing new algorithms and analyzing
their convergence for linear systems and nonlinear systems [1,7,11].

Iterative learning control rules based on 2-D systems theory have been widely
introduced recently. In the iterative learning process, dynamics of the control
system and the behavior of iterative process can be described by 2-D systems.
Kurek and Zaremba [8] presented a fundamental learning control rule and an ex-
tended rule for linear discrete-time multivariable systems based on 2-D systems
theory. The convergence of learning control rules was robust with respect to small
perturbations of the system parameters. It implied that these learning control
rules were easy to apply to linear systems. In [4], 2-D systems iterative learn-
ing control algorithm for continuous-time systems was proposed. Necessary and
sufficient conditions were given for convergence of the proposed learning control
rules. Three proposed learning rules were less restrictive and had wider applica-
tions in robot manipulators. Li X. D. et. al [9,10]applied 2-D systems theory to
deal with iterative learning control problem for linear time-variant discrete sys-
tems and linear continuous systems with time delays. In terms of the convergent

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 157–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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property of 2-D linear time-variant discrete systems with only one independent
variable, the learning law was presented and its convergence was proved in [9].
Extended 2-D systems theory iterative learning control techniques for linear sys-
tems, in [10] it was shown that 2-D linear continuous-discrete Roesser model can
be described the iterative learning control process of continuous multivariable
systems with time-delays in state and in inputs.

Since neural networks have advantageous to deal with nonlinear systems and
complex dynamic systems, some results have been received in the use of neural
networks for iterative learning control problem in recent years. For nonlinear
systems, the purpose of conventional iterative learning algorithms is to present
new iterative learning control laws. The gain matrixes of these learning control
laws are variable in every iteration, thus there are some difficulties to obtain
gain matrixes or it consume a large time in calculating the exact matrixes. Ya-
makita et al [12] combined an adaptive control with radial basis function (RBF)
neural networks and an adaptive iterative learning control algorithm which can
be approximated any continuous function to arbitrary accuracy by linear com-
bination of Gaussian basis function. From the updated weights and the updated
center of radial basis functions, the new adaptive iterative learning control al-
gorithm with RBF of artificial neural networks was proposed and was used in a
golf-swing robot. In [5], a neural network controller for nonlinear systems trajec-
tory tracking was presented. In contrast to the adaptive neural network control
scheme, a series of independent networks was assigned to the points along the
desired trajectory. It implied that all local networks can be realized by a simple
structure with relatively less neurons. Moreover, it guaranteed that the stability
of the trajectory of nonlinear systems.

Feedback networks are better suited for descriptions of learning process in
various kinds of neural networks. Chow W. T. S. et al [2,3] presented a newly
continuous-time and discrete-time recurrent neural networks (RNN) working
together with 2-D training algorithms which is capable of approximating any
continuous-time or discrete-time trajectory to a very high degree of accuracy
with a few iterations. In their works, two RNN’s of the same network architecture
were utilized. One RNN was used to approximate the nonlinear system, while
another one was used to mimic the desired output. The 2-D systems theory was
introduced to analysis the convergence of RNN training iterative learning control
algorithms instead of minimizing the cost function of RNN.

Therefore, it is a new and effective way to train iterative learning control
algorithm by neural networks and analysis convergence of new algorithm by
2-D systems theory. In this paper, the improved discrete-time Hopfield neural
network is applied to iterative learning control. The Hopfield neural network ex-
ecutes a cycle that includes variable terms of learning time and iterative number
for every learning iteration. The 2-D Roesser model with variable coefficients
that describes iterative learning control based on Hopfield neural network is de-
rived. Using 2-D systems theory, the convergence of iterative learning control
problem is analyzed and the sufficient conditions are given.
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2 Hopfield Neural Networks and Iterative Learning
Control

Consider a general expression of improved discrete-time Hopfield neural networks

uk(t + 1) = Hyk(t) + Buk(t) − I,
yk(t) = S(uk(t)), (1)

where uk(t) is the input of the neural network at time t, yk(t) is the corre-
sponding output of the neural network at time t, I is the external input, H is
the connection intensity of neurons, B is an appropriate dimensional coefficient
matrix, S(·) denotes a sigmoid function.

In this paper, we consider the iterative learning control problem by improved
discrete-time Hopfield neural networks.

Let t denote variable learning time, k denote the training iterative number,
the iterative learning control based on improved discrete-time Hopfield neural
networks can be rewritten as

u(t + 1, k) = Hy(t, k) + Bu(t, k) − I,
y(t, k) = S(u(t, k)), (2)

where u = (u1, u2, . . . , un)T ∈ Rn, y = (y1, y2, . . . , yn)T ∈ Rn, H , B, I are n×n
matrices.

In every learning iteration, the neural network perform a cycle. If every cycle
begins with the invariable nonzero initial condition, we get

u(0, k) = u(0), k = 0, 1, 2, . . . . (3)

Let the learning error

e(t, k) = yd(t) − y(t, k), (4)

where yd(t) is the desired output vector, the iterative learning control problem
based on Hopfield neural networks can be stated as follows. For the iterative
learning control based on improved discrete-time Hopfield neural networks (2)
with initial conditions (3) and desired output yd(t), it is important to reduce the
error e(t, k) step by step. When the iterative number increases, it can be assured
that e(t, k) approaches to zero.

3 2-D Systems Theory and Convergence Analysis

3.1 Preliminaries

In order to extend 2-D systems theory to iterative learning control based on
Hopfield neural networks, some results are given as preliminaries.
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Lemma 1 ([6]). Consider the Roesser model of 2-D linear discrete systems

[
η(t + 1, k)
e(t, k + 1)

]
=

[
A1(t, k) A2(t, k)
A3(t, k) A4(t, k)

] [
η(t, k)
e(t, k)

]
, (5)

where η(t, k) ∈ Rn1 , e(t, k) ∈ Rn2 , A1(t, k) ∈ Rn1×n1 , A2(t, k) ∈ Rn1×n2 ,
A3(t, k) ∈ Rn2×n1 , A4(t, k) ∈ Rn2×n2 . If boundary conditions for (3) are given
by

η(0, k) = 0, k = 0, 1, 2, · · · . (6)

and finite e(t, 0) for t = 0, 1, 2, . . ., then the solution of (5) with the boundary
condition (6) is given by

[
η(t, k)
e(t, k)

]
=

t∑

i=0

T i,j
t,k

[
0

e(t − i, 0)

]
, (7)

where the state transition matrix T i,j
t,k is defined as follows

T i,j
t,k =

⎧
⎨

⎩

I, i = j = 0,

A1,0
t−1,kT i−1,j

t−1,k + A0,1
t,k−1T

i,j−1
t,k−1 , i ≥ 0, j ≥ 0,

0, i < 0 or j < 0 or t < 0 or k < 0,
(8)

and

A1,0
t−1,k =

[
A1(t, k) A2(t, k)

0 0

]
, A0,1

t−1,k =
[

0 0
A3(t, k) A4(t, k)

]
.

Lemma 2 ([2]). Suppose that Supt,k ‖ A1,0
t,k ‖ and Supt,k ‖ A0,1

t,k ‖ are finite, we
have

‖ T i,j
t,k ‖≤ 2i+j−1 ‖ A0,1 ‖i‖ A0,1 ‖j,

where ‖ A ‖ denotes the norm of matrix A, and

‖ A1,0 ‖= Supt,k ‖ A1,0
t,k ‖, ‖ A0,1 ‖= Supt,k ‖ A0,1

t,k ‖ .

.
From lemma 1 and lemma 2, it is easy to see that the following result is held.

Lemma 3 ([2]). For 2-D systems (5) and (6), we have
∥
∥
∥
∥

η(t, k)
e(t, k)

∥
∥
∥
∥ → 0,

for k → 0 and any given t, if ‖ A0,1 ‖< 1
2 .
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3.2 Convergence Analysis

In this subsection, we consider the convergence of the iterative learning control
problem based on Hopfield neural networks by using 2-D systems theory.

For t > 0, from (2) , we have

u(t + 1, k) − u(t, k)
= (Hy(t, k) + Bu(t, k) + I) − (Hy(t − 1, k) + Bu(t − 1, k) + I)
= H(y(t, k) − y(t − 1, k)) + B(u(t, k) − u(t − 1, k)).

Let
η(t + 1, k) = u(t + 1, k) − u(t, k),
y(t, k) − y(t − 1, k) = D(t − 1, k)η(t, k),

where D(t − 1, k) = diag[S′(ξ1), S′(ξ2), . . . , S′(ξn)], ξ = (ξ1, ξ2, . . . , ξn)T has a
value between y(t, k) and y(t − 1, k), then

η(t + 1, k) = (HD(t − 1, k) + B)η(t, k). (9)

Moreover, From (4), we get

e(t, k + 1) − e(t, k) = y(t, k) − y(t, k + 1)
= y(t, k) − y(t − 1, k) + y(t − 1, k) − y(t, k + 1)
= D(t − 1, k)η(t, k) − (y(t, k + 1) − y(t − 1, k)).

Let
y(t, k + 1) − y(t − 1, k) = ΔM(t − 1, k + 1)x(t − 1, k + 1),

where ΔM(t− 1, k +1) = diag[S′(φ1), S′(φ2), . . . , S′(φn)], φ = (φ1, φ2, . . . , φn)T

has a value between y(t, k+1) and y(t−1, k), x(t−1, k+1) = u(t, k+1)−u(t−1, k),
then

e(t, k + 1) − e(t, k) = D(t − 1, k)η(t, k) − ΔM(t − 1, k + 1)x(t − 1, k + 1). (10)

Thus, in terms of the property of 2-D linear time-variant discrete systems, suf-
ficient condition of convergence of iterative learning control problem based on
Hopfield neural networks is given as follows.

Theorem 1. If

ΔM(t, k) = (M1(t + 1, k − 1)e(t + 1, k − 1) − M2(t + 1, k − 1)η(t + 1, k − 1))

(xT (t, k)x(t, k))−1xT (t, k), (11)

and ‖ A1,0 ‖ is boundary, ‖ A0,1 ‖< 1
2 , then for every given t and k → ∞,

‖ e(t, k) ‖→ 0.
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Proof. Instituting (11) to (10), we have

e(t, k +1)− e(t, k) = D(t−1, k)η(t, k)− (M1(t, k)e(t, k)−M2(t, k)η(t, k)). (12)

From (9) and (12), we obtain
[

η(t + 1, k)
e(t, k + 1)

]
=

[
HD(t − 1, k) + B 0

D(t − 1, k) + M2(t, k) I − M1(t, k)

] [
η(t, k)
e(t, k)

]
. (13)

It is a Roesser model of 2-D systems with variable coefficients. In terms of
Lemma 1, we get

A1,0
t,k =

[
HD(t − 1, k) + B 0

0 0

]
,

A0,1
t,k =

[
0 0

D(t − 1, k) + M2(t, k) I − M1(t, k)

]
.

From (3) and (4), it is obtained that η(1, k) = 0, k = 0, 1, 2, . . . and e(t, 0) (t =
1, 2, . . . , T ) is boundary. If ‖ A1,0 ‖ is boundary and ‖ A0,1 ‖< 1

2 , from lemma
1, lemma 2 and lemma 3, this theorem is held.

From theorem 1, it is easy to see that the following result is held.

Corollary 1. If ΔM(t, k) satisfies (11), and

M2(t, k) = −D(t − 1, k),
‖ M1(t, k) ‖< 1

2 ,

then for every given t and k → ∞,

‖ e(t, k) ‖→ 0.

4 Conclusion

In this paper, iterative learning control problem based on improved discrete-
time Hopfield neural networks is discussed. Hopfield neural network is a feed-
back network that can be better reflect learning process of dynamic systems.
Applied improved discrete-time Hopfield neural networks to iterative learning
control problem, learning process can be described as a 2-D Roesser model with
variable coefficients. In terms of 2-D systems theory, sufficient conditions of con-
vergence of iterative learning control problem based on Hopfield neural networks
are derived.
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Abstract. By introducing appropriate stochastic factors into the neural
networks, there were results showing that the neural networks can be sta-
bilized. In this paper, stochastic stabilization of delayed neural networks
is studied. First, a new type Razumikhin-type theorem about stochastic
functional differential equations is proposed and the rigid proof is given
by using Itô formula, Borel-Contelli lemma etc.. As a corollary of the
theorem, a new type Razumikhin-type theorem of delayed stochastic dif-
ferential equation is obtained. Next, taking the results obtained in the
first section as the theoretic basis, the stabilization of the delayed deter-
ministic neural networks is examined. The result obtained in the paper
shows that the neural networks can be stabilized so long as the inten-
sity of the random perturbation is large enough. The expression of the
random intensity is presented which is convenient to networks’ design.

1 Introduction

Razumikhih-type theorem [2] plays a very important role in the stability analysis
of deterministic functional differential equations as follows

dx(t)
dt

= f(xt, t), xt0(s) = ξ(s) ∈ C, −τ ≤ s ≤ 0 , (1)

where x(·) ∈ IRn, τ ≥ 0, C = C([−τ, 0]; IRn), xt(s) = x(t + s), s ∈ [−τ, 0]. And it
also works to the case of stochastic functional differential equations[1] as follows

dx(t) = f(xt, t)dt + σ(xt, t)dw(t), xt0 (s) = ξ(s) ∈ L2
Ft0

, −τ ≤ s ≤ 0 , (2)

where w is a standard m-dimension Brownian motion defined on the completed
probability space (Ω, F, {Ft}t≥t0 , P ), the functionals f, σ satisfy Lipschitz con-
ditions and the linear growth conditions and f(0, t) = 0, σ(0, t) = 0 for all t ≥ t0,
L2

Ft0
:= L2

Ft0
([−τ, 0]; IRn).

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 164–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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But the Razumikhin-type theorem in [1] deals with the case of p-moment
stability of Equation 2, it can’t solve the problem of stochastic stabilization of
general time-varying delayed neural networks. For the purpose of solving the
problem above, a new type Razumikhin theorem is proposed which guarantees
the trivial solution of Equation 2 almost surely exponential stability and includes
the deterministic one as a special case. A strategy to stabilize the Hopfield neural
networks with non-delays is introduced in [1,7], and concludes that it can be sta-
bilized by noises considering that the random strength is large enough. Are there
some similar conclusions for the general time-varying delayed neural networks
? On the basis of the results reached previously, the positive answer is given to
the question in this section. And the computational presentation to the random
strength is also done for the neural networks stated above.

2 Notations

IRn, IRn×n, IR+, the n-dimensional Euclidean space, n × n matrix space and
positive half line respectively; |x|, |A|, the Euclidean norm of a vector x and a
matrix A respectively; C([−τ, 0]; IRn), the space of all continuous functions φ
from [−τ, 0] to IRn with a norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|; L2

Ft0
([−τ, 0]; IRn), the

family of all Ft0 -measurable C([−τ, 0]; IRn)-valued random variables φ such that
E‖φ‖2 < ∞; C2,1(IRn ×IR+; IR+), the family of all positive real-valued functions
V (x, t) defined on IRn×IR+ which are continuously twice differentiable in x ∈ IRn

and once differentiable in t ∈ IR+.

3 A New Razumikhin-Type Theorem of Stochastic
Functional Equations

Let V ∈ C2,1(IRn × IR+; IR+) be positive definite Lyapunov function, and define
the differential operator L with respect to Equation (2) as follows

LV (φ, t) = Vt(φ(0), t)+ V T
x (φ(0), t)f(φ, t)+

1
2
trace[σT (φ, t)Vxx(φ(0), t)σ(φ, t)] .

(3)
We give the main results of this section.

Theorem 1. If there exist positive constants p, c1, c2, λ, q > 1 and a positive
definite Lyapunov function V ∈ C2,1(IRn × IR+; IRn) such that

c1|x|p ≤ V (x, t) ≤ c2|x|p, ∀(x, t) ∈ IRn × [t0 − τ, +∞) (4)

and

LV (φ, t) − |σT (φ, t)Vx(φ(0), t)|2
2V (φ(0), t)

:= ΔV (φ, t) ≤ −λV (φ(0), t), t ≥ t0 (5)

holds for those φ ∈ C([−τ, 0]; IRn) satisfying

V (φ(t + θ), t + θ) ≤ qV (φ(t), t), −τ ≤ θ ≤ 0 , (6)
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then, for any initial condition xt0 = ξ ∈ L2
Ft0

, the corresponding solution x(t) :=
x(t; t0, ξ) of Equation (2) has the following property

lim sup
t→∞

1
t

log |x(t)| ≤ −α

p
a.s. (7)

where α = min{λ, log(q)/τ}.
That is, under the conditions of the theorem, the trivial solution of Equation

(2) is almost surely exponential stability.

Proof. From the assumption of f, σ in the Equation (2), we know that the trivial
solution x = 0 of Equation (2) is not reachable, that is, for the solution x(t) of
Equation (2) with respect to the initial condition xt0 = ξ ∈ L2

Ft0
, we have

x(t) �= 0 almost surely. For these almost all ω ∈ Ω, we define

U(t) = max
−τ≤θ≤0

{α(t + θ) + log V (x(t + θ), t + θ)}, t ≥ t0 .

In the following, we prove the following inequality

D+U(t) = lim sup
h→0+

U(t + h) − U(t)
h

≤ 0 (8)

holds for arbitrarily fixed t ≥ t0 and almost all ω ∈ Ω. To show this, define

θ̄ = max{θ ∈ [−τ, 0] : α(t + θ) + log V (x(t + θ), t + θ) = U(t)} .

Obviously, θ̄ ∈ [−τ, 0] and

U(t) = α(t + θ̄) + log V (x(t + θ̄), t + θ̄) .

If θ̄ < 0, then for any θ: θ̄ < θ ≤ 0, we have

α(t + θ) + log V (x(t + θ), t + θ) < α(t + θ̄) + log V (x(t + θ̄), t + θ̄) .

Therefore, for sufficiently small h > 0, we have

α(t + h) + log V (x(t + h), t + h) ≤ α(t + θ̄) + log V (x(t + θ̄), t + θ̄) .

That is U(t + h) ≤ U(t) and this implies D+U(t) ≤ 0.

If θ̄ = 0, then for any θ : −τ ≤ θ ≤ 0, we have

α · (t + θ) + log V (x(t + θ), t + θ) ≤ U(t) = αt + log V (x(t), t) .

That is
V (x(t + θ), t + θ) ≤ e−αθV (x(t), t) ≤ qV (x(t), t) .

From the condition (5) of Theorem 1, we have

LV (xt, t) − |σT (xt, t)Vx(x(t), t)|2
2V (x(t), t)

≤ −λV (x(t), t) . (9)
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On the other hand, for any h > 0 by using Itô formula, we have

log V (x(t + h), t + h) − log V (x(t), t) =
∫ t+h

t

LV (xs, s)
V (x(s), s)

ds + M(t) − 1
2
N(t) ,

where

M(t)=
∫ t+h

t

V T
x (x(s), s)σ(xs, s)

V (x(s), s)
dw(s), N(t)=

∫ t+h

t

|σT (xs, s)Vx(x(s), s)|2
V 2(x(s), s)

ds .

By the exponential martingale inequality,

P ( sup
t0≤t≤n

[M(t) − ε

2
N(t) >

2
ε

log n) ≤ 1
n2

holds for any positive numbers ε, n, from Borel-Contelli Lemma, for almost all
ω ∈ Ω, there exists a positive number n0(ω), when n > max{n0, t}, one can
easily deduce the following inequality

M(t) ≤ ε

2
N(t) +

2
ε

log n

holds, and furthermore,

log V (x(t + h), t + h) − log V (x(t), t)

≤
∫ t+h

t

LV (xs, s)
V (x(s), s)

ds − 1
2
(1 − ε)N(t) +

2
ε

log n

≤
∫ t+h

t

1
V (x(s), s)

[LV (xs, s) − 1
2
(1 − ε)

|σT (xs, s)Vx(x(s), s)|2
V (x(s), s)

]ds +
2
ε

log n

holds for some fixed n, n > max{n0, t} and sufficiently small ε > 0. From the
condition (9), we have

log V (x(t + h), t + h) − log V (x(t), t) ≤ −λh ≤ −αh .

That is,

α(t + h) + log V (x(t + h), t + h) ≤ αt + log V (x(t), t) = U(t) (10)

holds for any h > 0.
By the definition of U(t) and the inequality (10), for sufficiently small h > 0,

we have
U(t + h) ≤ U(t) ,

and therefore D+U(t) ≤ 0. The inequality (8) is proved.
From the condition (4) and inequality (8), we have

U(t0) = max
−τ≤θ≤0

{α(t0 + θ) + log V (x(t0 + θ), t0 + θ)}

≤ αt0 + log c2 + max
−τ≤θ≤0

log |x(t0 + θ)|p

= αt0 + log c2 + p log |ξ| < ∞ ,
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and U(t) ≥ αt + log c1|x(t)|p, we have

αt + log c1|x(t)|p < ∞ ,

it’s easy to obtain that

lim sup
t→∞

1
t

log |x(t)| ≤ −α

p
.

The proof of Theorem 1 is complete.

For a positive definite Lyapunov function V ∈ C2,1(IRn × IR+; IR+), define the
differential operator D with respect to deterministic Equation (1) as follows

DV (xt, t) = Vt(x(t), t) + Vx(x(t), t)f(xt, t) . (11)

And define

ΔσV (xt, t) =
|Vx(x(t), t)σ(xt, t)|2

V (x(t), t)
− trace[σT (xt, t)Vxx(x(t), t)σ(xt, t)] . (12)

Corollary 1. If there exist positive numbers p, c1, c2, q > 1, real numbers c3, c4,

and positive definite Lyapunov function V ∈ C2,1(IRn × IR+; IR+) such that

c1|x|p ≤ V (x, t) ≤ |x|p, ∀(x, t) ∈ Rn × [t0 − τ, +∞) , (13)

and
DV (φ, t) ≤ c3V (φ(0), t) , (14)

and
ΔσV (φ, t) ≥ c4V (φ(0), t) (15)

hold for t ≥ t0 and only for those φ ∈ C([−τ, 0]; Rn) satisfying

V (φ(t + θ), t + θ) ≤ qV (φ(t), t), −τ ≤ θ ≤ 0 , (16)

then, for any initial condition xt0 = ξ ∈ L2
Ft0

, the corresponding solution x(t) of
Equation (2) has the following property

lim sup
t→∞

1
t

log |x(t)| ≤ −α

p
a.s. (17)

where α = min{ c4
2 − c3, log(q)/τ}.

In particular, if c4 > 2c3, then under the conditions of the corollary, the trivial
solution of Equation (2) (it can be treated as a perturbed equation of determinate
Equation (1)) is almost surely exponential stability.

Proof. Because ΔV (φ, t) = DV (φ, t)− 1
2ΔσV (φ, t), and by using Condition (14),

(15) of Corollary 1, the inequality

ΔV (φ, t) ≤ (c3 − 1
2
c4)V (φ(0), t)

holds for t ≥ t0 and for those φ ∈ C([−τ, 0]; Rn) satisfying

V (φ(t + θ), t + θ) ≤ qV (φ(t), t), −τ ≤ θ ≤ 0 .

By using Theorem 1, the corollary is true. The proof is complete.
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Remark 1. Corollary 1 includes Razumikhin-type theorem of the deterministic
Equation (1) as a special case, that is the following corollary holds.

Corollary 2. If there exist positive numbers p, c1, c2, q > 1, and a positive defi-
nite Lyapunov function V such that

c1|x|p ≤ V (x, t) ≤ c2|x|p, ∀(x, t) ∈ IRn × [t0 − τ, +∞)

and
DV (φ, t) ≤ −λV (φ(0), t)

holds for t ≥ t0 and for those φ ∈ C([−τ, 0]; IRn) satisfying

V (φ(t + θ), t + θ) ≤ qV (φ(t), t), −τ ≤ θ ≤ 0 ,

then, the solution x(t) := x(t; t0, ξ) of Equation (1) has the following property

lim sup
t→∞

1
t

log |x(t)| ≤ −α

p
.

This shows that the trivial solution of Equation 1 is exponential stability, where
α = min{λ, log(q)/τ}.

The corresponding versions in delayed stochastic differential equation can be
easily deduced from the Razumikhin theorem obtained above, and they are the
basis of the researches of the stochastic stabilization of time-delayed neural net-
works to be discussed in the next section.

Delayed stochastic differential equation can be written as follows

dx(t) = f(x(t), x(t − τ), t)dt + σ(x(t), x(t − τ), t)dw(t) (18)
x(s) = ξ(s) ∈ C([−τ, 0]; IRn) ,

where x(t − τ) = (x1(t − τ1), · · · , xn(t − τn))T , τi ≥ 0 is the delay of xi, i =
1, 2, · · · , n, and τ = max1≤i≤n{τi}. The other variables and parameters are the
same as Equation (2).

For a positive definite Lyapunov function V ∈ C2,1(IRn × IR+; IR+) and
∀(x, y) ∈ IRn × IRn, define an operator L as follows

LV (x, y) = Vt(x, t) + Vx(x, t)f(x, y, t) +
1
2
trace[σT (x, y, t)Vxx(x, t)σ(x, y, t) .

The following two corollaries are the direct conclusions in the case of delayed
stochastic differential equations of Theorem 1 and Corollary 1 respectively.

Corollary 3. If there exist positive numbers p, c1, c2, λ and a positive definite
Lyapunov function V (x, t), such that

c1|x|p ≤ V (x, t) ≤ c2|x|p

and

LV (x, y, t) − |σT (x, y, t)Vx(x, t)|2
2V (x, t)

≤ −λV (x, t)
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holds for t ≥ t0 and those x, y ∈ IRn satisfying: there exits q > 1, for any
−τ ≤ θ ≤ 0 such that

V (y, t + θ) ≤ qV (x, t) ,

then, for any initial function x(s) = ξ(s), −τ ≤ s ≤ 0, the corresponding solution
x(t) of Equation (2) has the following property:

lim sup
t→∞

1
t

log |x(t)| ≤ −α

p
,

where α = min{λ, log(q)/τ}.

For a positive definite function V (x, t) ∈ R+, and any x, y ∈ IRn, define two
operators D, Δσ related to Equation (18) as following

DV (x, y, t) = Vt(x, t) + V T
x (x, t)f(x, y, t) ,

Δσ(x, y, t) =
|σT (x, y, t)Vx(x, t)|2

V (x, t)
− trace[σT (x, y, t)Vxx(x, t)σ(x, y, t)] .

Corollary 4. If there exit positive numbers p, c1, c2, q > 1, real numbers c3, c4 ∈
IR and a positive definite Lyapunov function V (x, t) such that

c1|x|p ≤ V (x, t) ≤ c2|x|p, ∀(x, t) ∈ IRn × [t0 − τ, +∞)

and
DV (x, y, t) ≤ c3V (x, t)

ΔσV (x, y, t) ≥ c4V (x, t)

hold for t ≥ t0 and those x, y ∈ Rn satisfying

V (y, t + θ) ≤ qV (x, t), −τ ≤ θ ≤ 0 ,

then, for any initial value xt0 = ξ, the corresponding solution x(t) of Equation
(18) has the following property:

lim sup
t→∞

1
t

log |x(t)| ≤ −α

p
.

In particular, if c4 > 2c3, then the trivial solution x = 0 of Equation (18) is
almost surely exponential stability, where α = min{ c4

2 − c3, log(q)/τ}.

4 Stochastic Stabilization of Delayed Neural Networks

In the following, we will solve the problem of stochastic stabilization of delayed
neural networks as follows

dx(t)
dt

= −Bx(t) + Af(x(t − τ)) , (19)
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where x = (x1, x2, · · · , xn)T ∈ IRn is the state vector, A = (aij)n×n is the
connected matrix among the neurons of the neural networks, B = diag.(b1, b2,
· · · , bn) is the positive definite diagonal matrix, yi(t) = xi(t − τi), τi ≥ 0 is the
delay of the i−th neuron, f(y(t)) = (f1(y1(t)), · · · , fn(yn(t)))T is the output
vector of the neurons and assume that there exist positive numbers αi such that

|fi(u)| ≤ 1 ∧ αi|u|, −∞ < u < +∞, i = 1, 2, · · · , n . (20)

For neural networks (19) with properties (20), we will introduce stochastic
perturbation in some way into it to make it stabilization. That is, the following
stochastic neural networks

dx(t) = [−Bx(t) + Af(x(t − τ))]dt + σ(x(t), x(t − τ))dw(t) (21)

is exponential stability, where σ is n×m perturbed intensity matrix and σ(0, 0) =
0, w is m-dimension standard Brownian motion defined on the completed prob-
ability space (Ω, F, {Ft}t≥0, P ).

Theorem 2. For stochastic neural networks 21, if the perturbed intensity matrix
σ takes the form

σ(x, y) = (θ1x + δ1y, · · · , θmx + δmy), ∀x, y ∈ Rn , (22)

and satisfies

(1 − ε)
m∑

i=1

θ2
i > (1 +

1
ε
)q

m∑

i=1

δ2
i − 2b + α(1 + q)|A| (23)

with 0 < ε < 1, q > 1, and b = min{bi, 1 ≤ i ≤ n}, α = max{αi, 1 ≤ i ≤ n}, then
the stochastic neural networks (21) is almost surely exponential stability, that is,
the deterministic neural networks (19) is stabilized by the stochastic perturbation
satisfying (22) and (23).

Proof. Taking Lyapunov function V (x) = |x|2, according to Corollary 4, the
operator D related to the neural networks (21) is as the following

D(x, y) = 2xT [−Bx + Af(y)] = −2xT Bx + 2xT Af(y), x, y ∈ IRn .

By using Properties (20) and the basic inequality 2ab ≤ a2 + b2, we have

D(x, y) ≤ −2b|x|2 + 2α|A| · |x| · |y| ≤ (−2b + α|A|)|x|2 + α|A||y|2 .

For those x, y ∈ IRn satisfying V (y) ≤ qV (x), that is |y|2 ≤ q|x|2, we have

DV (x, y) ≤ (−2b + α|A|(1 + q))|x|2 .

Let c3 = −2b + α|A|(1 + q), then

D(x, y) ≤ c3V (x) . (24)
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Furthermore, the operator Δσ related to the neural networks (21) is as the
following

Δσ(x, y) =
|2σT (x, y)x|2

|x|2 − 2trace[σT (x, y)σ(x, y)] .

The second term of right hand is easily dealt with considering that (22):

2trace[σT (x, y)σ(x, y)] = 2
m∑

i=1

(θix
T +δiy

T )(θix+δiy) = 2
m∑

i=1

(θ2
i |x|2+δ2

i |y|2+2θiδiy
T x) .

The first term of right hand can be estimated as follows:

|2xT σ(x, y)|2/|x|2 = 4xT σ(x, y)σT (x, y)x/|x|2

= 4xT [
m∑

i=1

(θix + δiy)(θix
T + δiy

T )]x/|x|2

= 4
m∑

i=1

(θ2
i xT xxT x + δ2

i xT yyT x + 2θiδix
T xyT x)/|x|2

= 4
m∑

i=1

(θ2
i |x|4 + δ2

i |xT y|2 + 2θiδi|x|2yT x)/|x|2

≥ 4
m∑

i=1

θ2
i |x|2 + 8

m∑

i=1

θiδiy
T x .

So, we have

Δσ(x, y) ≥ 2
m∑

i=1

θ2
i |x|2 − 2

m∑

i=1

δ2
i |y|2 + 4

m∑

i=1

θiδiy
T x

≥ 2
m∑

i=1

θ2
i |x|2 − 2

m∑

i=1

δ2
i |y|2 − 4

m∑

i=1

|θiδi| · |y| · |x| .

Choosing 0 < ε < 1, from the basic inequality 2ab ≤ a2 + b2, we have

2|θiδi| · |y| · |x| ≤ εθ2
i |x|2 +

δ2
i

ε
|y|2 ,

so, we have

Δσ(x, y) ≥ 2(1 − ε)
m∑

i=1

θ2
i |x|2 − 2(1 +

1
ε
)

m∑

i=1

δ2
i |y|2 .

For those x, y ∈ IRn satisfying V (y) ≤ qV (x), that is |y|2 ≤ q|x|2, we have

Δσ(x, y) ≥ [2(1 − ε)
m∑

i=1

θ2
i − 2(1 +

1
ε
)q

m∑

i=1

δ2
i ]|x|2 .
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Let c4 = 2(1 − ε)
∑m

i=1 θ2
i − 2(1 + 1

ε )q
∑m

i=1 δ2
i , we have the following inequality

Δσ(x, y) ≥ c4V (x) . (25)

From inequality (24), (25) and Corollary 4, if c4 > 2c3, that is, (23) holds,
then the trivial solution of the neural networks (21) is almost surely exponential
stability. The proof is completed.
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Abstract. Neural network design aims for high classification accuracy
and low network architecture complexity. It is also known that simultane-
ous optimization of both model accuracy and complexity improves gener-
alization while avoiding overfitting on data. We describe a neural network
training procedure that uses multi-objective optimization to evolve net-
works which are optimal both with respect to classification accuracy and
architectural complexity. The NSGA-II algorithm is employed to evolve a
population of neural networks that are minimal in both training error and
a Minimum Description Length-based network complexity measure. We
further propose a pruning rule based on the following heuristic: connec-
tions to or from a node may be severed if their weight values are smaller
than the network’s smallest bias. Experiments on benchmark datasets
show that the proposed evolutionary multi-objective approach to neural
network design employing the bias-based pruning heuristic yields net-
works that have far fewer connections without seriously compromising
generalization performance when compared to other existing evolution-
ary optimization algorithms.

1 Introduction

The architecture of a neural network greatly influences the success of the training
process. A network that is too small will not be capable of learning the prob-
lem effectively whereas a network that is too large will overfit and exhibit low
generalization performance. When one aims for an architecturally simple neural
network with a good generalization performance then designing the neural net-
work architecture becomes a challenging task. Manually designing such a neural
network is not straightforward since classifier complexity and good generaliza-
tion performance are conflicting goals.

In classical optimization, an inherently multi-objective problem is usually re-
formulated as one having a single objective through a weighted summation of

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 174–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Evolutionary MNNO with Bias-Based Pruning Heuristic 175

objectives prior to optimization leading to the production of a single optimal so-
lution for each run. However, if the solution cannot be accepted for some reasons
mentioned in [4], then these methods have to be applied multiple times until a
suitable solution is found.

On the other hand, multi-objective optimization [2] searches for Pareto op-
timal solutions to problems that have multiple performance criteria which are
often conflicting. This approach can concurrently optimize multiple, often con-
flicting objectives and then generate a Pareto set from which a suitable solution
can be chosen.

Evolutionary Algorithms (EAs) have been increasing in popularity for the de-
sign of neural network architectures since they are less prone to getting stuck in
local optima compared to gradient-based algorithms [13]. Furthermore, over the
past decade, EAs were extended to handle multi-objective optimization prob-
lems because of their population-based feature which allow them to maintain a
diverse set of solutions. In fact, some authors [4] seem to suggest that multi-
objective optimization is a suitable problem area for EAs. NSGA-II [3], MOGA
[5] and NPGA [8] are among the various multi-objective evolutionary algorithms
(MOEAs).

The rest of the paper is organized as follows. We describe in detail our pro-
posed procedure for training neural networks (which we call MNNO) in the next
section. Section 3 outlines the experiments conducted to test the performance
of MNNO as well as the results obtained from these experiments while the final
section contains the conclusions.

2 Description of the Multi-objective Neural Network
Optimizer (MNNO)

In this section, a new evolutionary multi-objective approach to neural network
training is described which is based on NSGA-II [3]. The proposed algorithm
called Multi-objective Neural Network Optimizer (MNNO) will simultaneously
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Fig. 1. The MNNO Procedure for optimizing Neural Networks
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optimize the set of connection weights and its corresponding architecture by
treating the problem as a multi-objective minimization problem. Figure 1 shows
the procedure for training neural networks with MNNO.

The MNNO Procedure begins by reading the dataset from which the number
of input and output nodes are determined. The number of hidden nodes and
maximum number of generations are then set. Next, the chromosome length
L, as shown in eq. (1), is computed. A population of neural networks is then
generated and initialized according to the pertinent settings of the underlying
NSGA-II algorithm.

The two fitness functions compute the training error and MDL-based net-
work complexity for each neural network in the population for the given dataset
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Fig. 2. A fully-connected feedforward neural network
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Fig. 3. MNNO’s chromosome representation of the fully-connected feedfoward neural
network above. We note that this representation makes the application of the Bias-
based Pruning Heuristic straightforward.
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and return the values to NSGA-II. Bias-based pruning is applied during the for-
ward computation when performing training error calculations. The procedure
stops and outputs a set of non-dominated neural networks after the maximum
generation is reached.

2.1 Chromosome Representation of a Neural Network

A population is composed of chromosomes and a chromosome string represents a
one-hidden layer neural network with fields that correspond to the weight values
of the connections whose length L is:

L = (I + 1) · H + (H + 1) · O (1)

where I, H and O respectively refer to the number of input, hidden and output
nodes. The +1 in the equation indicates that each hidden and output node has
a bias. Figure 3 is a chromosome representation of the neural network shown
in Figure 2. In addition, the chromosomes in the population are initialized with
random values from a uniform distribution in the range of

[
−1√

fan − in
,

1√
fan − in

]
(2)

where the value of fan-in is the number of incoming connections to a node.

Bias-based Pruning Method. We adopt a top-down approach in evolving
the set of Pareto-optimal neural networks. During its early exploratory phase,
MNNO attempts to evolve a population of networks that are larger than neces-
sary and as the training process progresses components that are not needed are
removed. Large initial sizes permit the networks to learn reasonably quickly with
less sensitivity to initial conditions while the reduced complexity of the trimmed
system favors improved generalization [11].

We prune connections according to the following heuristic: a connection may
be severed if its weight value is smaller than the smallest bias of the entire net-
work. Accordingly, a node is removed if all its incoming or outgoing connections
have weight values that are smaller than the smallest bias of the network.

The logic behind this heuristic is that the absolute value of the connection
weight that is smaller than the absolute value of the smallest bias of the entire
network will contribute the least to the node it is connected to and the effects
of its initial removal can be absorbed by other connection weights after some
retraining.

Furthermore, this pruning technique incorporated into MNNO allows the al-
gorithm to simultaneously perform structure optimization and weight adapta-
tion. Figure 4 shows the three possible node deletion scenarios when pruning
is applied: deleted incoming connections (when e, h < a), deleted outgoing con-
nections (when n, o < a) and deleted incoming and outgoing connections (when
e, h, n, o < a) given that a is the smallest bias of the network.

Moreover, MNNO’s neural network chromosome representation facilitates the
application of this heuristic. It is straightforward to compute for the smallest
bias of the network in this representation and to skip deleted nodes.
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2.2 Fitness Computation

The chromosome’s fitness is assessed on the basis of the mean-squared error
(MSE) on the training set and the Minimum Description Length (MDL)
principle.

Mean-Squared Error. This is the first fitness function which determines the
neural network’s training error. We define the network’s mean-squared error
(MSE) as:

MSE =
1

nQ

Q∑

q=1

n∑

i=1

(Di(q) − Oi(q))2 (3)

where Di(q) and Oi(q) are the desired and actual outputs of node i for pat-
tern q while Q and n are the number of patterns and number of output nodes
respectively.

The Bias-based Pruning Heuristic is applied during network forward compu-
tation prior to the calculation of the training error.

Minimum Description Length. This second fitness function minimizes the
neural network’s complexity by applying the Minimum Description Length prin-
ciple described in [1,6]. MDL is an elegant method to determine the appropriate
complexity size of a model because the MDL principle, as explained in [7] asserts
that the best model of some data is the one that minimizes the combined cost
of describing the model and describing the misfit between the model and the
data. MDL effectively minimizes the complexity of the neural network struc-
ture by minimizing the number of active connections with respect to the neural
network’s performance on the training set as shown in the equations below:

MDL = Class Error + Complexity (4)

Class Error = 1.0 − numberofCorrectClassification

numberofExamples
(5)

Complexity =
numberofActiveConnections

TotalPossibleConnections
(6)

where: Class Error is the error in classification while Complexity is the complex-
ity measure in terms of the ratio between the active connections and the total
number of possible connections.

3 Implementation and Results

Seven datasets from the UCI machine learning repository [9] were used to de-
termine the effectiveness of MNNO. The characteristics of these datasets are
summarized in Table 1 and the parameters of the NSGA-II algorithm are shown
in Table 2.
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Input nodes correspond to the attributes of the examples in the dataset while
output nodes correspond to the output classes wherein the output classes are
encoded with the usual 1-of-m classes using 1, 0 output if there are m>2 values
(i.e. one of the m outputs is set to 1 and the rest to 0). If there are only two
output classes, then one class is set to 1 while the other is set to 0.

For each dataset, the experiments were repeated thirty (30) times and each
experiment uses a different randomly generated initial population. In addition,
the number of input and output nodes are problem-dependent but there is no
exact method to determine the best number of hidden nodes. Fortunately, there
are rules of thumb [12] to obtain this value. In this study, the number of hidden
nodes is set to 10. Also, a training example with missing attribute values is
deleted from the dataset.

Table 1. Description of the datasets used in the experiments

Dataset Train Set Test Set Features Class MaxGen
Monks-1 124 432 6 2 500

Vote 300 135 16 2 300

Breast 457 226 9 2 300

Iris 100 50 4 3 500

Heart 180 90 13 2 500

Thyroid 3772 3428 21 3 200

Wine 118 60 13 3 500

Table 2. Parameters and Values for NSGA-II used in our Experiments

Parameters NSGA-II
Optimization Type Minimization

Population Size 100

Archive Size 100

Fitness Functions 2

Lower Limit of Variable -100.0

Upper Limit of Variable 100.0

Probability of Mutation 1.0/numberofvariables

Probability of Crossover 0.9

Distribution Index of Mutation (eta m) 20

Distribution Index of Crossover (eta c) 20

3.1 Performance of the Multi-objective Neural Network Optimizer

Tables 3-6 show the results obtained from our experiments. The average val-
ues shown were obtained by averaging on the entire Pareto set over 30 trials.
The number of neural networks produced by MNNO is problem-dependent and
exhibits a large variation. The test set and training sets’ mean-squared error and
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Table 3. Average number of neural networks generated

Dataset Average Median Std. Dev.
Monks-1 8.300 7.000 5.688

Vote 36.733 34.000 13.946

Breast 35.267 31.500 17.312

Iris 22.133 18.000 9.247

Heart 35.200 30.000 16.614

Thyroid 29.700 29.000 9.535

Wine 19.667 18.500 9.260

Table 4. Average Mean-Squared Error on the training and test sets

Dataset Training Set Test Set
Average Median Std. Dev. Average Median Std. Dev.

Monks-1 1.56% 0.93% 0.020 2.16% 1.13% 0.025

Vote 1.87% 1.76% 0.004 1.92% 1.84% 0.005

Breast 1.33% 1.06% 0.009 1.63% 1.40% 0.008

Iris 1.81% 1.44% 0.010 3.08% 3.22% 0.010

Heart 5.97% 6.02% 0.004 6.64% 6.26% 0.011

Thyroid 4.57% 4.65% 0.013 4.66% 4.75% 0.012

Wine 2.26% 2.16% 0.011 5.36% 5.29% 0.020

Table 5. Average percentage of misclassification on the training and test sets

Dataset Training Set Test Set
Average Median Std. Dev. Average Median Std. Dev.

Monks-1 2.00% 0.00% 0.034 3.97% 0.87% 0.053

Vote 3.95% 3.95% 0.006 4.35% 4.42% 0.011

Breast 2.35% 2.32% 0.004 3.42% 3.43% 0.004

Iris 2.82% 2.59% 0.013 6.18% 6.19% 0.016

Heart 14.30% 14.56% 0.014 16.96% 17.36% 0.031

Thyroid 6.41% 6.31% 0.005 6.60% 6.54% 0.004

Wine 4.20% 3.81% 0.022 10.87% 10.61% 0.041

Table 6. Average number of connections and hidden nodes used

Dataset Connections Hidden nodes
Average Median Std. Dev. Average Median Std. Dev.

Monks-1 21.31 21.20 3.684 4.23 4.30 0.496

Vote 23.51 21.76 6.795 2.90 2.82 0.454

Breast 14.58 14.35 3.896 2.31 2.43 0.458

Iris 26.59 27.57 5.585 4.40 4.19 0.973

Heart 22.58 22.35 4.269 2.58 2.50 0.431

Thyroid 17.29 17.25 4.925 2.64 2.68 0.787

Wine 47.23 47.89 7.930 5.33 5.38 0.941
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misclassification disparity are small for most datasets indicating that optimal
networks have been obtained. The relatively high standard deviations indicate
that the networks produced vary in quality between trials. We observe however
that the variations in mean-squared error, number of connections and number
of hidden nodes within the Pareto set are small.

Moreover, network complexity as measured by the number of connections
and number of hidden nodes is problem-dependent. Variability in complexity is
observed mainly within the Pareto set while inter-trial variations are small.

Best Neural Networks. Among the neural networks in the Pareto set, two
neural networks were considered, the minimum-error neural networks and the
least-complex neural networks. Tables 7-9 compare these two neural networks.
As expected, the minimum-error neural networks perform much better than the
least-complex neural networks but require a much larger number of connections
and hidden nodes.

Table 7. Minimum-Error and Least-Complex Networks’ Mean-Squared Error on the
training and test sets

Dataset Training Set Test Set
Minimum-Error Least-Complex Minimum-Error Least-Complex

Monks-1 0.97% 2.27% 1.56% 2.82%

Vote 1.44% 3.19% 1.72% 2.90%

Breast 0.84% 2.55% 1.34% 2.64%

Iris 0.98% 3.75% 2.39% 4.64%

Heart 5.43% 7.12% 6.55% 7.29%

Thyroid 3.03% 10.37% 3.19% 10.36%

Wine 1.64% 3.47% 5.36% 5.72%

Table 8. Minimum-Error and Least-Complex Networks’ Classification Error on the
training and test sets

Dataset Training Set Test Set
Minimum-Error Least-Complex Minimum-Error Least-Complex

Monks-1 1.45% 2.37% 3.34% 4.27%

Vote 3.27% 4.84% 4.25% 4.49%

Breast 1.88% 2.96% 3.27% 3.95%

Iris 2.30% 3.63% 5.60% 6.87%

Heart 13.83% 15.59% 17.30% 17.37%

Thyroid 6.26% 6.91% 6.61% 6.86%

Wine 3.90% 4.94% 11.17% 10.56%

Comparison with Existing Methods. The performance of a neural network
is characterized by its generalization error, which is one of the most important
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criteria to determine the effectiveness of neural network learning. Tables 10
and 11 compare MNNO with MGNN [10] and EPNet [14] respectively. Results
show that MNNO produces far fewer connections compared to the two algo-
rithms without seriously compromising generalization performance.

Table 9. Average Number of Connections and Hidden nodes for Minimum-Error and
Least-Complex Neural Networks

Dataset Connections Hidden nodes
Minimum-Error Least-Complex Minimum-Error Least-Complex

Monks-1 29.13 14.63 5.30 3.20

Vote 54.37 9.17 4.77 1.57

Breast 31.87 6.10 4.20 1.10

Iris 40.50 17.90 6.53 2.93

Heart 39.73 10.83 3.93 1.30

Thyroid 37.03 9.30 4.17 1.73

Wine 64.37 35.77 6.53 4.33

Table 10. Performance comparison between MGNN and MNNO

Algorithm MSE on Test set Number of Connections
Breast Iris Wine Breast Iris Wine

MGNN-ep 3.28% 6.17% 5.12% 80.87 56.38 132.83

MGNN-rank 3.33% 7.28% 6.23% 68.46 47.06 111.53

MGNN-roul 3.05% 8.43% 8.46% 76.40 55.13 120.36

MNNO 1.63% 3.08% 5.36% 14.58 26.59 47.23

Table 11. Performance comparison between EPNet and MNNO

Algorithm MSE on Test set Number of Connections
Breast Heart Thyroid Breast Heart Thyroid

EPNet 1.42% 12.27% 1.13% 41.00 92.60 208.70

MNNO 1.63% 6.64% 4.66% 14.58 22.58 17.29

4 Conclusion

This paper introduces an evolutionary-based multi-objective approach to neural
network design called Multi-objective Neural Network Optimizer. Experiments
on benchmark datasets as well as comparisons with EPNet and MGNN are
promising. Results showed that the incorporation of our proposed bias-based
pruning heuristic into MNNO effectively optimizes the neural network archi-
tecture producing far fewer connections than both algorithms without seriously
sacrificing generalization for the datasets tested.
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Abstract. The bipartite subgraph problem is a classical problem in
combinatorial optimization. In this paper, we incorporate a chaotic dis-
crete Hopfield neural network (CDHNN), as a local search scheme, into
the discrete particle swarm optimization (DPSO) and develop a hybrid
algorithm DPSO-CDHNN for the bipartite subgraph problem. The pro-
posed algorithm not only performs exploration by using the population-
based evolutionary search ability of the DPSO, but also performs
exploitation by using the CDHNN. Simulation results show that the pro-
posed algorithm has superior ability for bipartite subgraph problem.

1 Introduction

The bipartite subgraph problem is a classical problem in combinatorial optimiza-
tion. The goal of this problem is finding a bipartite subgraph with maximum
number of edges of a given graph [1]. The problem is known to be NP-complete
[1]. Therefore, it is computationally intractable, even to be approximated with
certain absolute performance bounds. It is important to develop methods for
finding reasonable solutions in reasonable computation time.

In 1989, Johnson et al. proposed simulated annealing (SA) [2] for such NP-
complete problems. Later, Lee et al. [3] proposed the first parallel algorithm
using a maximum neural model (MNN) [4] for the bipartite subgraph prob-
lem, and illustrated that the solution quality was superior to that of the best
existing algorithms. Galán-Maŕın et al. [5] [6] analyzed the maximum neural
model and proposed a novel optimal competitive Hopfield model (OCHOM) for
combinatorial optimization problems. Their simulation results for the bipartite
subgraph problem illustrated that the OCHOM was much superior to the MNN
in terms of the solution quality and the computation time [6]. By introducing
a hill-climbing dynamics into the OCHOM, we proposed a stochastic optimal
competitive Hopfield algorithm (SOCHOM) which permits temporary energy
increases and therefore can helps the OCHOM escape from local minima [7].
The solution quality found by the SOCHOM was superior to that of OCHOM
and SA algorithms [7].

Wu et al. [8] gave new convergence conditions for discrete Hopfield neural
networks (DHNN) [9]. In order to prevent the DHNN to be trapped in a stable
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state corresponding to a local minimum, we proposed chaotic DHNN (CDHNN),
which helps the DHNN escape from local minima [10]. During the past decade, a
novel evolutionary computation technique, particle swarm optimization (PSO),
was proposed by Kennedy and Eberhart [11] and it has attracted much at-
tention. Most of the applications have been concentrated on solving continuous
optimization problems. To solve discrete (combinatorial) optimization problems,
Kennedy and Eberhart [12] also developed a discrete version of PSO (DPSO),
which however has seldom been utilized.

In this paper, a DPSO algorithm is developed. Further, the CDHNN, as a
local search scheme, is incorporated into the proposed DPSO to improve its
performance and a hybrid particle swarm optimization algorithm, called DPSO-
CDHNN is proposed for the bipartite subgraph problem. A number of instances
have been simulated, and the simulation results show that the proposed algo-
rithm can get better results than SOCHOM, CDHNN, and DPSO algorithms.

2 Description of Bipartite Subgraph Problems

Let G = (V, E) be an undirected graph, where V is a set of vertices and E is
a set of edges. If the vertex set V of graph G can be partitioned into 2-disjoint
subsets and no edge exists between two vertices in the same subset, then the
graph G is called a bipartite graph. Given a graph G = (V, E), the goal of the
bipartite subgraph problem is to remove the minimum number of the edges from
a given graph such that the remaining graph is a bipartite graph. One case in
point is a simple undirected graph composed of five vertices and seven edges
as shown in Fig.1 (a) [7]. The graph becomes bipartite for the case where one
edge is removed. Figure 1 (b) shows the resulting bipartite graph of the graph
Fig.1 (a).

1                                            2

3                                   4                                      5

1                                            2

3                                   4                                      5

( a )                                                                                          ( b )  

S1

S2

Fig. 1. (a) A simple undirected graph composed of five vertices and seven edges, (b)
one of its bipartite graphs
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3 DPSO-CDHNN for Bipartite Subgraph Problems

In this Section, we incorporate the chaotic discrete Hopfield neural network
(CDHNN), as a local search scheme, into the discrete particle swarm optimiza-
tion (DPSO) and develop a hybrid algorithm DPSO-CDHNN for the bipartite
subgraph problem.

3.1 Discrete Particle Swarm Optimization (DPSO)

The PSO is inspired by observing the bird flocking or fish school [10]. A large
number of birds/fishes flock synchronously, change direction suddenly, and scat-
ter and regroup together. Each individual, called a particle, benefits from the
experience of its own and that of the other members of the swarm during the
search for food. Due to the simple concept, easy implementation and quick con-
vergence, the PSO has been applied successfully to continuous nonlinear func-
tion [10], neural network [13], nonlinear constrained optimization problems [14],
etc. Most of the applications have been concentrated on solving continuous op-
timization problems. To solve discrete (combinatorial) optimization problems,
Kennedy and Eberhart [12] also developed a discrete version of PSO (DPSO),
which however has seldom been utilized.

Denote by N the number of particles in the swarm. Let Xi(t) = (xi1(t), xi2(t),
. . . , xiD(t)), xid(t) ∈ {−1, 1}, be particle i with D bits at iteration t, where
Xi(t) being treated as a potential solution has a rate of change called velocity.
Denote the velocity as Vi(t) = (vi1(t), vi2(t), . . . , viD(t)), vid(t) ∈ R. Let Pi(t) =
(pi1(t), pi2(t), . . . , piD(t)) be the best solution that particle i has obtained until
iteration t, and Pg(t) = (pg1(t), pg2(t), . . . , pgD(t)) be the best solution obtained
from in the whole swarm at iteration t. As in continuous PSO, each particle
adjusts its velocity according to previous velocity of the particle, the cognition
part and the social part:

vid(t + 1) = vid(t) + c1 · r1 · (pid(t) − xid(t)) + c2 · r2 · (pgd(t) − xid(t)), (1)

where c1 is the cognition learning factor and c2 is the social learning factor; r1
and r2 are the random numbers uniformly distributed in [0,1]; The velocity value
is constrained to the interval [-1, 1] using the following function:

s(vid) = tanh(vid ), (2)

where s(vid) denotes the probability of bit xid taking 1. Then the particle changes
its bit value by

vid =
{

1 if rand() ≤ s(vid)
−1 otherwise , (3)

where rand( ) is a random number selected from a uniform distribution in [-1,1].
To avoid s(vid) approaching 1 or -1, a constant Vmax is used to limit the range
of vid, that is, vid ∈ [−Vmax, Vmax].
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r1 and r2 cannot guarantee the optimization’s ergodicity entirely in phase
space because they are absolutely random. Therefore, chaotic mapping with cer-
tainty, ergodicity and the stochastic property is introduced into particle swarm
optimization to improve the global convergence [14]. r1 and r2 are chosen as
follows:

ri(t + 1) = 4.0 · ri(t) · (1 − ri(t)), (4)

where ri(t) ∈ (0, 1), i = 1, 2.

3.2 Chaotic Discrete Hopfield Neural Network (CDHNN)

Let M be a discrete Hopfield neural network (DHNN) with n neurons, where
each neuron is connected to all the other neurons. The input, output state and
threshold of neuron i is denoted by ui, vi and ti, respectively, for i = 1, . . . , n; wi,j

is the interconnection weight between neurons i and j, where symmetric weights
are considered, for i, j = 1, . . . , n. Therefore, W = (wij) is an n × n weight
matrix and T = (t1, . . . , tn)T is a threshold vector. The Lyapunov function of
the DHNN is given by [8] [10]:

E = −1
2

n∑

i=1

n∑

j=1

wijvivj +
n∑

x=1

tivi. (5)

The inputs of the neurons are computed by

ui(t + 1) =
n∑

j=1

wijvj + ti, (6)

and the output states of the neurons are computed by

vi(t + 1) = sgn(ui(t + 1)), (7)

where sgn is the signum function (or bipolar binary function) defined by

sgn(x) =
{

1 if x ≥ 0
−1 otherwise . (8)

Given initial input values for ui(0)(t = 0), the DHNN, which runs in the
asynchronous mode, will always converge to a stable state if its diagonal elements
of weight matrix W are nonnegative (that is wii > 0) [8].

Wu et al. [8] gave new convergence conditions for the DHNN. They proved
that the DHNN can converge to a stable state or a stable cycle by rearranging
the weight matrix W to even negative diagonal element. That is: Let di =
min{

∑n
j �=i wij vj +ti |

∑n
j �=i wij vj +ti �= 0, vi ∈ {−1, 1}}, if wii > −di, i = 1, . . . , n,

then the DHNN can converge to a stable state or a stable cycle. Furthermore,
they pointed out that smaller diagonal elements may result in fewer stable states
of a network, then reduce the possibility to be trapped in a state corresponding
to a local minimum or poor quality solution and may approach a better solution.
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In order to prevent the network to be trapped in a stable state corresponding
to a local minimum, we introduce a nonlinear self-feedback term to the motion
equation (6) of the DHNN as defined below [10]:

ui(t + 1) =
n∑

j=1

wijvj + ti + g(ui(t) − ui(t − 1)). (9)

The self-feedback term in Eq.(9) is switched on at t = 1, so that ui(0) is
sufficient to initialize the system. In the Eq.(9), g is a nonlinear function as
defined below:

g(x) = p1xexp(−p2|x|), (10)

where p1 and p2 are adjustable parameters, which determine the chaotic dynam-
ics of the function g(x). When p2 is fixed, the network can transfer from one
minimum to another in a chaotic fashion at large p1. Generally, chaotic transi-
tion among local minima can be obtained provided that p1 is not too small and
p2 not too large [10].

For the nonlinear function disturbance, we apply a simulated annealing strat-
egy to the parameter p1 and the effect of the disturbance is gradually eliminated
with the annealing process and finally the nonlinear function disturbance does
not affect the evolution of DHNN, and then the neural network will converge
to a stable state and be expected to get the optimal solution. The simulated
annealing strategy is defined below:

p1(t + 1) = p1(t) × (1 − β), (11)

where β is damping factor for p1.
DHNN with the nonlinear self-feedback is called chaotic DHNN (CDHNN).

The n vertices bipartite subgraph problem can be mapped onto the CDHNN
with n neuron representation. The output vi = 1 means vertex i is assigned to
one set, the vi = −1 means vertex i is assigned to the other set. The energy
function for the bipartition subgraph problem is given by

EBSP = −1
2

n∑

i=1

n∑

j=1

dij
1 − vivj

2
, (12)

where dij is edge whose endpoints are vertex i and j. A stable state of the
CDHNN corresponds to a good solution of the bipartition subgraph problem.

3.3 Hybrid Algorithm (DPSO-CDHNN)

In this section, we attempt to incorporate the CDHNN, as a local search scheme
into the proposed the CDPSO algorithm (called DPSO-CDHNN) to improve its
performance. The basic idea is as follows. Given the current solution S1, the
mechanism of the DPSO leads the solution to an intermediate solution S2. Then
a CDHNN is applied to S2 to reach a solution S3. We represent a particle as
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X = (v1, v, . . . , vn), where vi = 1 means that vertex i is assigned to one set, the
vi = −1 means vertex i is assigned to the other set. Therefore, we propose a
reasonable procedure for DPSO-CDHNN as follows:

1. Initialize.
1.1 Generate 1 particle using the CDHNN, and generate the other N -1

particles at random.
2. Repeat until a given maximal number of iterations (MaxIter) is achieved.

2.1 Evaluate the fitness of each particle using: F = −EBSP .
2.2 Determine the best solution obtained so far by each particle.
2.3 Determine the best solution obtained so far by the whole swarm.
2.4 Update velocities using Eq.(1) restricted by a maximum threshold Vmax.
2.5 Update the potential solution using Eq.(2).
2.6 Improve the solution quality of each particle using the CDHNN for every

fixed number (say 50) of iterations.

At the beginning of the algorithm, we incorporate the CDHNN into the ran-
dom initialization of the DPSO. Therefore the proposed algorithm can guarantee
to obtain a solution no worse than that of the CDHNN because the CDHNN
can generate a suboptimal solution rapidly. Moreover, the diversity of the initial
population can be maintained to a certain extent because the other solutions are
still generated randomly. At the same time, the solutions generated randomly
can share information with the suboptimal solution generated by the CDHNN.
In order to allow each particle to arrive at an intermediate solution, the local
search should be implemented occasionally. Therefore, in the loop of the DPSO
procedure, the CDHNN is carried out once for every fixed number (say 50) of
iterations.

The CDHNN is a gradient-based neural network and therefore is a powerful
local search method. Further, the chaotic dynamics of the CDHNN can help the
neural network escape from local minima as described in previous section. In
the hybrid algorithm, the DPSO is applied to perform global exploration and
the CDHNN is employed to perform locally oriented search (exploitation) for
the solutions resulted by the DPSO. In this way, the hybrid algorithm has more
powerful search ability than the CDHNN or DPSO alone.

When the algorithm is terminated, the best solution obtained by the whole
swarm, and the corresponding fitness value are output and considered as the
bipartite subgraph problem solution.

4 Simulation Results

The proposed algorithm was implemented in C on a DELL-PC (Pentium 4
2.80GHz). The parameters, N = 10, c1 = c2 = 1.2, Vmax = 4, p1 = 15, p2 = 5,
β = 0.02 and MaxIter = 200 were used in the simulations. The CDHNN is
applied to all particles once for every 50 iterations.

For comparison, SOCHOM [7], CDHNN [10], and DPSO for this problem
were also implemented. All the tested data were randomly generated graphs;
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Table 1. Simulation results of 15 test problems.

n Edges p SOCHOM CDHNN DPSO DPSO-CDHNN
Max. Av. Max. Av. Max. Av. Max. Av.

1485 0.3 911 906.38 911 909.1 904 888.04 911 909.46
100 2970 0.6 1673 1671.2 1673 1671.3 1669 1646.36 1673 1672.8

3465 0.8 1916 1913.16 1916 1915.8 1910 1887.64 1916 1916

5970 0.3 3485 3479.42 3485 3481.1 3396 3347.88 3485 3482.06
200 11940 0.6 6510 6497.54 6510 6507 6405 6373.92 6510 6507.38

15920 0.8 8412 8402.4 8412 8411.2 8324 8293.14 8412 8411.26

13455 0.3 7645 7621.22 7627 7624.26 7373 7315.84 7645 7625.16
300 26910 0.6 14451 14435.1 14446 14443.2 14175 14102.7 14453 14446.2

35880 0.8 18770 18754 18757 18746.9 18521 18471.2 18770 18764.6

23940 0.3 13376 13347.3 13336 13335.2 12883 12782.2 13382 13368.8
400 47880 0.6 25466 25436.5 25468 25467 24925 24825.3 25474 25459.6

63840 0.8 33195 33169.5 33161 33160 32751 32656.3 33197 33181.5

37425 0.3 20680 20622.6 20607 20592 19839 19746 20680 20660.4
500 74850 0.6 39583 39549.5 39473 39455.7 38627 38542.2 39593 39551.8

99800 0.8 51660 51618.1 51648 51634.6 50944 50839.9 51668 51641.9

the graphs were defined in terms of two parameters, n and p. The parameter
n specified the number of vertices in the graph; the parameter p, 0 < p < 1,
specified the probability that any given pair of vertices constituted an edge. The
information of all tested graphs is shown in Table 1.

Table 1 shows simulation results. The maximum number of remaining edges
(“Max.”) and the average number of remaining edges (“Av.”) in the solutions
produced by SOCHOM, CDHNN, DPSO and the proposed algorithm respec-
tively within 50 simulation runs. Simulation results show that the proposed
algorithm combining the CDHNN and the DPSO algorithm can obtain better
solutions than the CDHNN and the DPSO. We also can find that the proposed
algorithm can obtain better solutions than the SOCHOM. The better average
performance of the proposed algorithm shows that the hybrid algorithm is of a
certain robustness for the initial solutions. The reasons why the proposed algo-
rithm is better than other algorithms are: (1) the stochastic nature of the DPSO
enables the proposed algorithm to escape from local minima, (2) the local search
algorithm, CDHNN with chaotic search dynamics, also has ability of escaping
from local minima, and especially, (3) the proposed algorithm combines the lo-
cal search method CDHNN into the global search method DPSO; therefore the
proposed algorithm has good performance of exploration and exploitation.

Table 2 shows the comparison of computation time which is the average
of 50 simulations. The proposed algorithm requires more CPU computational
time to perform evolutionary computations in DPSO phase and chaotic sea-
rching in CDHNN scheme. Although the hybrid algorithm requires much more
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Table 2. Computation time of the algorithm of SOCHOM, CDHNN, DPSO and the
proposed algorithm (seconds).

n Edges p SOCHOM CDHNN DPSO DPSO-CDHNN

1485 0.3 0.10 0.10 0.35 1.24
100 2970 0.6 0.10 0.10 0.35 1.27

3465 0.8 0.10 0.10 0.36 1.27

5970 0.3 0.33 0.23 1.18 4.31
200 11940 0.6 0.33 0.23 1.18 4.31

15920 0.8 0.33 0.23 1.20 4.31

13455 0.3 0.68 0.48 2.59 9.20
300 26910 0.6 0.67 0.47 2.70 9.30

35880 0.8 0.68 0.48 2.70 9.37

23940 0.3 1.16 0.96 4.40 9.37
400 47880 0.6 1.17 0.97 4.51 16.07

63840 0.8 1.18 0.98 4.51 16.05

37425 0.3 1.78 1.38 7.45 26.60
500 74850 0.6 1.83 1.33 7.46 25.20

99800 0.8 1.76 1.36 7.47 25.67

computational time than other algorithms, we think the moderate increase in
computational time should not discourage practitioners from considering the
method because it is possible to carry out the computations using high-speed
computers. Therefore we can conclude that the proposed algorithm has supe-
rior ability of searching the globally optimal or near-optimum solution within
reasonable computation time.

The proposed algorithm not only performs exploration by using the popu-
lation based evolutionary search ability of the DPSO, but also performs ex-
ploitation by using the CDHNN. The proposed hybrid algorithm with global
exploration and local exploitation search can be seen as a kind of memetic al-
gorithm. Recently, Zhang et al. proposed an improved DPSO (named MPPSO)
for the bipartite subgraph problem [15]. In their algorithm, a mutation operator
and a personality factor were introduced into original DPSO to improve the orig-
inal DPSO performance. Further, symmetry of solution space of the bipartite
subgraph problem, as a special prior knowledge of problem domain, is consid-
ered. But there is no local search to perform exploitation in MPPSO. Wang et
al. proposed a hill-shift learning algorithm of Hopfield network for the bipartite
subgraph problem [16]. In their algorithm, the hill-shift learning method was in-
troduced to help the original discrete Hopfield neural network escape from local
minima. Essentially, the algorithm of Wang [16] is a local search method based
on neural network, just like the SOCHOM or CDHNN. Therefore, the improved
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DPSO, improved neural network-based local search and prior knowledge of the
bipartite subgraph problem also can be incorporated into the framework of our
PSO-based memetic algorithm to further improve the proposed algorithm for
the bipartite subgraph problem.

5 Conclusions

In this paper, we incorporate a chaotic discrete Hopfield neural network
(CDHNN), as a local search scheme, into the discrete particle swarm optimiza-
tion (DPSO) and develop a hybrid algorithm DPSO-CDHNN for the bipartite
subgraph problem. The proposed algorithm not only performs exploration by
using the population based evolutionary search ability of the DPSO, but also
performs exploitation by using the CDHNN. Simulation results show that the
proposed algorithm has superior ability for bipartite subgraph problem. Fur-
ther, the proposed algorithm can be seen as a PSO-based memetic algorithm,
and therefore the proposed algorithm can be further improved by incorporating
other improved method and can be applied other had combinatorial optimization
problems.
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Abstract. In the paper, a recurrent neural network based on an aug-
mented Lagrangian function is proposed for seeking local minima of non-
convex optimization problems with inequality constraints. First, each
equilibrium point of the neural network corresponds to a Karush-Kuhn-
Tucker (KKT) point of the problem. Second, by appropriately choosing
a control parameter, the neural network is asymptotically stable at those
local minima satisfying some mild conditions. The latter property of the
neural network is ensured by the convexification capability of the aug-
mented Lagrangian function. The proposed scheme is inspired by many
existing neural networks in the literature and can be regarded as an ex-
tension or improved version of them. A simulation example is discussed
to illustrate the results.

1 Introduction

In the past two decades, recurrent neural networks for solving optimization
problems have attracted much attention since the early work of Hopfield and
Tank [1], [2]. The theory, methodology, and applications of these neural networks
have been widely investigated. Now many elegant neural networks have been
proposed for solving various optimization problems and related problems. For
example, Rodŕıguez-Vázquez et al. proposed the switched-capacitor neural net-
work for nonlinear programming [3]; Wang proposed the deterministic annealing
neural network [4,5] for convex optimization; Bouzerdoum and Pattison invented
a neural network for quadratic programming with bound constraints [6]; Liang
and Si studied a neural network for solving linear variational inequalities [7]; Xia
and Wang et al. developed several neural networks for solving optimization prob-
lems and variational inequalities [8, 9, 10, 11, 12, 13, 14]. However, most of these
neural networks can solve convex programs only. In contrast, little progress has
been made on nonconvex optimization in the neural network community. This
is mainly due to the difficulty in characterizing global optimality of nonconvex
optimization problems by means of explicit equations. From the optimization
context, it is known that under fairly mild conditions an optimum of the prob-
lem must be a Karush-Kuhn-Tucker (KKT) point, while the KKT points are

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 194–203, 2007.
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easier to characterize. In terms of developing neural networks for global opti-
mization, it seems far-reaching to find global optima at the very beginning; and
a more attainable goal at present is to design neural networks for seeking local
optima first with the aid of KKT conditions.

In [15] a recurrent neural network based on an augmented Lagrangian func-
tion was proposed for solving nonlinear optimization problems with equality
constraints. The neural network was pointed out to be (locally) asymptotically
stable at KKT points that correspond to local optima under mild conditions.
Recently, a neural network based on another augmented Lagrangian function
was proposed in [16] for seeking local optima of nonconvex optimization prob-
lems with inequality constraints, and it was also proved asymptotically stable
at local optima. Unfortunately, the equilibrium set of the neural network does
not coincide with the KKT point set. In other words, the neural network may
converge to some non-KKT points. In the paper, a new recurrent neural network
is proposed for solving inequality constrained optimization problems based on
a similar augmented Lagrangian function to that in [16]. It will be shown that
each equilibrium corresponds to a KKT point, and the neural network is locally
convergent to local optima under some mild conditions.

2 Problem Formulation and Preliminaries

Consider the following constrained optimization problem:

min f(x)
s.t. g(x) ≤ 0,

(1)

where f : Rn → R, g(x) = [g1(x), . . . , gm(x)]T is an m-dimensional vector-
valued function of n variables. In the paper, the functions f, g1(x), . . . , gm(x)
are assumed to be twice differentiable. If all functions f(x) and gj(x) are convex
over Rn, the problem is called a convex optimization problem; otherwise, it is
called a nonconvex optimization problem. Equation (1) represents a wide variety
of optimization problems. For example, it is well known that if a problem has
equality constraints h(x) = 0, then this constraint can be expressed as h(x) ≤ 0
and −h(x) ≤ 0.

Throughout the paper, the following notations are used. Rn
+ stands for the

nonnegative quadrant of the n-dimensional real space Rn. I = {1, · · · , n}, J =
{1, · · · , m}. If u ∈ Rn, then u+ = (u+

1 , u+
2 , · · · u+

n )T where u+
i = max(ui, 0);

u2 = (u2
1, · · · , u2

n)T ; Γ (u) = diag(u1, · · · , un). A square matrix A > 0 (A ≥ 0)
means that A is positive definite (positive semidefinite).

Definition 1. A solution x satisfying the constraints in (1) is called a feasible
solution. A feasible solution x is said to be a regular point if the gradients of
gj(x), ∇gj(x), ∀j ∈ {j ∈ J |gj(x) = 0}, are linearly independent.

Definition 2. A point x∗ is said to be a strict minimum of the problem in (1)
if f(x∗) < f(x), ∀x ∈ K(x∗; ε) ∩ S, where K(x∗; ε) is a neighborhood of x∗ with
the radius ε > 0 and S is the feasible region of the problem.
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It is well known [17] that if x is a local minimum as well as a regular point
of problem (1), there exits a unique vector y ∈ Rm such that the following
Karush-Kuhn-Tucker (KKT) conditions hold:

{
∇f(x) + ∇g(x)y = 0,
y ≥ 0, g(x) ≤ 0, yT g(x) = 0

where ∇g(x) = (∇g1(x), ..., ∇gm(x)). The above KKT condition can be equiva-
lently put into the following projection formulation:

{
∇f(x) + ∇g(x)y = 0,
(y + αg(x))+ = y,

(2)

where α > 0. In the sequel, we denote the KKT point set of (1) or the solution
set of (2) by Ω∗.

Define the Lagrangian function associated with problem (1)

L(x, y) = f(x) +
m∑

j=1

yjgj(x). (3)

Lemma 1 (Second-order sufficiency conditions [17]). Suppose that x∗ is
a feasible and regular point to problem (1). If there exists y∗ ∈ Rm, such that
(x∗, y∗) is a KKT point pair and the Hessian matrix ∇2

xxL(x∗, y∗) is positive
definite on the tangent subspace:

M(x∗) = {d ∈ Rn|dT ∇gj(x∗) = 0, d 	= 0, ∀j ∈ J(x∗)},

where J(x∗) is defined by J(x∗) = {j ∈ J |y∗
j > 0}, then x∗ is a strict minimum

of problem (1).

Now consider the following augmented Lagrangian function associated with
problem (1), which differs slightly from the one considered in [16].

Lc(x, y) = L(x, y) +
c

2

m∑

j=1

(yjgj(x))2, (4)

where L(x, y) is the regular Lagrangian function defined in (3) and c > 0 is a
scalar. Let Ωe denote the solution set of the following equations

{
∇xLc(x, y) = 0,
(y + αg(x))+ = y,

(5)

where α > 0. We have the following theorem.

Theorem 1. Ω∗ = Ωe.

Proof. It is equivalent to prove that under the following condition

(y + αg(x))+ = y (6)
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the first equation in (2) and the first equation in (5) are identical. The above
equation gives yjgj(x) = 0, ∀j ∈ J . Then by writing the first equation in (5) as
follows

∇xL(x, y) + c
∑

j∈J

y2
j gj(x)∇gj(x) = 0,

we can readily see that it is identical to ∇xL(x, y) = 0. The proof is completed.

3 Neural Network Model and Analysis

Consider a recurrent neural network with its dynamic behavior governed by

d

dt

(
x

y

)
=

(
−α(∇f(x) + ∇g(x)y + c∇g(x)Γ (y2)g(x))

−y + (y + αg(x))+

)
, (7)

where α > 0, c > 0 are two parameters. Note that the first term on the right-
hand-side is the expansion of ∇xLc(x, y). Therefore the equilibrium set of the
neural network is actually Ωe, which is equal to Ω∗ as claimed in Theorem 1.

Lemma 2 ( [18], p. 68). Let P ∈ Rn×n be symmetric and Q ∈ Rn×n be
symmetric and positive semidefinite. Assume that xT Px > 0 for all x 	= 0
satisfying xT Qx = 0. Then there exists a scalar c such that P + cQ > 0.

Lemma 3. Let u = (xT , yT )T and u∗ = ((x∗)T , (y∗)T )T be a KKT point sat-
isfying the second-order sufficiency conditions in Lemma 1. There exists c > 0
such that ∇2

xxLc(u) > 0 and ∇F (u) ≥ 0 on N (u∗), where

F (u) =
(

∇xLc(x, y)
−g(x)

)

and N (u∗) ⊆ Rn+m is a set containing u∗ as one of its interior points.

Proof. A direct reasoning gives

∇F (u) + ∇F (u)T =
(

2∇2
xxLc(u) 2c∇g(x)Γ (y)Γ (g(x))

2cΓ (g(x))Γ (y)∇g(x)T 0

)
,

and

∇2
xxLc(u) = ∇2

xxL(u) + c
∑

j∈J

[y2
j ∇gj(x)∇gj(x)T + y2

j gj(x)∇2gj(x)].

Since u∗ is a KKT point, we have

∇F (u∗) + ∇F (u∗)T =
(

2∇2
xxLc(u∗) 0

0 0

)
,

and
∇2

xxLc(u∗) = ∇2
xxL(u∗) + c

∑

j∈J

(y∗
j )2∇gj(x∗)∇gj(x∗)T .



198 X. Hu and J. Wang

Because u∗ satisfies the second-order sufficiency conditions, there exists at least
one j ∈ J such that y∗

j > 0. By Lemma 2, there exists c > 0 such that
∇2

xxLc(u∗) > 0. Let λj(u), ∀j ∈ J denotes any eigenvalue of the matrix function
∇2

xxLc(u). Then λj(u) is a continuous function in x and y satisfying λj(u∗) > 0
for any j ∈ J . Therefore, there exists a neighborhood of u∗, denoted by N ′(u∗),
on which ∇2

xxLc(u) > 0; moreover, u∗ is an interior point of this neighborhood.
Similarly we can prove that there exists N (u∗) ⊆ N ′(u∗), on which ∇F (u) ≥ 0,
where u∗ is an interior point of N (u∗). The proof is completed.

Lemma 4. For any initial point (x(t0)T , y(t0)T )T ∈ Rn+m there exists a unique
continuous solution (x(t)T , y(t)T )T for (7). Moreover, y(t) ≥ 0 if y(t0) ≥ 0.

Proof. Similar to the analysis of Lemma 3 in [12].

Theorem 2. Let u∗ = ((x∗)T , (y∗)T )T be a KKT point of problem in (1) sat-
isfying the second-order sufficiency conditions in Lemma 1. There exists c > 0
such that the neural network in (7) is asymptotically stable at u∗, where x∗ is a
strict local minimum of the problem.

Proof. Choose y(t0) ≥ 0, then from Lemma 4, y(t) ≥ 0, ∀t ≥ t0. Consider the
equivalent form of (7)

du

dt
= −u + PΩ(u − αF (u)),

where F (u) is defined in Lemma 3, Ω = Rn × Rn
+ and PΩ(·) is a projection

operator defined as PΩ(u) = argminv∈Ω ‖u − v‖. Define the Lyapunov function

V (u) = −F (u)T r(u) − 1
2α

‖r(u)‖2 +
1
2α

‖u − u∗‖2

where r(u) = PΩ(u − αF (u)) − u and u∗ is a KKT point satisfying the second-
order sufficiency conditions. Lemma 1 indicates that x∗ is a strict local minimum
of the problem. As y∗ is uniquely determined for x∗, there exits ε > 0 such that
u∗ is a unique KKT point in D(u∗; ε) = {u ∈ Rn+m|‖u − u∗‖ < ε}. Similar to
the proof of [12, Theorem 1], we can obtain

V (u) ≥ 1
2α

‖u − u∗‖2 ∀u ∈ Rn+m

and

dV (u(t))/dt ≤ −F (u)T (u − u∗) − r(u)T ∇F (u)r(u)

≤ −(F (u) − F (u∗))T (u − u∗) − r(u)T ∇F (u)r(u) ∀t ≥ t0.

Select a convex subset Ωc ⊆ N (u∗) which contains u∗ as a unique KKT point in
it, where N (u∗) is defined in Lemma 3. By Lemma 3 there exists c > 0 such that
∇F (u) ≥ 0 on Ωc, which implies F (u) is monotone on Ωc. Then dV (u)/dt ≤ 0
on Ωc, and the neural network in (7) is stable at u∗.
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According to the Lyapunov theorem [19], to prove the asymptotic stability of
the neural network, it is only needed to show that dV (u)/dt = 0 if and only if
u = u∗ in Ωc, or show that dV (u)/dt = 0 if and only if du/dt = 0 since in Ωc,
du/dt = 0 is equivalent to u = u∗. Consider a point u ∈ Ωc. Clearly, du/dt = 0
implies dV/dt = 0. Let u be a solution of dV (u)/dt = 0. It follows that

r(u)T ∇F (u)r(u) = α2∇xLc(x, y)T ∇2
xxLc(x, y)∇xLc(x, y) = 0,

and dx/dt = −α∇xLc(x, y) = 0 since ∇2
xxLc(x, y) > 0 on Ωc. In view that

∇F (u) ≥ 0 on Ωc, we have

dV/dt ≤ −(F (u∗) − F (u))T (u∗ − u) = −
∫ 1

0
(x∗ − x)T ∇2

xxLc(xs, ys)(x∗ − x)ds

where xs = x + s(x∗ − x) and ys = y + s(y∗ − y) with 0 ≤ s ≤ 1. Because
Ωc is convex, (xT

s , yT
s )T is in Ωc, and ∇2

xxLc(xs, ys) > 0 for 0 ≤ s ≤ 1. Then
dV (u)/dt = 0 implies x = x∗. With this implication we can deduce

dV (u)/dt = 0 ⇒ F (u)T (u − u∗) = 0 ⇒ g(x)T (y − y∗) = 0 ⇒ g(x)T y = 0.

By considering g(x) = g(x∗) ≤ 0 and y ≥ 0, we have dy/dt = (y+αg(x))+ −y =
0. Thus, u is a solution of du/dt = 0. In summary, dV (u)/dt = 0 if and only if
du/dt = 0. Hence, the neural network is asymptotically stable at u∗. The proof
is completed.

4 Comparisons with Other Neural Networks

In 1992, Zhang and Constantinides proposed a neural network based on the
augmented Lagrangian function for seeking local minima of the following equality
constrained optimization problem [15]:

min f(x)
s.t. h(x) = 0,

where f : Rn → R, h : Rn → Rm and both f and h are assumed twice differen-
tiable. The dynamic equation of the network is as follows

d

dt

(
x

y

)
=

(
−(∇f(x) + ∇h(x)y + c∇h(x)h(x))

h(x)

)
, (8)

where c > 0 is a control parameter. Under the second-order sufficiency condi-
tions, the neural network can be shown convergent to local minima with appro-
priate choice of c. The disadvantage of the neural network lies in that it handles
equality constraints only. Though in theory inequality constraints can be con-
verted to equality constraints by introducing slack variables, the dimension of
the neural network will inevitably increase, which is usually not deemed optimal
in terms of model complexity. In this sense, the proposed neural network in the
present paper can be regarded as an extension of the Lagrange network.
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An alternative extension of the neural network in [15] for handling inequality
constraints in (1) directly can be found in [16], and its dynamic system is as
follows:

d

dt

(
x

y

)
=

(
−(∇f(x) + ∇g(x)y2 + c∇g(x)Γ (y2)g(x))

2Γ (y)g(x)

)
. (9)

The local convergence of the neural network to its equilibrium set, denoted by
Ω̂e, was proved by using the linearization techniques, and moreover, Ω∗ ⊂ Ω̂e.
However, it is clear that Ω̂e 	= Ω∗. For example, any critical point x of the
objective function, which makes ∇f(x) = 0, and y = 0 constitute an equilibrium
point of (9), but in rare cases such an equilibrium corresponds to a KKT point.

If we set the control parameter c = 0 in (7), the neural network becomes

d

dt

(
x

y

)
=

(
−(∇f(x) + ∇g(x)y)
−y + (y + g(x))+

)
, (10)

which is a special case of the neural network proposed in [12] for solving convex
version of (1). Clearly, its equilibrium set coincides with Ω∗. However, it will be
seen in the next section that this neural network cannot be guaranteed the local
convergence to local minima of nonconvex optimization problems. A scheme
taking advantages of the neural network in (10) for seeking local minima of
nonconvex problems is found in [20]. The idea is to transform the problem in (1)
into the following equivalent one, of course under some appropriate assumptions,

min f(x)
s.t. (g(x) + b)p ≤ bp,

(11)

where b ≥ 0 is a vector and p ≥ 1 is a scalar, and then use the neural network in
(10) to solve the new problem. Some local convergence capability can be ensured
by selecting sufficiently large p. The weak point of this approach is that large p
values will introduce great nonlinearity to the system and cause some numerical
problems.

5 Illustrative Example

Consider the following optimization problem

min f(x) = 5 − (x2
1 + x2

2)/2,

s.t. g1(x) = −x2
1 + x2 − 1 ≤ 0,

g2(x) = x4
1 − x2 ≤ 0.

As both f(x) and g1(x) are concave, the problem is a nonconvex optimization
problem. Fig. 1 shows the contour of the objective function and the solutions
to g1(x) = 0 and g2(x) = 0 on the x1 − x2 plane. The feasible region is the
nonconvex area enclosed by the bold curves. Simple calculations yield

∇2
xxL(x, y) =

(
−2y1 + 12x2

1y2 − 1 0
0 −1

)
.
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Fig. 2. Transient behavior the neural network in (7) with different values of c

Evidently, ∇2
xxL(x, y) is not positive definite over the entire real space, and the

neural network in (10) can not be applied to solve the problem. Now we check if
the neural network in (7) can be used to search for the KKT points. There are
four KKT points associated with the problem: u∗

1=(−1.272, 2.618, 4.013, 1.395)T ,
u∗

2 = (1.272, 2.618, 4.013, 1.395)T, u∗
3 = (0, 0, 0, 0)T , u∗

4 = (0, 1, 1, 0)T , but only
the first two correspond to local minima. Moreover, it is verified that at either
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u∗
1 or u∗

2, J(x∗) defined in Lemma 1 is equal to {1, 2}, and ∇g1(x∗), ∇g2(x∗) are
linearly independent, which indicates M(x∗) = ∅. So the second-order sufficiency
conditions holds trivially at either point. According to Theorem 2, the neural
network in (7) can be made asymptotically stable at u∗

1 and u∗
2 by choosing

appropriate c > 0. Fig. 2 displays the state trajectories of the neural network
with different values of c started from the same initial point (−2, 3, 0, 0)T . When
c = 0, the neural network reduces to the neural network in (10). It is seen from
Fig. 2(a) that some state trajectories is divergent to infinity. When c = 0.1, the
neural network is not convergent, either, as shown in Fig. 2(b). However, when
c ≥ 0.2, in Figs. 2(c) and 2(d) we observe that the trajectories converge to u∗

1
asymptotically.

6 Concluding Remarks

In the paper, a recurrent neural network is proposed for seeking local optima
of general nonconvex optimization problems by means of solving Karush-Kuhn-
Tucker (KKT) equations. In the proposed scheme, there is no need to introduce
slack variables to convert inequality constraints into equality constraints. More-
over, a nice property of the proposed neural network is that its equilibria are
in correspondence with the KKT points. Another nice property lies in that by
choosing an appropriate control parameter the neural network can be made as-
ymptotically stable at those KKT points associated with local optima under
some standard assumptions in the optimization context, although locally. This
can be regarded as a meaningful progress in paving the way for designing neural
networks for completely solving nonconvex optimization problems, by consider-
ing that many existing neural network models are unstable at such KKT points.
A numerical example is discussed to illustrate the performance of the proposed
neural network.
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Abstract. Topology optimization problem, which involves many design vari-
ables, is commonly solved by finite element method, a method must recalculate 
structure-stiffness matrix each time of analysis. OC method is a good way to 
solve topology optimization problem, nevertheless, it can not solve multiobjec-
tive topology optimization problems. This paper introduces an effective  
solution to Multi-objective topology optimization problems by using Neural  
Network algorithms to improve the traditional OC method. Specifically, in each 
iteration, calculate the new neural network link weight vector by using the pre-
vious link weight vector in the last iteration and the compliance vector in the 
last time of optimization, then work out the impact factor of each optimization 
objective on the overall objective of the optimization in order to determine the  
optimal direction of each design variable.  

1   Introduction 

Topology optimization aims at obtaining overall material distribution in a certain 
solution domain in the initial stage of product manufacturing process. It origins from 
the idea of minimizing material cost and producing efficient mechanisms. Truss 
theory (Michell 1904) is considered as the primal thought of topology optimization. 
Bendsoe and Kikuchi (1988) introduced the numerical approach to topology 
optimization method for continuum structures, which contributed to the rapid 
increase of the popularity of topology optimization methods in structural design. In 
1989, the so called power-law or Solid Isotropic Material with Penalization model 
(SIMP) approach was proposed by Bendsoe. An alternative was presented by Zhou 
and Rozvany (1991). The SIMP approach has now become the most popular way to 
introduce the notion of topology into structural analysis of topology optimization 
problem. Later, Bendsoe (1995) gave an overview of the topology optimization 
method. Currently, with the rapid development and maturation of topology theory, it 
is being applied to the various industrial problems such as the design of materials 
and mechanisms. 
                                                           
* This paper is supported by the National Basic Research Program of China (973 Program),  

No. 2004CB719405 and the National Natural Science Foundation of China, No. 50305008. 
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SIMP, the most popular and competitive density-stiffness interpolation scheme of 
density methods, establishes certain nonlinear relation between modulus of elasticity 
and the relative density of the elements by introducing penalty factor, which penalize 
the intermediate densities when the design variables are bounded above and below by 
1 and 0 in order to make intermediate densities approach 0 or 1 as close as possible. 
As the penalty factor increase, the intermediate densities are penalized progressively; 
the intermediate density material is structurally less effective. Thus, continuous 
variable topology optimization model can approach previous 0-1 discrete variable 
optimization model to a large extent. As a result, the intermediate density element has 
a very small corresponding modulus of elasticity, which results in trivial influence to 
structure-stiffness matrix. 

Optimality Criteria (OC) is a kind of optimality design principles based on Tuhn-
tucker optimization qualification. By forming Lagrange function, OC method intro-
duces Lagrangian multiplier, transform nonlinear problem with restriction into linear 
problem without restriction. The development of OC method went through two proc-
esses: Continuum-based optimality criteria (COC) and Discretized continuum-based 
optimality criteria (DCOC). 

OC method is a good way to solve topology optimization problem, nevertheless, 
each iteration of it requires a huge amount of calculation, which leads to the fact that 
iterative times directly determine computation speed. Due to the intensive computa-
tion, the application of topology optimization is confined in narrow fields. Therefore, 
reducing the iterative times of OC method shows its significance as a part of relative 
research. It is necessary to find a faster and more computationally efficient method. 
Here, this paper is primarily intended to focus on how to accelerate OC method of 
topology optimization. 

There are already some methods to solve multi-objective problems such as  
J. Aguilar Madeira’s genetic algorithms with chromosome repairing method and Zhen 
Luo’s compromise programming method. It cost the two methods a long time to get 
the optimal solution. In this paper, we introduce a new algorithm to reduce the  
computational time effectively.  

In each iteration, the traditional Optimality Criteria method is incapable of dealing 
with the impact of multi-objectives on the overall objective and each design variable. 
At the same time, due to the change of the structure in the optimization process, the 
impact of different objectives on the overall and each design variable changes. There-
fore, it is difficult for us to solve multi-objectives problems with traditional OC 
method. This paper introduces an effective solution to multi-objective topology opti-
mization problems by using Neural Network algorithms to improve the traditional OC 
method. Specifically, in each iteration, calculate the new neural network link weight 
vector by using the previous link weight vector in the last iteration and the compli-
ance vector in the last time of optimization, then work out the impact factor of each 
optimization objective on the overall objective of the optimization in order to  
determine the optimal direction of each design variable.  
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2   Topology Optimization Formulation 

2.1   Single-Objective Topology Optimizaion Problem and It Solving Model 

A single-objective topology optimization problem based on the SIMP approach, 
whose objective is to minimize compliance can be expressed as： 

0
1

0

min

min : ( ) ( )

( )
:

:

: 0 1

N
T p T

e e e
e

c x U KU x u k u

V x
subject f

V

KU F

x x

=

= =

=

=
< ≤ ≤

∑  (1) 

Where ( )c x  is the compliance of the structure, the global displacement vectors and 

force vectors are denoted by U  and F  respectively, K  is the global stiffness matrix 
of the structure, x  is the vector of design variables, eu  and ek  are the element dis-

placement vector and stiffness matrix, respectively, N  is the total number of discrete 
elements, minx  is the lower bound constraint of relative densities, p  is the penalty 

factor, ( )V x  is the material volume, 0V  is the design domain volume, and f  is the 

ratio of design domain volume to material volume. 

min 0 min( ) ( )pp
j jE x E x E E= + −  (2) 

min 0 min

1 1

[ ] ( )[ ] ( ) [ ]
n n

p p
j j j j

j j

K E x K E x E E K
= =

⎡ ⎤= = + −⎣ ⎦∑ ∑  (3) 

Expressed as formula.2 and formula.3, p  is the penalty factor in the model. It is 

introduced to make aimed design approach the 0/1 discrete design gradually when the 
design variables are bounded above and below by 1 and 0 by increasing p  gradually 

to penalize intermediate design variables progressively. It is required that 2p >  for 

the sake of compressing intermediate material effectively. pE  is the modulus of elas-
ticity after interpolation, 0E  and minE  are the modulus of elasticity of solid part and 
void part, respectively, 0 minE E EΔ = − ，

min 0 /1000E E= . ( 1,2,... )jx j n=  is the 

design variable of element j . [ ]K  is the stiffness matrix after interpolation, [ ]jK  is 

the stiffness matrix of the element solid material j . 

SIMP’s corresponding compliance function and sensitivity form can be written as: 

min 0 min

1

( ) [ ( )]{ } [ ]{ }
n

p T
j j j j

j

C x E x E E U K U
=

= + −∑  (4) 

' 1 0 min

1

( ) ( ){ } [ ]{ }
n

p T
j j j j

j

C x px E E U K U−

=

= − −∑  (5) 
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Where, [ ]jK  is the stiffness of element j , { }U  is the displacement vectors of the 

structure. x  is the design variable, in order to avoid singularity of the overall stiffness 
matrix, min 0.001x = . n  is the number of elements, C  is the compliance of structure 

and 'C  denotes the sensitivity of design variable with regard to compliance. 
According to the site of optimal node, the equation solving SIMP density-stiffness 

interpolation scheme based on Kuhn-Tucker optimization qualification can be  
described as: 

1 1( ) { } [ ]{ }
j

k p T k
j j j j

k
j j

p x U K U E x

V x

− +Δ
=

Λ
 (6) 

1

1
( ) { } [ ]{ }

j

k p T
j j jk k

j j
j

p x U K U E
x x

V

−

+
Δ

=
Λ

 (7) 

Make 

1( ) { } [ ]{ }
j

k p T
j j jk

j
j

p x U K U E
D

V

− Δ
=

Λ
 (8) 

1k
j

j j

C
D

x V

∂= − ×
∂ Λ

 (9) 

Thus, the above iteration formula can be described as: 

1k k kx D x
j j j

+ =  (10) 

Λ  is the Lagrangian multiplier, it is variable.  

2.2   Multi-objective Topology Optimization of Structures 

When the structure needed to be topology optimized is influenced by variety of forces 
from 1F  to iF , the stress distribution of topology structure is impacted by these forces 

at the same time. We assume that each force iF  has an impact factor iW  on the topol-

ogy structure, the structural compliance of each force iF  is iC , and the structural 

sensitivity of each force iF  is '
iC . 

The overall structural compliance can be expressed as:  

i i
C W C=∑  (11) 

The overall structural sensitivity can be expressed as:  

''
i i

C W C=∑  (12) 
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Fig. 1. M-P model neuronal structure 

Above approach can be seen as a simple continual M-P model, the impact factor on 
the overall structure of each force can been seen as neurons’ link weights. Please refer 
to Fig. 1 for specific neuronal structure.  

How to determine the impact factor on the overall structure of each force or neu-
rons’ link weights will directly determine the algorithm’s effect and computing speed. 

In this paper, an alternating design method between training neural network and 
topology optimization is constructed. Its specific method is as follows: 

1) Calculate each force’s structural compliance k
iC  and sensitivity 'k

iC  to the over-

all structure by the formula. 4 and formula. 5, in which k  is the number of opti-
mization iterations. 

2) Adopt Hebb learning rule to amend impact factor vector iW . Specific formula is 

as follows: 

k k
i inet W C=  (13) 

2
( ) 1

1 net
f net

e λ− ⋅= −
+

 (14) 

1 ( )k k k
i i iW W f net C+ = +  (15) 

3) Calculate the overall structure’s compliance and sensitivity according to the im-
pact factor vector after amendment and each force’s compliance and sensitivity to 
the overall structure. Specific formula is as follows: 

1 1 kk k
i i

C W C+ +=∑  (16) 

' 1 1 'k k k
i iC W C+ +=∑  (17) 

4) Calculate new design variable according to the overall structure’s compliance and 
sensitivity. Specific formula is as follows: 

1 1( ) { } [ ]{ }k p T k
j j j j j

k
j j

p x U K U E x

V x

− +Δ
=

Λ
 (18) 

1
1 ( ) { } [ ]{ }k p T

j j j jk k
j j

j

p x U K U E
x x

V

−
+ Δ

=
Λ

 (19) 



 Multi-objective Topology Optimization of Structures Using NN-OC Algorithms 209 

 

Make  

1( ) { } [ ]{ }k p T
j j j jk

j
j

p x U K U E
D

V

− Δ
=

Λ
 (20) 

' 11 1k k
j

j j j

C
D C

x V V
+∂= − × = − ×

∂ Λ Λ
 (21) 

The determine of Lagrangian multiplier Λ  refers to Section 2.1. 
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Initial design variables

Use FEA method calculate the 
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Use NN calculate the new influence 
strength variables each objective

Establishing FEA Model
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Stop

Calculate  the sensitivity of design 
variable with regard to compliance

Sensitivity analysis

Calculate integration compliance 
and sensitivity of design variable

Use OC method anticipate the new 
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compliance stable?

Output result

No

Yes

Yes

No

 

Fig. 2. NN-OC method’s Computational model 

3   Computational Model of NN-OC 

It can be seen from Fig. 2 that there is much difference between the improved OC 
method and traditional OC method in respect of solving process. The improved OC 
method re-evaluates each objective’s impact on the overall structural compliance and 
sensitivity, then works out a comprehensive compliance and a comprehensive sensi-
tivity by which variables’ changed directions are calculated, that is what the new 
method different from the old.  
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4   Case Studies 

4.1   The Single Beam Model with Multi-objective Optimization  

The design domain of the problem needed to be solved is shown as fig (), where the 
load case 1 2 3 4 3.5F F F F KN= = = = . The modulus of elasticity E=200GPa , the 
Poisson’s rate v=0.3 , the volume ratio f=0.5 . Use the SIMP model, penalty factor 
p=3.0 , the initial number of elements is 1600. The mobile limit m=0.3 . The force 

structure is shown as Fig. 3. 

 

Fig. 3. The design domain of the single beam model with Multi-objective optimization 

 

Fig. 4. The optimized result 

The optimized result is shown as Fig. 4, for this moment, the comprehensive  
structural compliance c=0.4995 . 

4.2   Simple Bridge Model with Multi-objective Optimization 

The design domain of the problem needed to be solved is shown as Fig. 6, where the 
load case 1 2 3 4 5 6 7 3.5F F F F F F F KN= = = = = = = . The modulus of elastic-
ity E=200GPa , the Poisson’s rate v=0.3 , the volume ratio f=0.3 . Use the SIMP 
model, penalty factor p=3.0 , the initial number of elements is 3600. The mobile limit 

m=0.3 . the force structure is shown as Fig. 5. 

 

Fig. 5. The design domain simple bridge model with multi-objectives optimized 
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Fig. 6. The optimized result 

 

Fig. 7. The movement of compliance’s value as steps of computation increases 

The optimized result is shown as Fig. 6, for this moment, the comprehensive  
structural compliance c=0.6997 . 

It can be seen from Fig. 7, NN-OC optimization method can work out the optimal 
solution of multi-objectives topology optimization problem with a fast speed and a 
high stability.  

5   Conclusions 

This paper successfully realizes solving multi-objectives topology optimization prob-
lem by improving traditional OC method with neural network. Its design method 
owns following characteristics: 

1) In each iteration, calculate the new neural network link weight vector by using 
the previous link weight vector in the last iteration and the compliance vector in the 
last time of optimization. That is alternation between neural network training and 
structural optimization process. 

2) With the new link weight vector, work out the impact factor of each optimiza-
tion objective on the overall objective of the optimization in order to determine the 
comprehensive optimal direction. Although in the started several times this direction 
may not change towards the optimal direction, as the neural network structural opti-
mization and topology structural optimization process, this direction will become 
closer and closer to the optimal solution.  
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It is a completely new improvement to traditional OC method. Experimental results 
have demonstrated that such new method is very effective, it improves traditional OC 
method to endow it with the ability to solve multi-objectives and faster computation 
speed (normally work out the optimal solution before 10 times of iterations). This will 
be a breakthrough in the application of OC method to solve multi-objectives. But the 
current speed can still be accelerated by improving neural network algorithm, for this 
consideration, it is very necessary to continue the study about how to improve OC 
method by adding method of neural networking. At the same time, the application of 
this new method to 3D structure’s multi-objectives topology optimization is urged. 
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Abstract. A novel and efficient method combining chaos particle swarm 
optimization (CPSO) and discrete particle swarm optimization (DPSO) is 
proposed to optimize the topology and connection weights of multilayer 
feed-forward artificial neural network (ANN) simultaneously. In the proposed 
algorithm, the topology of neural network is optimized by DPSO and connection 
weights are trained by CPSO to search the; global optimal ANN structure and 
connectivity. The proposed algorithm is successfully applied to fault diagnosis, 
able to eliminate some bad effects on the diagnosis capacity of network 
introduced by redundant structure of ANN. Compared with genetic algorithm 
(GA), the proposed method shows its superiority on convergence property and 
efficiency in training ANN. It is validated by the good diagnosis results of 
experiments.   

1   Introduction 

Artificial neural network (ANN) has been widely used in various fields, such as pattern 
recognition, intelligent control, fault diagnosis, optimization etc.. However, the optimal 
structure of neural network is still difficult to determine now. An oversimplified 
network architecture might hamper the convergence of the network. On the other hand, 
an oversized network would lead to overfitting, and thus poor generalization 
performance. So, it’s highly desirable to design a methodology capable to find the 
appropriate network architecture and connectivity simultaneously.  

Genetic algorithm (GA) has been applied to train ANN to obtain appropriate 
topology and connection weights. Nevertheless, complex evolution operators of GA 
such as crossover and mutation make the training time increasing according to 
exponential series following the scale and complexity of problem [1].  

Particle Swarm Optimization (PSO) is an evolutionary algorithm based on swarm 
intelligence. Based on a set of potential solutions named population, it searches the 
optimal problem solution through cooperation and competition among the individuals of 
population [2], PSO method often provides solutions to many complex optimization tasks 
such as neural network training, system identification and engineering design [3]-[4]. 
However, PSO has its disadvantages when facing a complex task with many local 
optima. In this paper, an improved PSO algorithm (CPSO) is proposed, which combines 
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PSO and chaotic search for the weight training of ANN. CPSO improves convergence 
speed and the abilities of searching for the global optima. Most versions of PSO, such as 
CPSO, have operated in continuous and real-number space, however, many optimization 
problems are set in a space featuring discrete, so, James Kennedy and R. C. Eberhart 
proposed an algorithm operates on discrete binary variables (DPSO) [5]. 

In this article, CPSO is used for the weight training of ANN, and DPSO is applied to 
find the appropriate network architecture. Network structure and connectivity are 
searched simultaneously. CPSO and DPSO can jointly search the global optimal ANN 
architecture and weights. Experiment results demonstrate that the proposed method is a 
useful tool for training ANN, which converges quickly and can avoid overfitting to 
some extent.  

2   Correlative Algorithms 

2.1   Particle Swarm Optimization 

PSO is initialized with a swarm including N  random particles. Each particle is treated 

as a point in a D -dimensional space. The i th particle is represented as 

1 2( , , , )i i i iDx x x x= , ijx is set in the range [ , ]j ja b . The best previous position of 

the i th particle is represented as 1 2( , , , )i i i iDP p p p= . The best particle among all 

the particles in the population is represented by 1 2( , , , )g g g gDP p p p= . The 

velocity of particle i  is represented as 1 2( , , , )i i i iDV v v v= . After finding the 

aforementioned two best values, the particle updates its velocity and position according 
to the following equations: 

1 1 2 2( ) ( )id id id id gd idv v c r p x c r p xω= + − + −  (1) 

id id idx x v= +  (2) 

Where ω  is the inertia weight, 1c and 2c are two positive constants called learning 

factors, 1r  and 2r are random numbers in the range of [0,1].  

2.2   Chaos Particle Swarm Optimization 

Chaos is characterized as ergodicity, randomicity and regularity. Because chaos queues 
can experience all the states in a specific area without repeat, chaotic search becomes a 
novel tool used as an optimizer. Here, Logistic Equation is employed to obtain chaos 
queues, which is represented as follows: 

1 (1 ) 0,1,2,n n nz z z nμ+ = − =  (3) 

Where μ  is the control parameter, suppose that 00 1z≤ ≤ , when 4μ = , the system 

of (3) has been proved to be entirely chaotic. Chaos queues 1 2 3, , ,z z z  are 

generated by iteration of Logistic Equation.  
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The basic steps of CPSO algorithm is described as follows: 

Step 1: Initialize a swarm including N particles, which locates each particle in a 
specific range randomly and sets each particle’s velocity as a random value in the range 
[-1,1]. 

Step 2: Using the global best and individual best of each particle, update each 
particle’s velocity and position of connectivity variable according to (1) and (2). 

Step 3: Optimize gP  by chaos search. Firstly, scale ( 1,2, )giP i D=  into [0,1] 

according to ( ) ( ), ( 1,2, )i gi i i iz p a b a i n= − − = , and generate chaos queues 
( )

( 1,2, )
m

i
z m =  by iteration of Logistic Equation, then, transfer the chaos queues 

into the optimization variable ( ) ( 1,2, )m
gp m =  according to following equation: 

( ) ( )( )
i

m m
gi i i ip a b a z= + − , upon that the solution set is obtained: 

( ) ( ) ( ) ( )
1 2( , , , ), ( 1,2, )m m m m

g g g gDp p p p m= = . 

Compute the fitness value of each feasible solution ( ) ( 1,2, )m
gp m =  in the 

problem space during chaotic search, and get the best solution *p . 

Step 4: Replace the position of one particle selected randomly from the swarm  
with *p . 

Step 5: If one of the stopping criteria is satisfied, then stop. Otherwise, loop to step 2. 

2.3   Discrete Particle Swarm Optimization 

For a discrete problem expressed in a binary notation, a particle moves in a search space 

restricted to 0 or 1 on each dimension, where the velocity idv  represents the probability 

of bit idx  taking the value 1 or 0. Since it is a probability, must be constrained to the 

interval [0.0,1.0], logistic transformation ( )idsigmoid v  can be used to accomplish. 

The velocity and position of each particle is updated according to the following 
equations: 

1 1 2 2( ) ( ),id id id id gd idv v c r p x c r p xω= + − + −  (4) 

id

id

1, ( ),

0, ( ).
id

id
id

if sigmoid v
x

if sigmoid v

ρ
ρ

<⎧
= ⎨ >⎩

 (5) 

Compared with standard PSO, the formula for velocity updating remains unchanged, 

except that now idp  and idx  are integers in {0,1}. In (5), idρ  is a random number 

selected from a uniform distribution in [0.0, 1.0]. 
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3   ANN Structure and Parameters Optimizing by Proposed Hybrid 
PSO – A Combination of CPSO and DPSO 

3.1   Particle Encoding and Fitness Computing 

The connection structure of ANN featuring discrete, which is encoded by a string of 
binary bits, bit “1” is encoded if the corresponding connection between nodes exists; 
otherwise “0” is encoded.  DPSO is applied to find the appropriate network structure. In 
CPSO, real-number strings were adopted to encode all the particles, each real-number 
coded string stands for a set of weights. 

All the initial strings in CPSO and DPSO are randomly initialized with an 
appropriate size of a population. If the weight number of a fully connected ANN is d , 

then the particle is made up of weights in d  dimension and connectivity in d  

dimension, the size of each particle should be 2 * d . 
Decode the binary string which represents the structure of each particle, a bit “0” in a 

particle represents the uselessness of the corresponding weight. The fitness is judged of 
all the samples in the training set, which is taken as the objective function. The 
performance of each particle is measured according to the fitness function. Here, we 
define Mean Square Error (MSE) as the fitness function, whose minimization will 
generate an optimum network configuration. 

3.2   ANN Training by Hybrid PSO 

The basic steps of ANN training by hybrid PSO are described as follows: 

Step 1: Initialize a swarm including N particles, which locates each particle’s 
position and velocity of weight variables in a specific range randomly and sets each 
particle’s velocity of connectivity variables, then we can get the initial position 
according to (4).  

Step 2: Evaluate the fitness of each particle. 
Step 3: for all the particles of the swarm, take the following steps: 
1) Using the global best and individual best of each particle, each particle’s velocity 

and position of weight variables is updated according to (1) and (2). 
2) Update each particle’s velocity and position of connectivity variable according to 

(4) and (5). 
3) Evaluate the fitness of each particle and compare the evaluated fitness value of 

each particle to its individual best ip . If current value is better than ip , then update 

ip  as current position. 

4) If current value is better than the global best gp , update gp  as current position. 

Step 4: According to step 4 in 2.2, optimize the global best position of weight 
variables by chaos search. Compute the fitness value of each feasible solution 

( ) ( 1,2, )m
gp m =  in the problem space during chaotic search, and get the best 

solution *p . 
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Step 5: Replace the position of one particle selected randomly from the swarm  
with *p  

Step 6: If one of the stopping criteria is satisfied, then stop. Otherwise, loop to step 3. 

4   Experiment and Analysis 

Large-scale revolving mechanism is a very important device widely used in electric 
power, metallurgy etc., it’s very significant to constantly supervise its state of operation 
at real time and diagnose the faults accurately. In this section, we carried out an 
experiment on fault diagnosis of revolving machine with the method mentioned above 
based on a neural network. In this network, according to the set of fault symptom, the 
number of input neurons of the neural networks is 5, and the number of output neurons 
is 3 in term of fault cause set. Due to experience formula, the number of neurons of 

hidden layer is set as hn =7. 

Apply the proposed algorithm and genetic algorithm (SW-GA) which also optimize 
the topology and connection weights simultaneously in ANN training, the best Mean 
Square Errors following iteration number are shown in figure 1. From the results of 
comparison, it is obvious that the proposed algorithm has a better result than that of 
SW-GA, it shows its superiority in convergence speed and efficiency in training ANN. 

 

Fig. 1. Best error history of network training 

BP and PSO only training the weights of the fully connected ANN, SW-GA and the 
proposed algorithm are utilized for testing the neural network. The test error, the 
number of network connections and the runtime of CPU in training process are shown 
in table 1. 
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Table 1. Performance comparison between networks trained by four algorithms 

Evaluation factor BP PSO SW-GA Proposed algorithm 
Test error 0.6227 0.4332 0.4526 0.3294 

Connection number 56 56 38 34 
Runtime of CPU (s) 6.1250 3.5330 5.5750 4.1230 

From table 1, it can be seen that the proposed algorithm improves the capacity of 
fault pattern recognition by optimizing the structure of the neural network, this 
indicates that the network connections are redundant, and validates that redundant 
structure can introduce bad effect on the performance of ANN. By comparing the 
results of different methods mentioned above, it is clearly to see that the training 
efficiency is highly improved by using the proposed algorithm. Though optimizing the 
structure increases the complexity of the network, the accuracy is improved when 
applying the neural network whose structure is optimized in practice. The structure 
optimized neural network especially adapts to dispose large-scale data real time. 

5   Conclusion 

Redundant connections not only decrease the processing speed, large numbers of 
redundant connections but also affect the performance of ANN, therefore, finding the 
appropriate network architecture and its connectivity simultaneously is essential in 
ANN training. In this article, CPSO is used for the weight training of ANN, and DPSO 
is applied to find the appropriate network architecture, CPSO and DPSO can jointly 
search the global optimal ANN architecture and weights. The method can delete the 
redundant connections when training the weights of ANN to optimize the structure.  
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Abstract. This paper proposes an effective particle swarm optimization (PSO) 
based memetic algorithm (MA) for designing artificial neural network. In the 
proposed PSO-based MA (PSOMA), not only the evolutionary searching 
mechanism of PSO characterized by individual improvement plus population 
cooperation and competition is applied to perform the global search, but also 
several adaptive high-performance faster training algorithms are employed to 
enhance the local search, so that the exploration and exploitation abilities of 
PSOMA can be well balanced. Moreover, an effective adaptive Meta-
Lamarckian learning strategy is employed to decide which local search method 
to be used so as to prevent the premature convergence and concentrate comput-
ing effort on promising neighbor solutions. Simulation results and comparisons 
demonstrate the effectiveness and efficiency of the proposed PSOMA. 

1   Introduction  

Evolving artificial neural network is an important issue in neural networks (NN), 
evolutionary computation (EC) and engineering fields. As we know, essentially it is 
an optimization problem to design a neural network. So far, many techniques have 
been proposed to train a network, such as gradient-descent method (i.e., BP, conjugate 
gradient algorithms), tabu search, simulated annealing, evolutionary computation etc. 
[1]. It is concluded that gradient-descent methods are very slow, easy to be trapped in 
local optima, short of generalization and rather sensitive to initial weights. During the 
past two decades, evolutionary computation (EC) techniques especially gained much 
attention for neural network design [2]. As a new kind of EC technique, particle 
swarm optimization (PSO) has been applied to many kinds of problems, including 
neural network design [3], [4]. In this paper, an effective particle swarm optimization 
(PSO) based memetic algorithm (MA) is proposed for neural network design and the 
trading-ration system of water market simulation. In the proposed PSO-based MA 
(PSOMA), not only the evolutionary searching mechanism of PSO characterized by 
individual improvement plus population cooperation and competition is applied to 
perform the global search, but also several adaptive high-performance faster training 
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algorithms are employed to enhance the local search, so that the exploration and ex-
ploitation abilities of PSOMA can be well balanced. Moreover, an effective adaptive 
Meta-Lamarckian learning strategy is employed to decide which local search method 
to be used so as to prevent the premature convergence and concentrate computing 
effort on promising neighbor solutions. Simulation results and comparisons demon-
strate the effectiveness and efficiency of the proposed PSOMA. 

The remaining content of this paper is organized as follows. In Section 2, the 
PSOMA is proposed after presenting the basic idea of PSO, local search combining 
adaptive Meta-Lamarckian learning strategy. Numerical simulations and comparisons 
are provided in Section 3. Finally, Section 4 provides some concluding remarks. 

2   PSOMA 

2.1   PSO 

Recently, a novel evolutionary technique, namely particle swarm optimization (PSO) 
has been proposed [5], which was developed based on bird flocking, fish schooling, 
and swarm theory. Due to the simple concept, easy implementation and quick conver-
gence, nowadays PSO has gained much attention and wide applications in a variety of 
fields [3], [4], [6], [7], [8]. 

In PSO, it starts with the random initialization of a population (swarm) of individu-
als (particles) in the search space and works on the social behavior of the particles in 
the swarm. Therefore, it finds the global best solution by simply adjusting the trajec-
tory of each individual towards its own best location and towards the best particle of 
the swarm at each time step (generation). However, the trajectory of each individual 
in the search space is adjusted by dynamically altering the velocity of each particle, 
according to its own flying experience and the flying experience of the other particles 
in the search space. 

The position and the velocity of the i-th particle in the d-dimensional search space 
can be represented as ],...,,[ ,2,1, diiii xxxX =  and ],...,,[ ,2,1, diiii vvvV =  respectively. 

Each particle has its own best position ( pbest ) ),...,,( ,2,1, diiii pppP = , corresponding 

to the personal best objective value obtained so far at time t. The global best particle 
( gbest ) is denoted by gP , which represents the best particle found so far at time t in 

the entire swarm. The new velocity of each particle is calculated as follows:  

djtxprctxprctwvtv jijgjijijiji ,...,2,1)),(())(()()1( ,,22,,11,, =−+−+=+  (1) 

where 1c  and 2c  are constants called acceleration coefficients, w is called the inertia 

factor, 1r and 2r  are two independent random numbers uniformly distributed in the 

range of [0, 1]. 
Thus, the position of each particle is updated in each generation according to the 

following equation: 

djtvtxtx jijiji ,...,2,1),1()()1( ,,, =++=+  (2) 
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Due to the simple concept, easy implementation and quick convergence, nowadays 
PSO has gained much attention and wide applications in different fields. However, 
the performance of simple PSO greatly depends on its parameters, and it often suffers 
the problem of being trapped in local optima for the lost of diversity of swarm. 

2.2   Local Search Combining Adaptive Meta-Lamarckian Learning Strategy 

Some recent studies on the choice of local search methods have shown that the choice 
significantly affects the efficiency of problem searches. In this paper, we design a 
local search with multiple faster training algorithms to enrich the local searching 
behavior and to avoid premature convergence. Moreover, an effective adaptive strat-
egy for Meta-Lamarckian learning in [9], [10] is employed to decide which training 
algorithm to be used for local search so as to reward the utilization times of those 
algorithms resulting in solution improvement. 

In our paper, four training algorithms are utilized as the pool of local searches, in-
cluding Powell-Beale, Scaled Conjugate Gradient, BFGS, and Levenberg-Marquardt 
algorithms. The adaptive Meta-Lamarckian learning strategy in our PSOMA is illus-
trated as follows. We divide local search into training phase and non-training phase. 
During the Meta-Lamarckian training phase, each training algorithm is applied for the 
same times, i.e., k epochs. Then, the reward η  of each training algorithm is deter-
mined using the following equation: 

kcfpf /−=η  (3) 

where pf  is the objective value before local search, and cf  is the objective value 

after the local search. After the reward of each training algorithm is determined, the 
utilizing probability utp  of each training algorithm is adjusted using the following 

equation: 

∑
=

=
K

j
jiiutp

1
, / ηη  (4) 

where iη  is the reward value of the i-th training algorithm, K  is the total number of 

training algorithm. 
At non-training phase, according to the utilizing probability of each neighborhood, 

a roulette wheel rule is used to decide which training algorithm to be used for local 
search. If the i-th training algorithm is used, its reward will be updated by 

iii ηηη Δ+= , where iηΔ  is the reward value of the i-th training algorithm calculated 

during a non-training phase. Of course, the utilizing probability utp  of each training 

algorithm should be adjusted again for next generation of PSOMA. 

2.3   PSOMA 

The PSOMA is proposed in this section, whose procedure is illustrated in Fig. 1. 
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Step 1: Set 0=k . For each particle i in the population: 
Step 1.1: initialize iX  randomly. 

Step 1.2: initialize iV  randomly. 

Step 1.3: evaluate if . 

Step 1.4: initialize gP  with the index of the particle with the best function value 

among the population. 
Step 1.5: initialize iP  with a copy of iX , Ni ≤∀ . 

Step 2: Repeat until a stopping criterion is satisfied: 
Step 2.1: find gP  such that .,][ NifPf ig ≤∀≤  

Step 2.2: for each particle i, NiiffifXP bestiii ≤∀<= ],[ . 

Step 2.3: perform PSO operator for each particle i to update iV  and iX  according 

to equation 1 and 2. 
Step 2.4: evaluate if  for all particles. 

Step 3: Implement the local search combining adaptive Meta-Lamarckian learning 
strategy for the best particle, and update the best particle. 
Step 4: If a stopping criterion is satisfied, output the solution found best so far, other- 
wise, Let 1+= kk  and go back to step 2. 

Fig. 1. Procedure of PSOMA 

3   Experiments  

In this section, we apply the PSOMA for designing the weight of multi-layer feed-
forward networks. Three different problems with different network structures, includ-
ing two classification problems [11] (Ionosphere and Cmc) and one approximation 
problem (Henon), are used for testing. The training objective is to minimize mean 
squared error (MSE). In particular, each particle in PSO denotes a set of weights of 
the network. The dimension of each particle is same as the number of weights of a 
certain network. Training a network using PSO means moving the particle among the 
weight space to minimize the MSE. 

We apply three training algorithms, including PSOMA, standard PSO and Powell-
Beale's conjugate gradient algorithm for comparison. In PSO and PSOMA, population 
size is 10, 1c  and 2c  are set to 2.0, maxv  is clamped to be 15% of the search space 

and use linearly varying inertia weight over the generations, varying from 1.2 at the 
beginning of the search to 0.2 at the end. The Powell-Beale's method is a standard 
training algorithm in Matlab neural network toolbox. The total number of function 
evaluation is set to 20000 in each run. All experiments were conducted 20 runs. In 
each experiment, each data set was randomly divided into two parts: 2/3 as training 
set and 1/3 as test set. MSET and MSEG refer to mean square error averaged over 20 
runs on the training and test set, respectively. And ErrorT and ErrorG referred to the 
error rate of classification and generalization averaged over 20 runs for the training 
and test sets, respectively. The information of data sets as well as the designing results 
of the three algorithms is listed in Table 1. 
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Table 1. Information of data sets and results of the three algorithms  

Case/ Architecture Index PSOMA  PSO Powell-Beale 
Ionosphere/34-2-2 MSET 1.13e-06 1.36e-01 1.82e-03 
 ErrorT 0 26.1538 0 
 MSEG 1.23e-01 9.44e-01 7.24e-01 
 ErrorG 14. 9501 48.5897 28.6325 
Cmc/9-5-3 MSET 1.19e-02 1.97e-01 1.91e-01 
 ErrorT 51.7920 76.4950 77.9600 
 MSEG 1.99e-01 2.09e-01 2.04e-01 
 ErrorG 59.2722 77.5370 80.3171 
Henon/2-5-1 MSET 2.18 e-05 2.20e-03 4.49e-05 
 ErrorT 0 0.0250 0 
 MSEG 1.51e-05 2.00e-03 6.45e-05 
 ErrorG 0 0 0 

From Table 1, it can be seen that MSET, MSEG, ErrorT and ErrorG of PSOMA out-
perform those of both PSO and Powell-Beale. So, it is concluded that PSOMA is 
more effective for neural network design, more robust on initial conditions and can 
obtain networks with better generalization property. In a word, the proposed PSOMA 
is a viable approach for neural networks design.  

4   Conclusions 

In this paper, an effective PSOMA is proposed for designing neural networks, in 
which PSO, local search combining adaptive Meta-Lamarckian learning strategy are 
well combined. Simulation results and comparisons based on three typical problems 
demonstrated the effectiveness of the PSOMA in term of searching quality, robust-
ness on initial conditions and generalization property. The future work is to apply 
such approach to design other kinds of neural networks. 
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Abstract. The paper concerns the simultaneous optimization for structure and 
parameters of fuzzy inference systems that is based on Hierarchical Fair 
Competition-based Parallel Genetic Algorithms (HFCGA) and information data 
granulation. HFCGA is used to optimize structure and parameters of ANFIS-
based fuzzy model simultaneously. The granulation is realized with the aid of 
the C-means clustering. Through the simultaneous optimization mechanism to 
be explored, we can find the overall optimal values related to structure as well 
as parameter identification of ANFIS-based fuzzy model via HFCGA, C-Means 
clustering and standard least square method. A comparative analysis demon-
strates that the proposed algorithm is superior to the conventional methods.   

1   Introduction 

Recently, a lot of attention has been directed to advanced techniques of system mo-
deling. Specially, many researchers are concerned about ANFIS-based fuzzy mod-
eling and there has been a diversity of approaches to ANFIS-based fuzzy modeling. 
Some enhancements to the model have been proposed by Oh and Pedrycz [5,11-13]. 
As one of the enhanced ANFIS-based fuzzy model, fuzzy relation model based on 
information granulation and genetic algorithms was introduced [5]. Here, binary 
coded genetic algorithm (GAs) was used to optimize structure and premise parameters 
of fuzzy model. And sequential optimization method by means of GAs was studied. It 
includes two optimization procedures such as structural and parametric identification. 
First the structural optimization is carried out and then using the results of structural 
optimization, the parametric optimization is executed. Yet the problem of finding 
“good” initial parameters of the fuzzy sets in the rules remains open. 

This study concentrates on optimization of information granulation-oriented 
ANFIS-based fuzzy model. We propose to use hierarchical fair competition based 
parallel genetic algorithm (HFCGA) for optimization of ANFIS-based fuzzy model. 

Based on the IG and the HFCGA, the simultaneous optimization method is 
introduced. In the ANFIS-based fuzzy model, there are two classes of variables to be 
optimized. Structural optimization involves the number of input variables, a collection 
of specific subset of input variables, the number of membership functions per input 
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variable, and the polynomial type of the consequence part of fuzzy rules, the 
parametric optimization concerns apexes of membership functions used in the 
premise part of the fuzzy. All of two classes of variables are optimize through 
HFCGA, C-Means clustering and LSM at once. 

2   Design of ANFIS-Based Fuzzy Model Based on Information 
Data Granulation 

In the premise part of the rules, we confine ourselves to a triangular type of 
membership functions whose parameters are subject to some optimization. The C-
Means clustering [7] helps us organize the data into cluster so in this way we capture 
the characteristics of the experimental data. In the regions where some clusters of data 
have been identified, we end up with some fuzzy sets that help reflect the specificity 
of the data set  

The identification of the premise part is completed in the following manner. Given 
is a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, …, xmk]

T, y =[y1, …, ym]T, l is the 
number of variables and , m is the number of data. 

[Step 1] Arrange a set of data U into data set Xk composed of respective input data 
and output data. 

Xk=[xk ; y] (1) 

Xk is data set of k-th input data and output data, where, xk =[x1k, …, xmk]
T, y =[y1, …, 

ym]T, and k=1, 2, …, l. 

[Step 2] Complete the C-Means clustering to determine the centers (prototypes) vkg 
with data set Xk. 

[Step 3] Partition the corresponding isolated input space using the prototypes of the 
clusters vkg. Associate each clusters with some meaning, say Small, Big, etc. 

[Step 4] Set the initial apexes of the membership functions using the prototypes vkg. 

After premise part of identification, we identify the structure considering the initial 
values of the polynomial functions based on the information granules realized for the 
consequence and antecedents parts. 

[Step 1] Find a set of data included in the fuzzy space of the j-th rule. 

[Step 2] Compute the prototypes Vj of the data set by taking the mean of each rule. 

1 2V { , , , ; }j j j kj jV V V M= …  (2) 

[Step 3] Set the initial values of polynomial functions with the center vectors Vj. 

The identification of the conclusion parts of the rules deals with a selection of their 
structure (type 1, type 2, type 3 and type 4) that is followed by the determination of 
the respective parameters of the local functions occurring there. 

The conclusion part of the rule that is extended form of a typical fuzzy rule in the 
TSK (Takagi-Sugeno-Kang) ANFIS-based fuzzy model has the form 

1 1 1: ( , , )j
c k kc j j j kR If x is A and and x is A then y M f x x− =  (3) 

In case of Type 3 (Quadratic Inference):  



 Simultaneous Optimization of ANFIS-Based Fuzzy Model Driven 227 

2 2
0 1 1 1 ( 1) 1 1 (2 )( ) ( ) ( ) ( )j j j j jk k kj j k j j k k kjf a a x V a x V a x V a x V+= + − + + − + − + + −  

(2 1) 1 1 2 2 (( 2)( 1) / 2) 1 ( 1)( )( ) ( )( )j k j j j k k k k j k kja x V x V a x V x V+ + + − −+ − − + + − −  
(4) 

The calculations of the numeric output of the model, based on the activation 
(matching) levels of the rules there, rely on the following expression 
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The consequence parameters ajk can be determined by the standard least-squares 
method that leads to the expression 

3   Hierarchical Fair Competition–Based Parallel Genetic 
Algorithm and Simultaneous Optimization of ANFIS-Based 
Fuzzy Model  

One of the central problems in evolutionary computation is to combat premature 
convergence and to achieve balanced exploration. Parallel Genetic Algorithm (PGA) 
is devised to solve this problem, and there are various PGA models such as global, 
fine-grained, and coarse-grained model [8]. The most popular model is coarse-grained 
model and Hierarchical Fair Competition model (HFC) is one type of PGA. It has 
multiple-deme (subpopulation), individuals evolve within each deme independently, 
and specified individuals migrate to other deme in regular generation interval [9]. 
Evolutionary process is similar to traditional GAs, but it include migration algorithm.  

In HFCGA, migration is executed in regular generation interval. Fig. 1 show the 
migration topology of HFCGA 

 

Fig. 1. The migration topology of HFCGA (In case when the number of demes is 4) 
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The optimization of ANFIS-based Fuzzy model is carried out through proposed the 
simultaneous optimization method. 

In the sequential optimization method, first the structure identification is carried 
out and then the parameter identification is implemented based on results obtained in 
the structure identification. For structure identification, we search the structurally 
optimized model using the fixed membership parameters, and then find the 
parametrically optimized model via the parameter identification using the results 
obtained by the structurally optimized model. So, the boundary range of search space 
for parameter identification to find the optimized ANFIS-based fuzzy model is 
restricted within a certain area for structure identification.  

In order to alleviate the problem, the simultaneous optimization method is 
proposed. Genes for the structure and parameter identification of the ANFIS-based 
fuzzy model are arranged only within a chromosome. In the sequel, we can expand 
the boundary range of search space to find an optimized model. Hence by using the 
structurally as well as parametric optimization procedure simultaneously based on 
HFCGA, we can obtain the optimized ANFIS-based fuzzy model. 

Fig. 2 depicts the arrangement of chromosomes for the simultaneous optimization.  
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Fig. 2. Arrangement of chromosomes for simultaneous optimization 

4   Experimental Studies 

In this section, we provide numerical examples to evaluate the advantages and the 
effectiveness of the proposed approach. We deal with the NOx emission process data 
of gas turbine power plant. Till now, almost NOx emission processes are based on 
‘standard’ mathematical model in order to obtain regulation data from control 
process. However, such models do not develop the relationships between variables of 
the NOx emission process and parameters of its model in an effective manner. A NOx 
emission process of a GE gas turbine power plant located in Virginia, USA, is chosen 
in this experiment.[11-13] 

Using NOx emission process data, the regression equation reads in the form 

54321 20893.026365.000235.000322.006709.077341.163 xxxxxy ++++−−=  (6) 

In the sequential and simultaneous optimization process, the number of input 
variables to be selected is confined to the range of two to five (2-4), the number of 
membership bound is two and three (2-3), and the polynomial order of the consequent 
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part of fuzzy rules is chosen from four types, that is Types 1-4. Fig. 3 depicts traces of 
performance indexes when running sequential and simultaneous optimization base on 
HFCGA. 

In Fig. 4, the upper parts of the figure depict cluster groups and central values 
generated through C-Means clustering for each selected input variable, where central 
values are used to design the IG based fuzzy model. They are also used as initial 
apexes of the membership functions in the case of structure optimization in sequential 
method. The lower parts represent the tuned apexes of membership function carried 
out by simultaneous optimization base on HFCGA. Table 1 summarizes the results of 
comparative analysis of the proposed model with respect to other constructs.  

 

Fig. 3. Performance index for sequential method and simultaneous method 

Initial m em bersh ip  functions by HC M  clustering
Tuned  mem bership function  by H FC G A

Initial m embersh ip  functions by HC M  cluste ring
Tuned m em bership function  by H FC G A

          (C) CDP vs. NOx                                                   (D) TET vs. NOx  

Fig. 4. Results of the C-Means clustering and the tuned apexes of the membership functions by 
means of simultaneous optimization method base on the HFCGA 

Table 1. Summary of performance of various intelligent models 

 Performance index Model 
 PI E_PI 

Regression model   17.68 19.23 
Hybrid FR-FNNs [11] 2 (Linear)  0.080 0.190 
Multi-FNN [12] 2 (Linear)  0.720 2.025 
SOFPNN [13] Second layer  0.012 0.094 

Sequential 3 (Quadratic)  0.0117 0.0670 Our model 
Simultaneous 2 (Linear)  0.00043 0.01221 



230 J.-N. Choi, S.-K. Oh, and K.-S. Seo 

5   Conclusions 

In this study, we have developed a simultaneous optimization method for structure 
and parameters of fuzzy inference system that is based on Hierarchical Fair 
Competition-based Genetic Algorithms (HFCGA) and information data granulation. 
The HFCGA is used as optimization algorithm for ANFIS-based fuzzy model. 
Information granulation based on the C-Means clustering helps determine several 
parameters of ANFIS-based fuzzy model such as prototypes to be used in the 
consequence part of the fuzzy rules and the range of search space for parameters of 
premise part being used in HFCGA. Also, the structure and parameter of ANFIS-
based fuzzy model are optimized through simultaneous optimization methodology. 
The experimental studies showed that performance is better than some other previous 
models. The proposed model is effective for nonlinear complex systems, so we can 
construct a well-organized model. 
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Abstract. In this paper, we present a neural network based optimization method 
for solving a kind of quadratic programming problems (QPPs) with equality and 
inequality constraints. The proposed method is appropriate for distributed im-
plementation and can be used as a basic optimization module for managing op-
timization problems of large distributed systems. We test the proposed method 
in a real PC-Network for power system state estimation problem. Several cases 
are considered and obtain some successfully results. 

1   Introduction 

Nearly all the practical network-type systems are large-scale and formed by intercon-
nected subsystems. For such kind of systems, process organization and state control 
are usually very complicated. Typically, a central control center is employed to gov-
ern the operations of the whole system. Currently, since computer communication 
technologies have become more grown-up, decentralized organization and control 
seems to be a tendency. For instance, they are applied on the current deregulated large 
power systems [1] formed by area-like subsystems interconnected through tier lines. 
Quite a few documents that are concerned with decentralized control algorithms for 
maintaining the stability of the system have been published [2], [3]. However, there 
are few documents related to distributed algorithms for solving optimization problems 
of large-scale power systems. Presenting a neural network based optimization method 
to handle a larger rank of optimization problems is the purpose of this paper. In this 
paper, we assume the considered large-scale system is formed by n  interconnected 

subsystems [7]. Let ix  and 
bi

x  denote the states vector and the boundary states vec-

tor of subsystem i , and 
bi

x  denotes the boundary states vector of the other subsys-

tems connecting with subsystem i . A function )(xJ  is said to be block additive if 

)(xJ  can be expressed as ∑ =

n

i iii b
xxJ

1
),( . 

A kind of QPPs of the following form is the object problem of this paper: 
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subject to 

i i iE x c= , 1, 2,...,i n= , (1b) 

i i ix x x≤ ≤ , 1, 2,...,i n= , (1c) 

where the matrix iiD  is diagonal block sub matrix of D , D  denotes the Hessian of 

the objective function in (1a) and is positive definite, ir  and 
bi

r  are constant vectors, 

iE  is a full-rank real matrix, and ic  is a constant vector. (1b) denote the equality 

constraints, and inequality constraints (1c) denote the bounded constraints on the 

states such that the vectors ix  and ix  denote the upper and lower limits of each 

subsystem’s states ix , respectively. We see that the objective function in (1a) is 

block additive. The paper is organized in the following manner. Section 2 presents 
the neural network based optimization method for solving the QPPs (1a)-(1c).  The 
application examples and simulation test results are given in Section 3.  Finally, we 
conclude this paper in Section 4. 

2   Solution Method 

2.1   The Duality Problem Formulation 

The dual problem of (1a)-(1c) can be stated as 

)(max λφ
λ

, (2) 

where the dual function is 
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1
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T
iiii

T
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x
cxExrxrxDx

bb
λλφ , (3) 

),,,( 21 nλλλλ …= , is the vector of Lagrange multiplier, and Γ  denotes the set of 

inequality constrains, that is, },,2,1,{ nixxxx iii …=≤≤=Γ . 

2.2   The Neural Network Based Optimization Method 

The neural network based optimization method for solving (2) stated in the following: 

nitdttt iii ,,2,1),()()()1( …=+=+ λαλλ , (4) 

where t  is the iteration index, )(tα  is a weighting, and the increment vector 

))(,),(()( 1 tdtdtd nλλλ …=  is the solution of the following quadratic approxi-

mate problem of (2) at :)(tλ  



 A Neural Network Based Optimization Method for a Kind of QPPs and Application 233 

1
max ( ( ))
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λ λ φ λ λΦ + ∇ . (5) 

The matrix Φ  is given by 
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where the block sub matrix iΦ  is selected as 

1 T
i i ii iE D E−Φ = − . (7) 

The ))(( tλφ∇  in (5) can be computed by the following [4]: 
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where ))),((ˆ,)),((ˆ())((ˆ 1 txtxtx n λλλ …=  and Eq. (8) can be decomposed into n  

independent sets of linear equations: 

ˆ ( ( )) ( ( ))
i i i it E x t cλ φ λ λ∇ = − ,        ni ,,2,1 …= . (9) 

The )(tdλ  can be obtained by solving the following [4]: 

))(( )( ttd λφλ −∇=Φ , (10) 

which can be decomposed into n  independent sets of linear equations 

( )  ( ( ))
ii id t tλλ φ λΦ = −∇ ,  1, 2, ,i n= … . (11) 

Computation of ))(( t
i

λφλ∇ . This can be achieved using the following two-phase 

algorithm [5], [6]: 
 
Phase 1: Solve the following unconstrained minimization problem 
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using a PBSGDS method [7] to obtain 1( ( )) ( ( ( )), , ( ( )))nx t x t x tλ λ λ= … . 
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Phase 2: Project ))((~ tx λ  onto Γ  where 1
n
i i=Γ = ∪ Γ  }{ iiiii xxxx ≤≤=Γ , 

and the resulting projection )))((ˆ,)),((ˆ())((ˆ 1 txtxtx n λλλ …=  computed by 
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2.3   Algorithm of the Proposed Method 

The minimization (12) can be rewritten as follows: 
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which is a block additive unconstrained optimization problem. We define 
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and then 

∑ =
= n

i iii b
xxJxJ

1
),()( ， (16) 

which denotes the objective function of (12). 

Weighting determination. The weighting )(tα  in (4) can be chosen by the central-

ized Armijo’s rule [4]. We define 

)))((ˆ , ))((ˆ())(( txtxJt
biiii λλλψ = . (17) 

From the definition of iJ  and iψ  lead to the following: 
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n

i
i λψλφ ∑

=

= . (18) 

The centralized Armijo’s rule [4] sets the weighting )(tα  to be )(tmβ  where )(tm  

is the smallest nonnegative integer m  for which the following condition holds 
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where scalar 0>ρ . 
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Algorithm. The neural network based optimization algorithm for solving the QPPs. 
For every subsystem i, i=1,…,n 

Step 0: Set ρ , β  initial value (0)iλ , 0t =  , 0m = . Calculate iΦ  by (7). 

Step 1: Use the PBSGDS method [7] to solve (12) and obtain ))((~ txi λ . 

Step 2: Calculate ))((ˆ txi λ  from (13). 

Step 3: Compute ))(( t
i

λφλ∇  by (9). 

Step 4: Compute )(td iλ  by (11) and calculate 
2

2
)(td iλ . 

Step 5: Calculate ))(( ti λψ  by (17). 

Step 6: Send the values of ))(( ti λψ  and 
2

2
)(td iλ  to the central computer. 

Step 7: Check whether the inequality (19) holds and send the result to each subsystem. 

Step 8: If (19) holds, set )()()1( tdtt i
m

ii λβλλ +=+ , go to step 9; otherwise, set 

1+= mm , update )()()( tdtt i
m

ii λβλλ +=  and go to Step 1. 

Step 9: If ελα ≤
∞

)()( tdt , ix  is the solution; otherwise, set 1+= tt  and go to 

Step 1. 

3   Application of the Neural Network Based Optimization Method 

3.1   The Constrained Weighted Least Squares Problem (CWLS) [8] 

The constrained state estimation problems are a kind of CWLS problems in its exact 
formulation and can be formulated as QPPs [9]. The IEEE 118-bus with eight subsys-
tems is used for our test system and we use eight areas PC-Network as our experimen-
tal computer network. 

3.2   Test Results 

The initial values of states are all 1.0 p.u. for voltage magnitudes and 0 radians for 

phase angles, 0.95β = , 0.90ρ = , (0) 0iλ = , 1, 2, ,i n=  and the termination 

criteria are set 001.0≤ε  in all cases. We choose four different cases of QPPs in-
cluding different numbers of equality constraints (e.c.) and inequality constraints 
(i.c.); Case (a) 60 e.c., 88 i.c., Case (b) 80 e.c., 98 i.c., Case (c) 100 e.c., 108 i.c, and 
Case (d) 120 e.c., 118 i.c., and the total numbers of variables are 236 in all cases. To 
show the efficiency, we compare with the existing state-of-the-art parallel algorithm 
for QPPs [10]. The paper dealt with a parallel implementation of an interior point (IP) 
method which uses the preconditioned conjugate gradient (PCG) algorithm as the 
inner solver. We abbreviate this method as IPPCG algorithm. Based on parallel ap-
proach, we used our algorithm and the IPPCG algorithm to solve the same QPPs in 
the IEEE 118-bus with eight subsystems with the same initial condition and stop  
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criteria. We find that the speed up ratio of our algorithm exceeds about 22.18, 23.82, 
25.91, and 27.65 times over than the IPPCG algorithm in Cases (a)-(d), respectively, 
in solving the QPPs in the IEEE 118-bus system. Furthermore, we find that, the com-
putational efficiency of our method represents better results while the numbers of 
equality and/or inequality constraints are increasing. This addresses that the proposed 
algorithm is efficient for handling the QPPs with large number of equality and  
inequality constraints. 

4   Conclusion 

We presented a neural network based optimization method for solving a kind of QPPs 
with block additive objective function. The speed-up effect was observed when we 
implemented the proposed algorithm on a real eight areas PC-Network. Furthermore, 
the computational efficiency of our method represents better results while the  
numbers of equality and/or inequality constraints are increasing. 
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Abstract. Multilayer perceptron networks have been successfully trai-
ned by error backpropagation algorithm. We show that Particle Swarm
Optimization(PSO) with minimum velocity constraints can efficiently
be applied to train multilayer perceptrons to overcome premature con-
vergence and alleviates the influence of dimensionality increasing. The
experiments of two multilayer perceptrons trained by PSO with mini-
mum velocity constraints are carried out. The result clearly demonstrate
the improvement of the proposed algorithm over the standard PSO in
terms of convergence.

1 Introduction

Multilayer perceptron is one of the most widely used neural networks for pat-
tern classification and function approximation, which typically consists of a set
of an input layer of source nodes, one or more hidden layers of computation
nodes, and an output layer of computation nodes [1]. The input signal prop-
agates through the network in a forward direction layer by layer. The actual
response of the network is subtracted from a desired response to produce an er-
ror signal which is then propagated backward through the network. The synaptic
weights are adjusted to make the actual response of the network move closer to
the desired response. Multilayer perceptron is generally trained by backpropaga-
tion algorithm [2,3,4], an approximate steepest descent algorithm in which the
performance index is mean square error.

However, the basic backpropagation training algorithm is too slow for many
practical applications. There are considerable researches on methods to accel-
erate the convergence of the algorithm [5,6,7]. The storage and computational
requirements of these training algorithms are different and suffer from the disad-
vantage that none of them is suitable for pattern recognition as well as function
approximation under all conditions all the time.
� This work was supported by National Science Foundation of China under Grant
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A number of research efforts have shown that Particle Swarm Optimiza-
tion(PSO) is another tool for training neural networks more effective than back-
propagation training algorithms [8,9,10]. Gudise [11] proved that the feedforward
neural network weights converge faster with the PSO than with the backpropaga-
tion algorithm by comparing PSO with backpropagation for training feedforward
neural network learning a nonlinear function. However, the performance of PSO
deteriorates as the dimensionality of search space increases which is a common
situation for complex neural networks. In high dimension problems, swarm parti-
cles are attracted to local minimum easily, thus get into premature convergence.
This paper proposes a minimum velocity threshold to control the velocity of
PSO in order to overcome premature convergence problem effectively.

The rest of this paper is organized as follows. Section 2 describes canonical
particle swarm optimization algorithm briefly. Our proposed PSO with minimum
velocity constraints is discussed in Section 3. Section 4 presents the experiments
and their results. The conclusions are given in section 5.

2 Canonical Particle Swarm Optimization

The particle swarm optimization algorithm was originally developed by Eberhart
and Kennedy [12,13] simulating some swarming behaviors observed in flocks of
birds, schools of fish, or swarms of bees, and even human social behavior. Each
particle represents a candidate solution to the optimization problem and moves
with an adaptable velocity within the search space, and retains in its memory
the best position it ever encountered.

In a PSO system, a swarm of particles fly through the real-number space. The
position of a particle is influenced by the best position visited by itself and the po-
sition of the best particle in its neighborhood. Assume in an n-dimensional search
space, S ⊂ �n, a particle is an n-dimensional vector, and the size of the swarm
is m. The ith particle is denoted as Xi = (xi1, xi2, · · · , xin)� ∈ S. Its velocity is
also an n-dimensional vector Vi = (vi1, vi2, · · · , vin)� ∈ S. The previous best po-
sition of the ith particle so far is a point in S, denoted as Pi = (pi1, pi2, · · · , pin)�.
The best position among the swarm so far is stored in a vector P̃ , and its jth di-
mensional value is P̃j . According to Eberhart and Kennedy [12], the velocity and
position will be updated after each iteration by equation (1) and (2), respectively.

vij(t + 1) = wvij(t) + c1r1(pij(t) − xij(t) + c2r2(p̃j(t) − xij(t))). (1)

xij(t + 1) = xij(t) + vij(t + 1). (2)
where
w: the inertia factor, manipulating the impact of the previous history of

velocities on the current velocity.
c1, c2:positive constants, referred as cognitive and social parameters, respectively.
r1, r2: random numbers, uniformly distributed in [0,1].
j: index of the particle that attained the best previous position among all

the individuals of the swarm.
t: the iteration counter.
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3 Particle Swarm Optimization with Minimum Velocity
Constraints

The particles flying in the search space may be failure to converge to the global
minimum, in which the particles may go out of the search space when the velocity
of particles increases rapidly; the particles may nearly stop when the velocity of
particles decreases rapidly; or the particles cannot go out of the locally optimal
solutions [14,15]. In order to guide the particles effectively in the search space,
the maximum moving distance during one iteration must be clamped in between
the maximum velocity [−vmax, vmax], which can be described as follows:

if (vij > vmax) or (vij < −vmax)

vij = sign(vij) × vmax

where variable vmax is the maximum velocity threshold.
Some previous studies have shown that the performance of PSO deteriorates

as the dimensionality of the search space increases [14,15], in which PSO easily
get in trap of premature convergence: when the algorithm stops, it may not
converge to the global minimum. To alleviate the impact of dimensionality, we
propose a minimum velocity threshold based on the average velocity of all the
particles so far. The proposed strategy can drive those struck particles and let
them explore better solutions in the search space. The velocity with minimum
velocity constraints is adjusted as,

if (vij < vmin) and (vij > −vmin)

vij = sign(vij) v

where variable vmin is the minimum velocity threshold, v is the average velocity

of all the particles so far calculated as v = 1
M·N

M∑

i=1

N∑

j=1

(| vij |) (M is the size of

the swarm, and a particle with N dimensionality).

4 Experiments

Training a multilayer perceptron to find a set of connection weights to minimize
output errors is not a trivial problem because it is nonlinear and dynamic, which
equals to searching a solution in a high dimensionality PSO space. To show the
efficiency of the proposed strategy, two groups of comparative experiments are
carried out. In experimental group 1, four continuous benchmark functions, i.e.
De Jong function, Griewangk function, Rastrigin function and Sum of different
powers function, are used to test the proposed PSO and the traditional PSO.
On the other hand, two comparative experiments in experimental group 2 are
designed for training two perceptrons with different layers. The one is for training
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a 2-layer perceptron to solve the nonlinear XOR classification problem, and
the other one is for training a 3-layer perceptron to address a more complex
classification problem. The objectives of the two groups of experiment are to
compare the performance of the standard PSO with our proposed method.

4.1 Simulations on 4 Continuous Benchmark Functions

The first part of the simulation, as shown in fig.1, shows the setting result of the
proposed PSO in comparison with the traditional continuous PSO, applied to
four famous benchmark functions: De Jong function, Griewangk function, Ras-
trigin function and Sum of different powers function [16], in which De Jong’s
function and Sum of different powers function are unimodal with single mini-
mum, while the other two functions are highly multimodal with multiple local
minimua. The 4 benchmark functions are defined as follows,

1) De Jong’s function 1

f1(x) =
n∑

i=1

x2
i

−512 ≤ xi ≤ 512
Global minimum: xi = 0 f(x) = 0

2) Rastrigin’s function 2

f2(x) = 10 · n +
n∑

i=1

(x2
i − 10 · cos(2 · π · xi))

−512 ≤ xi ≤ 512
Global minimum: xi = 0 f(x) = 0

3) Griewangk’s function 3

f3(x) =
n∑

i=1

x2
i

4000
−

n∏

i=1

cos(
xi√

i
) + 1

−600 ≤ xi ≤ 600
Global minimum: xi = 0 f(x) = 0

4) Sum of different powers function 4

f4(x) =
n∑

i=1

|xi|(i+1)

−1 ≤ xi ≤ 1
Global minimum: xi = 0 f(x) = 0

Figure 1 illustrates the mean best function values for the 4 functions with two
different dimensions, i.e. 30-D and 60-D, using the proposed PSO and the tradi-
tional PSO. It is evident that the proposed PSO performance outperforms the
traditional PSO in terms of convergence speed and searching ability. Moreover,
the proposed PSO overcomes the premature convergence problem and alleviates
the influence of dimensionality increasing.
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Fig. 1. Performance comparison the proposed PSO with the original one on
4 functions (a1)30-D DeJong function performance, (a2)60-D DeJong function
performance,(b1)30-D Rastrigin function performance, (b2)60-D Rastrigin function
performance,(c1)30-D Griewangk function performance, (c2)60-D Griewangk function
performance,(d1)30-D Sum of different powers function performance, (d2)60-D Sum of
different powers function performance
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4.2 Training a 2-Layer Perceptron for XOR Problem

The 2-layer perceptron for XOR classification is displayed in Fig. 2. The net-
work has two inputs p1, p2 and one output a. The output a returns 1 if the
two inputs are the same, i.e. the input vector is (0, 0) or (1, 1), while the out-
put a returns 0 if the two inputs are different (0, 1) or (1, 0). The connection
weights and biases notated as S1, S2, · · ·S9 will be calculated by training the
XOR network. By using PSO approach, all the particles each represented by a

Fig. 2. The 2-layer perceptron for XOR problem

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Interation

Fi
tn

es
s

Minimum Velocity Constrained PSO
Standard PSO

Fig. 3. Performance comparison between standard PSO and proposed PSO

vector with 9 elements fly through the 9-dimensional hyperspace to search for an
optimal solution. The comparative experiments use a population of 20 particles
and the results are the best answers among 10 tries with each algorithm. The
Fig. 3 clearly shows that the great improvement of proposed PSO in terms of
convergence which efficiently prevents premature convergence and converges to
the global minimum of the output error term successfully and quickly.

4.3 Training a 3-Layer Perceptron for a Complex Pattern
Classification

Another experiment is designed to train a 3-layer perceptron to solve a rela-
tively complex classification problem as shown in Fig. 4, in which the light circles
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Fig. 4. A complex nonlinear classification problem

Fig. 5. The 3-layer perceptron for the complex nonlinear classification problem
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Fig. 6. Performance comparison between standard PSO and proposed PSO

represent one class and the dark circles represent another class. The 3-layer per-
ceptron network is described in Fig. 5. For training this perceptron network
using PSO, it is necessary that the particles fly through 37-dimensional hyper-
space. As a result, each particle is initialized with position and velocity vectors
of 37 elements. The size of the particles in this experiment is also set to 20 and
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the comparative experiment between our proposed PSO and the standard PSO
is carried out with 10 tries. The experiment results are shown in Fig. 6.

The dimensionality of search space, training this perceptron for solving the
complex classification problem, is much higher than that for training the XOR
perceptron network. Compared with Fig. 3, the performance of the standard
PSO in Fig. 6 degrades remarkably than that in Fig. 3 due to the dimensionality
increasing, while the influence of the high dimensionality for PSO with minimum
velocity constraints is quite little.

5 Conclusions

A particle swarm optimization with minimum velocity constraints for train-
ing multilayer perceptrons is proposed in this paper. Comparative experimental
results have clearly shown that the proposed PSO is nonsensitive to the dimen-
sionality increasing in training multilayer perceptrons for nonlinear classifica-
tion problems and can overcome premature convergence significantly. Further
research on PSO with velocity constraints will be carried out in the future.
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Abstract. In this paper, p-n junction formation using screen-printed 
metallization and co-firing is used to fabricate high-efficiency solar cells on 
single-crystalline (SC) silicon substrates. In order to form high-quality contacts, 
co-firing of a screen-printed Ag grid on the front and Al on the back surface 
field is implemented. These contacts require low contact resistance, high 
conductivity, and good adhesion to achieve high efficiency. Before co-firing, a 
statistically designed experiment is conducted. After the experiment, a neural 
network (NN) trained by the error back-propagation algorithm is employed to 
model the crucial relationships between several input factors and solar cell 
efficiency. The trained NN model is also used to optimize the beltline furnace 
process through genetic algorithms. 

1   Introduction 

To obtain high-quality contact formation, both screen-printed metallization and  
co-firing in an infrared (IR) beltline furnace have played important roles in the high-
efficiency photovoltaic industry. P-N junction formation has not only influenced 
crucial electrical characteristics (such as efficiency, open circuit voltage, and fill 
factor), but also manufacturing cost and time. 

Even though there are several disadvantages (such as high grid shading, junction 
shunting, low metal conductivity, and high contact resistance), screen-printing 
technology is used extensively for commercial solar cell manufacturing [1]. Screen-
printed metallization makes p-n junction contact formation more rapid, simple, and 
economical compared to the conventional methods such as photolithography, buried-
contact, and silicon ribbon technologies. Today, a matter of concern is how to 
alleviate high contact resistance and junction shunting [2-3]. 
                                                           

 This work was supported by the Korea Research Foundation (Grant KRF-2006-013-D00242). 
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In order to make the co-firing process more stable and controllable, a systematic 
characterization experiment to determine and clarify the relationship between process 
parameters and global optimization using variable parameters is necessary. 

2   Experiments 

To fabricate n+-p-p+ SC silicon solar cells, p-type, 1.5~2.0 Ω-cm, square textured float 
zone (FZ) wafers were employed. Saw damage removal by potassium hydroxide 
(KOH) etching was performed for 3 minutes at 85°C followed by a cleaning step. 
Before the emitter diffusion process with phosphoric acid on the surface, in order to 
acquire a hydrophilic feature, sulfuric acid (H2SO4) was oxidized uniformly. 
Phosphoric acid was then deposited on the front surface of the wafers by spin coating. 
The coated wafers were fully annealed in a ceramic roller hearth furnace with no 
metal contamination and eight heating zones, and this was followed by parasitic 
junction removal through edge isolation. After emitter formation by diffusion, 
phosphosilicate glass (PSG) was etched from the surface in a dilute HF solution. The 
next step was depositing a SiNx single layer antireflection coating (ARC) by low-
frequency (50 KHz) plasma-enhanced chemical vapor deposition (PECVD) to 
alleviate reflection losses and to enhance surface and bulk passivation. Ag and Al 
paste were then screen-printed on the front and back surface, respectively. Lastly  
co-firing was conducted in an IR beltline furnace with three dissimilar temperature 
zones to accomplish photo generation in a light-absorbing surface and separation of 
electrons and holes. 

2.1   Statistical Experimental Design 

The typical experimental method of collecting large quantities of data while holding 
each factor constant until all possibilities have been tested is an approach that 
becomes impossible as the number of factors increases. In addition, the role of each 
step in determining output response is generally not clear. Statistical experimental 
design techniques can be used to examine all possible combinations of a set of factors 
within a process at once and observe the data collectively. These techniques are 
highly efficient, and the structured approach for characterization using a relatively 
small number of experiments significantly improve process performance and makes 
the process more robust [4-5]. 

During the co-firing process, a set of experimental data was acquired from 24 full 
factorial designs with 3 center points, 8 axial points, and 5 random points to 
characterize process variations with four controllable input factors, consisting of the 
three different zone temperatures and belt speed (all of which have two levels). 
Random samples were fabricated for the purpose of verification. 

2.2   Neural Networks 

NN methodology has recently emerged as a powerful alternative for assisting with 
developing models with noisy and/or nonlinear data and establishing relationships 
between highly complicated input and the output parameters [6]. NNs consist of 
several layers of neurons, each of which are interconnected in such a way that 



248 S. Lee et al. 

information is stored in the weights assigned to the connections. The NN learning 
system is designed to determine appropriate sets of interconnection weights that 
facilitate the activation of the neurons to achieve a desired state related to a given set 
of sampled patterns. 

By forward propagation, the output of each neuron is calculated by summing the 
weighted input connections of the previous layer and then filtering this sum through a 
sigmoidal transfer function. Error back-propagation occurs when the acquired error in 
between the predicted output of the network and experimental one is used to generate 
feedback toward the network for learning [7]. This is a gradient descent approach to 
minimize the error of the output computed by the network. The weights are initially 
randomized but they are updated to minimize an error function in back-propagation. 

Performance evaluation for the trained neural network is performed in terms of the 
root mean squared error (RMSE), which is given by: 
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where n is the number of trials, yi is the measured value, and ŷi is the predicted value.  
The performance the network depends on both the number of neurons in each layer 

and parameters such as learning rate, momentum, and training tolerance. A typical 
multilayered neural network structure is depicted in Fig. 1 [8]. 

 

Fig. 1. A multilayered network 

Table 1. Parameters in training network 

Parameters Networks Setting 

Learning Rate (η) 0.1 

Momentum (α) 0 
Training Method Vector 
Maximum Iterations 100,000+ 
# of Neurons in the 1st / 2nd  
Hidden Layer 4 / 4 
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For the purpose of establishing and optimizing models, the Object-Oriented Neural 
Network Simulator (ObOrNNS) software tool, which was developed by the Intelligent 
Semiconductor Manufacturing group at the Georgia Institute of Technology, was 
employed in this study. Training was performed on 70% of the experimental data, and 
the remaining 30% were used to test the performance of the trained networks. Table 1 
illustrates the parameters used for training.  

2.3   Genetic Algorithms 

Genetic algorithms (GAs) are widely employed in a variety of fields to determine 
optimal set points in processes requiring optimization. They are parallel and 
stochastic search methods that generate optimal recipes for desired target responses 
[10]. A GA mimics the natural evolutionary process, exhibited by a superior solution 
evolving within the population while inferior solutions deteriorate with each 
generational progression.     

Randomly generated solutions are encoded to binary strings (chromosomes). Each 
string is evaluated with a fitness function to determine if the termination criteria for 
optimality are met. Selection and operations such as crossover and mutation then 
generate new individuals. The chromosomes are directly decoded and evaluated with 
the fitness function. More fit solutions are more likely to be selected and have more 
chance to reproduce.  

3   Results and Discussion 

3.1   Response Surface Methodology 

After NN process models were established, response surfaces were generated to 
illustrate the relationships between the input parameters and the responses. Any two 
of the four process parameters were simultaneously varied, while the remaining 
parameters were fixed at their mid-range values. 

For each model, a temperature variation was observed in zone 3 which has a 
predominant effect on cell efficiency. The plots in Fig. 2 a) and b) indicate that an 
increase or decrease in zone 3 temperature results in higher cell efficiency. In 
addition, high efficiency was observed at belt speeds at the approximate middle range. 
To highlight the effect of zone 3 temperature on cell efficiency, the temperature in 
zone 3 and belt speed were fixed at 845°C, 870°C at 115 rpm, respectively.  The 
response surface plots at the fixed values are depicted in Fig. 2 c) and d). 

3.2   Optimization Using GAs 

Using NN models in combination with GAs, the ideal input parameters that lead to 
high-quality contact formation can be determined. The GA parameters and 
synthesized recipe for optimizing the co-firing process are listed in Tables 2 and 3, 
respectively. 
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Fig. 2. Response surface plots for efficiency 

Table 2. GA parameters 

Parameters Networks Setting 
Weights 1.0 
Population Size 100 
Maximum Generations 100 
Minimum Error 0.05 
Probability of Crossover 0.65 
Probability of Mutation 0.01 

Table 3. Recipe results 

Zone 1 Temp. Zone 2 Temp. Zone 3 Temp. Belt speed Efficiency 
557.24 (°C) 821.45 (°C) 847.52 (°C) 117.61 (rpm) 15.81 (%) 

3.3   Verification 

In order to verify the performance of GA in finding the optimal process recipe, three 
additional verification experiments were implemented using the optimal recipe shown 



 Characterization and Optimization of the Contact Formation 251 

in Table 3. One wafer was broken by over-firing, but the measured efficiency of the 
other two wafers was 15.18% and 15.69%. The average efficiency of these two, 
15.44%, is 3.9% higher than the average efficiency of the previous 32 DOE 
experiments, 14.86%. 

4   Conclusions 

In summary, co-firing experiments were conducted using a central composite 
experimental design. Four parameters associated with cell efficiency were 
manipulated, and their effects were investigated using NN models. Mid-range belt 
speed at fixed middle values of zone 1 and zone 2 temperatures resulted in a high-
efficiency cell. Optimization of the co-firing process conditions was successfully 
achieved using genetic algorithms, and performance was verified by additional 
experiments. The verification experiments showed an average of 15.44% in 
efficiency, which is 3.9% improvement compared to the previous DOE experiments. 
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Abstract. In this paper, an integrated approach of neural network and 
bidirectional particle swarm is proposed. The neural network is used for 
obtaining the relationships between decision variables and the measures of 
interest while the bidirectional particle swarm is utilized to perform the 
optimization where multiple objectives and multiple constraints are presented. 
Finally, the proposed algorithm is applied to solve a process parameter design 
problem in ceramic tile manufacturing. The results showed that bidirectional 
particle swarm is an effective method for solving multi-objective optimization 
problems, and an integrated approach of neural networks and bidirectional 
particle swarm can be used in solving complex process parameter design 
problems.  

1   Introduction 

A proper selection of process parameters has always been a critical issue in ceramic 
tile manufacturing.  Even at the present time, traditional practice still done more or 
less by human where engineers/operators base their decisions on individual 
experience, skill, intuition, and attempt to optimize the parameters via trial and error. 
Nevertheless, this approach nearly always results in delay and causes considerable 
wastes, and there is no guarantee that the selected parameters are truly optimal for 
there is no analytical description of process dynamics. In most cases, a number of 
crucial quality characteristics of tiles, which are influenced by numerous process 
parameters, must be optimized simultaneously. Consequently, the problem becomes a 
complex multi-objective optimization dilemma. 

Traditionally, the methods for handling multi-objective problems has always involve 
the use of either the desirability function or the loss function to scale down multi-
objective problems into a single objective problem prior to optimization. These 
approaches, however, constitute some problems. Primarily, the approaches require that a 
great deal of preference information of the decision maker be extracted before solving 
the problem. On the other hand, some of this information is difficult to present 
mathematically and the articulation is very complex to implement in practice. Secondly, 
as the multi-objective problems are scaled to a single objective problem before 
optimization, the result produces a single Pareto optimum for each run of the 
optimization process and the result is highly sensitive to the weight vector used in the 
scaling process. 
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Since its introduction in 1995, particle swarm optimation (PSO) has gained its 
reputation as a viable tool for solving multi-objective problems [1]. Accordingly, PSO 
is a competent alternative over other stochastic and population-based search 
algorithms, especially when dealing with multi-objective optimization problems, 
where the ability to efficiently locate the Pareto front of the problem is critically 
required.  

In this study, an integrated approach of bidirectional particle swarm optimization 
(BPSO), an extended version of PSO and neural network is proposed as an alternative 
means for solving optimization problems. Here, neural network is utilized for 
modeling the relationships between decision variables and the performance measures 
of interest while the BPSO is used to compute Pareto optimal non-dominated 
solutions. Finally, the proposed approach is applied to solve a process parameter 
design problem in ceramic tile manufacturing where an optimization of multi-
objectives with multi-constraints is involved.  

2   Previous Works 

Process parameter optimization has been and continues to be an active research area. 
Principally, [2] developed a hybrid system integrating fuzzy logic, neural networks 
and algorithmic optimization to optimize ceramic slip casting process. Afterward, [3] 
applied multi-objective genetic algorithm approach for optimizing surface grinding 
operation. Subsequently, [4] presented an application of genetic algorithm to the 
optimization of metal cutting process. In addition, [5] proposed an integrated 
optimization approach of fuzzy theory, neural network, exponential desirability 
function, and genetic algorithm for determining the optimal parameter setting in the 
thin quad flat back (TQFB) molding process. Further, [6] presented an approach using 
multi-objective particle swarm optimization to solve economic load dispatch problem 
in power system. As well as [7] proposed an approach integrating neural network, 
exponential desirability function, and genetic algorithm to solve process parameter 
design problems for fibreoptic industry. Finally, [8] developed an integrated system of 
neural network and swarm intelligence to optimize machining parameters in hard 
turning processes. 

3   Multi-Objective Optimation (MOO) 

Many optimization problems in engineering applications have always involve 
simultaneous optimization of multiple objectives. A general form of multi-objective 
optimization problems can be defined as: 
 
 Minimize  f(x) = (f1(x), f2(x)… fk(x))   
 Subject to gj(x) ≤ 0 for j = 1, 2… p  
 and  hj(x) = 0 for j = p +1,…, m 
   x = (x1, x2… xn) ∈  Rn    
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In this formulation; fi(x) denotes the objective function, gi(x) and hi(x) indicate 
respectively the inequality and equality constraints and the decision variables are 
shown with the vector x.  

Unlike uni-objective optimization (UOO) where only one objective is optimized, 
MOO problems often involve the presence of conflicting objectives, where 
improvement in one objective may cause deterioration in another objective, and the 
task is, therefore, to find solutions which balance such trade-offs. A balance is 
achieved when a solution cannot improve any objective without degrading one or 
more of the other objectives. These solutions are referred to as non-dominated 
solutions, of which many may exists. Consequently, the ultimate goal when solving 
MOO is to produce a set of solutions that balance the trade-offs between such 
conflicting objectives. This set of solution is called a Pareto optimal set. The 
corresponding objective vectors in objective space, on the other hand, are referred to 
as the Pareto font.  

Conventionally, there are numerous ways to solve MOO problems. However, the 
most common approach is to scale a set of objectives into a single objective by 
multiplying each objective with weight parameters which represents the relative 
importance among the objective and then solve the problem by standard uni-objective 
optimization methods, such as gradient-based methods, evolutionary algorithms, and 
etc. However, such approach is not very practical since the optimization results 
significantly depend on the selection of weight parameters, which in most cases, is 
very difficult to determine properly.  

4   Particle Swarm Optimation (PSO) and Bidirectional Particle 
Swarm Optimation (BPSO) 

Particle Swarm Optimization was first introduced by Kennedy and Eberhart, which 
was driven by the social behavior of a bird flock and can be seen as a population 
based stochastic optimization algorithm. In PSO, the group is a community composed 
of individuals called particles, and all particles fly around in a multidimensional 
search space. During flight, each particle adjusts its own “flying” according to its own 
flying experience as well as the flying experience of neighboring particles. 

Let x and v denote a particle position and its velocity in a search space, 
respectively. Therefore, the ith particle is represented as Xi = (xi1, xi2… xiD) in the  
D-dimensional search space. The best previous position of the ith particle is recorded 
and represented as Pi = (pi1, pi2… piD). The index of the best particle in the group, i.e. 
the particle with the smallest function value, is represented by the Pg = (pg1, pg2… 
pgD), while the velocity of the ith particle is represented as Vi = (vi1, vi2… viD). The 
modified velocity and position of each particle can be manipulated according to the 
following formulas: 

vid = wvid + c1r1(pid - xid) + c2r2(pgd - xid) .                               (1) 

xid = xid + χ vid .                                                    (2) 
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Where c1 and c2 are positive constants and constrain the velocity toward global and 
local best, χ is a constriction factor which controls and constricts the velocity’s 
magnitude; w is the inertia weight; and r1 and r2 are two random numbers within the 
range [0,1]. 

Nevertheless, this basic version of PSO is not suitable for solving MOO problems 
because there is no absolute global minimum (or maximum) in a multi-objective 
problem, but rather a set of non-dominated solutions. Recently, a number of 
modifications on PSO have been made to solve MOO problems. Introduced in [9], a 
method that use weighted aggregation technique with fixed adaptive weights to 
convert multiple objectives into a single objective. The methods need to run K times 
to produce K estimated Pareto optimal point. Presented in [10], a dynamic 
neighborhood method which use one-dimensional optimization to deal with multiple 
objectives. However, this algorithm is suitable to the two objectives optimization 
only. Presented in [1], a MOPSO (multi-objective particle swarm optimization) which 
maintains previously found non dominated solutions and used them to guide particle’s 
flight. Nevertheless, this method is difficult to maintain the diversity of solutions with 
the increment of constraints and variables.   

In this study, bidirectional particle swarm optimization (BPSO) methodology 
proposed in [11] is adopted for its documented ability to provide solutions with good 
distribution and its robust constraint-handling mechanism.  

Generally, the basic principle of BPSO is to guide each particle to search 
simultaneously in its neighborhood and the region where particles are distributed 
sparsely by combining the isolated searching strategy and neighborhood searching 
strategy.  

In addition to the standard population POP, an external archive (regarded as 
GBEST) is used for storing the global best particles found by the algorithm. Once 
better particles are found, they are entered into the archive and existing members of 
the archive are removed if they are dominated by the new particles. The use of such 
historical archive of previously found non-dominated vectors would encourage 
convergence towards globally non-dominated solutions.  

In this approach, two offspring particles are derived from each particle. For the i-th 
particle, xi is its location and v i is its velocity. Assume child1 and child2 are derived 
from the i-th particle, their location and velocity are denoted as xl, vl, xr, vr, and 
 

xl = xr = xi 

vl = vr = vi 
 

In order to maximize the spread of the obtained non-dominated font, here the 
isolated point searching strategy and neighborhood searching strategy are used for 
selecting a global optimum for the child1 and child2 respectively. Then the velocity 
and location of child1 and child2 are updated with formula (1) and (2). If the new 
solutions x'l and x'r are feasible and not dominated by any solution in GBEST, 
GBEST is updated by adding x'l and x'r to it and eliminate the solutions dominated by 
x'l and x'r.  

When the offspring particles finish their flying, the i-th particle also should be 
updated. If x'l is feasible, then the i-th particle is updated with child1, i.e. 
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xi = x'l    and    vi = v'l  
 

Else it is updated with child2. 
 

Finally, the best previous position (pi) of the i-th particle is updated by comparing 
the Pareto dominance and the constraint violation relation between xi and pi.  
  

To verify its capability, BPSO has been applied to solve SRN problem, suggested 
in [12], which is a two variables problem: 
 
Minimize f1(x) = 2 + (x1 – 2)2 + (x2 – 1)2  
Minimize f2(x) = 9x1 – (x2 – 1)2 
 
Subject to  
 
e1(x) = x1

2 + x2
2 ≥ 225 

e2(x) = x1 - 3x2 + 10 ≤ 0 
 
Where  
-20 ≤ x1 ≤ 20 
-20 ≤ x2 ≤ 20 
 

The Pareto font produced by BPSO is shown in Fig. 1. Here, BPSO is able to 
provide solutions that are consistently spaced and have a good distribution along the 
Pareto front, which validates the potential of BPSO as a viable method for solving 
constrained multi-objective problems. 

 
Fig. 1. Pareto Front Produces by BPSO 

5   Description of the Proposed Approach 

The proposed approach consists of two consecutive stages which include: 

1. Articulation of the relationship between decision variables and performance 
measures of interest. 

2. Computation of the Pareto optimal set. 
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To perform the first stage, Neural Network has been selected as a method of choice 
for its astounding ability to identify arbitrary nonlinear multi-parametric discriminant 
functions directly from experimental data which makes it suitable for applications 
where a mechanistic description of the dependency between dependent and 
independent variables is either unknown or very complex.  

The execution of the second stage, on the other hand, utilizes bidirectional particle 
swarm as an optimization method for its proven ability to provide solutions with good 
distribution even for a constrained MOO problem as discussed and illustrated in the 
previous section.  

Consequently, an integrated approach of neural network and bidirectional particle 
swarm optimization to perform process parameter optimization is proposed. The 
schematic diagram of the algorithm is shown in Fig. 2. 

 

Fig. 2. Algorithm of the Proposed Approach 

The algorithm begins when the neural network is trained with typical back 
propagation (BP) method to articulate the relationships between decision variables 
(input) and performance measures of interest (output) from the given data. Once the 
network is trained, its output is then manipulated by the bidirectional particle 
swarm optimization (BPSO) where the objective functions and constraints are 
defined. As a result, a Pareto optimal set corresponding to the objective function is 
produced.   

6   Experiments and Results 

In this study, the proposed approach is applied to solve a complex process parameter 
design problem in ceramic tile manufacturing. Due to non-availability of experimental 
data, designed data, assuming polynomial relationship between inputs and outputs, 
was used to illustrate the framework of the proposed system. A sample data is given 
in Table 1. 
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Table 1. Sample Data 

% Residue Temperature Pressure Porosity Curvature 

2.5 1204 55 0.23 0.19 
3.5 1200 75 0.43 0.36 
2.9 1198 63 0.30 0.25 
3.2 1201 55 0.23 0.19 
3.4 1204 64 0.31 0.25 

 
The neuron network model for this problem uses %residue, temperature, and 

pressure as inputs to predict porosity and curvature. A feed forward neural network 
with single hidden layer is chosen and trained with Levenberg – Marquardt (LM) 
method for its documented training speed and robustness. Architecture of the network 
is displayed in Fig. 3.   

 
Fig. 3. Neural Network Architecture 

The comparison of predicted and actual data of porosity is shown in Fig. 4. 

 
Fig. 4. Porosity Forecasted by Neural Network 
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Next, the following optimization problem is defined and used with BPSO. 
Decision variables %residue x1, temperature x2, and pressure x3 are constrained within 
the specified ranges.  
 
f1 = Minimize (Porosity) 
f2 = Minimize (Curvature) 
 
Subject to  
e1(x) = x3

2 - 3x2 ≤ 0 
e2(x) = 3x1

2x3 - x2 ≥ 0 
 
Where  
0 ≤ x1 ≤ 4, 
1196 ≤ x2 ≤ 1210, 
55 ≤ x3 ≤ 81 

 
The Pareto front of this problem is shown in Fig. 5. The decision makers may 

select the most optimal conditions among these non-dominated solutions. Some of the 
optimal %residue, temperature, pressure and corresponding porosity and curvature are 
shown in Table 2.  

 

Fig. 5. Pareto Front Produces by BPSO 

Table 2. Selected Optimal Solutions 
 

% Residue Temperature Pressure Porosity Curvature 

0.76 1209.88 55.02 0.22 0.20 
1.19 1209.83 55.02 0.22 0.20 
1.43 1209.89 55.00 0.22 0.20 
2.31 1208.83 55.01 0.23 0.19 
3.09 1209.11 55.01 0.23 0.19 
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7   Conclusions 

This study presents a system integrating neural network with BPSO to obtain optimal 
process parameters in ceramic tile manufacturing. The neural network is utilized for 
modeling the relationships between decision variables and the performance measures 
of interest, while BPSO, on the other hand, is used to compute Pareto optimal non-
dominated solutions. The methodology then is finally applied to solve a complex 
process parameter design problem in ceramic tile manufacturing and a group of 
optimal solutions for the problem are obtained. Once properly developed, such system 
can be used as a tool to bring the quality of product to the desired level. This is the 
important aspect of the research because it is with the "what if" analysis using the 
proposed methodology that the quality engineer can consistently and reliably design 
the process parameters. This eliminates the need for trial and error and ensures an 
acceptable quality level as well as minimizes product waste.  
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Abstract. A policy iteration approach to optimal control problems for
a class of nonlinear stochastic dynamic system is introduced. Some pa-
rameters and nonlinearities of the system are not required to be known
a-priori. An optimality equation is developed based on performance po-
tential. The potential can be estimated by a sample path, and then it is
approximated by RBF neural network. As a result, an on-line algorithm
is proposed by using a sample path of the given control system.

1 Introduction

Optimal control of stochastic dynamic systems is a difficult problem. Because
the exact solution of the Bellman equation can only be obtained under rather
strict restrictions on the system structure, various approximate synthesis meth-
ods have been developed [5], [6]. However, the transition probabilities or the
parameters and nonlinearity have to be known in most of these methods. This
is not amenable to on-line implementation.

An optimal algorithm for the discrete nonlinear stochastic system is pro-
posed in this paper. The main concept with this approach is the performance
potential [2], [3]. With the performance potential, an optimality equation is
established. And an iteration procedure is provided to approximate the opti-
mal solution. The potentials can be estimated by a single sample path without
knowing any other information of the systems. No knowledge about the entire
transition matrix and nonlinearities is needed. To reduce the cost of computing,
radial basis function (RBF) neural networks are used for approximate the poten-
tials and transition probabilities. Compared with the optimal algorithms in the
literatures, our potential based approach can be implemented on-line without
knowing all the system parameters.

2 System Description

Consider a nonlinear stochastic control system of the form

xk+1 = f(xk) + h(xk, uk) + ξk, k = 0, 1, · · · , (1)
� This work was supported by National Natural Science Foundation of China under
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where xk ∈ Rn is the state of the system, the disturbance ξk ∈ Rn forms the
sequence of independent and identically distributed(i.i.d.) random variables, and
u ∈ U is the admissible control input, U is a specified control constraint set of
Rm. The function f(x) is sufficiently smooth and may contain some unknown
information, and h(xk, uk) is known sufficiently smooth function. Associated
with the system (1) is the cost

J = lim
N→∞

1
N

E{
N−1∑

k=0

r(xk, uk)}, (2)

where r : Rn × Rm → R is some suitable given function. The optimal control
problem for system (1) with state feedback, is to find a control action uk =
α(xk) ∈ U such that the performance J in (2) is minimized.

Our control problem of nonlinear stochastic system (1) will be studied in the
framework of Markov process. We begin with some basic definitions of Markov
process that will be needed later.

Let B(Rn) denotes the family of Borel sets in Rn, bB(Rn) is the set of bounded
measurable function with respect to B(Rn). Let P (x, B) be a transition function
and f(x) ∈ bB(Rn), define a linear operator from bB(Rn) to bB(Rn) : Pf(x) =∫

Rn f(y)P (x, dy), such a linear operator is also written as P . For any transition
function P , let e(x) = 1 for any x ∈ Rn, then Pe(x) = 1, ∀x ∈ Rn, or Pe = e.

Suppose that x0, x1, ..., xk, ... is a time-homogeneous Markov chain which
takes values on the space Rn and let P be the one-step transition function
of the Markov chain, i.e., P (x, B) is the probability of xk+1 ∈ B if xk = x,
we set P 1(x, B) = P (x, B) and define recursively the k-step transition function
P k(x, B) by P k+1(x, B) =

∫
Rn P k(y, B)P (x, dy). Then it is easy to verify that

the linear operator of P k(x, B) is the product of P in power k, or P k.

Definition 1. The Markov chain {xk} on Rn is said to be ergodic if there exists
an invariant probability π(B)=πP (B), ∀B ∈ B(Rn) such that limk→∞ ‖P k(x, .)−
π(.)‖ = 0, ∀x ∈ Rn, where ‖.‖ represents the total variation norm on B(Rn).

Then for an ergodic Markov chain, the infinite horizon average-cost J can be
given as follows

J(x) = lim
N→∞

1
N

E{
N−1∑

k=0

r(xk)|x0 = x} =
∫

Rn

r(x)π(dx) (3)

We now return our attention to the nonlinear system (1). We assume that
there exists a initial controller uk = α1(xk) ∈ U for system (1) such that the
performance is bounded. Our objective is to find control sequence αi(.) , i =
1, 2, · · ·, by policy iteration, such that the corresponding performance defined by
(2) improves step by step, or J tends smaller and smaller. While the sequence
{xk} obtained from the system (1) with the control law uk = αi(xk) forms a
time homogeneous Markov chain. By the discussion in [1], if the closed system
formed by the system (1) and uk = αi(xk) is stable, or E(‖xk‖) is bounded,
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then the Markov chain is ergodic with some mild assumption. On the other
hand, the assumption that if the performance J of the system is bounded then
the closed system is stable is usually needed. Since our control law will make the
J improves step by step, boundedness of J can be ensured. Therefore, starting
from the controller uk = α1(xk), we assume that the ergodic condition is always
satisfied in the iteration procedure.

3 Optimization Based on Potential

For ergodic Markov chain {xk} and its transition function P , define P ∗ as follows
P ∗ = limN→∞ 1

N

∑N−1
n=0 Pn. The performance potential g is defined as

(I − P + P ∗)g = r. (4)

Then by the definition 1 and the dominated convergence theorem we have

Lemma 1. P ∗ exists and the following equations are satisfied:

1. PP ∗ = P ∗P = P ∗P ∗ = P ∗, P ∗e = e;
2. Je = P ∗r, PJe = Je;
3. Je = P ∗g, and

Je + (I − P )g = r. (5)

Here J is defined by (3).

Lemma 2. For any r ∈ bB(Rn),

g =
∞∑

k=0

(P k − P ∗)r (6)

is a solution of (4).

(5) is called as the Possion equation. Its solution is only up to an additive
constant, i.e., if g is a solution to (5), then so is g + ce with any constant c.

Let u = α(x) and ũ = α̃(x) be two control laws, P , P̃ and r, r̃ are corre-
sponding transition functions and performance functions respectively. Then, the
following results can be established by the above two lemma.

Lemma 3. The following equation is satisfied:

(J̃ − J)e = P̃ ∗[(r̃ + P̃ g) − (r + Pg)].

Here P and P̃ are the two transition functions defined above, g and g̃ are the
corresponding solution of (4).

Theorem 1. A control law u∗ ∈ U is optimal if and only if

Pu∗
gu∗

+ ru∗ ≤ Pugu∗
+ ru, a.e., ∀u ∈ U. (7)

Where (.)u∗
and (.)u mean that the corresponding Markov chains are obtained

by the system (1) under the control laws u∗ and u respectively.
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Theorem 1 shows that the control law u∗ is optimal if and only if Pu∗
gu∗

+
ru∗

= minu{Pugu∗
+ru}. Thus, we can construct the controller by the optimality

equation in Theorem 1 as in [2]. Roughly speaking, at the kth step with control
ũ = αk(x), we can set the control law for the next step as

αk+1(x) = arg min
u

{Pugũ(x) + ru(x)}, (8)

with gũ being any solution to the Possion equation for transition function P ũ.
This results in an iteration procedure. From Lemma 3, the performance improves
in such a procedure. Theorem 1 shows that the minimum is reached when no
performance improvement can be further achieved. The implementation details
of the above results will be discussed in the paper.

4 On-Line Algorithm

Theorem 1 shows that the optimal control law of the system (1) with performance
(2) can be approximated by (8) step by step. However, exact solution of the
performance potential g can not be obtained in general. We shall present a
numerical approach to estimate the performance potential g by sample path of
the given system.

For simple discussion, we consider one dimensional system as a illustration.
We discretize the state space with a small spatial step Δ which is to be given
in advance. That is, the state space is divided into [iΔ, (i + 1)Δ) with i =
· · · , −1, 0, 1, · · ·.

From (6), we have g(x) = E{
∑∞

k=0(r(xk) − J)|x0 = x}. From deduction of
Lemma 2, the right side of the above equation converges. Thus, we have

∫
B g(x)π(dx)
∫

B
π(dx)

= E{
∞∑

k=0

(r(xk) − J)|x0 ∈ B} ≈ E{
M∑

k=0

(r(xk) − J)|x0 ∈ B)} (9)

with a sufficiently large constant M . Therefore, from (9) if g(x) is continuous,
then g(iΔ) can be approximated by g(iΔ) ≈ E{

∑M
k=0 r(xk)|x0 ∈ Bi} − MJ,

where the set Bi is defined as [iΔ, (i + 1)Δ). Since g is still called performance
potential if a constant MJ is added to it, we can ignore the constant MJ .
Thus, ignoring the constant MJ , the solution of the Possion equation (5) can
be approximated by g(iΔ) ≈ E{

∑M
k=0 r(xk)|x0 ∈ Bi}. Since the Markov chain

of the closed system is ergodic, as in [2], this leads to

g(iΔ) ≈ lim
K→∞

{∑K−M−1
k=0

∑M−1
j=0 r(xk+j)

∑K−L−1
k=0 εi(xk)

}

, εi(x) =
{

1 x ∈ Bi

0 otherwise
. (10)

Because the number of xk < x and xk−1 ∈ Bi can be obtained from sample
path, the probability distribution P (Bi, .) can be estimated by the general statics
approach.
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Although the above process of estimating the function P and g is simple,
the cost of computing is huge. Estimating the potential g(x) with a great lots
of discrete states may lead to curse of dimension, especially for high dimension
system. Even if the probability distribution P and the potential g are obtained,
integral on the function P and g must be calculated to search the optimal control
by (8). The computational cost is also large.

To lower the cost of computing, we construct RBF neural networks[4] from
the above analysis to approximate the potential gi(x) by (10) and probability
density function pi(x, y) from the sample path. That is

gi(x) = ψi(x)T θi, pi(x, y) = φi(x, y)T ηi. (11)

Where θ and η are weights, ψi(x) = [ψi1(x) ψi2(x) · · · ψit(x) ] and φi(x, y) =
[φi1(x, y) φi2(x, y) · · · φis(x, y) ] are Gaussian activation functions with

ψij(x) = e
− ||x−μij ||2

σ2
ij , φij(x, y) = e

− ||x̄−λij ||2

τ2
ij , x̄ =

[
x
y

]
,

t and s are the number of hidden units. The number i index the iterative step.
Then, with control u = αi(x) at the ith step, we obtain the potential gi(x) and

probability density function pi(x, y) as in (11). Since ξk ∈ Rn, k ∈ N , form i.i.d.
random variables, it follows that Pi(x, B) = Pξ{y − f(x) − h(x, αi(x))|y ∈ B},
where Pξ represents the distribution of the random variable ξ. Since the function
h(xk, uk) is known, from (1) Pu can be calculated by Pu(x, B) = Pi(x, B̄), B̄ =
{y − h(x, u) + h(x, αi(x))|y ∈ B}. This leads to pu(x, y) = pi(y − h(x, u) +
h(x, αi(x)). Thus, for the right side of (8), we have

Pugi(x) + ru(x) =
∫

Rn gi(y)pi(x, y − h(x, u) + h(x, αi(x))
=

∫
Rn θT

i ψi(y)φi(x, y − h(x, u) + h(x, αi(x))T ηidy
= θT

i

[∫
Rn ψij(y)φil(x, y − h(x, u) + h(x, αi(x))T dy

]
jl

ηi

. (12)

Since ||y−μij||2
σ2

ij
+ ||z−λil||2

τ2
il

can be expressed by σ2
ij+τ2

ij

σ2
ijτ2

ij
||y − h1(x, u)||2 + h2(x, u)

with suitable functionh1(x, u) andh2(x, u),where z=
[

x
y − h(x, u) + h(x, αi(x))

]
.

It can be obtained that
∫

Rn

e
−σ2

ij
+τ2

ij

σ2
ij

τ2
ij

||y−h1(x,u)||2
= 2

n−1
2 π

n
2

σijτij√
σ2

ij + τ2
ij

,

since u is a feedback control which only depends on x. Thus, we can obtain from
(12) that there exists a known value function h̄i(x, u) such that pu(x)gi(x) +
ru(x) = h̄i(x, u). Furthermore, the better control can be taken by (8) as follows:

αi+1(x) = argmin
u

h̄i(x, u). (13)

From the above discussion, the following algorithm can be introduced with a
given positive constant ε:
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1. Select a control law α1(x) such that the closed system is bounded and set
i = 1;

2. Obtain the sample path from the closed system, approximate the potential
gi(x) by RBF neural network as in (11);

3. Approximate the probability density pi(x, y) from the sample path as in (11);
4. Obtain the value function h̄i(x, u) and solve the equation (13);
5. If ||αi(x) − αi−1(x)|| > ε then set i = i + 1 and return to step 2.

It is worth to point out that selecting the Gaussian functions as basis is
rational, since the integral Pg can be omitted on the space that ||x|| large enough
by convergence property of Pg. Since the function h̄i(x, u) is a value in R,
there exist many approaches to solve (13) in literatures. We do not discuss it
furthermore. Since the function P and g are estimated by the sample path, the
above algorithm is valid even if the function f(x) in the system (1) does not be
known a-priori.

5 Conclusions

In this paper, we presented an algorithm for solving the optimal control problems
of nonlinear stochastic dynamic systems. The algorithm can be implemented
on-line. Compared with some existing approaches, our approach offers some
flexibility and may save computation and does not require the information of the
nonlinear function f(x) in the system (1). RBF neural networks are introduced
to approximate the probability density and performance potentials to lower the
cost of computing. This simplify the potential based optimality equation.
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Abstract. Collaborative optimization (CO), one of the multidisciplinary design 
optimization (MDO) approaches, is a two-level optimization method for large-
scale and distributed-analysis engineering design problem. In practical applica-
tion, CO exists some known weaknesses, such as slow convergence, complex 
numerical computation, which result in further difficulties when modeling the 
satisfaction degree in CO. This paper proposes the use of approximation re-
sponse model in place of discipline-level optimization in order to relieve the 
aforementioned difficulties. In addition, a satisficing back propagation neural 
network based on multiple-quality and multiple-satisfaction mapping criterion 
is applied to the design of the satisfaction degree approximation for disciplinary 
objective. An example of electronic packaging problem is provided to demon-
strate the feasibility of the proposed method.  

1   Introduction 

Large-scale and complex systems are usually concerned with different special disci-
plines and lots of coupling factors. However, when applying conventional opti- 
mization methods, mathematical models are considerably intricate. Further, since 
optimization strategies are often in serial, they lead to lower efficiency and hardly 
acquire the optimal solutions. Multidisciplinary design optimization is an approach to 
decompose single system model into smaller units, which can be assigned to different 
groups of engineers and experts in related areas. Collaborative optimization was 
therefore developed to follow the multidisciplinary characteristics of engineering 
design. CO decomposes a single system into two levels, i.e., system-level and disci-
plinary-level in parallel. In the application of CO, Braun and Powell [1] employed it 
for launch-vehicle design, Sobieski and Kroo [2] for aircraft configuration. In addi-
tion, Tappeta and Renaund [3] presented MOCO.  

Recently, CO has also been widely used in decision-making and conceptual design. 
However, the decomposition of CO results in some problems, such as the increase of 
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computational time. Different from single level optimization, the bi-level architecture 
of CO requires each disciplinary optimization to be performed once so as to evaluate 
the compatibility constraints of the system level optimization.  At the same time, to 
calculate the coupling output variables, the disciplinary level also needs complex 
disciplinary analyses, which consumes more time. 

As an alternative to eliminate the above problems, the use of approximation model 
has been proposed in place of the disciplinary design. This model was initially pre-
sented by Sobiebski et al. through directly modeling of the discrepancy function and 
optimal interdisciplinary design variables as a function of the target variables [4]. 
After that, Alexandrove et al. [5] employed so-called trust region approach to design 
the response surface. The advantage of using approximation is to reduce the dimen-
sionality in analysis system. On the other hand, some global optimization methods 
that involve time-consuming stochastic computation, such as genetic algorithm (GA) 
and simulated annealing (SA) method, can efficiently be applied in CO to solve the 
convergence problem [6]. 

This paper proposes the use of approximation response model as part of discipline-
level’s conventional model in order to construct satisfaction degree response model 
for disciplinary objectives. Typical approximation response architecture of satisficing 
CO based on asymmetric fuzzy model is developed, and artificial neural network 
using multiple-satisfaction criterion is presented to design the satisfaction degree 
functions. The strategy provides approximation response models of MOCO with the 
ability to handle satisficing approach. In algorithm, this strategy quotes the approach 
suggested by Balling and Wilkinson [7] and formulationⅡmethod by Tappeta and 
Renaud [3]. 

2   Satisficing Collaborative Optimization Using Approximation 
Response Model 

Since CO usually contains multiple objectives, the overall satisfaction degree can be 
used as the system-level objective, and at the same time, the discipline-level objective 
adopts the inequalities of subspace sufficiency degree as its local constraints. This 
typical model is attributed to satisficing problem based on asymmetric fuzzy models, 
as shown in Fig.1. Note that there are approximation models between system optimiz-
ers and subspace optimizers. In fact, the approximation models are the mapping func-
tions for system-level design variables, i.e., d*

i=f(Z*). When system-level optimizer 
delivers the target valuables to approximation response, the response surface is able to 
compute the discrepancy function value and return it to the system. The approxima-
tion response model can efficiently avoid the fact that system optimizer has to use the 
disciplinary optimizer at its each optimization iteration to acquire the discrepancy 
function values and keep the interdisciplinary constraints consistent. 

In the response model for satisficing CO, there are two kinds of approximations, 
namely, conventional and satisficing approximation, respectively. The conventional 
approximation has the responsibility to estimate the shared and auxiliary variables, 
which can be solved efficiently by the method presented by Jang et al. [6] and So-
biebski et al. [4]. In view of satisficing theory, this paper adopts a novel model, i.e., 
satisficing approximation and uses it as satisfaction degree to map disciplinary  
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objectives. That is to say, d*
i comprises two kinds of output values: (1) interdiscipli-

nary design variables ii xx )(,)( auxsh  and  (2) overall satisfaction degree 
iF

s ~ of discipli-

nary objective. 

System Optimizer 
Max  Overall   Satisfaction Degree 

s.t.     Interdisciplinary Compatibility 

Constraints 

 

Subspace Optimzer1 
Min  Discrepancy function 
s.t     Sufficiency   Degree  of 
         constraints   at SO1 
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Fig. 1. The architecture of approximation for satisficing CO 

2.1   Fussy Satisfaction Degree for Objectives 

In 1947, Simon, awarded Nobel Prize, first introduced satisficing criterion and pro-
posed the satisfactory solutions in place of the traditional optimal ones in some situa-
tions, which provides a new approach to solve the optimization problem [8]. Since 
then, satisficing theory has been extensively studied and applied. Takatsu presented 
the basic mathematical theory and characteristics [9]. In engineering application, 
Goodrich studied the theory of satisficing control, and applied it to some classic con-
trol problems [10].  

Definition 1 [11]. Given a satisfactory feasible solution set Z, nZ R⊂ , a multivariate 
function can be defined as follows:  

⎭
⎬
⎫

∈∈=
→

ZzQzfq

QZf

,)(

:
. (1) 

The function f is called quality criterion function. Q is the quality set, and q is used 
to describe the quality of solution z, Zz ∈ . 
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Definition 2. Given a feasible solution set nZ R⊂ , quality set Q, a mapping function 
h(.) can be defined as follows:  

⎪
⎭

⎪
⎬

⎫

∈∈∈∀
==

→

]1,0[)(,,

))(()()(

]1,0[:

~

~

zsQqZz

zfhqhxs

Qh

F

F

, (2) 

where F
~  means satisfactory solution set of Z for f. (.)~

F
s  is the satisfactory function 

of F
~ , and )(~ zs

F
 is called the satisfaction degree of z, Zz ∈ . For simplicity, the satis-

factory solution set F
~  may be denoted as },,{ hfZ . f, h represent quality criterion 

mapping and satisfactory mapping, respectively. In application, Z, f, and h are often 
called three fundamental elements in satisfactory solution set. If there exits multiple-
quality criterion mappings or multi-satisfactory mappings, F

~  may be denoted as 
},,{ hFZ  or },,{ HFZ . 

For the feasible solution set Z, the function QZf →:  can map solution set Z to 
quality set Q. In order to evaluate the satisfaction degree of quality set Q, different 
mapping functions ]1,0[: →QH , H={h1, h2, h3, …, hk-1, hk} are used to describe 
different satisfaction degree of objective, which is called multiple-satisfaction crite-
rion problem. If quality mapping function f includes multiple criterions, f is repre-
sented as F, i.e., F={ f1, f2, f3, …, fm-1, fm}. The satisficing model belongs to so-called 
multiple-quality and multiple-satisfaction mapping problem. In CO, f is called disci-
plinary objective, and m, k represent the total number of discipline-level objectives 
and satisfaction criterion, respectively.  

2.2   The Satisficing Approximation Response Model Based on ANN 

2.2.1   Topological Architecture of Satisficing Mapping Using ANN  
Multi-layer back propagation artificial neural networks (BPANN) are a layered paral-
lel processing system consisting of input, output, and hidden layers. It has been theo-
retically proved that a three-layer BPANN with sigmoid activation function in the 
hidden layer and linear functions in the output layer is a universal approximator for 
arbitrary continuous functions, if given sufficient neurons in the hidden layer [12]. 
Therefore, this paper adopts the three-layer BPANN as the satisficing response mod-
els in CO. The topology of three-layer BPANN for multi-quality criterion approxima-
tion at the ith discipline is shown in Fig. 2. 

The symbols in Fig.2 are defined as 

⎪⎭

⎪
⎬
⎫

===
=

−−

−

)}(),(),...,(),({},,...,,{)(

},,...,,{

121,1,21

,1,21

imimiimimiiiii

niniiii

ZfZfZfZfqqqqZFQ

zzzzZ
. (3) 

Considering the situation of multi-satisfaction criterion, we define )(ANN i
i
h Qfs = . 

The fANN (.) is called the approximation response function of satisfaction degree  
in respect to satisfaction criterion H. The assumption that fANN is continuous fuzzy 
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function mapping will serve as the condition, so the mapping function can be arbitrar-
ily closely approximated. The paper also uses BPANN to design the approximation  
response of satisfaction degree for disciplinary objectives, and at the ith discipline of 
CO, the satisfaction degree model based on BPANN is shown in Fig. 3. 
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Fig. 2. The topology of BPANN for multi-quality criterion approximation at ith discipline 
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Fig. 3. The topology of BPANN for multi-satisfaction criterion approximation at the ith  
discipline 

Note that the BPANN model approximates the satisfaction degree i
h jl

s in respect to 

function hjl (l=1, 2, …, k). The neural network to be trained has one input nodes qij 
(j=1, 2, …, m) as the quality function and k output nodes for satisfaction degree at the 
ith discipline.  

In order to consider the comprehensive influence of each satisfaction mapping 
function hjl, this paper designs the comprehensive evaluation of satisfaction degree, 
and its main duty is the aggregation of different satisfaction criterion. The achieve-
ment of the discipline-level overall satisfaction degree may use the Min operator or 
linear weighted method.  
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2.2.2   Structure of Two Approximation Models 
Input Layer. Given p

i
p

i QZ , , which represent input vector for the models of multi-

quality and multi-satisfaction criterion approximation at the ith discipline, respec-
tively, and the input and output of the jth neuron in the input layer are defined as 

p

ij

p

ij

p

ij

p

ij

p

ij

p

ij qIOzIO ==== , . (4) 

Hidden Layer. Input signals of the input layer can be evaluated through the hidden 
layer. The input and output of the jth neuron of the hidden layer are defined, respec-
tively, as 

∑
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j
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ij zwI
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j
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where p

ijI is the input of the jth neuron of the hidden layer at the ith discipline. i

jkw  

represents a weight of a connection between the kth neuron of the input layer and the 
jth neuron of the hidden layer at the ith discipline. i

jθ is the threshold of the jth neuron 

of the hidden layer. p

ijO  is the output of the jth neuron of the hidden layer. 

Output Layer. Similar to the hidden layer, the input and output of the lth neuron of the 
output layer are defined, respectively, as 

i
l

n

j

p
ij

i
lj

p
il OwI θ+=∑
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il
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where p

ilI  is the input of the lth neuron of the output layer at the ith discipline. 
i

ljw represents a weight of a connection between the jth neuron of the hidden layer and 
the lth neuron of the output layer at ith discipline. i

lθ  is the threshold of the lth neuron 
of the output layer, and p

ikO  is the output of the lth neuron of the output layer at the ith 
discipline. 

Activation functions. Considering  m
iQ R⊆ , ]1,0[∈i

hs , the activation function of 

quality output layer for multi-quality criterion approximation may adopt the following 
linear function 

xxfy == )( , (9) 
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and the activation function of hidden layer and output layer of multi-satisfaction crite-
rion approximation may use the sigmoid nonlinear function, depicted as 

xe
y −+

=
1

1
. (10) 

2.2.3   The Procedure Using Approximation Response of Satisfaction Degree 
1. Design topology architecture of BPANN and initial sample data, 000 ,,

ijhii sQZ , (i=1, 

2, …, m, j=1, 2, …, k)  in the sample database at the ith discipline. 
2. Train the network to build the quality approximation response of samples 

),,...,,,( 1,321 immiiiii qqqqqQ −= . 

3. Train the network and establish the representation of satisfaction degree about 
different satisfaction mapping function hij (i=1, 2, …, m; j=1, 2, …, k). 

4. Receive system-level’s target vector Z*, use two kinds of approximation model to 
obtain the satisfaction degree i

h jk
s  of  the jth objective in respect to hk  at the ith dis-

cipline, and save Z* in the discipline-level local database. 
5. Design the comprehensive evaluation of satisfaction degree, and compute the over-

all satisfaction degree i
Fj

s ~ ( j=1, 2, …, m), and return it to system-level. 

6. After several iterations, if system-level satisfies convergence conditions then end; 
else according to subspace analysis, each discipline reinitializes the sample data in 
local database to set up the more accurate approximation models, and go to step 2.  

3   Electronic Packaging Problem (EPP) Example 

The electronic packaging problem (Renaud, 1993 [13]) is a benchmark multidiscipli-
nary problem comprising the coupling between electronic and thermal subsystems. 
Component resistances (in electronic subsystem) are affected by operating tempera-
tures (in thermal subsystem), while the temperature depends on the resistances. The 
design objective is to minimize negative watt density. According to CO method, the 
EPP is decomposed into two disciplines: electronic and thermal discipline. The design 
vectors for each discipline are as shown in Table 1. Note that the electronic subspace 
analysis undertakes the responsibility to gain disciplinary overall satisfaction degree. 
In this paper, the assumption that the decision maker uses two kinds of satisfaction 
criterions served as the condition to establish the satisfaction degree of disciplinary 
objective. 

For simplicity, this paper focuses on the approximation response of electronic dis-
cipline, and the topological architecture of discipline 1 is described as follows: 

1. The structure of quality approximation includes 5 neurons (y6, y7, y11, y12, y13 ) in 
input layer, 10 neurons in hidden layer, and 1 neuron f11 in output layer. 

2. The structure of satisfaction approximation includes 1 neuron f11 in input layer, 8 
neurons in hidden layer and 2 neurons in output layer. 
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Table 1. The design vectors of each discipline in electronic packaging problem 

 Electronic discipline 1 Thermal discipline 2 
System targets to be matched },,,,,{ *1

~
*
5

*
4

*
3

*
2

*
1 1F

szzzzz  },,,,{ *
5

*
4

*
3

*
2

*
1 zzzzz  

Shared design vector Empty Empty 
Auxiliary design vector {y11,y12,y13} { y6,y7} 

{ x5,x6,x7,x8} { x1,x2,x3,x4} Local design vector 
Discipline-level satisfaction 
criterion for objectives 

11

1211
, hh ss (objective  f11) Empty 

Subspace analysis 
] ,,[

1
~76 F

syy =SA1(x5,x6

,x7,x8, y11,y12,y13)  
 ],,[ 131211 yyy =SA2( 

x1,x2,x3,x4, y6,y7) 

To test the response model, we select 200 samples to learn and set up initial  
approximation response, and rebuild and update it every fifty iterations. After 300 
iterations in CO, the comparison between exact and approximated value (f11

*, f11) of 
electronic discipline objective are shown in Table 2.  

Table 2. The comparison between exact and approximated value of electronic  
objective 

y6 y7 y11 y12
y13

(×10-5)
f11

* f11 f1/ f1
*

7.9664 7.9521 83.8166 84.3835 2.500 636740.271 613180.9 0.9630 
0.8414 0.8411 40.0854 40.1787 6.840 24597.1176 24105.18 0.9800
0.4417 0.4416 37.6988 37.7570 13.72 6437.6672 5993.468 0.9310
0.2980 0.2980 36.9008 36.9039 23.68 2517.1232 2446.644 0.9720
0.2242 0.2242 36.4617 36.4646 37.26 1203.2358 1191.203 0.9900
0.1792 0.1792 36.1641 36.1669 55.00 651.6042 641.8301 0.9850
0.1489 0.1489 35.9762 35.9788 77.44 384.5780 382.2705 0.9400
0.1271 0.1271 35.8513 35.8515 105.12 241.8821 236.0769 0.9760
0.0979 0.0979 35.6669 35.6672 178.36 109.8279 106.3134 0.9680  

In view of ratio of two objectives, it is demonstrated that with a steady increase of 
iteration, the quality model has enough precision to approximate original data in the 
course of optimization.   

Fig. 4 depicts two kinds of satisfaction degrees for sample points and approxima-
tion profiles about h11, h12 using neural network. Note also that the satisfaction degree 
approximation models are fitted to different preference of sample points, which also 
proves the approximation model using neural network to be efficient.  

In order to combine two satisfactory criterions, this paper adopts linear weighted 
method ( 1ω = 0.4, 2ω = 0.6) to establish the overall satisfaction degree 1

~
1F

s  at elec-
tronic discipline. For the requirement of simplification and demonstration, this paper 
does not employ the optimal cuts level, but designs a series of cut level, and  
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Fig. 4. Two kinds of satisfaction degrees for sample points and approximation profiles  

Table 3. The result using approximation response under series of cut levels for CO 

1λ  2λ  x1 
(m) 

x2 

(m) 
x3 

(m) 
x4 

(m) 
x5 

(Ω) 
x6 

(oK-1) 
x7 

(Ω) 
x8 

(oK-1) 

1
~
1F

s  

0.6 0.6 0.046 0.046 0.0096 0.052 9.6 0.0039 9.6 0.0039 0.548 
1.0 1.0 0.050 0.050 0.0100 0.050 10 0.0040 10 0.0040 0.378 
0.2 0.8 0.048 0.048 0.0098 0.051 9.2 0.0047 9.2 0.0047 0.468 
0.5 0.9 0.049 0.049 0.0099 0.051 9.5 0.0041 9.5 0.0041 0.433 

 
implements in a comparative study. CO using aforementioned approximation re-
sponse method computes the optimal solutions at different cut level, respectively. The 
results are shown in Table 3. 

If assume the data of the 3rd row is an optimal design,  the watt density is y1 = 
639779 and the temperature at each resistor is y11 = 82.37 and y12 = 82.85. Therefore, 
the objective function value for this design is close to that reported by Renaud [13].  

4   Conclusions 

This paper focuses on the establishment of satisficing approximation response models 
for collaborative optimization. A satisficing model of multiple-quality and multiple-
satisfaction using neural network is presented, which makes MOCO based on asym-
metric fuzzy model decrease the number of the disciplinary optimization, and easier 
to get the satisfaction degree without time-consuming analysis. Moreover, in some 
complex system, especially multiple-satisfaction criterion situation, the proposed 
method can avoid more difficulties to provide exact arithmetic expression of discipli-
nary satisfaction degree. EPP example demonstrates the developed approach can 
efficiently deal with CO problems in fuzzy and distributed environments. 
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Abstract. Aiming at improving the convergence performance of conventional 
BP neural network, this paper presents an improved PSO algorithm instead of 
gradient descent method to optimize the weights and thresholds of BP network. 
The strategy of the algorithm is that in each iteration loop, on every dimension 
d of particle swarm containing n particles, choose the particle whose velocity 
decreases most quickly to mutate its velocity according to some probability. 
Simulation results show that the new algorithm is very effective. It is successful 
to apply the algorithm to gas turbine fault diagnosis.   

1   Introduction 

Gas turbines have been widely applied in many fields such as national defense, 
aviation, and electric power. Accurate fault detection and diagnosis in gas turbines 
can significantly reduce maintenance costs associated with unanticipated disaster due 
to engine failures, and incipient fault detection in gas turbines is vitally important to 
improving the safety and reliability of gas turbine.  

Artificial neural networks (ANN) have been widely used in fault diagnosis systems 
due to their good inner adaptability. Among the various ANN, the back-propagation 
(BP) algorithm is one of the most important and widely used algorithms and has been 
successfully applied in many fields [1]. However, the conventional BP algorithm 
suffers from some shortcomings, such as slow convergence rate and easily sticking to a 
local minimum. Hence, the researching on improving the BP algorithm is always hot.  

This paper presents a new BP network which is based on the improved Particle 
Swarm Optimization (IPSO) algorithm. The new method can improve the 
convergence performance of BP network obviously. 

2   Improved PSO Algorithm 

Particle Swarm Optimization (PSO) was first proposed by Kenney and Eberhart [2], 
[3] based on the metaphor of social behavior of birds flocking and fish schooling in 
                                                           
* This project was supported by National 863 High-Tech, R&D Program for CIMS, China 

(Grant No. 2003AA414210) and Shenyang Science and Technology Program (Grant No. 
1053084-2-02). 
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search for food. PSO is a relatively novel approach for global stochastic optimization. 
PSO is conceptually very simple, and is strong robust and excellent ability of global 
exploration. Using PSO to optimize the parameters of the BP neural network can 
improve the convergence ability of the BP neural network, and overcome 
shortcomings of the BP neural network mentioned above. 

Aiming at the case that conventional PSO (CPSO) algorithm could easily stick to 
local minimum and converge too early, many researchers have proposed different 
IPSO algorithms to enhance the global optimization ability of the PSO algorithm. 
Literature [4] added an inertial weight ω  in CPSO velocity iteration formula. The 
researching on theω  finds that the biggerω  is the easier for particle escaping from 
local minimum and the smallerω  is the better for algorithm converging, so the author 
proposed a self-adaptive adjusting ω  method to improve the performance of PSO. 
Literature [5] proposed a new PSO algorithm, which is based on the velocity 
mutation. The mutation strategy is that in each iteration loop, on every dimension d  

of particle swam containing n particles, find the smallest velocity ,T dv  of the 

absolute value of speed, then mutate it according to some probability, and make ,T dv  

distribute on max max,v v− stochastically, evenly.  

This paper presents an improved velocity mutation PSO algorithm, which is based 
on the acceleration of particle. The mutation strategy based on the acceleration of 
particle is that in each iteration loop, on every dimension  d  of particle swam 
containing n particles, the velocity of the particle whose velocity decreases most 
quickly is mutated according to some probability, and make it distribute on 

max max,v v− stochastically, evenly.  

The strategy could be described as: 
Find out the acceleration on dimension d of each particle. 

, ,
,

k k k
i d i d

i d

v v
a

k

−Δ−
= −

Δ
, (1) 

where 1,2,...i n= , 1, 2,...d D= , kΔ is the number of variational iteration,  ,
k

i dv  is 

the velocity in dimension d of particle i at iteration k , ,
k k

i dv −Δ  is the velocity in 

dimension d of particle i at iteration k k− Δ . 

Define , 1, 2, ,max{ , ,..., }I d d d n da a a a= , [1, ]I n∈ . When starting the mutation a 

mutation rate Rate  and a stochastic number Rand should be set first. Neither bigger 

Rate  nor smaller Rate  does good to the algorithm, this paper uses the 

Rate mentioned in literature [5]. If Rand  > Rate , mutate the velocity 

,I dv (particle I , dimension d ), and distribute the ,I dv on max max,v v− stochastically.  

When particle converges nearby the local minimum or global minimum, the 
velocity of particle would decrease even to zero, there would be a great change of 
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velocity in that process. The acceleration of particle reflects the change trend of 
particle velocity, it could foretell the increase or decrease in particle velocity also 
could foretell the degree of increase or decrease in particle velocity. The particle 
whose velocity decreases most quickly indicates that the particle is flying to the local 
minimum and it may be converge too early, so choosing the particle to mutate its 
velocity could make it explore in more extended space and avoid it sticking to local 
minimum. The convergence performance can be improved obviously.  

This paper used two classical test functions, Rosenbrock and Rastrigin, to compare 
the convergence performance of the IPSO algorithm proposed by this paper with the 
convergence performance of the CPSO algorithm.  

Rosenbrock is a function of one peak value, when (1,1,...,1)x = it reaches its 

global minimum: ( ) 0f x = . 

2 2 2
1

1

( ) (100( ) ( 1) )
n

i i i
i

f x x x x+
=

= − + −∑ ,  10 10ix− < < . (2) 

Rastrigin is a function of multiple peak values, when (0,0,...,0)x = it reaches its 

global minimum: ( ) 0f x = . 

2

1

( ) ( 10cos(2 ) 10)
n

i i
i

f x x xπ
=

= − +∑  , 5.12 5.12ix− < < . (3) 

In the test, swarm size was set to 30; dimension was set to 10; maxv  was set to the 

initial upper limits according to the two test functions; 1c and 2c  were both set to 2. 

Additionally, in IPSO algorithm, Rate  was set to 0.001, kΔ was set to 50.  

Defined bestF F E− = , bestF was the fitness value of the algorithm, F was the 

global minimum. E was the error. The precision was set to 0.1. The two test 
functions were used to test every algorithm for 50 times, and the average iteration 
times according to the two test functions respectively could be expressed as Table.1, 
also the convergence performance could be illustrated by Fig.1. 

Table 1. Comparison rusults between the IPSO algorithm and the CPSO algorithm 

Function  IPSO         CPSO  
Rosenbrock 

Rastrigin 
         375 
         719 

          400 
         1083 

 
Table.1 and Fig.1 show that, for the function Rosenbrock, the two algorithms have 

the equivalent convergence performance, so both the two methods have the good 
ability of local exploring, however, for the function Rastrigin, the IPSO has a better 
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(a) (b)   

Fig. 1. Convergence performance comparison between the CPSO and the IPSO. (a) The curves 
of optimizing function Rosenbrock. (b) The curves of optimizing function Rastrigin. 

convergence performance than the CPSO obviously, namely, the IPSO has a better 
global exploring performance than the CPSO. The test indicates that the IPSO has a 
perfect performance in both global exploring and local exploring, and the IPSO can 
avoid the particle from sticking to local minimum effectively. 

3   BP Neural Network Based on IPSO Algorithm 

BP neural network has the excellent abilities of self-adaptive and self-learning, and 
the researchers’ attentions are always attracted by it in fault diagnosis field. However 
BP neural network has its inner shortcomings, such as, easily sticking to local 
minimum, slow convergence rate, sensitivity to original weights and thresholds in 
algorithm training. This paper presents a new BP learning method based on IPSO 
algorithm to overcome the shortcomings above. The algorithm uses IPSO instead of 
gradient descent to optimize the parameters of neural network, and it has the better 
performance of learning rate and convergence than conventional BP algorithm. 

This paper utilizes IPSO algorithm to optimize the weights and thresholds of BP 
neural network, and the process can be indicated as follows:   

Step 1: Initialization. in is the number of input nerve cells, hn is the number of 

hidden nerve cells, on is the number of output nerve cells.  

,h o i h h oD n n n n n n= + + × + ×  (4) 

where D is the number of dimensions in the swarm.  
Step 2: Set fitness function of the particle, this paper chooses mean square error as 

fitness function in BP network, 

2
, ,

1

1
( ) ,

onM

k j k j
k j

E y y
M =

= −∑∑  (5) 
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Where ,k jy is the theoretic output j of sample k in the neural network, ,k jy is the 

real output j of sample k of neural network, M is the sample number of the network. 

Step 3: Optimize the weights and thresholds of BP network using the IPSO 
algorithm. 

Step 4: Obtain the optimized weights and thresholds according to formula 6. 

1 2, 1 2, 1 2, 1 2,[ , ... , , ... , , ... , , ... ],
h o i h h obest n n n n n ng h h h o o o ih ih ih ho ho ho× ×=  (6) 

Where ih ( 1,2,... hi n= )is the threshold i of the hidden layer, io ( 1,2,... oi n= ) is 

the threshold i of the output layer, iih ( 1,2,... i hi n n= × ) is the weight i between 

input layer and hidden layer, iho ( 1,2,... h oi n n= × ) is the weight i between hidden 

layer and output layer. 
According to the algorithm mentioned above, this paper trained the BP network 

using a set of simulated fault data from the gas turbine, and compared the 
convergence performance between the BP network based on IPSO and conventional 
BP network which used the same simulated fault data. Both the two neural networks 
included 4 neural cells in input layer, 10 neural cells in hidden layer and 8 neural cells 
in output layer. The error was 0.01. Additionally, in network based on IPSO 

algorithm, swarm size was set to 20, dimension was set to 138, maxv  was set to 5, 

1c and 2c  were both set to 2, Rate  was set to 0.001, kΔ was set to 50.      

                         
(a) (b)     

Fig. 2. The convergence curves of the two algorithms. (a) The convergence curve of 
conventional BP network. (b) The convergence curve of BP network based on IPSO algorithm.      

Fig.2 includes two convergence curves of the two methods respectively. (a) shows 
that conventional BP algorithm converged after 560 iterations with the error 0.01. (b) 
shows that BP neural network based on IPSO algorithm converged after 385 iterations 
with the error 0.01. These figures indicate that BP neural network based IPSO has a 
faster convergence velocity than the conventional BP neural network, and the BP 
neural network based IPSO has a perfect convergence performance. 
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4   Fault Diagnosis of Gas Turbine Based on the New BP Network 

The working environment of gas turbine components is high temperature and high 
pressure, and it is possible that some faults occur to these components due to the 
influence of high temperature and high pressure. It can either bring the huge loss in 
economy or threaten the safety of people. So the fault diagnosis of gas turbine is very 
significant. The faults of gas turbine can be classified as: Compress Air Machine 
Begriming (CAMB); Compress Air Machine Abrasion (CAMA); Compress Air 
Machine Laminae Mar (CAMLM); Turbine Nozzle Eroding (TNE); Turbine Laminae 
Abrasion (TLA); Turbine Laminae Begriming (TLB); Turbine Laminae Mar (TLM); 
Firebox Distortion (FD).  

Literature [6], [7] summarized the fault criterion of gas turbine which is the most 
important thing in fault diagnosis system. Based on the fault criterion of gas turbine, 

literature [8] concluded the mapping relation between the fault characters ( cπΔ : 

Compress air machine pressure ratio; 2TΔ : Exhausting air  temperature of compress 

air machine; 4TΔ : Exhausting air  temperature of turbine; WlΔ : Supply oil quantity 

of gas turbine )  and the 8 faults. 
According to the mapping relation between fault characters and fault outputs, this 

paper applied the BP neural network based on IPSO algorithm and the conventional 
BP neural network respectively to fault diagnosis of the gas turbine. The configurations 
of the two BP networks were the same with what mentioned in chapter 3. In each 
network, chose the 4 fault characters as inputs, and chose the 8 faults as outputs. The 
applying chose 30 sets of simulated fault samples for every fault type individually, and 
the sample sum for all the 8 types was 240. 160 of the all samples were used to train 
every BP neural network, and the others were used to test the outputs of the two trained 
BP neural networks.  

10 samples of each fault type were used to test each method. Table 2 is the average 
diagnosis accuracy of the BP network based on IPSO algorithm, and Table 3 is the 
average diagnosis accuracy of the conventional BP network. The results of the two 
tables indicate that the BP network based on IPSO algorithm has a better diagnosis 
performance than the conventional BP network, and the diagnosis result of the BP 
network based on IPSO algorithm is satisfied with the diagnosis average accuracy 
being 98.75%. 

Table 2. Average diagnosis accuracy of the BP network based on IPSO algorithm 

CAMB CAMA CAMLM TNE TLA  TLB TLM FD    SUM
Sample 
number 10 10 10 10 10 10 10 10 80
Correct
number 10 10 10 10 9 10 10 10 79
Wrong 
number 0 0 0 0 1 0 0 0 1

Accuracy
(%) 100 100 100 100 90 100 100 100 98.75 
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Table 3. Average diagnosis accuracy of the conventional BP network 

CAMB CAMA CAMLM TNE TLA  TLB TLM FD    SUM
Sample 
number 10 10 10 10 10 10 10 10 80
Correct
number 10 10 9 10 9 9 10 10 77
Wrong 
number 0 0 1 0 1 1 0 0 3

Accuracy
(%) 100 100 90 100 90 90 100 100 96.25 

 

5   Conclusions 

This paper introduces a new BP network which based on IPSO algorithm and applies 
it to gas turbine fault diagnosis. In the method a CPSO algorithm is improved, and 
this paper proposes the velocity mutation algorithm based on particle acceleration. 
The method can effectively avoid the particle sticking to the local minimum, also it 
can enhance the global exploring ability for the particle. Applying the method to 
optimizing weights and thresholds of BP neural network can enhance the convergence 
performance of BP network, and utilizing the optimized BP network to diagnose the 
gas turbine fault can obtain a satisfied diagnosis result.    
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Abstract. With the development of BP-ISP alignment research, how to evaluate 
the strategy alignment of BP-ISP become the key problem of this field. In this 
paper, a set of index system of evaluating the alignment of BP-ISP is 
established. Based on the index system, an integration algorithm with PSO and 
neural network is established to evaluate the alignment of BP-ISP. In order to 
verify the effectiveness of the method, a real case is given and BP neural 
network is also used to assess the same data. The experimental results show that 
integration algorithm with PSO and neural network is effective in the alignment 
evaluation of BP-ISP and achieves better performance than BP neural network. 

1   Introduction 

With the development and popularization of the information technology (IT), the 
strategy of information system planning become an important part of the business 
planning strategy research. The IT resource is viewed as a strategically valuable  
organization asset. The application of information technology (IT) can create com-
petitive advantage based on the generic strategy of cost leadership, product differen-
tiation. Increased attention has been given to the alignment of IS and business strategy 
to create the advantage. But the achievement of the IT investment is not so optimism 
as people's prediction. There are many reasons for it. The main reason is the lack of 
alignment between Business Planning (BP) and Information Systems Planning (ISP). 
So how to evaluate the strategy alignment degree of BP-ISP and give some advise-
ment to improve the value of IT investment is the key problem of top manager of 
enterprise [1].  

In recent years, The multi-layer feed-forward neural networks of supervised  
training type, trained with a back-propagation (BP) learning algorithm, are the most 
popular networks applied in different fields. The objective of the BP algorithm is to 
minimize an average sum squared error term by doing a gradient descent in the error 
space. BP neural network as a gradient search algorithm has some limitations associ-
ated with overfitting, local optimum problems and sensitivity to the initial values of 
weights[2]. 
                                                           
* This paper was supported by Doctor Foundation of North China Electric Power University. 
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The particle swarm optimization (PSO), firstly proposed by Eberhart and Kennedy 
[3], is a computational intelligence technique. Some researchers have used PSO to 
train neural networks and found that PSO-based ANN has a better training perform-
ance, faster convergence rate, as well as a better predicting ability than BP neural 
network[4-6]. 

In this paper we research the evaluation index system of BP-ISP strategy alignment 
degree and give a evaluating model of BP-ISP strategy alignment degree with  
PSO-based ANN. The experiment show that the PSO-based ANN algorithms has a 
less iteration and a higher accuracy than BP neural network. 

2   Evaluating Index System of BP-ISP Strategic Alignment Degree  

In this section we introduced the strategy alignment of BP-ISP and give the index 
system of evaluating the alignment degree of BP-ISP.  

With the development and popularization of the information technology (IT), the 
strategy of information system planning become an important part of the business 
planning strategy research. The integration of information system planning and  busi-
ness planning strategy can help top Manager gaining information, knowing the oppor-
tunity and challenge from out environment. Other wise, the IT investment not only 
can not support the business process efficiently, even become the burden of enter-
prise. It is commonly suggested that close integration of the organizational business 
plan and the IT plan is desirable and is a goal that most organizations should work 
towards. 

The BP-ISP alignment is the linkage of the firm’s IS plan and business plan. All 
the part of enterprise’s strategy plan should be mapped the IS plan in some manner to 
optimize the investment, return and organization. By aligning the IS plan and the 
business plan, information resource support business objectives and take advantage of 
opportunities for the strategic use of IS. Alignment need business and IS executives to 
assume joint responsibility for delivering benefit from the IS investment. This align-
ment can create significant IS-based competitive advantage. At the same time the 
alignment is the reflection of IS opportunities in the business plan. 

Two sub alignment of BP-ISP alignment exist. The first is the alignment of execu-
tive capability between IS department and Business department, The standardization 
of business process and the higher executive capability can help exerting the function 
of IS, at the same time, the efficient IS can help business manager making decision 
more quickly and correctly. The second is the alignment of strategy target between 
enterprise business plan strategy and the IS plan strategy. The enterprise strategy set 
consisting of mission, target and plan will guide the design of the IS plan and ensure 
alignment with the direction of the company. On the other hand, the IS plan can give 
the manager an efficient tool to adjust the goal of the strategy in both return and the 
organization.  

Based on the analysis of the alignment of BP-ISP, we introduce the index system 
of evaluating BP-ISP strategy alignment degree. The detail context is showed in  
Table 1. 
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Table 1. Index system of evaluating the alignment degree of BP-ISP 

Index 
number Index name 

1 The strategic value of IT 

2 The communication between business department and IT department 

3 The professional service capability of IT department 

4 The degree of top manager trusting IT department 

5 The capability of IT department understanding the business profession  

6 The IT level of employee in IT department 

7 
The capability of IT department corresponding the demand of business 
department 

8 The degree of top manager taking part in IS plan 

9 
The degree of IT department manager take part in the business plan 
strategy 

10 IT government structure 

11 The degree of business department making decision based on IS 

12 
The degree of IT department understanding the business practice of en-
terprise 

3   Algorithms PSO-Based ANN 

3.1   Artificial Neural Network 

A multiple-layer feed-forward perceptron represents a non-linear mapping between 
input vector and output vector through a system of simple interconnected neurons to 
every node in the next and previous layer. The output of a neuron is scaled by the 
connecting weight and fed forward to become an input through a non-linear activation 
function to the neurons in the next layer of network. In the course of training, the 
perceptron is repeatedly presented with the training data. The weights in the network 
are then adjusted until the errors between the target and the predicted outputs are 
small enough, or a predetermined number of iteration is passed. The perceptron is 
then validated by an input vector not belonging to the training pairs. The training 
processes of ANN are usually complex and high dimensional problems. 

Among neural networks, BP neural networks are the most popular type. As the BP 
algorithm optimizes a target function by using the gradient descent method, the calcu-
lation may overflow or fluctuate between the optima. Another problem is that the 
convergence of the BP is sensitive to the initial selection of the weights. If the initial 
sets of weights are not selected properly, the optimization solution could be trapped in 
a local optimum. So how to find another training methods to optimum the weight of 
neural network is an important task for spreading the use of neural network. 
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3.2   Principle of Particle Swarm Optimization 

PSO simulates a popular behavior such as bird searching food in an area. Like evolu-
tionary algorithm, PSO conducts search using a population, which is called swarm. 
Candidate solutions to the problem are termed particles or individuals. 

Each particle adjusts its flying based on the flying experiences of both itself and its 
companions. During the process, it keeps track of its coordinates in hyperspace which 
are associated with its previous best fitness solution, and also of its counterpart  
corresponding to the overall best value acquired thus far by any other particle in the 
population.  

PSO is initialized with a population of M random particles and then searches for 
best position (solution or optimum) by updating generations until getting a relatively 
steady position or exceeding the limit of iteration number. In every iteration or gen-
eration, the local bests and global bests are determined through evaluating the per-
formances, i.e., fitness values or objectives, of the current population of particles. 
Each particle is treated as a point in a K-dimensional space. Two factors characterize 
a particle status on the search space: its position and velocity. The N-dimensional 
position for the ith particle in the tth generation can be denoted as  

                                  Xi(t) = {xi1(t), xi2(t), . . ., xiK(t)}.                                         (1) 

Similarly, the velocity also a K-dimensional vector, for the ith particle in the tth 
generation can be described as 

                                   Vi(t) = {vi1(t), vi2(t), . . ., viK(t)}.                                        (2) 

In each iteration, every particle calculates its velocity according to the following 
formula: 

                     Vi(t)= w(t) Vi(t-1)+c1r1(
L

iX -Xi(t-1))+ c2r2(
G

iX -Xi(t-1))                         (3) 

                                          Xi(t)= Vi(t)+ Xi(t-1)                                                     (4) 

where i = 1, 2, . . ., M and t = 1, 2, . . ., T; the local best position of the ith particle 
associated with the best fitness. encountered after t - 1 iterations is represented as                          

                               L

iX  ={ L

iX 1 , L

iX 2 ; . . . , L

iNX }                                                    (5) 

the global best among all the population of particles achieved is represented as 

                          XG ={ GX1 ,
GX 2 , . . . , G

NX }                                                           (6) 

c1 and c2 are positive constants (namely learning factors) and r1 and r2 are random 
number between 0 and 1; w(t) is the inertia weight used to control the impact of the 
previous velocities on the current velocity, influencing the tradeoff between the global 
and local exploration abilities during search. Eq. (3) is used to calculate the particle’s 
new velocity according to its previous velocity and the distances of its current posi-
tion from its own best experience or position and the group’s best experience or posi-
tion. Then the particle flies toward a new position according to Eq. (4). 
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3.3   ANN Trained by PSO (PSO-Based ANN) 

In this paper, we introduced a novel PSO-based ANN, PSO is used for weight training 
of multiple-layer feedforward neural network. In PSO, real number strings were 
adopted to code all the particles. Each real number coded string stands for a set of 
weights, which makes up of one ANN together with all its nodes. Actually, each bit of 
a particle is a real number that stands for a linking weight of the given ANN. The 
ANN trained by PSO is described as follows:  

Step 1. Randomly initialize all the particle in PSO with an appropriate size of 
population. Each particle stands for a set of weights of the ANN. 

Step 2. Calculate the fitness function of the ANN corresponding to each weight of 
the particle. If the best object function of the generation fulfills the end condition, the 
training is stopped with the results output, otherwise, go to the next step. 

Step 3. Update the particle swarm according to fitness function by applying the 
PSO. The all the particles in the swarm will travel to a better location near the optimal 
value. 

Step 4. Go back to the second step and then calculate the fitness of ANN with the 
connect weight from the renewed population. 

Continue to repeat the step above until the fitness of the ANN trained by PSO sat-
isfied the error standard. 

The flow chart of PSO-based ANN is showed in Figure1. 

 
Fig. 1. The flow chart of PSO-based ANN 

no

The best fitness is 
good enough 

Initialize the random location and velocity of each particle 
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Changing the searching location of each particle 

Output 
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4   Application of PSO-Based ANN to Evaluate BP-ISP Strategic 
Alignment Degree 

4.1   The Designment of PSO-Based ANN 

In this section, we constructed the ANN model of evaluation of BP-ISP strategy 
alignment degree. A three-layer neural network is chosen in this application: 12 input 
neurons, four hidden neurons and one output neuron. There are consequently 52 
weights to be optimized. This implies that the swarm of particles flies in a 52-
dimensional space to search for the weights. A population of 30 individuals is used. 

Input layer

Hidden layer

Output layer

 

Fig. 2. The construction of ANN model of evaluation of BP-ISP strategy alignment degree 

When a PSO is used to train this three-layer neural network, the ith particle of tth 
iteration is denoted by 

                    Xi(t) = {xi1(t), xi2(t), . . ., xiK(t)}.    K=1,…,52 v                                   (7) 

Where xi1(t), xi2(t), . . ., xi48(t) represent the connection weight matrix between the 
input layer and the hidden layer, and xi49(t), . . ., xi52(t) represent the connection weight 
matrix between the hidden layer and the output layer. each xiK(t) is initiated in the 
range[-10,10]. 

The position representing the previous best fitness value of any particle is recorded 
and denoted by 

                               L

iX  ={ L

iX 1 , L

iX 2 ; . . . , L

iKX }       K=1,…,52                             (8) 

If, among all the particles in the current population, the index of the best particle is 
represented by the symbol G, then the best matrix is denoted by 
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                            XG ={ GX1 ,
GX 2 , . . . , G

KX }     K=1,…,52                                    (9) 

By using eq. (3), (4) the particle’s new position is determined according to the new 
velocity. In this application, the value c1,c2 is denoted as 2.0 and r1,r2 be two random 
numbers in the range of [0, 1], respectively. The maximum velocity assumed as 10 
and the minimum velocity as-10. For each particle of tth generation, the fitness is 
counted to determine the local best  position and global best position. The fitness of 
the ith particle is expressed in term of an output mean squared error of the neural 
networks as follows 

f(Xi) = ∑
=

−
s

k
iKLkl XPt

s 1

2 ))((
1

 

where f is the fitness value, tkl is the target output; pkl is the predicted output based on 
Xi, S is the number of training set samples. 

4.2   The Experiment Analysis 

The part of training data is showed in table 2. all the data is investigated from 30 
different enterprise. Each index and the evaluating result is score in the range[0,1] by 
the expert of information management fields. We arrange a training dataset with 25 
record, after training, and select other 5 record as test set to calculate the accuracy of 
the model. 

The figure 2 showed the iteration number of different algorithms training neural 
network, we can see that, with different system training accuracy, the PSO-based 
ANN has a less iteration to finish the training process. 
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Fig. 3. The iteration number of different algorithms 

The fact result of test set and the simulated test result with different algorithms is 
showed in Table 2. From Table 2, we can discover the PSO-based ANN has a better 
accuracy than BP neural network. 
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Table 2. The simulated test result 

 1 2 3 4 5 error 
Fact result 0.736 0.601  0.519 0.781 0.672  

The result by 
BP neural net work 

0.726 0.607 0.507 0.781 0.678 0.007 

The result by  
PSO-based ANN 

0.731 0.605 0.511 0.779 1.673 0.004 

5   Conclusions 

In this paper, a set of index system of evaluating the alignment of BP-ISP is 
established.  Based on the index system, an integration algorithm with PSO and neural 
network is established to evaluate the alignment of BP-ISP. The experimental results 
show that the method PSO- based ANN is over come the shortcoming of BP neural 
network, and show a less iteration and higher accuracy. In the future, we will try to 
use the PSO algorithm to optimize the number of hiding layer of ANN to constrct a 
ore efficient model of BP-ISP strategy alignment .  
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Abstract. In this paper, in terms of a linear matrix inequality (LMI),
using a delayed Lagrangian network to solve quadratic programming-
problems, sufficient conditions on delay-dependent and delay-independent
are given to guarantee the globally exponential stability of the delayed
neural network at the optimal solution. In addition, exponential conver-
gence rate is estimated by the equation in the paper. Furthermore, the
results in this paper improved the ones reported in the existing literatures
and the proposed sufficient condition can be checked easily by solving
LMI. Two simulation examples are provided to show the effectiveness of
the approach and applicability of the proposed criteria.

1 Introduction

Optimization problems arise in various of scientific and engineering applications
including function approximation, signal processing, regression analysis, and so
on. In many scientific and engineering applications, the real-time solution of
optimization problems is widely required. However, traditional algorithms for
computers may not be efficient since the computing time required for a solu-
tion is greatly dependent on the structure and dimension of the problems. The
neural network approach can solve optimization problems in running time at the
orders of magnitude much faster than those of the most popular optimization
algorithms executed on computers. The neural network for solving linear pro-
gramming problems was first proposed by Tank and Hopfield [1] in 1986. In 1987,
Kennedy and Chua [2] proposed an improved model that always guaranteed con-
vergence. However, their new model converges to only an approximation of the
optimal solution. In 1990, Rodriguez-Vazquez et al. [3] presented a class of neural
networks for solving optimization problems. Based on dual and projection meth-
ods [4] Xia et al. [5-9] presented several neural networks for solving linear and
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quadratic programming problems. Zhang [10] proposed the Lagrangian network
and Wang et al. [11] studied the global convergence of the network. However,
these neural networks are based on the assumption that neurons communicate
and respond instantaneously without any time delay. In fact, the switching delay
exists in some hardware implementation, and the time delay is hard to predict to
guarantee the stability of the neural network theoretically. Chen and Fang [12]
proposed a delayed neural network for solving convex quadratic programming
problems by using the penalty function approach. However, this network can not
converge to an exact optimal solution and has an implementation problem when
the penalty parameter is very large. To avoid using finite penalty parameters, in
[13], the delayed neural network without penalty parameters was proposed by
Liu, Wang and Cao. However, the conditions in [13] are hard to verify and our
results are expressed in terms of linear matrix inequalities (LMIs), which can
be checked numerically using the effective LMI toolbox in MATLAB. Moreover,
compared with results on delayed neural networks in [13], the presented con-
ditions in this paper can give greater delay bound for stability, leading to less
conservative conditions.

2 Preliminaries

Consider the following quadratic programming problem with constraints:
{

min 1
2xT Q0x + cT x,

subject to Ax = b,
(1)

where Q0 ∈ Rn×n is positive semi-definite, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. In
this paper, we always assume that feasible domain Ω = {x ∈ Rn×n|Ax − b = 0}
is not empty.

By Karush-Kuhn-Tucker conditions [14], x∗ is a solution to (1) if and only if
there exists y∗ such that (x∗, y∗) satisfies the following Lagrange condition:

{
∇Lx(x∗, y∗) = Q0x

∗ + c − AT y∗ = 0,
∇Ly(x∗, y∗) = Ax∗ − b = 0,

(2)

where ∇L is the gradient of the Lagrangian function L.
In [13], the following delayed Lagrangian network for solving problem (1) was

proposed:
du

dt
= −(D + W )u(t) + Du(t − τ) − J, (3)

where τ >0denotes the transmissiondelay,D ∈ R(n+m)×(n+m), W=
(

Q0 −AT

A 0

)
,

J =
(

c
−b

)
, y ∈ Rm is the Lagrange multiplier, u(t) =

(
x(t)
y(t)

)
with the initial

value function u(s) = ϕ(s), s ∈ [−τ, 0].
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For convenience of discussion, we use the transformation v(t) = u(t) − u∗ =(
x(t)
y(t)

)
−

(
x∗

y∗

)
to shift the solution u∗ of the delayed neural network (3) to the

origin, and get the following form of the delayed neural network (4):

dv

dt
= A0v(t) + A1v(t − τ), (4)

where A0 = −(D + W ), A1 = D.

3 Criteria for Quadratic Programming Problems

3.1 Delay-Dependent Condition

Lemma 1. [15] Given any α ∈ Rna , β ∈ Rnb , Y, N ∈ Rna×nb , X ∈ Rna×na , Z ∈
Rnb×nb , if the following inequality is satisfied

(
X Y
Y T Z

)
≥ 0, (5)

then

− 2αT Nβ ≤
(
αT βT

) (
X Y − N

Y T − NT Z

) (
α
β

)
. (6)

Theorem1.Theequilibriumpoint of thedynamic system(4) is exponentially stable
if there are matrices X = XT , Y and positive matrices P, Q, S, Z such that the
dynamic system satisfies the following LMIs

(
X Y
Y T Z

)
≥ 0, (7)

and

G =

⎛

⎝
g11 g12 0
gT
12 g22 0
0 0 −S

⎞

⎠ < 0, (8)

where g11 = P (A0 + A1) + (A0 + A1)T P + Q + τX + Y − PA1 + (Y − PA1)T +
AT

0 (S+τZ)A0, g12 = −Q−Y +PA1+AT
0 (S+τZ)A1, g22 = −Q+AT

1 (S+τZ)A1.

Proof. Choose the candidate Lyapunov functional to be

V (xt) = V1 + V2, (9)

where

V1 = xT (t)Px(t),

V2 =
∫ t

t−τ

xT (s)Qx(s)ds +
∫ t

t−τ

ẋT (s)Sẋ(s)ds +
∫ 0

−τ

∫ t

t+θ

ẋT (s)Zẋ(s)dsdθ.
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The time derivative of V1 along the trajectories of (4) and x(t − τ) = x(t) −∫ t

t−τ ẋ(s)ds turn out to be

V̇1 = 2xT (t)P ẋ(t) = 2xT (t)P [A0x(t) + A1x(t − τ)],

= 2xT (t)P [(A0 + A1)x(t) − A1

∫ t

t−τ

ẋ(s)ds],

= 2xT (t)P (A0 + A1)x(t) −
∫ t

t−τ

2xT (t)PA1ẋ(s)ds. (10)

By Lemma1, we have

−
∫ t

t−τ

2xT (t)PA1ẋ(s)ds =
∫ t

t−τ

(
x(t) ẋ(s)

)

×
(

X Y − PA1
(Y − PA1)T Z

) (
x(t)
ẋ(s)

)
ds. (11)

Substituting (11) into (10) yields

V̇1 ≤ 2xT (t)P (A0 + A1)x(t) +
∫ t

t−τ

(
x(t) ẋ(s)

)

×
(

X Y − PA1
(Y − PA1)T Z

) (
x(t)
ẋ(s)

)
ds

= 2xT (t)P (A0 + A1)x(t) + τxT (t)Xx(t) + 2xT (t)(Y − PA1)T

∫ t

t−τ

ẋ(s)ds

+
∫ t

t−τ

ẋT (s)Zẋ(s)ds. (12)

The time derivative of V2 along the trajectories of (4) is given by

V̇2 = xT (t)Qx(t) − xT (t − τ)Qx(t − τ) + ẋT (t)Sẋ(t)

−ẋT (t − τ)Sẋ(t − τ) + τẋT (t)Zẋ(t) −
∫ t

t−τ

ẋT (s)Zẋ(s)ds. (13)

Therefore, by the inequalities (12) and (13), we obtain

V̇ ≤ 2xT (t)P (A0 + A1)x(t) + τxT (t)Xx(t) + 2xT (t)(Y − PA1)
T (x(t) − x(t − τ ))

+xT (t)Qx(t) − xT (t − τ )Qx(t − τ ) + ẋT (t)(S + τZ)ẋ(t)

−ẋT (t − τ )Sẋ(t − τ )

= 2xT (t)P (A0 + A1)x(t) + τxT (t)Xx(t) + 2xT (t)(Y − PA1)
T [x(t) − x(t − τ )]

+xT (t)Qx(t) − xT (t − τ )Qx(t − τ ) + [A0x(t) + A1x(t − τ )]T (S + τZ)

×[A0x(t) + A1x(t − τ )] − ẋT (t − τ )Sẋ(t − τ )

= ξT (t)Gξ(t) < λmax(G)‖x(t)‖2, (14)
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where ξ(t) =
(
x(t) x(t − τ) ẋ(t − τ)

)T
.

From the definition of V , it follows

λmin(P )‖x(t)‖2 ≤ V (t) ≤ λmax(P )‖x(t)‖2 + λmax(Q)
∫ t

t−τ

‖x(s)‖2ds

+
∫ t

t−τ

ẋT (s)(S + τZ)ẋ(s)ds. (15)

By the inequality 2xT AT By ≤ xT AT Ax + yT BT By, ∀x, y, A, B with suitable
dimensional matrices, we have

∫ t

t−τ

ẋT (s)(S + τZ)ẋ(s)ds =
∫ t

t−τ

[A0x(s) + A1x(s − τ)]T (s)(S + τZ)

×[A0x(s) + A1x(s − τ)]ds

≤
∫ t

t−τ

[xT (s)AT
0 (S + τZ)A0x(s) + 2xT (s)AT

0 (S + τZ)A1x(s − τ)

+xT (s − τ)AT
1 (S + τZ)A1x(s − τ)]ds

≤ λmax(AT
0 (S + τZ + I)A0)

∫ t

t−τ

‖x(s)‖2ds + λmax(AT
1 (S + τZ + I)T

×(S + τZ)A1)
∫ t

t−τ

‖x(s − τ)‖2ds, (16)

where I is an identity matrix.
Set λ1 = λmax(AT

0 (S + τZ + I)A0), λ2 = λmax(AT
1 (S + τZ + I)T (S + τZ)A1),

then, by (15) and (16), we have

V (t) ≤ λmax(P )‖x(t)‖2 + (λmax(Q) + λ1)
∫ t

t−τ

‖x(s)‖2ds

+λ2

∫ t

t−τ

‖x(s − τ)‖2ds. (17)

There exists at least a positive constant α0 such that

α0[λmax(P ) + (λmax(Q) + λ1)τeα0τ + λ2τe2α0τ ] ≤ −λmax(G). (18)

Using (14), (17) and (18), we get

eα0tV (t) − eα0t0V (t) =
� t

t0

d(eα0tV (s))
ds

≤
� t

t0

eα0s[α0(λmax(P )‖x(s)‖2 + (λmax(Q) + λ1)
� s

s−τ
‖x(u)‖2du

+λ2

� t

s−τ
‖x(u − τ)‖2du) + λmax(G)‖x(s)‖2]ds. (19)
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Exchanging the order of integral, we obtain
∫ t

t0

eα0sds

∫ s

s−τ

‖x(u)‖2du ≤
∫ t

t0−τ

du

∫ u

u+τ

eα0s‖x(u)‖2ds

≤ τeα0τ

∫ t

t0−τ

eα0u‖x(u)‖2du, (20)

and
∫ t

t0

eα0sds

∫ s

s−τ

‖x(u − τ)‖2du ≤
∫ t

t0

eα0sds

∫ s

s−2τ

‖x(u − 2τ)‖2du

≤ 2τe2α0τ

∫ t

t0−2τ

eα0u‖x(u)‖2du, (21)

Applying (20) and (21) to (19) yield

eα0tV (t) − eα0t0V (t0) ≤
∫ t

t0

eα0s[α0[λmax(P ) + (λmax(Q) + λ1)τeα0τ

+λ2τe2α0τ + λmax(G)‖x(s)‖2]ds + q0(t0)
≤ q0(t0), (22)

where q0(t0) = α0τeα0τ [(λmax(Q) + λ1)
∫ t0

t0−τ eα0s‖x(s)‖2ds + 2λ2e
α0τ

∫ t0
t0−2τ

eα0s‖x(s)‖2ds].
By (15) and (22), we have

eα0tλmin(P )‖x(t)‖2 ≤ eεtV (t) ≤ Θ, t ≥ t0. (23)

where Θ = eα0t0V (t0) + q0(t0).
Therefore,

‖x(t)‖2 ≤ Θ

λmin(P )
e−α0t, t ≥ t0. (24)

This implies the origin of the delay neural network (4) is global exponentially stable
and its exponential convergence rate α0 is estimated by (18). This completes the
proof.

Remark 1. From Theorem 1, it follows that the stability of the delay neural net-
work (4) is related to the size of the delay τ . Furthermore, the condition is easy to
check by solving LMIs in Theorem 1 and the maximum delay can be computed by
the seeking algorithm.

3.2 Delay-Independent Condition

By applying directly the second Lyapunov method, we can obtain the delay-inde-
pendent condition on globally exponential stability of delay dynamic system in the
following theorem.
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Theorem 2. The equilibrium point of the dynamic system (4) is exponentially sta-
ble if there are positive matrices P, Q such that the dynamic system satisfies the
following LMI

F =
(

PA0 + AT
0 P + Q PA1

AT
1 P −Q

)
< 0. (25)

Proof. Take the candidate Lyapunov functional to be

V (xt) = xT (t)Px(t) +
∫ t

t−τ

xT (s)Qx(s)ds. (26)

The time derivative of V along the trajectories of (1) is given by

V̇ = 2xT (t)P [A0x(t) + A1x(t − τ)] + xT (t)Qx(t) − xT (t − τ)Qx(t − τ),
= ξT (t)Fξ(t) < λmax(F )‖x(t)‖2, (27)

where ξ(t) =
(
x(t) x(t − τ)

)T
.

From the definition of V , it follows

λmin(P )‖x(t)‖2 ≤ V (t) ≤ λmax(P )‖x(t)‖2 + λmax(Q)
∫ t

t−τ

‖x(s)‖2. (28)

Set h(ε) = λmax(F ) + λmax(P )ε + λmax(Q)eετ τε.
Owing to h′(ε) > 0, h(0) = λmax(F ) < 0, h(+∞) = +∞, there exists a unique

ε such that h(ε) = 0; i.e., there is ε > 0 satisfies

λmax(F ) + λmax(P )ε + λmax(Q)eετ τε = 0. (29)

From the definition of V , it follows

V (t) ≤ λmax(P )|x(t)|2 + λmax(Q)
∫ t

t−τ

|x(s)|2ds. (30)

For ε > 0 satisfying (29), by (28) and (30), we get

(eεtV (x(t)))′ = εeεtV (x(t)) + eεtV̇ (x(t))
≤ eεt(λmax(F ) + λmax(P )ε)|x(t)|2

+εeεtλmax(Q)
∫ t

t−τ

|x(s)|2ds. (31)

Integrating the both sides of (31) from 0 to an arbitrary t ≥ 0, we can obtain

eεtV (x(t)) − V (x(0))

≤
∫ t

0
eεs(λmax(F ) + λmax(P )ε)|x(s)|2ds

+
∫ t

0
εeεsλmax(Q)ds

∫ s

s−τ

|x(r)|2dr. (32)
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And
∫ t

0
εeεsλmax(Q)ds

∫ s

s−τ

|u(r)|2dr

≤
∫ t

−τ

ελmax(Q)τeε(r+τ)|u(r)|2dr. (33)

Substituting (33) into (32) and applying (29), we obtain

eεtV (x(t)) ≤ Θ, t ≥ 0. (34)

where Θ = V (x(0)) +
∫ 0
−τ ελmax(Q)τeετ |u(r)|2dr.

By the above inequality and (28), we get

|x(t)|2 ≤ Θ

λmin(P )
e−εt, t ≥ 0. (35)

This implies the origin of the delay neural network (4) is globally exponentially
stable and its exponential convergence rate α0 is estimated by (29). This completes
the proof.

Applying the above Theorem, we can easily get the following Corollary 1:

Corollary1. If there arematricC andpositivematricesP, Q such that the dynamic
system (3) satisfies the following LMI

(
−C − CT − PW − WT P + Q C

CT −Q

)
< 0, (36)

then the dynamic system (3) with D = P−1C converge exponentially to x∗ which is
an optimal solution of the quadratic programming problem with constraints (1).

Remark 2. Corollary 1 provides a method on designing the delay-independent
neural network (3) to compute the optimal solution of the problem (1).

4 Examples

In this section, we consider the following quadratic programming problem[13]:
{

min 1
2xT Qx + cT x,

subject to Ax = b,
(37)

where Q =
(

0.1 0.1
0.1 0.1

)
, c =

(
−1 1

)
, A = (0.5, 0.5), b = −0.5. This problem has a

unique solution x∗ = (−0.5, 0.5)T .

Example 1. In [13], the following delay neural network was illustrated as follows

du

dt
= −(D + W )u(t) + Du(t − τ) − J, (38)
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Fig. 1. Behaviors of the delay network with 4 groups of random initial conditions
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Fig. 2. dynamical behavior of the delay neural network with 4 random initial conditions

where τ ≥ 0denotes the transmissiondelay,W =

⎛

⎝
0.1 0.1 −0.5
0.1 0.1 0.5
0.5 −0.5 0

⎞

⎠ , J =

⎛

⎝
−1
1

0.5

⎞

⎠ ,

u =

⎛

⎝
x1
x2
y

⎞

⎠. D is taken as identity matrix, and by Theorem 3 in [13], the equilib-

riumpoint of system(3) is asymptotically stable if 0 < τ < 3.68.However, applying
Theorem 1 in this paper to Example 1, we know that the equilibrium point of sys-
tem (3) is exponentially stable if 0 < τ < 21.5. Figure 1 shows the delay neural
network with τ = 16 converge exponentially to the unique optimal solution.

Example2.BycomputingLMI (36) inCorollary 1,we candesign the following de-

lay neural network:D =

⎛

⎝
0.7964 −0.2151 0.0064

−0.1876 0.9301 −0.0055
0.0066 −0.0053 0.8951

⎞

⎠ . By Theorem 2 in this pa-

per, the stability of theneural networkabove is delay-independent.Figure 2demon-
strates the neural network designed converges exponentially to (x∗

1, x
∗
2, y

∗) =
(−0.5, 0.5, −2).
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5 Conclusions

In this paper, we present theoretical results on the delay neural network for op-
timization computation. These conditions obtained here are easy to be checked
in practice, and are of prime importance and great interest in the design of delay
neural network.The criterions are little conservative than the respective criteria re-
ported in existing references. Finally, illustrative examples are also given to verify
the effectiveness of the results.
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Abstract. This paper presents an efficient approach based on Hopfield network 
for solving nonlinear optimization problems, with polynomial objective func-
tion, polynomial equality constraints and polynomial inequality constraints. A 
modified Hopfield network is developed and its stability and convergence is 
analyzed in the paper. Then a mapping of nonlinear optimization problems is 
formulated using the modified Hopfield network. Simulation results are pro-
vided to demonstrate the performance of the proposed neural network. 

1   Introduction 

Optimization problems arise in a wide variety of scientific and engineering applica-
tions including decision-making, system identification, function approximation, re-
gression analysis, and so on [1]. In some applications, the real-time solution of opti-
mization problems is widely required. However, traditional numerical algorithms may 
not be efficient since the computing time required for a solution is greatly dependent 
on the dimension and structure of the problems. One possible and very promising 
approach to real-time optimization is to apply artificial neural networks. Because of 
the inherent massive parallelism, the neural network approach can solve optimization 
problems in running time at the orders of magnitude much faster than those of the 
most popular optimization algorithms. 

In the neural networks literature, there exist several approaches used for solving 
nonlinear optimization problems. The first neural approach applied in optimization 
problems was proposed by Tank and Hopfield in [2] and [3] where the network was 
used for solving linear programming problems. Although the equilibrium point of the 
Tank and Hopfield network may not be a solution of the original problem, this semi-
nal work has inspired many researchers to investigate other neural networks for solv-
ing linear and nonlinear programming problems. Kennedy and Chua in [4] extended 
the Tank and Hopfield network by developing a neural network for solving nonlinear 
programming problems. However, their model converges to only an approximation  
of the optimal solution. Rodriguez-Vazquez et al. [5] proposed a class of neural  
                                                           
* This research work is supported by the Natural Science Fund of China (# 70501022). 
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networks for solving optimization problems. Wu et al. [6] introduced a new model 
that solves both the primal and dual problems of linear and quadratic programming 
problems. Their new model always globally converges to the solutions of the primal 
and dual problems. Xia et al. [7] introduced a recurrent neural network for solving the 
nonlinear projection formulation. Effati et al. [8] presented a new nonlinear neural 
network that has a much faster convergence. Their new model is based on a nonlinear 
dynamical system. 

Based on the previous research works, we have developed a modified Hopfield 
network not depending on penalty or weighting parameters, which overcomes short-
comings of the previous approaches. This approach can be applied to solve some 
types of nonlinear optimization problems, with polynomial objective function, poly-
nomial equality constraints and polynomial inequality constraints. As many nonlinear 
optimization problems bear this form in many engineering and scientific applications, 
the neural network proposed in this paper has its practical significance. 

The organization of the present paper is as follows. In Section 2, the modified 
Hopfield network is presented. In Section 3, a mapping of nonlinear optimization 
problems is formulated using the modified Hopfield network. Simulation results are 
presented to demonstrate the advanced performance of the proposed approach in 
Section 4. Finally, the main results of the paper are summarized and some concluding 
remarks are presented. 

2   The Modified Hopfield Network 

Based on the continuous model of Hopfield network, we can construct the dynamic 
function as fellows: 
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Moreover, in Eq. (1), 1n  is the number of the neuron, i.e., variable number; T  is 

coefficient or weight of the connection between neurons; iI  is biased input of neuron 

i ; ( )•if  is function of neuron i ; iC  and iR are constants; iU  is input of neuron i  

(which is also called the potential of a neuron); iV  is output of neuron i  (which is 

also called the firing rate of a neuron); W  and Q  are constant coefficients; 
1l

b  and 

2l
d  are constants; 2n , 

1l
m , 

2l
m , gm , and hm  are positive integers. 

Compared with normal continuous Hopfield network model, Eq. (1) is added the 
first term and the second term on the right side as well as the terms where 12 >n . 

Therefore, Eq. (1) is an extension to the continuous Hopfield network model. 
We construct the modified energy function as fellows: 
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(7) 

where ( )•F  and ( )•G  are functions. Their forms are determined by the following 

proposition. 

Proposition. When the following conditions are satisfied, i.e., 

(1) ( )•f  is a monotonically increasing continuous function; 

(2) 0>iC , and 0>iR ; 
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(3) 
12121 +

=
xnxn mmmjjij TT , where 2,,2,1 nnx = , 121 ,,, +xnmmm  is a random 

permutation of 
xnjjji ,,,, 21 . That is, the bottom-up weights of all orders the con-

nection between neurons are symmetric. For example, when 22 =n , this condition is 
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(6) ( ) ( ) dxxdFx /=ϕ ; 

(7) ( ) ( ) dxxdGx /=ψ , 

We have the following conclusions: 

(1) 0/ ≤dtdE . 
(2) 0/0/ =⇔≤ dtdVdtdE i , or 1,,2,1,0/ nidtdUi == . 

The proposition shows that when the seven conditions are satisfied, systematic en-
ergy function E  described by Eq. (1) is decreasing, i.e., this system is globally stable. 

According to the proposition, we have 
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According to condition (1) of the proposition, we select the following node  
function: 

( ) ( ) ( )[ ] m
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m
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M
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where M
iV  and m

iV  are respectively upper limit and lower limit of the output of neu-

ron i , and iq  is the reciprocal of the gain of neuron i . It is thus apparent that ( )ii Uf  

is a monotonically increasing continuous function, and its upper limit and lower limit 
are respectively M

iV  and m
iV . Therefore, the upper limit and the lower limit of the 

neuron output can be directly disposed by Eq. (8). 

3   Formulation of Nonlinear Optimization Problems Using the 
Modified Hopfield Network Model 

Let us consider the following nonlinear programming problem: 
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where T , W  and Q  respectively satisfies conditions (3), (4) and (5) of the proposition. 

Thus, gm  equality constraints can be satisfied by means of minimizing 

( )[ ]∑
=

gm

l
l VgF

11

1

, and hm  inequality constraints can be satisfied by means of minimizing 
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l
l VhG
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2

. We construct the following function: 
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 (9) 

where A , B  and C  are positive constraints, and ( )•F  and ( )•G  are functions. Their 

specific forms are shown in the former section. It is apparent that when B  and C  are 
large enough (which is the same as solving optimization problems using Hopfield 
network model [2]), the approximate solution to this programming problem is ob-
tained by minimizing this function. Appropriately fixing the comparative values of 
A , B  and C  is a problem that deserves further research. The larger the values of B  
and C  compared with A  are, the easier the feasible solutions are obtained. 
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When iR/1  converges to zero, Eq. (9) and Eq. (7) bear the same form. Thus, the 

approximate solution to this programming problem can be obtained by solving the 
dynamic function that corresponds to Eq. (9) and is similar to Eq. (1) until it reaches a 
stable state. As the terms on the right side of Eq. (1) and Eq. (7) are sequentially  
corresponding to each other, as long as a programming problem can be defined in the 
forms of some terms of Eq. (7), the solution to the problem can be obtained by  
solving Eq. (1) with the terms corresponding to those of Eq. (7).  

Compare Eq. (1) with Eq. (7), and it is known that iC  and E  are unrelated to each 

other. Therefore, the value of iC  does not affect the solution to an optimization prob-

lem. However, in hardware implementation the value of iC  is connected with the 

time constant of circuit and affects the time a solution takes to reach a stable state. In 
software solving, the value of iC  influences the integration process, which is difficult 

for theoretical analysis. Currently, the value of iC  is 1. The value of iR  is related to 

E , connected with the time constant of circuit in hardware implementation, and usu-
ally influences the quality of solutions. Nevertheless, when the gain is high (i.e., iR  is 

very large), the terms related to iR  in Eq. (1) and Eq. (7) can be ignored. Therefore, 

in software solution iR  usually satisfies 0/1 =iR . 

When we solve a programming problem using the above method, so long as  
the energy function comprises the equality constraint terms of the real variables of  
the original problem, we can only obtain an approximate optimal solution. The reason 
is that in fact this method changes the objective function. The simulated annealing 
method does not help on this point. If the objective function of the original problem 
and its constraints are coordinated well, then we can obtain a good solution (although 
it may not be the optimal solution). For pure integer programming problems, we  
may obtain the optimal solutions. 

The solving method given above is a general one which is suitable for not only pro-
gramming problems with continuous variables but also for those with discrete variables. 

4   Simulation Results 

In this section, the modified Hopfield network proposed in previous sections has been 
used to solve nonlinear optimization problems. We provide two examples to illustrate 
the effectiveness of the proposed architecture. 

 

Example 1. Consider the following nonlinear optimization problem, which is com-
posed of equality constraints and inequality constraints: 

Minimize ( ) 2
2
1 xxXS += , 

subject to 

       
( )
( ) ( )
( ) ( ) 01

01

09

212

2
211

2
2

2
11

≥++−=
≥++−=

=−+=

xxXh

xxXh

xxXg
 



308 C. Yu and Y. Luo 

We construct the following function: 

( ) ( )[ ] ( )[ ] ( )[ ]{ }XhGXhGCXgBFXASE 211 +++=   

In the problem solving process, it is pre-determined that 1=A , 12== CB   
and 121 == qq , and the initial values are 021 == xx . The computation result  

is 3704.21 −=x  and 8376.12 −=x . The optimal solution is 37.21 −≈∗x , and 

84.12 −≈∗x . Thus, the computation result and the optimal solution are almost the 

same. 
 

Example 2. Consider the following mixed-integer programming problem, which is 
composed by inequality constraints and bounded variables: 
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We construct the following function: 
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The upper limit constraints and the lower limit constraints of the variables are dis-
posed by the node function (see Eq. (8)). Thus, the upper and lower limit constraint 
terms of 1x , 3x  and 5x  are not included in the above function. The upper limit con-

straints of 2x , 4x  and 6x  are 1, and their lower limit constraints are 0. Then, the 

minimum value of the second term on the right side of the above function is 0. At this 
time, )3,2,1(2 =× ix i  is 1 or 0, which satisfies the requirement of the problem. 

In the problem solving process, it is pre-determined that 5=A , 1=B ,  
50=C , )3,2,1(112 ==−× iq i , and )3,2,1(01.02 ==× iq i . The initial values are 

)3,2,1(112 ==−× ix i  and )3,2,1(5.02 ==× ix i . The computation result is 

.0,2101.0

,1,6840.1

,1,3056.1

65

43

21

==
==
==

xx

xx

xx
 

This example is a mixed-integer programming problem having four minimum solu-
tions as shown in Table 1. 



 A Modified Hopfield Network for Nonlinear Programming Problem Solving 309 

Table 1. The Four Minimum Solutions of Example 2 

Solution 
No. 

S(X) x1 x2 x3 x4 x5 x6 

1 14.164 1.310 1 1.690 1 
Arbitrary 

values 
0 

2 14.386 1.072 1 1.452 1 0.476 1 

3 14.937 
Arbitrary 

values 
0 2.167 1 0.833 1 

4 15.698 2.040 1 
Arbitrary 

values 
0 0.960 1 

It is apparent that the computation results are close to the optimal solutions. We 
discover that, when A , B  and C  are given different values, the function may con-
verge to local minimum points. Usually, the function does not converge to the third 
and fourth solutions unless the initial values of )3,2,1(2 =× ix i  are very close to the 

two solutions, which indicates that we can obtain excellent solutions but probably not 
global optimal solutions using the proposed method to solve combinatorial optimiza-
tion problems. 

5   Conclusions 

In this paper, we have developed a modified Hopfield network for solving nonlinear 
optimization problems, with polynomial objective function, polynomial equality 
constraints and polynomial inequality constraints. And a mapping of nonlinear 
optimization problems is formulated using the modified Hopfield network. The 
simulation results demonstrate that the proposed network is an efficient method to 
solve nonlinear optimization problems. From the simulation results we can conclude 
that the modified Hopfield network proposed in this paper has the advantages of 
global convergence and high accuracy of solutions. In order to guarantee this global 
convergent behavior, we also analyzed, for each example presented in the paper, the 
network convergence from several other points randomly generated. For all 
simulations, the network always converged to the same optimal solutions. 

References 

1. Bazaraa,M.S., Sherali,H.D., Shetty,C.M.: Nonlinear Programming, Wiley, New York 
(1993). 

2. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems, Biol. 
Cybern. 52 (1985) 141-152. 

3. Tank, D.W., Hopfield, J.J.: Simple neural optimization networks: An A/D converter, signal 
decision circuit and a linear programming circuit, IEEE Trans. Circ. Syst. 33 (1986) 533. 

4. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming, IEEE Trans. Circ. 
Syst. 35 (1988) 554-562. 



310 C. Yu and Y. Luo 

5. Rodriguez-Vazquez, A., Dominguez-Castro, R., Rueda, A., Huertas, J.L., Sanchez-
Sinencio, E.: Nonlinear switched-capacitor neural networks for optimization problems, 
IEEE Trans. Circ. Syst. 37 (1990) 384-397. 

6. Wu, Y., Xia, Y., Li, J., Chen, W.: A high-performance neural network for solving linear 
quadratic programming problems, IEEE Trans. Neural Networks 7 (1996) 643-651. 

7. Xia, Y., Wang, J.: A projection neural network its application to constrained optimization 
problems, IEEE Trans. Circ. Syst. 49 (2000) 447-457. 

8. Effati, S., Baymani, M.: A new nonlinear neural network for solving convex nonlinear pro-
gramming problems, Appl. Math. Comput. (2004) 1-3. 



D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 311–319, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Novel Artificial Neural Network Based on Hybrid 
PSO-BP Algorithm in the Application of Adaptive PMD 

Compensation System 

Ying Chen1, Qiguang Zhu2, and Zhiquan Li1 

1 Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China 
chenying@ysu.edu.cn 

2 Institute of Information Science and Engineering, Yanshan University, 
Qinhuangdao 066004, China 

Abstract. An artificial neural network (ANN) based on hybrid algorithm 
combining particle swarm optimization (PSO) algorithm with back-propagation 
(BP) algorithm has been introduced to compensate the polarization mode 
dispersion (PMD) in the ultra-high speed optical communication system. The 
hybrid algorithm, also referred to as PSO-BP algorithm, has been adopted to train 
the weights of ANN, and it can make use of not only strong global searching 
ability of the PSO algorithm, but also strong local searching ability of the BP 
algorithm. In the proposed algorithm, a heuristic way was adopted to give a 
transition from particle swarm search to gradient descending search. The 
experimental results show that the hybrid algorithm is better than the Adaptive 
PSO algorithm and BP algorithm in convergent speed and convergent accuracy. 
And in the PMD compensation system, the ANN is used to optimize the degree 
of polarization (DOP) signal, which can achieve the random stochastic PMD 
compensation adaptively. Simulation results show the opening of eye diagram 
can be improved obviously. 

1   Introduction 

Recent terabit optical communication transmission experiments use massive WDM 
technology. Nevertheless, it is still attractive to increase the bit rate per channel instead 
of the number of wavelength channels, since requirements on wavelength stability, filer 
quality, and network management are relaxed if the number of wavelength channels is 
reduced. However, the higher the bit rate per channel the higher is the impairment due 
to polarization mode dispersion (PMD). 

Even in installed fiber links with a mean differential group delay (DGD) as low as 
10% of the bit period, system outages may occur, since instantaneous DGD values can 
still exceed the tolerable margin of about 30% of the bit period. PMD becomes a serious 
impairment at channel rates of 40 Gb/s and particularly at bit rates as high as 160 Gb/s, 
where the bit period is only 6.25 ps. Since PMD depends on environmental conditions 
and varies on different time scales, an adaptive and dynamic approach for PMD 
compensation is necessary.  

Computation techniques play an important role in most electromagnetic engineering 
problems, in which optimizing processes have to be solved. Usually the complex nature 
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of many engineering problems involves an effective use of ANNs to solve them. An 
artificial neural network trained by some algorithms can be used to adaptive feedback 
control loop to compensate the PMD [1], [2]. One of the most critical phases in 
managing an ANN is the training, when weights of the neural connections have to be 
set. The parameters of the network have to be optimized in order to reach a good and 
accurate output. Therefore the learning process should result in finding the weights 
configuration associated to the minimum output error. 

Usually problems are associated to an objective function to be optimized. The 
function, also called fitness function, provides the interface between the physical 
problems and the optimization algorithms. There are often lots of problems related to 
these algorithms. The huge number of variables is the first difficulty when dealing with 
one of these optimizing problems. And in addition, there are lots of configurations with 
values of the objective function that are very similar with each other and very close to 
the global optimum case, even if these configurations are sub-optimal. In general, 
finding a solution in an optimization process means to reach a balance among different 
and often conflicting goals, as a consequence this search could be very difficult. 

ANNs are good tools to understand the complex and nonlinear relationships among 
these data. In this paper, the proposed hybrid PSO-BP algorithm is proposed to train the 
ANN [3], [4]. This hybrid uses the Adaptive PSO algorithm to do global search in the 
beginning of stage, and then uses the BP algorithm to do local search around the global 
optimum gP . In particular, this hybrid algorithm will be used to train the ANN weights 

for function approximation and classification problems, respectively compared with 
the Adaptive PSO algorithm and the BP algorithm in convergent speed and 
generalization performance. 

2   Theoretical Backgrounds 

2.1   Adaptive PMD Compensation 

It is widely believed that the one-stage compensators are able to compensate PMD to 
first order. They have three or four parameters to be controlled depending on whether 
the differential group delay line is fixed or varied. The two-stage compensators can 
compensate the PMD up to the second order. They have six or seven parameters to be 
controlled depending on whether the delay line is fixed or varied. The adaptive PMD 
compensation is a process for a control algorithm to find optimal combinations of 
control parameters, in order for the feedback signal to reach a global optimum, in an 
intelligent, fast, and reliable manner.  

In the experiment shown is Fig.1, the degree of polarization (DOP), obtained by an 
in-line polarimeter, was used as feedback signal. The optical pulses at the receiving end 
have a DOP of one when there is no PMD in the fiber link, and the DOP value decreases 
as PMD increases. The polarization controller (PC) used in the compensation unit is the 
electrically controlled one which has four fiber-squeezer cells to be adjusted with 
voltage of 0~10 V, out of which three cells were used in the experiment. Thus, the 
problem of adaptive PMD compensation can be described mathematically as a problem 
of maximization of DOP, that is ( ) parametersfunctionMAX , where the function 

represents the DOP value in the experiment. The parameters here are the voltages for 
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controlling the PCs and the variable delay line. There is no simple method to predict the 
function in an adaptive PMD compensation system. A good searching algorithm is 
required to search the global maximum in a D-dimensional hyperspace.  

10 Gb/s RZ
Transmmiter

40 Gb/s
MUX

PMD
Emulator

D-DOF PMD
Compensator

ANN Based on
PSO-BP

In-line
PolarimeterDEMUXBER

Analyzer
 

Fig. 1. Experimental setups of adaptive PMD compensation for 40-Gb/s optical time- 
division-multiplexing transmission systems with ANN based on PSO-BP algorithm 

2.2   ANN Architecture 

A multi-layer ANN consists of a system of simple interconnected neurons, or nodes. It 
is a model representing a non-linear mapping between input and output vectors. The 
architecture of a multi-layer ANN is variable, but, in general, consists of several layers 
of neurons. The neurons are connected to each other by weighted links over which 
signals can pass. Each neuron receives multiple inputs from other neurons in proportion 
to their connection weights and generates a single output, which may be propagated to 
several other neurons. The input layer plays no computational role but is merely used to 
pass the input vector to the network. The ANN has the ability to learn through training 
[5], [6]. The training requires a set of training data, i.e., a series of input and output 
vectors. During the training, the ANN is repeatedly presented with the training data, 
and weights in the network are adjusted from time to time till the desired input-output 
mapping occurs. After the training, input vectors that are not belonging to the training 
pairs will be used simulate the system and produce the corresponding output vector. By 
selecting a suitable set of weight and transfer function, it was known that the artificial 
neural network can approximate any smooth, measurable function between the input 
and output vectors. The neural networks are widely applied in many areas such as 
prediction, system modeling and control. 

By using the DOP as the object function, we can account for the accuracy of the 
DOP as measured by in-line polarimeter, which can accurately track the fluctuating 
PMD conditions. The in-line polarimeter measures the state of polarization of the light. 

Describing the state of polarization in term of the stokes’ vector S  [7],  
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Then, the DOP is calculated as the quotient of the polarized light power and the total 
power 
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Polarization can be measured with polarimeters based on rotating waveplates or 
polarizers. Those polarimeters depend on stable input polarization during plate 
rotation. Stable input polarization, however, is usually not found in optical transmission 
systems, and rapid fluctuations may result from fiber touching or other environmental 
influences. Therefore, real-time polarization measurement is required in the practical 
communication links. 

Thus, in the ANN structure mentioned in this paper, 321 ,, SSS  has been regarded as 

the three inputs of the input layer, and the DOP is used as the output function of the output 
layer [8]. Compared with the best DOP, waveplates will be modulated and will generate 
three new inputs of the input layer. And by training the ANN in the certain iteration,  
a good DOP will be obtained and the PMD condition will by improve obviously. 

2.3   Adaptive Particle Swarm Optimization 

Adaptive PSO algorithm is an evolutionary algorithm based on a model of social 
interaction between independent agents (particles) that uses social knowledge in order 
to find the global maximum or minimum of a function [9], [10]. This computational 
technique, adopting a pseudo-biological approach, takes its origin from the simulation 
of social behaviors such as those related to synchronous bird flocking and fish 
schooling. It is similar to genetic algorithms and simulated annealing, but it operates 
emulating social interaction between independent agents and utilizes swarm 
intelligence to achieve the goal of optimizing a specific fitness function in a way easy to 
understand and implement. Any set of coordinates in the N-dimensional space is a 
particular position of an agent and represents a solution; it corresponds to a particular 
value of the fitness function. Each particle also has an associated velocity, and that 
takes into account the best position reached by all ones and the best position, resulting 
in a migration of the swarm towards the global optimum [11], [12]. 

At the starting point, Adaptive PSO algorithm randomly initializes the position and 
velocity of a random population of particles. In the PSO technique each particle i is 
defined by its position vectors iX  in the space of the parameters to be optimized, and 

in addition, such a particle also has a random velocity iV  in the parameter space. At 

each epoch, the particle moves according to its velocity and the cost function to be 
optimized ( )Xf  is evaluated for each particle in its current position. The value of the 

cost function is compared with the best value attained during the previous time steps. 
The best value ever obtained for each particle is stored, and the position, at which it was 
attained, iP  is stored too. Velocity of the particle, the main PSO operator, is then 

stochastically updated by letting the particle be attracted by the position iP  of its 

individual optimum and the position gP  which is the global optimum. The APSO can 

be described as follows: 

    ( ) ( )igiiii XPrandcXPrandcVV −+−+=+ 22111 ()()ω                        (3) 

iii VXX +=+1                                                       (4) 
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Here 1<w  is known as the “inertial weight”. This algorithm by adjusting the 
parameter w  can make w reduce gradually as the generation increases. In the 
searching process of the Adaptive PSO algorithm, the searching space will reduce 
gradually as the generation increases. So the Adaptive PSO algorithm is more effective, 
because the searching space reduces step by step nonlinearly, so the searching step 
length for the parameter w  here also reduces correspondingly. After each generation, 
the best particle of particles in last generation will replace the worst particle of particles 
in current generation, thus better result can be achieved. The inertial weight is chosen 
between 0 and 1 in order to determine to what extent the particle remains along its 
original course unaffected by the pull of the other two terms, larger values for w  result 
in smoother, more gradual changes in direction through search space. These ones are 
balanced by the scaling factors 21 ,cc  and two random positive numbers 1()rand  and 

2()rand with a uniform distribution and a value from 0 to 1. 1c and 2c  also control how 

far a particle will move in a single iteration. Typically these are both set to a value of 2.  
Generally, in the beginning stages of algorithm, the inertial weight w  should be 

reduced rapidly, when around optimum, the inertial weight w should be reduced 
slowly. So here, the following selection strategy has been adopted: 
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where 0w  is the initial inertial weight, 1w  is the inertial weight of linear section 

ending, max2 is the total searching generations, max1 is the used generations that 
inertial weight is reduced linearly, generation, is a variable whose range is [1,max2]. 
Through adjusting k , we can achieve different ending values of inertial weight. In 
particular, the value of max2 is selected according to empirical knowledge.  

2.4   Hybrid PSO-BP Algorithm and ANN Training 

The hybrid PSO–BP algorithm is an optimization method combining the PSO with the 
BP. The PSO algorithm is a global algorithm, which has a strong ability to find global 
optimistic result, this PSO algorithm, however, has a disadvantage that the search 
around global optimum is very slow. The BP algorithm, on the contrary, has a strong 
ability to find local optimistic result, but its ability to find the global optimistic result is 
weak. The fundamental idea for this hybrid PSO-BP algorithm is that at the beginning 
stage of searching for the optimum, the PSO is employed to accelerate the training 
speed. When the fitness function value has not changed for some generations, or value 
changed is smaller than a predefined number, the searching process is switched to 
gradient descending searching according to this heuristic knowledge. 

Similar to the Adaptive PSO algorithm, the searching process of the PSO–BP 
algorithm is also started from initializing a group of random particles. First, all the 
particles are updated according to the Eqs. (3) and (4), until a new generation set of 
particles are generated, and then those new particles are used to search the global best 
position in the solution space. Finally the BP algorithm is used to search around the 
global optimum. In this way, this hybrid algorithm may find an optimum more quickly. 
The procedure for this PSO–BP algorithm can be summarized as follows: 
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Step 1: Initialize the positions and velocities of a group of particles randomly in the 
range of [0, 1]. 
Step 2: Evaluate the fitness value of each initialized particle, and iP  is set as the 

positions of the current particles, while gP  is set as the best position of the initialized 

particles. 
Step 3: If the maximal iterative generations are arrived, go to Step 8, else, go to Step 4. 
Step 4: The best particle of the current particles is stored. The positions and velocities 
of all the particles are updated according to Eqs. (3) and (4), then a group of new 
particles are generated, If a new particle flies beyond the boundary [ ]maxmin , XX , the 

new position will be set as minX  or maxX ; if a new velocity is beyond the boundary 

[ ]maxmin ,VV , the new velocity will be set as minV  or maxV . That is,  

minmin1
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Step 5: Evaluate the fitness value of each new particle, and the worst particle is replaced 
by the stored best particle. If the new position of the jth particle is better than iP , iP  is 

set as the new position of the jth particle. If the best position of all new particles is better 
than gP , then gP  is updated. 

Step 6: Reduce the inertia weights w  according to the selection strategy described in 
Section 3. 
Step 7: If the current gP  is unchanged for ten generations, then go to Step 8; else, go  

to Step 3. 
Step 8: Use the BP algorithm to search around gP  for some epochs, if the search result 

is better than gP , output the current search result; or else, output gP .  

The parameter w , in the above PSO–BP algorithm also reduces gradually as the 
iterative generation increases, just like the APSO algorithm. The selection strategy for 
the inertial weight w  is the same as the one described in Section 2.2, i.e., firstly reduce 
w linearly then reduce it nonlinearly. But the parameter max1generally is adjusted to an 
appropriate value by many repeated experiments, and then an adaptive gradient 
descending method is used to search around the global optimum gP . 

When the adaptive PSO algorithm is used in evolving weights of ANN, every 
particle represents a set of weights, and in the encoding strategy, each particle is 
encoded for a vector. For ANN involved, each particle represents all weights of a ANN 
structure. In the following experiments, the performances of BP algorithm, Adaptive 
PSO algorithm and PSO-BP algorithm in evolving the weights of the ANN have been 
compared. Supposed that every weight in the network was initially set in the range of 
[-50, 50], and all thresholds in the network were 0 s. Supposed that every initial particle 
was a set of weights generated at random in the range of [0, 1]. Let the initial inertial 
weight w be 1.8, the acceleration constants, both 1c and 2c  be 2.0, 1()rand  and 

2()rand be two random numbers in the range of [0, 1], respectively. The maximum 
velocity assumed as 10 and the minimum velocity as -10. The initial velocities of the 
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initial particles were generated randomly in the range of [0, 1]. After each iteration, if 
the calculated velocity was larger or smaller than the maximum velocity or the 
minimum velocity, it would be reset to 10 or -10. The population size is 200. 

3   Experimental Research 

3.1   PMD Compensation System with ANN Based on PSO-BP Algorithm 

In the experiment, as is shown in Fig.2, the pulses emitted from the tunable laser are 
scrambled by the polarization scrambler, thus different PMDs can be obtained in 
different channels. The searching and tracking of DOP is achieved the ANN based on 
PSO-BP algorithm, and through digital-to-analog (D/A) conversion, the corresponding 
voltages are performed on the polarization controllers. By this can a feedback control 
module be build up. 

The PMD compensator can be separated into two parts, as is shown in Figure 4. One 
part is composed of PC1 and a piece of polarization-maintained fiber, in which, PC1 is 
under the control of three voltages from the D/A converter to change the polarization state 
of signal. The other part includes PC2 and a variable delay line made up of birefringence 
crystals, in which, PC2 is under the control of another three voltages from the D/A 
converter, and the birefringence crystal delay line can be controlled by SCM or PC to 
change the output differential group delay dynamically according to the feedback signal. 

3.2   Experimental Results 

Each particle represents a single intersection of multidimensional hyperspace. The 
position of the ith particle is represented by the position vector ( )1 2 6, , ,i i i iX x x x= . In the 

6-DOF PMD compensation scheme, the components of the ith particle are represented 
by the combination of 6 voltages ( )1 2 6, , ,i i iV V V . The PSO algorithm for adaptive PMD 

compensation should include two stages. First, the searching algorithm finds the global 
optimum from any initial PMD condition. Then the tracking algorithm starts to track 
the changed optimum because the PMD in the real fiber link always randomly changes, 
due to changes in the environment such as temperature fluctuations, etc. The response 
time of the compensator depends on the strategy of the chosen algorithms and the 
performance of the hardware. In a compensation loop, D/A converters write 
multi-voltages to the voltage-controlled PCs, the PCs adjust their wave plates to proper 
states, then perform A/D conversions, and process the data in the computer processor 
with the ANN based on PSO-BP algorithm. And as is shown in Fig.3, the maximum 
iteration number for each process is set to 50, and it is easy to observe that all the DOP 
values reach 0.9 within about 25 iterations and the maximum DOP available can be 
0.96. Thus, PSO-BP algorithm can undertake the task of solving multidimensional 
problems well, and it is possible to achieve the searching of DOP for high-order PMD 
compensation. From the eye diagrams shown as Fig.4 and Fig.5, the compensation 
effectiveness can be easily observed. Compared the eye diagram before and after 
compensation, the opening of the eye diagram has been improved obviously. And the 
compensation response time can be attained to 70 ms. 
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Fig. 2. Schematic diagram of experiment setup for adaptive PMD compensation 
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Fig. 3. Optimum of DOP in each iteration in 6-DOF PMD compensation 
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4   Conclusions 

An ANN trained by hybrid PSO-BP algorithm has been proposed to achieve adaptive 
PMD compensation. From the simulation result, the PSO–BP algorithm spends less 
CPU time than the PSO algorithm and the BP algorithm, and it has been demonstrated 
that a random stochastic PMD can be successfully compensated by the ANN based on 
PSO-BP technique. 

Acknowledgement 

This work was supported by National Natural Science Foundation of China grant  
no. 60377002. 

References 

1. Zheng, Y., Zhang, X., Zhou, G.: Automatic PMD Compensation Experiment with Particle 
Swarm Optimization and Adaptive Dithering Algorithms for 10-Gb/s NRZ and RZ Formats. 
IEEE J. Quantum Electron. 40(4) (2004) 427-435 

2. Zhang, X., Zheng, Y.: Particle Swarm Optimization Used as A Control Algorithm for 
Adaptive PMD Compensation.  IEEE Photon. Technol. Lett. 17(1) (2005) 85-87 

3. Shao, J., Zhang, L. X., Qian, F.: Soft Sensing Modeling via Artificial Neural Network Based 
on Pso-Alopex. Proceedings of 2005 International Conference 7 (2005) 4210-4215 

4. Grimaldi, E.A., Grimaccia, F., Mussetta, M.: PSO as An Effective Learning Algorithm for 
Neural Network Applications. Proceedings ICCEA 2004 3rd International Conference 
(2004) 557-560 

5. Zhang, C., Shao, H., Li, Y.: Particle Swarm Optimization for Evolving Artificial  
Neural Network. Systems, Man, and Cybernetics, IEEE International Conference 4 (2000)  
2487 -2490 

6. Gudise, V.G, Venayagamoorthy, G.K.: Comparison of Particle Swarm Optimization and 
Backpropagation as Training Algorithms for Neural Networks. Swarm Intelligence 
Symposium (2003) 110-117 

7. Rasmussen, Jens C., Akihiko I., George, I.: Automatic Compensation of Polarization-Mode 
Dispersion for 40 Gb/s Transmission Systems. IEEE J. Lightwave Technol. 20 (12) (2002) 
2101-2108 

8. Kikuchi, N.: Analysis of Signal Degree of Polarization Degradation Used as Control Signal 
for Optical Polarization Mode Dispersion. IEEE J. Lightwave Technol. 19 (2001) 480-486 

9. van den Bergh, F.: A Cooperative Approach to Particle Swarm Optimization. IEEE 
Transactions on Evolutionary Computation 8(3) (2004) 225-239 

10. Abdelbar, A. M., Abdelshahid, S.: Swarm Optimization with Instinct Driven Particles. 
Prodeedings IEEE Congress on Evolutionary Computation (2003) 777-782 

11. Robinson, J., Rahmat-Samii, Y.: Particle Swarm Optimization in Electromagnetism. IEEE 
Transactions Antennas and Propagation 52(2) (2004) 591-594 

12. Eberhart, R. C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and 
Resources. Proceedings IEEE International Conference on Evolutionary 
Computation,(2001) 81-86 



Stabilizing Lagrange-Type Nonlinear

Programming Neural Networks

Yuancan Huang

Intelligent Robotics Institute, Beijing Institute of Technology
Nandajie 5, Zhongguancun, Haidian, 100081 Beijing, China

yuancanhuang@bit.edu.cn

Abstract. Inspired by the Lagrangian multiplier method with quadratic
penalty function, which is widely used in Nonlinear Programming The-
ory, a Lagrange-type nonlinear programming neural network whose equi-
libria coincide with KKT pairs of the underlying nonlinear programming
problem was devised with minor modification in regard to handling in-
equality constraints[1,2]. Of course, the structure of neural network must
be elaborately conceived so that it is asymptotically stable. Normally this
aim is not easy to be achieved even for the simple nonlinear programming
problems. However, if the penalty parameters in these neural networks
are taken as control variables and a control law is found to stabilize it,
we may reasonably conjecture that the categories of solvable nonlinear
programming problems will be greatly increased. In this paper, the con-
ditions stabilizing the Lagrange-type neural network are presented and
control-Lyapunov function approach is used to synthesize the adjusting
laws of penalty parameters.

1 Problem Statement

Since an equality constraint can be equivalently decomposed into two coupled
inequality constraints, without loss of generality we consider the following non-
linear programming problems with only inequality constraints:

minimize f(x)
subject to g(x) ≤ 0 ,

(1)

where f(x) : Rn → R and g(x) : Rn → Rm are scalar objective function and
vector constraint function, respectively. Its feasible set is defined as X = {x :
g(x) ≤ 0, x ∈ Rn}.

Let x∗ be a vector satisfying the constraint conditions, then I(x∗) denotes a
set of index i for which gi(x∗) = 0, namely

I(x∗) = {i | gi(x∗) = 0, i = 1, 2, · · · , m} . (2)

If the gradients ∇gi(x∗), i ∈ I(x∗) are linearly independent, then x∗ is called
regular point. The constraint whose value equals to zero at x∗ is said to be
active; otherwise, inactive.
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If the Lagrangian function of the problem (1) is defined as

L(x, λ) = f(x) +
m∑

i=1

λigi(x) . (3)

Karush-Kuhn-Tucker Theorem[7] furnishes the necessary condition for some x∗

being a local minima of the problem (1):

Theorem 1. Let x∗ be a local minimum of the problem (1) and assume that x∗

is a regular point. Then there exists a unique vector λ∗ such that

∇xL(x∗, λ∗) = 0 , (4)
λ∗

i gi(x∗) = 0, i = 1, 2, · · · , m , (5)
g(x∗) ≤ 0 ,

λ∗ ≥ 0 .

The basic idea using neural network to solve nonlinear programming problem
is to construct a continuous-time dynamical system whose equilibria satisfy the
necessary condition in Karush-Kuhn-Tucker Theorem[1,2,3,4,5,6,10,11,12]. In-
spired by the Henstein-Rockfellar-Powell Lagrangian Multiplier Method with
quadratic penalty function[8,9], such a system is established:

ẋ = −∇xLc(x, λ) (6)
λ̇i = 2λigi(x), i = 1, 2, · · · , m

in which the augmented Lagrangian function is defined as

Lc(x, λ) = f(x) +
m∑

i=1

λ2
i gi(x) +

1
2

m∑

i=1

ci(λigi(x))2 , (7)

where ci is positive penalty parameter. Note that square of multipliers is used
to eliminate nonnegative constraint imposed on original multipliers in Karush-
Kuhn-Tucker Theorem.

We may readily write the analytical expression of multipliers:

λi(t) = λi(0)e
� t
0 2gi(x)dt, i = 1, 2, · · · , m , (8)

where assume that λi(0) is a nonzero initial value of λi(t).
From this expression, it is obvious that, if not all inequality constraints are

satisfied, the related multipliers will increase continuously so that the trajectory
of x(t) moves towards the feasible set. Therefore, if the constructed dynamical
system is asymptotically stable, x will ultimately tend to the KKT pairs of the
problem whereas the inactive multipliers approach to zero, and the active ones
to some constants.

In [2], the asymptotic stability is proved under the assumption of second suf-
ficient condition[7], and convergent mechanism is also analyzed using LaSalle
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Invariance Principle[13,14]. Unfortunately, the asymptotic stability may be only
guaranteed for some special nonlinear programming neural networks after cum-
bersome construction. However, if the positive penalty parameter ci is considered
as a control variable, we may reasonably conjecture that much more nonlinear
programming neural networks will be endowed with desired asymptotic stability
by devising appropriate adjusting laws of penalty parameters.

In conformity to the notation convention of control theory, let F (x) = ∇f(x),
Gi(x) = ∇gi(x), where ∇ represents the gradient of a function, and ci = u2

i .
Then we have

ẋ = −F (x) −
∑m

i=1 λ2
i Gi(x) −

∑m
i=1 λ2

i gi(x)Gi(x)u2
i

λ̇i = 2λigi(x), i = 1, 2, · · · , m .
(9)

The system is standard input affine nonlinear system with positive control[15].
If a stabilizing feedback law ui = ki(x, λ), i = 1, 2, · · · , m, is synthesized for
this system, it will eventually settle down to the KKT pair of the nonlinear
programming problem. Now two questions, partly answered in this paper, are
arising:

(1) Under which conditions the system can be stabilized; and
(2) How to design the stabilizing feedback law.

Our paper is organized as follows: Section 2 presents some conditions for exis-
tence of stabilizing control laws. In Section 3, we use control-Lyapunov function
to synthesize the stabilizing control law. Finally, the conclusion and discussion
are given.

2 Conditions for Existence of Stabilizing Control Laws

The stabilization problem in this paper can be regarded as a special case of the
following general nonlinear finite-dimensional control systems:

ẋ(t) = f(x(t), u(t)) , (10)

where states x(t) ∈ Rn for all t, and controls are measurable locally essentially
bounded maps

u(·) : [0, ∞) → U ∈ Rm

into the control-value set. In particular, we often consider systems with no input:

ẋ(t) = f(x(t)) . (11)

All definitions for such systems are implicitly applied as well to systems with
input (10) by setting u ≡ 0.

Without loss of generality, we state all definitions and theorems for the case
when the equilibrium point is at the origin of Rn since any equilibrium point
can be shifted to the origin via a change of variables.
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Here comparison functions are used to formulate the stability concepts. The
relevant definitions are first recalled. The class of K∞ functions consist of all
α : R≥0 → R≥0 which are continuous, strictly increasing, unbounded, and satisfy
α(0) = 0. The class of KL functions consists of those β : R≥0 × R≥0 → R≥0
with the properties that (i) β(·, t) ∈ K∞ for all t, and (ii) β(r, t) decreases
to zero as t → ∞. N is used to denote the set of all nondecreasing functions
σ : R≥0 → R≥0.

Expressed in this language, the property of global asymptotic stability(GAS)
for the system ẋ = f(x, 0) becomes:

(∃β ∈ KL) | x(t, x0, 0) |≤ β(| x0 |, t) ∀x0, ∀t ≥ 0 .

A system is called to be (open loop, globally) asymptotically controllable, if
for each initial state x0 there exists some control u = ux0(·) defined on [0, ∞),
such that the corresponding solution x(t, x0, u) is defined for all t ≥ 0, and
converges to zero as t → ∞, with ”small” overshoot. Moreover, we wish to rule
out the possibility that u(t) becomes unbounded for x near zero. The precise
formulation is as follows:

(∃β ∈ KL)(∃σ ∈ N ) ∀x0 ∈ Rn ∃u, ‖u‖∞ ≤ σ(| x0 |) ,
| x(t, x0, u) |≤ β(| x0 |, t) ∀t ≥ 0 .

Finally, we say that k : Rn → U is a feedback stabilizer for the system with
input (10) if k is locally bounded(that is, k is bounded on each bounded subset
of Rn), k(0) = 0, and the closed-loop system

ẋ(t) = f(x(t), k(x)) (12)

is GAS, i.e. there is some β ∈ KL so that | x(t) |≤ β(| x(0) |, t) for all solutions
and all t ≥ 0.

In the sequel, some conditions for existence of continuously differentiable,
continuous, and discontinuous stabilizing control laws are introduced.

2.1 Constant or Continuously Differentiable Feedback Stabilization

First, we present the results in [2]. The following theorem is well-known Lya-
punov’s indirect method[16,17]:

Theorem 2. Let x = 0 be an equilibrium point for the nonlinear system with
no input

ẋ(t) = f(x(t)) , (13)

where f : D → Rn is continuously differentiable and D is a neighborhood of the
origin. Let

A =
∂f

∂x
(x) |x=0 .

Then the origin is asymptotically stable if Reλi < 0 for all eigenvalues of A.
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If the second-order sufficient conditions for a x∗ being minimum of the problem
(1) is satisfied, we have shown that all eigenvalues of the linearized part of the
system (9) has negative real part while the constant control laws u2

i greater than
some positive real number are applied to [2]. Hence there is

Proposition 1. Let (x∗, λ∗) is the KKT pair for the problem (1). If the second-
order sufficient condition is satisfied, then the system (9) is locally asymptotically
while the constant control laws that guarantee u2

i greater than some positive real
number are used.

From Brockett’s theorem in [18], the necessary condition for the existence of a
continuously differentiable stabilizing feedback is written:

Theorem 3. Let ẋ = f(x, u) be given with f(0, 0) = 0 and f(·, ·) continuously
differentiable in a neighborhood of (0, 0). A necessary condition for the existence
of a continuously differentiable control law which makes (0, 0) asymptotically
stable is that:

(i) the linearized system should have no uncontrollable modes associated with
eigenvalues whose real part is positive.

(ii) there exists a neighborhood B of the origin such that for each x1 ∈ B
there exists a control u(·) defined on [0, ∞) such that this control steers
the solution of ẋ = f(x, u) from x1 at t = 0 to 0 at t = ∞.

(iii) the mapping (x, u) �→ f(x, u) should be onto an open set containing (0, 0).

Remark: Mentioned as before the system (9) is a control affine nonlinear system
with positive control. So the Lie algebra rank condition cannot be taken as a
surrogate of condition (ii), but it can be used to rule out the systems where the
rank condition is not satisfied.

2.2 Regular and Continuous Feedback Stabilization

Conventionally, it turns out that requirements away from zero, say asking whether
k is continuous or smooth, are not very critical; it is often the case that one can
”smooth out” a continuous feedback or, even, make it real-analytic via Grauert’s
Theorem, away from the origin. So, in order to avoid unnecessary complications
in exposition due to nonuniqueness, a feedback k is called regular if it is locally
Lipschitz on Rn\0. A necessary condition, originated from Brockett’s Theorem,
for existence of continuous feedback stabilization is presented[21]:

Theorem 4. Let ẋ = f(x, u) be given with f(0, 0) = 0 and f(·, ·) locally Lip-
schitz on (x, u). If there is a stabilizing feedback which is regular and continuous
at zero, then the map (x, u) �→ f(x, u) is open at zero.

2.3 Discontinuous Feedback Stabilization

Before we discuss the condition for existence of discontinuous feedback stabiliza-
tion, some concepts are states as follows:
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By a sampling schedule or partition π = {ti}ti≥0 of [0, +∞) we mean an
infinite sequence

0 = t0 < t1 < t2 < . . .

with limi→∞ ti = ∞. We call

d(π) := sup
i

(ti+1 − ti)

the diameter of π. Suppose that k is a given feedback law for the system (10). For
each π, the π-trajectory starting from x0 of the system (10) is defined recursively
on the interval [ti, ti+1), i = 0, 1, . . ., i.e., on each interval [ti, ti+1), the initial
state is measured, the control value ui = k(x(ti)) is computed, and the constant
control u ≡ ui is applied until time ti+1; the process is then iterated. In other
words, we start with x(t0) = x0 and solve recursively

ẋ(t) = f(x(t), k(x(ti))), t ∈ [ti, ti+1), i = 0, 1, 2, . . .

using as initial value x(ti) the endpoint of the solution on the preceding inter-
val. The ensuing π-trajectory, which is denoted as xπ(·, x0), is defined on some
maximal nontrivial interval; it may fail to exist on the entire interval [0, ∞) due
to a blow-up on one of the subintervals [ti, ti+1). We say that it is well defined
if xπ(·, x0) is defined on all of [0, ∞).

Definition 1. The feedback k : Rn → U stabilizes the system (10) if there exists
a function β ∈ KL so that the following property holds: For each

0 < ε < K ,

there exists a δ = δ(ε, K) such that, for every sampling schedule π with d(π) < δ,
and for each initial state x0 with | x0 |< K, the corresponding π-trajectory of
(10) is well-defined and satisfies

| xπ(t, x0) |≤ max{β(K, t), ε} ∀t ≥ 0 .

In particular, we have

| xπ(t, x0) |≤ max{β(| x0 |, t), ε} ∀t ≥ 0 ,

whenever 0 < ε <| x0 | and d(π) < δ(ε, | x0 |)(justtakeK :=| x0 |).

The definition of stabilization is physically meaningful, and is very natural in
the context of sampled-data(computer control) systems. It says that a feedback
k stabilizes the system if it drives all states asymptotically to the origin and
with small overshoot when using any fast enough sampling schedule. A high
enough sampling frequency is generally required when close to the origin, in
order to guarantee small displacements, and also at infinity, so as to preclude
large excursions or even blow-ups in finite-time. This is the reason for making
δ depend on ε and K.If the admissible feedback stabilization is extended to the
discontinuous case, then there is

Theorem 5. The system (10) admits a stabilizing feedback if and only if it is
asymptotically controllable[19].
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3 Control-Lyapunov Functions’ Approach for Stabilizing
Control Laws

In Section 2, the conditions for existence of stabilizing control laws are given.
Now we demonstrate how to get them, although it is difficult for practical use.

According to the classical converse theorems of Massera and Kurzweil, when-
ever a system is GAS, there always exists a smooth Lyapunov function V . Hence,
for each x = 0 there is some u so that V̇ (x, u) < 0. This is the characterizing
property of control-Lyapunov functions.

We say that a continuous function

V : Rn → R≥0

is positive definite if V (x) = 0 only if x = 0, and it is proper if for each α ≥ 0
the set {x | V (x) ≤ α} is compact, or, equivalently, V (x) → ∞ as | x |→
∞(radial unboundedness). A property which is equivalent to properness and
positive definiteness together is

(∃α, α ∈ K∞)α(| x |) ≤ V (x) ≤ α(| x |) ∀x ∈ Rn .

3.1 Differentiable Control Lyapunov Functions

A differentiable control Lyapunov function (clf) is a differentiable function V :
Rn → R≥0 which is proper, positive definite, and infinitesimally decreasing,
meaning that there exists a positive definite continuous function W : Rn → R≥0,
and there is some δ ∈ N , so that

sup
x∈Rn

min
|u|≤σ(|x|)

∇V (x) · f(x, u) + W (x) ≤ 0 .

In principle, we could then stabilize the system by using the steepest descent
feedback law:

k(x) := arg min
u∈U0

∇V (x) · f(x, u) ,

where argmin means that we pick any u at which the minimum is attained; we
restricted U to be assured that ∇V (x) · f(x, u) attains a minimum[21].

3.2 Nonsmooth Control Lyapunov Functions

Let V : Rn → R be any continuous function (or even, just lower semicontinuous
and with extended real values). A proximal subgradient of V at the point x ∈ Rn

is any vector ζ ∈ Rn such that, for some σ > 0 and some neighborhood (O) of
x,

V (y) ≥ V (x) + ζ · (y − x) − σ2 | y − x |2 ∀y ∈ O .
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In other words, proximal subgradients are the possible gradients of supporting
quadratics at the point x. The set of all proximal subgradients at x is denoted
∂P V (x)[20].

A continuous(but not necessarily differentiable)V : Rn → R is a control Lya-
punov function if it is proper, positive definite, and infinitesimally decreasing
on the following generalized sense: there exists a positive definite continuous
function W : Rn → R≥0 and a δ ∈ N so that

sup
x∈Rn

max
ζ∈∂P V (x)

min
|u|≤σ(|x|)

ζ · f(x, u) + W (x) ≤ 0 .

An equivalent property is to ask that V is a viscosity supersolution of the cor-
responding Hamilton-Jacobi-Bellman equation.

In [23], it is shown that the system (10) is asymptotically controllable if and
only if it admits a continuous clf. Hence we may propose the procedure to syn-
thesize the stabilizing feedback law.

Consider the Iosida-Moreau inf-convolution of V with quadratic function:

Vα(x) := inf
y∈Rn

[
V (y) +

1
2α2 | y − x |2

]
,

where the number α > 0 is picked constant on appropriate region. One has
that Vα(x) ↗ V (x), uniformly on compact sets. Since Vα is locally Lipschitz,
Rademacher’s Theorem insures that it is differentiable almost everywhere. The
feedback k is then made equal to a pointwise minimizer kα of the Hamiltonian,
at the points of differentiability:

kα(x) := arg min
u∈U0

∇Vα(x) · f(x, u) ,

where α and U0 are chosen constant on certain compact sets.
One must define, on appropriate compact sets

kα(x) := arg min
u∈U0

ζα(x) · f(x, u) ,

where ζα(x) is carefully chosen: At point x of nondifferentiability, ζα(x) is not
a proximal subgradient of Vα(x), since ∂P Vα(x) may well be empty. One uses,
instead, the fact that ζα(x) happens to be in ∂P Vα(x) for some x′ ≈ x.

4 Conclusions and Discussions

In order to broaden the categories of nonlinear programming problems which
may be solved by the Lagrange-type nonlinear programming neural network,
the penalty parameters are taken as positive control variables. If a control law
is found to stabilize the Lagrange-type neural network, it is a reasonable hy-
pothesis that the Lagrange-type neural network may be used to solve much
more categories of nonlinear programming problems. In this paper, we investi-
gate respectively sufficient, necessary or sufficient and necessary conditions for
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the existence of the constant, continuously differentiable or nonsmooth stabi-
lizing feedbacks. Then control-Lyapunov function approach is used to synthe-
size the adjusting laws of penalty parameters, and the computing formulaes are
presented. Of course, there still remain many difficult issues on this research
direction, for example, it is not easy to find an appropriate control-Lyapunov
function; the nonsmooth feedback law is extremely sensitive to measurement
errors[21], etc.
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Abstract. Soft sensors have been widely used in industrial process control to 
improve the quality of product and assure safety in production. This paper in-
troduces support vector machines (SVM) into soft-sensing modeling. Building 
the models, on one hand we want to have the best set of input variables, on the 
other hand we want to get the best possible performance of the SVM model. So 
the Genetic Algorithms is used to choose the input variables and select the  
parameters of SVM. Moreover, training the model on data coming a real ex-
periment process—Nosiheptide fermentation process and evaluating the model 
performance on the same process. Results show that SVM model optimized by 
Genetic Algorithms provides a new and effective method for soft- sensing mod-
eling and has promising application in industrial process applications. 

1   Introduction 

Most of the bioprocesses are strongly characterized by nonlinear dynamics, time-
varying parameters, lack of reproducibility of the experimental results, and lack of 
cheap and reliable sensors capable of providing reliable on-line measurement of the 
main process variables and parameters, such as the concentration of biomass, sub-
strates or products in fermentation process. These peculiarities impede the application 
of high performance automatic control and monitoring strategies necessary for the 
production efficiency optimization, the products quality improvement or the distur-
bances detection in process operation [1]. The development of appropriate estimation 
algorithms using well-known information on the process dynamics and ‘robust’ about 
the missing information becomes a premise for the successful decision of this prob-
lem. So soft sensors have been developed and applied for the bioprocesses [2]. 

In recent years, SVM, which is a statistical learning theory based machine learning 
formalism is gaining popularity due to its many attractive features and promising 
empirical performance. For further details on SVM we refer to the following refer-
ences [3], [4]. 

In order to build a good model, we must do the following two specific subtasks. (i) 
Selection of the model input variables. We want to find out the combination of the 
original input variables which contribute most to the model. (ii) Selecting of the  
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appropriate model parameters, such as the regularization parameter C and kernel 
parameters in the SVM algorithm. These parameters play a key role in the SVM per-
formance, but they are sometimes guessed by users. This paper proposed an input 
variables and parameters selection methodology for soft-sensing modeling based on 
the genetic algorithms in order to guarantee a good performance of the model. And 
this method is employed to construct a soft-sensing model in Nosiheptide fermenta-
tion process.   

2   Genetic Algorithms for Model Optimization 

The selection of the input variables and parameters are the key factor to build a model 
with good performance. There is an interdependent relationship between the input 
variables and parameter selection to the SVM performance. But they are always se-
lected separately. Thus it can not obtain the best model. So we developed a method 
for hybrid optimization of the input variables and parameter selection in order to ob-
tain their integrated effect. Because the selection of input variables and parameters is 
time consuming, so the conventional optimization method can never find the satisfy-
ing results. This paper proposes a faster and more effective methodology for the  
hybrid optimization based on the genetic algorithms [5]. 

2.1   Selection of the Input Variables 

If we assume that there are n  variables to be selected as the input. We can define a 
set, },,,{ 21 nxxxX …= , then we can represent this search space by a standard binary 

encoding where a “1” indicates the selection of the variable and “0” indicates that the 
variable is not selected. We define the fitness functions as follows 

2

1

)(
1 ∑

=

∧
−=

M

i
iiRMS yy

M
E , (1) 

where iy is the real value, 
∧

iy is the output of the model with the test data. M is the 

number of sample data. Then the selection of input variable is formulated as the opti-
mization problem: 

1 2

m in ( )

. . { , , , } {0 ,1} , 1, , .
R M S

n i

E X

s t X x x x x i n= ⊂ =
 (2) 

2.2   Optimizing Kernel Parameters with Genetic Algorithms 

Many of the characteristics of the SVM model are determined by the type of kernel 
function being used. The level of non-linearity is determined by the kernel function. 
Numerous possibilities of kernels exist and it is difficult to explain their individual 
characteristics. However, there are two main types of kernels, namely Local and 
Global kernels. In local kernels only the data that are close or in the proximity of each 
other have an influence on the kernel values. An example of a typical local kernel is 
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the RBF kernel: )2/exp(),( 22'' σxxxxK −−= . In contrast, a global kernel allows 

data points that are far away from each other to have an influence on the kernel values 
as well. The Polynomial kernel: dxxxxK )1)((),( '' +⋅= , is a typical example of a 

global kernel. For more information on the characteristics of local and global kernels 
see [6]. 

So we know that the polynomial kernel has better extrapolation abilities, but the in-
terpolation abilities are bad. On the other hand, the RBF kernel has good interpolation 
abilities, but fails to provide longer range extrapolation. Preferably one wants to com-
bine the ‘good’ characteristics of two kernels. We use a convex combination of the 

two kernels polyΩ  and RBFΩ . 

RBFpolymix pp Ω−+Ω=Ω )1( , (3) 

where p  is the optimal mixing coefficient. Before building the model, the parameter, 

pdC ,,,σ  must be selected. We also select the parameter based on Genetic Algo-

rithms. The fitness function is Eqs.1. Then we can get the optimization problem as 
flowing, 

min ( )

. . { , , , }, [0,1], , , 0.
RMSE

s t C d p p C dσ σ
Ω

Ω = ⊂ >
 (4) 

 

Fig. 1. Flow chart of input selection and parameters optimization 

2.3   Hybrid Optimization 

As before, there is an interdependent relationship between the input variables and 
parameter selection to the SVM performance. So they must be done as the same time. 
We represent input variable and parameter by a standard binary encoding together and 
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take the Eqs.1 as the fitness function. The iteration can stop when the fitness value of 
the best individual arrives at some value or there is no more obvious change for the 
best and average fitness values of the population. The flow chart of model based on 
GA is illustrated in Fig. 1. 

3   Case Study: Biomass Concentration Soft-Sensing Modeling  

3.1   Training Data and Pretreatment 

Experimental data from Nosiheptide fermentation were used for the training and  
testing of the soft sensing model. The Nosiheptide production process is an aerobic 
fermentation in batch fermentor, which periods is about 96 hours. In Nosiheptide 
fermentation process, measurable variables on-line include physics and chemic pa-
rameters (see table 1). The biomass concentration can not measure on-line, so we take 
the biomass concentration as the output of the soft-sensing model. Prior to further 
processing, all of the data were normalized by conversion into the [0, 1] interval, 
using Eqs.5. 

Table 1. Process variables 

Variable Units Description Min Max 
T ℃ Temperature 5 50 
P Pa Pressure 0 35 
DO % sat. Dissolved oxygen tension 0 100 
pH pH pH value 3 10 
φO2 % Off-gas oxygen concentration 12 22 
φCO2 % Off-gas carbon dioxide concentration 0 7 
OUR mol·min-1 Oxygen uptake rate 0 5 
CER mol·min-1 Carbon dioxide production rate 0 5 
R r·min-1 Agitator rotate speed 0 375 
Na m3·h-1 Aeration 0 0.42 

 

          
ii

ii
iN xx

xx
x

min,max,

min,
, −

−
= , (5) 

where: ix is the value of the I th process variable, iNx , is the normalized value of the 

I th process variable, ixmax, is the high-range value of the I th process variable, 

ixmin, is the low-range value of the I th process variable. 

3.2   Result 

Firstly, we select the input variables and parameters based on the optimization method 
as before. The size of initial population is 30, and the genetic operator is roulette 
wheel selection, adaptive crossover and Gauss mutation [7]. We take five batch data 
as the training data, one batch data as the validating data, and another batch as the 
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testing data. But we know that the growth of thalli is an accumulative effect of multi 
factor. And it can not be decided by the conditions of some times. That’s to say, it is 
the outcome of a period of time. In order to improve the prediction capabilities of the 
model, the state variables at times 2,1 −− tt  were provided as inputs in addition to the 
states at time t . The variable at time 2−t  is comparatively less influence than at time 
t  and 1−t . We can weight the variables at times 2,1, −− ttt  by weighting factors iλ . 

This leads to the input ip at time t : 

2,31,2,1 −− ++= tititii xxxp λλλ , (6) 

where 1
3

1

=∑
=i

iλ , 321 λλλ >> , 2,1,, ,, −− tititi xxx  denote sampling value of i th variable at 

time 2,1, −− ttt , respectively. We take 7.01 =λ , 2.02 =λ  and 1.03 =λ . 

After optimization, we select the flowing five variables as the input: agitator rotate 
speed (R), dissolved oxygen (DO), CO2 concentration, ( 2COϕ ) O2 concentration 

( 2Oϕ ) and pH value (pH). The parameters },,,{ pdC σ  in SVM are {18.4, 0.24, 1, 

0.8}. At last, we use the testing data to test the soft-sensing model, the result is shown 
in Fig. 2 and mean square error between the output of the model and real value is 
0.1324.  
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Fig. 2. Estimated and measured biomass concentration values VS time 

To explain the performances of the SVM-based soft-sensing model furthermore, we 
also compare the results with the results with the NN-based estimation methods. The 
result is presented in Tab. 2. 

Table 2. Comparison of different soft-sensing methods 

Method Training time (s) Training error Testing error 
SVM 3.456 0.1035 0.1324 
Neural Network 107 0.1022 0.5784 

The results in Tab. 2 show that the NN model can achieve the high training error, 
but the generalization performance is bad, and cost much more time than SVM 
method. 
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4   Conclusions 

Within this work a soft-sensing model for estimate of biomass concentration in Nosi-
heptide fermentation was designed and examined. The model is based on the SVM 
approach. Because fermentation process is characteristic with nonlinear and time-
varying, and there are many process variables. So the selection of input variables of 
the model becomes a key problem. It impacts not only the complexity but also the 
generalization performance of the model. Otherwise, the parameters in SVM play a 
key role in the SVM performance, and there is not a definite solution when SVM is 
constructed. So this paper introduces a hybrid optimization method of input variables 
selection and parameters selection based on GAs. It simplifies the complexity of the 
model and improves the SVM performance. Effective results indicate that SVM mod-
eling method based on GAs provides a new tool for soft-sensing and has promising 
application in industrial process applications. 
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Abstract. Proximal SVM (PSVM), which is a variation of standard SVM, leads 
to an extremely faster and simpler algorithm for generating a linear or nonlinear 
classifier than classical SVM. An efficient incremental method for linear PSVM 
classifier has been introduced, but it can’t apply to nonlinear PSVM and 
incremental technique is the base of online learning and large data set training. 
In this paper we focus on the online learning problem. We develop an 
incremental learning method for a new nonlinear PSVM classifier, utilizing 
which we can realize online learning of nonlinear PSVM classifier efficiently. 
Mathematical analysis and experimental results indicate that these methods can 
reduce computation time greatly while still hold similar accuracy. 

1   Introduction 

Recently some variations of standard support vector machines [7] have been 
presented, e.g. PSVM [1], RSVM [5], Least squares SVM [6], etc. These approaches 
make a quadratic problem that requires considerably longer computational time 
become merely requiring the solution of a single system of linear equations and 
clearly superior to classical SVM at speed while still hold comparable test 
correctness. In recent years tremendous growth in the amount of data gathered and the 
need of online learning have changed the focus of SVM classifier algorithms to not 
only provide accurate results, but to also enable incremental learning. An efficient 
incremental method for linear PSVM was introduced in [2], however this method 
can’t apply to nonlinear PSVM classifier as the form of the solution of nonlinear 
PSVM is different from that of linear PSVM. To solve large data set learning problem 
[5] introduced reduced kernel techniques (RSVM), but it isn’t suitable for online 
learning in which we don’t know the entire data set at the beginning. Reference [4] 
introduces an incremental method for nonlinear PSVM [1], but it re-compute the 
classifier from beginning each time when new examples are added in. To solve online 
learning problem efficiently, we introduce a new nonlinear PSVM classifier which 
leads to shorter computing time and similar accuracy first, then based on this new 
model a new incremental learning method, utilizing the calculation formula for block 
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matrix’s inversion, is developed. Mathematical analysis and experimental results 
demonstrate that this incremental learning method fully utilizes the historical training 
results and leads to shorter training time and same correctness compared with learning 
in standard way. Similar work to regression least squares SVM can be found in [8].  

We briefly summarize the contents of this paper now. In Section 2 we review the 
2-category PSVM [1] and the incremental linear PSVM proposed in [2]. In Section 3 
we introduce a new nonlinear PSVM based on which our incremental method is 
developed. In Section 4 we introduce a new incremental method and give a detailed 
complexity analysis. Some numerical testing results can be found in section 5 before 
the conclusion and future works in section 6. 

2   Proximal Support Vector Machine (PSVM) 

Some notations will be used in this paper: all vectors are column vectors, the 

2-norm of the vector x  is denoted by 'x x x= ⋅ , let matrix [ ]A m n×  be the training 

points in the -dimensionaln  space nR . The diagonal matrix [ ]D m n×  of 1±  

contains the classes 1+  and 1−  of m  training points. Let e  be the column vector  
of 1 , ,w r  be the coefficients and the scalar of the hyperplane. Let y  be the slack 

variable and constant 0v ≥  is used to tune errors and margin size. The identity matrix 
is denoted by I . 

The PSVM [1] proposed by Fung and Mangasarian try to find the “proximal” 
( ' 1x w r− = ±  for class 1± ) planes, around which the points of each class are 
clustered and which are pushed as far apart as possible. The key idea in PSVM is 
replacing the inequality constraints in standard SVM [7] by equalities, and the 
solution with linear kernel is given by the following quadratic program: 

1

2 2

( , , )

1 1
min || || ( ' ),

2 2
      . .     ( ) .

m mw r y R
v y w w r

s t D Aw er y e

+ +∈
+ +

− + =
. (1) 

These modifications, even though very simple, change the nature of optimization 
problem significantly. In fact it turns out that we can write an explicit exact solution 
to the problem in terms of the problem data as we show below, whereas it is 
impossible to do that in standard SVM formulations. The Karush-Kuhn-Tucker 
optimality condition of (1) will give the linear equation system (2) of ( )1n +  

variables ( ),w r : 

[ ] ( ) [ ]1
, ' / ' ' ,  ,w r I v E E E De E A e

−= + = − . (2) 

Note that all we need to store in memory is the ( )1m n× +  training data matrix E , 

the ( ) ( )1 1n n+ × +  matrix 'E E  and the ( )1 1n + ×  vector 'E de . So if the dimension 

of the input space is small enough, PSVM can even classify millions data points. 
However the algorithm is limited by the storage capacity of the ( )1m n× +  training 
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data matrix E . In order to deal with very large (at least one billion points) data sets, as 
proposed in [2] we can split the training dataset E  into blocks of lines ,i iE D  and 

compute 'E E  and 'E de  from these blocks: 

' ' , ' 'i i i iE E E E E De E D e= =∑ ∑  . (3) 

For each step, we only need to load the ( ) ( )1blocksize n× +  matrix iE and the 

( ) 1blocksize ×  vector iD e  for computing 'E E  and 'E de . Between two incremental 

steps, we need to store in memory ( ) ( )1 1n n+ × +  and ( )1 1n + ×  matrices although 

the order of the dataset is one billion data points. 
The nonlinear proximal classifier with a kernel ( ), 'K A A  is given by the following 

quadric problem (NPSVM): 

1

2 2

( , , )

1 1
min || || ( ' ),

2 2
      . .     ( ( , ') ) .

m mu r y R
v y u u r

s t D K A A Du er y e

+ +∈
+ +

− + =
. (4) 

Using the shorthand notation ( , ')K K A A= , through the KKT necessary and 

sufficient optimality conditions for our equality constrained problem (5) we can get 
the following solution: 

1( ' ')
I

Ds KK ee De
v

−= + + . (5) 

Here, ms R∈  is the Lagrange multiplier associated with the equality constraint of (5). 
As the kernel matrix K  is a square m m×  matrix, the above incremental method isn’t 
applicable to nonlinear PSVM. To make nonlinear classifier learning of large data set 
solvable, [5] proposed a reduced kernel techniques (RSVM), but RSVM isn’t 
applicable when it comes to online learning where examples are added in different 
batches. With the focus on online learning problem next we introduce a new nonlinear 
PSVM model based on which a new incremental training method will be designed. 

3   New Nonlinear PSVM (NNPSVM) 

We obtain the new nonlinear PSVM model by making a simple change to the linear 
formulation (1) as follows: 

( )
( )

1

2 2

( , , )

1 1
min || || ' ,

2 2
      . .     ( )w .

m mw r y R
v y w w r

s t D A er y eφ

+ +∈
+ +

− + =
. (6) 

Here ( )xφ  is a nonlinear transformation function, which maps a vector x  in the real 

space nR  to a higher dimensional feature space nR , similarly ( )Aφ  maps m nR ×  into 
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m nR × , and there exist a kernel ( , ')K A A  satisfying ( ) ( ) ( ), ' 'K A A A Aφ φ= . 

Apparently we can also get (6) from (8) by minimizing 'w w  instead of 'u u .  
Using KKT necessary and sufficient optimality conditions for our equality 

constrained problem (7) we can get the following expressions: 

( ) ' , ' , , ( ( ) ) 0w A Du r e Du vy u D A w er y eφ φ= = − = − + − =  . (8) 

Here, mu R∈  is the Lagrange multiplier associated with the equality constraint of (7). 
Substituting the first three expressions in the last equality of (8) allows us to obtain an 
explicit expression for Du  as follows: 

1 1( / ( ) ( ) ' ') ( / ')Du I v A A ee De I v K ee Deφ φ − −= + + = + +  . (9) 

The corresponding nonlinear classifier is then: 

( ) ( )( )sgn ', 'f x K x A Du r= −  . (10) 

Compared with (6) the solution of NNPSVM (9) eliminates two m m×  matrix’s 
product, furthermore based on NNPSVM we can develop an incremental training 
method. The effectiveness of this model is demonstrated in Section 5. 

4   Incremental Nonlinear PSVM (INPSVM) 

Assume that the current classifier is based on an input data set 1
1

m nA R ×∈  and a 

corresponding diagonal matrix 1 1
1

m mD R ×∈ of 1±  and have the corresponding 

inversion ( )( ) 11
11 1 1/ , ' 'A I v K A A ee

−− = + + stored in memory, now a “new” set of data 

points represented by a new matrix 2
2

m nA R ×∈  and a corresponding diagonal matrix 
2 2

2
m mD R ×∈ of 1±  needs to be added to the characterization of our new classifier. So 

the whole data set comes to be [ ]1 2', ' 'tA A A= , according to formulation (9) to get the 

solution of Du  we need to figure out the inversion of the following matrix: 

  

( )( ) ( )( )

11 12

21 22

12 1 2 22 2 2 21 12

 
,

 

where , ' ' , / , ' '  and '.

tt

A A
A

A A

A K A A ee A I V K A A ee A A

⎡ ⎤
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⎣ ⎦

= + = + + =

 
(11) 

Making use of the formula for computing block matrix’s inversion we can compute 
the ( ) ( )1 2 1 2m m m m+ × + matrix ttA ’s inversion incrementally: 

1 1
11 121 11

21 22

   

       '       
tt

A A A X Y
A

A A Y T

− −
− ⎡ ⎤⎡ ⎤ +

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 , (12) 

where T , X , and Y  has the following expressions: 
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1 1 1 1
22 21 11 12 11 12 12 11=( ) , = , 'T A A A A Y A A T X YA A− − − −− − = −  . (13) 

As is shown in (13), to obtain the inversion of ttA  we need to figure out 12A , 22A , T , 

X  and Y  which is a 1 2m m×  matrix, a 2 2m m× matrix, a 2 2m m× matrix’s inversion, 

a 1 1m m×  matrix and a 1 2m m×  matrix respectively. Thus approximately we need 

( )3 2 2
2 1 2 1 22 2O m m m m m+ +  operations to acquire 1

ttA −  through incremental method in 

contrast to ( )( )3

1 2O m m+  operations if we compute the whole data set from start. We 

turn now to our numerical experiments. 

5   Experiments 

All our computations were performed on a machine which utilizes a 731  MHZ 
Pentium III and 512  Megabytes of memory. Here we chose four data sets from the 
UCI Machine Learning Repository.  

Table 1. INPSVM and NNPSVM recall and running time  with some tuned values of v  

 
Data Set 

m n×  
Ionosphere 
351× 34 

Bupa Liver 
345 × 6 

Tic-Tac-Toe 
958 × 9 

INPSVM 
Recall 

Time(Sec.) 
99.72% 
0.21 

83.48% 
0.21 

100.00% 
3.75 

NNPSVM 
Recall 

Time(Sec.) 
99.72% 
0.33 

83.48% 
0.33 

100.00% 
5.03 

Table 2. NPSVM and NNPSVM average recall, ten-fold testing correctness and training time 

 
Data Set 

m n×  
Ionosphere 
351× 34 

Bupa Liver 
345 × 6 

Tic-Tac-Toe 
958 × 9 

NPSVM 
Recall 
Test 

Time(Sec.) 

99.43% 
93.17% 
0.16 

80.23% 
66.87% 
0.16 

100% 
99.06% 
2.32 

NNPSVM 
Recall 
Test 

Time(Sec.) 

99.94% 
94.80% 
0.14 

84.73% 
67.27% 
0.13 

100% 
99.06% 
1.56 

To simulate the situation in online learning firstly split each data set into two parts 
and train the first part using NNPSVM, secondly add the second part of the data set 
into the classifier. There are two methods to do the second job (INPSVM and 
NNPSVM) distinguished by whether or not using the incremental method. The test 
results are recorded in Table 1, and it can be seen that INPSVM reduces the 
computation time evidently and has no influence on accuracy (because it gives the 
same solution as NNPSVM). It can be further expected easily that if the number of 
parts decomposed was more that 2, the reduction would be more distinct. We also 
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compared NNPSVM with standard nonlinear PSVM (5) (NPSVM) both with 310v =  
in Table 2, it can be seen that they have similar ten-fold recall and test correctness but 
the average running time of NNPSVM is shorter.  

6   Conclusions 

In this paper we proposed an incremental learning method based on a new nonlinear 
PSVM model, utilizing which we can perform online learning of a new nonlinear 
PSVM classifier efficiently. Test results demonstrate that the computation time of 
NNPSVM is shorter than NPSVM and the accuracy of these two classifiers are 
similar, and that INPSVM reduce training time evidently while still hold same 
correctness as that of learning in standard way.  
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Abstract. In order to enhance fault diagnosis precision, an improved fault  
diagnosis model based on least squares support vector machine (LSSVM) is 
presented. In the model, the wavelet packet analysis and LSSVM are combined 
effectively. The power spectrum of fault signals are decomposed by wavelet 
packet analysis, which predigests choosing method of fault eigenvectors. And 
then the LSSVM is adopted to realize fault diagnosis. The non-sensitive loss 
function is replaced by quadratic loss function and the inequality constraints are 
replaced by equality constraints. Consequently, quadratic programming prob-
lem is simplified as the problem of solving linear equation groups, and the 
SVM algorithm is realized by least squares method. It is presented to choose 
parameter of kernel function in definite range by dynamic way, which enhances 
preciseness rate of recognition. The simulation results show the model has 
strong non-linear solution and anti-jamming ability, and it can effectively dis-
tinguish fault type. 

1   Introduction 

The traditional neural networks method obtains many harvests in application research 
of fault diagnosis, but it has a lot of questions in network structure selecting, network 
training and enhancing network spread ability. The support vector machine (SVM) is 
a new machine study method which was established by Vapnik in base of statistical 
learning theory (SLT) [1][2]. The SVM stresses to study statistical learning rules 
under small sample. Via structural risk minimization principle to enhance extensive 
ability, the SVM preferably solves many practical problems, such as small sample, 
non-linear, high dimension number and local minimum points.  

The least squares support vector machine (LSSVM) is an improved algorithm 
based on SVM [3]. The LSSVM is a kind of SVM under quadratic loss function. In 
LSSVM, the non-sensitive loss function is replaced by quadratic loss function and the 
inequality constraints are replaced by equality constraints. Via constructing loss func-
tion, the quadratic programming problem is changed as solving linear equation groups 
problem, which simplifies the complexity of calculation. In the paper, the wavelet 
packet analysis and least squares support vector machine (LSSVM) are combined 
effectively. The LSSVM is adopted to diagnose the diagnose machinery facility 
faults, which gets good diagnosis effect.  
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2   Eigenvectors Choosing 

Fourier analysis can be use to analyze frequency bands energy, and received spectrum 
structure eigenvectors of different faults have obtain successful application. However, 
Fourier analysis only considers sine wave signals. Practical diagnosis signals usually 
contain non- sine wave signals. Strictly speaking, these signals can not be describe 
using sine signals as bases. If we use sine signals as bases to describe them, the en-
ergy will be not complete. Nevertheless, using wavelet to analyze signals can describe 
non-calm component. Especially using wavelet packet analysis technique can decom-
pose signals in discretional accurate frequency band. Doing energy calculation in 
these frequency bands to form eigenvectors is more reasonable.   

As Fourier frequency spectrum analysis technique, the theory base of wavelet  
frequency charts analysis technique is Parseval energy integral equation. 

The energy in )(xf  time field is expressed as follows.  

dxxff ∫
+∞

∞−
= 22 |)(|||||
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We can get wavelet transform of )(xf  as follows. 
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By relating the two items using Paseral identical equation, we have 
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Form above equation we can know that wavelet transform coefficient kjC ,  has the 

dimension of energy. Therefore it can be used to energy analysis.  
In machinery equipment fault diagnosis technique, the study of rotating machinery 

fault diagnosis is most embedded and ideal, and its application is also most success-
ful. Using excessive distinguishing analysis to character distilling of power spectrum, 
we can distill eigenvectors expediently and effectively. By means of wavelet  
packet analysis technique, we can do energy analysis to constantly appearing faults of  
 

Table 1. Fault causes and sign corresponding 

Fault 0 1 2 3 4 5 6 7 8 

frequency 

bands 

0.01~
0.39f 

0.40~ 
0.49f 

0.50f
0.51~
0.99f

f 2f 3~5f 
odd 

number f
> 5f 

Fault 1 0.00 0.00 0.00 0.00 0.90 0.05 0.05 0.00 0.00 

Fault 2 0.00 0.30 0.10 0.60 0.00 0.00 0.00 0.00 0.00 

Fault 3 0.00 0.00 0.00 0.00 0.40 0.50 0.10 0.00 0.00 

Fault4 0.10 0.80 0.00 0.10 0.00 0.00 0.00 0.00 0.00 

Fault 5 0.10 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10 

Fault6 0.00 0.00 0.00 0.00 0.20 0.15 0.40 0.00 0.25 
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rotating machinery [7]. Via a lot of experiments, the rotating machinery fault causes 
and sign corresponding table can be built. Using rotating machinery ordinary 6 faults, 
such as imbalance, non-middle, oil film swirling and so on, as output of neural net-
works, and using 9 frequency bands different spectrum apex energy values in vibra-
tion signal spectrum, the training sample set of rotating machinery faults can be 
formed, as table 1 shows. 

3   LSSVM Diagnosis Model 

3.1   SVM Principle 

The SVM is developed from hyperplane classifier under linear separable case [4]. 

Suppose having sample ix  and its sorts iy , expressed as d
ii Rxyx ∈)},,{(  

}1,1{ −∈iy , Ni ,...,1= . The d is dimension number of input space. For standard 

SVM, its classifying margin is ||||/2 w . Making the classifying margin to maximum 

is equal to making the 2|||| w  to minimum. Therefore, the optimization problem of 

making the classifying margin to maximum can be expressed the follow quadratic 
programming problem: 

∑
=

+=
N

i
i

bw
CwwJ

1

2

,,
||||

2

1
),(min ξξ

ξ
 (4)  

Subject to ii
T

i bxwy ξ−≥+Φ 1])([ , Ni ,...,1=  (5)  

   0≥iξ ,   Ni ,...,1=  (6)  

where 0≥iξ  ( Ni ,...,1= ) is a slack variable, which ensures classification validity 

under linear non-separable case, and parameter C is a positive real constant which 
determines penalties to estimation errors, a larger C corresponding to assigning a 
higher penalty to errors. The function Φ  is a non-linear mapping function, by which 
the non-linear problem can be mapped as linear problem of a high dimension space. 
In the transforming space, we can get optimal hyperplane. 

Suppose non-linear function HR d →Φ :  maps the sample of input space to the 
feature space H. When we construct optimal hyperplane in feature space H, the train-

ing algorithm only uses inner product of the space, namely )()( ji xx Φ⋅Φ , without 

individual )( ixΦ  appearing. Therefore, if a function K can be found to meet condi-

tion )()(),( jiji xxxxK Φ⋅Φ= , the inner product of high dimension space can be 

finished by the function in original space, and we needn’t know the form of mapping 
Φ . Statistical learning theory points out that due to Hilbert-Schmidt principle,  
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function ),( ji xxK  will be corresponding inner product of a transforming space as 

long as it satisfies Mercer’s condition [5].  
The SVM algorithm can realize right classification to sample by solve above  

quadratic programming problem. 

3.2   LSSVM Classifying Algorithm 

The LSSVM is an improved algorithm based on SVM. For LSSVM, the non-sensitive 
loss function is replaced by quadratic loss function and the inequality constraints are 
replaced by equality constraints. The optimization problem has been modified as 
follows: 
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22
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Subject to ii
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(8)  

where parameter γ  is similar parameter C of SVM, which is used to control function 

),( ξwJ LS . In order to solve the optimization problem, the Lagrangian function is 

introduced as follows: 
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where iα  are Lagrangian multipliers that can either be positive or negative. In saddle 

points, differential coefficients for w, b, ξ  and iα  are requested and let them equal 

to zero, and then the equation as follows can be obtained: 
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These conditions can be written as a linear system: 
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Nααα ,...,1= , and )( NNRI ×∈  is identity matrix.  

We adopt RBF kernel function in common use as follows: 
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Equation 14 can be solved by east squares method. In LSSVM, quadratic pro-
gramming problem is changed as the problem of solving linear equation groups, 
which simplifies the complexity of calculation. After the optimization problem is 
solved, we can have the classifier of SVM as follows: 

⎥
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3.3   The Improvement Algorithm of LSSVM 

In LSSVM, regularization parameter γ and standardization parameter σ  of RBF 

function are selected as constants commonly according to experience, but for different 
sample set, optimal parameter values is metabolic, which affects diagnosis precise 
rate of faults. By examination, we find that the value of parameter γ  don’t affect the 

result obviously, so we define γ =10. On the other hand, with different σ  value, the 

results vary obviously.  
Recognition error rate y=f( σ ) which is affected by parameter σ  can not be  

expressed by simple function. The experiment results with parameter varying are  
showed as Fig.1.  

 
Fig. 1. Experiment results with parameter varying 
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However, the experiment results shows that although recognition error rate may 
appear small shake with parameter σ  in a small section, the diagnosis error rate can 
be approximatively seen as a down single peak function in a big section [a, b]. In 
section [a, b], function has exclusive minimum in t* value and its neighboring section. 
If we take freewill two points a1 and b1 in the section, a1< b1, and calculate function 
values f(a1) and f(b1), two instances as follows will appear. 

(1)  f(a1) < f(b1),   then  t∈  [a, b1] 
(2)  f(a1) ≥  f(b1),   then  t∈  [a1, b] 

This shows that we can shorten section [a, b] to section [a, b1] or [a1, b] which still 
contain minimum as long as we take two different points belonging to [a, b] and 
compare their function values. If we want to continue shortening section [a, b1] or [a1, 
b], one point value belonging to above section should be taken to calculate its func-
tion value which is use to compare with the values of f(a1) or f(b1). As long as the 
shortened section contains t* value and its neighboring section, the section is smaller, 
the valve of σ is nearer to the function minimum. However, when valve of σ  is in 
the range of t* value neighboring section, recognition error rate y appears small shake. 
Thereby, section searching should stop at fist shake, and take σ  value before shake 
as σ  value. For briefness, we take a=0.1, b=5, and take a1 and b1 in three equality 
part points of section [a, b]. 

4   Simulation Results 

In order to check diagnosis success rates of LSSVM model, two diagnosis models are 
used to diagnose simulation faults. Model 1 adopts probabilistic neural networks (PNN) 
model [8][9]. PNN network is a back-propagation neural network developed form 
radial basic function network. Its theory base is Bayesian least risk rule of Bayesian 
decision making theory. PNN networks can be used to solve classifying question. 
When training sample is many enough, PNN networks is convergent to a Bayesian 
classifying machine, which has good spread capability.   

Model 2 adopts LSSVM fault diagnosis model, which uses one-against-one 
method to realize multiclass classification. First the two models are trained by training 
sample set, and then we diagnosis the simulation faults using trained models.  

Suppose D1 is simulation sample data matrix before entering noises, and D2 is 
simulation sample data matrix after entering noises. The containing noises input sam-
ple data required by simulation can gain by equation below.  

))1(1(),(),( 12 randsjiDjiD ×+×= α  (17)  

where the α  is noise control coefficient, α =0, 0.2, 0.5 respectively, and rands(1) is 
a random function which can produce a number between -1 and 1.  

Use above equation to produce 80 groups measure parameter containing noises to 
every fault, altogether 480 groups sample, 300 groups sample of which are used as 
training set and 180 groups sample of which are used test set. In not doing any pre-
treatment, they are used to diagnose faults by PNN and LSSVM models. The average 
diagnosis results are showed in table 2.  
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Table 2. The diagnosis results 

Noises control coefficient α =0.0 α =0.2 α =0.5 

Diagnosis model PNN LSSVM PNN LSSVM PNN LSSVM 

Diagnosis preciseness rate 100% 100% 98.3% 98.9% 92.8% 96.1% 

Table 2 shows the diagnosis results of PNN and LSSVM models. The diagnosis re-
sults show that the diagnosis success rates are influenced by noise control coefficient 
α . When there are not any noises in sample data, such asα =0.0, the diagnosis suc-
cess rates of both PNN and LSSVM are as high as 100%. When noises are compara-
tively small, such as α =0.2, the diagnosis success rate of LSSVM is 98.3%, and the 
diagnosis success rate of PNN is 98.9%. When noises are comparatively big, such as 
α =0.5, the LSSVM keeps as high as 96.1% diagnosis success rate, but the PNN only 
arrive at 92.8% diagnosis success rate. From above diagnosis success rates, although 
diagnosis success rates of both two models appear to decline along with increasing the 
sample noises, the declining speed of LSSVM model is lower than PNN model  
obviously, and the LSSVM shows robustness.    

5   Conclusion 

The Simulation results show that the fault diagnosis ability of LSSVM is much bigger 
than PNN. This reveals LSSVM has rather strongly robust diagnosis and it can be 
used for pattern classifying. Comparing with PNN, the primary merit of SVM is that 
it aims at small sample, and it can gain optimal answer according to information in 
existence instead of sample number going to infinity. The LSSVM changes classifica-
tion question into quadratic programming problem and can gain optimal answer en-
tirely in theory. For LSSVM, the non-sensitive loss function is replaced by quadratic 
loss function and the inequality constraints are replaced by equality constraints. Con-
sequently, quadratic programming problem is simplified as the problem of solving 
linear equation groups, and the SVM algorithm is realized by least squares method, 
which predigests the complexity of calculation. The LSSVM model has strong non-
linear solution and anti-jamming ability, and can effectively diagnose machinery 
facility faults.  
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Abstract. In Support Vector Machine (SVM), Kernels are employed to map the 
nonlinear model into a higher dimensional feature space where the linear learn-
ing is adopted. The characteristics of kernels have great impacts on learning and 
predictive results of SVM. Considering the characteristics for fitting and gener-
alization of two kinds of typical kernels–global kernel (polynomial kernel) and 
local kernel (RBF kernel), a new kind of SVM modeling method based on 
composite kernels is proposed. In order to evaluate the reasonable fitness of 
kernel functions, the particle swarm optimization (PSO) algorithm is used to 
adaptively evolve SVM to obtain the best prediction performance, in which 
each particle represented as a real vector corresponds to a set of the candidate 
parameters of SVM. Experiments in time series prediction demonstrate that the 
SVM with composite kernels has the better performance than with a single  
kernel. 

1   Introduction 

As a method of machine learning, support vector machine (SVM) can be traced to 
statistical learning theory introduced by Vapnik the late 1960s [1]. Unlike most of the 
traditional methods, SVM implements the Structural Risk Minimization (SRM) prin-
cipal which seeks to minimize an upper bound of the generalization error rather than 
minimize the training error [2]. This eventually results in remarkable characteristics 
such as the good generalization performance, the absence of local minima and the 
sparse representation of solution. Recently, SVM has become a popular tool in time 
series prediction [3–5]. 

In the modeling of SVM, the choice of kernel function is quite important to the 
prediction performance. To solve the modeling problem of time series prediction, the 
modeling performance of SVM with different kernels is analyzed, which is related to 
the global and local characteristics of kernels [6]. In this paper, the mapping charac-
teristics of two typical global (polynomial) and local (RBF) kernels are described, 
then a new kind of SVM modeling method based on composite kernels is proposed, 
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which not only has a good fitting accuracy, but also can avoid the fluctuation of the 
prediction outputs caused by the local kernel. 

However, after a kernel is selected by SVM in practice, the main problem is how to 
determine the kernel parameter and the regularization parameter. In general, the direct 
setting and grid search are used. In this paper, the particle swarm optimization (PSO) 
algorithm is adopted to select the parameters of the SVM with composite kernels for 
time series prediction and numerical results show its validity. 

The rest of this paper is organized as follows. In Section 2, composite kernels  
and PSO are described. Section 3 shows the experimental results, followed by the 
conclusions in the last section. 

2   Methodology 

2.1   Composite Kernels 

In the application of SVM, the choice of kernel function is significantly important, 
which determines the performance of time series prediction. The characterization of a 
kernel function is done by means of the Mercer’s theorem [7]. 

Every kernel has its advantages and disadvantages. Numerous possibilities of ker-
nels satisfying Mercer’s theorem exist, which can be simply divided into two types of 
kernels, local and global kernels [8]. 

In local kernels, only the data that are close or in the proximity of each other have 
obvious effects on the kernel values. An example of a typical local kernel is the radial 

basis function (RBF) kernel, 
2 2( , ) exp{ / }i iK x x x x σ= − − , where the kernel parame-

ter is the width σ  of the radial basis function. Its mapping characteristics are shown 
in Fig.1 (a), where the points adjacent to the test input have great effects on the kernel 
values. In contrast, a global kernel allows data points that are far away from each 
other to have obvious effects on the kernel values as well. The polynomial kernel 

( , ) [( ) 1]q
i iK x x x x= ⋅ + , where the kernel parameter q  is the degree of the polynomial 

to be used, is a typical example of a global kernel. Its mapping characteristics are 
shown in Fig.1 (b), where the points far away from the test input have great effects on 
the kernel values. Fig.1 (c) shows the contrast between RBF kernel and polynomial 
kernel. 

The composites of these two kernels may combine the good characteristics of two 
kernels and have better performances than any single kernel. The composites of the 
RBF and polynomial kernels can be defined as [9]: 

(1 )poly rbfK K Kρ ρ= + −  , (1) 

where the value of the composite coefficient ρ  is a constant scalar. 

The characteristics of composite kernels are determined by different values of ρ  

for different regions of the input space. ρ  is a vector. Through this approach, the 

relative contribution of both kernels to the model can be varied over the input space. 
In this paper, a uniform ρ  over the entire input space is used. 
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Fig. 1. The mapping characteristics of RBF kernel and polynomial kernel 

2.2   PSO 

Due to composite kernels introduced, the parameters to be tuned are much more than 
of a single kernel. In this paper, these parameters are automatically tuned using the 
particle swarm optimization (PSO) in the training phase. 

Particle swarm optimization (PSO) is a parallel population-based computation 
technique that was invented by Kennedy and Eberhart (1995) [3], which has been 
motivated by the behaviour of organisms such as fish schooling and bird flocking. 

In this paper, the global optimizing models are expressed as follows: 

1

2

( 1) ( ) ( ) ( ( ))

( ( ))
i i i i

i

V k w k V k C Rand Pbset X k

C rand Gbest X k

+ = × + × × −
+ × × −

 , (2) 

( 1) ( ) ( 1)i i iX k X k V K+ = + +  , (3) 

where ( 1)iV k +  is the velocity of ( 1)k + th iteration of i th individual, ( )iV k  is the 

velocity of k th iteration of i th individual, ( )iX k  represents the position of i th indi-

vidual at k th iteration, ( )w k  is the inertial weight. 1C , 2C  are the positive constant 

parameters, Rand  and rand  are the random functions with a range [0, 1], iPbest   

is the best position of the i th individual and Gbest  is the best position among all  
individuals in the population. 
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In PSO algorithm, the population has l  particles and each particle is an m -
dimensional vector, where m  is the number of optimized parameters. The computa-
tional flow of PSO can be described in the following steps: 

(1) Randomly initialize positions (0)X  and velocities of all particles (0)V . 

(2) Calculate the fitness value of current particle: ( )ifit X . 

(3) Compare the fitness value of Pbest  with ( )ifit X , if ( )ifit X  is better than the 

fitness value of Pbest , then Pbest  is set to the current position iX . 

(4) Find the global best position of the swarm. If ( )ifit X  is better than the fitness 

value of Gbest  then set Gbest  to the position of the current particle iX . 

(5) Calculate velocities iV  using Eq.(2). If maxiV V>  then maxiV V= . If miniV V<  

then miniV V= . 

(6) Calculate positions iX  using Eq.(3). If a particle violates its position limits in 

any dimension, set its position at the proper limit. 
(7) If one of the stopping criteria (Generally, good enough fitness value or the  

preset maximal iteration maxk ) is satisfied, then stop; else go to Step (2). 

3   Experiments 

To illustrate the effectiveness of using the SVM with composite kernels for time se-
ries prediction, the sunspot data were used as the evaluation of the prediction per-
formance. The sunspot data set is believed to be nonlinear and non-stationary. The 
data set consists of a total of 280 yearly averaged sunspots recorded from 1700 to 
1979. In this paper, the data points from 1700 to 1928 were used as the training cases, 
and the remaining data points from 1929 to 1979 were used as the testing cases. 

The free parameters which produce the smallest sum of the validation errors were 
used in the experiment. The error was measured by the Root mean square error 
(RMSE) criterion. The RMSE is calculated as follows: 

2

1
( )

n

i ii
y y

RMSE
n

=
−

= ∑
 , (4) 

where iy （ 1,2, ,i n= ） is the predicted value, iy （ 1,2, ,i n= ） is the actual 

value, n  is the number of data points. 
In the paper, the population size of PSO was set at 50; The acceleration constant 

1 2.0C = , 2 2.0C = ; The maximal iteration max 200k = ; The inertia weight w  is very 

important for the convergence behaviour of PSO. A suitable value usually provides a 
balance between global and local exploration abilities and consequently results in a 
better optimum solution. We used the following equation to adjust w  to enable quick 
convergence: 

max min
max

max

( )
w w

w k w k
k

−
= − ×  , (5) 
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where maxw  is the initial weight, minw  is the final weight, k  is the current iteration 

number and maxk  is the maximum iteration number. In this paper, maxw  = 1.2, minw = 

0.4. Considering the randomicity of the PSO algorithm, we did the experiments 30 
times and chose the best results. 

Eight previous sunspots were used to predict the current sunspot in this paper. In 
Table 1, the converged RMSE and the optimal parameters (including the width σ  of 
the radial basis function, the degree q  of the polynomial, the composite coefficient 

ρ  and the regularization parameter γ  of SVM) of three kernels in the sunspot data 

are shown. The best results obtained in the SVM by using three kernels are given in 
Table 1. The optimal parameters used in three different kernels are also illustrated in  
 

Table 1. The converged RMSE and the optimal parameters of three kernels 

Kernel function RBF kernel Polynomial kernel Composite kernel 

Parameters 
σ =1.2878 

γ =27.0191 

d =5.1552 

γ =43.4788 

d =6.9605  σ =4712.7783 

γ =55.8697 ρ =0.011597 

RMSE 0.20699 0.2348 0.19499 
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(a) RBF kernel
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(b) polynomial kernel  
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(c) composite kernel  

Fig. 2. One-step-ahead prediction results of the sunspot data by the SVM with three kernels 
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Fig. 3. Convergent cure of error 

this table. Form Table 1, the SVM with the RBF kernel or composite kernel can both 
converge to a smaller RMSE on the testing cases than with the polynomial kernel. 
Furthermore, there is the smallest error in the SVM with the composite kernel. Ex-
periments show, through the appropriate composite of kernel functions, we can obtain 
better results than a simple kernel function. 

In Fig.2, one-step-ahead prediction results of the sunspot data by the SVM with 
three different kernels, whose parameters are automatically tuned using PSO, are 
shown. 

We can see that the prediction results are quite accurate. Fig.3 shows the constrin-
gency of PSO in the situation of three kernels. It can be seen the constringency of the 
SVM with the composite kernel is quicker and better than with a single kernel and the 
optimal results can be obtained through PSO. 

4   Conclusions 

Through the analysis on mapping characteristics of two kernels–polynomial and RBF 
kernels, a new kind of SVM modeling method based on composite kernels is pro-
posed. Polynomial kernel can effectively restrain the fluctuation of prediction outputs. 
On the other hand, RBF kernel can provide a good way to improve the fitting accu-
racy. Experiments demonstrate the better performance of the proposed method in 
modeling analysis compared to a single kernel. 

In this paper, the very efficient PSO optimization method has been used to enhance 
the SVM with composite kernels for improving the time series prediction efficiency. 
The sunspot data were used to evaluate the performance of the proposed method. The 
results show that PSO can efficiently obtain the optimal parameters needed in the 
SVM. The SVM with composite kernels optimized by PSO will be widely used in 
many other complex time series. In this paper, only polynomial and RBF kernels, as 
two typical global and local kernels, are discussed. Further work will discuss more 
complex composite kernels based on more single kernels. 
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Abstract. A prediction model, called BPNN-weighted grey model and cumu-
lated 3-point least square polynomial (BWGC), is used for resolving the over-
shoot effect; however, it may encounter volatility clustering due to the lack of 
localization property. Thus, we incorporate the non-linear generalized autore-
gressive conditional heteroscedasticity (NGARCH) into BWGC to compensate 
for the time-varying variance of residual errors when volatility clustering oc-
curs. Furthermore, in order for adapting both models optimally, a neuromorphic 
quantum-based adaptive support vector regression (NQASVR) is schemed to 
regularize the coefficients for both BWGC and NGARCH linearly to improve 
the generalization and the localization at the same time effectively. 

1   Introduction 

Grey model (GM) [1] has been widely applicable for the purpose of short-term fore-
casting but has encountered the overshoot effect [2] which results in big residual er-
rors in grey model prediction [3]. In order to reduce this effect, a cumulated 3-point 
least squared linear prediction (C3LSP) [2] yield the underestimated output at the 
same period to offset the overshoot result. A back-propagation neural net (BPNN) [4] 
is particularly introduced to combine GM and C3LSP linearly denoted by BWGC [3]. 
However, the volatility clustering effect [5] [6] actually deteriorates the performance 
of BWGC model due to the occurrence of big residual errors. In order to reduce the 
volatility clustering, a method called nonlinear generalized autoregressive conditional 
hereoscedasticity (NGARCH) [7] [8], which can overcome the problem of volatility 
clustering, has been incorporated into BWGC model to form a composite model. 
Neuromorphic quantum-based adaptive support vector regression (NQASVR) is ap-
plied to regularizing the linear combination of BWGC and NGARCH optimally. 
                                                           
* Corresponding author. 
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2   New Composite Model BWGC/NGARCH 

ARMAX(r,m,Nx) [9] encompasses autoregressive (AR), moving-average (MA) and 
regression (X) models, in any combination, as expressed below 
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where armaxC  = a constant coefficient, armax
iR = autoregressive coefficients, armax

jM = 

moving average coefficients, )(teresid = residuals, )(tyarmax = responses, armax
kβ = 

regression coefficients, X = an explanatory regression matrix in which each column 
is a time series and ),( ktX  denotes a element at the t th row and k th column of input 
matrix. 

NGARCH(p,q) [10] [11] describes nonlinear time-varying conditional variances 
and Gaussian residuals )(teresid . Its mathematical formula is  

∑∑
== ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

−−+−+=
q

j

ng
j

ntvcv

resid
ntvcv

ng
j

p

i

ntvcv
ng
i

ng
ntvcv C

jt

jte
jtAitGKt

1

2

2

2

1

22

)(

)(
)()()(

σ
σσσ            (2) 

with constraints   

∑ ∑
= =

<+
p

i

q

j

ng
j

ng
i AG

1 1

1 , 0>ngK , piGng
i ,...,1,0 =≥ , qjAng

j ,...,1,0 −=≥  

where ngK  = a constant coefficient, ng
iG = linear-term coefficients, ng

jA  = nonlinear-

term coefficients, ng
jC  = nonlinear-term thresholds, )(2 tntvcvσ  = a nonlinear time-

varying conditional variance and )( jteresid −  = j-lag Gaussian distributed residual in 

ARMAX. 
This proposed composite model is rewritten as BWGC/NGARCH. Formulation of 

the linear combination [12] is expressed as 

)()())(),(()( 21 tyCoeftyCoeftytygty NGARCHBWGCNGARCHBWGCModelCompositeNew ⋅+⋅==       (3) 

where g  is defined as a linear function of the BWGC and NGARCH outputs, respec-
tively, )(tyBWGC  and )(ty NGARCH , while 1Coef  and 2Coef  are respectively the coeffi-

cients of the linear combination of the BWGC and NGARCH outputs. 

3   Neuromorphic Quantum-Based ASVR 

3.1   Adaptive Support Vector Regression (ASVR) 

Initially developed for solving classification problems, support vectors machines 
(SVMs) technology [13] can also be successfully applied in regression problems,  
i.e. functional approximation. We consider approximating functions )(⋅f  solved by  
support vector regression (SVR) [14] with the form of 
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where )(⋅φ , iw , and b denote a nonlinear mapping, a weighted value, and a bias, re-

spectively. Furthermore, Vapnik introduced a general type of loss function, namely 
the linear loss function with ε -insensitivity zone [13], as 
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According to the learning theory of SVMs [13], this can be expressed by maximizing 
dual variables Lagrangian ),( *ααdL  where l , ix , iy , and ),( ⋅⋅K  denote the number of 

vectors, an input vector, an output vector, and the kernel function, respectively. 
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subject to the constraints 
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After obtaining the Lagrange multipliers iα  and *
iα , we find the optimal weights of 

regression 
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and an optimal bias 
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A fast algorithm applied to constraint optimization for support vector regression 
(SVR) is called adaptive support vector regression (ASVR) [15]. It is designed for 
exploring three free parameters C, ε  and rbkfσ  [14] such that the computation time of 

quadratic programming (QP) is significantly reduced and achieved rapid convergence 
to the near-optimal solution. In the ASVR algorithm, two scale factors, v  and υ  refer 
to [15], are evaluated in advance and then applied these evaluated values for calculat-
ing the free parameters ε  in Eq. (12) and rbkfσ  in Eq. (13), respectively, where the 

vector X  stands for an input vector. An order n  ,see [15], is also predetermined and 
used in computing the free parameter C in Eq. (13) and Eq. (14). In this manner, a 
straightforward parameter-seeking is done rather than using a heuristic method due to 
a long time for searching. Note that Eq. (13) and Eq. (14) are based on the modified 
Bessel function of second kind with the order n  [16] as follows: 
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Eq. (14) determines a free parameter rbkfσ  of radial basis kernel function for quad-

ratic programming in SVR. 

 lxxlxxυσ
l

j

j

l

i

irbkf ∑∑
==

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−⋅=

1

2/1

1

2 ,1)(  (15) 

In short, adaptive support vector regression firstly finds three tunable free parameters 
C, ε , and rbkfσ  and subsequently utilizes these parameters in SVR optimization to 

search for the optimal weights and bias mentioned above. 

3.2   Neuromorphic Quantum-Based ASVR (NQASVR) 

The synaptic weights ijklw  are given in a Hopfield network [17]. 
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where ijh  is the external bias for a neuron. The synaptic weights are obtained as 

 
)1(2)1(2

)1(2)1(2

,,,,

,,,,

kilkjikilkji

ljkikiljijkl

dc

baw

δδδδ
δδδδ

−−−−

−−−−=

−−++
, (17) 

where ijδ  is the Kronecker delta. Let us consider that each qubit corresponds to each 

neuron of a Hopfield network. The state vector ψ  of the whole system is given by 

the product of all qubit states. 
The time evolution of the system is given by the following chr¨odinger equation. 
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Here, the operator )1(U  is given by the Pad´e approximation [18]. 
The quantum computation algorithm utilizing adiabatic Hamiltonian evolution has 

been proposed by Farhi et al. [19]. Adiabatic Hamiltonian evolution is given as 
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where IH  and FH  are the initial and final Hamiltonians, respectively. We assume 
that the quantum system starts at t = 0 in the ground state of IH , so that all possible 

candidates are set in the initial state )0(ψ . T  denotes the period in which the Hamil-

tonian evolves and the quantum state changes, and we can control the speed of such 
changes to be suitable for finding the optimal solution among all candidates set in 

)0(ψ . If a sufficiently large T  is chosen, the evolution becomes adiabatic. The adia-

batic theorem says that the quantum state will remain close to each ground state [20]. 
Therefore, the optimal solution can be found as the final state )(Tψ . However, suc-

cessful operation is not guaranteed in the case that there exists any degeneracy in 
energy levels or any energy crossing during the evolution [20]. The initial Hamilto-
nian IH  is chosen so that its ground state is given by the superposition of all states as 
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where n  is the number of qubits and i  is the n-th eigenvector. The initial Hamilto-

nian IH  is given as 
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where xσ  is the x-component of the Pauli spin matrix. One can choose any other IH  

which satisfies that its ground state is expressed by a linear combination of all states. 
For example, xσ  can be replaced by yσ . It may be possible to solve optimization 

problems by composing a new Hamiltonian FH  considering the synaptic weights ijklw . 

The Hamiltonian FH  for the target problem is obtained as shown in the following 

equation. The eigenvalue iε  of a basis state i  should be obtained from the cost  

function in Eq. (16). Therefore, FH  has iε  as the diagonal elements as 
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By choosing a proper FH , it is possible to solve the problems. However, the calcula-

tion cost of n2 , where n  is the number of qubits, is necessary in order to obtain the 
above-mentioned Hamiltonian FH  , and there is no difference when compared with a 
heuristic search. Therefore, the key of application is how we choose a more effective 

FH  with less calculation cost. 
The Hopfield net [21] is a recurrent neural network as shown in Fig. 1 in which all 

connections are symmetric. Invented by John Hopfield (1982), this network has the 
property that its dynamics are guaranteed to converge. If the connections are trained  
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using Hebbian learning then the Hopfield network can perform robust content-
addressable memory, robust to connection alteration. Various functions of an artificial 
neural network (ANN) are realized by choosing suitable synaptic weights. A full 
connection neural network has 2n  synapses, where n  is the number of neurons. In 
order to reduce the calculation cost of the Hamiltonian, we consider interactions 
between qubits and study a new method with a new FH  comprising nondiagonal 
elements considering its analogy to ANN. For convenience, we assume we have 
closely coupled 2-spin-1/2 qubits. The Hamiltonian of this quantum system is 
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where 12J  is the magnitude of the interactions, and iσ  is the Pauli spin matrix. The 

eigenvalues and eigenvectors of this Hamiltonian when 112 =J  are shown as -3 for 

1001 −  and 1 for 1001,11,00 + , respectively. The possible states to be measured 

are 10  or 01  if the system is in the ground state 1001 − . It can be said that the 

interaction of two neurons is inhibitory if we consider the analogy with an ANN 
model. Excitatory interaction is also possible with another Hamiltonian. From the 
above consideration, we can design a new Hamiltonian by converting the synaptic 
weights in Eq. (16) to the interactions of qubits.  

The neuromorphic quantum -based optimization, as shown in Fig. 1, can apply kjw  

in Eq. (16) to calculate final Hamiltonian FH  like an example as shown in Eq. (23) 
providing for adiabatic evolution algorithm in Eq. (18)-(19) to train the constrained 
optimization for an cost function expressed in Eq. (6)-(9). 

 

Fig. 1. A Hopfield network is exploited for neuronmorphic quantum-based optimization 

4   Hybrid Forecasting System 

For simplicity employed in [12], a linear weighted-average is devised in this study to 
combine both )(ˆ kybwgcδ  and )1(ˆ +kngarchσ  as the best approach to resolve the problem 
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instead of the nonlinear one. Therefore, the overall result )(ˆ kybwgcngarchδ  will be proposed 

to be a linear combination of the outputs of BWGC and NGARCH as formulated:  
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where the weights, )(kwbwgc  and )(kwngarch , are determined by applying neuromorphic 

quantum-based ASVR as shown in Fig. 2. A predicted result is determined by adding 
a predicted variation at next period into the current true value as expressed below. 

 )(ˆ)1()(ˆ kykyky bwgcngarchbwgcnagrch δ+−=  (25) 

A digital cost-function (DCF) [22] defined as 
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which can be used for measuring the accuracy for each trial of quantum computing. 

 

Fig. 2. A diagram depicts the composite model, BWGC/NGARCH, regularized by neuromor-
phic quantum-based adaptive support vector regression (NQASVR) 

Neuromorphic quantum-based ASVR mentioned above is employed in this hybrid 
prediction for tuning the appropriate weights, )(kwbwgc  and )(kwngarch , for the forecast 

)(ˆ kybwgcδ  and )(ˆ kngarchσ  as per Eq. (24), respectively. 

5   Experimental Results and Discussions 

As shown in Fig. 3 to Fig. 6 or Fig. 7 to Fig. 8, the predicted sequences indicate the 
predicted results for the following competing methods: (a) grey model (GM), (b) 
auto-regressive moving-average (ARMA), (c) radial basis function neural network 
(RBFNN), (d) adaptive neuro-fuzzy inference system (ANFIS), (e) support vector 
regression (SVR), (f) real-coded genetic algorithm [23] tuning BWGC/NGARCH 
model (RGA-BWGC/NGARCH), (g) quantum-minimized BWGC/NGARCH model 
(QM- BWGC/NGARCH), and (h) neuromorphic quantum-based adaptive support 
vector regression tuning BWGC/NGARCH model (NQASVR-BWGC/NGARCH). In 
the experiments, the most recent four actual values is considered as a set of input data 
used for modeling to predict the next desired output. As the next desired value is 
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obtained, the first value in the current input data set is discarded and joins the latest 
desired (observed) value to form a new input data set for the use of next prediction. 
First, the international stock price indexes prediction for four markets (New York 
Dow Jones Industrials Index, London Financial Time Index (FTSE-100), Tokyo Nik-
kei Index, and Hong Kong Hang Seng Index) [24] have been experimented for 48 
months (from Jan. 2002 to Dec. 2005) as shown in Fig. 3 to Fig. 6 and in Table 1. 
Criterion of mean square error for measuring the predictive accuracy is expressed. 
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where l  = the number of periods in forecasting, ct  = the current period, ttc
y +  = a 

desired value at the ttc + th period and ttc
y +ˆ  = a predicted value at the ttc + th period. 

The goodness of fit on the first experiment is tested by Q-test successfully due to 
all of p-values greater than level of significance (0.05) [25]. Second, London Interna-
tional Financial Futures and Options Exchange (LIFFE) [26] provide the indices of 
volumes of equity products on futures and options, and further their indices forecast 
for 24 months (from Jan. 2001 to Dec. 2002) are shown in Fig. 7 and Fig. 8 and listed 
in Table 2. This is also tested by Q-test successfully due to all of p-values greater than 
level of significance (0.05). 

Table 1. The comparison between different prediction models based on Mean Squared Error 
(MSE) on international stock price monthly indices (unit=105) 

Methods 
NY-D.J. 

Industrials 
Index 

London 
FTSE-100 

Index 

Tokyo 
Nikkei  
Index 

HK 
Hang Seng 

Index 

Average  
MSE 

GM 1.9582 0.4006 3.2209 5.1384 2.6795 
ARMA 1.8230 0.3883 2.9384 4.3407 2.3726 
RBFNN 1.8319 0.3062 3.8234 3.1976 2.2898 
ANFIS 1.4267 0.3974 3.5435 4.0279 2.3489 
SVR 1.2744 0.3206 2.6498 3.1275 1.8431 

RGA-BWGCNG 1.2642 0.2630 2.0175 3.1271 1.6680 
QM-BWGCNG 1.1723 0.2156 1.8656 3.0754 1.5822 

NQASVR-BWGCNG 1.1694 0.2168 1.8671 3.0362 1.5724 

Table 2. The comparison between different prediction models based on Mean Squared Error 
(MSE) on futures and options volumes monthly indices of equity products 

Methods Futures Index of 
Equity Products 

Options Index of 
Equity Products 

Average 
MSE 

GM 0.0945 0.0138 0.0542 
ARMA 0.0547 0.0114 0.0331 
RBFNN 0.0196 0.0087 0.0142 
ANFIS 0.0112 0.0092 0.0102 
SVR 0.0191 0.0085 0.0138 

RGA-BWGCNG 0.0110 0.0082 0.0096 
QM-BWGCNG 0.0098 0.0072 0.0085 

NQASVR-BWGCNG 0.0101 0.0070 0.0086 
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Fig. 3. Forecasts of N. Y. -D. J. Industrilas 
monthly-closing index 

Fig. 6. Forecasts of Hong Kong Hang-Seng 
monthly-closing index 
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Fig. 4. Forecasts of London FTSE-100 
monthly-closing index 

Fig. 7. Forecasts of monthly-closing equity 
volume index futures 
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Fig. 5. Forecasts of Japan Nikkei monthly-
closing index 

Fig. 8. Forecasts of monthly-closing equity 
volume index options 

6   Concluding Remarks 

Neuromorphic quantum-based ASVR optimization process tackles so-called NP-
complete problem outperforms artificial neural network and RGA to attain optimal or 
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near-optimal coefficients over the search space. It follows that this proposed method 
can get the satisfactory results because its generalization is much improved. 
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Abstract. Most of the algorithms proposed in the literature deal with
the problem of digital modulation classification and consider classic prob-
abilistic or decision tree classifiers. In this paper, we compare and analyze
the performance of 2 neural network classifiers and 3 support vector ma-
chine classifiers (i.e. 1-v-r type, 1-v-1 type and DAG type multi-class
classifier). This paper also deals with the modulation classification prob-
lems of classifying both analog and digital modulation signals in military
and civilian communications applications. A total of 7 statistical signal
features are extracted and used to classify 9 modulation signals. It is
known that the existing technology is able to classify reliably (accuracy
≥ 90%) only at SNR above 10dB when a large range of modulation
types including both digital and analog is being considered. Numerical
simulations were conducted to compare performance of classifiers. Re-
sults indicated an overall success rate of over 95% at the SNR of 10dB
in all classifiers. Especially, it was shown that 3 support vector machine
classifiers can achieve the probabilities of correct classification (Pcc) of
96.0%, 97.3% and 97.8% at the SNR of 5dB, respectively.

1 Introduction

An automatic radio signal classifier finds its use in military and civilian com-
munications applications including signal confirmation, interference identifica-
tion, spectrum monitoring, signal surveillance, electronic warfare, military threat
analysis, and electronic counter-counter measure.

Signal recognition is a systematic design challenge which requires hierarchical
signal processing from radio frequency (RF) to baseband in order to obtain
comprehensive knowledge from the carrier to the information bit stream. Unlike
conventional radios, the cognitive radios (CR) approach requires the receiver to
be aware of its radio environment. In these applications, firstly the modulation
type of radio signals must be automatically identified. The challenge is in the
design of a universal receiver that can recognize various modulated waveforms
with distinct properties [1].

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 368–373, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Research on modulation classification (MC) has been carried out for at least
two decades. Most of the algorithms proposed in the literature deal with the
problem of digital MC [2], and a survey of such classification techniques is pre-
sented in [3]. Most of their schemes consider classic probabilistic or decision tree
classifiers [4]. None of these approaches have been proven to work reliably with
signals that have low SNR (below 10dB), or when a large range of modulation
types including both digital and analog is being considered [4].

The aim of this paper is to recognize simultaneously analog and digital mod-
ulation types, although there is a tendency to move towards using digital mod-
ulation schemes, there are currently still analogue methods (i.e., legacy radios)
in use [2]. It is also possible to extract the message from an analogue signal once
it has been demodulated, which is more useful than the coded message which is
received from a demodulated digital signal.

In this paper, we compare and analyze the performances of neural network
classifiers (NNCs) and support vector machine classifiers (SVCs) with 7 features
for 9 types of modulation signals. The performances of these classifiers are showed
through numerical simulations. This paper showed that support vector machine
classifiers can provide a robust approach to signal classification with SNR level
as low as 5dB.

2 Neural Network Classifier

The neural network classifier (NNC) used in modulation classification (MC) is a
feed-forward network commonly referred to as a multi-layer perceptron (MLP).
In NNC, the threshold at each node (i.e., neuron) is chosen automatically and
adaptively. In the NNC, all the key features are evaluated simultaneously. So,
the time order of the key features does not affect on the probability of correct
classification (Pcc) of on the modulation type of a signal.

The proposed structure of MLP in NNC is based on structures given in [5].
However a number of changes have been made in terms of network size, acti-
vation function, training algorithm and training data in order to improve the
performance as well as reduce the complexity of the network.

In this paper, the NNC has two hidden layers and has 15-15-9 network struc-
ture as shown in Fig. 1. The two hidden layers of the MLP use the nonlinear
log-sigmoid function. This approach contrasts with the log-sigmoid first hidden
layer and linear second layer used in [5]. The output layer uses the linear acti-
vation function. Back-propagation is the learning algorithm used in this paper
to train the MLP network using algorithm called Levenberg-marquardt (LM),
which is one of the fastest training algorithms. The seven feature vectors were
used as input vectors to the MLP network in NNC.

The selection of the network parameters is based on choosing the structure
that gives the minimum sum square error and the maximum Pcc. In our NNC,
we do not optimize the number of hidden layer nodes and do not use network
hierarchical (tree) classification scheme for enhance the Pcc.



370 C.-S. Park and D.Y. Kim

Fig. 1. Double hidden layer architecture (15-15-9) in neural network classifier

Key Features. The key features to be used for modulation classification must
be selected so they are sensitive to the modulation types of interest. As shown
in the Fig. 1, a set of seven features are commonly used in the evaluated other
classifiers for classifying 9 modulated signals. The 6 key features that were used
in [5,6] are γ max ,symmf (P), σdp, σap, σaf, and μf

42. The 1 key feature that
were used in [7] is Occupied bandwidth (oBW ), which is defined as ratio of the
number of bins with the 90% of total PSD.

3 Support Vector Machine Classifier

Support Vector Machine (SVM) is known as a powerful method for pattern
recognition and is the state-of-the-art for the existing classification methods. It
has been reported that SVM can perform quite well in many pattern recogni-
tion problems. The SVM is basically a two-class classifier based on the ideas of
large margin and mapping data into a higher dimensional space, and the kernel
functions in the SVM.

The first objective of the Support Vector Machine Classifier (SVC) is the
maximization of the margin between the two nearest data points belonging to
two separate classes. The second objective is to constraint that all data points
belong to the right class. It is a two-class solution which can use multi-dimensions
features. The two objectives of the SVC problem are then incorporated into an
optimization problem.

Since SVM is a binary classifier, the problem of multi-classification, espe-
cially for systems like SVM, does not present an easy solution [8]. The most
typical method for multi-class problem is to classify one class from the other
classes (refer 1-v-r), another typical method is to combine all possible two-class
(pair wise) classifiers (refer 1-v-1). Platt et al. proposed DAG [8], which uses
directed acyclic graph (DAG) to reduce the number of SVM that need to used
during the testing phase. In testing phase of N classes, 1-v-1 method conducts
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N(N-1)/2 classifications as shown in Fig. 2a, while the DAG method reduces to
N-1 classifications as shown in Fig. 2b.

(a) (b)

Fig. 2. Illustration of techniques for finding the best class out of 4-class modulation
classification using SVM approaches (a) 1-v-1 method, and (b) directed acyclic graph
(DAG) method

4 Performance Evaluations

In this section, in order to evaluate the reliability and robustness of the classifiers
developed, the numerical simulations are performed for all type of modulation
signals of interest. Existing technology is able to classify reliably (accuracy ≥
90%) only at SNR above 10dB when a large range of modulation types including
both digital and analog is being considered [4].

For performance comparison purpose, we developed the 2 NNCs without (refer
NNC-1) and with (refer NNC-2) normalization using standard deviation instead
peak value and the 3 SVCs according to the multi-class scheme, i.e., using 1-v-r
method (refer SVC-1), 1-v-1 method (refer SVC-2) and DAG method (refer
SVC-3).

To distinguish 9 modulation types, simulation runs were carried out with 4,096
samples at SNR ranging from 0 dB to 30 dB. The Pcc (Probability of correct
classification) or Pe (Probability of classification error) obtained from 200 runs
at each SNR are plotted in Fig. 3 and Fig. 4 for an AWGN condition. In Fig. 3a,
the performance of NNC-2 showed Pcc of 9 modulated signals at SNR from 0
to 30dB. In Fig. 3b, the plot showed overall Pe of NNC-1 and NNC-2 under the
same conditions. It was shown that Pcc of NNC-2, which was normalized using
standard deviation for each class, much improved for a SNR of over 5dB. In Fig.
4a, the result indicated the Pe of 5 classifiers. The differences of performance of
each SVC are shown clearly as in Fig. 4b. It was shown that the Pcc of SVC-2
and SVC-3 were almost same. Especially, it was shown that SVCs can achieve
the Pcc of 95% for a SNR of over 5dB (see Fig. 4). The detailed results of DTC-2
and SVC-3 at the SNR of 7dB also are provided in the confusion matrix shown
in Table 1-2.
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Fig. 3. Performance of NNC on the test set (a) Pcc of 9 modulated signals at SNR
from 0 – 30 dB (NNC-2) (b) Pe of the NNC-1 and NNC-2 at SNR from 0 – 30 dB
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Fig. 4. Performance of Classifiers on the test set (a) Pe of 5 classifiers at SNR from
0–30dB (b) Pe of the SVC-1, SVC-2 and SVC-3 at SNR 0 – 30dB (in log scale)

Table 1. Confusion Matrix (NNC-2, Pcc=96.67%)

Actual Estimated Modulation Type @SNR = 7dB
Modulation CW AM LSB USB FM 2FSK 4FSK 2PSK 4PSK

CW 99.9 0.5 0.5
AM 91.5 1.0 7.0 0.5
LSB 99.5 0.5
USB 0.5 99.5
FM 98.5 1.0 0.5
2FSK 88.0 12.0
4FSK 0.5 99.5
2PSK 1.0 95.0 4.0
4PSK 100
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Table 2. Confusion Matrix (SVC-3, Pcc=98.28%)

Actual Estimated Modulation Type @SNR = 7dB
Modulation CW AM LSB USB FM 2FSK 4FSK 2PSK 4PSK

CW 100
AM 99.5 0.5
LSB 100
USB 100
FM 0.5 97.5 2.0
2FSK 0.5 99.5
4FSK 0.5 1.0 1.0 97.5
2PSK 91.0 9.0
4PSK 0.5 99.5

5 Conclusion

Most of the algorithms proposed in the literature deal with the problem of digital
modulation classification. In this paper, the neural network classifiers and support
vector machine classifiers classifying algorithms to simultaneously recognize dif-
ferent analog and digital modulated signals were presented. It is known that the
existing technology is able to classify reliably (accuracy≥ 90 %) only at SNR above
10dB when a large range of modulation types including both digital and analog is
being considered. Numerical simulations were conducted to compare performance
of classifiers. Results indicated an overall success rate of over 95% at the SNR of
10dB in all classifiers. Especially, it was shown that 3 support vector machine clas-
sifiers (i.e., SVC-1, SVC-2, and SVC-3) can achieve the probabilities of correct
classification (Pcc) of 96.0%, 97.3% and 97.8% at the SNR of 5dB, respectively.
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Abstract. Automatic facial expression recognition is the kernel part of emo-
tional information processing. This paper dedicates to develop an automatic fa-
cial expression recognition approach based on a novel support vector machine 
tree, which performs feature selection at each internal node, to improve recogni-
tion accuracy and robustness. After the Pseudo-Zernike moment features were 
extracted, they were used to train a support vector machine tree for automatic 
recognition. The structure of a support vector machine enables the model to di-
vide the facial recognition problem into sub-problems according to the teacher 
signals, so that it can solve the sub-problems in decreased complexity in differ-
ent tree levels. In the training phase, those sub-samples assigned to two internal 
sibling nodes perform decreasing confusion cross, thus, the generalization abil-
ity for recognition of facial expression is enhanced. The compared results on 
Cohn-Kanade facial expression database also show that the proposed approach 
appeared higher recognition accuracy and robustness than other approaches. 

1   Introduction 

Human facial expression contains important individual emotional and psychic infor-
mation for human computer interface. Automatic Facial expression recognition has 
received great attention in many research fields such as emotion analysis, psychology 
research, image understanding, image retrieval, with the development of computer 
technique and its popular application [1]. Ekman and Friesen defined six basic emo-
tions: happiness, sadness, fear, disgust, surprise, and anger (See fig.1) [2]. Most of the 
current automatic facial expression recognition systems are founded on the psy-
chologic hypothesis of the six basic facial expressions. 

Support vector machine (SVM) based approaches have been widely applied in 
pattern recognition and function fitting. The predominant performance of SVM has 
been studied and validated in both theory and experiment [3]. Currently, we addressed 
the problems associated with complex pattern recognition and presented a confusion-
crossed Support Vector Machine tree (CSVMT) [4]. A CSVMT is a binary decision 
tree with SVMs embedded in internal nodes. Those patterns assigned to two internal 
sibling nodes perform confusion cross. It is developed to achieve a better performance 
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for complex distribution problems with lower dependence on the two parameters of 
SVM and better robustness on unbalanced classification problems. One problem  
remained is that the trained internal nodes may be high complex for those high-
dimensional feature space problems due to undesirable complexity added to the un-
derlying probability distribution of the concept label for learning algorithm to capture. 
A feature selection based CSVMT (FS-SCVMT) learning approach, in which the 
input space for each internal node is adaptively dimensionality reduced by sensitivity 
based feature selection, were studied in our recent work [11]. In this paper we  
introduce FS-CSVMT in facial expression recognition phase. 

The rest of the paper is organized as follows. The Pseudo-Zernike moments based 
facial expression feature extraction approach is illustrated in section 2. FS-CSVMT 
learning approach is introduced in section 3. Experimental results and discussions are 
described in section 4. Eventually, conclusions are made in section 5. 

(a)              (b)              (c)  

(d)              (e)              (f)   

Fig. 1. Six basic emotions: (a) Surprise (b) Sadness (c) Fear (d) Anger (e) Disgust (f) Happiness 

2   Pseudo-Zernike Moments Based Facial Expression Feature 
Extraction 

Facial expression recognition deals with the classification of facial motion and facial 
feature deformation into abstract classes [6], and thus facial feature extraction and 
learning of these features are of great importance for automatic facial expression. A 
number of developed feature extraction approaches are grouped into two types: shape-
based features and image-based features. The shape-based approaches describe the 
facial features on the variance of parameters of face models [7]. These approaches usu-
ally require robust face tracking, hence high computation cost [1]. The imaged-based 
approaches express features on the pixel intensities of the whole face image or certain 
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regions of the face image. These approaches are popular researched and applied. 
Here, we introduce Pseudo-Zernike moments to extract imaged-based features for its 
denoising ability. Moments are used to depict the distribution of random variables in 
statistics. The images can be treated as two-dimensional or three-dimensional density 
distribution functions. In this manner, moments are introduced in image analysis. 

Pseudo-Zernike moment is defined by the orthogonal complex-value polynomials 
in the unit circle. The Pseudo- Zernike moment of two-dimensional image ),( θρf  is 

defined as [8]: 

2 1 *

0 0
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( , ) ( , ) ,nm nm
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π
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π
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where nm ≤|| are the orders of Pseudo-Zernike polynomial. Pseudo-Zernike moment 
at small values of m  and n  represents the global image information. Correspond-
ingly, Pseudo-Zernike moment denotes the detailed image information when m  and 

n  are large. ),(* θρnmW is the conjugate of basis function of Pseudo-Zernike moment. 

It is defined as: 

( , ) ( ) ,jm
nm nmW S e θρ θ ρ=  (2) 

where )(ρnmS  is Pseudo-Zernike polynomial: 
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To improve the computation efficiency, the recursive formulas of Pseudo-Zernike 
moment are applied for fast computation of discretized Pseudo-Zernike moment  
values [9]. 

3   Feature Selection Based Support Vector Machine Tree 

3.1   Confusion Cross 

The construction of a CSVMT model is actually a process of applying the divide-and-
conquer idea to solve tough problems. Let jSVM and 1jSVM +  be the two internal 

sibling nodes derived from the common parent node pSVM , and pS  be the training 

set assigned to node p . Consider the spacing variable on the trained SVM at node p : 

( )p xγ =
1

( , )Nl
i i ii l y K x x bα= +∑ , where iα are the Lagrange multipliers, ix , 1{ , }Ni l l∈  

{1, , }l⊆  are the support vectors. The confused set is defined as those examples, 

which are close to the decision hyperplane and accordingly more likely to be misclas-
sified as depicted by { | ,| ( ) |C p pS x x S xγ= ∈ 0 }pC γ≤ , where (1 | |)p pSγ = , ( )

i p p ix S xγ∈∑  

and 00 C< 1<  is a small valued positive number. Instead of partitioning the training 
examples to node j  and 1j +  by the symbol function sign( )pγ , the confusion cross 
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process is presented to implement decreasing cross between the two training subsets 
partitioned by sign( )pγ  to keep those confused patterns in both training subsets of the 

two internal sibling nodes. The reassignment process is controlled by confusion cross 
factor 

, 0 exp( ) ,p m pC mγ ρ λ γ= − ⋅  (4) 

where m  is the node level of internal nodes j  and 1j + , 0 [0,1]ρ ∈ is the initial con-

fusion cross rate, and λ  controls the convergence of the cross and terminates the 
cross process at the deep tree levels. When confusion cross is performed, the subset of 
training examples pS  reassigned to those two child nodes j and 1j +  are jS =  

{ | ,px x S∈ ( )p xγ ≥ , }p mCγ−  and 1 { | , ( )j p pS x x S xγ+ = ∈ , }p mCγ≤ . In this way, the set 

of crossed examples 1 { | ,| ( ) |mc j j p pS S S x x S xγ+= ∩ = ∈  , }p mCγ≤ , which are close to 

the decision hyperplane and accordingly more likely to be misclassified, are kept in 
both two child nodes for further construction of decision hyperplane at a fine node 
level, i.e., those confused examples are made a validation of their contribution to the 
fine decision hyperplane. 

The property of the tree-structure approach allows the models to divide the prob-
lems in different levels according to teacher signals constructed by the heuristic ap-
proach and then conquer the sub-problems with decreased complexity. Further, the 
classification accuracy of an SVM with Guassian kernel ( , )i jk x x = exp[ || ||i jx x− −  

2/(2 )]σ  is dependent on the kernel width σ  and the penalty parameter. Inappropri-

ately selected values of these two parameters may cause overfitting or underfitting 
problems. Some approaches, such as cross-validation approach [10], were devel- 
oped to solve this problem. CSVMT can achieve better performance for complex  
distribution problems with lower dependence on the two parameters than single SVM  
model [4]. 

3.2   Feature Selection Based CSVMT 

Unnecessary features add undesirable complexity to the underlying probability distri-
bution of the concept label for learning algorithm to capture, in which case the learn-
ing period is increased and those learned internal node may be high complex. A 
CSVMT model with high complex internal nodes is likely to fall into a depressed test 
efficiency and performance. A feature selection based CSVMT (FS-SCVMT) learn-
ing approach is proposed to address this problem [11]. Since the generalization per-
formance of an SVM is deeply related to its margin, the degree of influence of a  
feature on an SVM is computed by the sensitivity of the margin of the SVM to the 
feature[12], i.e., the derivative based sensitivity to feature k  is defined as 

2
( , )

( ) .i j
k i j i j ki j j

K x x
D w y y

x
α α ∂

= ∑ ∑
∂

 (5) 

In the tree-structured learning approach, subsets are assigned to internal nodes to 
build local decision hyperplans. The contribution degree of a feature for local decision 
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is variable at different nodes. We accordingly credit feature k  by derivative based 
feature sensitivity given by eq. (2) for each node split instead of for the overall infor-
mation proposed in [12]. The input features for current internal node are adaptively 
selected according to the measure of feature selection ratio computed by Sr =  

1 1
n N

k kk kD D= =∑ ∑ , where 1,2,{ }k k ND =  are the feature credits sorted in descending or-

der, and N  is the feature dimension. The first n  features with larger credits are se-
lected for current node if Sr  reaches a given threshold. The construction process of 
FS-CSVMT for binary complex problems is sketched in Table 1. A simplified heuris-
tic method was introduced to extend the FS-CSVMT for binary complex classification 
problems to a multi-classification one [4]. It defines the teacher signals for the data 
assigned to internal nodes. 

Table 1. Construction process of FS-CSVMT 

*
,( , , )p mFSCSVMT S C Srγ  

Input:  
training set S ;  
confusion cross factor ,p mCγ ;  
threshold of feature selection ratio *Sr . 

Output: 
 FS-CSVMT for binary classification. 

Procedure: 
*

,( , , , )p mInitialize T S C Srγ ;  

if ( )BuildLeaf S = =TRUE   
( )return T ; 

%Build a leaf node if training patterns 
belong to one class. 

else currentSVM = ( )TrainSVM S ; %Train an SVM for current subsample  

selectedS *( , , )FS currentSVM S Sr=  
%Build feature space on selected features 

for current node 
currentNode = ( )selectedTrainNode S %Build current internal node 

    [ leftS , rightS ] 
= ,( , , )p mCross currentNode S Cγ ; 

%Confusion cross is performed. 

    _ , 1 ,( )p son pm mC DecreaseOn Cγ γ+ = ; 
%Decrease confusion cross factor as de-

picted in Eq. (4)  

    _
*

, 1( , , )p son mFSCSVMT leftS C Srγ + ; %Construct left sub-tree of FS-CSVMT 

_
*

, 1( , , )p son mFSCSVMT rightS C Srγ + ; %Construct right sub-tree of FS- CSVMT 

4   Experimental Results 

In this section we reported the experimental results on Cohn-Kanade facial expression 
database [13]. It includes facial expressions of age 18 to 30 of different race. The data 
has been referenced many times in different facial expression research work. 66 facial 
features were extracted for the order 11n ≤ of Pseudo-Zernike polynomial. 1427 fa-
cial expression patterns were included in the experiment, i.e., 460 for surprise, 464 for 
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happiness, 156 for sadness, 127 for anger, 126 for disgust and 94 for fear. 1/2 of the 
patterns were for training and the rest for testing. The initial confusion cross rate 

0 1.0ρ = , and 0.3λ = . The numerical results were the average of 8 runs of the recog-

nition process. The test recognition accuracy of different recognition approaches 
trained on Pseudo-Zernike moment facial features were listed in tab. 2. The compared 
approaches included three SVM modes studied in Hsu and Lin’s work [14] (i.e. 
DAGSVM, 1-V-1 SVM and 1-V-R SVM), SVMT introduced in [5], linear discrimi-
nant analysis, and k-nearest neighbors. 

Table 2. Facial expression recognition accuracy based on CSCMT 

Methods 
Accuracy 

DAG 
SVM 

1-V-1 
SVM 

1-V-R 
SVM 

SVMT LDA KNN CSVMT 

Surprise(%) 98.86 99.42 97.68 97.39 90.82 92.46 96.96 

Happiness(%) 99.65 100.00 98.85 100.00 91.77 95.61 97.74 

Sadness(%) 90.00 88.32 64.10 90.17 75.06 72.27 94.87 
Anger(%) 89.52 86.77 76.04 92.59 70.52 75.01 91.27 

Disgust(%) 84.44 87.89 75.26 83.60 66.11 60.99 91.27 

Fear(%) 82.97 85.82 71.01 82.98 76.02 66.45 91.49 
Total(%) 95.01 95.36 88.76 94.86 84.45 85.21 95.62 

It was observed in the experiments that the training recognition accuracy of 
DAGSVM, 1-V-1 SVM, 1-V-R SVM, SVMT, and FS-CSVMT reached 100.0%. The 
average number of features selected at each internal node for FS-CSVMT is 56.50 
instead of 66 for other learning approaches. Tab. 2 showed that the FS-CSVMT based 
facial expression recognition approach achieved relative better test recognition accu-
racy than other approaches in total. Further, the proposed approach trained on the 
unbalanced training samples reached not only high recognition accuracy for large 
sample facial expressions, but also better accuracy than other approaches for small 
sample facial expressions, such as sadness, anger, disgust and fear. It indicated that 
the proposed approach might achieve better generalization ability and higher recogni-
tion robustness on unbalanced facial expression recognition problems. 

We also compared the experimental results with that of other approaches adopted 
the Cohn-Kanade facial expression database on six basic emotions: AdaBoost ap-
proach was introduced in the feature extraction phase and a set of binary SVMs were 
used to recognize 6 basic facial expressions in [15], and its best recognition accuracy 
was 92.9%; A multistream hidden Markov based recognition model was presented in 
[1], which reached recognition accuracy of 93.66%; The Kanade-Tucas-Tomasi fea-
ture track approach was applied to compute the distances and angels between feature 
points in extraction phase and the expressions were classified by a rough-set based 
approach in [16], and the recognition accuracy reached 79.00%. The compared results 
showed that the proposed approach appeared higher recognition accuracy than the 
other approaches. 
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5   Conclusions 

This paper dedicates to develop an automatic facial expression recognition approach 
based on FS-CSVMT learning approach to improve recognition accuracy and robust-
ness. After the Pseudo-Zernike moment features were extracted, they were used to train 
a FS-CSVMT for automatic recognition. The structure of FS-CSVMT enables the 
model to divide the facial recognition problem into sub-problems according to the 
teacher signals, so that it can solve the sub-problems in decreased complexity in  
different tree levels. In the training phase, the input space for each internal node is 
adaptively dimensionality reduced by sensitivity based feature selection; those sub-
samples assigned to two internal sibling nodes perform decreasing confusion cross, 
thus, the generalization ability of FS-CSVMT for recognition of facial expression is 
enhanced. The experiments are conducted on Cohn-Kanade facial expression data-
base. Competitive recognition accuracy 95.62% is achieved by the FS-CSVMT based 
approach. The compared results on Cohn-Kanade facial expression database also 
show that the proposed approach appeared higher recognition accuracy and robust-
ness than other approaches. 
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Abstract. In this paper, a new universal steganalysis algorithm based on 
multiwavelet higher-order statistics and Support Vector Machines(SVM) is 
proposed. We follow the philosophy introduced in Ref[7] in which the features 
are calculated from the stego image’s noise component in the wavelet domain. 
Instead of working in wavelet domain, we calculate the features in multiwavelet 
domain. We call this Multiwavelet Higher-Order Statistics (MHOS) feature. A 
nonlinear SVM classifier is then trained on a database of images to construct a 
universal steganalyzer. The comparison to the current state-of-the-art universal 
steganalyzers, which was performed on the same image databases under the 
same testing conditions, indicates that the proposed universal steganalysis 
offers improved performance. 

1   Introduction 

It is not surprising that with the emergence of steganography, that the development of 
a counter-technology, steganalysis, has also emerged (see[1]for a review). The goal of 
steganalysis is to determine if an image (or other carrier) contains an embedded 
message. Current steganalysis methods fall broadly into one of two categories: 
embedding specific or universal. While universal steganalysis attempts to detect the 
presence of an embedded message independent of the embedding algorithm and, 
ideally, the image format, embedding specific approaches to steganalysis take 
advantage of particular algorithmic details of the embedding algorithm. Given the 
ever growing number of steganography tools, universal approaches are clearly 
necessary in order to perform any type of generic, large-scale steganalysis. 

The concept of universal steganalysis appeared for the first time in the work of 
Avcibas et al.[2]. Farid et al.[3][4] proposed a 72-dimensional feature space (for 
grayscale images) consisting of the first four statistical moments of wavelet 
coefficients and their prediction errors. Harmsen et al.[5] used a simple three-
dimensional feature vector obtained as the center of gravity of the three-dimensional 
Histogram Characteristic Function (HCF). While this method gives good results for 
steganalysis of color images with a low noise level, such as previously compressed 
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JPEG images, its performance is markedly worse for grayscale images and raw, never 
compressed images from digital cameras or scanners. Ker[6] substantially improved 
this method by introducing the concept of calibration. Holotyak et al.[7]used an 
approach similar to Farid’s except they calculate the features from the noise 
component of the image in the wavelet domain. The authors also advocate usage of 
high statistical moments and show that a substantial benefit can be obtained by 
considering higher order moments. Instead of working with very high order 
normalized even moments of the noise residual as in [7], M. Goljan et al. [8] used 
absolute non-normalized moments of order 1 to 9. A closer look reveals that the first 
four moments are conceptually the same as the prediction errors used by Farid. I. 
Avcıbaş et al.[9] present a novel technique for steganalysis of images that have been 
subjected to embedding by steganographic algorithms. The basic idea is that, the 
correlation between the bit planes as well the binary texture characteristics within the 
bit planes will differ between a stego-image and a cover-image. These telltale marks 
are used to construct a classifier that can distinguish between stego and cover images. 
Xuan et al.[10] proposed features calculated as the first three absolute moments of the 
HCF of all 9 three level subbands in a Haar decomposition. Almost all above method 
work in the wavelet domain for the feature extracting. 

Recently, multi-wavelets have been introduced as a more powerful multi-scale 
analysis tool. A scalar wavelet system is based on a single scaling function and 
mother wavelet. On the other hand, a multi-wavelet uses several scaling functions and 
mother wavelets[11], [12]. This adds several degrees of freedom in multi-wavelet 
design and makes it possible to have several useful properties such as symmetry, 
orthogonality, short support, and a higher number of vanishing moments 
simultaneously. The usefulness of these properties is well known in wavelet design. 
Symmetric property allows symmetric extension when dealing with the image 
boundaries. This prevents discontinuity at the boundaries and therefore a loss of 
information in these points would be prevented. Orthogonality generates independent 
sub-images. A higher number of vanishing moments result in a system capable of 
representing high-degree polynomials with a small number of terms. For example, in 
a wavelet system with two vanishing moments, locally constant and locally linear 

functions reside in 1v (the first level of multiresolution approximation). In particular, 

this property is very useful in image processing since images can be best described by 
locally constant and locally linear functions. 

Since multi-wavelet is basically a multi-filter, it needs several streams of input 
rather than one. This necessitates a prefiltering operation on the input stream to 
produce the required multiple streams. This prefiltering operation is also called multi-
wavelet initialization and can be performed in a critically sampled or an over-sampled 
fashion [11]. Although a unified framework for application of multi-wavelet to image 
processing has not been developed yet, all the stated useful properties offer a great 
potential for applying multiwavelet to image-processing applications. 

In this paper, a new universal steganalysis algorithm based on multiwavelet higher-
order statistics and Support Vector Machines(SVM) is proposed. We follow the 
philosophy introduced in [7] in which the features are calculated from the stego 
image’s noise component in the wavelet domain. Instead of working in wavelet 
domain, we calculate the features in multiwavelet domain. We call this Multiwavelet  
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Higher-Order Statistics (MHOS) feature. A nonlinear SVM classifier is then trained 
on a database of images to construct a universal steganalyzer. The performance of this 
method is compared to the current state-of-the-art universal  steganalyzers. 

In Section 2, we describe the MHOS features proposed for steganalysis. In 
Section 3, We give some overviews SVM classifier. Then the performance of 
proposed method in this paper is compared to the current state-of-the-art universal 
steganalyzers on exactly the same databases in Section 4. Finally, conclusion is drawn 
in Section 5. 

2   Multiwavelet Higher Order Statistics Feature Extraction 

In this section, we focus on the proposed MHOS features vector calculated in 
multiwavelet domain. 

2.1   Steganalysis as a Task of Pattern Recognition 

Based on whether an image contains hidden message, images can be classified into 
two classes: the image with no hidden message and the corresponding stego-image 
(the same image with message hidden in it). Steganalysis can thus be considered as a 
task of pattern recognition to decide which class a test image belongs to. The key 
issue for steganalysis just like for pattern recognition is feature selection. The features 
should be sensitive to the data hiding process. In other words, the features should be 
rather different for the image without hidden message and for the corresponding 
stego-image. The larger the difference, the better the features are. The features should 
be as general as possible, i.e., they are effective to all different types of images and 
different data hiding schemes. Almost all prior method work in the wavelet domain 
for the feature extracting, but the result is unsatisfied yet. Therefore, MHOS feature 
vectors calculated in multiwavelet domain are proposed. Steganalysis has thus 
become a pattern classification process in the MHOS feature space.  

2.2   Multiwavelet  

Unlike a scalar wavelet, a multi-wavelet uses several scaling functions and mother 
wavelets [12,13]. This adds several degrees of freedom in multi-wavelet design and 
generates useful properties such as symmetry, orthogonality, short support, and a 
higher number of vanishing moments simultaneously. The usefulness of these 
properties is well known in wavelet design.  

As mentioned above, in a multi-resolution representation generated by multi-
wavelet, we have more than one scaling function. A multi-wavelet system of 

multiplicity r consists of r scaling functions, rφφ ,...,1 , written as a vector 
T

R ),...,( 1 φφφ = , which satisfies the following matrix dilation equation: 

       )2(2)( kxLx k
k

k −=∑ φφ  (1) 
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where L  is a low-pass matrix quadrature mirror filter (QMF) and 2  maintains the 
norm of the r scaling functions with the scale of 2. Corresponding to each scaling 

function iφ , there is a wavelet iψ forming a multi-wavelet vector as 
T

r ),...,( 1 ψψψ = . Multi-wavelet vector satisfies the following wavelet matrix 

equation: 

     )2(2)( kxHx k
k

k −=∑ φψ  (2) 

where H  is a high-pass matrix QMF.  
Like the scalar wavelet case, the multiwavelet decomposition of a 1-dimensional 

signal is performed by Mallat algorithm. However, since the lowpass filterbank and 
highpass filterbank are rr ×  matrices in the multiwavelet case, the signal must be 
preprocessed to be a vector before the multiwavelet decomposition. As for the 
multiwavelet decomposition of a 2-dimensional image, the 1-dimensional algorithm 
can be performed in each dimension. After one cascade step, the result can be realized 
as the fig.1(a) 

    
                                         (a)                                                   (b) 

Fig. 1. (a) the multiwavelet decomposition of a 2-dimensional image. (b) a stego image 
decomposed to the first level using the GHM multiwavelet. 

Note that a typical block 21hl contains lowpass coefficients corresponding to the 

first scaling function in the horizontal direction and highpass coefficients 
corresponding to the second wavelet in the vertical direction. 

Geronimo, Hardin, and Massopust constructed one of the most well-known multi-
wavelets, called GHM [14]. GHM scaling functions and multiwavelets are shown in 
Fig.2. From this figure it can be seen that GHM scaling functions have short support 
and are symmetric about their centers. Two other important features are the 
orthogonality of integer translates of scaling functions and an approximation order of 
two. The usefulness of these features was discussed in the Introduction section. In this 
paper, we decomposed each image to 16 sub-images using the multi-wavelets. Fig.1 
(b) shows the 16 sub-images of a stego image decomposed to the first level using the 
GHM multi-wavelet. There are 4 lowpass sub-images and 12 highpass sub-images.  
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Fig. 2. GHM scaling functions and wavelet functions 

2.3   MHOS Feature Extracting 

In [7] the authors proposed a new idea to calculate the features for steganalysis only 
from the noise component of the stego image in the wavelet domain. The noise 
component was obtained using the denoising filter due to Mihcak et al.[15] We 
reiterate that the denoising step increases the SNR between the stego signal and the 
cover image, thus making the features calculated from the noise residual more 
sensitive to embedding and less sensitive to image content. The denoising filter is 
designed to remove Gaussian noise from images under the assumption that the stego 
image is an additive mixture of a non-stationary Gaussian signal (the cover image) 
and a stationary Gaussian signal with a known variance (the noise). Here We 
calculate statistical features of the noise residual in the Multiwavelet domain. The 
procedure for calculating the MHOS features in a gray scale image is shown below.  

Step 1. Calculate the first level multiwavelet decomposition of the stego image with 
the GMH, Denote the horizontal, vertical, and diagonal subbands of highpass 

sub-images as ),( jihl nm , ),( jilh nm , ),( jihh nm , =m 1 or 2, =n 1 or 

2. And (i, j) runs through some index set J.  
Step 2. In each subband, estimate the local variance of the cover image for each 

wavelet coefficient using the MAP estimation for 4 sizes of a square N×N 
neighborhood, for N∈{3, 5, 7, 9}  

Jjijiw
N

ji
Nji

N ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

∈
),(,),(

1
,0max),(~

),(

2
0

2

2

2 σσ . (3) 

       Take the minimum of the 4 variances as the final estimate,  
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Step 3. The denoised wavelet coefficients are obtained using the Wiener filter  
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and similarly for ),( jilh nm , ),( jihh nm , (i, j)∈J, =m 1 or 2, =n 1 or 2.  

Step 4. Calculate the noise residual in each subband  

),(
~~

),(),( jihljihljir nmnmnhlm
−= , (6) 

and similarly 
nhlm

r and 
nhhm

r for ),( jilh nm and ),( jihh nm , (i, j)∈J, 

=m 1 or 2, =n 1 or 2.  
Step 5. Denoting the mean value with a bar, calculate the absolute central moments of 

each noise residual for nmomp ,...,2,1=   

∑
∈

−=
Jji

p

nhlnhlp mm
rjir

J
m

),(
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||

1
,  (7)  

In this paper, we use 9 nmom = and set the parameter 5.02
0 =σ , which is the 

same value as in[7] and corresponds to the variance of the stego signal for an image 
fully embedded with ±1 embedding. So the total number of MHOS features for a 
grayscale image is 12×9=108 (we only calculate 12 highpass subbands of the first 
level multiwavelet decomposed). For color images, the features are calculated for 
each color channel, bringing the total number of MHOS features to 36×9=324.  

3   SVM Classifier 

SVM is a statistical classification method proposed by Vapnik[16].The main 
advantage of SVM is that it can serve better in the processing of small-sample 
learning problems by the replacement of Experiential Risk Minimization by Structural 
Risk Minimization. Moreover,  SVM can treat a nonlinear learning problem as a 
linear learning problem by mapping the original data to the kernel space in which we 
only solve the linear problems. Because SVM have these theoretical properties as well 
as the considerable performance of learning, they become a new research hotspot in 
recent years and attract more attentions after the research of Artificial Neural 
Networks. Given a labeled training set: 

{ }{ }miyRxyxS iiii ,...,1,1,1,|),( =−∈∈= , (8) 

where ix stands for input vector i and iy is the desired category, positive or negative, 

SVM can generate a separation hyperplane H that separates the positive and negative 
examples. If any point x which lies on the hyperplane must satisfy 0. =+ bxw , 
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where w is normal to the hyperplane and b is the bias. Finally, the optimal 

hyperplane: 0.: 00 =+ bxwH can be determined by 

        ∑
=

=
m

i
iii xyw

1
0 α , (9) 

where iα and 0b  are Lagrange multipliers and bias that determined by SVM’s training 

algorithm. In Eq. (9), those points ix with 0=iα can be ignored and those with 

0>iα are called “support vectors”. After the training of SVM is completed, H is 

thus determined, then any data x will be classified according to the sign of the 
decision function. The decision function is defined as: 

           ∑
=

+=
m

i
iii bxxKyxd

1
0 )),(sgn()( α , (10) 

where ),( xxK i is the kernel function which maps the training samples to a higher 

dimensional feature space as shown in Figure.3. 

 

Fig. 3. A mapping function from input space to feature space 

Three kinds of kernel functions are commonly adopted in SVM as indicated in 
Table 1. In general, the RBF network is preferred to train the classifier, because it is 
more powerful and more efficacious than Polynomial and Two-layer [17]. In this 
paper, the non-linear SVM (using Radial-basis function network) classify images 
based on the MHOS feature vector as described in Section 2. 

Table 1. Common Kernel Functions 

Polynomial learning machine p
ii xxxxK )1).((),( +=  

Radial-basis function network 22 2/||||exp(),( σxxxxK i −−=  

Two-layer perception )).(tanh(),( δ+= xxvxxK ii  
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4   Evaluation of the Proposed Steganalysis Method 

We now compare the performance of the proposed Steganalysis methods with the 
results reported for current state-of-the-art classifiers[3,6,7,9]. To make the 
comparison fair, we always compare on the same image database and the same testing 
methodology. So we collect the following two classed of image database.  

Set #1 consists of 2000 images from [18]. To be able to compare our results to 
[3,9]. All images were preprocessed as in [9] and converted to grayscale, black 
borders around them were cropped, and finally the images were recompressed with a 
quality factor of 75.  

Set #2 includes high resolution (1500×2100 pixels) 32 bit CMYK color TIFF 
images (2375 images) from [19]. To be able to compare our results to [6,7], similar as 
[6] we converted all color images to grayscale and applied bicubic downsampling. 

The receiver operating characteristics (ROCs) for Set #1 and #2 with different 
classifier are presented in Fig.4. The embedding method tested was 1±  embedding 
also called LSB matching with different embedding capacity. Fig.4.(a), Fig.4.(b) and 
Fig.4. (c) are the result of Set #1 with proposed classifier, classifier[9] and 
classifier[3] respectively. The embedding capacity is 0.01, 0.05, 0.1and 0.15 bits per 
pixel(bpp) which is the same value as in Ref[9]. Fig.4.(d), Fig.4.(e) and Fig.4.(f) are 
the result of Set #2 with proposed classifier, classifier[7] and classifier[6] 
respectively. The embedding capacity is 0.25, 0.5, 0.75 and 1.0 bpp which is the same 
value as in Ref[7]. From Fig.4, we can see that the performance of proposed classifier 
is better than classifier[9]’s and classifier[3]’s for Set #1, and also superior than 
classifier[7]’s and classifier[6]’s for Set #2. 

     
(a)                                    (b)                                     (c) 

   
(d)                                    (e)                                    (f) 

Fig. 4. ROC for Set #1: (a) proposed classifier; (b) classifier[9]; (c) classifier[3]. ROC for Set 
#2: (d) proposed classifier; (e) classifier[6]; (f) classifier[7]. 
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We also report the false positives for 50% and 80% detection rates (as in [6,7]) in 
Table 2. The results for the two methods referenced above are taken from [7].  From 
Table2 we can make direct comparison of performance. The false positives for the 
proposed classifier for detection rate 50% and 80% were 1.47% and 6.75% compared 
to about 3.45% and 16.25% reported in [7] and 7% and 27% reported in [6]. 

Table 2. Percentage of false positives at 50% and 80% true detection rates compared to two 
published methods 

Classifier false positive rate at 50% 
detection rate 

false positive rate at 80% 
detection rate 

Proposed 
classifier 

1.47 6.75 

Classifier[7] 3.45 16.25 

Classifier[6] 7 27 

5   Conclusions 

In this paper, we built a new approach to universal steganalysis based on MHOS 
features and SVM and compared its performance to four previously proposed 
universal steganalyzers. The comparison, which was performed on the same image 
databases under the same testing conditions, indicates that the proposed universal 
steganalysis offers improved performance.  
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Abstract. In this paper, a non-balanced binary tree is proposed for extending 
support vector machines (SVM) to multi-class problems. The non-balanced 
binary tree is constructed based on the prior distribution of samples, which can 
make the more separable classes separated at the upper node of the binary tree. 
For an k class problem, this method only needs k-1 SVM classifiers in the 
training phase, while it has less than k binary test when making a decision. 
Further, this method can avoid the unclassifiable regions that exist in the 
conventional SVMs. The experimental result indicates that maintaining 
comparable accuracy, this method is faster than other methods in classification. 

1   Introduction 

The support vector machine (SVM) [1], rooted in the statistical learning theory, has 
been successfully applied to pattern recognition problems. The main idea of a 
conventional SVM is to construct a optimal hyper-plane that maximize the margin 
between two classes. Originally, the SVM approach was developed for two-class or 
binary classification, and its extension to multi-class problems is still an ongoing 
research issue. 

The most common way to build a k-class SVM is to combine several sub-problems 
that involve only binary classification. This approach is used by methods as 
one-against-all or one-against-one: in the one-against-all case k SVMs are trained to 
separate the point of each class from all the others; in the one-against-one case, instead, 
k(k-1)/2 binary classifiers are trained on all the class pairs. Platt et al. [2] proposed 
another algorithm in which Directed Acyclic Graph is used to combine the results of 
one-against-one classifiers (DAGSVM). 

In this paper, we introduce a new multi-class method, which is based on 
non-balanced binary tree. The construction of the binary tree is based on the prior 
distribution of the training data. For an k class problem, this method only needs k-1 
SVM classifiers in the training phase, while it has less than k binary test when making a 
decision. Additionally, this can resolve the unclassifiable regions that exist in the 
conventional SVMs. 
                                                           
* This work was supported by United Project of Yang Zi delta integration (2005E60007). 
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This paper is organized as follows. In section 2, we review several multi-class SVM 
methods. In section 3, we describe how to construct the non-balanced binary tree, and 
analyze the time complexity of our method. This approach is validated experimentally 
in Section 4. Section 5 states the main conclusions. 

2   Multi-class SVM Methods 

2.1   One-Against-all Method 

For a k-class problem, the one-against-all method constructs k SVM models. The ith 
SVM is trained with all of the training examples in the ith class with positive labels and 
all other examples with negative labels. The final output of the one-against-all method 
is the class that corresponds to the SVM with the highest output value, i.e. 

the class of ( )xf i
ki ,,2,1

maxarg
…=

=x  (1) 

Where ( )xfi  is the decision function of the ith SVM. 

2.2   One-against-one Method 

The one-against-one method constructs all possible pairwise hyperplanes, where each 
hyperplane is constructed using the training examples from two classes chosen out of k 
classes. The decision function for class pair ij is defined by 

( ) ( ) jikibxxKyxf
ijn

h

ij
hhh

ij
hij <=+= ∑

=

,,2,1,],sgn[
1

…α  (2) 

Since ( ) ( )xfxf jiij −= , there exist ( ) 2/1−kk  different decision functions for a 

k-class problem. This method fits perfectly to the known characteristics of the SVM, 
where the borderlines between two classes are computed directly. 

The most popular method for the class identification of the one-against-one method 
is the “max wins” algorithm [3]. In the “max win” algorithm each classifier casts one 
vote for its preferred class, and the final result is the class with the most votes. 

2.3   DAGSVM Method 

The DAGSVM method uses a rooted binary DAG to define a class in the classification 
tasks. A rooted binary DAG has nodes connected by arcs where each node has either 0 
or 2 arcs leaving it. For a k-class problem, a rooted binary DAG is used that has k(k-1)/2 
internal nodes and k leaves. Each node is associated with a binary SVM, and the leaves 
are labeled by the classes. The ith node in the (N-j+i) layer distinguishing the classes i 
and j provide i<j. To define the class of a point x, starting at the root node, the binary 
decision function at this node is evaluated. Then, it moves to either left or right 
depending on the output value. The next node’s binary function is then evaluated.  
 



394 S. Xia et al. 

Therefore, one goes through a path before reaching a leaf that indicates the class. Thus 
for a k-class problem, k-1 decision nodes are evaluated to define a class. The training 
phase of this method is the same as the one-against-one method but its testing time is 
less than that of the one-against-one method. The disadvantage of this method over the 
“ma win” algorithm is that it cannot resolve the tie regions and results may vary 
according to the decision functions at nodes with different pairs of the classes. 

2.4   Comparison of the Above Multi-class Methods 

In [4], Hsu and Lin had compared the performance of the above methods with a large 
set of different problems. Their observations are that the accuracy rate of all the 
methods is very similar. That is, no one is statistically better than the others. The 
one-against-all method uses all training data for learning, i.e. the number of variables of 
each optimization problem equals the number of training data. Therefore, a long 
training time is necessary for training a problem with a large number of training data. 
For the training time, one-against-one and DAGSVM methods are the best. The testing 
time of the DAGSVM method is less than that of the one-against-one method. 

3   Proposed Method 

The above methods are all based on a consideration: all classes appear in an equal 
probability. However, it may happen for some problems that classes are aligned 
approximately or some classes are possibly distant from other classes. If all classes are 
recognized equal probably, the efficiency may be very low. On the contrary, if the 
classes with high probability are recognized preferentially, the speed of recognizing all 
classes can be quickened greatly. According to this idea, a non-balanced binary tree is 
introduced to combine multiple binary-SVMs for multi-class classification problems. 

It is known that the classification error depends on the structure of a binary tree. 
Especially, if the classification performance is not good at the upper node of the 
decision tree, the overall classification performance becomes worse. Therefore, more 
separable classes should be separated at the upper node of the binary tree. To determine 
the binary tree, we use the fact that the physical relationship of data in input space is 
kept in the feature space. However, for measuring the distance of classes in input space, 
an appropriate definition of the distance between the classes should be introduced. We 
will discuss this in the next subsection. 

3.1   Distance Calculation Method 

The Euclidian distance is chosen frequently for calculating the distance between two 
classes. However, the Euclidian distance of centers of two classes cannot represent the 
separability of two classes. Fig.1 shows an example of the Euclidian distance. The 
Euclidian distances are equal in (a) and (b), but the two classes in (b) are apparently 
more separable than classes in (a). 
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Fig. 1. Comparison of the separability of two classes 

Thus, we used a distance calculation method [5] based on the distribution of classes, 
which is given as  

( )ji
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d

δδ
δ

+
=  (3) 

Where ijd  is the Euclidian distance of the class centers, iδ and jδ is the covariance of 

the class, i.e. 
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Here iX  is a set of training data included in class i , and in  is the number of elements 

included in iX , and ic  is the center of  class i . 

When 1≥ijδ , it implies that the two classes have no intersection. The bigger the 

value of ijδ  is, more separable the two classes are. 

3.2   Algorithm Description  

For a k-class problem, the construction of non-balanced binary tree is described by the 
following steps: 

1. Divide the training data set into all the pairwise subsets; 
2. Calculate the distances of all class pairs using the method as discussed in the 

previous subsection; 
3. Combine the nearest two classes into a new class X ′ . Then k-1 classes are 

constructed and k is turned to be k-1; 
4. Respectively calculate the distances of class X ′  and all other classes. Select 

the class with the nearest distance, and combine it with class X ′ . Update the 
center and covariance of class X ′ , then k-1 is turned to be k-2. 

5. If k classes are combined into two classes, the constructing of the binary tree 
will be completed. Else go to step 4. 
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In training, we select the SVM of the last two classes as root node of binary tree. One 
of the two classes, namely X ′ , contains k-1 classes, and the other contains one class. 
Following that, we select the SVM of the last two classes in X ′  as second node. We 
repeat this procedure until there is only one class in X ′ . Fig.2 illustrates the structure 
of non-balanced binary tree. 

 

Fig. 2. Non-balanced binary tree 

In classification, starting from the top of the binary tree, the input data x is classified 
by SVM. If x is classified into class 1, the classification is completed, if not, x is 
processed by next SVM. The best case occurs if we find the class at the first node, and 
the worst case occurs if we find the class after applying all the k-1 SVMs. Table.1 
compares the number of classifiers needed in four multi-class methods. For a k-class 
problem, the number of classifiers in our method, either training phase or testing phase, 
is less than other methods. 

Table 1. Comparision of the number of classifiers needed in four multi-class methods 

 Training Phase Testing Phase

One-against-all k k

One-against-one k(k-1)/2 k(k-1)/2

DAGSVM k(k-1)/2 k-1

Our Method k-1 < k

3.3   Time Complexity 

The quadratic optimization problem in the training phase of SVM, slows down the 
training process. Platt introduced a fast algorithm, which is called SMO [6], for training 
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support vector machines. Using SMO, training a single SVM is observed to scale in 
polynomial time with the training set size m: 

γcmT gle =sin  (5) 

With this relation, we can find the training time for one-against-all as 

γckmT allagainstone =−−  (6) 

From Equation 5, the training time for one-against-one is found as 

γγγ mckTT DAGSVMoneagainstone
−−

−− == 212  (7) 

assuming that the classes have the same number of training data samples. With the 
same assumption, the training time of our method would be 
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In [6], Platt assumed that the typical value for γ  is 2. In this case, when k, namely 

the number of classes, is less than 6, our method is relatively faster than other methods. 
If k is large, the one-against-one method is fastest. But our method is still faster than 
one-against-all method. 

4   Experimental Results 

In this section we present the experimental results and compare the performance of the 
proposed method with the one-against-one, one-against-all, and DAGSVM. The data 
set comes from the ORL face database, in which there are 400 face images (10 samples 
per person). 

The whole data set has been divided into a set of 200 training samples and a set of 
200 test samples. The training set has been used to design the classifiers, and the test set 
for testing the performance of the classifiers. All the algorithms are realized with 
MATLAB6.5 and VC6.0. Experiment platform is P4-2.4G PC, 512M RAM and 
operating system is Windows XP professional. The experiments are executed to 
compare four methods based on SMO on testing classification precision, testing time. 
The experimental results are as Table.2 shows. 

Table 2. Result of comparison on the ORL face database 

Multi-class Method Accurate Rate Testing Time(seconds) 
One-against-all 97% 15.2 
One-against-one 97.5% 296.4 

DAGSVM 97.5% 14.82 
Our Method 97% 7.41 
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The experimental results show that maintaining comparable accuracy, our method is 
faster than other methods in classification. Because the more separable classes are 
separated at the upper node of the binary tree, the error of the whole classification is 
under control. Since less classifiers are needed for many test samples, compared to 
other methods, the training time of our method is greatly reduced. 

5   Conclusions 

We have introduced a new method as a solution to multi-class problems. This method is 
to construct a non-balanced binary tree based on a prior distribution of training 
samples. Applying a distance calculation method, we make the more separable classes 
separated at the upper node of the binary tree. We compare the proposed method to the 
one-against-all, the one-against-one, and the DAGSVM methods with the ORL face 
database. Experimental results show that the testing time of the proposed method is the 
least. The training time of proposed method is less than that of one-against-all method. 
Further, the proposed method can resolve the unclassifiable regions. 
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Abstract. The least squares support vector machines (LS-SVMs) re-
gression is presented for the purpose of nonlinear dynamic system iden-
tification. LS-SVMs are used for system identification of Hammerstein
models with memoryless nonlinear blocks and linear dynamical blocks.
LS-SVMs achieves higher generalization performance than a hybrid
neural network (HNN) which consist of a multi-layer feed-forward neural
network (MFNN) in cascade with a linear neural network (LNN). The
identification procedure is illustrated using two simulated examples. The
results indicate that this approach is effective even in the case of additive
noise to the system.

1 Introduction

The Hammerstein models are special kinds of nonlinear systems, Hammerstein
models are composed of a memoryless static nonlinearity followed by a linear
dy-namical system. Such models have been widely used in many areas, e.g.,
nonlinear filtering, actuator saturations, audio-visual processing, signal analy-
sis, biologic sys-tems, chemical processes, and so on [1]. Therefore, there exist
a large amount of work on identification of these models exploring different
approaches and frame-works [2]-[8]. For Hammerstein and Wiener models, Bai
reported some validity re-sults: a two-stage identification algorithm based on
the recursive least-squares and on the singular value decomposition and a blind
identification approach [8]. Two popu-lar approaches are prediction error min-
imization and subspace identification. Bart De Moor and his research group
developed the subspace identification algorithms [6][7].

Throughout the last few decades, artificial neural network have proved to be
a powerful methodology in a wide range of fields and applications. Most of the
ANN-based system identification techniques are based on multilayer feed-forward
networks such as multilayer perceptron (MLP) trained with back propagation or
more efficient variation of this algorithm [10]-[15]. Narendra and Parthasarathy
have proposed ef-fective identification and control of dynamic systems using
MLP networks [11]. Li present a method, it uses a hybrid neural network which
consists of a multi-layer feed-forward neural network in cascade with a linear
neural network [10]. Of course these networks are robust and effective in identi-
fication and control of complex dy-namic plants. Despite many advances, there
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still remain a number of weak points, including local minimum, over learning,
the difficulties of choosing network structure, and so on. To overcome those
problems, major breakthroughs are obtained at this point with a new class of
ANN called support vector machines (SVMs), SVMs were developed in a pat-
tern classification context as an implementation of Vapnik’s Struc-tural Risk
Minimisation principle. Regression estimation can be performed by an extended
form of SVM and has been shown to perform well in areas such as identify-ing
chaotic time series models. Least squares support vector machines (LS-SVMs)
have been proposed by Sukens and Vandewalle for solving pattern recognition
and nonlinear function estimation problem.

This paper focuses on the LS-SVMs in identification of Hammerstein models.
This paper is organized as follows: In Section II, we describe the problem formula-
tion related to the Hammerstein systems. In section III, we introduce LS-SVMs
sys-tem for identification. Simulation and application examples are included in
Section IV. Finally, in Section V, conclusions are drawn.

2 Basic Method Description

Hammerstein models consist of a nonlinear memoryless element followed by a
linear dynamical system, where the true output (namely, the noise-free output)
w(t) and the inner variable x(t) (namely, the output of the nonlinear block) are
unmeasur-able, u(t) is the system input, y(t) is the measurement of w(t) but is
corrupted by the disturbance v(t), G(z) is the transfer function of the linear part
in the model. The nonlinear part in the Hammerstein model is a polynomial of
a known order in the input as follows:

x(t) = r1u(t) + r2u
2(t) + · · · + rpu

p(t). (1)

Assume that the linear dynamical block in Fig. 1 is described by a difference

Fig. 1. Hammerstein Models

equation model, which has the following input-output relationship:

A(q−1)y(t) = b(q−1)x(t), (2)

where A(q−1) = 1 + a1q
−1 + · · · + anq−nandB(q−1) = b0 + b1q

−1 + · · · + bnq−n

If the noise v(t) is obvious, we modifies the equation (2):

A(q−1)y(t) = b(q−1)x(t) + A(q−1)v(t), (3)
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we merge the equation (1) and (3), and obtain the Hammerstein models:

A(q−1)y(t) = b(q−1)[u(t) +
p∑

i=2

riu
i(t)] + e(t), (4)

where e(t) = A(q−1)v(t) The description of MIMO linear dynamic systems can
be written as follows:

Y (t) = −A1(t)Y (t−1)−· · ·−Ana(t−na)+B0X(t)+· · ·+BnbX(t−nb)+V (t), (5)

where Y (t) is the ny × 1 output vector;X(t) is the nu × 1 input vector;V (t)
is the ny × 1 noise vector;A1, · · · , Ana are ny × ny matrices; B0, · · · , Bnb are
ny × nu matrices; and na, nb represent the order of the model. The input vector
is defined as U(t) = [u1(t) · · · unu(t)]T . The objective of this paper is to present
identification algorithms to estimate the system parameters ai, bi and ri of the
model by using the available input-output data {u(t), y(t)}.

3 Least Squares Support Vector Machines for
Identification

In the following, we briefly introduce LS-SVMs regression, which can be used
for nonlinear system identification.

Usually a typical regression problem is defined as follows: Given a training
data set of N points {xk, yk}N

k=1with the input data xk ∈ Rn and the corre-
sponding target yk ∈ R. In feature space SVM models take the form

y(x) = ωT ϕ(x) + b, (6)

where the nonlinear mapping ϕ(·) maps the input vector into a higher dimen-
sional feature space,b is the bias and ω is a weight vector of the same dimension as
the feature space. In LS-SVMs for function estimate, one considers the following
optimization problem

minω,eJ(ω, e) =
1
2
ωT ω +

1
2
γ

N∑

k=1

e2
k, (7)

subject to the equality constraints

yk = ωT ϕ(x) + b + ek, k = 1, · · · , N, (8)

here γ is the regularization parameter.
This problem can be solved by using the optimization theory. One can define

the Lagrangian for this problem as follows:

L(ω, b, e, α) = j(ω, e) −
N∑

k=1

αk(ωT ϕ(xk) + b + ek − yk). (9)
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In this equation, the αks are called the Lagrangian multipliers. The saddle point
can be found by setting the derivatives equal to zero.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂L
∂ω = 0 → ω =

∑N
k=1 αkϕ(xk),

∂L
∂b = 0 →

∑N
k=1 αk = 0,

∂L
∂ek

= 0 → αk = γek,
∂L
∂αk

= 0 → ωT ϕ(xk) + b + ek − yk = 0,

(10)

for k = 1, · · · , N . Elimination of ek and ω through substitution in the following
set of linear equations

[
1 e1T

e1T Ω + γ−1I

] [
b
α

]
=

[
0
y

]
, (11)

where y = (y1, · · · , yl)T ,e1 = (1, · · · , 1)T ,α = (α1, · · · , αl)T ,
Ωij = ϕ(xi)T ϕ(xj) = k(xi, xj), i, j = 1, · · · , l.

The resulting LS-SVMs model for function estimation becomes

y(x) =
N∑

k=1

αkk(x, xk) + b, (12)

k(x, xk) is a symmetric function which satisfies Mercer conditions. Some useful
kernels are as follows:

(1)Polynomial kernel of order p:y(x) =
∑N

k=1 αkk(x, xk) + b;

(2)Gaussian kernel function:k(x, x∗) = exp(− ‖x−x∗‖2
2

2σ2 );
(3)Hyperbolic kernel:k(x, x∗) = tanh(βxT x∗ + k).

The method for performing Hammerstein models identification is to induce
the function f(·) in Equation (5) using LS-SVMs regression, which is trained
with a set of finite data of past inputs and outputs as the target value of the
LS-SVMs regression. A two-layer LS-SVMs is used to estimate the linear and
nonlinear elements simultaneously in a framework. The first layer is to identify
the nonlinear memoryless system, the second layer is to identify the linear dy-
namical system. Where αk, b re the solution to the linear system, k(·) represents
the high dimensional feature spaces that is nonlinearly mapped from the input
space . The LS-SVMs approximates the function using the Equation (12). It is a
good practice to represent the linear dynamical and static nonlinearity using the
Gaussian kernel function. Gaussian kernel function tends to give good perfor-
mance under general smoothness assumptions. Consequently, they are especially
useful if no additional knowledge of the data is available.

4 Simulation Results

In this section, the two simulated examples are used as evaluation of the identifi-
cation power of LS-SVMs. We used noise levels of 0.5 to investigate the quality of
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Fig. 2. Actual and identified nonlinearities of example 1

proposed identification method in comparison with the results of the noise-free
identi-fication.

Example 1 Consider a process with two inputs and two outputs described by
the following equation [9] and [10]:

[
y1(t)
y2(t)

]
=

[
0.5 −0.1
0.8 −0.7

] [
y1(t − 1)
y2(t − 1)

]
+

[
−0.3 0.2
0.9 −0.5

] [
y1(t − 2)
y2(t − 2)

]

+
[
1 0
0 1

] [
s1(u1(t))
s2(u2(t))

]
+

[
ζ1(t)
ζ1(t)

]
,

where the nonlinearities are given by

s1(u1(t)) = (1 − e−4u1(t))/(1 + e−4u1(t)),
s2(u2(t)) = 0.5u3

2(t),

ζ1(t), ζ2(t) are white, zero-mean Gaussian distributed noises of variances 0.5. The
inputs to the plant are random signals whose amplitude is uniformly distributed
in the interval [-2, 2]. Two identification procedures of the plant, with noise
or not, are implemented respectively. The numerical results of example 1 are
located in the fifth row and sixth row of the Tab.1. The numerical results of
the method in [9] are the second row. The numerical results of the method in
[10] are the third row and the fourth row. Fig.2 shows the actual and identified
nonlinearities when the noise is not added to the plant. Example 2 Consider a
process the same as the process of example 1 except that the nonlinearities are
given by [10]

s1(u1(t), u2(t)) =
(1 − e−(u1(t)+u2(t)))
(1 + e−(u1(t)+u2(t)))

,

s2(u1(t), u2(t)) = 0.25u2
1(t)u2(t).

The input to the plant is random signals whose amplitude is uniformly distrib-
uted in the interval [-2, 2]. Numerical results are also shown in the ninth row
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Table 1. Numerical results of example 1 and example 2

A1 A2 B0

Desired value

�
0.5 −0.1
0.8 −0.7

� �
−0.3 0.2
0.9 −0.5

� �
1 0
0 1

�

Result of [9]

�
0.5027 −0.0951
0.7958 −0.7015

� �
−0.3034 0.2044
0.8963 −0.5018

� �
−0.3155 0.1846
−0.0679 0.2464

�

Result of [10] Example1

(Without noise)

�
0.5000 −0.1001
0.7982 −0.7011

� �
−0.3002 0.2000
0.8993 −0.5005

� �
−0.3187 0.0000
0.0012 −0.5102

�

Result of [10] Example1

(With noise)

�
0.5029 −0.1088
0.7724 −0.6903

� �
−0.3111 0.2185
0.9005 −0.4887

� �
−0.3126 −0.0039
0.0016 0.7575

�

Example1

(Without noise)

�
0.5 −0.1
0.8 −0.7

� �
−0.3 0.2
0.9 −0.5

� �
1 0
0 1

�

Example1

(With noise)

�
0.5006 −0.0941
0.8006 −0.6941

� �
−0.3053 0.2134
0.8987 −0.4986

� �
0.9272 0.0159

−0.0028 1.0159

�

Result of [10] Example2

(Without noise)

�
0.5001 −0.1002
0.7997 −0.7003

� �
−0.3000 0.2001
0.9004 −0.5019

� �
−0.3197 0.0141
0.0078 1.0460

�

Result of [10] Example2

(With noise)

�
0.4577 −0.1172
0.8066 −0.7292

� �
−0.2807 0.1972
0.8765 −0.4939

� �
0.6455 0.0242
0.0492 6589

�

Example2

(Without noise)

�
0.5 −0.1
0.8 −0.7

� �
−0.3 0.2
0.9 −0.5

� �
1 0
0 1

�

Example2

(With noise)

�
0.5534 −0.0860
0.8358 −0.6760

� �
−0.3215 0.2174
0.8785 −0.4826

� �
0.9790 −0.0179

−0.0210 0.9821

�

Fig. 3. Actual and identified nonlinearities of example 2(s1)

and the tenth row of Tab.1. The numerical results of the method in [10] are
the seventh row and the eighth row. From the Tab.1, if the training data are
corrupted with noise of 0.5 levels, it is verified that additive noise has an influence
on the system identification. Fig.3 and Fig.4 show the actual and identified
nonlinearities when the noise is not added to the plant.
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Fig. 4. Actual and identified nonlinearities of example 2(s2)

5 Conclusion

In this paper, we investigate the problem of nonlinear system dynamic identi-
fication using the LS-SVMs regression. We also consider the influence of noise
on the identification. The simulation results show the efficiency of the proposed
methods. This approach is found to be superior to that of the neural networks
for the complex task of nonlinear system identification even in the case of addi-
tive noise to the system. And the results of this research suggest that LS-SVMs
are a better method to identification of the Hammerstein models, and appear to
have potentials for future applications in identifying the other models, and also
for analysis of other models.
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Abstract. In this paper, a novel bank check filled-in-items extraction method 
based on support vector machines (SVM) is proposed. After preprocessing, the 
bank logos are cropped and recognized by SVMs. Then the bank type 
characters, in Chinese, “支”, “现”, or “转”， are cropped and classified with 
another SVM. After check type is recognized, real check is registered to the 
corresponding standard blank check. Finally the filled-in items in real check are 
extracted. The experimental results demonstrate the presented method is 
effective.  

1   Introduction 

The widespread use of bank check in most economic activities prompts the 
development of automatic bank check processing, which refers to extraction and 
recognition of user entered information from different data fields on the check [1-2].  

In the past few years, some automatic check recognition methods have been 
developed [2-5]. Lee et al. described a prototype for automatic Brazilian bank check 
recognition that recognizes or identifies both printed and filled information on a bank 
check automatically [3]. Ye et al. presented a technique for extracting the user-entered 
information from bank check images based on a layout-driven item extraction method 
[4]. The baselines of checks are detected and eliminated by using gray-level 
mathematical morphology. Yu et al. described a system for the recognition of legal 
amounts on bank checks written in the Chinese language [5].  

In this paper, we present a novel method for the extraction of filled-in items from 
Chinese bank check. The idea is based on the extraction and classification of the name 
and logo of different banks, and the types of different check. Firstly, check logo is 
extracted and classified, and then check type character is extracted and classified. 
Finally we can extract handwritten or printed items in real bank check with 
subtraction. 

This paper is organized as follows. In section 2 the characteristics of Chinese check 
are introduced. Then in section 3 the whole system including check pre-processing, 
logo and character cropping, features extraction, logo and character recognition, 



408 L. Huang, S. Li, and L. Li 

extraction of the handwritten financial character and stamps fields is described. The 
experimental results are presented in section 4. Finally the conclusions are given in 
section 5. 

2   Characteristics of Chinese Check 

In this paper, we have assumed that the layout structure of bank check is standardized, 
such as size, position and the type of information field, etc. 

A typical Chinese bank check structure can be divided into nine blocks as shown 
in Fig.2. On the left top row (1), bank logo and name, check type name are found. 
On the top right (2), bank check number is filled. Then date and recipient name are 
on the left of the next row (3). On the right (4) the player’s bank name and amount 
number are found. Just below the second row (5), there is the area of amount, which 
is written by digital and Chinese. On the 4th row (6) is reserved for the described of 
check’s use. The next row (7), all stamps are sealed, in general 3 stamps are 
essential. On the right (8) are subject of debit and credit, date of transfer and names 
of operators. The last row (9), the special codes are filled. A sample of bank check is 
as followed in Fig.1. 

 

Fig. 1. A Sample of Bank Check 

(1) Bank logo and name, check type name (2) Check number 
(3) Date and the recipient name area (4) Payer’s bank name 

Payer’s amount number 
(5) Filled amount area with digital and Chinese 
(6) Describe of check’s use 
(7) Payer’s stamps area (8) Subject of debit and credit 

Date of transfer 
Names of Operators 

(9) Special codes about check number 

Fig. 2. Block Division of a Bank Check 
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3   Check Recognition Systems 

The overview of our system is given in Fig.3. The first step is to scan the check, and 
then some pre-processing steps are applied to improve the quality of the scanned 
image. Then check logo is cropped and recognized with SVMs. The next step is to 
crop check type character and extract its features, then another SVM is used to 
recognize characters. After getting check layout, the field of filled-in items can be 
obtained with subtraction of blank layout. The following sections describe the each 
step in detail. 

 

Fig. 3. Scheme of the proposed method 

3.1   Pre-processing 

The scanned bank check images are pre-processed before recognition. The first step in 
preprocessing is cropping. Cropping achieves the real check image area, gets rid of 
the background around the check block.  

Once the real check is obtained, it is then passed to the skew detection and 
rectification stage. The skew detection method using projection profile analysis is 
adapted [6]. The next step is enhancement with local histogram equalization [7]. 
Finally the check image is normalized to a standard size of 320×720 pixels in gray 
mode. 
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3.2   Cropping Check Logo and Extracting Features 

Based on the features of Chinese check, we can extract check logo quickly. By 
examining the layout of the check images, we found that the logo is located in an 
approximation region from the 13th row to 63rd row, and from the 107th column to 
167th column. One approximation logo region is shown in Fig. 4(a). Then it is 
binarized using threshold method as shown in Fig. 4(b). Then two projection profiles 
are created as shown in Fig. 4(e) and (f). The former is the vertical projection profile. 
Choose M as the maximum value of the projection. Veri is the vertical projection 
value; the threshold value is set to 0.05. Then we scan the region from left to right, if 
Veri > M×0.05, the left boundary of logo is obtained, then by using Veri < M×0.05, 
the right boundary is got. It is shown in Fig.4(c). The horizontal projection profile is 
shown in Fig. 4(f). With the same approach, the bottom and top boundaries are 
obtained, which are shown in Fig. 4(d).  

After the logos are cropped, they are resized to 12×12. Then the gray values of the 
logos are extracted as the feature vectors. 

                                                             
(a) Approximated region (b) Binarized region (c) Vertical boundary (d) Horizontal boundary  

  
(e) Vertical projection profile        (f) Horizontal projection profile 

Fig. 4. Cropping bank check logo 

3.3   Logo Recognition 

Support Vector Machines (SVM) are learning systems that use a hypothesis space 
of linear functions in a high dimensional feature space, trained with a learning 
algorithm from optimization theory that implements a learning bias derived from 
statistical learning theory[8]. SVM can be trained to solve the binary cases or 
multiple classes, and the structure of multiple classes can be one against one, one 
against the rest or DAGSVM, etc. In this case one-against-the-rest SVM is used for 
logo recognition. 
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3.4   Cropping Check Type Character  

As Chinese check only has three types, including open check, cash check and check 
for transfer (see Fig.5), which are different at the first character, that is “支”, “现”, or 
“转”. After the check logo is detected and classified, the bank name is obtained. Then 
we can get the approximation area of the first check type character in an area which is 
from the 339th row to 368th row and from the 107th column to 167th column. 

 

Fig. 5. Chinese bank check logos 

The China Construction Bank is used for demonstrating the processing of the first 
check type character. Firstly, an approximation region of the type character is 
segmented (Fig.6 (a)). After binarization (Fig.6 (b)), the cropping procedure is similar 
to the cropping of check logo. Here the threshold value is 0.05 too. The cropped type 
character image is resized to 10×10. And the normalized intensity values are used as 
the input feature for another SVM classifier.  

                                                                                           
(a) Approximated region (b) Binarized region (c) Vertical boundary (d) Horizontal boundary 

   
(e) Vertical projection profile       (f) Horizontal projection profile 

Fig. 6. Cropping check type character 

3.5   Check Type Recognition 

Similar to the section 3.3, another SVM also is constructed here. The structure of one 
against the rest is choosed. Half of samples which are the character image pixel vector 
of 100×1 are used for training and the rest for testing. In section 4.2 the corresponding 
experimental results are given. 



412 L. Huang, S. Li, and L. Li 

3.6   Extracting Filled-In-Items 

The extraction of filled-in information in the real checks is described as follows: 

Step 1: Save all types of blank bank checks as references. 
Step 2: Input the real checks, get the type of them through above methods which 

are illustrated in section 3.1-3.5. 
Step 3: Registration by Maximum Mutual Information between the real check and 

the corresponding blank check. 
Step 4: Subtraction of blank layout from the real check form. In this paper, the 

threshold of difference between their gray levels is choosed as 50. 
Step 5: Median filtering post-processing. 

4   Experimental Results 

4.1   Logo Recognition with SVMs 

For the SVM applications, more training samples will give a better result. So we 
propose a virtual training sample method to generate more samples. For every 
cropped logo images, some virtual images are generated using N geometric 
transformations. The number N is calculated as follows: N = A× B× C, where A = 
number of shifting pixels × 8 is the total number of shifts, in 8 directions. B = number 
of scales × 2 is the total number of scales, in 2 directions (zooming-in and zooming-
out). C = 2 is the number of rotating methods (anticlockwise and clockwise). In the 
experimental setup, 2 shift and 2 scales are used. This produces 128 (2× 8 × 2 × 2× 2) 
virtual images for each original image. Some virtual samples are shown in Fig.7. In 
this way, we can have many training samples and the experimental results show it can 
improve the recognition accuracy.  

We selected 18 types of domestic bank checks as the original experimental 
samples. Then 2304 (128 × 18) virtual samples are generated using virtual sample 
generating method. In the experimental setup, half of the virtual samples randomly 
selected from the 2304 virtual samples, plus the 18 original samples are used for 
training. The remained 50% virtual samples are used for testing. In order to gain fair 
classification performance, the training and testing are performed 50 times, and the 
averaged accuracy as the final accuracy.  

                     

Fig. 7. Some virtual logo samples 

Before forwarded to SVMs, all logo samples are resized into 12×12. Then the 
144×1 vector is obtained as the input features. In this paper we choose one against the 
rest method. That’s to say select one type input vectors as the positive examples,  
the remains as the negative. So 18 SVMs classifiers are needed for the recognition of 
18 type domestic bank checks. Table 1 shows the experiment results. Gamma is the 
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parameter of the radial based kernel. C represents the cost of the constrain violation. 
From these data, we can obtain the better recognition accuracy, if Gamma from 2-7 to 
2-5 and C from 1 to 1000. 

Table 1. Logo Recognition Performance (%) 

C 
Gamma 

1 10 100 1000 

2-4 99.31 99.1 99.31 99.31 
2-5 100 100 100 100 
2-6 100 100 100 100 
2-7 99.31 100 100 100 
2-8 97.40 99.31 99.31 99.31 

4.2   Recognition of Check Type Character 

After three check type characters is cropped (see Fig.8), they are resized into 10×10. 
Then we adopt the similar method to get 384 (128×3) samples. Half of them are used 
for training, and the remained half are used for testing. In order to obtaining fair 
recognition performance, the experiment is run 50 times. 100 normalized intensity 
values of each sample are used directly as the input features. In this case, three SVM 
classifiers are designed and trained. From Table 2, we can see that SVM classifiers 
with Gamma from 2-7 to 2-3 and C from 1 to 1000 have the recognition accuracy of 
100%.  

        
 

 

Fig. 8. The original check type character samples 

Table 2. Performance of the SVMs for Type Character Recognition (%) 

C 
Gamma 

1 10 100 1000 
2-3 100 100 100 100 
2-4 100 100 100 100 
2-5 100 100 100 100 
2-6 100 100 100 100 
2-7 100 100 100 100 

4.3   Subtraction Results Against Blank Check 

Fig. 9(a) and (b) show one blank check and filled in check from China Merchants 
Bank. After the above extraction and recognition, we can get the subtraction result 
shown in Fig. 9(c), from which we can see that the filled in items are extracted clearly 
and correctly. 
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(a) A sample of blank check 

 
(b) A sample of the real check 

 
(c) Extracted filled-in items 

Fig. 9. Example of extracted filled in items 

5   Conclusions 

In this paper, an automatic recognition system for Chinese bank check is proposed. 
By the application of the projection profile technique logo and type character are 
cropped efficiently and accurately. Then the SVM classifiers are used to classify the 
check logos and check type characters. After achieved layout of check, the filled-in 
items in check are obtained with subtraction of blank check. Experimental results 
demonstrate that the proposed method can recognize the check type and extract filled-
in data correctly. 
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Abstract. As the conventional training algorithms of least squares sup-
port vector machines (LS-SVM) are inefficient in online applications, an
online learning algorithm is proposed. The online algorithm is suitable
for the large data set and practical applications where the data come
in sequentially. Aiming at the characteristics of signals, a wavelet ker-
nel satisfying wavelet frames is presented. The wavelet kernel can ap-
proximate arbitrary functions in quadratic continuous integral space,
hence the generalization ability of LS-SVM is improved. To illustrate
its favorable performance, the wavelet based online LS-SVM (WOLS-
SVM) is applied to nonlinear system identification. The simulation re-
sults show that the WOLS-SVM outperforms the existing algorithms
with higher learning efficiency as well as better accuracy, and indicate its
effectiveness.

1 Introduction

Support vector machines (SVM) [1,2] technology is a powerful machine learn-
ing method for both classification and regression problems, which has become
an exciting research area in machine learning community because of its remark-
able generalization performance and elegant statistical learning theory. SVM are
based on the principle of structural risk minimization (SRM), rather than on em-
pirical risk minimization (ERM) as do many other methods. SRM is intended
to improve generalization performance for small sample-size learning problems,
where ERM is likely to overfit the training data [3]. Moreover, SVM training
can be reduced to a quadratic programming problem. Consequently, the solu-
tion is always globally optimal. SVM use a kernel function to map the input data
into a high-dimensional feature space, and then constructs an optimal separat-
ing hyperplane in that space. The kernel function must satisfy the condition of
Mercer [11].

As an interesting variant of the standard SVM, least squares support vector
machines (LS-SVM) have been proposed for classification [4,5,6] and function es-
timation [7,8]. LS-SVM differ from classical SVM in the fact that the inequality
constraints in the original convex quadratic programming problem are replaced
by the equality constraints, so that a set of linear equations is solved to obtain the
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c© Springer-Verlag Berlin Heidelberg 2007
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optimum solution. Conventionally LS-SVM are used for regression estimation of
input data that are supplied in batch. In many application problems, such as
system identification, chaotic time series prediction and signal processing, data
are obtained in a sequence and learning has to be done from scratch. Therefore,
it is time consuming to achieve the regression using the conventional LS-SVM
and it is not possible to apply the LS-SVM for real-time regression problems.
Hence, online learning algorithms are preferred over the batch learning algo-
rithms. In this paper, an online learning algorithm for LS-SVM (OLS-SVM) is
proposed.

OLS-SVM are a kernel based approach, which allows the use of linear, Gaussian,
polynomial and RBF kernels and so on that satisfy Mercer’s condition. As the
wavelet has the property of time-frequency localization and is a powerful tool
for arbitrary function approximation, an allowed support vector kernel function
based on the wavelet is proposed. The OLS-SVM adopts the wavelet kernel, so
its generalization ability is improved. Finally, the wavelet based OLS-SVM is
applied to system identification to test the efficiency.

This paper is organized as follows. Section 2 briefly reviews some basic notions
of LS-SVM for function estimation. Section 3 presents a wavelet kernel and online
LS-SVM. Section 4 applies wavelet based OLS-SVM to system identification.
Section 5 summarizes the results of this paper.

2 Least Squares Support Vector Machines [9],[10]

Consider a training data set of N points {xk, yk}N
k=1, where xk ∈ Rn, yk ∈ R,

k is the samples number, n is the number of input dimension. In LS-SVM for
function estimate, the following optimization problem is considered

min
ω,e

J(ω, e) =
1
2
ωT ω +

1
2
γ

N∑

k=1

e2
k, (1)

subject to the equality constraints

yk = ωT ϕ(x) + b + ek , k = 1, . . . , N, (2)

where the nonlinear mapping ϕ(·) maps the input space into a so-called higher
dimensional feature space, ω is a weight vector of the same dimension as the
feature space, b is the bias, and γ is the regularization parameter. The the
positive real constant γ relative importance of these terms is determined.

In primal feature space, the models take the form

y(x) = ωT ϕ(x) + b. (3)

This problem can be solved in the dual space instead of the primal space. The
solution is obtained by contructing the Lagrangian function



418 Q. Zhang, F. Fan, and L. Wang

L(ω, b, e; α) = J(ω, e) −
N∑

k=1

αk(ωT ϕ(xk) + b + ek − yk). (4)

with Lagrange multipliers αk ∈ R.
The conditions for optimality are given by

∂L

∂ω
= 0 → ω =

N∑

k=1

αkϕ(xk),

∂L

∂b
= 0 →

N∑

k=1

αk = 0,

∂L

∂ek
= 0 → αk = γek,

∂L

∂αk
= 0 → ωT ϕ(xk) + b + ek − yk = 0, (5)

for k = 1, . . . ,N. The condition αk = γek is the important differences between
standard SVM and LS-SVM, which greatly simplifies the problem.

According to Karush-Kuhn-Tucker (KKT) conditions, ek and ω are elimi-
nated, and the solution is given by the following set of linear equations:

[
0 −→1 T

−→1 Ω + γ−1I

][
b
α

]
=

[
0
y

]
, (6)

where y = [y1; . . . ; yN ], −→1 = [1; . . . ; 1], α = [α1; . . . ; αN ] and Ωkl = ϕ(xk)T ϕ(xl)
for k, l = 1, . . . , N . According to Mercer’s condition, there exists a mapping ϕ
and an expansion

K(x, y) =
∑

i

ϕi(x)ϕi(y), x, y ∈ Rn. (7)

For any g(x) such that
∫

g(x)2dx is finite, we get
∫

K(x, y)g(x)g(y)dxdy ≥ 0, (8)

and then choose a kernel K(., .)

K(xk, xl) = ϕ(xk)T ϕ(xl), k, l = 1, . . . , N. (9)

The resulting LS-SVM model for function estimation becomes

y(x) =
N∑

k=1

αkK(x, xk) + b, (10)

where α, b are the solutions of (6). In this paper, Gaussian kernel can be chosen
as the kernel function, K(x, x

′
) = exp(−‖x − x

′‖2/2σ2).
The standard SVM solutions are characterized by convex optimization prob-

lems, and model complexity follows from this convex optimization problem. The
formulation of the optimization problem involves inequality constraints. LS-SVM
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uses equality instead of inequality constraints and works with a least squares cost
function. The solution follows from a linear equations instead of a quadratic pro-
gramming problem. Therefore, the solution of the standard SVM is more complex
and time consuming than that of LS-SVM.

3 Wavelet Based Online Least Squares Support Vector
Machines

3.1 Conditions for Support Vector Kernel [11], [12], [13]

The kernel function is a dot product in the feature space, such as K(x, x′) =
K(〈x · x′〉). The kernel function must satisfy the conditions in Mercer condition.

Theorem 1. In L2(RN ) space, ∀g(x) ∈ L2(RN ),
∫

g2(x)dx < ∞, g 
= 0 and
K(x, x

′
) ∈ L2(RN × RN ), if

∫ ∫

L2
�

L2

K(x, x
′
)g(x)g(x

′
)dxdx

′
≥ 0, (11)

holds, K(x, x
′
) is a dot product in the feature space. Then K(x, x

′
) is a kernel

function.

Theorem 1 is a simple method for constructing support vector kernel function.

Theorem 2. A translation invariant kernel K(x, x
′
) = K(x − x

′
) is an admis-

sible support vector kernels if and only if the Fourier transform of K(x) must
satisfy the condition as follows

F [k](ω) = (2π)−N/2
∫

RN

exp(−jωx)K(x)dx ≥ 0. (12)

3.2 Wavelet Kernels

According to [16], if ψ(x) ∈ L2(R) is a mother wavelet, then we can get the dot
product wavelet kernels

K(x, x
′
) =

N∏

i=1

ψ(
xi − bi

ai
)ψ(

x
′

i − b
′

i

ai
), (13)

and the translation invariant wavelet kernels that satisfy Theorem 2

K(x, x
′
) =

N∏

i=1

ψ(
xi − x

′

i

ai
) . (14)

Choosing an appropriate wavelet function as a wavelet kernel is a critical prob-
lem. We take into account not only the wavelet function satisfying the Mercer’s
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condition, but also the properties of the wavelet function. We choose Littlewood-
Paley wavelet as a wavelet kernel [15]. Littlewood-Paley wavelet function is de-
fined as follows

ψ(x) =
sin(2πx) − sin(πx)

πx
. (15)

The Fourier transform of Littlewood-Paley wavelet is not negative, and the
value of the transform is

ψ̂(ω) =
{

1 , π ≤ |ω| ≤ 2π,
0 , other.

(16)

Theorem 3. According to the Littlewood-Paley wavelet, a wavelet kernel can be
constructed as

K(x, x
′
) =

N∏

i=1

ψ(
xi − x

′

i

ai
)

=
N∏

i

sin2π(
xi − x

′

i

ai
) − sinπ(

xi − x
′

i

ai
)

π(
xi − x

′

i

ai
)

,

which is an admissible support vector kernel.

Proof : According to the theorem 2, we only need to prove

F [k](ω) = (2π)−N/2
∫

RN

exp(−j(ω · x))K(x)dx ≥ 0, (17)

then

F [k](ω) = (2π)−
N
2

∫

RN

exp(−j(ω · x))K(x)dx

= (2π)−
N
2

∫

RN

exp(−j(ω · x))
N∏

i

sin2π(
xi

ai
) − sinπ(

xi

ai
)

π(
xi

ai
)

dx

= (2π)−
N
2

N∏

i

∫ +∞

−∞
exp(−jωixi)

sin2π(
xi

ai
) − sinπ(

xi

ai
)

π(
xi

ai
)

dxi

= (2π)−
N
2

N∏

i

∫ +∞

−∞
exp(−j(aiωi) · (

xi

ai
))

sin2π(
xi

ai
) − sinπ(

xi

ai
)

π(
xi

ai
)

dxi.

According to (16), F [k](ω) ≥ 0.
Substituting (15) into (8), we can obtain function estimation of LS-WSVM
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y(x) =
N∑

k=1

αk

N∏

i

sin2π(
xk − xi

k

ai
j

) − sinπ(
xk − xi

k

ai
j

)

π(
xk − xi

k

ai
j

)
+ b, (18)

where xi
k represents the ith component of the kth training example.

Now, LS-SVM can adopt the wavelet kernel as its kernel function. As LS-SVM
cannot optimize the parameters of kernels, it is difficult to determine N × N
parameters ai

k, i = 1, . . . , N . For the sake of simplicity, one lets ai
k = a, so the

number of parameters becomes 1 [16].

3.3 Online Learning Algorithm for LS-SVM

The online learning algorithm in [17] for classification is extended for nonlin-
ear system identification. The samples arrive sequentially in online learning. For
online learning, the samples is windows roll and we set the windows size n. Con-
sider the training samples {X(i), Y (i)}, in which X(i) = [xi, . . . , xi+n−1], Y (i) =
[yi, . . . , yi+n−1]T , xi ∈ Rn, yi ∈ R. Therefore, at time i the kernel Ω, α, and
b may be represented as Ωkl(i) = K(xk+i−1, xl+i−1), k, l = 1, . . . , n, α(i) =
[αi; . . . ; αi+n−1], b(i) = bi, and y(i) = yi, then the function estimation (10)
becomes

y(i) =
i+n−1∑

k=i

αkK(x, xk) + b(i). (19)

Let U(i) = Ω(i) + γ−1I, then (6) can be represented as
[

0 −→1 T

−→1 U(i)

][
b(i)
α(i)

]
=

[
0

y(i)

]
. (20)

Let P (i) = U(i)−1, then according to the equation (20)

b(i) =
−→1 T

P (i)y(i)
−→1 T

P (i)−→1
, (21)

α(i) = P (i)(y(i) − −→1 b(i)), (22)

and according to [18]

P (i) = U(i)−1 = [Ω(i) + γ−1I]−1

=
[

h(i) H(i)T

H(i) D(i)

]−1

=
[
0 0
0 D(i)−1

]
+ sh(i)sT

h ch(i), (23)

where I is a identity matrix, h(i) = K(xi, xi) +
1
γ

, H(i) = [K(xi+1, xi) +

1
γ

, . . . , K(xi+n−1, xi)]T ,
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D(i) =

⎡

⎢
⎢
⎢
⎢
⎣

K(xi+1, xi+1) +
1
γ

. . . K(xi+n−1, xi+1)

...
. . .

...

K(xi+1, xi+n−1) . . . K(xi+n−1, xi+n−1) +
1
γ

⎤

⎥
⎥
⎥
⎥
⎦

,

sh(i) = [−1, H(i)T D(i)−1]T , ch(i) = 1/(h(i) − H(i)T D(i)−1H(i)).
At the time i + 1, a new sample (xi+1, yi+1) is inserted, then the old sample

(xi, yi) is deleted, and the kernel is Ωkl(i + 1) = K(xk+i, xl+i), P (i + 1) =
U(i + 1)−1 = [Ω(i + 1) + I/γ]−1.

According to the above discussion, the online algorithm is obtained [17]:

1. Initialization: i=1;
2. Get the new data (X(i),Y(i)) and delete the old data;
3. Compute the kernel Ω(i) and P (i);
4. Compute b(i) and α(i), then predicate y(i+1);
5. i= i+1, and return to 2.

Each update of the algorithm runs in O(i2).

4 Application of Wavelet Based OLS-WSVM

We validate the performance of wavelet based OLS-SVM by a nonlinear system
identification and compare its performance with the batch LS-SVM and the
incremental learning SVM [19]. In the batch LS-SVM and incremental learning
SVM, the kernel is Gaussian function, K(xi, xj) = exp(−λ‖xi − xj‖), λ = 1.

A nonlinear system [20] to be identified is governed by

y(t + 1) = 0.3y(t) + 0.6y(t − 1) + f(u(t)), (24)

in which
f(t) = 0.6 sin(πu) + 0.3 sin(3πu) + 0.1 sin(5πu), (25)

and the input
u(t) = sin(2πt/250). (26)

We take 1000 points as the training samples in which 200 points are training
samples and the others are prediction samples. Figure 1 shows simulation results.

From the simulation experiments, we can find the proposed WOLS-SVM out-
performs the incremental SVM and batch LS-SVM. WOLS-SVM is generally
much faster than the batch LS-SVM algorithms when applied to online predic-
tion. The accuracy of WOLS-SVM is higher than the incremental SVM for only
providing an approximation solution and the batch LS-SVM has to be done from
scratch when data are obtained in a sequence, so its speed is rather slow. The
wavelet kernel is not only a kind of multidimensional wavelet functions, but also
inherit the characters of Littlewood-Paley wavelet orthonormal capacity.
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(a) Performance of WOLS-SVM.
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(b) Performance of LS-SVM.
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(c) Performance of Incremental SVM.

Fig. 1. Simulation results in nonlinear system identification
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5 Conclusions

Least squares support vector machine is a powerful machine learning method for
pattern recognition and regression problems. LS-SVM has been used to model
nonlinear system identification. As the training samples are online obtained, con-
ventional LS-SVM suffer from the problem of large memory requirement when
trained in batch mode on large-scale online sample sets, so an online learning
algorithm for LS-SVM is presented. As the wavelet has the property of time-
frequency localization and can approximate any complicated functions in L2(R)
space, a wavelet kernel satisfying the wavelet framework is proposed, which en-
hances the generalization ability of LS-SVM. Finally, the wavelet based online
LS-SVM is applied to system identification. Simulation shows that the WOLS-
SVM has a much faster convergence and a better generalization performance in
comparison with the existing algorithms.
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Abstract. Accurate acquisition of expected fetal weight (EFW) based on 
ultrasound measurements is important to antenatal care. The accuracy of EFW 
is disturbed by random error of measurements and impropriety of regression 
method. There have been several studies using neural networks to improve 
estimation validity, but these methods are all on the premises of measurements 
accuracy. This paper utilizes the fuzzy logic to deal with the measurements 
inconsistence, while combines with the support vector regression (SVR) to 
pursue generalization ability. By this way, the suspect inaccurate measurements 
can have relatively less contributions to the learning of new fuzzy support 
vector regression (FSVR). Tests on a clinical database show that proposed 
algorithm can achieve 6.09% mean absolute percent error (MAPE) for testing 
group while the back-propagation algorithm and classical SVR achieve 8.95% 
and 7.23% MAPE respectively. Experimental results show the effectives of the 
proposed algorithm over traditional methods based on neural network. 

1   Introduction 

In obstetrics, estimation of fetal weight based on ultrasound images plays a key role in 
prenatal care. Obtaining accurate expected fetal weight (EFW) is of paramount 
importance in prediction of fetal compromise and in management of labor. Ultrasound 
is a major tool for fetal weight estimation, due to its noninvasiveness, portability and 
relatively low cost. In clinical applications, the fetal weight is estimated based on 
several ultrasound measurements with the regression analysis. The accuracy of EFW 
is disturbed by two main factors, the one is the random errors in measurements, and 
the other is the impropriety of regression equations. 

On commercial equipment, measurements are made by manually tracing on-screen 
with a mouse-like device. The poor quality of ultrasound images and the variability of 
the human observer influence the manual measurement accuracy and consistence. 
Measurements are then combined to estimate fetal weight by mathematically based 
non-linear regression analysis. Variety of formulas, incorporating different ultrasonic 
measurements, has been studied extensively. Dudley [1] have evaluated 11 different 
formulas in a systematic review on the ultrasound estimation of fetal weight, and 
concluded that no consistently superior method has emerged. 
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The Artificial neural network (ANN), has been used to estimate the fetal  
weight [2, 3]. Compared with the fixed formulas using the regression analysis, the ANN 
model that develops nonlinear relationship between input variables and output 
outcomes can reduce the estimate errors. However, the constructed architecture of 
most ANN models are using back-propagation algorithm which is based on Empirical 
Risk Minimization (ERM) principle. ERM pursues minimizing the error on the 
training data, so it may fall into a local optimal solution due to the overtraining 
problem. Support vector machine (SVM), which is developed by Vapnik et al [4], are 
gaining popularity because of many attractive features. SVM is based on statistic 
learning theory and the Structural Risk Minimization (SRM) principle which pursues 
minimizing the upper bound on the expected risk. The SRM principle equips SVM 
with a good ability to generalize and better classification precision. Thus, at present, 
support vector regression (SVR) has been applied to estimate fetal weight [5]. Song et 
al [5] indicate that, compared with another classical neural network—Radial-Basis 
Function (RBF), SVR is superior in both fitting and testing accuracy. The principle of 
SRM makes the algorithm lay particular stress on the data close to boundary (support 
vector). Because data close to the class boundary is most affected by outliers, the 
classical SVM formulation is not robust to noise [6]. As mentioned above, in real 
clinical applications, fetal measurements based on ultrasound images are often 
inaccuracy and inconsistence. Previous works of [2], [3] and [5] are all on the 
premises of measurements accuracy.  

If we take the considerations of data inconsistencies into model training, the 
accuracy of fetal weight estimation may be prospectively improved. Fuzzy logic is a 
powerful tool to deal with uncertain, nonlinear and ill-posed problem. Fuzzy support 
vector regression (FSVR) with a new membership calculation method is presented in 
this paper to deal with fetal weight estimation.  

The remainder of this paper is organized as follows: Section 2 provides an 
introduction about the standard SVR and FSVR. In Section 3, we present in detail the 
calculation method of membership function for each training data and the 
implementation of FSVR. The data acquisition and the experimental results are 
presented in Section 4. Section 5 concludes the paper. 

2   SVR and FSVR 

This section provides an introduction about standard SVR and FSVR. 

2.1   SVR[4] 

The basic idea of SVM is mapping data into a high-dimensional space and 
constructing optimal hyperplane with maximum margin between the two classes. The 
successful applications of SVM in pattern recognition make the same principle 
utilized in the nonlinear regression. Suppose that there is a m-dimensional training 
data set containing n data points { }nxxx ,,, 21

 and the corresponding expected values  
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of the model output {d1,d2,…,dn}. The estimate of d, denoted by y, is expanded in 
terms of a set of nonlinear basis function as follow 

)(xwy Tφ= .   (1) 

where w  is the weight vector, and φ  is the nonlinear mapping from the input space to 

the high dimensional feature space. The constrained optimization problem can be 
defined by introducing two sets of nonnegative slack variables, 

Nixwd ii
T

i ,,2,1,)( =+≤− ξεφ ; (2) 

Nidxw iii
T ,,2,1,)( ' =+≤− ξεφ ; (3) 

Niii ,,2,1,0, ' =≥ξξ . (4) 

The slack variables 
iξ  and '

iξ  describe the ε-insensitive loss function. This 

constrained optimization problem can be solved by minimizing the cost functional 

wwC T
n

i
ii

bw 2

1
)(min

1

'

,,, '
+⎟
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where C is a regularization constant, controlling a compromise between maximizing 
the margin and minimizing the number of training set errors. 

2.2   FSVR 

In order to decrease the effect of outliers or noise, in FSVR [7], the fuzzy membership 
is associated with data points such that different data points can have different 
contributions to the learning of regression function. If one data point is detected as an 
outlier, it is assigned with a low membership, so its contribution to total error term 
decreases.  

Suppose ui represents the attitude of the corresponding training point toward the 
error term. The FSVR is modeled by the following programming 
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subject to the constraints of Eq. (2) to (4). By introducing Lagrange multipliers α, α’, 
γ and γ’, the Lagrangian function is defined to solve the Eq. (6), and leads to a 
solution of the form 

bxy
n

i
ii +−=∑

=
)()(

1

' φαα ; (7) 

'', iiii CC αγαγ −=−= . (8) 

In Eq. (7), α and α’ are obtained by maximizing the dual function which has the 
following form 
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subject to the following constraints 
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Ciii μαα ≤≤ ',0 . (11) 

The above problem is a quadratic programming problem. There are several 
classical methods [8] to solve this problem. )()(),( j

T
iji xxxxK φφ=  is the kernel 

function. There are several typical kernel functions are usually used in SVR. In this 
work, the radial basis function (RBF) is used, 
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3   Implementation of FSVR for EFW 

Fetal weight is estimated based on several ultrasound measurements. The standard 
measurements which have been well standardized include: fetal biparietal diameter 
(BPD), head circumference (HC), abdominal circumference (AC) and femur length 
(FL) [1]. The accuracy of measurements is compromised by poor quality of ultrasound 
images and the large intra- or interobserver variabilities. Thus, the data for model 
constructing contains much inaccurate and inconsistent information which can be 
viewed as outliers. To reduce the effect of the outliers in model forming, the low 
membership value should be assigned to the suspect outliers. The key steps before 
solving the quadratic programming in Eq. (6) are detecting the outliers and generating 
membership which falls in the unit interval [0, 1]. Membership generating method 
itself is required to have a good data regression ability, which means the method itself 
can be used to estimate the fetal weight. Then the estimation performance can be 
improved by using the FSVR.  

It is relatively straightforward to come to classical SVR or back-propagation neural 
network (BPNN). The pre-training results of SVR or BPNN can be used for outlier 
detection. Once the termination of FSV or BPNN, a primary estimation (denoted by 
yi) is obtained for each input data 

ix . Compute the distance (denoted by disti) between 

yi and its corresponding goal di, then use following formula to compute the 
membership: 

Ddist

dist

i
ni

i
i +

=
= ,,2,1
max

μ . 
(13) 

Here, D is a constant with the range (0, +∞), which is used to control the effect of 
fuzziness to the model training. When D is large enough, the FSVR degenerates to 
classical SVR. The procedure of FSVR can be summarized in the following steps: 
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Step 1: Choose the training and testing data set. Normalize the data. 
Step 2: Obtain the membership for each training data. 

a) Training the SVR or BPNN. 
b) Compute the distance between every output and its corresponding goal. 
c) Compute the membership using Eq. (13). 

Step 3: FSVR  
a) Solving the quadratic programming problem of Eq. (9) under the 

constraints of (10) and (11). 
b) Obtain the EFW using Eq. (7). 

4   Data Acquisition and Experimental Results 

The data for this study consists of 100 normal fetuses, who delivered with a birth-
weight between 1850~4265 g, in Shanghai First Maternity and Infant Health Hospital 
from 3 July to 13 October 2006. In order to analyze the accuracy of our model, the 
actual birth weights (ABW) are immediately obtained after delivery and recorded. 
The commercially available 2-D ultrasound scanner (PHILIPS 2540A) with a 3.5 
MHz trans-abdominal probe is used in this study. We perform experiments on a PC 
with 2.0 GHz Pentium processor using Matlab 7.0. The 100 samples are randomly 
separated into five groups, and four groups are randomly chosen as training set, one 
as testing set.  

Next, we discuss comparisons of the prediction results obtained by BPNN, 
classical SVR and FSVR. The architecture of the BPNN model in our work is 
composed of three layers, i.e. input layer with four inputs, hidden layer with five 
neurons and output layer. The BPNN is constructed as shown in Fig.1. In order to 
avoid the unsteadiness of BPNN, training procedure is carried out five times and the 
output values are averaged. The convergence condition of BPNN is the neuron weight 
variation is less than 0.001 and the upper bound of iteration are 2000. The activation 
function used in BPNN is sigmoidal nonlinearity. We use general RBF as the kernel  
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Fig. 1. The architecture of BPNN 
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function in SVR and FSVR with σ =10. The D in (13) equals to 0.02. The values of C 
in (11) and ε in (9) are chosen based on the cross-validation results. The final chosen 
C is 104 for SVR and 102 for FSVR respectively, and the chosen ε is 10-2 in this study. 

The distribution of the actual birth weight and the estimate weight of the training 
group and the testing group are shown in Fig.2 to 4. In these figures, upper row is the 
distribution on the training group and lower row is on the testing group. To evaluate 
the performance of the proposed algorithm quantitatively, we calculate the absolute 
percent error (APE) of three algorithms on five testing groups. Table.1 gives the mean 
absolute percent error (MAPE) and the error ranges. 

 

Fig. 2. BPNN results 

 

Fig. 3. SVR results 
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From the results illustrations, we can see that the BPNN has poorer generalization 
ability than SVR and FSVR. The overtraining problem makes the BPNN can almost 
memorize every input data, thus it has the relatively high fitting accuracy while the 
low predicting accuracy. In FSVR, the contributions of some training data to the 
regression learning have been inhibited over the membership function. In this way, 
the fitting accuracy of FSVR decreases slightly, but FSVR achieves higher 
generalization abilities than SVR. The proposed method produces less accurate 
estimation at the extremes of the weight range (<2000 g or >4000 g, the most of fetal 
weight ranges from 2000 g to 4000 g). The main reason for lower accuracy might be 
the scarcity of cases in extreme fetal weight. FSVR model also can be build to 
improve the estimation accuracy in extreme fetal weight if enough cases are collected. 

 

Fig. 4. SFVR results 

Table 1. APE comparisons among three algorithms 

APE(%) BP SVR FSVR 
mean 8.95 7.23 6.09 

maximum 22.69 15.08 11.89 
minimum 0.65 0.29 0.19 

From above experimental results, we can conclude that the FSVR model can 
improve ultrasound estimation of fetal weight over other methods based on BPNN 
and classical SVR model. 

5    Conclusion 

This paper presents a new fetal weight estimation algorithm based on a fuzzy support 
vector regression in which every training data is pre-estimated and evaluated, then the 
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contribution degree (membership) of each training data to the final estimation training 
is obtained. By utilizing the fuzzy logic, each of the input training samples has 
different contribution to the learning of regression function. By this means, the 
inaccuracy and inconsistence of ultrasound measurements are taken into account in 
the FSVR model construction. Because the proposed algorithm alleviates the effect of 
two main disturbing factors in fetal weight estimation, random error in measurements 
and the impropriety of regression equations, it can achieve more accurate fetal weight 
estimation compared with BPNN and classical SVR. For improving the estimation 
accuracy on extreme weight fetus, much more cases and further researches will be 
needed. 
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Abstract. In recent years, the searching and indexing techniques for
multimedia data are getting more attention in the area of multimedia
databases. As many research works were done on the content-based re-
trieval of image and video data, less attention was received to the content-
based retrieval of audio data. Audio is one of important multimedia
information and there is a growing need for automatic audio indexing
and retrieval techniques in recent years. Audio data contain abundant
semantics and the audio signal processing can reduce computational com-
plexity, so effective and efficient indexing and retrieval techniques for
audio data are getting more attention. In this paper, problems of audio
retrieval are discussed firstly. Then, main audio characteristics and fea-
tures are introduced. Finally the combination of Support Vector Machine
and General Model is described and the hybrid model is used in audio
retrieval. Experiments show that the hybrid model is effective for audio
classification.

1 Introduction

The recent explosive growth in multimedia and capacity of the internet and
computer has allowed the amount of data becomes more and more. It’s signifi-
cation for information utility to find useful information from huge database and
use them to classification and retrieval, which requires advanced techniques for
content-based multimedia information retrieval. Audio data is one of most im-
portant information in multimedia. Audio retrieval is becoming one of important
methods in multimedia information retrieval [1].

There are two types in audio information retrieval. One is based on threshold
and the other is based on statistical model [2]. There is no threshold problem
in the method based on statistical model and it can be used to retrieval refined
levels. So the method based on statistical model is used in this paper. General
Model(GM) [3] and Support Vector Machine(SVM) both belong to the method
based on statistical model. GM is equal to deal with continuous signal and the
semblance among same class data can be reflected in the result. SVM is fit for
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classification problems and the result of SVM can be shown the difference of
different data. It needs enough data in GM, but in application data are finite.
SVM is a powerful new machine learning algorithm, which is rooted in statistical
learning theory and can solve classification problems in small sample. Further-
more, audio data are not fixed length signal, SVM is a statistic classifier and can
solve fixed length problems. But GM can be used to solve dynamic characteris-
tics of audio data. In this paper, virtues of GM and SVM are combined and the
hybrid model of GM and SVM is presented to solve audio classification. The rest
of this paper is organized as follows. In Section 2 some useful audio features are
introduced. Some basic theories of General Model are introduced in Section 3.
Section 4 describes basic theories of Support Vector Machines. In Section 5, the
method of hybrid General Model and Support Vector Machine approach for Au-
dio Classification is presented. Finally, in Section 6, experiments and evaluations
on audio data are given.

2 Audio Features

Audio data is one of most important information in multimedia. There are two
main methods for audio feature extraction. One is to extract perception features,
such as pitch and loudness, etc. The other is non perception features or called
physical features, such as frequency cepstral coefficients and linear prediction
coefficients, etc.

2.1 Zero-Crossing Rate(ZCR)

In the context of discrete-time signals, a zero-crossing is said to occur if successive
samples have different signs. The rate at which zero-crossings occur is a simple
measure of the frequency content of a signal, which is described as below:

ZCR =
1
2

N−1∑

m=1

|sgn[x(m + 1)] − sgn[x(m)]|, (1)

where N is denoted as the frame length; x(m) is the value of m-th sampled signal;

sgn[x(m)] =
{

1, x(m) ≥ 0;
−1, x(m) < 0.

In a general way, ZCR of consonant signals are lower than those of vowel
signals. And there are many consonant signals at the beginning or end of speech
signals, then there are correspondingly many vowel signals after the beginning
or before the end of speech signals. So ZCR are changed remarkably at parts of
the beginning and the end of speech signals, and they can be used to judge the
beginning or the end of speech signals. Moreover, structures of music signals are
different from these, so changes of music signals ZCR are smaller than those of
speech signals.
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2.2 Frequency Energy

The calculation of the frequency energy is described as:

E = log(
∫ ω0

0
|F (ω)|2dω), (2)

where E is presented as the frequency energy of audio frame; F (ω) is the trans-
formation coefficient of the Fast Fourier Transform Algorithm; ω0 is half of the
audio sampling frequency.

The frequency energy can be used to describe the intension of audio signals,
so it’s one of effective features to distinguish between speech and music.

2.3 Loudness

It is one of perception features concerned with frequency. Especially in speech
recognition, it is one of important parameters to distinguish male and female.

2.4 Mel-Scaled Frequency Cepstral Coefficients

Audio data are processed with Z-transform and logarithm processing, and then
MFCCs can be obtained. 12-order MFCCs are usually used because of its good
discriminating ability.

3 Basic Theory of GENERAL MODEL(GM)

In methods of signal processing, Hidden Markov Model(HMM) and Dynamic
Time Warping(DTW) are very important. In fact, there are internal relations
between HMM and DTW [3-4]. In paper [3] and [4], relations between HMM
and DTW are described in detail, and they are unified into one model, named
as General Model(GM). Experiments of these papers are indicated that GM can
solve problems which can be solved by HMM and DTW.

The GM is defined as below:

Ψ = {D, A, f}, (3)

where Ψ is a triple, including a directed graph D, a phalanx A which is composed
of weighted values of every directed arc, and a matching mapping.

The acme set of D is P = {p0 , · · · , pm
, · · · , p

M
}, where p0 is denoted as starting

acme with output directed arc and no input directed arc; p
M

is termination acme
with input arc and no output arc; pm is traverse acme with both input and output
directed arc, just shown in Fig. 1.

A is a phalanx in M+1 dimension, which is composed of weighted values
of every directed arc in D, namely a

ij
is the weighted value between p

i
and

p
j
(i, j = 0, 1, · · · , M). If there is no directed arc between p

i
and p

j
, then a

ij
= ∞.

f is a matching mapping:
f : P × X → R, (4)

where f(p
i
, x

j
) is denoted the matching weighted values of acme p

i
and feature

vector xj .
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Mp0p 1p
2p mp

Fig. 1. Directed graph D

4 Basic Theory of SUPPORT VECTOR MACHINE
(SVM)

The SVMs are proposed recently by Vapnik[5], which is rooted in statistical
learning theory[6]. By constructing a decision surface hyper-plane which yields
the maximal margin between position and negative examples, SVM approxi-
mately implements the Structure Risk Minimization(SRM) Principle. There are
three layers in the structure of SVM: input layer, which gets data just as classi-
fication characters; hidden layer, with two functions, namely mapping the input
data from low-dimension space to high-dimension by non-linear map and calcu-
lating the inner production of character vector and support vector; output layer,
just showing the classification results. In the practical application, the function
of hidden layer is achieved by the kernel function. The kernel function can be
formulated as follows:

K(x, y) = (Φ(x) • Φ(y)), (5)

where K, Φ, • denotes respectively kernel function, non-linear mapping in high-
dimension and inner production.

As well known, there are three main types in kernel functions: Polynomial:
K(x, y) = (x • y + 1)d, where d is the degree of the polynomial; Gaussian Radial
Basis Function: K(x, y) = exp (− ||x−y||2

2σ2 ), and the parameter σ is the width of
Gaussian Function; Sigmoid Function: K(x, y) = tanh(k(x • y) − μ), k and μ
are the scale and offset parameters. In this paper, the Sigmoid Function is used,
just because it includes only one hidden multi-layer perception, the number of
hidden-layer nodes is confirmed by the algorithm and there is no local minima
problem, which exists in the method of Network Neural.

5 Audio Classification Method Based on SVM/GM

The hybrid model includes two parts: training and testing. Firstly, audio features
of training sets can be obtained and used to classification by SVM; secondly, SVM
classification results are as inputs of GM and trained by GM; finally, GM of every
audio class can be obtained and labelled with semantic information, which just
is template of every audio class. For observation sequence Ō = o1 , o2 , · · · , oM

,
which are audio data for classification, Firstly, audio features of training sets
can be obtained and used to classification by SVM; secondly, SVM classification
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results are trained by GM; finally, these results are compared with those available
template and classification results can be obtained.

But the output of SVM is numerical value. For combined with GM easily,
it should transform the value to probability form[7-10]. In the processing of
calculating, it should make training sample normalization, namely |g(x)| = 1.
Then the sample point can be described as g(x) = ±dw, where d denotes the
distance between sample point x and classification plane, and the sign denotes
which side the point position. The probability output form is formulated as
follows:

P (C±1|xi
) =

1
1 + exp(∓g(x

i
))

, (6)

5.1 Training of SVM

SVM is a two-class classifier, it should be used to a multi-class classification
in audio classification. There are two common schemes for this purpose: one-
against-all and the one-against-one. In this paper, the one-against-all is used.
The detailed processing is described as follows:

Supposing there are m classes audio in audio sample database, and there are
n training sample of each class.

(1) Selecting all sample of the first audio from sample database, labelling
as class I and other audio classes as class II. Using these samples as input to
training a SVM and obtaining the corresponding support vector and optimal
classification plane. Then labelling the SVM as ①, which can distinguish class I
and other audio classes.

(2) Selecting all sample of the second audio from sample database, labeling
as class I and rest audio classes as class II. Using these samples as input to
training a SVM and obtaining the corresponding support vector and optimal
classification plane. Then labelling the SVM as ②, which can distinguish the
second class and other audio classes.

(3) Repeating steps described above, training all audio classes and achieving
m SVMs.

5.2 Training of GM

As said above, there are m SVMs. Supposing the state number of GM is M ,
then setting M − 1 initial state center register and vector counter respectively.
Segmenting observation sequences by Fisher Algorithm, accumulating center reg-
ister and vector counter of every part and getting corresponding weighted value
matrix. Finally, achieving model of all training audio classes.

5.3 Audio Classification of the Hybrid Model

Supposing there are m classes audio in sample database, which is for classifica-
tion. And there are trained templates according to each audio class. When a new
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Fig. 2. Hybrid Model of SVM/GM

sample for classification is input, it can be classified by the method described as
above. It’s formulated as Fig. 2.

6 Experiments

In order to test effects of the use of the SVM/GM, small sample database are
used in experiments, including background music, silence and speech. In exper-
iments, these audio data are collected from TV program or video clips, saved as
”.wav” and sample rate at 16 kHz. The database is partitioned into a training
set and a testing set, including 60 clips for each audio class, which 40 for train-
ing and 20 for testing. Classification results can be obtained, which is described
in Table 1.And in Table 2, there are some compares between SVM/GM and
HMM.

Table 1. Experiment Results of Classification

Audio Class Pure speech Speech with music Silence Music Acc.(%)

Pure speech 19 1 0 0 95

Speech with music 1 17 0 2 85

Silence 0 0 20 0 100

Music 0 2 0 18 90

Table 2. Compare Results

Acc.(%) Pure speech Speech with music Silence Music

SVM/GM 95 85 100 90

HMM 95 80 95 90
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7 Conclusions

Audio data is one of most important information in multimedia. It’s always based
on audio features for audio classification. Audio feature extraction becomes one
of emphases in audio classification. In this paper, classification problems of audio
data are discussed. In this paper, it presents in detail the approach that uses
SVM/GM for classification of an audio clip. And experiments have shown that
the hybrid SVM/GM achieves high classification accuracy. As for future research,
we will improve this method for more audio classes and take emphases on feature
set definition.
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Abstract. The selection of evaluating index system is the key to per-
sonal credit scoring, which is a feature selection problem.By improving
the typical SVM based on 1-norm, which can select the important and
necessary feature of samples, an improved SVM based on 1-norm adapted
to the selection of personal credit scoring index system is proposed. Ex-
perimental results shows that the new improved method can select eval-
uating index system with small scale and enhance the generality ability
and reduce the arithmetic complexity of the classification machine.

1 Introduction

Personal credit scoring is the base of personal credit consume. Originally, per-
sonal credit scoring was conducted on personal experience. Subsequently, the
3C evaluating principle (character, capacity, collateral) was introduced in per-
sonal credit scoring. Lately, more and more mathematic methods are applied in
personal credit scoring [1]. There are k-nearest-neighbor [2], discriminant analy-
sis [3], expert system [4], mathematic programming [5], regression analysis [6],
neural network [7], etc. Now, more and more experts and researchers is applying
SVM (support vector machine) in personal credit scoring [8, 9].

SVM is a new and very promising classification technique developed by Vapnik
and his groups at AT&T Bell Laboratories on statistics learning theory [10]. The
main idea behind the technique is to separate the classes with a surface that max-
imizes the margin between them. An important property of this approach is that
it is an approximate implementation of the Structural Risk Minimization(SRM)
induction principle. SVM classification is currently an active research area and
successfully solves classification problem in many domains.

The selection of evaluating index system is the key to personal credit scoring.
A good classification machine comes from an appropriate evaluating index sys-
tem. There are a number of different approaches to feature selection, such as the
filter approach, the wrapper approach [11],etc. This paper introduces another
approach for feature selection, SVM based on 1-norm [12], which can select the
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important and necessary feature of samples effectively and rapidly. In order to
reduce the risk of loan, we propose an improved SVM based on 1-norm adapted
to the selection of personal credit scoring index system.

This paper is organized as follows. In section 2, we give the Structural Risk
Minimization induction principle. In section 3, we introduce the SVM based on
1-norm. In section 4, by using different penalty number to different class, we
propose an improved SVM based on 1-norm adapted to the selection of personal
credit scoring index system and gives the algorithm of the selection of personal
credit scoring index system via the improved SVM based on 1-norm. In section
5, the property of the method as above is testified with numerical testing.

2 Structural Risk Minimization Induction Principle

In the case of two-class pattern recognition, the task of learning from examples
can be formulated in the following way [10, 12, 13] : given a set of examples:

{(x1, y1), · · · , (xl, yl)}, xi ∈ X ⊂ Rn, yi ∈ Y = {−1, 1}, (1)

drawn from some unknown probability distribution P (x, y) (These data is inde-
pendently drawn and identically distributed), and a loss function c(x, y, f(x)),
we want to find a hypothesis f from a set of hypotheses (decision functions):

F ⊂ {f : X ⊂ Rn −→ Y = {−1, 1}}, (2)

which provides the smallest possible value for the expected risk:

R[f ] =
∫

X×Y

c(x, y, f(x))dP (x, y) (3)

Since the probability distribution P (x, y) is unknown, we are unable to com-
pute the expected risk R[f ]. We can compute the stochastic approximation of
R[f ], the so called empirical risk:

Remp[f ] =
1
l

l∑

i=1

c(x, y, f(x)), (4)

Since the law of large numbers guarantees that the empirical risk converges
on probability to the expected risk, a common approach consist in minimizing
the empirical risk rather than the expected risk. Empirical Risk Minimization
induction principle is to find a hypothesis f from the hypothesis space F , which
provides the smallest possible value for the empirical risk Remp[f ].

Vapnik and Chervonenkis showed that necessary and sufficient condition for
consistency of the Empirical Risk Minimization induction principle is the finite-
ness of the VC-dimension h of the hypothesis space F . The VC-dimension of the
hypothesis space F is a natural number, possibly infinite, which is the largest
number of training data points that can be shattered in all possible ways by
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the hypothesis space F . When the number of samples converges to infinite, and
the VC-dimension of the hypothesis space F is finite, the minimum of Remp[f ]
converges to the minimum of R[f ]. When the number of samples is finite, the
Empirical Risk Minimization induction principle can be replaced by a better
Structural Risk Minimization induction principle as the following:

If l > h, and h(ln 2l
h + 1)+ ln 4

δ ≥ l
4 , for some probability distribution P (x, y),

some given δ such that 0 ≤ δ ≤ 1, and some hypothesis f ∈ F , the typical and
uniform Vapnik and Chervonenkis bound, with probability 1 − δ , has the fol-
lowing form:

R[f ] ≤ Remp[f ] +

√
8
l
(h(ln

2l

h
+ 1) + ln

4
δ
), (5)

The second term on the right hand side of inequality (5) is called the VC
confidence. The right hand side of inequality (5) is called the structural risk
bound. The structural risk bound is independent of P (x, y). If we known h, we
can easily compute the the structural risk bound. From this bound, it is clear
that, in order to achieve small expected risk, both the empirical risk and the VC
confidence have to be small, which is the Structural Risk Minimization induction
principle.

3 SVM Based on 1-Norm(1-SVM)

We consider the problem of classifying l points in the n−dimensional real space
Rn, represented by the l × n matrix A, according to membership of each point
xi in the class 1 or class -1 as specified by a given l × l diagonal matrix D
with plus ones or minus ones along its diagonal10. In the separable case, see
Figure 2, the SVM simply looks for the separating hyperplane xT w + b = 0,with
the largest margin 2/‖w‖′. ‖ · ‖′ denotes the dual norm. In the non-separable
case, see Figure 3, the bound plane l3 : xT w + b = 1 bounds the class 1 points,
possibly with some error, and the bound plane l2 : xT w + b = −1 bounds the
class -1 points, also possibly with some error. So, we introduce the nonnegative
slack variant ξi, i = 1, · · ·, l, ξ = (ξ1, · · · , ξl)

T . The support vector machine is
given by the following quadratic program with penalty number C > 0:

min
w,b,ξ

‖w‖′ + CeT ξ,

s.t. D(Aw + eb) + ξ ≥ e,
ξ ≥ 0.

(6)

Arbitrary norm can be used in model(6)[14]. If we use ∞-norm, since‖w‖′∞=
‖w‖1, the optimization problem based on 1-norm is as follows:

min
w,b,ξ

‖w‖1 + CeT ξ,

s.t. D(Aw + eb) + ξ ≥ e,
ξ ≥ 0.

(7)
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Fig. 2. The non-separable case

Model (7) can select and suppress the problem feature efficiently [15]. If we use
2-norm in model (6), since ‖w‖′2=‖w‖2, the optimization question of SVM based
on 2-norm is as follows:

min
w,b,ξ

1
2‖w‖2

2 + CeT ξ,

s.t. D(Aw + eb) + ξ ≥ e,
ξ ≥ 0.

(8)

Real-world problem are usually nonlinear separable in nature. In order to
generalize the above methods to the case where the decision tree is nonlinear
function of data, now suppose we first mapping the data x in the input space X
to some other (possibly infinite dimension) Euclidean space H , using a mapping
which is called ϕ:Rn → H , where we can find the linear separating hyperplane
.If there are a kernel function K [10] such that K(xi, xj) = (ϕ(xi), ϕ(xj)), we
would only need to use K in the training algorithm and would never need to
explicitly even known what ϕ is. The kernels commonly used is the followings:

k(x, y) = (x · y + 1)d, (9)

k(x, y) = e−‖x−y‖2/2σ2
, (10)

k(x, y) = tanh(κ(x · y) − v), κ > 0, v < 0. (11)

Eq.(9) results in a classifier that is a polynomial of degree p in the data;
Eq.(10) gives a Gaussian radial basis function classifier, and Eq.(11) gives a
particular kind of two-layer sigmoidal neural network.

By replacing the (xi · xj) of the dual problem of model(8) with K(xi, xj) =
(ϕ(xi), ϕ(xj)), the typical nonlinear SVM is given by the following quadratic
program:

min
α

1
2αT DK(A, AT )Dα − eT α,

s.t. eT Dα = 0,
0 ≤ α ≤ C.

(12)
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By using the model(12) and the equation, b = yj −
∑l

i=1 αiyiK(xi, xj)(Here,
(xj , yj) is some support vector for which 0 < αj < C), we get the classification
machine:

f(x) = sgn(
l∑

i=1

αiyiK(xi, x) + b). (13)

Although Model (12) cannot select and suppress the problem feature, it owns
better generalization and stronger classification than model (7).

4 An Improved SVM Based on 1-Norm Adapted to the
Selection of Personal Credit Scoring Index System
(1 − SV Mρ)

It is worse to classify a customer as good when they are bad than it is to class a
customer as bad when they are good. So, we improve the model (7) by adjusting
penalty number with parameter ρ > 0, and propose an improved SVM based on
1-norm adapted to the selection of the personal credit scoring index system.

At first, we introduce the nonnegative slack variant ξ+ = (ξ+
1 , · · · , ξ+

l )
T

to
class 1(Good Credit), ξ− = (ξ−k+1, · · · , ξ

−
l )

T
to class -1(Bad Credit), ξ+

i ≥ 0,ξ−j ≥
0, i = 1, · · · , k, j = (k + 1), · · · , l .Using different penalty number to class 1 and
class -1, an improved SVM based on 1-norm adapted to the selection of the
personal credit scoring index system is as follows:

min
w,b,ξ+,ξ−

‖w‖1 + C(eT ξ+ + ρeT ξ−),

s.t. A+w + eb ≥ e − ξ+,
A−w + be ≤ −e + ξ−,
ξ+ ≥ 0, ξ− ≥ 0.

(14)

Because ‖w‖1 =
∑m

i=1 |w|,which is non-smooth, we introduce the nonnegative
variant s.Accordingly, the equivalent problem of(14) is the following:

min
w,b,s,ξ+,ξ−

eT s + C(eT ξ + ρeT ξ),

s.t. A+w + eb ≥ e − ξ+,
A−w + be ≤ −e + ξ−,
ξ+ ≥ 0, ξ− ≥ 0,
−s ≤ w ≤ s.

(15)

Introducing the nonnegative Lagrange multipliers α+, α−,β+, β−,γ, δ, and let-

ting α = (α+T , α−T )T ), β = (β+T , β−T )T , and A = (A+T
, A−T )

T
, the dual

question of(15) is as follows:

min
α

eT α,

s.t. eT Dα = 0,
−e ≤ AT Dα ≤ e,
0 ≤ α+ ≤ C, 0 ≤ α− ≤ Cρ.

(16)
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By solving(16), we get the optimal value of α. By using the equations, γ =
1
2 (e − AT Dα), δ = 1

2 (e + AT Dα), α+ + β+ = C, α− + β− = Cρ and the slack
condition:

αT (e − DAw − Deb − ξ) = 0,
βT ξ = 0,
γT (s + w) = 0,
δT (w − s) = 0,

(17)

we get the optimal value of w. At last, we select all the indexes xi for which wi

is nonzero as the personal credit scoring index system.
Now, giving the algorithm of the selection of evaluating index system of per-

sonal credit scoring via (1 − SV Mρ).

Algorithm 1:
Step 1. Clean up training set as X=(x+

1 , 1), · · · , (x+
k , 1), (x−

(k+1)1), · · · , (x−
m, −1).

Step 2. Look for the optimal value of α by solving(16).
Step 3. Look for the optimal value of w.
Step 4. Select all the indexes corresponding to the nonzero factor of w as the

personal credit evaluating index system.

5 Numerical Testing

Our numerical testing is carried on a part of the personal credit database of
a bank in China. The data sets X including 600 Good Credit data and 300
Bad Credit data with 19 Indexes. The testing utilizes Matlab7.0, supposing
ρ = 5. Because the personal credit scoring is not a linear problem, we utilize
the model(14) to search for the classification machine, supposing K(xi, xj) =
exp(−‖xi − xj‖2/(2σ2)).

The classification machine based on the evaluating index system selected by
1 − SV Mρ has higher classification ability to class -1(bad credit) than the clas-
sification machine based on the evaluating index system selected by 1-SVM. The
comparative results of numerical testing are shown in Table 1.

Table 1. Comparative results of numerical testing

seleced method Number of Classification Classification
of evaluating evaluating accuracy to class accuracy to class
index system index selected good credit bad credit

1 − SV M 13 80.35% 76.41%

1 − SV Mρ 12 78.22% 80.10%

6 Conclusions

With the rapid growth in the personal credit consume industry , all kinds of
mathematics models have been extensively used for the personal credit scor-
ing. Because 1-SVM can select and suppress the problem feature efficiently, and
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2-SVM owns better generalization and stronger classification, SVM, the new
leaning machine, now is applied in the personal credit scoring. This paper pro-
poses an improved SVM based on 1-norm adapted to the selection of the personal
credit scoring index system. Experimental results show that the 1 − SV Mρ can
select evaluating index system with small scale and improve the classification
ability of classification machine to class bad credit. The next work is to compare
results of this paper with some other techniques: for example Neural Net with
PCA (Principal Component Analysis) feature extraction or SOM (Self Organiz-
ing Maps) categorization.
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Abstract. This paper presents a Multi-Classification Schema (MCS) which 
combines Weighted SVMs (WSVM) and Spectrum-based kNN (SkNN). Basic 
SVM is equipped with belief coefficients to reveal its capacity in identifying 
classes. And basic SVM is built in individual feature space to bring adaptation 
to diverse training data context.  Coupled with a weighted voting strategy and a 
local informative metric, SkNN is used to address the case rejected by all basic 
classifiers. The local metric is derived from most discriminant directions carried 
by data spectrum information. Two strategies of MCS benefit computational 
cost: training dataset reduction, and pre-specification of SkNN working set. Ex-
periments on real datasets show MCS improves classification accuracy with 
moderate cost compared with the state of the art. 

1   Introduction 

Support Vector Machine (SVM) [1] is a well-developed technique for classification. 
In spite of the outstanding performance in binary classification, it, however, cannot 
present an easy solution for multi-classification. Currently, two SVM-based ap-
proaches to multi-classification are on-going research [1]. One is the “decomposi-
tion-reconstruction” idea that uses the combination of SVMs, and the other is the 
“all-together” idea that formulates a single SVM optimization procedure to identify 
all classes. Usually the former idea is more popular and its many realizations ap-
pear: 1-vs-1 method [2]; 1-vs-r method [3]; DAGSVM [4] and error-correcting 
codes [5]. 

This paper presents a Multi-Classification Schema (MCS) consisting of weighted 
1-vs-r SVMs (WSVM) and Spectrum-based kNN (SkNN). WSVM weights its basic 
classifiers according to their decision confidence and this confidence is integrated 
with decision values to assign label. SkNN is a spectrum-based version of kNN [6] to 
address the query rejected by WSVM. It works in query’s neighborhood that is devel-
oped by a locally informative metric and it makes decisions with a weighted voting 
strategy. MCS has computation ease in self tuning SVM hyper parameters and train-
ing dataset reduction. 
                                                           
* Corresponding author. 
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2   Related Knowledge 

Firstly, we review SVM. For l samples: (x1, y1) (x2, y2)……(xl, yl) sampling from X×Y,  
where X = R n, Y = {1, -1}. The optimal classification interface is determined by: 

( ) ( , )i i i
i

g x y K x x bα= Σ − .                                             (1) 

The orientation vector α  and offset vector b are obtained by optimizing: 

max
1

( , )
2i i j i j i j

i i j
y y K x x

α
α α αΣ Σ Σ−         s.t. 0 i svmCα≤ ≤ ,  0i i

i
yαΣ =     (2) 

Then it proceeds to Support Vector Clustering (SVC) [7]. It aims to find the small-
est hyper sphere containing all data in feature space. The produced SVs form cluster 
contours. It corresponds to below optimization problem: 

,
max ( , ) ( , )i i i i j i j

i i j
K x x K x x

γ
γ γ γ−∑ ∑        s.t.  1i

i
γ =∑ , 0 i svcCγ≤ ≤          (3) 

3   MCS 

3.1   WSVM 

In this paper basic classifiers are equipped with confidence weights. Set βIA for basic 
SVM (I-vs-r) to show its decision capacity on class A, and all weights form a matrix β 
= (βIA)M×M. Set βII = 1, which is natural that SVM (I-vs-r) is absolutely confident to 
declare query’s membership to class I. For point x, its memberships to all classes form 
a row vector: Fx = (f 1(x), f 2(x), ……, f M(x)), where f I corresponds to basic SVM (I-
vs-r). Then global decision is made as: 

( ) max { }A x Alabel x F β •= ⋅ .                                          (4) 

with                                 1
M

A I IAβ β• == Σ ,             0IAβ ≥ .  

1,

1

exp[ ( _ , )]

exp[ ( _ , )]

I
IA

M I
J J I

I A

dis Center A f
I A

dis Center J f

β
= ≠

⎧ =
⎪
⎨− ≠⎪ Σ⎩

= .                        (5) 

2
1( _ , )

|| ||
min || _ ||I

s nbSVsIdis Center A f
w

Center A s∈≈ + − .                  (6) 

In (7), minus of case I≠A is introduced to match the negative value of f I (x) when 
x belongs to the rest classes. dis(Center_A to f I) computes the distance between class 
A and decision function f I. Center_A is the average of representatives of class A. 

3.2   Weighted Voting of SkNN 

For the rejected query Q, SkNN works in its neighborhood. Neighborhood size k is 
designed as the size estimate of the natural dense region around Q. Sort distance list 
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of Q to other points Sdis(Q, xj) in the ascending order. Then k = max j { Sdis(Q, xj) - 
Sdis(Q, xj-1) }. Sdis(Q, xj) is a spectrum-based metric discussed in Section 3.3. Let 
occurring frequencies of M class be: t1…tM. Then SkNN labels Q in a weighted way: 

( ) max { }A A Alabel Q tμ= .                                                  (7) 

1

( , )

( , )
1 NEI

M
I NEI

Sdis Q A
A Sdis Q I

μ
=Σ

= − .                                                   (8) 

Sdis(Q, ANEI) = ave{ Sdis(Q, xA)| xA∈ANEI , ANEI collects Q’s neighbors of class A}. (9) 

3.3   Neighborhood Formulation for SkNN 

Spectrum analysis is used to define a new metric able to capture discriminant direc-
tions. Generate Kernel matrix H with Gaussian Kernel. Details are: 1) Normalize H 

into H’=D-1/2HD-1/2, where diagonal-shaped D has 1
n

ii j ijD H== Σ . 2) Conduct eigen-

decomposition H’=VΛVT, where columns of V are eigenvectors, and Λ is the diagonal 
matrix of eigenvalues λi. 3) Select top p eigenvectors V1…Vp to form matrix HS by 
stacking p eigenvectors in columns. Rows of HS are points’ spectral coordinates. 
Then the new metric is defined according to the magnitude of each eigenvalueas, as 
shown in (10). New distance based on spectrum coordinates xs and ys is (11). 

1

| |

| |
i

i p
jj

λ
λ

μ
=Σ

= .                                                      (10) 

( ) ( )( , )s s s s T s sx y x ySdis x y μ− −= .                                  (11) 

Nystrom method [8] is used to yield spectrum coordinate of Q. Given existing data 

size m, new eigenvector iV  of matrix HS m+1,m+1  is approximated by eigenvector iV  

of matrix HS m,m, and the matrix among existing data and query HS m+1,m in the way: 

1,
1

1i m m i
i

m HS V
m

V λ += + .                                             (12) 

4   MCS Implementation 

4.1   Self Tuning Basic SVM Hyper Parameters 

Tuning Kernel Scale. For each class I, a scale factor is formulated in the way: 

τ I = ave{|| x- xr ||}      x ∈I.                                        (13) 

Here, xr is the rth nearest point of x. Given r, if || x- xr ||<|| y- yr ||, it indicates the den-
sity of x’s neighborhood is denser than that of y. r is probed as: r = max j {||x-xj|| - ||x-
xj-1||}, where Euclidean distance list ||x-xj|| has been sorted in the ascending order. 
Then Gaussian Kernel of SVM I-vs-r sets its scale as: 

τ2I
 = τI ·τ rest(I)         with   τ rest(I) = ave{τI | J≠I }.                          (14) 
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Penalty Tuning Individually. Consider various demands of points to slack variables. 
To those outliers or SVs, they hope a big Csvm to emphasis the slack, but to inner-
class-points, they need a small one to highlight maximum margin. So Csvm(x) is: 

( ) || || /svm x rC x x r= − .                                               (15) 

Tuning Strategies Effect. Employing above approaches, our SVM procedure is  
performed on real datasets. And its accuracy and time cost is compared with tradi-
tional SVM, which parameterizes hyper parameters by 5-fold cross validation. From  
Table 1, our SVM is competitive with the optimal results with less computation time. 

Table 1. Comparison between our SVM and traditional SVM. 20% data are randomly sampled 
for training. Error number and time is the average of 20 runs. 

Our SVM Traditional SVM 
Data 

Error (%) Time (s) Error (%) Time (s) 
Iris (1-vs 2, 3) 0 0.672 0 1.108 
Iris (2-vs 1, 3) 4.2 0.702 4.1 1.131 
Iris (3-vs 1, 2) 3.27 0.691 3.26 1.107 
Breast Cancer 2.52 3.87 2.41 7.05 

4.2   Training Dataset Reduction and SkNN 

A tuning-scaled SVC procedure is conducted on each class respectively to select data 
representatives. In each SVC procedure, Csvc is set as 1. Kernel function integrates 
scale factors of individual points to give data-specific affinity. That is: 

2 2|| || || ||
|| || || ||( , ) exp( ) exp( )

x y r r

x y x y
x x y yk x y σ σ

− −
⋅ − ⋅ −= − = − .                            (16) 

r is the same meaning as above. This setting produces a little more SVs than tradi-
tional SVC. These SVs are located on both boundaries and important positions where 
sharp changes of density happen, to form a brief sketch of dataset. 

5   Experimental Results 

Real datasets are taken from [9]. In Table 2, MCS are compared on the average of 30 
runs with following classifiers: Simple kNN method; SVMs schema in 1-vs-r version 
(SVM1r); SVMs schema in 1-vs-1 version (SVM11); C4.5 decision tree method [10]; 
Machete [11]; Scythe [11]; DANN [12]; Adamenn [13]. In all datasets, 50% data are 
sampled randomly for training. From Table 2, it can be seen that MCS outperforms 
other approaches in three of the five sets, and is rather competitive in other cases. 
Among SVM-based approaches, MCS outperforms its peers usually. And SVM1r takes 
advantages over SVM11 usually. C4.5 and Machete work poorly in some sets due to 
their greedy idea. Scythe modifies the greedy nature and thereby achieves better  
accuracy. The metric employed by DANN approximates the weighted Chi-squared  
distance, which causes it fails in datasets of non-Gaussian distribution. Adamenn also 
works well in some cases, but it requires huge cost to tune six parameters. 
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Table 2. Comparisons on classification error (%) (The optimal result is shown in bold style) 

Data kNN SVM1r SVM11 C4.5 Machete Scythe DANN Adamenn MCS 
Iris 6.0 4.1 4.0 7.7 5.1 4 5.8 3 3 

Wine 7.79 5.83 6.15 8.92 7.11 6.03 6.2 5.28 5.33 
Sonar 12.5 11 12 23.1 21.2 16.3 9.7 8.7 8.11 
Liver 31.5 28.4 26.2 38.3 28.5 29.1 30.1 26.7 26.67 
Vote 7.8 3 2.6 3.4 3.3 3.3 3 3 3 

Table 3. Comparisons on classification error on News Group (%) (Number in the bracket is the 
number of data sampled from training set, and the optimal result is shown in bold style) 

Dataset kNN SVM1r SVM11 C4.5 Machete Scythe DANN Adamenn MCS 
{NG2(150), 
NG3(50), 

NG4(200)} 
33.79 30.8 31.2 34.92 31.07 29.03 31.46 31.2 30.38 

{NG6(200), 
NG7(150), 
NG8(350)} 

15.95 15.1 16.3 18.3 16.5 15.2 14.8 14.17 14.67 

{NG1, NG2, 
NG7, NG8} 

(200) 
15.8 13.2 12.98 14.4 13.83 13.74 13.65 12.5 12.6 

{NG1 (50) 
NG2(100), 
NG7(150), 
NG8(50)} 

14.9 13.8 13.9 13.55 13.72 12.68 13.0 13.8 13.0 

{NG7(100), 
NG8(50), 

NG12(200), 
NG16(50), 

NG17(100)} 

15.6 12.3 12.3 14.7 12.9 12.0 11.64 12.5 12.1 
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Fig. 1. Time consumption of three SVM-based approaches 

Then News group [14] is tested. This dataset contains about 20,000 articles divided 
into 20 newsgroups. We label each newsgroup as follows: NG1, NG2…NG20. We 
apply the usual tf.idf weighting schema to express documents. Words that appear too 
few times are deleted and document vectors are normalized. MCS is compared with 
other approaches on the average classification error rates of 10 runs in Table 3. 
Clearly, MCS takes an advantage or a competitive performance over its peers. On the 
classification task: {NG6(200), NG7(50), NG8(150)}, time consumption of three 
SVM-based schemas are observed in Fig 1. Clearly MCS pays less time. 
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6   Conclusion 

A novel method MCS is described in this paper for multi classification issue, which 
integrates WSVM and SkNN. Basic classifiers are created in diverse feature spaces 
adaptively, and they are weighted according to their decision confidence. SkNN deals 
with the rejected case with a weighted voting strategy. The spectrum-based metric 
helps to explore informative neighborhood and class identification. Training dataset is 
reduced by the tuning-scaled SVC. Experiments on real datasets demonstrate the 
improved performance and efficiency of MCS. 
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Abstract. A rotation invariant texture classification algorithm based on dual-
tree complex wavelet transform (DT-CWT) and support vector machines 
(SVM) is proposed. First, the texture image is transformed by Radon transform 
to convert the rotation to translation, the rotation invariant feature vector is 
composed of the energies of the subbands acquired by DT-CWT which is shift 
invariant to the transformed texture image, the SVM algorithm is used to the 
texture classification at last. This algorithm is compared with the classifier of 
probabilistic neural network (PNN) and other rotation invariant texture classifi-
cation algorithm, the experiment results show that it can improve the classifica-
tion rate effectively.  

1   Introduction 

Texture is an important feature of image that reflects the information of gray statistic, 
space distribution and structure synthetically. It’s regarded as the inherent characteris-
tic of the surface of image and plays an important role in image processing. Texture 
classification has been an active research topic for several decades that is extremely 
useful in numerous areas such as object recognition, remote sensing, content-based 
image retrieval and so on. Researchers working in this area have proposed a number 
of texture classification algorithms, these methods have achieved fine results, but 
most of them are on the assumption that textures are in the invariant directions that is 
very unpractical in practical applications, so efficient classification of rotated texture 
images is a topic to be researched deeply. 

The dual-tree complex wavelet transform (DT-CWT) proposed recently not only 
has the same virtue as the discrete wavelet transform (DWT) but also has some im-
portant additional properties: approximately shift invariance, better directional selec-
tion, lower redundancy and perfect reconstruction, so it can character the textures 
more precisely [1]. Support vector machines (SVM) developed recently can achieve 
better classification performance and has been successfully used in many areas[2]. In 
this paper, the rotation invariant feature vectors are extracted using Radon transform 
and DT-CWT, then the SVM algorithm is used to the classification at last. This algo-
rithm is compared with others, the experiment results show that it can improve the 
correct classification rate (CCR) effectively. 
                                                           
* This work is supported by Hebei education bureau under Grant 2004124. 
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2   Rotation Invariant Feature Extracting 

2.1   Radon Transform  

Radon transform reflect the projection along the radial in certain angle. The Radon 
transform of a 2D function f(x,y) is defined as[3]: 

∫ ∫
+∞

∞−

+∞

∞−

−−= dxdyyxryxfyxfrR )sincos(),()],()[,( θθδθ , (1) 

where r is the perpendicular distance of a line from the origin and θ is the angle be-
tween the line and the y-axis. 

 

Fig. 1. Different orientation texture images and their corresponding Radon transforms 

Fig. 1 shows how the Radon transform changes as the image rotates, the above fig-
ure shows the original image and its Radon transform, the other one shows the image 

rotated 60  and its Radon transform. As Fig.1 shown, rotation of the input image 
corresponds to the translation of the Radon transform along θ (x-axis).  

2.2   The Dual-Tree Complex Wavelet Transform 

The 1-D DT-CWT is implemented using two filter banks in parallel operating on the 
input data, it is consist of two parallel 1-D discrete wavelet transform (DWT) labeled 
tree A and B. Assuming that )(0 nh  and )(1 nh  are the low-pass and high-pass filter 

respectively in tree A as well as )(0 ng  and )(1 ng  corresponding to tree B. )( ωjeH  

and )( ωjeG  are the discrete Fourier transform of )(nh  and )(ng , then the two low-

pass/high-pass filter banks should satisfy the following desired properties[1]: 

(1) Perfect reconstruction property 

2)(
~
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~

)( 1100 =+ ωωωω jjjj eHeHeHeH , (2) 

(2) )(tgψ and )(thψ form an approximate Hilbert transform pair, so )(0 ng should 

be approximately a half-sample shift of )(0 nh : 

)5.0()( 00 −≈ nhng . (3) 
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                              (a)                                                       (b) 

Fig. 2. The two set of wavelet bases (a) 2-D discrete wavelet bases (b) 2-D dual-tree complex 
wavelet bases 

The properties above mentioned make the DT-CWT have the performance of per-
fect reconstruction and approximate shift invariance. Figure 2(a) shows the 2-D dis-
crete wavelet bases while (b) shows the 2-D dual-tree complex wavelet bases where 
the first row shows the real part and the second one shows the imaginary part. As 
shown, the 2-D discrete wavelet bases have the three orientations of horizontal, verti-
cal and diagonal while the 2-D dual-tree complex wavelet bases have six orientations: 
±15°、±45°、±75°,so the 2-D DT-CWT has better directional selection than 2-D 
DWT. The practical textures have abundant directional information, so the 2-D DT-
CWT can describe the textures more effectively. 

2.3   Rotation Invariant Feature Extracting 

The steps of rotation invariant feature extracting are as follows: 

(1) The gray levels of the image are normalize to [0,1] ,then calculate the Radon 
transform for the biggest circular area of the texture image so as to convert the rota-
tion to translation. 

(2) Transform the resultant image in 1. using four levels of 2-D DT-CWT which is 
translation invariant to avoid the translation produced by Radon transform. 52 sub-
bands are exported in all.   

(3) Get the magnitudes of the real and imaginary parts of the complex subband co-
efficients, then compute the energies of the magnitudes as the rotation invariant fea-
ture vectors. The three kinds of energies used in experiments are defined as formulas 
(4) where I(x,y) is the subband with size of M×N. Each of them produces feature 
vectors with size of 1×26. 
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3   Classification Algorithm 

3.1   Classification Algorithm Based on Support Vector Machines 

Support vector machines（SVM）as a classifier to the texture analysis is relatively 
new and offers several typical advantages that are not found in traditional classifiers: 
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(1) The optimal separating hyperplane can make it achieve higher CCR. 
(2) It’s a convex quadratic programming problem, so it avoids local extremea. 
(3) The theory of kernel function makes it overcome the problem of ‘dimension 

disaster’ and can be developed to the nonlinear case easily. 

The fundament of SVM is constructing an optimal classification function for two-
class linear problem that maximizes the margin of examples belonged to different 
classes in order to classify the two classes as precise as possible. Solve the quadratic 

programming problem by Lagrange theorem, then the weight vector ii

l

i
iy xw *

1

* α∑
=

=  

as the key can produce optimal separating hyperplane at last. 
For the nonlinear classification, a kernel function ),( ji xxK is used to map the in-

put space into a higher dimensional feature space such that the nonlinear hyperplane 
becomes linear. The polynomial kernel and Gaussian kernel are both used in this 
paper. 

The one-against-one decomposition algorithm is adopted in the multi-texture clas-
sification. That is, we decompose the q-class (q>2) problem into q(q-1)/2 two-class 
cases. 

3.2   Classification Algorithm Based on Probabilistic Neural Networks 

The probabilistic neural network [4] is a kind of radial basis network suitable for 
pattern classification and it is commonly used to classification problems. It has the 
advantages of simple principle and fast convergence. The network converges to a 
Bayesian classifier under the condition of enough train samples and it can be general-
ized easily. However, too many inputs will lead to high computing complexity and 
low speed of calculation. 

 

Fig. 3. The structure of PNN 

As shown in figure 3, the structure of PNN is composed of the radial bases layer 
with Q neurons and the competitive layer with K neurons. R is the dimension of pat-
tern vector. The competitive layer determines the final outputs by computing the 
probabilities of the exports of the radial basis layer. 
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4   Experiment Results 

Two texture databases are used in the experiments: 

(1) Texture database l. As shown in figure 4, it contains thirteen classes of texture 
images with size of 512×512. Each class is a single texture and rotated in seven an-
gles, i.e. 0º,30º,60º,90º,120º,150º,200º. Each of the images is partitioned into sixteen 
nonoverlapping small images with size of 128×128. Therefore, 16×7=112 small im-
ages are obtained for each of the thirteen classes, out of which eleven training images 
are chosen from the 0° images and all of the rest are used to be tested as in paper [5]. 
That is, the training set contains 11×13=143 small images in all. 

 

Fig. 4. Texture database l 

Extract the rotation invariant feature vector for each of the images sized 128×128 
by Radon transform and 2-D DT-CWT first, then train the features in training set 
using SVM with polynomial kernel function, classify the feature vectors in test sets 
by SVM at last. Table 1 shows the average correct classification rates (ACCR)with 
different kinds of energies, as shown, the highest ACCR (85.15%) is produced by e1 
and the rate produced by e2 is following. Test the classification performance of SVM 
with Gaussian kernel function under the condition of energy e1, the correct rate is 
84.39%, so the performance of polynomial kernel function is better than the Gaussian 
kernel. Classify the same data using probabilistic neural network as the classifier and 
e1 as the energy, the result is shown in table 1, too. From table 1 we can see that the 
ACCR obtained by SVM was significantly higher than that obtained by PNN ,that is, 
the SVM algorithm can improve the CCR effectively. The classification algorithm in 
paper [5] is based on the directional filter bank and its result for the same data is also 
shown in table 1, as shown, the result produced by algorithm proposed is higher by 
13.94% than the other one.  

Table 1. Experiment results for database 1 

Algorithm proposed 
Algorithm 

e1 e2 e3 
PNN(e1) 

Algorithm in 
[5] 

ACCR 0.8515 0.7616 0.7951 0.7989 0.7121 

 



 Rotation Invariant Texture Classification Algorithm Based on  DT-CWT and SVM 459 

The optimal classification results of each texture are shown in table 2. As shown, 
the results of textures without ‘straw’ and ‘wool’ are generally well, out of which the 
CCR of ‘weave’ achieved 100%. 

Table 2. Classification results of each texture in database 1 

texture bark brick bubble grass leather pigskin raffia 

CCR 0.9208 0.7723 0.9703 0.7921 0.9307 0.8614 0.8812 

texture sand straw water weave wood wool ACCR 

CCR 0.8812 0.5050 0.9307 1.0000 0.9802 0.6436 0.8515 

(2) Texture database 2. As shown in figure 5, it contains sixteen classes of texture 
images with size of 180×180. Each class is rotated in ten angles, i.e. 0º, 20º, 30º, 
45º,60º,70º,90º,120º,135º,150º.Each of them is partitioned into sixteen nonoverlap-
ping small images with size of 45×45, then small images in 0º,30º,45º, 60ºare used to 
train and all of the rest are used to be tested. 

 

Fig. 5. Texture database 2 

The energy ‘e1’ and polynomial kernel SVM are applied in the experiment because 
of their best performance in the first experiment. The CCRs of each texture are shown 
in table 3. From table 3 we can see that all of the textures can be nicer classified and 
half of textures are classified with the CCR 100%. The ACCR can achieve 98.86% 
which is much better than that in database 1, this is mainly because of the increase of 
texture angles used in training. The algorithm in paper [6] is based on  the autocorre-
lation measures of subbands acquired by DT-CWT and its result  for the same data is 
also shown in table 3, as shown, the result produced by algorithm proposed is higher 
by 5.01% than the other one. 

Table 3. Classification results of each texture in database 2 

texture Canvas Cloth Cotton Grass Leather Mattin 

CCR 1.0000 1.0000 1.0000 0.9792 1.0000 0.9792 

texture Paper Pigskin Raffia Rattan Reptile Sand 

CCR 1.0000 1.0000 1.0000 0.9792 0.9896 0.9792 

texture Straw Weave Wood Wool ACCR ACCR in [6] 

CCR 0.9896 1.0000 0.9792 0.9271 0.9876 0.9375 
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5   Conclusions 

A rotation invariant texture classification algorithm based on the dual-tree complex 
wavelet transform and support vector machine is proposed. Extract the rotation in-
variant feature vectors using Radon transform and the 2-D dual-tree complex wavelet 
transform first and the support vector machines algorithm is used to the texture classi-
fication at last. The dual-tree complex wavelet transform which has the advantages of 
approximately shift invariance and better directional selection could character the 
textures more effectively as well as the principle of optimal separating hyperplane can 
make the support vector machines achieve higher classification rate. Both the experi-
ment results for database1 and database 2 demonstrate that the algorithm proposed 
can improve the classification rate effectively. 

References 

1. Selesnick, Ivan W., Baraniuk, Richard G., Kingsbury, Nick G.: The Dual-Tree Complex 
Wavelet Transform. IEEE Signal Processing 22 (6) (2005) 123-151 

2. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min-
ing and Knowledge Discovery 2 (2) (1998) 1-47 

3. Kourosh, J.K., Hamid, S.Z.: Rotation-Invariant Multiresolution Texture Analysis Using Ra-
don and Wavelet Transforms. IEEE Transactions on Image Processing 14 (6) (2005)  
783-795 

4. Specht, D.F.: Probabilistic Neural Networks. Neural Networks 3 (1) (1990) 109-118 
5. Duan, R., Man, H., Chen, L.: Rotation Invariant Texture Classification Based on A Direc-

tional Filter Bank. IEEE International Conference on Multimedia and Expo (ICME'04) 2 
(2004) 1291-1294 

6. Hill, P.R., Bull, D.R., Canagarajah, C. N.: Rotationally Invariant Texture Classification. IEE 
Seminar on Time-scale and Time-Frequency Analysis and Applications 20 (2000) 1-5 



D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 461–468, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

A Two-Pass Classification Method Based on 
Hyper-Ellipsoid Neural Networks and SVM’s with 

Applications to Face Recognition 

Chengan Guo, Chongtao Yuan, and Honglian Ma 

School of Electronic and Information Engineering,  
Dalian University of Technology, Dalian, Liaoning 116023, China 

cguo@dlut.edu.cn, sheva810712@gmail.com, mhl@dlut.edu.cn 

Abstract. In this paper we propose a two-pass classification method and apply 
it to face recognitions. The method is obtained by integrating together two 
approaches, the hyper-ellipsoid neural networks (HENN’s) and the SVM’s with 
error correcting codes. This method realizes a classification operation in two 
passes: the first one is to get an intermediate classification result for an input 
sample by using the HENN’s, and the second pass is followed by using the 
SVM’s to re-classify the sample based on both the input data and the 
intermediate result. Simulations conducted in the paper for applications to face 
recognition showed that the two-pass method can maintain the advantages of 
both the HENN’s and the SVM’s while remedying their disadvantages. 
Compared with the HENN’s and the SVM’s, a significant improvement of 
recognition performance over them has been achieved by the new method. 

1   Introduction 

Face recognition has been emerging as a very active research field over past few years 
[1, 2]. Two issues are essential in face recognition: the first is what features are to be 
used to represent a face. The second is how to design an efficient classifier to 
recognize a new face image. In this paper we focus on the classifier design problem. 
The feature selection issue is also discussed through a comparison study of 
experimental results in the paper. 

Many good classification methods have been proposed and applied to face 
recognition in recent years. Among them, the Support Vector Machine (SVM) [3] is 
an efficient one. The SVM was originally designed for binary classification, and for 
multiclass problems, as in image recognition, one needs an appropriate combination 
of a number of binary SVM’s. Several approaches to the multiclassification problems 
using binary SVM’s have been proposed, including the M-ary algorithm [4], the One-
against-one [5], the One-against-the-others [4], and the Error-correcting Output Codes 
(ECOC) [6]. The SVM’s with ECOC has the error control ability that can correct a 
certain number of intermediate misclassifications by training some extra SVM’s, and 
it has been successfully applied to face recognition in our previous work [7]. 
According to the experiment results given in [7], the SVM’s with ECOC classifier 
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outperforms the other SVM-based classifiers by taking both the recognition accuracy 
and the computation complexity into account. However, there still leaves room for 
improving on the method. For example, it always maintained a certain amount of false 
acceptance rates (FAR) with this method. For a practical recognition problem such as 
an authentication system (e.g., an image identification system), the FAR is an 
important index that should be made as small as possible. 

The Biomimetic Pattern Recognition (BPR) proposed by Wang et al [8] is a 
topological pattern recognition method that can overcome the drawback of the high 
FAR problem effectively. In the BPR method [8,9], the hyper-ellipsoid neural 
network (HENN) or  the double synaptic weight neurons (DSWN) [9] are trained to 
implement the classifier in which the classification hypersurfaces are constructed by a 
number of connected hyper-ellipsoid spheres as shown in Fig. 1. It was showed by 
[8,9] in the application to image recognitions that the HENN method can reduce the 
FAR significantly (almost to zero). It is also noticed, however, that the method yields 
quite a high false rejection rate (FRR) and therefore its correct recognition rates are 
quite low.  

In this paper we propose a two-pass classification method for face recognition 
based on the HENN’s and the SVM’s with ECOC. In the new method, the HENN’s 
and the SVM’s with ECOC are integrated together that can maintain the advantages 
of the two methods on the one hand, and can overcome the defects of them on the 
other hand. Simulation experiments conducted in the paper show that, a significant 
improvement on recognition performance can been achieved by using the two-pass 
method.  

In Section 2, the two-pass classification method is presented following brief 
descriptions of the HENN’s and the SVM’s with ECOC method. Experiment results 
with application to face recognition are given in Section 3. Section 4 gives the 
summary and further directions of the paper. 

2   The Two-pass Classifier Based on HENN’s and SVM’s 

2.1   The HENN Classification Method 

The hyper-ellipsoid neural network (HENN), also called the double synaptic weight 
neurons (DSWN), was proposed by Wang et al [8,9] based on the Biomimetic Pattern 
Recognition (BPR) theory [8].  The neuron model of the HENN is shown in Fig. 2 
and its general formula [9] is given by  
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classification hypersurface of a HENN is composed of a number of these connected 
hyper-ellipsoidal spheres, as illustrated in Fig. 1. 
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Fig. 1. The classification hypersurface of a HENN    Fig. 2. The model of the HENN neuron 

In order to design a HENN classifier for an m -class problem, we need to design 

m  HENN’s. For each HENN, e.g., for the -i th HENN, we need to train ik  HENN 

neurons with training samples. The ik  neurons need to be trained to such a result that 

they can construct the closed surface of ik  connected hyper-ellipsoid spheres, as 

illustrated in Fig. 1, which will be both able to include all the training samples of the 
-i th  class inside the surface, and also able to exclude all the other class samples 

outside the surface. In this way, one can obtain the HENN classifier after the training 
stage for m  HENN’s has been accomplished.  

As for the learning algorithm for training the HENN neurons to estimate the 

weights, iw ’s, '
iw ’s, and θ ’s, a gradient descent algorithm can be induced that is 

omitted here due to the limitation of the paper length. 
Having the HENN classifier obtained, one can use it to classify a new sample in 

the following algorithm: 

(i) Input the feature vector of the sample into the -i th HENN, for 1, , .i m=  

(ii) Classify the sample to the -j th  class, if the feature vector of the sample is only 

inside the -j th closed surface. Otherwise, the sample is rejected. 

2.2   The SVM’s with ECOC Classification Method 

It is well known that the SVM is an optimal classifier in terms of structural risk 
minimization based on VC theory [3]. As the SVM was originally designed for binary 
classification, for multiclass problems, one needs an appropriate combination of a 
number of binary SVM’s.  

For an m-class problem, k binary SVM’s, where k 2log m= ⎡ ⎤⎢ ⎥ , are enough in theory 

for classifying the m classes. However, the classifier with this number of SVM’s has 
no robustness (or error tolerance), and once an SVM gives a wrong intermediate 
classification, it leads to a final mistake. As a direct scheme for gaining robustness, 
one can use more SVM’s. But how many SVM’s should be used and how much 
robustness can be obtained by these more SVM’s? In order to solve this problem, the 
error-correcting output codes (ECOC) algorithm was proposed by Dietterich and 
Bakiri [6] and its main idea is as follows:  
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The classification procedure of an m-class problem using binary classifiers can be 
viewed as a digital communication problem and the classification errors made by 
some binary classifiers are viewed as transmission errors of a binary string over a 
channel. In this way the errors may be corrected by adding some redundant SVM’s 
using an error control coding scheme. According to coding theory [10], for a n-bit 
code with the minimum Hamming distance d, it is able to correct l errors, where 

2logn m d≥ +⎡ ⎤⎢ ⎥  and ( 1) / 2l d= −⎡ ⎤⎢ ⎥ . Therefore, in the ECOC approach [6], it was 

proposed that some error control coding scheme can be incorporated into solving an 
m-class learning problem, in which l intermediate misclassifications can be corrected 
by using n binary classifiers. 

In order to implement the SVM’s with ECOC classifier, two stages are included: 
the encoding and training stage for obtaining a coded n binary SVM’s with a properly 
selected error control coding scheme and a learning algorithm, and the decoding and 
classification stage for getting error correction and performing classification based on 
the coded n SVM’s. Details for these implementing algorithms can be found in [6] 
and [7], that are omitted here. 

2.3   An Integration Scheme of HENN’s and SVM’s ―The Two-Pass 
Classification Method 

As pointed out in Section 1, both the classifiers of the HENN’s and the SVM’s with 
ECOC have their own advantages and disadvantages. For the SVM’s with ECOC, one 
can always gain the higher correct recognition rates by using this method than by 
using the HENN’s. However, its false acceptance rates (FAR) are always retained  
to a certain level that is not negligible. For the HENN method, it can reduce its  
FAR significantly (almost to zero) while it always gives quite a high false rejection  
rates (FRR).  

Then the question is raised that if we can design a new classifier by integrating 
the two methods together in such a way that it will maintain the advantages of the 
two methods and overcome the drawbacks of them meantime. The answer to the 
question is that this is possible by suitably incorporating the two methods. 
However, it should also be noted that some integrations of two methods may result 
in accumulation or enlargement of errors made by them. In this paper we propose a 
two-pass classification approach by integration the HENN’s and the SVM’s 
together that is going to be proved effective by applications of the method to face 
recognitions. 

 

Fig. 3. Block diagram of the two-pass classification approach 
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The idea of the two-pass classification approach is shown in Fig. 3 in which X is 
the feature vector of a sample to be classified, Y is the classification result for the 

input sample, and HY  is the intermediate classification result given by the HENN 

classifier. 
The classification algorithm for the two-pass classifier for an m- class problem 

includes two passes of classification steps as follows: 

  (i) Input the feature vector X for the sample to be classified. It is assumed that the 
sample belongs to one of the m given classes. 

 (ii) The first pass of the method is to get HY  by using the HENN classifier, which is 

then sent to the SVM’s with ECOC classifier. There are two possible cases for  

the intermediate classification result HY  to indicate: one case is that the input is 

already classified to one of the m classes by the HENN classifier if X is only 
inside one closed surface of the HENN classifier, and the other case is that the 
input is rejected if X is inside more than one closed surfaces, or outside all the 
closed surfaces, of the HENN classifier. 

(iii) The second pass is to use the SVM’s with ECOC classifier to get the final 

classification result Y based on X and HY , in which the input sample is re-

classified to one of the m classes if HY  indicates that the input is rejected by the 

HENN classifier, and otherwise HY  is taken as the final classification result.  

We make some remarks on this classification algorithm in the following:  

Remark 1. The HENN classifier and the SVM’s with ECOC classifier are assumed 
already established before performing the two-pass classification algorithm. This can 
be done by training the two classifiers separately using the learning methods given in 
Section 2.1 and 2.2 respectively with the same training data. 

Remark 2. The performance of the two-pass classifier is also related to the input 
features that are extracted for expressing the samples to be classified. Usually, using 
different kind of features will result in different performances. A comparison study of 
simulations for using different features in face classifications will be given in the next 
section of the paper. 

3   Applications to Face Recognition and Experiment Results 

Many simulation experiments have been conducted for the two-pass classification 
method with applications to face recognition in the paper. Meantime these simulations 
were also conducted for the HENN classifier and the SVM’s with ECOC classifier. 

The simulations are performed on the Cambridge ORL face database which 
contains 400 face images of 40 distinct persons in total with 10 images for each 
person. In the simulations, the eigenfaces based on PCA [11] and the Fisherfaces [12] 
are used respectively as feature templates to represent face images, and the input 
feature vectors for the classifiers are extracted by projecting the sample images onto 
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the eigenfaces or the Fisherfaces. In each simulation experiment, 200 samples (5 
samples for each person) selected randomly from the ORL database are used as the 
training set to train the classifiers and the remaining 200 samples are used as the 
testing set.  

In each simulation experiment for establishing the HENN classifier, 40 HENN’s 
are trained, with each HENN consisting of 4 hyper-ellipsoid neurons. Having the 
training stage done, 40 classification hypersurfaces are constructed by the 40 
HENN’s, with each hypersurface consisting of 4 connected hyper-ellipsoid surfaces, 
as illustrated in Fig. 1. The learning algorithm given in Section 2.1 was used to train 
the networks. 

For establishing the SVM’s with ECOC classifier in the simulation, the (31,6) 
BCH code [10] was used for the encoding and decoding algorithm. The (31,6) BCH 
code contains 31 bits in total with 6 information bits and 15 error control bits that has 
the minimum Hamming distance of 15, and the code is able to correct 7 error bits 
according to coding theory [10]. In correspondence with this coding scheme, 31 
SVM’s were trained each time using the learning algorithm given in Section 2.2 for 
obtaining the SVM’s with ECOC classifier to recognize the 40 classes of face images 
in the simulations.  

Having the training stage done both for the HENN classifier and the SVM’s with 
ECOC classifier, we constructed the two-pass classifier with the two classifiers in the 
way as shown in Fig. 3. The two-pass classifier was then used to realize the 
classification algorithm given in Section 2.3 in the simulations. 

In the paper, experiment simulations were conducted at the same time for the 
HENN classifier, the SVM’s with ECOC classifier and the two-pass classifier, 
respectively, by using the same data. In order to study the influence of different 
features on the classifiers, both the eigenface and the Fisherface features were used as 
inputs to perform the training and testing processes. Table 1 gives the testing results 
that were obtained by averaging over 10 simulations in the paper. In the table, three 
kinds of recognition rates are used for performance evaluation including the false 
rejection rates (FRR), the false acceptance rates (FAR), and the correct recognition 
rates (CRR). 

It can be seen from Table 1 that for the face recognition problem, the two-pass 
method proposed in the paper always gives the highest CRR among the three 
methods. From Table 1, it can also be seen that, the advantage of the HENN classifier 
is significant that it yields very low FAR, but its defect is also notable that it has very 
high FRR. For the SVM’s with ECOC classifier, it is superior to the HENN classifier 
by giving much higher CRR, while it always keeps a certain amount of not negligible 
FAR. As for the two-pass classifier, one can see that it carries on the advantages, and 
meantime remedies the defects, of both the HENN classifier and the SVM’s with 
ECOC, in which its CRR are improved significantly while keeping its all error rates, 
including FRR and FAR, quite low. 

The influence of different features on the performance of the classifiers can also  
be observed from Table 1, in which using Fisherfaces can get better result than  
using eigenfaces. The influence of the feature dimensions was also studied in the  
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Table 1. Simulation results for performance evaluation of different classification methods 

Feature Eigenface Fisherface 

Recognition Rate (%) FRR FAR CRR FRR FAR CRR 

HENN Classifier 11.7 0.00 88.3 8.05 0.00 91.95 

SVM’s with ECOC 0.00 5.10 94.9 0.00 2.25 97.75 

Two-pass Classifier 0.00 1.90 98.1 0.00 0.75 99.25 

simulations. It has been observed that the difference of performances is slight with the 
dimensions from 35 to 39. The experiment results shown in Table 1 were obtained 
with 39 dimensions. 

4   Summary and Further Directions 

In this paper we proposed a two-pass classification method and applied it to face 
recognitions. The new method was obtained by integrating together two methods, the 
HENN classifier and the SVM’s with ECOC classifier. For this method, a 
classification operation is realized in two passes: the first one is to get an intermediate 
classification result for an input sample by using the HENN classifier, and the second 
one is followed by using the SVM’s with ECOC classifier to re-classify the sample 
based on both the input data and the intermediate result. The simulation results 
obtained in the paper for applications to face recognition showed that the two-pass 
method can retain the advantages of both the HENN classifier and the SVM’s with 
ECOC while remedying their disadvantages. In comparison with both the HENN 
classifier and the SVM’s with ECOC, a significant improvement on the recognition 
performance has been gained by the two-pass method, which is a result of “1+1>2”. 

In the paper we have showed that a significant improvement can be obtained by 
applying the two-pass method to face recognitions. Then, applying the method to 
other classification problems may also get improvements, which is the problem for 
further study of the paper. 

In the paper we also conducted a preliminary experiment study on using different 
input features for the classification method, which shows that better performances can 
be obtained by using Fisherfaces than by using eigenfaces. Therefore, getting more 
suitable features for the method is another problem for further study. 

Finally, the problem under consideration is that, since a good combination of two 
methods can make an improvement over them as shown here, we may also try some 
other combinations based on other methods for better results. 
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Abstract. An adaptive inverse controller based on support vector ma-
chines (SVM) was designed for excitation control. Two SVM networks
were utilized in the controller, one is SVM identifier (SVMI) and the
other is SVM inverse controller (SVMC). The plant was identified by
SVMI, which provided the sensitivity information of the plant to SVMC.
SVMC was established using inverse system method as the pseudo-
inverse model. Both SVMI and SVMC are offline learned firstly and
are online trained using back propagation algorithm. To guarantee con-
vergence and for faster learning, adaptive learning rates and convergence
theorems are developed. Simulations show that this controller has better
performance in system damping and transient improvement.

1 Introduction

Application of nonlinear control methods in excitation control to enhance tran-
sient stability has been given much attention in various literatures [1-4]. Since
nonlinear controllers have a more complicated structure and are difficult to im-
plement relative to linear controllers. In addition, feedback linearization methods
require exact system parameters to cancel the inherent system nonlinearities, and
this contributes further to the complexity of the stability analysis. Recently the
use of artificial neural networks (ANN) as neuro-controllers offers a possibility to
overcome this problem. The feasibility is based on the universal approximation
properties as well as strong learning ability of ANN. Several literatures have been
focus on ANN based excitation controller [5-6], which is an effective alternative
to nonlinear controller. Unfortunately, most ANN using gradient-based training
method like back-propagation, often suffer from local minima, and it is also not
easy to choose a suitable network structure.

As a novel breakthrough to ANN, support vector machines(SVM) [7-8] have
proved to be a powerful alternative in many areas. Here, SVM based adaptive
inverse excitation controller is presented. Two SVM networks are utilized in
this control system, one is the plant identifier providing plant information as
learning signal for the controller, the other is an inverse model identifier acting
as an inverse controller. General learning algorithm is employed in the offline
learning of SVM networks and they are online trained using back-propagation
algorithm.

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 469–478, 2007.
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2 Problem Formulation

We consider the third order model of a generator connected to an infinity-bus,
called a single machine infinite bus (SMIB) system, which is as follows [9]

δ̇ = ω − ω0, Ė
′

q = −
xdΣE

′

q

x
′
dΣT

′
d0

+
Vs(xd − x

′

d) cos δ

x
′
dΣT

′
d0

+
Vf

T
′
d0

, (1)

ω̇ =
ω0Pm

H
− D(ω − ω0)

H
−

ω0E
′

qVs sin δ

Hx
′
dΣ

− ω0V
2
s (x

′

d − xq) sin 2δ

2Hx
′
dΣxqΣ

, (2)

where variables are presented in detail in [9]. If the power angle δ is as the
output y and the excitation voltage Vf as the input u, the following third order
differential equation can be deduced from (1) and (2).

y(3) =
Dÿ

H
−

ω0E
′

qVsẏcosy

Hx
′
dΣ

− ω0V
2
s ẏ(x

′

d − xq)cos2y

Hx
′
dΣxqΣ

−
(x

′

d − xq)Vscosy − xqΣE
′

q

x
′
dΣT

′
d0

∗ ω0Vssiny

Hx
′
dΣ

− ω0Vssiny ∗ u

Hx
′
dΣT

′
d0

, (3)

Ė
′

q =
2(ω0Pmx

′

dΣ − D(ẏ − ω0) − Hÿx
′

dΣ) − ω0V
2
s (x

′

d − xqsin2y)
ω0Vssiny

. (4)

Therefore, (3) can be denoted in the form of nonlinear mapping

y = f(y(3), ÿ, ẏ, u). (5)

During the operation range of the power angle (0 < δ < π) there exists a
∂y(3)

∂u �= 0. In other words, the excitation control system is invertible and so the
following inverse system exists [9].

u = g(y(3), ÿ, ẏ, y). (6)

3 SVM Based Function Approximation

Compared with ANN and standard SVM, least squares SVM (LS-SVM) [8] has
the following advantages: no number of hidden units has to be determined, no
centers has to be specified for the Gaussian kernel, and fewer parameters have
to be prescribed, so LS-SVM is employed here for the model identification.

Let{xt, yt}N
t=1 be the set of input/output training data with input xt and out-

put yt. Consider the regression modelyt = f(xt) + et where xt are deterministic
points, f is a smooth function and et are uncorrelated errors. For the purpose of
estimating the nonlinear f , the following model is assumed

f(x) = ωT ϕ(x) + b, (7)
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where ϕ(x) denotes a infinite dimensional feature map. The regularized cost
function of the LS-SVM is given as

minJ(ω, e) =
1
2
ωT ω + γ

1
2

∑
e2

t , yt = ωT ϕ(xt) + b + et, t = 1, · · · , N. (8)

In order to solve this constrained optimization, a Lagrangian is constructed

L(ω, b, e; α) = J(ω, e) −
∑

αt(ωT ϕ(xt) + b + et − yt), (9)

with αt the Lagrange multipliers. The conditions for optimality are given by

∂L

∂ω
= 0,

∂L

∂b
= 0,

∂L

∂et
= 0,

∂L

∂αt
= 0. (10)

Substituting (7-9) into (10) yields the following set of linear equations
[

0 1T
N

1N Ω + γ−1IN

]
·
[
b
a

]
=

[
0
y

]
, (11)

with y = [y1, · · · , yN ]T ,1N = [y1, · · · , 1]T , α = [α1, · · · , αN ]T ,Ωij = K(xi, xj).
The resulting LS-SVM model can be evaluated at a new point x∗ as:

f̂(x∗) =
∑

αtK(x∗, xt) + b, (12)

where M is the number of support vectors (SVs), K(·, ·) is kernel function,
αt, b are the solutions to (11). Here Gaussian kernel function K(xi, xj) =
exp(−‖xi−xj‖2

2σ2 ) is selected. As the training of SVM is equivalent to a linear
programming problem, it can realize global optimization effectively. Moreover,
the learning results decide the number of SVs and this selects the nodes of hidden
layer of SVM networks.

4 Plant Identifier and Inverse Model Identifier

From (6), in the viewing of inverse system method, the control signal u can be
determined by (y(3), ÿ, ẏ, y). Here y is the power angle δ, and u is the excitation
voltage Vf . By using the n-order approximation [10], one hasT ẏ = y(k + 1) −
y(k),T u̇ = u(k + 1) − u(k),T 2ÿ = y(k + 1) − 2y(k) + y(k − 1), and T 3y(3) =
y(k+1)−3y(k)+3y(k−1)− y(k−2)with T is the sampling period. In this way,
(6) can then be described in the discrete system as:

u(k) = G(y(k), y(k − 1), y(k − 2), y(k − 3)). (13)

The plant is modeled by a SVM identifier (SVMI) as Fig.1(a), which provides
information on the plant to the controller. SVM is also used in identifying the
inverse model of the plant called SVM inverse identifier (SVMII) in Fig.1(b),
which serves as an inverse controller. The inputs of SVMI are [u(k), y(k − 1),
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y(k − 2), y(k − 3)]T , the output of SVMI is ŷ(k) corresponding to the desired
output YI(k) be [u(k), y(k − 1), y(k − 2), y(k − 3)]T , then

ŷ(k) = F̂ (YI(k)) =
∑

αtK(YI(k), YI(t)) + b = WT
I · ΦI(k) + b, (14)

where WI = [α1, · · · , αM ]T are the weight vectors of LS-SVM networks as in
(12), ΦI(k) = [K(YI(k), YI(1)), K(YI(k), YI(M))]T are the outputs of the kernel
function. The inputs of SVMII are [y(k), · · · , y(k − 3)]T , the output of SVMII is
û(k). LetYc(k) be [y(k), · · · , y(k − 3)]T ,then

û(k) = Ĝ(Yc(k)) =
∑

αtK(Yc(k), Yc(t)) + b = WT
c · Φc(k) + b, (15)

where Wc = [α1, · · · , αM ]T are the weight vectors of LS-SVM networks, Φc(k) =
[K(Yc(k), Yc(1)), K(Yc(k), Yc(M))]T are the outputs of the kernel function.

(a) SVM identifier (SVMI) (b) SVM inverse identifier(SVMII)

Fig. 1. Structure of the SVM identifiers

5 Adaptive Inverse Controller Design

5.1 The Structure of Adaptive Inverse Controller

Fig. 2 shows the block diagram of the control system which includes two SVM
networks, that is, SVMC and SVMI. Here, SVMC is just SVMII in Fig.1(b), and
SVMI is just the same as in Fig.1(a). The inputs to SVMC are the reference input
yd(k), the previous plant output [y(k), · · · , y(k − 3)] , the output of SVMC is
the control signal u(k). Using the back-propagation (BP) algorithm, the weights
of SVMC are online adjusted such that the error ec(k), ec(k) = yd(k) − y(k),
approaches a small value. When SVMC is in training, the information on the
plant is needed and SVMI is used to estimate the plant sensitivity yu. The
current control signal u(k) and previous plant output [y(k), · · · , y(k − 3)] are
the inputs to SVMI, and the output of SVMI is ŷ(k). Let yd(k) and y(k) be the
desired and actual responses of the plant, then an error function is defined as

Ec = 0.5 ∗ (yd(k) − y(k))2. (16)
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Fig. 2. Structure of the proposed adaptive inverse controller

The error function in (16) is also modified for the SVMI as

EI = 0.5 ∗ (y(k) − ŷ(k))2. (17)

The gradient of error in (16) with respect to vector Wc is given by

∂Ec

∂Wc
= −ec(k)

∂y(k)
∂Wc

= −ec(k)yu(k)
∂u(k)
∂Wc

= −ec(k)yu(k)Φc(k), (18)

with yu(k) = ∂y(k)
∂u(k) denotes the sensitivity of the plant with respect to its input.

In the case of the SVMI, the gradient of error in (17) simply becomes

∂EI

∂WI
= −eI(k)

∂ŷ(k)
∂WI

= −eI(k)
∂OI(k)
∂WI

= −eI(k)ΦI(k). (19)

5.2 Learning Algorithm of Adaptive Inverse Controller

(1) Back-propagation for SVMI. From (19), the negative gradient of the error
with respect to a weight vector is − ∂EI

∂WI
= eI(k)∂OI (k)

∂WI
= eI(k)ΦI(k). The

weights can now be adjusted following a gradient method as

WI(n + 1) = WI(n) + η(− ∂EI

∂WI
), (20)

where η is a learning rate.
(2) Back-propagation for SVMC: From (18), the negative gradient of the error

with respect to a weight vector is − ∂Ec

∂Wc
= ec(k)yu(k)∂Oc(k)

∂Wc
= ec(k)yu(k)Φc(k).

This unknown value yu(k)can be estimated by using the SVMI. When the SVMI
is trained, the behavior of the SVMI is close to the plant, i.e., y(k) ≈ ŷ(k). Once
the training process is done, the sensitivity can be approximated as

yu(k) =
∂y(k)
∂u(k)

≈ ∂ŷ(k)
∂u(k)

. (21)
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Applying the chain rule to (21), and noting that ŷ(k) = OI(k) of (14).

∂ŷ(k)
∂u(k)

=
∂OI(k)
∂u(k)

= −u(k)
WT

I · ΦI(k)
σ2 , (22)

yu(k) ≈ ∂ŷ(k)
∂u(k)

= −u(k)
WT

I · ΦI(k)
σ2 . (23)

5.3 Convergence and Stability Based on Lyapunov Function

The update rule of (20) calls for a proper choice of η.This section develops a
adaptive learning rate in selecting η properly. A Lyapunov function is given by

V (k) = 0.5 ∗ e2(k). (24)

Thus, the change of the Lyapunov function is obtained by

ΔV (k) = V (k+1)−V (k) =
1
2
(e2(k+1)−e2(k)) = Δe(k)(e(k)+

1
2
Δe(k)). (25)

The error difference due to the learning can be represented by

e(k + 1) = e(k) + Δe(k) = e(k) + [
∂e(k)
∂W

]T ΔW. (26)

Now, we will give the convergence of SVMI learning. From (19) and (20)

ΔWI = −ηIeI(k)
∂eI(k)
∂WI

= ηIeI(k)
∂OI(k)
∂WI

. (27)

Theorem 1. Let ηI be the learning rate for the weights of SVMI and gI,max be
defined as gI,max := maxk‖gI(k)‖ where gI(k) = ∂OI (k)

∂WI
, and ‖ · ‖ is the usual

Euclidean norm. Then the convergence is guaranteed if ηI is chosen as

0 < ηI <
2

g2
I,max

. (28)

Proof. From(25)-(27), ΔV (k) can be represented as

ΔV (k) = [
∂eI(k)
∂WI

]T ηIeI(k)
∂OI(k)
∂WI

[eI(k) +
1
2
[
∂eI(k)
∂WI

]T ηIeI(k)
∂OI(k)
∂WI

]. (29)

For SVMI,∂eI (k)
∂WI

= −∂OI(k)
∂WI

, we obtain

ΔV (k) = −ηIe
2
I(k)‖∂OI(k)

∂WI
‖2 +

1
2
η2

Ie2
I(k)‖∂OI(k)

∂WI
‖4 ≡ −λIe

2
I(k). (30)

Let gI(k) = ∂OI (k)
∂WI

,gI,max := maxk‖gI(k)‖, and let η1 = ηIg
2
I,max. Then

λI =
1
2
‖gI(k)‖2ηI(2 − η1

‖gI(k)‖2

g2
I,max

) ≥ 1
2
‖gI(k)‖2ηI(2 − η1) > 0. (31)
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From (31), we obtain ΔV (k) = −λIe
2
I(k) and 0 < η1 < 2, and (28) follows.

Remark 1. The convergence is guaranteed as long as(31)is satisfied, i.e., ηI(2−
η1) > 0 or η1(2−η1)

g2
I,max

> 0. This implies that any η1, 0 < η1 < 2, guarantees the
convergence. However, the maximum learning rate which guarantees the most
rapid or optimal convergence is corresponding to η1 = 1, i.e., η∗

I = 1
g2

I,max
, which

is the half of the upper limit in (28). This shows an interesting result that any
other learning rate larger than η∗

I does not guarantee the faster convergence.
Now, we will give the convergence of SVMC learning. From the update (20)

ΔWc = −ηcec(k)
∂ec(k)
∂Wc

= ηcec(k)yu(k)
∂Oc(k)
∂Wc

. (32)

Theorem 2. Let ηc be the learning rate for the weights of SVMC and gc,max

be defined as gc,max := maxk‖gc(k)‖, where gc(k) = ∂Oc(k)
∂Wc

, and Smax =
maxk‖yu(k)‖. Then the convergence is guaranteed if ηc is chosen as

0 < ηc <
2

S2
maxg2

c,max

. (33)

Proof. From (25), (26), (27) and (32), ΔV (k) can be represented as

ΔV (k) =
∂ec(k)
∂Wc

ηce
2
c(k)yu(k)

∂Oc(k)
∂Wc

+
1
2
[
∂ec(k)
∂Wc

]2η2
ce2

c(k)y2
u(k)[

∂Oc(k)
∂Wc

]2. (34)

For SVMC, ∂ec(k)
∂Wc

= −yu(k)∂Oc(k)
∂Wc

, we obtain

ΔV (k) =
1
2
η2

ce2
c(k)y4

u(k)‖∂Oc(k)
∂Wc

‖4 − ηce
2
c(k)y2

u(k)‖∂Oc(k)
∂Wc

‖2 ≡ −λce
2
c(k).

(35)
Conditions of (32) and (27) are similar except yu(k) needs to be incorporated in
the SVMC. Therefore, it remains to find the limit on yu(k). From (21) and (23)

Smax = |yu(k)|max = |u(k)WT
I · ΦI(k)
σ2 | ≤ |WT

I · ΦI(k)|max|u(k)|max

σ2 , (36)

where Smax is the limit on sensitivity and is estimated from (36). σ is a para-
meter seen from (14) and we can determine σ from the learning data-sets. Thus
following the proof of Theorem 1, we obtain 0 < ηc < 2

S2
maxg2

c,max
.

Remark 2. In the case of SVMI, the optimal convergence rate is η∗
c = 1

S2
maxg2

c,max
.

6 Simulation

The performances of the proposed adaptive excitation controller (AIC) are com-
pared with other two controllers, one is the conventional AVR and governor
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controllers [5], and the other is the neuro-controller [6]. Parameters of the plant
are given as: xd = 2.156; xq = 2.101, x

′

d = 0.265; xT = 0.1; xL = 1.46; D = 5;
H = 8; T

′

d0 = 10; Pm = 0.6.
For the off-line learning, we first generate random signals as inputs u(k) to

the plant. Here we selected multi-amplitude varying-step square wave as testing
signals. By sampling the inputs and outputs at high speed and after computing
the derivatives off-line, we obtain training data [u(k), y(k), · · · , y(k − 3)]. The
training data-set consisted of 400 samples, and LS-SVM parameters are: σ =
0.42, γ = 200. Results are displayed in Fig.3-4, the conventional controllers
(CON1) are indicated by dashed lines, neuro-controller (CON2) response by solid
lines, and the adaptive excitation controller (AIC) response by thick solid lines.

Example 1. Step changes in the reference voltage of the exciter. The plant is
operating at a steady-state condition (Pt = 1.0pu, Qt = 0.18pu). At t = 2s, a
5% step increase in the reference voltage of the exciter is applied. At t = 10s,
the 5% step increase is removed, and the system returns to its initial operating
point. Fig. 3 show that AIC improve the transient system damping compared to
other two controllers.
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Fig. 3. Response to step changes in the reference voltage of the exciter

Example 2. Three phases short circuit test. A severe test is carried out to evaluate
the performances of controllers under a large disturbance. At t = 2s, a temporary
three-phase short circuit is applied at the infinite bus for 100ms from 2s to 2.1s
for the plant operating at the same steady state condition as previous test. Fig.4
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Fig. 4. Response to three phases short circuit test

show that the AIC damp out the low frequency oscillations for the rotor angle
and terminal voltage more effectively than other two controllers.

In these two tests, SVM based adaptive excitation controller returns the sys-
tem to stable conditions with a much better damping compared to other con-
trollers. While adaptive excitation controller still gives a good result because it
can be learned from all kinds of operating states.

7 Conclusion

This paper presents SVM based adaptive inverse controller, the superior perfor-
mance of SVM over ANN is due to the following reasons: (1) SVM implements
the structural risk minimization principle which minimizes an upper bound for
the generalization error rather than minimizing the training error in ANN. (2)
ANN may not converge to global solutions due to its inherent algorithm design.
In contrast, finding solutions in SVM is equivalent to solving a linearly con-
strained quadratic programming, which leads to a global optimal solution. (3)
In choosing parameters and structure, SVM are less complex than ANN. Results
show that SVM adaptive inverse controller is very promising for future real-time
applications. Not only do it improves the system damping and dynamic transient
stability more effectively than other two controllers for the large disturbance, but
also it has a faster transient response for a small disturbance.
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Abstract. Based on least squares support vector machines regression
algorithm, reverse model of system model is constructed, and adaptive
internal model controller is developed in this paper. First, least squares
support vector machine (LS-SVM) regression model and its training al-
gorithm are introduced, provides SMO-based on pruning algorithms for
LS-SVM. Then it is used in adaptive internal model control (IMC) for
constructing internal model and designing the internal model controller.
At last, LS-SVM regression based adaptive internal model control is
used to control a benchmark nonlinear system. Simulation results show
that the controller has simple structure, good control performance and
robustness.

1 Introduction

Internal model control (IMC) is a powerful technique for design of robust con-
trollers for linear systems, which has several attractive features when compared
with the conventional feedback control. The IMC structure also facilitates the
analytical treatment of unconstrained linear model predictive control (MPC)
algorithms in the framework of classical frequency domain techniques. The non-
linear extension of linear IMC formulation was proposed by Economou for open
loop stable MIMO nonlinear systems with stable inverses. Similar to the linear
IMC strategy, the nonlinear IMC controller was designed as a right inverse of
the nonlinear model operator. The IMC has been solved by neural network (NN)
[1], the robust stabilization and performance of the control system may then be
a problem. Wang solves the problem by support vector machines (SVM) [2].
Compared with NN, SVM has well generalization ability, and is especially fit for
machine learning in small sample condition. The training algorithm of SVM will
not run into local minimum point. SVM is a new machine learning method and
has been used for classification, function regression, and time series prediction,
etc. Also it can automatically construct the structure of system model [2]. How-
ever, the accuracy is not very high, while the accuracy is very important for the
control system. Even a little error may produce different results. Different train-
ing methods lead to different training accuracy, so we must find the methods
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which produce high accuracy. As an interesting variant of the standard support
vector machines, least squares support vector machines (LS-SVMs) have been
proposed by Suykens and Vandewalle [3-4] for solving pattern recognition and
nonlinear function estimation problems. Standard SVM formulation is modified
in the sense of ridge regression. LS-SVM takes equality instead of inequality
constraints of SVM in the problem formulation. As a result one solves a linear
system instead of a QP problem, so LS-SVM is easy to training. There are several
methods for training LS-SVM , but the computational cost are quite a big prob-
lem. Zeng proposed a SMO-Based Pruning Methods for Least Squares Support
Vector Machines method for classification [5]. Sequential minimal optimization
(SMO) are extended by Keerthi and Shevade to solve the linear equations in
LS-SVMs. It is suitable for large scale problems and is convenient for timely
data updating. This paper introduces this method in LS-SVM regression into
internal model control to construct an inverse controller. The effectiveness of
the proposed method in terms of computational cost and regression accuracy
is demonstrated by numerical experiments. The paper is organized as follows:
In section 2 LS-SVM regression model and its training algorithm are described;
in sector 3 SMO and pruning algorithms for LS-SVM is introduced; in sector 4
least square support vector machine and internal model control is proposed; in
sector 5 simulation and results are used to test the performance of algorithm;
Finally, conclusions are drawn in Sector 6.

2 LS-SVM Regression Model and Its Training Algorithm

In the following, we briefly introduce LS-SVM regression. Consider a given train-
ing set of N data points {xi, yi}N

i=1, with input data xi ∈ R and output yi ∈ R .
In feature space LS-SVM models take the form:

y(x) = wT ψ(x) + b (1)

where the nonlinear mapping ψ(·) maps the input data into a higher dimen-
sional feature space. Note that the dimensional of w is not specified (it can be
infinite dimensional). In LS-SVM for function estimation the following optimiza-
tion problem is formulated

min
1
2
wT w +

C

2

N∑

K=1

e2
i (2)

subject to the equality constrains

yi(w · ϕ(xi + b) = 1 − ei, i = 1, · · · , N (3)

where C is a regularization factor and ei is the difference between the desired
output and the actual output. For simplicity, we consider the problem without
a bias term, as did in [5]. The Lagrangian for problem (2) is

R(w, ei; αi) =
1
2
wT w +

1
2
C

∑

i

e2
i +

∑

i

αi[yi − w · ϕ(xi) − ei] (4)
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where αi are Lagrangian multiplier .
The nonlinear regression function (the output of LS-SVM) can be formulated

by:

y(x) =
l∑

i=1

αik(x, xi) + b (5)

k(xi, xj) is a symmetric function which satisfies Mercer conditions. Some useful
kernels are as following:

1) Polynomial kernel:
k(x, xi) = [(x · xi) + 1]q (6)

2) RBF kernel:
k(x, xi) = exp(−‖x−xi‖2/σ2) (7)

3)Sigmoid kernel:
k(x, xi) = tanh(υ(x · xi + c)) (8)

formula (6 ∼ 8), parameter q, R, c are all real constant. In actual application,
usually we must choice appropriate kernel function as well as the corresponding
parameter according to the certain condition. The choice of the kernel function
has several possibilities. In this work, the radial basis function (RBF) is used
as the kernel function of the LS-SVM because RBF kernels tend to give good
performance under general smoothness assumptions.

3 SMO-Based Pruning Algorithms for LS-SVM

The sparseness is very important for LS-SVM regression. The sparseness is im-
posed by subsequently omitting data that introduce the smallest training errors
and retraining the remaining data. In the following, the SMO-Based pruning Al-
gorithms are given in [5]. From (4), the Karush-Kuhn-Tucker (KKT) conditions
for optimality are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂R

∂w
= 0 w =

∑

i

αiϕ(xi)

∂R

∂ei
= 0 αi = Cei

∂R

∂αi
= 0 yi − w · ϕ(xi) − ei = 0

(9)

by substituting the KKT conditions (9) into the Lagrangian (4), the dual prob-
lem is to maximize the flowing objective function:

max(L(α)) = −1
2

∑

j

∑

i

αiαjQ(xi, xj) +
∑

i

αiyi (10)

where Q(xi, xj) = K(xi, xj) + σij/C, and if i = j, σij = 1; otherwise σij = 0.
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The SMO algorithm works by optimizing only one αi at a time keeping the
others fixed,i.e., α is adjusted by a step t as follows:

αnew
i = αi + t; αnew

j = αj , ∀j �= i (11)

Define

fi = − ∂L

∂αi
= −yi +

N∑

j=1

αjQ(xi, xj) (12)

the t can be suggested as in [5],

t =
−fi

Q(xi, xi)
(13)

The criterion for determination of pruning points is a crucial factor in pruning
process. In this section, we detail a new criterion that is directly based on the
dual objective function and easy to compute in SMO formulation. To derive the
proper criterion for pruning, the dual objective function (10) is rewritten using
the definition of fi .

L(α) =
1
2

∑

i

αi(yi − fi) (14)

Along with the idea of SMO, we consider that the removal of a sample k
does not directly affect the support values of other samples, but it introduces
the update of all fi , which leads to a difference in the objective function, it is
suggested in [5], as :

d(L) =
1
2
α2

kQ(xk, xk) − αkFk (15)

A summary of this training algorithm are as follows:

Step 1) Train the initial non-sparse LS-SVM using the SMO formulation as
described in 4, using the training data set got in section 3.

Step 2) Repeat the following inner loop by time tt:
• remove a sample from the training set using criterion (15);
• update fi,∀i �= k ,of the remaining samples in the training set using f

′

i =
fi − αkQ(xi, xk) , where k is the omitted data point.

Step 3) Retrain the LS-SVM using the SMO formulation based on the support
values α and the updated f of the remaining data set, where α

′
= (α1, · · · , αk−1,

αk+1, · · · , αN ) andf
′
= (f

′

1, · · · , f
′

k−1, f
′

k+1, · · · , f
′

N) .
Step 4) Repeat Step 3) and Step 4) until the defined termination condition is

satisfied.
Step 5) Get the LS-SVM model.

4 Least Square Support Vector Machine and Internal
Model Control

The system structure of adaptive inverse control is shown in Fig 1. ysp is refer-
ence input, u is output of LS-SVM based Controller, y is system output, ym is
predictive output of LS-SVM based internal model.
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Fig. 1. LS-SVM based IMC system

4.1 Constructing of Internal Model

Assume that discrete SISO nonlinear system can be describe as below:

y(k+1) = f(y(k), · · · , y(k−n), u(k), · · · , u(k−m)), y ∈ Rn, u ∈ Rn, m ≤ n (16)

where f is a nonlinear function. Then we can define training samples set as [2]:
{

D1 = {x1
i , y

1
i }, i = 1, 2, · · · , l Y 1

i = y(k + 1)

X1
i = [y(k), · · · , y(k − n + 1), u(k), · · · , u(k − m + 1)]

(17)

then we can use the methods proposed in sector 3 to train the data sets , so we
can get the internal model .

4.2 Designing of Inverse Model Controller

The controller of IMC is the inverse model of the controlled system. So the
reversibility of a system must be first considered. For linear system, reversibility
is a problem about controllability. If only a linear system is state controllable,
then it is reversible [7].

Given [y(k), · · · , y(k−n), u(k−1), · · · , u(k−m)] , when any u′(k) �= u(k), we
can get: f [y(k), · · · , y(k−n), u′(k), · · · , u(k−m) �= f [y(k), · · · , y(k−n), u(k), · · · ,
u(k − m)] , so system is reversible at point [y(k), · · · , y(k − n), u(k − 1), · · · ,
u(k − m)]T .

Theorem 1. If f [y(k), · · · , y(k − n), u(k), · · · , u(k − m)] is strictly monotone
function to u(k) , then system is reversible at point [y(k), · · · , y(k − n), u(k −
1), · · · , u(k − m)]T . If above-mentioned conclusion is right at any time step k,
the system (1) is reversible system.

According to (16), inverse model of system can be defined as:
u(k) = f [y(k + 1), y(k), · · · , y(k − n), u(k − 1), · · · , u(k − m)]T

The training set of LS-SVM can be constructed as following [2]:
{

D2 = {x2
i , y

2
i }, i = 1, 2, · · · , l Y 1

i = u(k)

X2
i = [y(k + 1), y(k), · · · , y(k − n), u(k − 1), · · · , u(k − m)]

(18)
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then we can use method described in sector 3 to train inverse model of system,
which is also inverse model controller.

5 Simulation and Result

A benchmark problem [8] is used to illustrate the results of on-line SVM based
adaptive internal model control. In the benchmark problem, the nonlinear plant
is described as follows: y(k + 1) = y(k)/(1 + y2(k)) + u3(k) + v

Where y is the plant output, u is the input and v is a random disturb. It’s easy
to prove that it is monotone system, so according to theorem 1, it’s reversible
system. Assume that the structure of the system is unknown, according to (17)
and (18) the training sample of internal model and internal model controller can
be separately constructed as:

X1
i = [y(k), y(k − 1), u(k), u(k − 1)] Y 1

i = y(k + 1)
X2

i = [y1(k + 1), y1(k), y(k − 1), u(k − 1)] Y 2
i = u(k)

Getting those data sets {X1
i , Y 1

i } , {X2
i , Y 2

i } then we can train and test LS-
SVM.

We use the SMO-Based on pruning methods to train the LS-SVM. The pa-
rameter are C = 150, σ = 0.01. Random disturb v has a positive step disturb
with a amplitude of 0.1 in step 80 and a negative step disturb with a amplitude
of 0.1 in step 120 and 160. In order to show the superiority of this method, we use
LS-SVM and SVM to do internal model control.The differences between LS-SVM
and SVM in computational cost and regression accuracy are shown in Table 1.

Table 1. Computational cost and Regression accuracy of LS-SVM and SVM

LS-SVM SVM

regression accuracy 0.0039 0.0302
computational cost 3.1560 45.312 s

Fig. 2. Control input u and system output y
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First 200 initial training samples constructed by random input are used to
train a initial internal model and internal model controller. Simulation results
are shown in Figure 2. From these results we can see that LS-SVM Regression
model and its training algorithm can quickly approximate the system model
with very high precision and the LS-SVM based predictive controller can control
the system response very well. Also when there are random step disturbs, the
controller can rapidly counteract influence from disturbs and come back system
response in several time steps, which shows that the system has well robustness.

6 Conclusion

In this paper we introduce the use of SMO-Based pruning methods for least
square support vector machines for solving internal model control problems. An
introduction to LS-SVM is given at first, then gives its training algorithm, and
uses it to build a internal model control framework, the numerical experiment
has shown the efficiency of the LS-SVM based method. It can control nonlinear
system with good performance and robustness.
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Abstract. This paper presents the ν-SVM and the ν-SVR full regular-
ization paths along with a leave-one-out inspired stopping criterion and
an efficient implementation. In the ν-SVR method, two parameters are
provided by the user: the regularization parameter C and ν which set-
tles the width of the ε-tube. In the classical ν-SVM method, parameter
ν is an lower bound on the number of support vectors in the solution.
Based on the previous works of [1,2], extensions of regularization paths
for SVM and SVR are proposed and permit to automatically compute
the solution path by varying ν or the regularization parameter.

1 Introduction

The utilization of SVM by neophyte users is still hampered by the need to supply
values for control parameters in order to get the best attainable results. Mainly,
SVM’s users must make three choices: the kernel, its bandwidth and the reg-
ularization parameter. Within the usual formulation of the soft margins SVM,
the regularization parameter takes its value between 0 (random) and ∞ (hard-
margins). The ν-SVM [3] technique reformulates the SVM problem so that C is
replaced by a ν parameter taking values in [0, 1]. This re-normalized parameter
has a more intuitive meaning: it represents the minimal proportion of points
in the solution and the maximal proportion of misclassified points. The SVR
algorithm is a popular method for dealing with regression problems [4]. The al-
gorithm minimizes the ε-insensitive cost while preserving the smoothness of the
regression function. The trade-off is realized via a regularization parameter λ
set by the user. The user also provides the width ε ∈ [0, ∞[ of the tube. As the
practical choice of ε is difficult, the ν-SVR method [4] was proposed and permits
to automatically determine the value of ε. Given the importance of this problem
for reaping all the potential benefits of the use of SVM and SVR, many research
work have been dedicated to ways of helping the setting of the parameters. Most
rely on either outer measures, such as cross-validation, to guide the selection,
or to measures embedded in the learning method itself (see [5,6]). In place of
these empirical approaches regularization paths have been widely studied re-
cently [1,2,7] since they provide a smart and fast way to access all the optimal
solutions of a problem according to all compromises between bias and regularity.
However, having the whole regularization path is not enough. Indeed, the end
user still needs to retrieve from it the best values for the regularization parame-
ters. Instead of selecting these values by k-fold cross-validation or leave-one-out,
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or other approximations [8], we propose to include the leave-one-out estimator in-
side the regularization path in order to have an idea of the generalization error at
each step. We explain why it is less expansive than selecting the best parameter a
posteriori and give a method to stop learning before attaining the end of the path
to save useless efforts. This paper presents a low-cost (in term of computational
time and memory) method for the auto-setting of the regularization parameter
for the classification case. Contrarily to what is usually done for regularization
path, our method does not start with all points as support vectors. Doing so
we avoid the computation of the whole Gram matrix at the first step. Then,
since the proposed method stops on the path, this extreme non-sparse solution
is never attained and thus the whole Gram matrix never required. One of the
main advantage of this is that it is possible to use this setting for large databases.

2 Regularization Path for ν-SVM

We consider a binary classification problem with training patterns x1 . . . xm ∈ X
and associated classes y1 . . . ym ∈ {+1, −1}. A ν-SVM classifies a pattern x
according to the sign of the decision function f(.) = 1

m

∑m
i=1 αiyik(xi, .) + b. A

pattern xi is called “support vector” when the corresponding coefficient αi �=
0.The hyper-parameter ν can be scaled by the size of the training database. In
this case, we have λ = mν and λ is a lower bound on the number of support
vectors. Since we have at least a point in the solution, we can set 1 ≤ λ ≤ m.
The primal ν-SVM problem is written as follows:

{
minf,b,ρ,ξi

m
2 ‖f‖2 − λρ +

∑m
i=1 ξi

s.t. yi

(
f(xi) + b

)
≥ ρ − ξi, ξi ≥ 0, ∀i ∈ [1, ..., m] and ρ ≥ 0

with ρ being the margin to be optimized and the dual problem is:
{

maxα − 1
2α�Gα

s.t. α�1 ≥ λ, α�y = 0 and 0 ≤ αi ≤ 1 ∀i ∈ [1, ..., m] (1)

where G(i, j) = 1
myiyjk(xi, xj). Our aim is to compute the ν-SVM solution for

all values of ν. As shown in [1], the path is piecewise linear. It means that the
support vectors set does not change between two values of ν. Hence we only need
to identify when a change occurs in the sets. Similarly to what is done in active
set methods solving the SVM [9], the first steps consists in identifying the best
direction to follow and the second step is to determine how far to follow it. Let
note g(xi) = yi

(
f(xi) + b

)
− ρ. Then we have:

⎧
⎨

⎩

L : g(xi) < 0 ∀i ∈ L αi = 1 bounded points
E : g(xi) = 0 ∀i ∈ E 0 < αi < 1 margins points
R : g(xi) > 0 ∀i ∈ R αi = 0 useless points

The idea of the path is to provide an iterative method that follows the path
by pieces, stopping at each change among the groups. Each point of the path
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reflects the optimal solution of the ν-SVM according to a particular value of λ.
We begin with the smallest value of λ and let it grow up to its larger value.
Since the provided solutions are equivalent as long as the groups do not change,
we only need to identify for which values of λ a point is going to move from
one group to another. We identify four possible movements: from L to E (from
the wrong side of the margin to the margin), from R to E (the point becomes
support vector), from E to L (a support vector becomes bounded) and from E
to R (a support vector is no longer one). We will denote those steps respectively
as in(�), in(r), out(�) and out(r). Events in(�) and in(r) happen when ∃i ∈ L
or i ∈ R such that g(xi) = 0. Events out(�) and out(r) occur respectively when
∃i ∈ E such that αi = 1 or αi = 0. Hence we need to express g(x) and α
depending on steps t and t + 1 as:

gt+1(xi) = gt+1(xi) − gt(xi) + gt(xi)
= G(i, :)αt+1 + bt+1yi − ρt+1 − G(xi, :)αt − btyi + ρt + gt(xi)
= G(i, :)δα + δbyi − δρ + gt(xi)

(2)

with δα = αt+1 − αt, δb = bt+1 − bt and δρ = ρt+1 − ρt. G(i, :) designates the
ith row of the matrix. From equation 2 and depending on the concerned event,
it is possible to find which value of λ to choose next. We summarize in table 1
the events and the algorithm mechanic.

Table 1. Summary of the events. Each column stands for a particular event. In blue
starred are noted the properties that are used to compute the corresponding λt+1.

Step in(r) out(r) out(�) in(�)

t i ∈ R i ∈ E i ∈ E i ∈ L
gt(xi) > 0 �gt(xi) = 0 �gt(xi) = 0 gt(xi) < 0

αi = 0 0 < αi < 1 0 < αi < 1 αi = 1

t + 1 i ∈ E i ∈ R i ∈ L i ∈ E
�gt+1(xi) = 0 �gt+1(xi) ≥ 0 �gt+1(xi) ≤ 0 �gt+1(xi) = 0

0 < αi < 1 �αi = 0 �αi = 1 0 < αi < 1

Points in E and Detection of out(�) and out(r). Events out(�) and out(r)
are detected using their values of α. Indeed, one condition to remain in E is to
keep 0 < α < 1. Retrieving λt+1 for which one of these conditions is violated for
each point requires to write αi depending on λt+1. Remark that in E , gt(x) = 0
and gt+1(x) = 0. Equation 2 together with the constraints from 1 (α�1 ≥ λ,
hence δ�

α1 ≥ λt+1 −λt and α�y = 0, hence δ�
αy = 0) leads to a system of linear

equations Aδ = (λt+1 − λ)c, where

A =

⎡

⎣
G y −1
y� 0 0
1� 0 0

⎤

⎦ δ =

⎡

⎣
δα

δb

δρ

⎤

⎦ c =

⎡

⎣
0
0
1

⎤

⎦
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This leads to δ = (λt+1 − λt)A−1c. So for points in the set E there is:
⎧
⎨

⎩

αt+1 = αt + (λt − λt+1)ηα

bt+1 = bt + (λt − λt+1)ηb

ρt+1 = ρt + (λt − λt+1)ηρ

where η denotes the vector A−1c. As mentioned earlier, a change in the groups
will occur as soon as one of the αi will meet one of the boundaries, i.e. when
αi = 0 or αi = 1 for i ∈ E . This gives two change conditions:

λt+1
out(r) = −αt

i

ηi
+ λt and λt+1

out(�) = 1−αt
i

ηi
+ λt

Points in L and R and Detection of in(�) and in(r). Events in(�) and
in(r) are detected using their values of g(xi). Indeed, one condition to remain in
R is to keep g(xi) > 0 and g(xi) < 0 to stay in L. Retrieving λt+1 for which one
of these conditions is violated for each point requires to write gt+1(xi) depending
on λt+1. For a point moving inside E , the particularity is that gt+1(xi) becomes
nul. Defining h(x) = G(i, :)ηα + ηb − ηρ leads to

gt+1(xi) = G(i, :)δα + δbyi − δρ + gt(xi)
= (λt+1 − λt)

(
G(i, :)ηα + ηb − ηρ

)
+ gt(xi)

= (λt+1 − λt)ht(xi) + gt(xi) = 0

and thus

λt+1
in(�)

−gt(xi)
ht(xi)

+ λt i ∈ L and λt+1
in(r)

−gt(xi)
ht(xi)

+ λt i ∈ R

Note that it may happen that several points reach E at the same time. Even
though this does not change equations, it is a relevant remark for implementa-
tion. Indeed, if a point is missed, the path is left and the missed point will not
be selected afterward.

Regularization Path Algorithm. At each step we look for the smallest
λt+1 > λt among

{
λt+1

in(�), λ
t+1
in(r), λ

t+1
out(�), λ

t+1
out(r)

}
. We update the αt+1 according

to the chosen λt+1 and then the groups. The process is stopped when λ = m.

3 Regularization Path for the ν-SVR

Assuming m training points {(xi, yi) ∈ X × R}, the ν-SVR algorithm optimizes
an ε-insensitive cost (L(y, f(x)) = max(0, |y − f(x)| − ε)) and allows the auto-
matic computation of the ε-tube [4]. Its primal formulation is:

{
minf,b,ε,ξ,ξ∗ λ

2 ‖f‖2 + νε +
∑m

i=1 ξi + ξ∗i s.t.
−ε − ξi ≤ yi − f(xi) ≤ ε + ξ∗i , ξi ≥ 0, ξ∗i ≥ 0, ∀i ∈ [1, . . . , m] and ε ≥ 0

where λ is the regularization parameter. According to this formulation, the pa-
rameter ν varies in the interval [0, m].
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3.1 The Double Path

The regression function: f(x) = 1
λ

∑m
i=1 (α∗

i − αi)k(xi, x)+ b is a solution of the
previous problem where k(., .) is the kernel function and the Lagrange multipliers
α

(∗)
i are solutions of the dual problem [4]. Given fixed values of the regularization

parameter λ and of ν, the KKT conditions permit the automatic determination
of b and ε (see [4]). The quality of the regression depends on the chosen values.
The aim of this section is to analyze the evolution of the regression function
f(x) according to the variations of λ for a fixed value ν: the λ-path. Conversely,
keeping λ fixed at a specified value, the regression function can be studied with
respect to ν: the ν-path. Following the original idea of [2] it can be shown
that these paths are piecewise linear. The initial regularization path for SVR of
Gunter and Zhu was extended to the double path (λ-path and ε-path) in [10]. In
this paper, we give another formulation of the double path as we compute the
ν-path instead of the ε-path. To do so, let define the following sets:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L : yi − f(xi) < −ε, ∀i ∈ L, αi = 1, α∗
i = 0 bounded points

R : yi − f(xi) > ε, ∀i ∈ R, αi = 0, α∗
i = 1 bounded points

C : |yi − f(xi)| < ε, ∀i ∈ C, αi = 0, α∗
i = 0 useless points

EL : yi − f(xi) = −ε, ∀i ∈ EL, 0 ≤ αi ≤ 1, α∗
i = 0 useful points

ER : yi − f(xi) = ε, ∀i ∈ ER, αi = 0, 0 ≤ α∗
i ≤ 1 useful points

The sets L and R contain respectively the points with errors belonging to the
left part and right part of the ε-tube whereas the points of EL and ER lie on the
left and right elbows (on the tube). The elements of C are the points in the tube.
Compared to the ν-SVM, we remark that there is more groups of points to tract.

3.2 Computation of the λ-Path

We suppose the value of ν is constant. The regression function can be written
as: f(x) = 1

λ (
∑m

i=1 (α∗
i − αi)k(xi, x) + β0) with β0 = λb. Let f t(x), the solution

obtained for λt. The corresponding sets are Lt, Rt , Ct, ELt, ERt.The solution is
not modified as long as the sets are not modified. As previously, the key point
is to determine the values of λ for which a point is moved from a set to another.
The conditions for the occurring of these events are summarized in table 2. Let
write λf(x) = λf(x) − λtf t(x) + λtf t(x). Hence we have:

λf(x) =
∑

i∈ELt∪ERt

(δα∗
i − δαi) k(xi, x) + δβ0 + λtf t(x) (3)

with δαi = αi − αt
i, δα∗

i = α∗
i − α∗t

i , δβ0 = β0 − βt
0. In the latest relation, the

sum is carried only over EL and ER as the Lagrange parameters corresponding
to the other sets are fixed (equal to 0 or 1). For j ∈ ELt, we have: yj − f t(xj) =
−εt. Therefore, for λt+1 < λ < λt, the following equation holds: λ(yj + ε) =∑

i∈ERt∪ELt (δα∗
i − δαi) k(xi, xj) + δβ0 + λt(yj + εt). By defining d = λε and

δd = λε − λtεt, we get:

(λ − λt)yj =
∑

i∈ERt

δα∗
i k(xi, xj −

∑

i∈ELt

δαik(xi, xj) + δβ0 − δd, ∀j ∈ ELt
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Table 2. Events in the doubly path of ν-SVR. The bold blue color denotes the condi-
tions used to compute the parameters of the model and rk

i = yi−fk(xi). Some elements
of the last column are not specified as they are given in the previous columns.

Step in(�) in(r) in(c) out(�) out(r) out(c)
Lt to EL

t Rt to ER
t Ct to EL

t or EL
t to Lt ER

t to Rt EL
t to Ct or

Ct to ER
t ER

t to Ct

t i ∈ L i ∈ R i ∈ C i ∈ EL i ∈ ER i ∈ EL or ER
rt

i < −εt rt
i > εt |rt

i | < εt rti = −εt rti = εt

αi = 1 αi = 0 αi = 0 0 ≤ αi ≤ 1 αi = 0
α∗

i = 0 α∗
i = 1 α∗

i = 0 α∗
i = 0 0 ≤ α∗

i ≤ 1

t+1 i ∈ EL i ∈ ER i ∈ EL or i ∈ ER i ∈ L i ∈ R i ∈ C
rt+1

i =−εt+1 rt+1
i = −εt+1 rt+1

i = −εt+1 or rt+1
i <−εt+1 rt+1

i >εt+1 |rt+1
i |<εt+1

rt+1
i =εt+1

0 ≤ αi ≤ 1 αi = 0 0 ≤ αi ≤ 1, αi = 0 αi = 1 αi = 0 αi = 0
α∗

i = 0 0 ≤ α∗
i ≤ 1 α∗

i = 0, 0 ≤ α∗
i ≤ 1 α∗

i = 0 α∗
i = 1 α∗

i = 0

Similarly, for j ∈ ERt, one can establish:

(λ − λt)yj =
∑

i∈ERt

δα∗
i k(xi, xj) −

∑

i∈ELt

δαik(xi, xj) + δβ0 + δd, ∀j ∈ ERt

Using the constraints (α∗ − α)�1 = 0 (which leads to (δα∗ − δα)�1 = 0) and
(α∗ + α)�1 ≤ ν (hence (δα∗ + δα)�1 ≤ 0) of the dual problem, we obtain the
linear system Aδ = (λ − λt)c where:

A =

⎡

⎢⎢
⎣

−K(EL, EL) K(EL, ER) 1 −1
−K(EL, ER)� K(ER, ER) 1 1

−1� 1� 0 0
1� 1� 0 0

⎤

⎥⎥
⎦ , δ =

⎡

⎢⎢
⎣

δα
δα∗

δβ0
δd

⎤

⎥⎥
⎦ ∈ R

|EL|+|ER|+2, c =

⎡

⎢⎢
⎣

yEL

yER

0
0

⎤

⎥⎥
⎦

and K the gram matrix. Let η = A−1c, the parameters are given by:

αt+1 = αt + (λ − λt)ηα, α∗t+1 = α∗t + (λ − λt)ηα∗ (4)
βt+1

0 = βt
0 + (λ − λt)ηβ0 (5)

dt+1 = dt + (λ − λt)ηd (6)

Points in EL or ER and Detection of out(�), out(r) and out(c). These
events occur when the parameters α and α∗ hints their boundaries 0 or 1 (see
table 2). According to 4, we get:

λt+1
out(�) = 1−αt

i

ηαi
+ λt, i ∈ EL; λt+1

out(r) = 1−α∗t
i

ηα∗
i

+ λt, i ∈ ER

λt+1
out(c) =

{−αt
i

ηαi
+ λt, i ∈ EL

}
∪

{
−α∗t

i

ηα∗
i

+ λt, i ∈ ER

}

Points in L, R, C and Detection of in(�), in(r) and in(c). By substitut-
ing equations 4 - 5 in 3 and after some algebras, we get: f(x)= λt

λ [f t(x)− ht(x)]+
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ht(x) with ht(x) =
∑

i∈ERt δα∗
i k(xi, xj) −

∑
i∈ELt δαik(xi, xj) + δβ0. Using 6,

the latest relation and table 2, the values of λ associated to these events are:

λt+1
in(�) =

λt(ft(xi)−ht(xi)−εt+ηd)
yi−ht(xi)+ηd

, λt+1
in(r) =

λt(ft(xi)−ht(xi)+εt−ηd)
yi−ht(xi)−ηd

λt+1
in(c) =

{
λt+1

in(�), evaluated for i ∈ C
}

∪
{
λt+1

in(r), evaluated for i ∈ C
}

λ-Path Algorithm. The next value λt+1 is the largest value of λ less than λt.
The difficult part of the method is to find an initial configuration of λ such as
each elbow ER and EL contains at least one point. In [2], the authors suggest to
choose λ = ∞ and to find the corresponding b. From this initial point, the value
of λ is decreased in order to find two points in the elbows. Thus the algorithm
is runned until one elbow becomes empty or the the value of λ becomes small.

3.3 Computation of the ν-Path
In this case, the parameter λ is fixed and we examine the effect of ν on the
regression solution. The proposed approach is closely similar to the derivation of
the λ-path. Let the parameter νt corresponding to the solution f t(x). Let νt+1 <
ν < νt such as the sets obtained at the step t are not modified. As λ is constant,
from 3, we obtain: λ (f(x) − f t(x)) =

∑
i∈ERt∪ELt (δα∗

i − δαi)k(xi, x)) + δβ0.
According to the conditions verified by the points belonging to EL and ER (re-
spectively yi − f(xi) = −ε and yi − f(xi) = ε) we obtain the set of equations:

∑

i∈ERt

δα∗
i k(xi, xj) −

∑

i∈ELt

δαik(xi, xj) + δβ0 − δd = 0 ∀j ∈ ELt (7)

∑

i∈ERt

δα∗
i k(xi, xj) −

∑

i∈ELt

δαik(xi, xj) + δβ0 + δd = 0 ∀j ∈ ERt (8)

with δd = λ(ε − εt). Also here, the condition (α∗ − α)T 1 = 0 (which leads
to (δα∗ − δα)�1 = 0) holds whereas the inequality (α∗ + α)�1 ≤ ν yields
(δα∗+δα)�1 ≤ ν −νt. Grouping all these equations, we obtain a linear system:
Aδ = (ν − νt)c with c =

[
0 0 0 1

]�. The values of ν corresponding to the
events are computed by applying the same mechanism as previously. The events
in(�), in(r) and in(c) can be monitored by using the relation f(x) = f t(x) +
ν−νt

λ ht(x) derived from the updating equations of the parameters with respect
to ν. The ν-path is similar to the λ-path. Here the initialization is very easy as
we can choose ν ≈ 0. In this case, all the points are inside the tube or in the
margin and the initial solution is very sparse. As the elbows are initialized, the
algorithm proceeds from this point. We have presented a doubly path algorithm.
The question arises how to switch from a path to the other. As at each step of
a path all the parameters are available, the switching is easily carried.

4 Stopping on the Path Using Leave One Out

We want to find a stopping criteria along the path. To do so the idea is to
compute together with the regularization path a sequence of estimates of the



Regularization Paths for ν-SVM and ν-SVR 493

generalization error to stop when this sequence reaches a minimum. Among all
possible estimations of the generalization error, the leave-one-out seems to be
the one advocated by practitioners. The major drawback of the leave-one-out
estimate is the time required to compute it. Solutions have been proposed to
overcome this deficiency. [8] propose to use an approximation easily available
called the GCV (Generalized Cross Validation). Others [11] propose to take ad-
vantage of efficient implementation of the SVM with warm-start (starting from
the current solution as an a priori on the next solution) to derive acceptable
procedures[12]. Following this idea, we show next how to integrate those estima-
tors in the algorithm and we point out that this method is much cheaper than
an external LOO method. The leave-one-out error is defined as the mean error
done for the removed points. We also compute a second leave-one-out estimation
to have an idea of the variance of the solution:

LOO1error =
1
n

∑

i

1 − sign(ŷiyi) LOO2error =
1
n

∑

i

max(0, ρ − ŷiyi)

This second formula is very helpful to detect over-fitting. Indeed, outliers will be
very penalized. The leave-one-out error rates are estimated at each step. Since
no point from R participate to the solution, they would necessarily have a zero
error if once removed from the training set. Hence we only need to compute the
LOO errors of each point t of E and L. The solution S−t is close to the current
solution S given along the path. Thus we obtain S−t from S with Simple-ν-SVM
warm start. The cost of the computation of the LOO at each step is

(
|E| + |L|

)

update steps. If the generalization error is significantly better for some range of
parameters λ, we expect to see it through the LOO error rates. Hence we monitor
this value to detect when it starts to increase significantly. Then we can stop
learning a go back to Sλ which has given the lowest LOO errors. Doing so, we
avoid to compute the part of the path for which most of the points are bounded
support vectors. Indeed those solution contradict the SVM goal: sparseness.

For the ν-SVR algorithm, the generalization ability is evaluated using the
following LOO error (computed by exploiting also a warm start procedure)
LOO = 1

m

∑m
i=1,i�=k |yi − fk(xi)| with fk(x), the solution obtained with the

point k out of the training set. This implies |EL| + |ER| + |L| + |R| updates at
each step of the path.

4.1 Experimental Results

We have conducted experiments on artificial data-sets in order to illustrate how
the LOO estimation can be a criteria to stop learning on the path before at-
taining non sparse solutions. Figure 1 give example of results on the mixture
data-set, with an rbf kernel. Each LOO estimate provide useful information.
The first one (based on the counting of the errors) gives a good approximation
of the generalization error. The second one, based on the output value of the
SVM represents the variance of the solution and we look for a low variance so-
lution. From a practical point of view, determining the correct moment to stop
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Fig. 1. Illustration on the mixture data-set of the LOO error rate evolution according
to λ, reported with the test error
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Fig. 2. Illustration of the λ-path for different values of ν. The plots show (from the
left to the rigth) the LOO error, the test error and the width of the tube.
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Fig. 3. Illustration of the ν-path for different values of λ

requires some heuristic and using a smoothed curved of the LOO error is use-
ful. Our heuristic consists in choosing to stop when the smoothed LOO2 error
has not been decreasing for a period lasting as long as it take for λ to grow of
10. Then we choose backward the λ corresponding to the minimum achieved by
smoothed LOO1. The test of the ν-SVR algorithm is realized on a toy prob-
lem which consists to approximate the nonlinear function y = sin(exp(3 ∗ x)).
A gaussian kernel with bandwidth 0.1 was used. The results obtained for the
λ-path are depicted on figure 2. When λ decreases, the LOO error decreases
quickly so the algorithm can be stopped earlier. The same remark holds for the
width of the tube. For the small values of ν, as the initial solution is sparse,
the LOO computation is very fast and stopping earlier the algorithm yields a
sparse solution. There is no need to explore the overall path. The illustration
of the ν-path for different values of λ is displayed on figure 3. As ν decreases,
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the tube vanishes and the LOO error decreases. However, it remains to find a
suitable strategy to explore the hyper-parametric space (λ, ν). It seems that an
interesting methodology consists to run the λ-path for small values of ν. The
"optimal" value of λ is plugged in the ν-path algorithm to find a final solution.
This strategy has to be confirmed by intensive simulations.

5 Conclusion

This papers gathers the ν-SVM and the ν-SVR regularization paths. The moti-
vation for using the ν derivations of the standards methods SVM and SVR is that
they provide formulations with more intuitive and bounded hyper-parameters.
We give details on the derivations of the regularization paths and we show how to
include an estimation of the generalization error within the path so that learning
can be stopped when the best solution is attained, without computing useless
solutions. Applying this to the SVR is more tricky since we need to search on a
surface instead of a line and we are currently developing this part.
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Abstract. This paper develops a fast and accurate algorithm for
training transductive SVMs classifiers, which utilizes the classification
information of unlabeled data in a progressive way. For improving the
generalization accuracy further, we employ three important criteria to
enhance the algorithm, i.e. confidence evaluation, suppression of labeled
data, stopping with stabilization. Experimental results on several real
world datasets confirm the effectiveness of these criteria and show that
the new algorithm can reach to comparable accuracy as several state-of-
the-art approaches for training transductive SVMs in much less training
time.

1 Introduction

In the scenarios of labeled data is scarce and expensive while unlabeled data
is easily available and cheap, transductive learning is more efficient than induc-
tive one [4,9]. Transductive support vector machines (TSVMs) is a promising
approach for improving the generalization accuracy of SVMs, which forces both
labeled and unlabeled data far away from the decision boundary simultaneously
with maximum margin.

First practical implementation of TSVMs appeared in [4], known as JTSVM,
which used a label-switching-retraining procedure to generate the final classi-
fier. However, one of deficiencies of JTSVM was that it often suffered from local
minima[10]. To avoid this problem, several algorithms were proposed recently
in global optimization framework. The promising LDS (low density separation)
algorithm [2] adopted a density-sensitive “connectivity kernel” to force the deci-
sion boundary to cross low-density regions according to cluster assumption. The
DA (deterministic annealing) algorithm [8] used the “deterministic annealing
strategy” for the similar purpose. Unfortunately, both algorithms suffered from
high computational costs.

Most recently, a cheaper progressive algorithm called PTSVM was given in
[3], which had showed better accuracy than standard inductive SVMs. How-
ever, PTSVM is sensitive to the inconsistent samples and adopts a user-defined
stopping condition, both aspects degrade the generalization ability of it.
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In this paper, we develop a fast and accurate training algorithm for TSVMs
based on the works in [3]. Three criteria are proposed to improve the generali-
zation accuracy of the progress process, i.e. confidence evaluation, suppression
of labeled data, stopping with stabilization. The experimental results on a wide
range of datasets show that our algorithm can achieve approximately the same
test accuracy as several state-of-the-art approaches such as LDS and DA, while
runs at least one order of magnitude faster than them.

This remaining of this paper is arranged as follows: In Section 2 we describe
main principle of TSVMs and progressive learning. In Section 3, we propose
three important criteria for the benefit of generalization accuracy and give the
proposed algorithm. The experimental comparison is done in Section 4 and con-
clusions are given in Section 5.

2 The Review of Transductive SVMs

We consider here the problem of binary classification. The training set consists
of n labeled samples L=

{
(xi, yi)

n
i=1|xi ∈ R

d, y = ±1
}

and m unlabeled samples

U=
{

(xj)
n+m
j=n+1

}
. According to the principle of transductive learning [4,9], the

TSVMs solves the following optimization problem (in nonlinear case).

min
w,b,ξ,ξ∗

⎧
⎨

⎩
1
2
wT w + C

n∑

i=1

ξi + C∗
n+m∑

j=n+1

ξ∗j

⎫
⎬

⎭
(1)

s.t.
{

∀n
i=1 : yi

[
wT φ(xi) + b

]
≥ 1 − ξi, ξi > 0

∀n+m
j=n+1 :

∣∣wT φ(xj) + b
∣∣ ≥ 1 − ξ∗j , ξ∗j > 0

Where ξi and ξ∗j are the slacks for labeled sample xi and unlabeled sample xj

respectively; C and C∗ are the corresponding penalty parameters.
With the Lagrange theory, we obtain the dual representation of (1):

min
α,α∗

{
αT Kllα + 2αT Kluα∗ + α∗T Kuuα∗

2
− α · 1 − α∗ · 1

}
(2)

s.t.

⎧
⎨

⎩

∀n
i=1 : 0 ≤ αi ≤ C

∀n+m
j=n+1 : 0 ≤ α∗

j ≤ C∗
∑n

i=1 yiαi +
∑n+m

j=n+1 y∗
j α∗

j = 0

Where α and α∗ are Lagrange multipliers for labeled and unlabeled samples
respectively. Kll,Kuu and Klu are corresponding kernel matrices for labeled
samples, unlabeled samples and their joint.

Most TSVMs algorithms try to optimize (1) or (2) by utilizing all unlabeled
samples simultaneously. However, a more efficient way is to only make use of
the most informative ones. That is to say, in each iteration, only few unlabeled
samples that potentially benefit the decision hyperplane most are utilized to
train the TSVMs. We call this strategy as “progressive learning”.
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The PTSVM algorithm proposed by Chi et al. [3] follows the “progressive
learning” strategy. During the k-th iteration of it, only Ψ+

k and Ψ−
k unlabeled

samples closest to each margin hyperplanes are labeled (called “transductive
samples”) . Then the new training set X(k+1) is updated as the combination of
L and all the transductive samples, as follows:

X(k+1) = L ∪
k∑

i=1

(
Ψ+

i ∪ Ψ−
i

)
(3)

After that, the TSVMs classifier relearns on X(k+1) by solving optimization
(2) with an increased penalty parameter C∗(k+1) for transductive samples.

Generally, two issues should be considered carefully in the progressive learn-
ing: (1) how to suppress the influence of inconsistent samples. (2) how to control
the algorithm to converge with an optimal solution. Unfortunately, PTSVM in
[3] doesn’t settle these issues very well.

For the first issue, PTSVM is sensitive to the inconsistent samples. The incon-
sistent samples refer to the transductive samples that have been wrongly labeled
before according to predictions of current classifier. Since the learned classifiers
in the early phase of progress process are unstable, the transductive samples is
unavoidable. These samples are always more close to the decision hyperplance
and cause more misclassification loss than the rest samples. Thus, there is a
strong trend of preventing they being classified into the opposite class since the
TSVMs try to minimize the objective in (1). So, the generalization accuracy is
degraded for the disturbance of them.

For the second issue, PTSVM adopts a user-defined value to directly control
the stopping condition. Consequently, the algorithm may stop with an non-op-
timal solution and more iterations are needed to reduce test errors further.

In the following section, we present three important criteria to address above
issues more effectively.

3 The Proposed Progressive Algorithm

We first give three criteria for improving the generalization accuracy of progre-
ssive learning in this section, then present our new progressive algorithm.

3.1 Confidence Evaluation

Assigning small training weights for noise (or outlier) samples is an efficient
strategy to reduce their negative influences and to enhance the robustness in
inductive learning [6,7]. Similarly, we treat transductive samples discriminatively
and set small weights for all potential inconsistent samples in the progressive
learning in order to enhance the robustness. Here, we employ the confidence
evaluation approach to assign weights for transductive samples. High confidence
factor of one sample means high training weight and the sample is more likely
to be not a inconsistent one.

Let c∗j denote the confidence factor for transductive sample xj . Like the way
in [7], we consider the effects of confidence factors by substituting c∗j · ξ∗j for the
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slack ξ∗j in the objective of (1). By the Lagrange theory, we deduce the following
dual problem of (1) with the confidence factors.

min
α,α∗

{
αT Kllα + 2αT Kluα∗ + α∗T Kuuα∗

2
− α · 1 − α∗ · 1

}
(4)

s.t.

⎧
⎨

⎩

∀n
i=1 : 0 ≤ αi ≤ C

∀n+p
j=n+1 : 0 ≤ α∗

j ≤ c∗jC
∗

∑n
i=1 yiαi +

∑n+p
j=n+1 y∗

j α∗
j = 0

Different with dual problem in (2), we use p(p<m) transductive samples here
instead of m unlabeled samples since our algorithm is a progressive one. If the
multipliers α,α∗ are fixed, the final output function f(x) of TSVMs are

f(x) =
n∑

i=1

αiyik(x,xi) +
n+p∑

j=n+1

α∗
jy

∗
j k(x,xj) + b (5)

It’s difficult to assign proper confidence factors for transductive samples since
there is no further information we can rely on. Fortunately, under the assumption
that the decision hyperplanes of TSVMs change smoothly within the iterations,
we can utilize the outputs of previous classifier to make a good estimation of
confidence factors, as follows.

c∗(k)(xj) =

{
min

{
1,

∣
∣f (k)(xj)

∣
∣q

}
xj ∈ TS(k)

0 xj /∈ TS(k)
(6)

Where f (k)(·) is the output function of the k-th iteration, c∗(k)(xj) is the
confidence factor for transductive sample xj , TS(k) denotes current set of trans-
ductive samples, and q is an user-defined constant, such as q = 2.

Obviously, transductive samples with
∣
∣f (k)(xj)

∣
∣<1 will have small confidence

factors. Since inconsistent samples always lie in margin region in feature space,
they have small confidence factors so that the misclassification loss caused by
them is reduced significantly. Thus, the hyperplane of TSVMs needn’t fit incon-
sistent samples very much and is prone to reach to the optimal one.

Hence, the confidence-based method in (4) is robust to inconsistent samples
for training TSVMs so that better generalization ability can be obtained by sup-
pression the disturbances of them. In this way, we call the method in this section
as our first criterion for enhancing the performance of progressive learning, or
“confidence evaluation” criterion.

3.2 Tuning the Penalty Parameters

The choice of penalty parameters C and C∗ is very crucial for training TSVMs.
In our progressive algorithm, we initially set a small value C∗(0) for transductive
samples and then increase it exponentially to C, as that in JTSVM [4].

C∗(k) =
{

min{C∗max, 2·C∗(k−1)} k ≥ 1
C∗(0) k = 0

(7)
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Where C∗(0) =10−4·C and C∗max=C. Moreover, since original labeled training
samples can’t well represent the underlying distribution of the unlabeled ones in
many cases, the classifier can be fined by decreasing their influences in the latter
iterations of the progressive learning when the decision hyperplane is relatively
stable. Hence, we adopt a smooth way to reduce the penalty parameters of the
labeled training samples in our progressive algorithm, as follows.

C(k) =
(

1 − exp
(

− C

10 · C∗(k)

))
· C (8)

Thus, the original labeled samples will have small impacts on the classifiers in
the latter iterations, so that the accuracy can be fined by paying more attentions
to the distribution of unlabeled ones. We call this method as “suppression of
labeled samples”, which is the second criterion proposed in this paper.

3.3 Stopping Conditions

We use an adaptive convergence strategy in our progressive TSVMs algorithm
and stop it only when the following two convergence conditions are satisfied.

(1) The algorithm is in a “pseudo-stabilization” status.
(2) The solution is stable for successive two iterations.

The first condition means that the whole unlabeled data can be labeled and
separated by current classifier with high possibility of correctness. We will discuss
the “pseudo-stabilization” status in detail in Section 3.4.

For the second condition, we use the difference between the normal of current
decision hyperplane and that of previous one to evaluate the stability of solution.

μ(k) = ||w(k) − w(k−1)|| (9)

Where w(k)=
∑n

i=1α
(k)
i φ(xi)+

∑n+p(k)

j=n+1α
∗(k)
j φ(xj) and d(k) is the total number

of transductive samples in the k-th iteration.
We say that the solution of TSVMs is stable at the k-th iteration only when

the difference μ(k) is less than a user-defined threshold ϑ, such as ϑ = 10−3.
Obviously, the two convergence conditions will force the progressive TSVMs

algorithm to stop at the optimal solution, and we call them the third criterion
proposed in this paper, or “stopping with stabilization” criterion.

3.4 Selection of Transductive Samples

In our progressive TSVMs algorithm, we use a similar way for selecting transduc-
tive samples as that in [3]. Let N+

sv and N−
sv denote the number of support vectors

for the two classes and y
∗(k)
j be predicted label of unlabeled sample xj in the k-th

iteration, we select 2A unlabeled samples with small values of
∣∣
∣y∗(k)

j f (k)(xj)−1
∣∣
∣

for each class to compose the transductive candidate set Ψ+
k and Ψ−

k , where
A=min{N+

sv, N−
sv}. We ensure that at least one unlabeled sample in the margin
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region is selected into Ψ+
k or Ψ−

k . In the situation of none of such sample is se-
lected, we judge that the algorithm is in a “pseudo-stabilization” status, since
current TSVMs classifier seems to separate all the unlabeled samples correctly.

Then, we trim Ψ+
k and Ψ−

k by only keeping the samples with smaller absolute
outputs than the averages so that the most informative samples are kept.

Ψ+
k =

{

xi

∣
∣∣
∣xi ∈Ψ+

k , |f(xi)|≤|D+
k |, where D+

k =
1

2A

2A∑

s=1

f(xs), ∀xs ∈Ψ+
k

}

(10)

Ψ−
k =

{

xj

∣
∣
∣∣xj ∈Ψ−

k , |f(xj)|≤|D−
k |, where D−

k =
1

2A

2A∑

t=1

f(xt), ∀xt ∈Ψ−
k

}

(11)

3.5 The Algorithm

The proposed confidence-based progressive TSVMs algorithm is as follows.

Algorithm 1. cPTSVM

Input: L = {(xi, yi)
n
i=1} and U =

{
(xj)

n+m
j=n+1

}
.

(a): Learn initial classifier f0 with inductive SVMs algorithm on L. Let k = 0.
(b): k = k + 1. Repeat steps (b1-b5) until the stopping conditions in Section

3.3 are satisfied.
(b1): Select and trim positive and negative transductive candidate sets Ψ+

k

and Ψ−
k according to (10) and (11).

(b2): Prepare training set X(k) according to (3).
(b3): Evaluate confidence factors for transductive samples by (6).
(b4): Calculate C(k) and C∗(k) according to (7) and (8).
(b5): Train TSVMs classifier f (k) on X(k) by solving (4).

(c): Label all the rest unlabeled samples.

So, the cPTSVM algorithm yields a TSVMs classifier and the predicted labels
for all unlabeled samples. Moreover, the algorithm can be extended to multiclass
problem by the “One-Against-All” strategy.

4 Experiments and Results

We present experimental studies for the performance of cPTSVM algorithm on
a collection of real word datasets listed in Table 1. The diabetes, kr-vs-kp, DNA,
waveform, adult datasets are from UCI repository1 while the coil20, text, uspst
datasets are classical semi-supervised leaning tasks from [2]. All datasets are
normalized before model selection, learning and classification.

The first experiment tries to show the superior accuracy of cPTSVM algori-
thm when training TSVMs classifiers, and the test errors are compared with
1 Available at http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
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JTSVM[4] and PTSVM[3]. For each dataset, we draw a training set from the
whole data with bootstrap technique [1] and use the rest as test set. In such way,
total 10 training sets and 10 test sets are obtained for each dataset. To simulate
the semi-supervised learning, in each training set, we select 100 samples as the
labeled ones and the rest as the unlabeled ones.

Table 1. Datasets used in our experiments

Datasets #classes #attributes #samples

diabetes 2 8 768
kr-vs-kp 2 36 3,196
DNA 3 180 3,186
waveform 3 21 5,000
adult20∗ 2 14 6,032
coil20 20 1,024 1,440
text 2 7,511 1,946
uspst 10 256 2,007

∗ the adult20 dataset use 20% of the original adult.

The model selection is done by finite grid searching method on a small sep-
arate validation set. The values considered for the RBF kernel parameter σ are
2−3, 2−2, 2−1, 20, 21, 22, 23, 24 while those for the penalty parameter C are 10−1, 100

, 101, 102, 103. Then, the optimal values of σ and C are selected by 5-fold cross-
validation based on above combination. For fairness, we also set the same values
of σ and C for JTSVM and PTSVM. Table 2 reports the average test errors and
the standard deviation of these algorithms on above datasets.

Table 2. Comparing test errors (×100%) of JTSVM, PTSVM and cPTSVM algorithms

Datasets JTSVM PTSVM cPTSVM

diabetes 28.93±1.60 25.74±1.03 24.83±0.91
kr-vs-kp 11.52±1.05 9.15±0.71 8.06±0.54
DNA 9.16±0.76 7.69±0.58 7.41±0.49
waveform 13.92±1.37 11.40±0.90 10.76±0.74
adult20 19.85±2.14 18.84±1.21 17.38±1.20
coil20 18.70±0.89 7.45±0.65 4.77±0.44
text 7.44±0.82 6.32±0.62 5.51±0.57
uspst 23.21±1.43 18.47±0.85 16.08±0.69

∗ the bold represent the best test errors

Obviously, cPTSVM algorithm performs the best on all datasets. It achieves
much lower test errors than the PTSVM and JTSVM. The best two cases are the
coil20 and uspst, where PTSVM achieves the average errors of 7.45% and 18.47%
while cPTSVM decreases them significantly to 4.77% and 16.08%, respectively.
Experimental results also indicate that the cPTSVM is more robust than the
other two algorithms since it obtains smaller standard deviations.
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The proposed three criteria of cPTSVM is responsible for its superior accu-
racy. To see clearly how they take effects, we investigate test errors of cPTSVM
during iterations on the uspst dataset. The cases of 100 and 500 labeled training
samples are considered. Training parameters are set with σ = 4, C = 100 by
5-fold cross-validation. Fig.1 reports the main experimental results.
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Fig. 1. Comparison of convergence curves of test error on the uspst dataset

The plots show that the cPTSVM seems to reduce the test error more effec-
tively than PTSVM, especially when the number of labeled training samples is
few. Obviously, we can attribute the superior ability of cPTSVM for reducing
the error in the early iterations to its robustness to inconsistent samples (see
the first criterion). Besides, the extra iterations (than PTSVM) in Fig.1 are very
meaningful for reducing the test errors further. This is because the cPTSVM
utilizes better stopping conditions (see the third criterion).

We also compare the test errors and the training time of cPTSVM with those
of two state-of-the-art semi-supervised methods(LDS and DA) on text, coil20
and uspst datasets. We use the same method to obtain 10 training sets and
10 test sets for each classification tasks as the first experiment. The training
parameters are set as follows: σ = 8, 32, 4 for coil20, text, uspst respectively;
C = 100 for all of them; the softening parameter of LDS is set with ρ = 8, 8, 4
respectively. Table 3 reports the comparison results.

Table 3. Comparison of DA, LDS, cPTSVM in terms of test errors and training time

test errors (×100%) training time (sec.)

DA LDS cPTSVM DA LDS cPTSVM

coil20 4.14 4.86 4.77 673.4 227.4 19.7
text 6.86 5.13 6.51 2,607.6 1,291.0 51.7
uspst 14.92 15.79 16.08 859.2 352.5 16.6

∗ the bold represent the best test errors
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The experimental results show that the cPTSVM achieves approximately the
same error rates on all the three datasets as the LDS algorithm and the DA
algorithm, but runs at least one order of magnitude faster than them. Two
reasons can account for the superior speed of it. First, the main costs of cPTSVM
is the minimization of (4), which can be solved by simply modifying popular
SVMs solvers, such as SVMlight[5]. So, the actual runtime for solving cPTSVM
scales quadratically with the total training points. In contrast, the times for
solving DA and LDS are in a cubic relation [2,8]. Second, in each iteration of
cPTSVM algorithm, only a portion of unlabeled samples are used to train the
TSVMs classifiers rather than the total of them.

5 Conclusions

We have developed a fast and accurate algorithm for training TSVMs classifiers
in semi-supervised learning context. It employs a similar process of utilizing the
unlabeled data progressively [3] and uses three important criteria to improve the
generalization accuracy further. Experimental results confirm the effectiveness
of the proposed criteria and show that the new algorithm has approximately the
same test accuracy as state-of-the-art approaches such as LDS and DA while the
needed training time is much less.
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Abstract. Support Vector Data Description (SVDD) has a limitation
for dealing with a large data set in which computational load drastically
increases as training data size becomes large. To handle this problem, we
propose a new fast SVDD method using K-means clustering method. Our
method uses divide-and-conquer strategy; trains each decomposed sub-
problems to get support vectors and retrains with the support vectors
to find a global data description of a whole target class. The proposed
method has a similar result to the original SVDD and reduces computa-
tional cost. Through experiments, we show efficiency of our method.

1 Introduction

Classification tasks, such as detecting a fault in the machine, image retrieval and
surveillance system, need different approaches from general pattern classification
or regression methods. These problems are called one-class problems, and the
solutions have to aim for describing boundaries of each classes. Based on these
boundaries, the classifier makes a decision whether the testing object is in a
target class or not.

SVDD [1] is a well-known one class classification algorithm. This method finds
a boundary of a target class in data space by assuming a hypersphere which has
minimum volume enclosing almost all target class objects in feature space. SVDD
uses support vectors to describe the boundary of target class as Support Vector
Machine(SVM) [2] does. Support vectors are found by solving convex quadratic
programming (QP).

Although QP has an advantage of avoiding a local minimum problem, it re-
quires severe computation as the number of training objects increase. This prob-
lem has been known as ‘Scale problem’. There is much literature for reducing
computational cost. Those suggested studies can be roughly categorized into two
groups.

One group is mainly focused on solving QP quickly. Chunking [3], decompo-
sition [4] algorithms and Sequential Minimal Optimization (SMO) [5] are in this
group. The chunking and decomposition methods break down a large problem
into a series of small problems. By discarding non support vector data in small
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problems, the algorithms are able to train fast and reduce memory space. SMO
is a more advanced version of decomposition method.

The other group is based on the divide-and-conquer strategy dealing with
large scale data problems [6], [7], [8]. The large data set is decomposed into
several simple sub-problems similar to decomposition methods, but each sub-
problem is solved by its own local expert. Thus such approaches need additional
decision rules to combine each local expert’s decisions or to decide one of local
experts to new test object. This decision rules cause additional computational
cost. Parallel mixture of SVMs [6] and Bayesian Committee Support Vector
Machine (BC-SVM) [7] can be the examples of this group.

In this paper, we propose a new method for a scale problem of SVDD. Our
method is not aimed to solve QP quickly, but based on the divide-and-conquer
strategy. We decompose a large data set into a series of small sub-data groups
using K-means clustering algorithm [9]. Each small sub-problem is solved by its
own local expert with SVDD, but it needs not an additional decision rule unlike
the existing approaches. Instead of the decision rule, our method retrains using
only support vectors which are found by each local experts. Through training
decomposed data and retraining support vectors only, a global solution can be
found faster than the original SVDD. Because our approach does not rely on
the performance of a QP solver, it has a chance to be improved when faster QP
solver (such as SMO) is used.

The proposed method is applied to data sets which are various in size and
shape. Comparing with the original SVDD, we show our method has similar
data description results with less computational load.

2 KMSVDD: Support Vector Data Description Using
K-Means Clustering

In this section, we give detail explanation of the proposed method. We present
the basic theory of SVDD and then introduce a model of KMSVDD.

2.1 Basic Theory of Support Vector Data Description

SVDD is similar to the hyperplane approach of Schölkopf et al. [10] which esti-
mates decision plane to separate the target objects with maximal margin. How-
ever, instead of using a hyperplane, SVDD uses a minimum hypersphere to find
an enclosed boundary containing almost all target objects [1]. Assume a hyper-
sphere with center a and radius R. So the cost function is defined as below:

F (R, a) = R2 + C
∑

i

ξi , (1)

where ξi are slack variables ξi ≥ 0, and the parameter C controls the trade-off
between the volume and the errors [1]. Also (1) should be minimized under the
following constraints:

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i . (2)



508 P.J. Kim et al.

Constraints can be incorporated into the cost function by using Lagrange
multipliers:

L(R, a, αi, γi, ξi) = R2 + C
∑

i

ξi (3)

−
∑

i

αi{R2 + ξi − (‖xi‖2 − 2a · xi + ‖a‖2)} −
∑

i

γiξi,

αi ≥ 0, γi ≥ 0 .

L should be minimized with respect to R, a, ξi and maximized with respect to
αi, γi. After setting partial derivatives of L to zero, solve each equation with a
QP solver. Those objects xi with 0 < αi ≤ C are called support vectors, and
used to describe a boundary description. Especially, objects xi with αi = C are
called outliers.

To test whether an object z is within the hypersphere, the distance to the
center of the hypersphere is used:

‖z − a‖2 = K(z, z) − 2
∑

i

αiK(z,xi) +
∑

i,j

αiαjK(xi,xi) ≤ R2 , (4)

where K is a kernel function to solve non-separable problems. When the distance
is equal to or smaller than the radius R, the test object z is accepted.

2.2 KMSVDD

KMSVDD, SVDD algorithm using K-means clustering, is described in Fig. 1. It
can be summarized as the following three steps.

Step 1. Decompose a data set using K-means clustering
Assume k center points and partition a training data set into k sub-problems
using K-means clustering algorithm.

Because a retraining process exists after this step, clustering quality is not
a key factor of the proposed method’s performance. Other clustering meth-
ods such as LVQ can be used, but we select K-means clustering algorithm
because it has good performance with less computational load.

Step 2. Get local data descriptions using SVDD
Execute individual training on each k sub-problems.

As a result of training, k sub-problems’ local descriptions and support
vectors representing each local descriptions are obtained. We newly define a
working set composed of these support vectors and will use it for finding a
global data description in the next Step 3. Because many inliers which are
within the hypersphere do not affect making a final data description [2], so
they can be ignored and exclude from working set.
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Data Set
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1
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2

Sub-Set 
k

Retraining using SVDD

Local Data Description 
(Local SVs)

K-means clustering

Local Data Description 
(Local SVs)

Data Description

KMSVDD

Fig. 1. The scheme of KMSVDD algorithm

Step 3. Retrain with working set using SVDD
To get a global description of a training data set, retrain only with support
vectors which are obtained by Step 2.

In general, k sub-problems’ local descriptions have lots of confronting sides
with neighbors. It means that some support vectors are overlapped and gen-
erated uselessly so the description results are far from the result of using
only the original SVDD. Through retraining process, useless support vectors
(truly inliers of a target class) will be removed. Therefore the retrained re-
sult can be similar to that of the original SVDD.

The proposed algorithm adds two additional steps to the original SVDD:
clustering and retraining step. So two learning parameters which user has to
determine are added. One is the cluster number k and the other is the kernel
parameter used in SVDD learning of Step 2, 3.

Learning process of the proposed algorithm can be visualized as Fig. 2. Al-
though, the number of training data is same, training k sub-problems is much
faster than using whole data at a time.

2.3 Computational Complexity of KMSVDD

A general QP solver runs in O(N3) time, where N is the size of training data.
We are not improving the performance of a QP solver, but cutting down the
size of training data for each QP solver. So the complexity of KMSVDD with k
clusters is

O(kN) + kO((N/k)3) + O((αk)3) ≈ kO((N/k)3) , (5)
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Fig. 2. Visualization of KMSVDD learning process. KMSVDD has three steps and gets
a global data description finally.

where k is the cluster number and α is the average number of support vector
for each sub-problems’ description, so the size of working set is αk. The first
term O(kN) is for the complexity of K-means clustering algorithm. The second
is for the complexity of local SVDD QP solver, provided the training data N is
equally partitioned into k sub-problems. The third term O((αk)3) is for retrain-
ing process. Generally under the sparse solution conditions, the size of working
set αk is smaller than the initial size of training data N . So the influence of
the new complexity increments caused by K-means clustering and retraining is
negligibly small in contrast to the effect of decomposition. Therefore KMSVDD
assures the reduction of computational cost for large N .

3 Experimental Results

Following three types of simulations are performed for comparison in training
time and accuracy between KMSVDD and SVDD. Tax’s data description toolbox
[11] is used and simulations are run on a PC with a 3.0 GHz Intel Pentium IV
processor and 1G RAM. We use quadratic program solver (quadprog) provided
by MATLAB in all experiments so the training time difference caused by the QP
solver doesn’t occur. Optimal parameter values of Gaussian kernel are founded
using 10-fold cross validation method.
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First, we observe the effect of cluster number k on the training time of
KMSVDD. We measure the training time by changing the cluster number using
two artificial data sets (Banana shape, Donut shape [1]).
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Fig. 3. Training time of KMSVDD on various cluster numbers using one class Banana
and Donut shape set (data size N = 200). Upper figures show data distributions used
in experiments. The training time varies convexly as k increases and the optimal cluster
number k is different depending on the data distribution.

As shown in Fig. 3, the training time of KMSVDD varies depending on the
cluster number k. If k increases, which means diminishing size of each sub-
problem, the computational load of local descriptions would be reduced, but the
total number of support vectors, which are used in retraining, would increases.
The increment of working set ’s size makes the retraining process’s computational
cost expensive. To some extent, the training time is reduced as k increases, but
when k is over a certain limit, the training time increases on the contrary. There-
fore the training time varies convexly as k increases and an adequate selection
of k is necessary.

We also perform similar experiment on the Banana shape data set having var-
ious data size. The change of an optimal cluster number k, which has minimum
training time, for each data size is observed. The result is depicted in Fig. 4.
From the results, we can find that the optimal cluster number k is different
depending on the data distribution and training data size.

Second, we compare the training time of KMSVDD with the original SVDD on
various size Banana shape data set. As in Table 1, the training time of SVDD grows
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Fig. 4. Training time of KMSVDD using various size Banana shape data sets (N =
200, 400, 600 for each case). The optimal cluster number k varies depending on the data
size.

drastically, whereas KMSVDD’s training time grows relatively slowly. KMSVDD
can reduce the training time even though the cluster number k is not optimal.

Table 1. Training time on two classes Banana shape data sets using the original SVDD
and KMSVDD with various cluster numbers k. As the data size increases, the training
time of SVDD grows drastically whereas the proposed method’s training time grows
relatively slowly.

Data Size

k 200 600 1000 1200 1400

SVDD 1 16.8 488.4 3311.4 6527.4 11626.0

KMSVDD 2 4.4 167.7 1298.1 2157.4 4132.3

10 0.8 12.0 112.7 327.9 458.3

20 0.9 4.1 12.7 26.6 102.4

30 1.3 3.1 6.2 13.9 11.9

40 1.7 3.7 6.5 8.7 14.6

50 2.0 4.8 6.9 10.9 13.5

Finally, we test training accuracy of both methods using real data set. UCI
Iris and Wine data sets [12] are used as real data. Each data set has three classes
respectively. For each class, one-against-all method [13] is used and test objects’
false positive and false negative numbers are measured as the training accuracy.
As we can see in Table 2, KMSVDD can result in similar accuracy with less
computational load.

Also two methods results similar data descriptions as shown in Fig. 5(left),
(right) though KMSVDD obtains k local data descriptions for each class before
the retraining process as in Fig. 5(center) if proper learning parameters are used.
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Table 2. Classification error of one-against-all classifiers for each class using UCI
data set (Iris, Wine). The number of false positive and false negative objects are mea-
sured with 10-fold cross-validation method (values in brackets are standard deviations).
KMSVDD shows comparable results with the original SVDD.

Iris (N = 150) Wine (N = 178)

Class index 1 2 3 1 2 3

SVDD 2.3(0.48) 7.5(0.97) 6.1(1.28) 5.5(1.78) 11.7(2.11) 7.0(1.56)

KMSVDD 0.8(0.94) 8.2(1.57) 5.6(2.17) 4.7(2.86) 10.8(1.39) 6.1(2.57)

−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

Feature 1

F
ea

tu
re

 2

Banana Set

−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

Feature 1

F
ea

tu
re

 2

Banana Set

−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

Feature 1
F

ea
tu

re
 2

Banana Set

Fig. 5. Data descriptions using two classes Banana shape set N = 200. Data description
by the original SVDD (left). Local (center) and Global (right) data descriptions using
KMSVDD. Both methods have similar data description results.

4 Conclusion

In this paper, we present a fast one-class classifier, called KMSVDD, by com-
bining the K-means clustering method with SVDD. SVDD has a problem that
as the number of training data increases, training time also increases drastically.
Most of training time is consumed calculating QP problems. To reduce the train-
ing time, we decompose a large training data set into small and compact sub-
problems using K-means clustering method. Training each small k sub-problem
to get support vectors is much faster than using a whole data at a time. Sub-
group training makes many local descriptions, so an additional decision rule is
needed to classify (or to get a global description). To solve this problem we re-
train data only with support vectors of every local descriptions. The simulation
results of KMSVDD show remarkable training time reduction comparing with
SVDD, and the training performance is comparable.

As for further research, we will deal with as following issue.
Through the mathematical analysis on the relationship between the cluster

number and training time of the proposed algorithm, we will give the guideline
to determine proper (or optimal) cluster number k.

The effectiveness of the proposed algorithm may be further investigated by
using large scale real data sets including the UCI Forest database [12] or MNIST
handwritten digit database [13].
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Abstract. One-class SVM is a kernel-based method that utilizes the
kernel trick for data clustering. However it is only able to detect one
cluster of non-convex shape in the input space. In this study, we propose
an iterative two-stage one-class SVM to cluster data into several groups.
In the first stage, one-class SVM is used to find an optimal weight vector
for each cluster in the feature space, while in the second stage the weight
vector is used to refine the clustering result. A mechanism is provided
to control the optimal hyperplane to work against outliers. Experimen-
tal results have shown that our method compares favorably with other
kernel based clustering algorithms, such as KKM and KFCM on several
synthetic data sets and UCI real data sets.

1 Introduction

Partitioning-based clustering algorithms that attempt to find a user-specified
number of clusters are well-known in unsupervised data clustering. However,
they are not suitable to discover clusters with non-convex or overlapped shapes.
Recently, a number of kernel-based learning methods have been proposed for
data clustering. They utilize the kernel trick of doing all calculations in the low-
dimensional input space to perform inner products in the new high-dimensional
feature space where the data are expected to be more separable.

Schölkopf et al. integrated kernel-based methods with K-means [1]. The kernel
K-means clustering algorithm (KKM) transforms implicitly the input data into
a high-dimensional feature space via a nonlinear mapping function, and then
performs K-means iterative procedure in the feature space. The results indicate
that KKM outperforms conventional K-means due to the nonlinear mapping.
Girolami [2] and Dhillon et al. [3], [4] also proposed alternate versions of the
KKM to improve the quality and speed of KKM. Zhang and Chen integrated
kernel-based methods with fuzzy C-means. The experimental results indicate
that Kernel Fuzzy C-means (KFCM) has better performance in the ring dataset
due to the RBF kernel function and is robust to noise and outliers due to the
fuzzy membership degrees [5], [6]. Mizutani and Miyamoto integrated possi-
bilistic approaches with KFCM (KPCM), and used the entropy-based objective
function instead of the standard objective function. The experimental results

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 515–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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indicate that KPCM outperforms KFCM [7]. Kim et al. indicated that kernel-
based methods were about 15% more accurate than conventional methods [8].
Du et al. indicated that kernel-based clustering algorithms can extract arbitrar-
ily shaped clusters but are not robust to noise data, while nonlinear distance
methods are robust to noise data but cannot extract arbitrarily shaped clus-
ters [9].

Tax and Duin [10] and Ben-Hur et al. [11] introduced a kernel-based method,
called support vector data description (SVDD), or Support Vector Clustering
(SVC); it computes the smallest sphere in feature space enclosing the image of
the input data. This method not only can extract arbitrary geometrical shapes
of clusters, but also are robust against noise and outliers. Müller et al. [12]
and Schölkopf et al. [1], [13] proposed another method called one-class Support
Vector Machines (one-class SVM) to find a hyperplane which has maximum
margin to separate the data set from the origin in the feature space. However,
they are only able to detect one cluster in the feature space. We are interested in
applying one-class SVM to solving multiple clusters problem. In this study, an
iterative strategy integrating two-stage one-class SVM (TSOCS) is proposed to
segment multiple clusters with non-convex shapes. In the first stage, one-class
SVM is used to find an optimal weight vector for each cluster in the feature
space, and in the second stage, the weight vector is used to refine the clustering
result. The proposed method is compared with KKM and KFCM which are also
partitioning-based clustering algorithms on a few synthetic and real data sets.
Experimental results have shown that this method outperforms the other two
methods.

2 Background

2.1 One-Class Support Vector Machines

One-class SVM is a kernel-based method; it constructs a classifier only using a
set of positive training patterns. If the data set does not contain outliers, one-
class SVM find a hyperplane which has maximum margin (w · φ(xi) = ρ) to
separate the data set from the origin. The distance between the hyperplane and
the origin is ρ/‖w‖. Therefore, the objective function of the optimal hyperplane
and inequality constraints are:

min
1
2
‖w‖2 − ρ

s.t. w · φ(xi) ≥ ρ, ∀xi ∈ X (1)

where φ : X �→ F is a nonlinear mapping from the input space X to the feature
space F , w is a weigh vector in the feature space and, ρ is an offset of the
hyperplane.

To allow for the possibility of outliers in the data set, and to make the method
more robust, the projection value from an image to the w needs not be strictly
larger than ρ, but the small projection value should be penalized. Therefore,
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slack variables ξ, ξi ≥ 0, ∀ξi, are introduced to account for the small projection
value and the new objective function, and constraints become:

min
1
2
‖w‖2 − ρ +

1
νn

n∑

i=1

ξi

s.t. w · φ(xi) ≥ ρ − ξi, ξi ≥ 0, ∀xi ∈ X (2)

where ν ∈ (0, 1] is a parameter which gives a trade-off between the maximum
margin and the errors. With a small ν, penalty on small projection value becomes
substantial, thus few outliers should exist and the margin is small. On the other
hand, when ν is large, many outliers with small projection value may exist to
take advantage of the small penalty and the margin is generally large. In practice,
the size of ν determines the number of outliers and support vectors.

In order to solve the constrained optimization problem, a Lagrangian is in-
troduced as follows:

L =
1
2
‖w‖2 − ρ +

1
νn

n∑

i=1

ξi −
n∑

i=1

αi[(w · φ(xi)) − ρ + ξi] −
n∑

i=1

βiξi, (3)

where αi ≥ 0 and βi ≥ 0 are Lagrange multipliers. L has to be minimized with
respect to w, ξ and ρ given α and β , and then maximized with respect to α and
β. Setting partial derivatives equal to 0 yields the following Karush-Kuhn-Tucker
(KKT) conditions:

w =
n∑

i=1

αi · φ(xi) (4)

αi =
1
νn

− βi ≤ 1
νn

(5)

n∑

i=1

αi = 1 (6)

In addition, the KKT complementary conditions are:

αi[(w · φ(xi)) − ρ + ξi] = 0 (7)

βiξi = 0 (8)

For a data point xi with βi = 0, we have ξi > 0 and αi = 1/(νn). Equation
(7) implies (w · φ(xi)) < ρ. In other words, the image φ(xi) lies between the
hyperplane and the origin of the unit ball. This is called a bounded support
vector (BSV), or is sometimes called an outlier. For a data point xi with βi >
0 if βi 	= 1/(νn), then ξi = 0 and 0 < αi < 1/(νn). Equation (7) implies
(w ·φ(xi)) = ρ, so φ(xi) lies on the hyperplane in the feature space. Such a point
will be referred to as a support vector (SV). If βi = 1/(νn), then ξi = 0 and
αi = 0. Equation (7) implies (w ·φ(xi)) > ρ, so φ(xi) lies outside the hyperplane
in the feature space. Such a point will be referred to as a non-support vector
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(non-SV). In addition, the constraint of Equation (6) implies that when ν ≤ 1/n
no outliers exist.

Substituting Equations (4), (5) and (6) into Equation (3), we can eliminate
the variables w, ξi, ρ, and βi, turning the Lagrangian into the Wolfe dual form
which is a quadratic function in α′

is. In order to avoid working in the high-
dimensional feature space F , one picks a feature space where the dot product
can be calculated directly using a kernel function K in the input space, and the
Wolfe dual form becomes:

min
1
2

n∑

i,j=1

αiαjK(xi,xj)

s.t. 0 ≤ αi ≤ 1
νn

,

n∑

i=1

αi = 1 (9)

This constrained optimization problem can be solved using a standard QP solver.
The decision function of one-class SVM can be written as:

f(x) = sgn(w · φ(x) − ρ) = sgn(
n∑

i=1

αiK(xi,x) −
n∑

i=1

αiK(xi,xj)) (10)

where xj is a support vector.
Three commonly used kernel functions are Polynomial kernel, Sigmoid kernel,

and RBF kernel. Throughout this paper, the RBF kernel is adopted. That is:

K(xi,xj) = exp(−q‖xi − xj‖2) (11)

where q is a width parameter of the RBF kernel. This equation implies that
each input point is mapped on the octant surface of the unit ball in the high-
dimensional feature space.

2.2 Related Work

Since SVC or one-class SVM is only able to detect one cluster in the feature
space, different mechanisms were introduced to solve multiple clusters problem.
Ben-Hur et al. proposed a clustering labelling method to solve this problem [11].
The hypersphere is mapped back to the input space, where it can separate data
set into several clusters, after finding support vectors. The advantage of this
method is that it does not require the number of clusters as an input. However,
it may generate hundreds of clusters with many clusters just containing one data
point. In addition, it is very time-consuming in practice. Chiang and Hao pro-
posed a multiple-sphere support vector clustering algorithm based on an online
cluster cell growing method [14]. When a pattern belongs to one cluster and lies
outside the sphere, it must retrain SVC for this cluster. The disadvantage of
this method is that it is very time-consuming. Camastra and Verri proposed a
clustering method inspired by the conventional K-means algorithm where each
cluster is iteratively refined using a SVC [15]. This method is also called Ker-
nel Grower (KG) because a threshold ρ is introduced to control the number of
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cluster members that tend to grow after each iteration. Furthermore, they set
the parameter C, which is equivalent to 1/(νn), equal to 1. Therefore no cluster
can contain outliers (BSV). Because of this, the KG method lacks the ability to
handle possible outliers. In this study, we use TSOCS based on iterative strategy
to cluster data. We modulate the parameter ν to provide a trade-off between the
optimal hyperplane and the outliers. We set ν large and use TSOCS to discount
the influence of noise or outliers on the hyperplane. In other words, the mech-
anism can get an optimal weight vector in the first stage. In the second stage,
the optimal weight vector is used to refine the clustering result.

3 The Proposed Method

The value of parameter ν provides a trade-off between the distance from the
origin to the hyperplane and the slack distances resulted from outliers. Consider
the 96 patterns shown in Fig. 1 where four groups of data are marked with
different notations as follows: G1 : ◦, G2 : ∗, G3 : �, G4 : +

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.32

0.34
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0.38
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0.44

0.46

0.48

(a) ∪Ci in input space (b) ∪Ci in feature space (c) ∪Ci in feature space

Fig. 1. An example for the analysis of parameter ν

There are two real clusters: C1 = {G1, G2}, C2 = {G3, G4}. At some stage,
a clustering algorithm partitions this data set as C1 = {G1, G4} and C2 =
{G2, G3}. Therefore, data points from G2 and G4 are identified in the wrong
cluster. Now, suppose a one-class SVM is being trained for C1. As mentioned
above, the parameter ν determines the number of outliers and support vectors.
It is an upper bound on the fraction of outliers and a lower bound on the fraction
of SVs. Large values of ν allow for many outliers and SVs to exist as shown in
Table 1. In addition, when one-class SVM for Ci is accomplished, the non-SVs
of cluster Ci are called Ci. Setting ν from 2/10 to 9/10, the C1 only contains
the elements of G1 and C2 only contains the elements of G3. When we train
one-class SVM for C1 and C2, the position of the new hyperplane is located on
G1 and G3, respectively. Based on the RBF kernel and Equation (10), we can
see that the projection value between the image of a pattern from G1 and the
weight vector of C1 is generally larger than the projection value between the
image of a pattern from G1 and the weight vector of C2, thus this pattern will
be assigned to C1. The projection value between the image of a pattern from G4
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Table 1. Numbers of non-SVs, SVs or BSVs with various values of ν

ν 9/10 5/10 2/10 1/10 1/48 0.1/48

G1 4 22 38 40 43 43
non-SVs

G4 0 0 0 2 1 1

G1 2 3 2 1 2 2
SVs

G4 0 0 0 1 2 2

G1 37 18 3 2 0 0
BSVs

G4 5 5 5 2 0 0

and the weight vector of C2 is generally larger than the projection value between
the image of a pattern from G4 and the weight vector of C1, thus this pattern
will be assigned to C2. While setting ν ≤ 1/48, C1 contains the elements from
G1 and G4 as shown in Table 1. C2 also contains the elements from G2 and G3.
In this case, a pattern from G1 may be assigned to C1 or C2. As a result, low
accuracy is obtained.

When the initial cluster members are randomly drawn from the data set, we
may have some patterns belonging to the wrong clusters as G4 above. In this
case, large ν and second one-class SVM will generally set a tighter control for
the hyperplane and the problem.

The proposed algorithm uses one-class SVM to compute the optimal weight
vector for each cluster. Like partitioning-based clustering algorithms, we assume
that the number of clusters, k, is known in advance. We set ν > 1/n to discount
the influence of outliers on the optimal hyperplane in the feature space. When
one-class SVM for each cluster Ci is accomplished, each pattern is assigned to
the maximum projection value by the following equation:

Ci = {xj ∈ X, φ(xj) ∈ F | i = arg max
i=1,...,k

∑

xl∈Ci

αlK(xj ,xl)} (12)

where X = [x1, ...,xn]T ∈ �n×d is an unlabelled data set, xj represents a d-
dimensional pattern, j = 1, . . . , n, and Ci are exclusive clusters, i = 1, . . . , k.
The proposed algorithm consists of the following steps:

Initiation: Given cluster number k and the width of RBF kernel q, initial clus-
ter members are prepared using the input variable with the largest variance.
The data set X is divided into k disjoint subsets XDi(XDi ⊂ X) according
to the selected input variable, then initial cluster members are drawn ran-
domly from the partition (Ci,t ⊂ XDi). Note that C1,t ∪ C2,t ∪ . . . ∪ Ck,t ⊂
X, t = 1.

First-stage: Train a one-class SVM for each cluster Ci,t to obtain non-SVs
(Ci,t).

Second-stage: Train a new one-class SVM for each cluster Ci,t to obtain new
αij,t, j = 1, 2, . . . , |Ci,t|.
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Assignment: Assign each pattern to its closet cluster according to Equation
(12). Note that C1,t ∪ . . . ∪ C2,t ∪ Ck,t = X . If no cluster changes, exit;
otherwise, go to First-stage step with t = t + 1.

The whole process of the proposed algorithm is shown in Fig. 2.

Fig. 2. The flowchart of the TSOCS algorithm

4 Experimental Results

In order to test and compare the performance of various kernel partitioning-
based clustering algorithms, two synthetic data sets (Ring Set and Delta Set)
and six UCI real data sets [16], i.e., the Wine recognition data set, the Fisher
IRIS data set, the Wisconsin’s breast cancer data set, Heart Disease data set,
Pima Indians Diabetes data set, and the Thyroid Disease data set. Note that
the Wisconsin’s breast cancer data set contains some missing values. We have
removed 16 patterns with missing values from the data set; therefore the data set
considered has 683 patterns. The parameters used in KFCM are a termination
criterion of r = 0.001 and a weighting exponent of m = 2.0. The parameter used
in one-class SVM is ν > 1/n. Each clustering method is applied to each data set
for 20 times with different initial cluster members. For the 2-D Ring Data Set,
three kernel partitioning-based clustering algorithms achieve 100.00% accuracy
due to the RBF kernel function. Fig. 3 (a), (b) and (c) show the results of
applying three kernel partitioning-based clustering algorithms on the 2-D Delta
Data Set, which also appeared in [15]. Similar to the conventional K-means
method, KKM cannot separate this data set well. KFCM outperforms KKM;
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(a) with KKM (b) with KFCM (c) with TSOCS

Fig. 3. Results obtained on Delta Data Set

sometimes KFCM can achieve 100.00% accuracy, but the probability is very low
(5%). Note that TSOCS can obtain 100.00% accuracy in all 20 trials.

From Table 2, we can see that all three kernel partitioning-based clustering
algorithms have the same results in 20 trials on the Wisconsin’s breast cancer
data set. However, TSOCS slightly outperforms KKM and KFCM. In the best
case, TSOCS misclassified 14 patterns in class1 and 7 patterns in class 2. For
the Heart Disease data set, TSOCS outperforms the other two methods, and
KFCM outperforms KKM. For the Pima Indians Diabetes data set, TSOCS
also outperforms the other two methods, and KFCM outperforms KKM. From
these results, we can see that these two data sets are hard to separate in the high
dimension feature space. For the IRIS data set, TSOCS outperforms KFCM and
KKM. In the best case, TSOCS can totally identify class 1 and achieve 100.0% of
accuracy for this class, misclassify 3 patterns in class 2, and misclassify 3 patterns
in class 3. KKM is affected by initial centers of the clusters, and in the worst
case it just obtains 50.67% of accuracy, though most trials can achieve 96.0% of
accuracy. The results indicate that the performance of KKM clustering depends
on the initial guess of the centers of the clusters. For the Wine recognition data
set, TSOCS outperforms the other two methods. KKM outperforms KFCM on
the Wine recognition data set. In the best case, TSOCS can separate class 1 and
class 3 completely and misclassify 8 patterns in class 2. The best case of KFCM
can achieve 96.63% of accuracy, but for most trials, the accuracies are between
56.74% and 80.0%. In addition, KKM and KFCM can identify class 1 completely,
but cannot separate class 2 and class 3 in most trials. For the Thyroid Disease
data set, TSOCS outperforms the other two methods, and KKM outperforms
KFCM. KKM and KFCM can separate class 1 completely, but cannot separate
class 2 and class 3 in most trials. In the best case, TSOCS can separate class 2
completely, misclassify 4 patterns in class 1 and 4 patterns in class 3.

Running the independent samples t-test for the 20 trials from TSOCS and the
20 trials from the KKM method shows that except the Wine data set, accuracy
data are significantly different with a p-value < 0.05 on the other five UCI data
sets. As far as the TSOCS and the KFCM method are concerned, similar statis-
tical test shows that the accuracy data are significantly different with a p-value
< 0.01 for all six UCI data sets. Therefore, we conclude that the advantages of
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Table 2. Average accuracy for six real data sets from 20 trials

Method KKM KFCM TSOCS
Data Set worst best average worst best average worst best average

Wisconsin 96.19 96.19 96.19 94.14 94.14 94.14 96.78 96.93 96.85
Heart 59.26 80.00 77.69 77.78 81.48 79.80 81.48 82.22 81.85
Pima 66.67 66.80 66.78 67.84 67.97 67.96 72.53 76.95 74.26
IRIS 50.67 96.00 89.33 94.67 94.67 94.67 96.00 96.00 96.00
Wine 55.62 96.63 93.37 56.74 96.07 77.28 94.94 95.51 95.23

Thyroid 88.84 88.84 88.84 80.00 80.47 80.05 96.28 96.28 96.28

TSOCS over the other two kernel-based methods are not incidental consequence
of random initial partitions.

5 Conclusions

We have described an algorithm of using iterative TSOCS to detect multiple
clusters of non-convex shape. Experimental results allow us to make the following
remarks regarding the unsupervised clustering problem:

– Kernel partitioning-based clustering algorithms outperform conventional par-
titioning-based clustering algorithms because they can better solve non-
linearly separable clusters.

– TSOCS outperforms other kernel partitioning-based clustering algorithms in
all cases. Our idea is to set a large ν in the secondary-stage one-class SVM to
control the position of the hyperplane. This has resulted in a positive effect
on the correct assignment of the cluster members.

– Regarding the time performance, TSOCS is slower than the other two meth-
ods because one-class SVM has to be solved frequently. KFCM can be sub-
stantially faster than the other two methods because it does not have to
update cluster members in each iteration.

– Regarding the initialization of the algorithms, KKM and KFCM strongly
depend on the guess of the initial values. In this study, we use a heuristic
method to solve this problem, and this issue is not so important for the
proposed method.
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Abstract. Support vector machines (SVMs) have been accepted as a
fashionable method in machine learning community, but they cannot be
easily scaled to handle large scale problems because their time and space
complexities are around quadratic in the number of training samples. To
overcome this drawback of conventional SVMs, we propose a new con-
fident majority voting (CMV) strategy for SVMs in this paper. We call
the SVMs using the CMV strategy CMV-SVMs. In CMV-SVMs, a large-
scale problem is divided into many smaller and simpler sub-problems
in training phase and some confident component classifiers are chosen
to vote for the final outcome in test phase. We compare CMV-SVMs
with the standard SVMs and parallel SVMs using majority voting (MV-
SVMs) on several benchmark problems. The experiments show that the
proposed method can significantly reduce the overall time consumed in
both training and test. More importantly, it can produce classification
accuracy, which is almost the same as that of standard SVMs and better
than that of MV-SVMs.

1 Introduction

In recent years, there are many very large-scale data sets like public-health
data, gene expression data, national economics data, and geographic informa-
tion data. Using these very large data sets, researchers can get higher accuracy,
discover infrequent special cases, and avoid over-fitting. However, most of ex-
isting machine learning methods are hard to be used to deal with these very
large data sets because a very long training time and huge space are required.
Therefore, one of the most challenging problems in machine learning commu-
nity is to develop new learning model to efficiently handle these large data
sets.

Today, support vector machine (SVM) [1] has been widely used in the field of
pattern recognition for its strong theoretical foundations and good generalization
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Table 1. The contingency table

label y = 0 label y = 1

prediction h(x) = 0 Tp Fp

prediction h(x) = 1 Fn Tn

performance. However, both its training time complexity and space complexity
are O(N2), where N denotes training set size. The reason is that training SVMs
is to solve a quadratic programme problem in essence. Many efforts are made to
scale SVMs, such as choosing representative samples by preprocessing training
data [2] [3] [4] [5], avoiding to solve the quadratic programme problem [6] [7] [8],
and using geometric algorithms [9] [10].

The divide-and-conquer principle has been applied to scale SVMs. The SVMs
using the divide-and-conquer principle in a serial way include the standard SVMs
training method SMO [11], SVMlight, and libSVM, as well as using boosting to
scale SVMs [12]. The SVMs using the divide-and-conquer principle in a parallel
way, which will be named as parallel SVMs later on, include support vector mix-
tures [13], bayesian committee support vector machine (BC-SVM) [14], min-max
modular SVMs (M3-SVM) [15], and parallel mixture of SVMs [16]. Between se-
quential and parallel implementation, there are hierarchical and parallel methods
[17], [18], [19], which filter non-support vectors in a cascade way.

From the point of view of parallel learning, parallel SVMs have many merits
over monolithic SVMs. The first is that parallel SVMs can be benefited from
cheap clustering systems by MPI, PVM, and the current grid computing [20].
The second is their reliability that parallel SVMs will still work even though some
of their components fail. The third is their speedup, which can bring convenience
to parameter selection.

In this paper, a confident majority voting (CMV) strategy is proposed to
scale SVMs, which is inspired by an ensemble learning approach [21]. We call
the SVMs using the CMV strategy CMV-SVMs. In CMV-SVMs, a large-scale
task is divided into many smaller and simpler sub-problems in training phase
and some confident component classifiers are chosen to vote for the final outcome
in test phase. The experiments show that the proposed method can significantly
reduce the overall time consumed in both training and test. More importantly,
it produces classification accuracy which is almost the same as that of standard
SVMs and better than that of MV-SVMs.

This paper is organized as follows. Section 2 introduces the model of CMV-
SVMs, the definition of classification confidence, and the training and test
algorithms for CMV-SVMs. In section 3, some experiments and analysis are
presented for giving evidence of the advantages of CMV-SVMs. In section 4,
the bias-variance decomposition strategy is employed to explore the reason
why CMV-SVMs generalize better than MV-SVMs do. Finally, Section 5 is
conclusions.
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2 Confident Majority Voting

2.1 Definition of Classification Confidence

Given a problem with a training data set Str = {(x1, y1), ..., (xN , yN)}, where
xi ∈ X ⊆ Rn is an instance, yi ∈ {0, 1} is its class label, and N denotes the
training data set size. After training, a classifier h : X → {0, 1} will be obtained.
Given a test sample x, h(x) will output the class label of x. In order to evaluate
the performance of h(x), a contingency matrix is defined as in Table 1.

In real-world applications, the class label y of a test sample x is not known.
A good classifier should output a class label for x with high classification
confidence. Otherwise its output cannot be believed and used to handle real-
world problems. For example, in the field of medical diagnostics, the classifica-
tion confidence is very paramount. In this paper, the classification confidence
for a test sample x is used to choose the classifiers which can vote for the final
classification. The classification confidence for x that is classified as class ω is
defined as follows:

T (x) = P (y = ω|h(x) = ω) =
P (h(x) = ω|y = ω) ∗ P (y = ω)

P (h(x) = ω)
, (1)

where T (x) denotes the classification confidence for x.
Many work has been made to compute classification confidence [22]. As in

Proposition 1, after setting an appropriate neighbor size for a test sample x in
a validation data set, the performance of a classifier in the neighborhood of a
test sample x is used to evaluate the classification confidence of x. In addition,
it should be noted that the classification confidence has been defined as local
class accuracy in the work of Woods [21].

Proposition 1. Subscribing the size of neighborhood of a test sample x in a
validation data set. The performance of a classifier in the neighborhood of x is
evaluated according to Table. 1. If x is classified as class 0, then its classification
confidence can be computed as: T (x) = Tp

Tp+Fp . If x is classified as class 1, then
its classification confidence can be computed as: T (x) = Tn

Tn+Fn .

2.2 Training and Test Algorithms

CMV-SVMs can be regarded as a parallel implementation of the divide-and-
conquer principle and a mixture of ensemble and modular learning.

The training algorithm for CMV-SVMs can be described as follows:

1. Initiation: constant M , i.e., the number of the repeat of training data set par-
titioning, the value of partition K, and the appropriate parameters for SVMs.

2. For n = 1, 2, ...M
Partitioning: the training data set Str is randomly partitioned into K subsets
with almost the same size, i.e. ∪j=n∗K

j=(n−1)∗K+1S
j
tr =Str and ∩j=n∗K

j=(n−1)∗K+1S
j
tr =

Φ, where Φ denotes an empty set. The aim of making equal sizes of subsets
is intended to keep load balance, although the training time of SVMs does
not only depend on the training data size.
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3. Training: M ∗ K support vector machines as component classifiers, hj , 1 ≤
j ≤ M ∗ K, are trained on the corresponding subsets Sj

tr, 1 ≤ j ≤ M ∗ K.
Because no communication is required in the training phase among the com-
ponent classifiers, they can be trained in a parallel way.

4. Validating: Use training data set Str as a validation set to evaluate each
component classifier hj, 1 ≤ j ≤ M ∗ K and save the examination results.
The validation results are used to evaluate the classification confidence for
a test sample.

The test algorithm for CMV-SVMs can be described as follows:

1. Initiation: given a appropriate neighborhood size q, a classification confi-
dence threshold ε, 0 ≤ ε ≤ 1, and a test sample x.

2. Classifying: Compute hj(x), 1 ≤ j ≤ M ∗ K in parallel. If all the hj(x), 1 ≤
j ≤ M ∗ K are the same, any hj(x) can be used as the final class label of x,
then return. If not, goto next step.

3. Calculate all the classification confidence of x, i.e. Tj(x), 1 ≤ j ≤ M ∗ K.
Find the largest classification confidence: imax = argmaxM∗K

j=1 Tj(x).
4. Find the set ∇ = {j|(Timax(x) − Tj(x) ≤ ε, 1 ≤ j ≤ M ∗ K}.
5. Confident combining: If |∇| = 1, where |∇| denotes the size of the set ∇,

then use himax to classify, else choose classifiers hj , j ∈ ∇ to vote.

3 Experiments and Results

In order to evaluate the performance of the proposed method, some experiments
are performed to compare our CMV-SVMs with standard SVMs and MV-SVMs.
The experimental platform is PC with 1G RAM and 3G CPU. The training
algorithm used is libSVM with cache of 40M and kernel function of RBF. Three
data sets are used in the experiments, the first two are artificial data and the
last is a real data set. The statistics of all the classification problems and the
parameters used for SVMs are shown in Table. 2.

The artificial data sets include two-spirals data and checkboard data. The data
of the two-spirals are uniformly chosen from two curves of ρ = θ and ρ = −θ,
where (ρ θ) means polar coordinates. The data of checkboard problem are chosen
from a 2D checkboard that divides a 200 × 200 square into four quadrants in
which the points are uniformly distributed [18]. Forest coverType data set comes
from UCI [23], and only the samples of its second and sixth classes are chosen,
in which one half of the data are used as test data and the rest data are used
for training.

In order to get reliable experimental results, 100 training sets and a common
test set are randomly generated for the two-spirals and the checkboard probelms,
respectively. For the Forest coverType classification task, 100 training sets are
randomly generated and each of them contains two-thirds of the whole training
data. As a result, the experiments are performed in 100 times and the average
results are presented. In order to systematically evaluate the proposed method,
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Table 2. Problem description and the parameters used in SVMs

Problems #attributes #training data #test data c σ neighbor size q

Two spirals 2 3000 20000 128 2 5

Checkboard 2 32000 80000 1000 31.62 90

Forest coverType 54 28132 28132 128 0.25 90
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Fig. 1. Classification accuracy comparison with M = 1. (a) Two-spirals, (b) Check-
board, and (c) Forest coverType. Here HC means the component SVM classifier with
the highest classification accuracy, and LC means the component SVM classifier with
the lowest classification accuracy

the value of K is set to 2, 3, ..., 20 in the experiments. K = 1 means that the
classifier is trained by the entire training data, i.e. standard SVM is used.

From Fig. 1, we can see firstly that the generalization ability of CMV-SVMs is
almost the same as standard SVMs in case of different partitions and sometimes
better than standard SVMs. Secondly the generalization accuracy of CMV-SVMs
is higher than all its component SVM classifiers. This demonstrates that the
confident combining can efficiently make the component SVM classifiers work
cooperatively. In addition, considering Table. 3, it seems that CMV-SVMs can
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Table 3. Comparing the accuracy of CMV-SVMs with the accuracy of Knn

Problems Knn CMV-SVMs
neighbor size accuracy K = 1 K = 2, 3, 4, ..., 20

mean variance

Twospirals 5 1.000 1.000 1.000 0.00007

Checkboard 90 0.995 0.999 0.999 0.00012

Forest coverType 90 0.989 0.999 0.998 0.00061
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Fig. 2. The average number of confi-
dent SVMs for one test instance
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Fig. 3. The speedup, here the CPU
time includes both training and test
time
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Fig. 4. Large values of M can improve classification accuracy. The left is on checkboard
data set, and the right is on Forest coverType data set.

get higher accuracy than k-NN does. Therefore, k-NN cannot substitute CMV-
SVMs even CMV-SVMs use the information of the nearest neighbor of a test
instance. Thirdly the generalization accuracy of CMV-SVMs is higher than that
of MV-SVMs.

Fig. 2 illustrates the average number of classifiers for one test sample when all
hj(x), 1 ≤ j ≤ M ∗K are not the same. From Fig. 2, we can see that classification
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Fig. 5. Comparison of the variance of MV and CMV in case of different partitions: (a)
Two-spirals, (b) Checkboard, and (c) Forest coverType

confidence requirement filters some component SVMs. It is like that for a given
question only experts with richer experience can be selected to take part in
decision-making. Therefore, the confident combining strategy can improve the
generalization accuracy. The deeper reason is explored again by bias-variance
decomposition [24] strategy in the next section.

In Fig. 3, the CPU time considered includes both training and test time. It
can be seen that CMV-SVMs can significantly reduce the overall time. Fig. 4
shows that the larger the value of M the higher the accuracy. It seems because
the larger M will lead to more diverse SVM classifiers and so more confident
classifiers can be found to combine for classifying a test sample.

4 Bias-Variance Decomposition

Zhou et al . proposed an approach GASEN, which selects some neural networks
based on the evolved weights to make up the ensemble, to show many could be
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better than all in neural networks ensembling [25]. By the bias-variance decom-
position, it was explored that GASEN can significantly reduce both the variance
and the bias simultaneously. Liking GASEN, CMV-SVMs selects some confident
classifiers to make up the ensemble. In order to further explore the reason why
CMV-SVMs generalize better than MV-SVMs do, the bias-variance decomposi-
tion is also employed in this paper.

4.1 Bias and Variance

Bias-variance analysis provides a powerful tool to study learning algorithms. By
it, one can get insight into the error production of an algorithm and find the
ways to improve the algorithms. According to Dietterich [26], the statistics bias
of a learning algorithm is the persistent or systematic error that the learning
algorithm is expected to make when trained on training sets of size N . Given a
set S of training examples, algorithm A outputs a hypothesis A(S) = ĥS . It is
convenient to define p̂S(x) to be the probability that ĥS misclassifies test point
x. This probability is 1 if ĥS misclassifies x, and 0 otherwise.

p̂S(x) =
{

1, if ĥS(x) 
= y,

0, if ĥS(x) = y.
(2)

Based on the above definition, given a sequence of training sets S1, S2, ..., Sl,
each of size N , and a common test set Sts, applying learning algorithm A to
construct hypotheses ĥS1 , ĥS2 , ..., ĥSl

, the averaged probability of error can be
defined to be the average of these p̂S ’s, where the average is taken over all
possible training sets:

¯̂p(A, N, x) = lim
l→∞

1
l

l∑

i=1

p̂Si(x). (3)

The expect error rate of A for a test point x is

E(A, N, x) = ¯̂p(A, N, x). (4)

The definition of Bias and Variance is like below:

B(A, N, x) =
{

0, if ¯̂p(A, N, x) ≤ 0.5,
1, if ¯̂p(A, N, x) > 0.5. (5)

V (A, N, x) =
{ ¯̂p(A, N, x), if ¯̂p(A, N, x) ≤ 0.5,

¯̂p(A, N, x) − 1, if ¯̂p(A, N, x) > 0.5. (6)

So, the variance is the increase in the error rate at x relative to the bias.



A CMV Strategy for Parallel and Modular SVMs 533

4.2 Result Analysis

With the experimental methodology illustrated in Section 3, the bias and vari-
ance of CMV and MV are computed according to Dietterich’s method. Fig. 5
shows that the variances of CMV are smaller than the variances of MV in case
of different partitions in all the classification tasks, the only exception lies in
the case of Checkboard data classification when K = 2. The biases of CMV and
MV are zero in all cases and are not displayed. These evidences can explain why
CMV-SVMs can generalize better than MV-SVMs do.

From Fig. 5, we can see that the variance of CMV keeps stable while the variance
of MV gets bigger with increasing the number of partitions. These evidences can
explain why MV-SVMs generalize worse and worse with increasing the number of
partitions, while CMV-SVMs maintain their generalization accuracy.

5 Conclusion

In this paper, we have proposed a novel support vector machine called CMV-
SVM to scale SVMs. Comparison with other parallel SVMs, CMV-SVMs are
more easily to be implemented. Several experimental results indicate that the
proposed confident majority voting strategy can get higher accuracy than major-
ity voting does and the proposed CMV-SVMs can not only significantly reduce
the overall time consumed in training and test, but also produces classification
accuracy that is almost the same as standard SVMs do.

The limitation of the proposed CMV-SVMs lies in the necessity of storing all
the training samples to evaluate the classification confidence for novel inputs.
However, choosing the confident components can ensure better performance for
modular learning system. The future work includes to modify the method of
computing classification confidence and compare CMV-SVMs with other parallel
SVMs on large-scale problems systematically.
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Abstract. Based on the character and requirement of the dynamic
weighing of loader, the soft sensor technique was adapted as the weigh-
ing method, and the least square support vector machine (LS-SVM) as
its modelling method. Also the Bayesian evidence framework was used
in LS-SVM for selecting and tuning its parameter. And then, after the
nonlinear regression algorithms of LS-SVM and the principle of Bayesian
evidence framework were introduced, the soft sensor model based on LS-
SVM was given. In the end, emulation analysis results indicate that soft-
sensor method based on LS-SVM within Bayesian evidence framework is
a valid means for solving dynamic weighing of loader.

1 Introduction

Dynamic weighing of loader is a complex engineering problem, and many re-
searchers have been emphasizing on it for quite some time. Because not only
the forces of the working equipment are complex, but also the construction envi-
ronment is usually cruel, therefore using conventional measuring method based
on sensor and other hardware, we can’t get an approving measure precision. In
this paper, we introduce the soft sensor technology [1] to dynamic weighing of
loader, and set up the corresponding soft sensor model architecture.

There have been many soft sensor modelling methods. Among them, ANNs
modelling method has proven to be a powerful method in soft sensor modelling
for its simple structure and easy realization. Despite many advances, there still
remains a number of shortcomings, for example, the network architecture diffi-
cult to confirm, the existence of local minima problem for the training course,
excessive dependence on quantity and quality of training data set, and the gen-
eralization ability is not very well ,etc.. In essential, all the before-mentioned are
brought because the ANNs is based on the gradual theory, i.e., machine learning
course requires infinite samples in theory, but there are not so many samples
in fact. In order to solve this problem, Vapnik bring forward a creative small-
sample learning theory, i.e., statistical learning theory [2], based on the theory, a
novel powerful machine learning method called Support Vector Machines(SVM)
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was developed. The SVM optimization solutions are based on structural risk
minimization which ensures its powerful machine learning performance and syn-
chronously excellent generalization ability, based on limit samples. However it
has the limitation of speed in training large data set. Least square support vector
machines [3,4] (LS-SVM) is the improved SVM, it transfers the convex optimiza-
tion problem to a problem solving a set of linear equations, therefore it simplify
the operation and has higher efficiency. Hereby we propose LS-SVM to be the
soft sensor modelling method [5] for dynamic weighing of loader.

Synchronously, to render the LS-SVM to exhibit best performance, we employ
the three levels of inference within Bayesian evidence framework to optimize its
parameters. In the end, in this paper we adopt the LS-SVM within Bayesian
evidence framework as soft sensor modelling method for dynamic weighing of
loader.

This paper is organized as following: after this introduction section, the theory
of LS-SVM and the parameters inference algorithm within Bayesian evidence
framework are introduced respectively in section 1 and section 2. Section 3 is
the application study, in this section, the soft sensor modelling method was
applied to the dynamic weighing of loader ,based on the characteristic of dynamic
weighing, the soft sensor model structure has been given, then the simulation
results was presented. And in the last section we give some concluding remarks.

2 Least Square Support Vector Machines

Consider a given training set of l data points (x1, y1), (x2, y2), · · ·, (xi, yi), · · ·,
(xl, yl), with input data xi ∈ Rn and output data yi ∈ R. In feature space
LS-SVM model taken as the form

ŷ = ωT ϕ(x) + b. (1)

After using the above training set, we can get a nonlinear model which can
not only compromise between the model complexity and training error, but also
compromise the precise and the generalization ability. Then toward an arbitrary
sampled point input xd outside of the above training set, by the model we can
get a corresponding target value yd = f(xd), which has the least error between
yd and y. Compared with standard SVM, LS-SVM involves equality instead
of the inequality constraints. Furthermore, LS-SVM uses the least squares loss
function instead of the ε-insensitive loss function [4,6]. In this way, the solution
follows from a linear KKT system instead of a computationally hard QP problem.
Therefore it is easier to optimize and the computing time is short. For LS-SVM,
the optimization problem is formulated as

min
ω,b,e

J1(ω, e) =
μ

2
ωT ω +

ξ

2

l∑

i=1

e2
i = μEW + ξED. (2)

Subject to the equality constraints yi = ωT ϕ(xi) + b + ei (i = 1, · · · , l), where
ei ∈ R is the difference between yd and y, and ξ is a regularization constant.
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Smaller ξ can avoid overfitting in case of noisy data. And in this formula, the
regularization and error term are defined as EW and ED respectively. Then the
Lagrangian for (1) and (2) is

L(ω, b, e, a) = J(ω, e) −
l∑

i=1

ai

[
ωT ϕ(xi) + b + ei − yi

]
, (3)

with Lagrange multipliers ai ∈ R, the conditions for optimality are given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂L
∂ω = 0 → ω =

∑l
i=1 aiϕ(xi)

∂L
∂b = 0 →

∑l
i=1 aiyi = 0

∂L
∂ei

= 0 → ai = ξei, i = 1, · · · , l
∂L
∂ai

= 0 → b = yi − ωT ϕ(xi) − ei, i = 1, · · · , l

, (4)

By eliminating ei and ξ, the optimization problem is to solve linear equations
[

0 Y T

Y Ω + γ−1Il

] [
a
b

]
=

[
0
1v

]
, (5)

where Y = [y1, · · · , yl]T , a = [a1, · · · , al]T , 1v = [1, · · · , 1]T . According to the
Mercer condition, one takes a kernel.

Ωij = ϕ(xi)T ϕ(xj) = K(xi, xj), (6)

then the resulting LS-SVM recurrent model becomes

y(x) =
l∑

i=1

aiK(x, xi) + b. (7)

Based on the feature of the object to be studied, we chose the RBF kernels

K(xi, xj) = exp{−‖xj − xi‖2

2σ2 }

as the LS-SVM kernel function, and in the case the remaining unknowns are the
regularization parameter ξ and the kernel width parameter σ.

3 Parameters Optimizing of LS-SVM Within Bayesian
Evidence Framework

Compared with the traditional approach, the Bayesian method [7] provides a rig-
orous framework for the automatic adjustment of the regularization parameters
to their near-optimal values, without the need to set data aside in a validation
set [8,9]. Moreover, the Bayesian framework [10] allows objective comparison
among solutions using different kernel function or different kernel parameters.
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The basic idea of the Bayesian evidence framework is a maximum a posterior
solution to infer problems with Gaussian priors and an appropriate likelihood
function based probabilistic interpretation, i.e., the optimal parameters or model
are got according as its maximal posterior probability. The evidence framework is
divided into three levels of inference. The model parameters ω and b, the regular-
ization parameter γ, and the kernel width parameter σ are inferred respectively
by applying Bayesian formula on the three different levels.

3.1 Level 1 Inference

Given the data points D = {(xi, yi)}l
i=1 , it is assumed that the hyperparameters

μ, ξ and the LS-SVM model H are based on the kernel function K, we obtain the
model parameters ω and b by maximizing the posterior p(ω, b/D, logμ, log ξ, H).
Application of Bayes’ rule [8] at the first level of inference gives:

p(ω, b/D, logμ, log ξ, H) =
p(D/ω, b, logμ, log ξ, H)p(ω, b/ logμ, log ξ, H)

p(D/ logμ, log ξ, H)
, (8)

where H is the model corresponding to the kernel function K(xi, xj) with dif-
ferent parameters, the p(D/ log μ, log ξ, H) is a normalizing constant, that is the
evidence to be used in next level of inference, the p(ω, b/ logμ, log ξ, H) is the
prior, and the p(D/ω, b, logμ, log ξ, H) is the likelihood. Assuming a Gaussian
prior over ω with variance 1/μ, and a separate uniform distribution over b, then

p(D/ logμ, log ξ, H) ∝ exp(−μEW ), (9)

and assuming a Gaussian noise on the target variable, then

p(ω, b logμ, log ξ, H) ∝ exp(−ξED), (10)

hence

p(ω, b/D, logμ, log ξ, H) ∝ exp(−μEW ) exp(−ξED) ∝ exp(−J1(ω, e)), (11)

i.e.

− log [p(ω, b/D, logμ, log ξ, H)] ∝ μ

2
(ωT ω) +

ξ

2
e2

i = μEW + ξED. (12)

We can see that the course of maximum a posteriori estimate ωMP and bMP is
to by optimizing (2).

3.2 Level 2 Inference

The performance of the LS-SVM also depends upon the choice of the regulariza-
tion parameter ξ and the kernel parameter σ of the RBF kernel. In this section,
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Bayes’ rule is applied on the second level of inference to infer the hyperparame-
ters μ and ξ. On the given data points D, p(log μ, log ξ/H) is assumed to be a
flat prior, one can get

p(log μ, log ξ/D, H) =
p(D/ log μ, log ξ, H)p(log μ, log ξ/H)

p(D/H)
∝ p(D/ log μ, log ξ, H), (13)

where the likelihood p(D/ logμ, log ξ, H) is the normalizing constant of the
level 1 inference, which can be got by substituting (9), (10) and (11) into (8).

In order to find a trade-off between the model fit and a complexity term to
avoid overfitting [10], the evidence is optimized on level 2 inference, i.e. to get
optimized parameters μMP and ξMP for the parameter μ and ξ respectively.
Then the optimization proble [11] is transferred into

J2(μ, ξ) = μJω(ωMP ) + ξJe(ωMP + bMP )

+
m∑

i=1

log(μ + ξλi)
2

− m

2
log μ − m − 1

2
log ξ, (14)

to define effective number of parameter [11] is

deff = 1 +
m∑

i=1

ξλi

μ + ξλi
= 1 +

m∑

i=1

γλi

μ + γλi
, (15)

where γ = ξ/μ, m ≤ l − 1. Based on the optimal conditions of (14), one can get

∂J2/∂μ = 0 → 2μMP Jω(ωMP ; μMP , ξMP ) = deff (μMP , ξMP ) − 1, (16)

∂J2/∂ξ = 0 → 2ξMP Je(ωMP ; bMP ; μMP , ξMP ) = l − deff , (17)

then (17) is corresponding to noise level(variance) 1/ξ, i.e.

1/ξ =
1
2

l∑

i=1

e2
i /(l − deff ). (18)

Then one can reformulate (14)into the optimization problem

min
γ

l−1∑

i=1

log(λi +
1
γ

) + (l − 1) log(Jω(ωMP ) + γJe(ωMP , bMP )), (19)

where,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Je(ωMP , bMP ) = 1
2λ2 yT NcV (Λ + Il/γ)−2V T Ncy

Jω(ωMP ) = 1
2yT NcV Λ(Λ + Il/γ)−2V T Ncy

Jω(ωMP ) + γJe(ωMP , bMP ) = 1
2yT NcV (Λ + Il/γ)−V T Ncy

, (20)
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with eigenvalue decomposition NcΩNc = V T ΛV , then we can get the optimal
γMP , and by (16) and (17), we get

μMP = (deff − 1)/(2Jω(ωMP )), (21)

ξMP = (l − deff )/(2Je(ωMP , bMP )). (22)

3.3 Level 3 Inference

Different models can be obtained by choosing different kernel function or dif-
ferent kernel parameters. For an RBF kernel with tuning parameters σ, the
corresponding models Hσ is calculated by the posterior

p(Hσ/D) =
p(D/Hσ)p(Hσ)

p(D)
∝ (D/Hσ)p(Hσ) ∝ p(D/Hσ), (23)

then giving a series of possible kernel parameter values σ1,· · ·,σm, by ranking the
evidences of different models p(D/H1), · · ·, p(D/Hm), and selecting the tuning
parameters with the greatest model evidence, we can get the optimal kernel
parameter σMP .

4 Application Study

4.1 Soft Sensor Modeling Framework

For the dynamic weighing of loaders, because the hydraulic pressure signal can
be easily acquired correspondingly. Also during the course of lifting, by putting
a hydraulic pressure sensor into the lifting cylinder to carry out dynamic weigh-
ing, not only make the loader work naturally but also improve the applica-
bility of the measuremethod. During the course of lifting, the weight W to
be measured not only have relation to the hydraulic pressure signal p of the
lifting cylinder, the position ΔL of lifting cylinder and the lift crane’s lifting
velocity v, but also to the random noises n of industry field, etc. Hence, we
introduce a soft sensor modelling method derived from conventional soft sen-
sor technology, so we take the measurable output variable and some parts of

Fig. 1. Soft sensor model framework of dynamic weighing
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input variable of industrial object as the input variables of soft sensor mod-
elling, and the input to be measured as the output variable. Therefore we adopt
above-mentioned factors except the random noises n as the secondary variables,
and the weight to be measured as the primary variable, then we set up the
soft sensor modelling framework (Fig. 1), utilize batch data 031 as the training
data set to train the least square machines in order to establish the soft sensor
modelling, and the batch data 131 as verifying data set in order to obtain the
weight W .

4.2 Simulation Analysis

Parameters tuning. While the type of kernel function was confirmed, the per-
formance of the LS-SVM would only be determined by the selection of the kernel
parameters. There are two parameters to be confirmed, that is regularization
parameter ξ and the kernel parameter σ. Within Bayesian evidence framework,
we employ level 2 inference to optimize the parameter ξ, and level 3 inference
to optimize the parameter σ, the deducing course is illustrated in Fig. 2 and
Fig. 3.

Fig. 2. The posterior and its testing error using level 2 inference

Fig. 2 shows that, while the regularization parameter ξ becomes more larger,
the corresponding training error gets smaller, but when ξ increases to some ex-
tent, the change of the training error becomes smooth. Also considering the
verifying error is independent of the parameter ξ, therefore we choose ξ =
900.

Synchronously, if the kernel parameter is small, which indicates that the re-
lationship among SVs is tight, but if it is too small, it would make the model
complex excessively, and will result in overfitting, i.e., the generalization ability
getting worse. On the contrary, if the kernel parameter σ is large, which indicates
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Fig. 3. The posterior and its testing error using level 3 inference

Fig. 4. The training error performance of LS-SVM

Fig. 5. The verification error performance of LS-SVM

that the relationship among SVs is incompact, but if it is too large, it will result
in defective fitting. Fig. 3 reflect the kernel parameter σ inference course, and
based on the inference result, we choose the kernel parameter σ = 14.5.

Simulation results. Then we apply the LS-SVM confirmed to carry out soft
sensor modeling for dynamic weighing of loader, Fig. 4 and Fig. 5 show the train-
ing and verifying error curve respectively, the curves reflect the Mean Squared Er-
ror(MSE) analysis results between the estimated value with LS-SVM soft sensor
model and the true value. We can find that, because there is concussion caused
by scooping force at the beginning process of lift crane’s raising course, while
at the ending course there is the structure design influence of working equipment,
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the corresponding training errors are on the high side, yet the global training
error of the lift crane’s raising course is good, only reaching to 8.4680e-007; at
the same time, although the validation error is larger than the corresponding
training error, yet it exhibits better generalization ability, the error just attain
to 6.8638e-006. In a word, using the LS-SVM as the modelling method we can
achieve satisfactory performance, hence it is an effective soft sensor modeling
method for the dynamic weighing of loaders.

5 Conclusion

Based on the characteristic of dynamic weighing of loader, the sensor modeling
method is proposed to estimate the immeasurable variables during the weighing
course. And we adopt LS-SVM as the soft sensor modeling method. Also to
render the LS-SVM to exhibit best performance, we employ level 2 inference to
optimize its regularization parameter , and the level 3 inference to optimize its
kernel parameter σ.

After the theory of LS-SVM and the parameters optimizing course within
Bayesian evidence framework have been introduced, we set up the soft sensor
modelling architecture. Then we apply the LS-SVM to carry out soft sensor
modelling for dynamic weighing of loader. The simulating results indicates that
soft-sensor method based on LS-SVM within Bayesian evidence framework is a
valid means for solving dynamic weighing of loader.
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Abstract. Time series analysis and prediction is an important means
of dynamic system modelling, but traditional methods of time series pre-
diction such as statistics and artificial neural network (ANN) are not fit
for complicated non-linear system. Hence, a new method of support vec-
tor regression (SVR) was introduced to solve the prediction problem of
complicated time series. For the purpose of reducing complexity of cal-
culation, smooth arithmetic based on SVR was imported to forecast the
time series of vibration data collected from turbine system. The result
of simulation indicated that smooth support vector regression (SSVR) is
obviously superior to ANN method on performance of prediction. Com-
pared with SVR, SSVR has faster speed of convergence and higher fit-
ting precision, which effectively extends the application of support vector
machine.

Keywords: time series prediction, support vector machine, regression,
smooth method, turbine.

1 Introduction

Time series prediction is a problem of forecasting the future trend based on his-
torical data, which is an important way of dynamic data analysis and processing,
and is already widely applied in many fields such as weather, finance, physic,
electric power, control, and so on. Traditional technologies of time series pre-
diction adopt methods of statistics and artificial neutral network [1]. However,
statistics method is not fit for complicated time series; artificial neutral network
has better ability of non-linear approximation, but insufficient or excessive train-
ing easily appears. Moreover, artificial neutral network is sensitive to the initial
value of connecting weights, and has poor ability of generalization. Therefore,
it’s necessary to search a better method to solve the problem of complicated
system modeling.

Support Vector Machine (SVM) [2] is a new type of learning machine which
is based on Statistical Learning Theory and Structural Risk Minimization prin-
ciple. According to limited amount of training samples, SVM suggests a best
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tradeoff between complexity of model (the learning precision for given samples)
and learning ability (the ability to recognize any sample without error) to ob-
tain best generalization. The application of SVM for problem of regression is
named Support Vector Regression (SVR), which has good effect on time series
prediction of complicated dynamic system.

Based on the research of SVR arithmetic [3-8], a smooth method of SVR was
imported, which transforms the constrained quadratic optimization problem to
an unconstrained convex quadratic optimization problem, and effectively reduces
complexity of SVM’s training. The simulation experiment was done to try to find
a new way of turbine state prediction and fault diagnosis.

2 Time Series Prediction Based on SSVR

The essence of time series prediction is to seek a mapping f : Rm → Rn to
approach the latent non-linear mechanism F for given data set, which can be
used as predictor. According to the given samples based on probability P (x, y),
the basic problem of regression is to find out a function f ∈ F (F is the set of
functions) to minimize the desired risk function as follows:

R[f ] =
∫

l(y − f(x))dP (x)

where l(.) is a loss function which denotes deviation between y and f(x). Because
P (x, y) is usually unknown, we can not get R[f ] via upper equation.

According to Structural Risk Minimization principle:

R[f ] ≤ Remp + Rgen

where Remp is empirical risk, Rgen is a measurement of complexity of f . There-
fore, the limit of R[f ] can be ascertained.

For given s groups of samples: {xi, yi}, i = 1, 2, · · · , s, xi ∈ Rm, yi ∈ R, a non-
linear mapping Φ is used to map data x into a higher dimensional feature space
G. In this feature space the mapping f is found out to linearly approach the
given data. According to Statistical Learning Theory, function f has the form
as follows:

f(x) = (ω, φ(x)) + b
φ : Rm → R, ω ∈ G

(1)

where ( , ) is inner product operation, the problem of function approximation
equals to minimizing the functional as follows:

Rreg = Remp + λ‖ω‖2 =
s∑

i=1

l(yi − f(x)) +
1
2
‖ω‖2 (2)

Selecting function of ε-insensitive as loss function:

|y − f(x)|ε = max{0, |y − f(x)| − ε} (3)

then the empirical risk is:
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Rε
emp[f ] =

1
s

s∑

i=1

|yi − f(x)|ε (4)

where ε is used to control the error of regression, presenting not to penalize the
term whose deviation is less than ε. Doing so is helpful to prevent over-fitting
and increase the robustness of regression. Rε

emp[f ] minimizing Eq. (1) embodies
the kernel of Statistical Learning Theory, which controls not only the training
error, but also the complexity of model for the purpose of obtaining smaller
desired risk to enhance the model’s ability of generalization.

Now,the regression problem changes to optimal problem as follows:

min J = 1
2‖ω‖2 + C

s∑

i=1
(ξ∗i + ξi)

s.t.

⎧
⎨

⎩

yi − (ω, Φ(xi)) − b ≤ ε + ξ∗i
(ω, Φ(xi)) + b − yi ≤ ε + ξi

ξ∗i , ξi ≥ 0

(5)

where x∗
i , xi are slack terms to make the solution of Eq. (5) existing; C is regular

factor which is a constant and is used to get tradeoff between complexity of
model and learning ability. Normally, the bigger is the value of C, the higher is
the degree of fitting.

SVR needs to resolve a constrained Quadratic Programming (QP) problem.
Because standard arithmetic of SVR is complicated and may expend more train-
ing time when dealing with large numbers of samples, its application is limited in
practice. Hence, many new arithmetic of SVR are put forward, such as Osuna.s
theorem [9], SVMlight arithmetic by Joachims [10], Sequential Minimal Opti-
mization (SMO) arithmetic by Platt [11], Successive Over-Relaxation (SOR)
arithmetic by Mangasarian [12], and so on. Recently, Lee Y J and Mangasar-
ian imported a kind of Smooth Support Vector Machine (SSVM) arithmetic
[13]. This arithmetic introduces smooth method to transform the constrained
quadratic optimization problem to an unconstrained convex quadratic optimiza-
tion problem, which effectively simplifies the arithmetic of SVR.

SSVR first transforms loss function to quadratic ε-insensitive loss function,
then Eq. (5) can be expressed as:

min J = 1
2‖ω‖2 + C

s∑

i=1
(ξ∗i )2 + C

s∑

i=1
ξ2
i

s.t.

⎧
⎨

⎩

yi − (ω, Φ(xi)) − b ≤ ε + ξ∗i
(ω, Φ(xi)) + b − yi ≤ ε + ξi

ξ∗i , ξi ≥ 0

(6)

then uses C/2 to replace C and adds a term of b2/2. The objective function of
Eq. (6) becomes:

min J =
1
2
(‖ω‖2 + b2) +

C

2

s∑

i=1

(ξ∗i )2 +
C

2

s∑

i=1

(ξi)2 (7)
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Introducing transformation:

z∗i = yi − (ω, Φ(x)) − b − ε
zi = (ω, Φ(x)) + b − yi − ε

(8)

to define function (u)+ = max{u, 0}, then makes ξ∗i = (z∗i )+, ξi = (zi)+. Eq. (7)
changes to an unconstrained quadratic optimization problem as follows:

min J =
1
2
(‖ω‖2 + b2) +

C

2

s∑

i=1

(z∗i )2+ +
C

2

s∑

i=1

(zi)2+ (9)

Eq. (9) is an unconstrained convex quadratic optimization problem whose
solution is exclusive, but its objective function is not twice differentiable. There-
fore, a strictly convex and infinitely differentiable smooth function p(u, α) =
1
α ln(1 + eαu), α > 0 is defined. Using p(u, α) to replace (u)+, we can get the
objective function of smooth support vector regression:

min J =
1
2
(‖ω‖2 + b2) +

C

2

s∑

i=1

p(z∗i , α)2 +
C

2

s∑

i=1

p(zi, α)2 (10)

It can be proved that p(u, α) is able to approach (u)+ when α = 10; and the
solution of Eq. (10) converge to the solution of original problem when α → ∞.

3 Simulation Experiment

3.1 Comparison of Data Fitting Performance

First we compared SSVR with ANN on performances of data fitting through a
simple example. RBF artificial neural network regression and SSVR were used
to approach a group of data. The results are showed in Fig. 1.

In a) of Fig. 1, the fitting curve of RBF ANN regression reflects the time trend
of the given data set on the whole, but in outside data point, the fitting curve
is not smooth and is unable to reflect the latent mechanism of original time se-
ries. The main reason is that RBF ANN has poor ability of generalization. ANN
must have appropriate network structure, and unilaterally pursuing least train-
ing errors may easily lead to excessive fitting and bad ability of generalization.
At present, research on ANN structure has no perfect achievements, and some
parameters of network are selected by experience, which restricts its ability of
generalization.

b) of Fig. 1 indicates that SSVR arithmetic has good effect on data fit-
ting for given time series. Compared with a) of Fig. 1, SSVR’s fitting curve
in outside data point is improved effectively. On the whole, the fitting curve is
very smooth and reflects the intrinsic mechanism of original time series, because
SSVR arithmetic compromisingly chooses training errors and complexity of re-
gression through controlling support vectors and other parameters, which avoids
the emergence of excessive fitting and gets better ability of generalization.
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Fig. 1. Comparison of fitting ability between ANN and SSVR

3.2 Comparison of Training Speed

In the test of training speed, Housing data set was used (506 samples in total).
And RBF kernel function K(xi, xj) = exp(−|xi − xj |/σ2) was selected, and
other parameters were set according to reference [14]: C = 1000, ε = 30, σ = 1.5.
The computer has 1.5GHz CPU and 256M memory, and the operation system
is Windows 2000 Professional SP4. The results of test are showed in Table 1.

Table 1. Training Time of different regression arithmetic for Boston Housing data set

(Training samples, Test samples)
Time of regression (s)

SSVR SVR ANN

(160, 346) 0.10 0.11 0.10
(240, 266) 0.16 0.20 0.14
(320, 186) 0.24 0.35 0.23
(400, 106) 0.31 0.55 0.30

From Table 1 we can conclude that the three methods of regression have
nearly same training time on condition of small quantity of samples, and SSVR
arithmetic has no obvious advantage. But ANN arithmetic has bigger errors and
lower fitting precision. On condition of large quantity of samples, the operating
time of SSVR is nearly linear to the quantity of samples. The convergence speed
of SVR is slower and the memory needed is square to the quantity of samples.

3.3 Simulation of Prediction

In the simulation experiment of prediction, the historical data of turbine was
used (130 samples in total). First we deal with the original data by calculating
the percentage of basic frequency amplitude in pass band to construct the time
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series. 60 samples were used as training samples, and the last 70 samples were
used as prediction samples. The training samples were delayed 1 to 5 time units
to constitute the input vector as follow:

X = {u(k − 1), u(k − 2), u(k − 3), u(k − 4), u(k − 5)}

SSVR arithmetic used RBF kernel function, and other parameters were set
as: C = 2000, ε = 10−6, σ = 1.3. The results of simulation are showed in Fig. 2
and Fig. 3.

a) of Fig. 2 and Fig. 3 reflect that the fitting curve of RBF ANN is not
smooth and can not embody the latent mechanism of the time series. Besides,
RBF ANN has bigger errors in prediction than SSVR and influences the effect
of final prediction. b) of Fig.2 and Fig. 3 shows that SSVR arithmetic has better

Fig. 2. Fitting curve of SSVR and ANN

Fig. 3. Predicting curve of SSVR and ANN
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stability. Its output curves are very smooth, and the support vectors usually
occur on rate of 100%, which ensures the prediction curve to approach the actual
output. Therefore, SSVR arithmetic is very fit for the situation of complicated
time series prediction.

4 Conclusion

The theoretical and experimental analysis suggests that SSVR arithmetic im-
proves the standard arithmetic of SVR. SSVR arithmetic not only inherits the
good ability of generalization of SVR, but also avoids the disadvantage of ANN,
and has higher precision of prediction. The reason is that SSVR arithmetic is
based on VC theory and Structural Risk Minimization principle, and the design
of the machine randomly extracts subset of training set as support vectors, which
represent the steady characteristic of whole data set. SSVR arithmetic enhances
the speed of regression by reducing computing complexity and lowers the need of
memory. Therefore, SSVR arithmetic is very fit for the problem of large samples.
But SSVR arithmetic still needs to resolve quadratic programming problem, and
has no theoretical proof for the selection of regular factor and kernel function,
which is still an open problem for research.
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Abstract. In this paper, the extension neural network (ENN) is pro-
posed.To tune the weights of the ENN for achieving good clustering per-
formance, the immune algorithm(IA) is applied to learning the ENN’s
weights, which is replaced the BP algorithm. The affinity degree between
the antibody and the antigen is measured by extension distance (ED),
which is modified to the conjunction function(CF) in Extensions. The
learning speed of the proposed ENN is shown to be faster than the tradi-
tional neural networks and other fuzzy classification methods. Moreover,
the immune learning algorithm has been proved to have high accuracy
and less memory consumption. Experimental results from two different
examples verify the effectiveness and applicability of the proposed work.

1 Introduction

Neural networks model brain-style information processing at various abstrac-
tion levels. Neural network technologies are parallel systems used for solving
regression and classification problems, it has been reported superior in numer-
ous application areas, such as pattern recognition, full-text and image analysis,
financial data analysis, process analysis and modeling as well as monitoring and
control, and fault diagnosis [1,2,3,4]. They can estimate a relation function be-
tween the inputs and outputs from a learning process, and also can discover
the mapping form feature space into space of classes. Classification or cluster
analysis is one of the most important applications of neural networks.

With the development of many new knowledge and the demand of many ap-
plication, many hybrid neural networks are proposed, such as Wavelet Neural
Network (WNN)[5], Chaos Neural Network (CNN)[6], Fuzzy Neural Network
(FNN)[7], Immune Neural Network (INN)[8] and etc. These hybrid neural net-
work is combination of the neural network and the corresponding theory.

In our world, there are some classification problems whose features are defined
in a range. For example, water can be defined as a cluster of temperature from 0
degree to 100 degree and the permitted operation voltages of a specified motor
may be between 100 and 120 V. For these problems, it is not easy to implement
an appropriate classification method using current neural networks. M.H. Wang
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proposed the ENN[9] which is a combination of the neural network and the
extension theory[10] to solve these problems. The extension theory proves a novel
distance measurement for classification processes, and the neural network can
embed the salient features of parallel computation power and learning capability.
In other words, the ENN permits classification of problems, which have range
features, supervised learning, or continuous input and discrete output. But the
learning algorithm is need more learning times.

In this paper we have proposed a immune algorithm-based learning mechanism
for adjusting the connections range between the input node and the output node
of ENN. This method differs from the existing approaches. In the second part,
the ENN is proposed, and in the third part, the learning mechanism based
on immune algorithm is given. Finally, the experiments results is proved the
algorithm is effective.

2 Extension Neural Network

Extension theory[10] was originally invented by Cai to solve contradictions and in-
compatibility problems in 1983, the following is introduced the basic of extension.

2.1 Basic of Extension Theory

Definition 1 (Matter-element). Defining the name of a matter by N; one of
the characteristics of the matter by c; and the value of c by v; we can use an
ordered ternary R = [N, c, v] as the fundamental element to state a matter and
call it a matter-element in extension theory.

If the value of the characteristic has a classical domain or a range, we define
the matter-element for the classical domain as follows: R = [N, c, < wL, wU >],
where wL and wU are the lower bound and upper bound of classical domains,
respectively.

If R = [N, C, V ] is a multi-dimensional matter-element, C = {c1, c2, · · · , cn}
is a set of n characteristic vector and V = {v1, v2, · · · vn} a value vector of
characteristic.

Definition 2 (Extension Set). If U is a space of objects and x a generic
element of U ; k is a relational function from U to (−∞, ∞); T is a matter
transform to the element of U ; then an extension set A in U is defined as a set
of ternary pairs:

Ã(T ) = {(u, y, y′)|u ∈ U, y = k(u) ∈ (−∞, ∞), y′ = k(Tu) ∈ (−∞, ∞)}, (1)

y = k(u) is the conjunction function of extension set Ã(T )

Definition 3 (Conjunction Function). Let X0 = 〈a, b〉, X = 〈c, d〉 and x0 ∈
X0,The conjunction function is defined as follows:

K(x) =
ρ(x, X0)

D(x, X0, X)
, (2)
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where
ρ(x, X0) = |x − a + b

2
| − b − a

2
(3)

and

D(x, X0, X) =

{
−1 x ∈ X0

ρ(x, X) − ρ(x, X0) others
(4)

The conjunction function can be used to calculate the membership degree be-
tween x and X0. When K(x) ≥ 0, it indicates and describes the degrees to which
x belongs to X0. When it K(x) < 0 describes the degree to which x does not
belong to X0.

2.2 Extension Neural Network

The proposed ENN is a combination of the neural network and the extension
theory. The extension theory proves a novel distance measurement for classifica-
tion processes, and the neural network can embed the salient features of parallel
computation power and learning capability.

The structure of the ENN is depicted in Fig. 1.

Fig. 1. The structure of extension neural network(ENN)

It comprises both the input layer and the output layer. The nodes in the input
layer receive an input feature pattern and use a set of weighted parameters to
generate an image of the input pattern. In this network, there are two connection
values (weights) between input nodes and output nodes; one connection repre-
sents the lower bound for this classical domain of the features, and the other



556 C. Xiang et al.

connection represents the upper bound. The connections between the j-th input
node and the k-th output node are wL

kj andwU
kj . This image is further enhanced

in the process characterized by the output layer. Only one output node in the
output layer remains active to indicate a classification of the input pattern. The
operation mode of the proposed ENN can be separated into the learning phase
and the operation phase. The learning phase is used by immune algorithm and
discussed in the next section.

3 Immune Algorithm-Based Learning Mechanism

Recently, artificial immune systems (AIS) have captured the attention of various
researchers due to their ability to perform tasks such as learning and memory
acquisition. This approach is suitable for solving multi-modal and combinatorial
optimization problems. AIS have been applied in problem solving. Therefore,
AIS are not only related to the creation of abstraction or metaphorical models of
the biological immune system, they also include theoretical immunology models
being applied to tasks such as optimization, control, and autonomous robot
navigation.

In this paper, the immune algorithm is applied to train the weight of ENN.

Antibody: The weight of ENN is described by the matter-element as following.

Rk =

⎡

⎢⎢
⎣

Nk c1 (wL
k1, w

U
k1)

c2 (wL
k2, w

U
k2)

· · · · · ·
cn (wL

kn, wU
kn)

⎤

⎥⎥
⎦ (5)

antibody =
[
wL

11 wL
12 , · · · , wL

k1 wL
k2 , · · · wL

n1 wL
n2 , · · · wL

mn

wU
11 wU

12, · · · , wU
k1 wU

k2 , · · · wU
n1 wU

n2 , · · · wU
nm

]
(6)

where wL
ki and wU

ki is the connection weight lower bound and upper bound be-
tween the i-th input node and the k-th output node. i=1,2,. . . ,n, k=1,2,. . . ,m.

Antigen: The input samples is the antigen. the samples matter-element is
described

RIi =

⎡

⎢
⎢
⎣

Mi c1 vi1
c2 vi2
· · · · · ·
cn vin

⎤

⎥
⎥
⎦ (7)

antigeni =
[
vi1 vi2 , · · · , vin

]
(8)

Fitness function: The fitness function have overall influence to convergence of
the learning algorithm, and is the key factor to obtain the optimization fitness
value. An important characteristics of ENN is that the smaller the covariance
between the output value and the input, the better the performance of the ENN.
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Let the samples be {X1, T1}, {X2, T2}, · · · , {XQ, TQ}, Q is the total number
of the patternwhere Xi is input samples, Ti is output of the sample.

The fitness is f = nsucess

ntotal
,where nsucess is correct numbers of output ntotal is

the total numbers of all samples. If the sum function of error square

Error =
1
2

Q∑

j=1

m∑

i=1

(tij − EDij)2 (9)

is achieved the require, the learning is stop. where tij is the j-th expectation
output of the i-th pattern EDij is the j-th really output of the i-th pattern. Our
learning algorithm of ENN is based on the fundamental procedures of IA and
can be summarized as follows:

Step 1: The j-th center of the i-th pattern is computed by Eq.(10).

zkj =

∑Nk

i=1 vi
kj

Nk
, (10)

where Nk is the i-th pattern samples numbers.
Step 2: Creating initial antibody population randomly, i.e. a population of

weights of ENN which are randomly specified by Eq.(11)
Step 3: Evaluating affinity vector between each antibody and each antigen

using Eq.(4).

Aff(Agi, Ab) = {Affi(1), Affi(2), · · · , Affi(n)}, (11)

where

Affi(k) = ED(Agi, Ab(k)) =
m∑

j=1

bj [
|vij − zij | − 1

2 (wU
kj − wL

kj)

|12 (wU
kj − wL

kj)|
] (12)

k = 1, 2, · · · , n
Step 4: ranking the affinity vector. if the output of Max{Affi(k), k =

1, 2, · · · , n} is the same as the exsection output of the input samples, the out-
put of the corresponding antigen is reserved and the counterNsucess is added
one time. Until all samples is trained completely, The fitness of the antibody
f = nsucess

ntotal
is computed.

Step 5: Ranking the fitness value of all antibody and cloning the antibody
according the value.

Nc(P ) = INT [N − fp∑
fp

• N ], (13)

where p = 1, 2, · · · , is the antibody symbols INT [] is integer.
Step 6: All antibodies using super mating operator as follows.

wL
kj = wL

kj + ξ(
1

Nk

Nk∑

i=1

vij − wL
kj), w

U
kj = wU

kj + ξ(
1

Nk

Nk∑

i=1

vij − wU
kj) (14)
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where ξ ∈ [0, 1] is a random number, Nk is the i-th pattern samples numbers,
k = 1, 2, · · · , m; j = 1, 2, · · · , n.

Step 7: Selecting antibodies of the fitness value to reserve and Generating
new antibodies radomes. If termination conditions are met go to step Step 8,
otherwise, go to step 3.

Step 8: Stop, return the best antibody and translate it into the weights of
ENN.

Table 1. Classic input and out samples

G.N < 0.4f 0.4 − 0.5f 1f 2f 3f > 3f F.T

1 3.35 46.6 12.15 1.94 2.3 1.67 F1
2 4.43 51 11.02 3.02 1.3 2.43 F1
3 3.29 50 11.61 1.24 0.9 1.3 F1
4 5.72 46.3 12.31 3.62 1.5 0.59 F1
5 6.32 45.8 15.23 3.56 2.3 3.19 F1
6 1.51 3.29 2.92 6.59 2.5 2.54 F2
7 2.43 1.19 54.49 4.64 0.8 1.78 F2
8 0.54 2.92 48.82 6.64 3.9 1.51 F2
9 0.81 1.73 52 6.43 3.6 1.89 F2
10 1.24 1.35 49.79 4.64 1.0 2.27 F2
11 1.78 1.46 22.46 23.8 19 8.59 F3
12 0.92 1.24 30.38 22 16 5.67 F3
13 0.65 2.11 21.98 26.2 18 11.1 F3
14 1.13 0.92 24.46 22.3 15 15.8 F3
15 0.92 1.40 26.08 26 20 11.4 F3

G.T, generator number; F.T, Fault types; F1, Oil-resonance fault;
F2, imbalance fault; F3, misalignment fault

4 Experiments

To demonstrate the effectiveness of the proposed IA-ENN in fault diagnosis
method, 15 sets of field-test data from steam-turbine generator sets in China
[11][12] were tested (the data are shown in Table 1). The input data include the
six amplitude values of the vibrational spectrum, where f is the frequency of the
generator rotor. It is clear that vibration diagnosis in steam-turbine generator
sets is a most complicated and nonlinear classification problem. let population =
50, iter = 500, Error = 0.001, N = 10,ξ = 0.05, let IA-ENN train the weight be

Ab(F1) =
[
3.34 45.73 , 11.01, 1.25 0.88 0.60
6.33 51.02, 15.24, 3.63 2.29 3.15

]

Ab(F2) =
[
0.60 1.19 , 48.82 4.61 0.83 1.48
2.41 3.26 , 53.00 6.53 3.79 2.56

]

Ab(F3) =
[
0.70 1.89 21.88 22.05 14.97 5.76
1.75 2.05 30.29 26.13 19.02 14.75

]
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Table 2. Classic input and out samples

G.N < 0.4f 0.4 − 0.5f 1f 2f 3f > 3f EDF1 EDf2 EDF3 F.T

1 3.01 40.6 11.15 2.94 2.3 1.07 0.756 2.536 16.708 F1
2 0.50 2.22 48.82 6.54 2.9 1.61 1.888 0.694 1.641 F2
3 3.29 47 11.05 1.44 0.8 1.01 0.713 2.825 19.272 F1
4 2.43 1.18 53.40 4.02 0.35 1.68 1.863 0.774 1.584 F2
5 1.03 0.82 24.56 21.33 14.08 14.8 2.731 2.509 0.932 F3
6 0.89 1.04 29.38 22 15.8 5.47 2.668 1.953 0.851 F3
7 0.79 1.09 28.38 21.98 15.6 5.07 2.635 1.942 0.836 F3

Table 3. Different learning methods of the same sample

Classifiers AWN[11 ] FNN[13] BPNN[12] I-BPNN[12] IA-ENN

Structure 6-13-3 6-16-3 6-16-3 6-16-3 6-3

epochs(iters) 900 500 2561 979 127

time(s) * * 482 182 89

The precision is 0.03

then the weight of ENN trained the samples by immune algorithm is Ab =
[Ab(F1), Ab(F1), Ab(F1)], then the test samples is applied by ENN, the results
is showed Tab.2. To compare the diagnosis performance, the epochs(iter) and
the time consumption of several different neural network are shown in Tab.3.
From the table, the iter and the time consumption is less than others methods.

5 Conclusion

A method for fault diagnosis of steam-turbine generator sets using wavelet neural
networks and particle swarm optimization has been proposed. Compared with
traditional BP neural networks and other fuzzy classification methods, it permits
an adaptive process for significant and new information, and gives shorter learn-
ing times. From the tested examples, the proposed IA-WNN has been proved to
have the advantage of less learning time, and less time consumption.
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Abstract. This paper proposed a new fault-detection method based on the 
combination of Rough Set (RS) and Artificial Neural Network (ANN), called 
hybrid fault-detection method based on RS and ANN (HFDMRSNN), which 
uses RS to reduce parameters of a pipeline system and then uses ANN (three-
layer neural network) to form a detection model. This method could detect fault 
of pipeline not only in stationary status but also in non-stationary status. The 
efficiency of the HFDMRSNN in detecting fault in real pipeline system is 
evaluated by an experiment in a long product oil pipeline in Shandong China. 
From the results, it is observed that the proposed HFDMRSNN is able to 
identify the status of complex pipeline effectively. 

1   Introduction 

It is one of important problems to detect leaks on oil transmission pipelines [1]. The 
usual way to detect leaks real-timely is based on stationary status calculations, such as 
mass balance method and negative wave method. Traditionally, the first and also the 
most important problem for negative wave diagnosis and mass balance is that they are 
effectively only when the pipeline running in steady status. It is difficulty to detect 
fault of oil transmission pipeline in non-stationary status that only through collecting 
pressure, flow, and temperature signals. However, the status of a pipeline, for 
example a product oil pipeline, is affected by not only pressure, instantaneous flow, 
temperature, but also density, status of pumps, turndown ratio, diameter of pipeline, 
etc., and there also exist interactional relations among parameters. These methods of 
stationary status play a little role for fault diagnose and often occur missing alarms 
and false alarms especially on intricate oil pipelines which have some intermediate 
stations, intermediate pumps and other factors. 

To detect fault on complicated oil duct, a new fault-detection method is proposed 
in this paper, which based on the combination of Rough Set and Artificial Neural 
Network, called HFDMRSNN. In HFDMRSNN, besides pressure, flow, and 
temperature signal, more signals are processed, like status of pumps, turndown ratio 
of valve, diameter of pipeline and so on. 

In the paper, after introduction, the HFDMRSNN is described in Section 2 which be 
explained in two phase, followed by an experiment of the HFDMRSNN in Section 3, 
the experimental results will be given with the conclusions in the last section. 
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2   Description of HFDMRSNN 

The common advantage of RS and ANN is that they do not need any additional 
information about data like probability in statistics or grade of membership in fuzzy-
set theory. RS has proved to be very effective in many practical applications. 
However, in RS theory, the deterministic mechanism for the description of error is 
very simple. Therefore, the rules generated by RS are often unstable and have low 
classification accuracies. So RS cannot predict loads with high accuracy. ANN is 
considered the most powerful classifier for low classification-error rates and 
robustness to noise. But ANN has two obvious shortcomings when applied to large 
data-problems. The knowledge of ANN is buried in their structures and weights. It is 
often difficult to extract rules from a trained ANN. So HFDMRSNN is presented. The 
combination of RS and ANN is very natural for their complementary features [2]. The 
RS approach as a pre-processing tool for the ANN. RS theory provides useful 
techniques to reduce irrelevant and redundant attributes from a large database with a 
lot of attributes. ANN has the ability to approach any complex functions and possess 
as a good robustness to noise. The HFDMRSNN has two main phases: the training 
phase and the defect-detection phase. The flow diagram of HMOPRSANN is shown 
in Fig. 1. Using RS reduce parameters of a pipeline system and using ANN produce a 
detection model, the training phase completes the foundation of detection model. In 
defect-detection phase, real-time data is inputted into detection model that founded by 
the training phase, the status of the pipeline system is obtained. 

2.1   Training Phase 

2.1.1   Attributes Reduction 
The objective of this stage is to find a minimal subset of related attributes that 
preserves the classification of the original attributes of the decision table. This can be 
a useful method for identification of the most significant and important variables in a 
given neural network. Consequently, we can succeed in managing the architecture of 
the neural network, and provide a reasonable solution for the explanation problem. 
The rough set theory provides the tool to deal with this issue. The concept of reduct 
can be successfully used to achieve this objective (Pawlak, 1991). There are many 
reducts that can be discovered at the analysis phase of the decision table. We are 
mostly interested in the best reduct. The general problem of finding all the reducts is 
NP-hard, but in most cases it is not necessary to find all the reducts. The criteria taken 
to solve this problem is that the best reduct is the one with the minimum number of 
attributes, and that if there are two or more reducts with the same number of 
attributes, then the reduct with the least number of combination of its attributes is 
selected (Hu & Cercone, 1995). The core is another concept of the rough set theory, 
and represents the intersection of all the generated reducts from the decision table. 
Hence the algorithm of deriving the best reduct was built, based on computing the 
core from the decision table (Yahia et al.,1998). 

The process of attributes reduction is divided into three steps, as is shown in Fig. 2. 
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Fig. 1. The flow diagram of HMOPRSANN 
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2.1.1.1   Acquisition of Data. The first step is to receive the history data of the 
pipeline as a set of training example cases in the form of a matrix, in which columns 
are represented by parameters that acquired form sensors and rows are represented by 
values of parameters. 

2.1.1.2   Discretization  of Data. The input history data is continuous, so the first step 
is to convert the continuous data to discrete data, so that they can be dealt with by RS. 
We can compute the set of candidate cuts to disperse the history data [4]. There are no 
such data that the input is same, but the output is far away from each other. Therefore, 
the decision table will be consistent. If it is inconsistent, the reason may be that the 
partition is not proper. 

2.1.1.3   Reduction of Attributes. In this paper, we use reduct algorithm based on tree 
expression, whose complexity is linear to the number of instances [7]. This algorithm 
is the better method to reduct information system (IS) having large records. 

For an IS{ , }U C D∪ , where U is the universe, C is the set of condition attributes 

and D is the set of decision attributes, and an attributes 
sequence 1 2 1( ) m mS C a a a a−= ≺ ≺iii≺ ≺ . Let B C⊆ , S(B) is attributes sequence on B, 

ai+1 is the next element of ai on S(B) and ak-1 is the previous element of ak on S(B), the 
reduct algorithm based on tree expression is as follows: 

Let B=C, S(B)=S(C), RED= ∅ . 
1. Build completely attribute-value tree T(ai, S(B), U), ai is the first element of S(B); 
2. Delete all dead children tree on T(ai, S(B), U), then get the close atrribule-value 

tree TC(ai, S(B), U), on which has attribute ak having the most subscript value; 
3. Let RED=RED ∪ {ak}. After delete all elements behind ak (that is the right of ak), 

move ak to the head of S(B) (the most left of S(B)), then we have 
B={ai,ai+1,…,ak}, 1 1( ) k i i kS B a a a a+ −= ≺ ≺ iii≺ ; 

4. Repeat (1)-(3) before RED=B. 
RED is the reduct of { , }U C D∪ on S(C). 

2.1.2   Artificial Neural Network 
An important network design issue is the selection and implementation of the network 
configuration. In this paper, as is shown in Fig. 3, a three-layer multilayer perception 
(MLP) made up of an input layer, a hidden layer, and an output layer including four 
status is chosen, which is the smallest achievable structure is applied to reduce the 
developing expense of the fault detector neural network, while maintaining the 
desired level of accuracy and robustness of the fault detector. 

The procedures of the back-propagation training algorithm can be described as 
follows. First, let the weights and threshold levels are randomly drawn from a uniform 
distribution inside a range [8]. 

2.4 2.4
[ , ],

i iF F
− +  (1) 
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where Fi denotes the total number of inputs of the ith neuron in the network. Then, 
first calculate the actual outputs of the neurons in the hidden layer by the equation: 

1

( ) [ ( ) ( ) ],
p

j i ij j
i

y n x n w nϕ θ
=

= × −∑  (2) 

where ( )ϕ i denotes the activation function, xi denotes the ith input, wij denotes the 

weight between the ith input and the jth hidden neuron, jθ is the jth threshold, and p is 

the number of input of jth neuron in the hidden layer. 

 

Fig. 3. Three-layer neural network 

Second, calculate the actual output of the neurons in the output layer using the 
equation: 

1

( ) [ ( ) ( ) ],
q

k jk jk k
j

y n x n w nϕ θ
=

= × −∑  (3) 

where wjk denotes the weight between the jth hidden layer and the kth output, and q is 
the number of inputs of the kth neuron in the output layer. 

Next, update the weights in the output layer using the equation: 

( 1) ( ) ( ) ( ),jk jk k jw n w n n y nη δ+ = + i i  (4) 

where η denotes the learning rate, 

( ) ( ) [1 ( )] ( )k k k kn y n y n e nδ = −i i  (5) 

( ) ( ) ( ),k k ke n d n y n= −  (6) 

where dk (n) denotes the actual output, and update the error gradient for the neurons in 
the hidden layer using the equation: 
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( 1) ( ) ( ) ( ),ij ij j iw n w n n x nη δ+ = + i i  (7) 

where 

1

( ) ( ) [1 ( )] [ ( ) ( )].
r

j j j k ik
k

n y n y n n w nδ δ
=

= − ∑i i i  (8) 

The above procedures will stop until the error criterion or the maximum iterations are 
satisfied. 

2.2   Detect-Detection Phase 

In training phase, all weights of three-layer neural network have been determined, and 
the model of defect-detection has been founded. In detect-detection period, real-time 
data is inputted into the model, the status then be given. 

3   Experiments 

3.1   Description of Experiments 

This HFDMRSNN has been tested using history data of a product oil transport 
pipeline in Shandong China. The tested pipeline is 780km long, which is divided into 9 
segments via 10 intermediate stations and a dispatching center, as is shown in Fig. 4. 
Parameters including pressure, temperature, flow, turndown ratio of valve, status of 
pump, etc., is acquired from the sensors in ten intermediate stations and in dispatching 
center. All of the parameters is inputted into server computer in dispatching center, 
then the server computer must computes the data and gives system status immediately 
(less than 1 second normally). 

 

Fig. 4. The schematic of pipeline measurement instrumentation 

There are 77 parameters that need to be disposed in the set of training example 
cases, which is shown in Table. 1. 
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Table 1. The collecting parameters of pipeline measurement instrumentation 
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Note: SP1 to SP10: Pressure signal of station 1 to station 10; ST1 to ST10: 
Temperature of product oil of station 1 to station 10; SF1 to SF10: Flow signal 
of station 1 to station 10; SD1 to SD10: Density signal of station 1 to station 10; 
SSP1 to SSP10: Status of pump of station 1 to station 10; STV1 to STV10: 
Turndown ratio of valve of station 1 to station 10; SDia1 to SDia9: Diameter of 
segment 1 to segment 9; SV1 to SV9: Negative pressure velocity in segment 1 
to segment 9. 

Because the status of the pipeline should be calculated rapidly, we can consider the 
status of each segment (altogether 9 segments) as a calculating cell which can reduce 
the computing time of server computer. After attributes reduction, for the ith segment, 
there are 14 correlative parameters which is the inputs of MLP are held, as is shown 
in table. 2. According to the inputs of MLP, we select 30 neurons made up of hidden 
layer. 

Table 2. Relative parameters of ith segment 
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Note: 0<i<10; when i=1, SP(i-1)=0; when i=8, SP(i+2)=0;  
when i=9, SP(i+1)=0, SP(i+2)=0. 

3.2   Results 

Leak experiments have been taken 30 times. Work status change experiments have 
been taken 155 times. In all 30 leaks, there are 29 leaks could have been classified 
into “Leak”, and 1 leak has been classified into “Unknown”. In other operating 
condition, this method can classify the statuses preferably. The results are shown in 
table 3. 
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Table 3. Experiment Results 

Experiment Result 
Experiment Items Experiment Times 

Running Operating Leak Unknown 

Increasing Flow 50 1 49   

Decreasing Flow 50  48  2 

Altering Filter 50  49 1  

Altering Oil Product 5  5   

Leak 30   29 1 

4   Conclusion 

This paper proposes a leak fault detection method by the use of Rough Set and 
Artificial Neural Network. Together with Rough Set, reluctant parameters are 
reduced; and together with Artificial Neural Network, a decision model is developed 
which can classify real-time data into four different statuses. The method can 
distinguish leak fault from normal running and adjusting pump in pipeline. 
Experiment results show that the proposed method can effectively detect and diagnose 
leak fault. 
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Abstract. A novel method for fault diagnosis of analog circuits with tolerance 
based on wavelet packet decomposition (WP) and probabilistic neural networks 
(PNN) is proposed in the paper. The fault feature vectors are extracted after 
feasible domains on the basis of WP decomposition of responses of a circuit is 
solved. Then by fusing various uncertain factors into probabilistic operations, 
parameters and structures of PNNs for diagnose faults are obtained based on 
genetic optimization method leading to best detection of faults. Finally, 
simulations indicated that PNN classifiers can correctly 7% more than BPNN of 
the test data associated with our sample circuits.  

1   Introduction 

There is a growing interest in the last two decades in the development of automatic 
tools for testing circuits and the well-consolidated techniques in digital 
implementations have been mature and cost effective[1], while the testing of analog 
and mixed analog-digital systems is more complicated and less understood and yet 
relevant to applications. In fact, the automation fault diagnosis(FD) for analog circuits 
is subject to many items, such as the poor fault models, the presence of noise, the 
nonlinearities and the tolerance issues presented. So it is mainly based both on the 
maintainers’ experience and on specifications of its functionality [1-2]. 

Some methodologies of general validity have been proposed and developed in 
recent years [1-7]. Neural networks (NNs) have been applied to a variety of problems 
in the area of pattern recognition, signal processing etc. The classifiers in terms of 
NNs trained on the fault dictionary examples have been successfully applied to FD 
providing satisfactory results while minimizing computation costs [3-7, 18-21].  

Wavelet-based approaches to detect abrupt faults in dynamic systems by 
decomposing output signals into elementary building blocks of wavelet transforms, 
the local reforms of the signals caused by the faults can be identified by analyzing the 
non-stationary of the output signals. But little literature is available in the FD of 
analog circuits. Mammalian and F.Aminian (2000) [8] proposed a neural FD method 
using wavelet as a preprocessor to reduce the number of input features to a 
manageable size. Unfortunately, the decomposition based on wavelet transform [5-8] 
is limited to the approximate signals [9-12]. 
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The research presented here is an attempt to exploit wavelet packets to extract 
appropriate feature vectors from signals sampled from the CUT under various faults. 
The processing contains details as well as approximate coefficients. Optimal sets are 
available for training neural networks after normalization and PCA processing and the 
output of neural networks reveals the fault patterns. And PNNs are adopted to classify 
the faults to make up for the shortcomings of BP algorithms. 

2   Feasible  Domains of Circuits with Tolerance Based on WP 
Method 

The feasible domains of responses of a circuit would be intervals rather than points. 
WP [5-8, 18] has been successfully supplied to many fields such as signal 
compression. It can be expressed as  
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where p  and l  are scale factors, ( ) ( ) ( ) ( )0 1,W x x W x xφ ϕ= = ， ( )xφ is scale shift 
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out  whose jth sample be
jout , then the mean and variance value can be expressed as  
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where 0out  the response of the circuit without tolerance. The WP coefficient of 

output out  can be written  [5-8]as =p
knS , ( )kxWout p

n −2,   . 

Let ( )outf = p
knS ,

, its Taylor expansion of at the neighbor of outμ  is expressed as  

( ) ( ) ( )2
, outoutout

p
kn outboutafS μμμ −+−+= , (4) 
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out out
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The coefficients a and b are approximated as 
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Then the mean and variance of WP decomposition are  

( ) ( )
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1
, 2 .

2
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Formula (7) can be simplified as  

( )
, ,

2 2 2
out, a . p p

n k n k
outS S

fμ μ σ σ= =  (9) 

So WP coefficients of out  can be regard as noises centering at p
knS ,

μ  with p
knS ,

σ . 

3   Extraction of Fault Features Based on WP Method 

Let ,ufi ufjμ μ and ,ufi ufjσ σ  be the mean and variance values of WP decomposition 

coefficients of response of test nodes under the ith and jth faults. Then the fault 
features (FFs) can be expressed as  

       2 2

kmin k kmax jmin j jmax

max ,

s.t.v v v ; k 1,2, K, x x x ; j 1,2, J,

ufi ufj

f ufi ufj

J
μ μ
σ σ

−
=

+

≤ = ≤ ≤ =

∑  (10) 

where 
jx is the parameter of the jth element in the circuit with its tolerance range of 

[ J1,2,j x,x jmaxjmin =（ ]and J is the total number of elements in the circuit. And kv  

is the parameter of the kth point of inflexion of the piece-wise source with its range 
can be varied from kminv  to kminv  and k is the total number of inflexion points. 

21  and kk ww  are the weight value to measure the significance of output voltages and 

currents through stimulus terminals. The optimization can be realized conveniently 
based on genetic method.  

In a question of L faults[[5-8], the mean and variance values of the kth samples 
feature vector are 

kui ,μ , 
kuj ,μ , 

kui,σ , kuj,σ  and 
kii,μ , 

kij ,μ , 
kii,σ , 

kij ,σ  of output 

voltages and currents through stimulus terminals that are decomposed based on 
wavelet packet coefficients under the ith and jth faults. Let   
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(LoWP) is defined as  
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That is, if ∑
k

kJ  is increasing with future WP decomposition then LoWP=LoWP+1, 

otherwise LoWP=LoWP. After the satisfactory LoWP is  evaluated, the obtained kJ  

are sorted in order of
1 2f f fkJ J J≥ ≥ and { }0,, >≥= λλfddji JfF , 

[ ]kffd ,1∈ are obtained. So the final feature vector is  
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1
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4   GPNN Methods for FD of Analog Circuits  

The diagram of PNN [15-18] method for fault diagnosis of analog circuits is shown in 
Fig.1. After obtained the WP decomposition coefficients of the response of the 
sampled circuits with tolerance, the feasible domains are got. And the fault feature 
vectors (FFVs) are available according to the principles proposed. Thus the input 
patterns of probabilistic neural networks are available. 

The architecture of PNN [13-18] is shown in Fig.1. It contains radial base layer and 
competition layer. Let the input vector be [ ]nxxxx ,,, 21= . The hidden layer 

accepts the input vector and maps it into probabilistic density functions.
   Let the fault models be normal distributions, the probabilistic density functions are 
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where 
ijμ is the initial expectation value of the ith feature vectors of the jth faults and 

ijσ is the smoothness factor. So the probabilities of the pattern x belongs to cluster 

( )MiCi ,2,1=  is  

( ) ( )
1
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j ij ij
i

p x w x j Mφ
=
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where 
ijw  is a weight of hidden layer, and 0,1

1

≥=∑
=

ij

P

i
ij ww

j

. Then 
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where
jP is the total number of the jth faults. According to Bayes rulers, C(x) is  

( ) ( ){ }argmax ,  1,2, , .jC x p x j M= =  (17) 

 

Fig. 1. GPNN method for FD of circuits 

The classification is ( )∏∏
= =

=Λ
K

i

p

j
j

j

xp
1 1

* maxarg . To simplify the calculation, let 
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1 1
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j
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Assumed that jP is independent of jiMiCi ≠= ,,,2,1, ，we get 

( )
1 1

log .
jpK

j
i j

E p x
= =

⎡ ⎤= ⎣ ⎦∑∑  (19) 

The learning would be time consuming and memory costing if gradient descent is 
adopted to optimize the parameters of wavelets PNN. So optimization is realized 
based on genetic algorithms. Let the nodes of hidden layer of WPNN is N,  
the chromosomes of initial generation are

 [ ]1,,,,, −=Λ ijijijkk wNba σμ  ,where 
ijμ is 

the initial expectation value of the ith feature vectors of the jth faults and 
ijσ is the 

smoothness factor. Thus the optimization aims at finding the best N for given train 
error goal by choosing best  chromosomes [ ]*1***** ,,,,,* −=Λ ijijijkk wNba σμ . 
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5   Diagnosis Examples 

Example 1. An amplifier with element tolerance of 10% is shown in Fig.2.The circuit 
is stimulated by a pulse source whose amplitude is 5v, and the duration, rising and 
falling time are 10us, 0.5us and 0.5us respectively. Consider the following 27 single 
faults and 3 multiple faults. 

• 27 single faults:  
BES,CES,BO and BCS for Q1 and Q2;  
R2=10Ω, 47Ω,4.7K and OC ; 
R1=10Ω,SC,1.1K,5K and OC;  
R6=10Ωand 5K; 
R4=10Ω,200,2K,and OC; 
R5=100Ω, 5K,SC and OC . 

• 3 Multiple faults: 
R5=50Ωand R1=22k; 
R5=500Ωand R1=22k; 
R5=500Ω, R1=22k, Q2BCS and R2OC. 

Define the correct rate of FD (CRFD) be  

y = sum(sqr(a3 - t))  

u=size(y,2);p=0; 

for i=1:u 

    if y(i) <= pr 

        p=p+1;     

end  

end 

present = p/u 

where t and y are the target and real output of a NN, pr is a predefined constant, then 
p is the CRFD. The fault features are extracted from the DC points, samples of 
previous five harmonics and transient response. The number of output neurons is the 
same as the number of elements. 

The target output is the probability ( )nipi ,2,11 ==  if the ith element is 

faulty, otherwise 0=ip . In the process of FD, the faults are classified by “Principle 

of maximum probability”: ( ) ( ){ } ( )argmax , 1,2, , , 0 1 1,2, .i iC x p x i M p i n= = < < =
 
The 

hidden layer nodes N and CRFD are returned when the network is steady. And the 
same BPNN method is employed using the returned N in order to compare  
the CRFD of GPNN to Adaptive BP. The results are shown in table 1 and Fig.3. 
The CRFDs are improved more than 7% by adopting GPNN, but it takes more time 
to convergent. 
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Fig. 2. An amplifier 

 
Fig. 3. CRFD gap between GPNN and BPNN method 

Example 2. The tolerance of element is 5% in the large-scale circuit [6] shown in 
Fig.4. The identical faults are considered and the same fault classes are considered as 
literature [6]. The circuit is torn to 8 sub-circuits. The diagnosis result is denoted in 
table 2 and the CRFD gap between GPNN and BPNN is shown in Fig.5. 

Table 1. Comparison of BPNN and GPNN（Note：GTP: Groups of train patterns） 

GTP 23 46 92 184 500 1000 
BP 62.93% 63.61% 65.10% 65.78% 70.49% 70.65% 

GPNN 71.98% 94.23% 95.52% 95.71% 95.80% 95.59% 

Table 2. Table 2 Results of FD for the circuit shown in Fig.4. 

Sub-circuits 1 2 3 4 5 6 7 8 
N 69 33 46 33 48 22 30 56 

epochs 1067 1115 945 917 715 1244 1354 1362 
CRFD 87.98 90.89 94.18 90.60 92.91 92.60 86.96 87.19 
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Fig. 4. A large-scale circuit 

 

Fig. 5. CRFD of GPNN and BPNN 

6   Conclusions 

A novel GPNN method for fault diagnosis of analog circuits with tolerance is 
proposed after FDs resolved and fault feature vectors extracted based on WP 
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decomposition. And by using various uncertain factors into probabilistic operations, 
GPNN method to diagnose faults are proposed whose parameters and structure 
obtained form genetic optimizations resulting in best detection of faults. Finally, 
simulations indicated that GPNN classifiers can correctly identify at least 7% more 
than BPNN of the test data associated with our sample circuits. 
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Abstract. Fault diagnosis in gear train system is important in order to transmit-
ting power effectively. The artificial intelligent such as neural network is 
widely used in fault diagnosis and already substituted for traditional methods 
such as kurtosis method, time analysis and so on. The symptoms of vibration 
signals in frequency domains have been used as inputs to the neural network 
and diagnosis results are obtained by network computation. This study presents 
gear fault diagnosis by using wavelet neural networks (WNN) and Morlet 
wavelet is used as the activation function in hidden layer of back-propagation 
neural networks (BPNN). Furthermore, the diagnosis results are compared 
within both methods of WNN and BPNN in four gear cases. 

1   Introduction 

Gearboxes are widely used in the rotary machinery in order to transmitting power. 
The definition of the gear diagnosis is using vibration signals to classify faults by 
expert knowledge or experiments when the gear system broke down. However, it is 
hard to distinguish effective information from the vibration signals. Randall [1] used 
spectrum and cepstrum of vibration signals researches for gear fault diagnosis. Wang 
and Wong [2] are used the autoregressive model to detect gear faults and the diagno-
sis results are obtained accurately than traditional residual kurtosis method.  

The advantages of neural network are not only which the weightings of neural 
network are obtained from neural computation, but also the diagnosis results are ob-
jective than traditional expert’s experiences. Recently, back-propagation neural net-
work (BPNN) is widely used to solve fault diagnosis problems. Fong and Hui [3] 
applied an intelligent data mining technique that combines neural network and rule-
based reasoning to extract information from the knowledge database for online  
machine fault diagnosis. Kang et al. [4] extracted frequency symptoms of vibration 
signals to detect faults by using BPNN for motor bearing system.  

Although BPNN has better identification ability for fault detection than other tradi-
tional inference method, there are still some shortcomings, such as large learning 
epochs and existence of local minima. Zhang and Benveniste [5] combine wavelet 
theory and BPNN to form wavelet neural network (WNN) and use Grossmann Morlet 
function, I. Daubechies function, and many others to replace sigmoid function in 
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BPNN and improve the shortcomings of BPNN. Base on the superior convergence of 
WNN, this study applied WNN to gear fault diagnosis and compare with BPNN in 
four different gear train cases. 

2   Wavelet Neural Networks 

WNN is based on wavelet principals to combine wavelet theory within BPNN. Be-
cause the Morlet function is a derivational continuous function and has an express 
equation than other wavelet function, in this study, the WNN used wavelet activation 
function to replace the sigmoid activation function in hidden layer and form a new 
kind of approximate approach to fitting nonlinear models.  

 

Fig. 1. The structure of WNN 

Table 1. Relational matrix 

Symptoms 
Faults 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Gear skew (O1) 0.3 0.05 0.05 0.05 0.4 0 0 1 0 0
Shaft not parallel (O2) 0.05 0.05 0 0 0.2 0.3 0.1 0 0.7 1
Tooth breakage (O3) 1 0.2 0.3 0.1 1 0.6 0 0 0 0

Wear (O4) 0.9 0.3 0 0 1 0 0 0 0 0  

In this study, the structure of the WNN is showed in Fig. 1, the input layer has ten 
neurons ( ]s,...,s,s[S 1021= ) corresponding to the ten frequency symptoms of vibration 

signal in the gearbox. The output layer has four neurons ( ]o,...,o,o[O 421= ) associated 
with the four kind of typical faults in the gearbox. The second layer is wavelet (hidden) 
layer that is utilized Morlet wavelet as the activation function in hidden layer of BPNN. 
Table 1 show the relational matrix of training samples with four gear faults and the 
symbols explanation is listed in Appendix. In this study, the wavelet activation function 
is used the Morlet function and its differentiation equation can be written as 

2

x2

e)x75.1cos()x(h
−
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x

2

x 22
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The activation function in output layer is used by sigmoid function and its differen-
tiation equation can be written as 

)e1/(1)x( -x+=σ , ))x(1)(x()x( σ−σ=σ′  (2) 

On the basis of the gradient descent algorithm for the minimization of error, the 
correction increments of weights coefficients wji, wkj and wavelet dilation and 
translation coefficients aj, bj are adjusted to minimize the least-square error. p

iT  is 

the ith ideal output of the pth input sample and p
io  is the ith actual output of the pth 

input sample. The error of the network is defined by 
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Forward computing of WNN can be written sequentially as follows 
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Backward computing of WNN can be written sequentially as follows 

))net()(o1)(o)(oT(        

w

net

net

)net(o

)net(o

E

w

E
w

jb,a
p
i

p
i

p
i

p
i

ji

i

i

ii

iiji
ji

ψ−−−η−=

∂
∂

∂
∂

∂
∂η−=

∂
∂η−=Δ

 (6) 

k
j

jb,aji
p
i

p
i

p
i

p
i

kj

j

j

jb,a

jb,a

i

i

ii

iikj
kj

x
a

1
))net((w)o1)(o)(oT(         

w

net

net

)net(

)net(

net

net

)net(o

)net(o

E

w

E
w

ψ′−−−η−=

∂
∂

∂
ψ∂

ψ∂
∂

∂
∂

∂
∂η−=

∂
∂η−=Δ

 (7) 

)netb(
a

1
))net((w)o1)(o)(oT(      

a

)net(

)net(

net

net

)net(o

)net(o

E

a

E
a

jj2
j

jb,aji
p
i

p
i

p
i

p
i

j

jb,a

jb,a

i

i

ii

iij
j

−ψ′−−−η−=

∂
ψ∂

ψ∂
∂

∂
∂

∂
∂η−=

∂
∂η−=Δ

 (8) 

)1(
a

1
))net((w)o1)(o)(oT(      

b

)net(

)net(

net

net

)net(o

)net(o

E

b

E
b

j
jb,aji

p
i

p
i

p
i

p
i

j

jb,a

jb,a

i

i

ii

iij
j

−ψ′−−−η−=

∂
ψ∂

ψ∂
∂

∂
∂

∂
∂η−=

∂
∂η−=Δ

 (9) 



 Gear Fault Diagnosis by Using Wavelet Neural Networks 583 

 

The WNN is trained using the error between the actual output and the ideal output, 
to modify the weights jiw , kjw  and wavelet parameters jaΔ , jbΔ  until the output of 

the neural network is close to the ideal output, with an acceptable accuracy. The 
weights coefficients and wavelet parameters are updated as follows 

jijiji w(t)w1)(tw Δ+=+ , kjkjkj w(t)w1)(tw Δ+=+  (10) 

jjj a(t)a1)(ta Δ+=+ , jjj b(t)b1)(tb Δ+=+  (11) 

Using the measured vibration signals computed with the trained weights coeffi-
cients wji, wkj and wavelet parameters aj, bj when detecting faults. Each of the output 
neuron of WNN represents a kind of gear fault and the output value represents the 
degree of certainty for corresponding fault. If the value is closed to 1, which represent 
the possibility of the fault is high. 

3   Case Studies 

The experiment of gear train system is shown in Fig. 2. It consists of a motor, a con-
verter and a pair of spur gears in which the transmitting gear has 46 teeth and the 
passive gear has 30 teeth. The vibration signals are measured from two accelerome-
ters that mounted on the bearing housing of gear system. In this paper, four kinds of  
 

 

Fig. 2. The experimental setup 
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Fig. 3. The sketch of the gear skew Fig. 4. Shaft not parallel of gear system 
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Fig. 5. Tooth breakage gear Fig. 6. Wear gear 

typical gear faults (a) gear skew and the sketch map is shown in Fig.3, (b) shaft not 
parallel and the actual figure of shaft not parallel fault in gear system is shown in  
Fig. 4, (c) tooth breakage and the actual figure of tooth breakage fault in gear system 
is shown in Fig. 5, (d) wear and the actual figure of wear fault in gear system is 
shown in Fig. 6. 

3.1   Gear Skew 

The centerline of spur gear above the transmission shaft shifts 1 mm to center posi-
tion. The rotary speed of motor was set as 1500rpm (25Hz). The frequency spectrum 
distributed over rotary speed of transmission shaft and rotary speed of passiveness 
shaft, resonance frequency and mesh frequency. The frequency spectrum diagram of 
the gear skew is shown in Fig. 7. 
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Fig. 7. The frequency spectrum diagram of the gear skew 
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Fig. 8. The frequency spectrum diagram of the shaft not Parallel 
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3.2   Shaft Not Parallel 

The passiveness shaft slanted seven degree angle with transmission shaft. In this case, 
the rotary speed of motor is set as 1200rpm (20Hz). The frequency spectrum diagram 
of shaft not parallel is shown in Fig. 8. The mesh frequency and sideband are distrib-
uted from 550Hz to 650Hz.  

3.3   Tooth Breakage 

Two of spur gear teeth above the transmission shaft are cut off. In this case, the rotary 
speed of motor is set as 2100rpm (35Hz). The frequency spectrum diagram of tooth 
breakage fault is shown in Fig. 9. The rotary speed and resonance frequency are  
existing under 1k Hz, the mesh frequency is over 1k Hz and the amplitude of vibra-
tion is larger than others. 
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Fig. 9. The frequency spectrum diagram of the tooth breakage 

3.4   Wear 

There are three spur gear teeth above the transmission shaft are worn. In this case, the 
rotary speed of motor is set as 1500rpm (25Hz). The frequency spectrum diagram of 
wear fault is shown in Fig. 10.  
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Fig. 10. The frequency spectrum diagram of the wear 

3.5   Discussion 

The frequency symptoms extracted from vibration signals that measured by acceler-
ometers that mounted on the bearing housing in gear system. In Table 2, the diagnosis 
results are obtained by using BPNN and WNN with the trained weighting coefficients 
wji and wkj, respectively. From case 1 to 4 belong to gear skew, shaft not parallel, tooth 
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breakage and wear of gear system, respectively. There are three test diagnostic samples 
for each case. The graphical comparisons of four cases are shown from Fig. 11 to  
Fig. 14. The deep and light color of the column indicates the certainty of fault by using 
WNN and BPNN, respectively. For each case, the column with no-grid means the Test 
No. 1; the column with oblique line means the Test No. 2; the column with meshed 
line means the Test No. 3. The diagnosis results by using WNN conform to BPNN in 
case 1~3, the certainties of both methods are near 1 that indicates the gear faults are 
satisfied with human’s diagnosis. Although the diagnosis results are satisfied with 
some tests of case 4, the degree of certainty (0.796) of BPNN is less than WNN (0.926) 
in Test No. 1 and the diagnose ability by using WNN is better than BPNN. 
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Fig. 11. The Graphical comparison for gear 
skew (case 1) 

Fig. 12. The Graphical comparison for shaft 
not Parallel (case 2) 
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Fig. 13. The Graphical comparison for tooth 
breakage (case 3) 

Fig. 14. The Graphical comparison for gear 
wear (case 4) 

Furthermore, the WNN method not only has high accuracy for fault diagnosis but 
also has fewer weightings update epochs. In this study, there are five hidden node 
numbers used to train with BPNN and WNN, respectively. The network error is set 
0.001, the relation between training epochs and hidden neurons numbers are listed in 
Table 3. When the hidden neurons numbers increase, the difference of update epochs 
between WNN and BPNN will increase. 
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Table 2. Diagnosis result (the degree of certainty) 

WNN BPNN Case 
No. 

Faults 
Test No. O1 O2 O3 O4 O1 O2 O3 O4 

1 0.962 0.018 0.048 0.003 0.978 0.008 0.080 0.001 
2 0.982 0.013 0.005 0.009 0.989 0.011 0.008 0.005 1 
3 0.985 0.013 0.005 0.011 0.985 0.007 0.009 0.011 
1 0.011 0.987 0.008 0.008 0.009 0.990 0.008 0.005 
2 0.010 0.985 0.009 0.009 0.010 0.986 0.009 0.005 2 
3 0.011 0.986 0.009 0.008 0.006 0.990 0.009 0.006 
1 0.014 0.020 0.865 0.041 0.009 0.012 0.857 0.039 
2 0.005 0.015 0.899 0.131 0.007 0.005 0.858 0.145 3 
3 0.008 0.011 0.938 0.035 0.008 0.007 0.940 0.039 
1 0.041 0.007 0.004 0.926 0.018 0.016 0.057 0.796 
2 0.014 0.004 0.013 0.983 0.011 0.009 0.019 0.978 4 
3 0.016 0.016 0.007 0.981 0.013 0.013 0.011 0.973 

Table 3. The relation between training epochs and hidden neurons numbers  

Hidden Number
Method 10 15 20 30 50 

BPNN 2566 2079 1941 1729 1578 
WNN 1804 1087 856 567 409 

4   Conclusions 

This study has developed WNN for fault diagnosis of gear train systems. Four cases 
are analyzed and diagnosis results are obtained by using WNN. Also, the results are 
compared to BPNN, which can be inferred as 

1. The accuracy of WNN is superior to BPNN for diagnosis of gear train systems. 
2. The samples training epochs by using WNN is less than BPNN. 
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Appendix 1: Symbols for Frequency Symptoms  

S1, S2:  The rotary frequency of the transmission and passiveness shaft. 
S3, S4:  The twice rotary frequency of the transmission and passiveness shaft. 
S5~S7:  The 1x, 2x, 3x toothmeshing frequency, respectively. 
      S8: The 1x toothmeshing frequency ±  rotary frequency of the transmission shaft. 
      S9: The 1x toothmeshing frequency ±  rotary frequency of the passiveness shaft. 
      S10:The 2x toothmeshing frequency ±  rotary frequency of the passiveness shaft. 
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Abstract. This paper presents an adaptive threshold neural-network
scheme for Rotorcraft Unmanned Aerial Vehicle (RUAV) sensor failure
diagnosis. The approach based on adaptive threshold has the advan-
tages of better detection and identification ability compared with tradi-
tional neural-network-based scheme. In this paper, the proposed scheme
is demonstrated using the model of a RUAV and the results show that
the adaptive threshold neural-network method is an effective tool for
sensor fault detection of a RUAV.

1 Introduction

Unmanned aerial vehicles (UAV) are useful for many applications where human
intervention is considered difficult or dangerous. Additionally, Rotorcraft UAV
(RUAV) can operate in many different flight modes which the fixed-wing one is
unable to achieve, such as vertical take-off/landing, hovering, lateral flight, pirou-
ette, and bank-to-turn. However, the RUAV do not have the graceful degradation
properties of fixed wing aircrafts or airships in case of failures. Therefore, a fail-
ure in any part of the RUAV can be catastrophic. If the failure is not detected,
identified and accommodated, the RUAV may crash.

State estimation or observation Sensor Fault Detection and Identification
(SFDI) techniques have been widely used based on Kalman [1] [2] or other fil-
ters [3]. However, it is well known that these schemes might perform poorly in
the presence of significant nonlinearities and uncertainties [4]. As an alternative
method, neural-network (NN) based approach for SFDI (NNSFDI) have been
proposed and developed in recent decade [5] [6] [7]. Because of the online and
offline learning, the NNSFDI does not require modeling, is robust and has a high
potential to handle nonlinearities.

In this paper, the detection and identification of sensor failure in RUAV is
investigated and the design of a sensor fault diagnosis scheme is presented. A
NN based scheme, with an adaptive threshold algorithm, is applied. Simulations
with the adaptive threshold NNSFDI have been conducted.

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 589–596, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 NNSFDI Scheme

Neural networks with a three-layer BP network structure are used to approxi-
mate the nonlinear continuous functions. The three-layer neural network shown
in Fig 1 with the input layer, the hidden layer and the output layer is used in
NNSFDI scheme. In this study, we adopted the following sigmoidal activation
function:

σ(z) = 1/(1 + e−z) (1)

...
......

1x

2x

1Nx

1

1

1σ

2σ

2 1Nσ −

2Nσ

1y

2y

3y

Fig. 1. Three-layer neural networks structure

The application of NNSFDI can be separate in three steps:

- Fault Detection (FD) — when a sensor failure occurs, it can be detected by
the fault diagnosis scheme;

- Fault Type Identification (FTI) — when the scheme detect a failure, the
FTI distinguish the type of the fault such as angular velocity, acceleration and
so on;

- Fault Identification (FI) — the detected failure which supported by FD
algorithm is identified to the specific sensor channel.

2.1 NNSFDI Relevant Parameters

The SFDI scheme is based on the observablity of a rotorcraft UAV system.
Using online learning NN estimators, the SFDI problem can be approached by
introducing a main set of ‘m’ NNs (MNNs) and a set of ‘n’ decentralized NNs
(DNNs), where ‘m’ is the number of the types of the sensors in the flight control
system and ‘n’ is the number of the specified sensors, which are the same kind,
for which a SFDIA is desired. The MNNs and DNNs are classified as Table 1
with the rotorcraft UAV.

Let us assume without loss of generality that MNN-i is considered: we denote
the MNN-i outputs as d̂1MNN−i(k), d̂2MNN−i(k) and d̂3MNN−i(k). They are
computed at time ‘k’, using measurements form time instant ‘k-t1’ to ‘k-t2’. The
inputs to MNN-i are consisted of the measurements form the onboard sensors. The
DNNs’ outputs are d̂1MNN−i,DNN (k), d̂2MNN−i,DNN (k) and d̂3MNN−i,DNN (k)
which are the same state variables to the MNNs’, but the input of each DNN does
not include measurements from the respective sensor.
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Table 1. The MNNs and DNNs variables

Parameter MNN-1 MNN-2 MNN-3 MNN-4

catalog angular velocity Euler angle acceleration position
DNN-1 (d1) p u ax gx
DNN-2 (d2) q v ay gy
DNN-3 (d3) r w az gz

In the rotorcraft UAV system, the SFDI scheme specifies 4 MNNs and 3 DNNs
for each MNN catalog. As is shown in the Tabl 1, the MNN-1 detects the angular
velocities’ failure around 3-axis which are presented by DNN-1 to DNN-3 sepa-
rately. The Euler angel, the acceleration and the position of the helicopter are
diagnosed by MNN-2, MNN-3 and MNN-4 as a result of a similar set of sensor vari-
ables present the same standard deviation, sensor noise and system noise. Fig. 2
shows a block diagram of the NNSFDI process while Fig. 3 shows a block diagram
of the NNSFDI structure.
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Fig. 2. Block diagram of the NNSFDI
scheme
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structure

It has been studied that the incidence of a sensor failure will present a per-
turbation of the normal dynamic response of the aircraft which translates into
large discrepancies between the outputs of the MNNs and DNNs, on the one
hand, and the actual measurements (i.e. d1 (k), d2 (k) and d3 (k)) on the other.
Now we define four different failure detection parameters below. One is the MNN
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Estimation Error Norm (MEEN) parameter which is get by the MNN estimates
and the actual measurements:

MEEN − i(k) =
n∑

g=1

∥
∥
∥dgMNN−i(k) − d̂gMNN−i(k)

∥
∥
∥

2
. (2)

where n is the number of DNNs in MNN-i.
The second parameter is MNN and DNN Estimation Error Norm (MDEEN)

which is computed by MNN and DNN estimations:

MDEEN − i(k) =
n∑

g=1

∥
∥
∥d̂gMNN−i,DNN (k) − d̂gMNN−i(k)

∥
∥
∥

2
. (3)

where n is the number of DNNs in MNN - i.
The third parameter is DNN Estimation Error Norm (DEEN) which is com-

puted MNN estimates and the actual measurements:

DEENMNN−i,dg(k) =
∥∥
∥dg(k) − d̂gMNN−i,DNN (k)

∥∥
∥

2
. (4)

where g = 1, 2, ..., n, n is the number of DNNs in MNN - i.
The last parameter is Fault Detection Error Summation (FDES) which is

computed by MEEN and MDEEN, the μm and υm are weight coefficients for
fault detection.

FDES(k) =
n∑

m=1

μmMEEN − m(k) +
n∑

m=1

υmMDEEN − m(k). (5)

where n is the number of MEEN in MDEEN and
∑

μm = 1,
∑

υm = 1.

2.2 Fault Detection

The occurrence of the sensor failure leads to large value of FDES between the
measurements and the MNN estimates, in particular large values of MEEN or
MDEEN. Then, the condition for a sensor (sensors) failure(s) to be declared is:

FDES(k) ≥ min(MEEN − ithreshold, MDEEN − ithreshold). (6)

The thresholds MEEN − ithreshold and MDEEN − ithreshold are based on
the adaptive threshold algorithm described in the Sections 3.

2.3 Fault Type Identification

When a sensor failure declared, the fault type identification phase consists of
differentiating among the angular rate, the acceleration, the Euler angle and the
position. For different types of sensor, different error norms associated with it
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are computed for identification which hierarchical level can decrease the compu-
tational difficulties in the fault detection phase. The criterion for generic failure
type identification is:

MEEN − i(k) ≥ MEEN − iThreshold

or MDEEN − i(k) ≥ MDEEN − iThreshold. (7)

The MEEN provides better performance for step-type sensor failures whereas
the MDEEN performs better for ramp-type of sensor failures. When the criterion
is fulfilled, the corresponding type of sensor fault is identified.

2.4 Fault Identification

In FI phase, we propose a two threshold approach to reduce the error fault
declaration while avoid failing to report a failure. A lower and a higher threshold
level are selected for the DNNs. If a lower threshold for the i-th DNN is exceeded
once, the status of the corresponding i-th sensor is declared suspect and the
numerical architecture of the i-th DNN is not updated. Should this status persist
for a certain number of time instants and/or should the estimation error in
successive time instants exceed the higher threshold, the sensor is then declared
failed. The principle of the FI is shown below:

DEENMNN−i,dg(k) ≥ DEEN low
Threshold (n times)

or DEENMNN−i,dg(k) ≥ DEENhigh
Threshold. (8)

3 Adaptive Threshold Algorithm

Previous studies on the sensor fault detection based on NN schemes always
propose constant threshold that the SFDI can not appropriate to the multiple
flight situations. The variation of the thresholds for SFDI has the advantage of
the goal to achieve maximum “correct detection”/“false alarm” ratios.

The thresholds which present in the SFDI scheme are imposed on “Thresh”
is given by the following relationship:

ThreshAdaptive = aver(Thresh) + α · dev(Thresh)

+ β · roc(Thresh) + bias(Thresh). (9)

Where aver(Thresh) is the average value of Thresh, dev(Thresh) is the standard
deviation of Thresh, roc(Thresh) is the rate of change of Thresh, bias(Thresh)
is the bias of Thresh which is computed based on the above equations, α is a
deviation bound factor and β is a rate of change bound factor.

The thresholds must be estimated within the SFDI scheme and the parameters
used in the equation are listed in Table 2.
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Table 2. The MNNs and DNNs variables

Parameter FEDS MEEN-1 MEEN-2 MEEN-3 MEEN-4

α 2.4 3.2 5.7 1.9 5.3
β 0.14 0.06 0.11 0.09 0.02
bias 0.7 0.4 0.6 0.4 0.3

Parameter MDEEN-1 MDEEN-2 MDEEN-3 MDEEN-4

α 3.1 1.8 0.9 2.5
β 0.01 0.02 0.05 0.01
bias 0.3 0.5 0.5 0.4

The averages of the thresholds are computed online based on the last 20 flight
data using the following average filter:

X =
1
20

20∑

i=1

X(n − i) (10)

Where n is the current flight data sequence. The logical algorithm of comput-
ing the SFDI adaptive threshold is shown in Fig. 4.

Average
Filter ABS Average

Filter Alfa

bias

Average
Filter Beta

delay

+ -

+ -

+
+
+ +

Thresh ThreshAdapt

Fig. 4. Block diagram of the adaptive threshold scheme

4 Simulation

The flight data used for the NN scheme for offline and online learn is the data
acquired from the SIA-Heli-90 RUAV platform. With the purpose of illustrat-
ing the functionality of the SFDI scheme with NN scheme based on adaptive
thresholds and the minimize the false detections as compare with the equivalent
fixed thresholds scheme, two cases of failure have been simulated using both
algorithms.

Failure # 1: A heading failure of compass at t = 30s.
Failure # 2: A pitch rate failure of IMU at t = 30s.
In the first case of failure, we simulate a compass sensor fault that the head-

ing channel involving drifting bias of 10◦ with fast transient period of 0.1s. As is
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shown in Fig. 5, the fixed FDES threshold is exceeded at nominal conditions that
without any occurrence of a failure, but undetected in the real failure instance.
The fixed threshold SFDI scheme declares a false detection at t = 22.9s while the
heading channel of compass failure occurring at t = 30s remains undetected. With
the change of the scheme to the adaptive thresholds, however, the adaptive algo-
rithm does not produce false failure detection and detects the real system failure
immediately at t = 30.35s after its happening which is shown in the Fig. 6. The
following MEEN-2 and DNN-1 phases can work well with the adaptive threshold
algorithm and detect the compass fault in heading channel at t = 30.91s.

In the second case of failure, a pitch rate failure of IMU is simulated involving
a drifting bias of 10◦/s with fast transient period of 0.1s. The FDES scheme can
detect the yaw rate failure not only with the fixed threshold algorithm but also
the adaptive threshold algorithm which are not shown the figure in this paper.
But to the MEEN-1 which is the compass FTI parameter, the fix MEEN-1
threshold is detect a fake failure and undetected in the real failure which is
presented in the Fig. 7. The fixed MEEN-1 threshold is exceeded at nominal
conditions that without any occurrence of a failure at t = 20.3s but undetected
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in the real failure at t = 30s. In the Fig. 8, we change to adaptive MEEN-1
thresholds. The algorithm detects the real IMU failure immediately at t = 31.21s
after the fault occurring at t = 30s and does not declare a false detection. The
following DNN-1 phase can work well with the adaptive threshold algorithm and
detect the compass fault in heading channel at t = 31.82s.

5 Conclusion

In this paper, we propose a neural-network fault detection and identification
scheme based on adaptive threshold. The adaptive threshold algorithm can im-
prove the performance of the SFDI scheme and reduce the probability of false
fault declaration. In addition, the adaptive threshold approach eliminates the
need for thresholds changing with flight condition varying.

The proposed SFDI scheme has been tested with the flight data acquired
from our SIA-Heli-90 RUAV testbed [8], and shown significantly improved per-
formance than fixed threshold algorithm.
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Abstract. Kernel principal component analysis (KPCA) is widely used for fault 
detection. In this paper, a KPCA plus Fisher discriminant analysis (FDA) 
scheme is adopted to improve the fault detection performance of KPCA. Simu-
lation results are given to show the effectiveness of the improvements for fault 
detection performance in terms of high fault detection rate. 

1   Introduction 

The demands for product quality and operation safety in the process industry have 
spurred the recent development of many fault diagnosis methods. Multivariate statis-
tical methods such as principal component analysis (PCA), independent component 
analysis (ICA) and partial least square (PLS) have been widely applied in chemical 
industry for fault diagnosis [1–5]. Among these methods, PCA is the most popular 
one. PCA represents high-dimensional process data in a reduced dimension, which 
brings convenience for process monitoring. However, linear correlation among the 
variables is assumed in PCA, which degrades the performance of PCA in monitoring 
the nonlinear systems. 

To cope with this problem, extended versions of PCA suitable for handling nonlin-
ear systems have been developed. The existing approaches include methods based on 
neural network [6-10], methods based on principal curve [11], methods based on 
kernel function [12-17]. For methods based on neural network, auto-associative neu-
ral network (AANN) [6], input-training neural network (ITNN) [7-9] et al are used. 
For methods based on kernel function, kernel principal component analysis (KPCA) 
first put forward by Schölkopf et al [12] is a new nonlinear extension of PCA. 

KPCA computes the principal components in a high-dimensional feature space F, 
which is nonlinearly related to the input space. Since a PCA in F can be formulated in 
terms of the dot products in F, this same formulation can also be performed using 
kernel functions (the dot product of two data in F) without explicitly computing in F. 

KPCA has already shown better performance than PCA in several fields [12-14], 
but a few of applications in the field of fault diagnosis is reported [15-17]. In Ref. 
[15-17], nonlinear process monitoring method based on KPCA and dynamic KPCA 
are investigated. However, KPCA performs a PCA in feature space F. In this sense, 
KPCA aims at reconstruction but not classification, so it is not fit for the task of fault 
detection very well.  
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In this paper, a KPCA plus Fisher discriminant analysis scheme for fault detection 
is provided. Fisher discriminant analysis (FDA) [18] is a well-known method for 
feature extraction and dimension reduction. It aims to find an optimal transformation 
by minimizing the within-class distance and maximizing the between-class distance 
simultaneously, which makes up for the above mentioned shortcoming of KPCA 
method. 

2   KPCA 

The basic idea of KPCA is to map the input data x  into a feature space F  first via a 
nonlinear mapping φ , and then perform a linear PCA in F . However, it is difficult 

to do so directly because the dimension h of the feature space F can be arbitrarily 
large or even infinite. In implementation, the implicit feature vector in F  does not 
need to be computed explicitly, while it is just done by computing the inner product 
of two vectors in F  with a kernel function. 

Let 1 2, , m
n R∈Kx x x  be the n  training samples (column vectors) for KPCA 

learning. By the nonlinear mapping φ , the measured inputs are extended into the 

hyper-dimensional feature space as follows 

: ( )m hR Fφ φ∈ → ∈x x                                            (1) 

The mapping of ix  is simply noted as ( )i iφ =x φ . The sample covariance in the 

feature space can be constructed by 

( )( )  
1

1 n T

i i
inφ φ φ
=

= − −∑C m mφ φ ,                                     (2) 

here, column vector  1

n

ii
nφ =

=∑m φ . Nonzero eigenvalues of covariance matrix φC  

are positive, and Schölkopf [12] et al. has suggested the following way to find these 
positive eigenvalues. 

It is easy to see that every eigenvector v  of φC can be linearly expanded by 

1

n

i ii
α

=
=∑v φ  .                                                     (3) 

To obtain the coefficients ( 1,2,..., )i i nα = , a kernel matrix K  with size n n×  is 

defined, and its elements are determined by virtue of kernel tricks. 

    ( ) ( , )T
ij i j i j i jK k= = = x xφ φ φ φ  (4) 

here, ( , )i jk x x  is the calculation of the inner product of two vectors in F  with a 

kernel function. Centralize K  by  

+1 1 1 1n n n nK = K - K - K K ,                                       (5) 

here, matrix (1/ )n nn ×=1n .  
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Let column vectors ( 1,2,..., ;0 )i i p p n= < ≤γ  be the orthonormal eigenvectors 

of K  corresponding to the p  largest positive eigenvalues, 1 2 pλ λ λ≥ ≥ ≥L . The 

orthonormal eigenvectors ( 1,2,..., )i i p=β  of φC  corresponding to the p  largest 

positive eigenvalues, 1 2, , pλ λ λL , are 

 1  2  

1
( , , )i n i

iλ
= Lβ φ ,φ φ γ .                                            (6) 

To a new column-vector sample newx , the mapping to the feature space is 

new( )φ x . The projection of newx  onto the eigenvectors ( 1,2,..., )i i p=β  is 

1 2( , ,..., )T
pt t t=t , and it is also called KPCA-transformed feature vector. 

1 2 new( , ,..., ) ( )T
p φ=t xβ β β .                                           (7) 

The ith KPCA-transformed feature it  can be obtained by 

new  1  2  new

1 new 2 new new

1
( ) ( , , , ) ( )

1
                    [ ( , ), ( , ),..., ( , )] ,

                                                                      1,2,..., .

T
i i i n

i

T
i n

i

t

k k k

i p

φ φ
λ

λ

= =

=

=

LΤ Τ

Τ

β γ φ φ φ

γ

x x

x x x x x x   (8) 

By using Eq. (8), the KPCA-transformed feature vector of a new sample vector can be 
obtained. 

3   KPCA Plus Fisher Discriminant Analysis 

3.1   Fisher Discriminant Analysis 

Fisher discriminant analysis (FDA) [18] is a well-known method for feature extrac-
tion and dimension reduction. It aims to find an optimal transformation by minimizing 
the within-class distance and maximizing the between-class distance simultaneously, 
and thus the FDA-transformed vectors are more discriminative than the original input 
sample vector. 

Let m nR ×∈X  be the input set for FDA training with n  sample vectors, and x  be 
a column vector of the input set X  with m  elements. Suppose there are c  classes of 

sample types, and ( 1,2,..., )i c=iX  be the subsets of X  with ( 1,2,..., )in i c=   

sample vectors, here 
1

c

i
i

n n
=

=∑ . The within-class scatter matrix of class l  is given by 
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( )( )
i l

T
l i l i l

∈
= − −∑

x X

S x x x x  ,                                          (9) 

here 
1

i l

l i
ln ∈

= ∑
x X

x x  is the sample mean of class ( 1,2, , )l l c= K . The within-

class-scatter matrix of total samples is 

w
1

c

i
i=

=∑S S .                                                        (10) 

The between-class scatter matrix bS  is given by 

( )( )b
1

c
T

i i i
i

n
=

= − −∑S x x x x ,                                      (11) 

here 
1

1 n

i
in =

= ∑x x  is the total sample mean vector, whose elements correspond to the 

means of the columns of X .  
Performing FDA in the sample space means maximizing the between-class scatter 

bS  and minimizing the within-class scatter wS . This is equivalent to maximizing the 

following function 

b

w

( ) arg max
T

T
J

≠
=

0w

w S w
w

w S w
.                                              (12) 

The FDA vectors are equal to the generalized eigenvectors of the eigenvalue  
problem 

b wi i iλ=S w S w ,                                                   (13) 

where the eigenvalues iλ  indicate the degree of overall separability among the 

classes, and the norm of iw  is usually chosen to be 1i =w . The FDA transform 

matrix can be written as follows 

  [ ]1 2, ,...,FDA aW = w w w ,                                             (14) 

where m a
FDA R ×∈W  is a matrix with a  FDA vectors as columns. Note that there are 

1c −  nonzero generalized eigenvalues at most, and so the upper bound on a  is 
1c − . 

For a new sample newx , the FDA-transformed feature FDAy can be calculated as  

follows 

T
FDA FDA newy = W x  .                                               (15) 
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3.2   KPCA Plus FDA 

In section 2, we have learned that KPCA performs a PCA in the feature space. In this 
sense, KPCA aims at reconstruction but not classification, so it is not fit for the task 
of fault detection very well.  

According to Cover’s theorem [22], the nonlinear data structure in the input space 
is more likely to be linear after high-dimensional nonlinear mapping. Hence, FDA as 
a linear discriminative analysis method can be applied. After using KPCA, the input 
sample is projected onto feature space (see Eq. (7)) to get the KPCA-transformed 
feature vector. In fault detection problems, normal samples and faulty samples for 
training are all labeled as different classes, it makes sense to use this information to 
build a more reliable method to classify faulty sample from normal data. FDA is an 
example of a linear, class specific method, in the sense that it tries to “shape” the 
scatter in order to make it more reliable for fault detection. In this paper, after per-
forming KPCA, FDA is performed in the projection space to get the features more 
discriminative for fault detection. Fig.1 gives the flow chart of KPCA plus FDA 
method.  

For a new sample newx , we can rewrite Eq. (8) as  

( )KPCA KPCA newy = W x ,                                               (16) 

where KPCAW  is the KPCA transform function, and KPCAy  is the KPCA-transformed 

feature vector with length p . Then KPCA-FDA-transformed feature of newx  can be 

derived as follows 

( )KPCAKPCA+FDA FDA new
T= W W xy ,                                         (17) 

where KPCA+FDAy  can be used for fault detection after KPCA-FDA transform. 

3.3   KPCA Plus FDA for Fault Detection 

The monitoring method based on KPCA plus FDA is similar to that based on FDA 

method [23], and then 2T statistic and Q -statistic in the feature space can be inter-

preted in the same way.  
2 1T

KPCA+FDA KPCA+FDAT −= y S y ,                                          (18) 

where KPCA+FDAy is the KPCA-FDA-transformed feature obtained from Eq. (17), and 

S is the covariance matrix of KPCA-FDA-transformed feature vectors of the training 
samples. 

The 100 %α control limit for 2T  statistic is obtained using the F-distribution 
2

2 ( 1)
( , )

( )

n a
T F a n a

n n aα α
−= −
−

,                                         (19) 

where ( , )F a n aα − is the upper 100 %α critical point of the F-distribution with 

a and n a− degrees of freedom [20-21]. 
The residual vector of FDA can be defined as [23]. 
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(a) Training procedure                               (b) Testing procedure 

Fig. 1. Flow chart of KPCA plus FDA method 

( )
( ) ( ),

KPCA

KPCA

FDA FDA

FDA FDA new

-

-=

T

T

r = I W W y

I W W W x
                                       (20) 

where p a
FDA R ×∈W , 1( )KPCA

pR ×∈W x  is the KPCA-transformed feature vector of 

sample x , and the resulting residual vector 1pR ×∈r . 
The Q statistic is [24] 

TQ = r r .                                                         (21) 

The 100(1 )%α−  control limit for Q statistic can be computed from its approxi-

mate distribution [24]. 

( ) ( ) 01/1/ 22
2 0 2 0 0

1 2
1 1

2 1
1

h

c h h h
Q

α
α

θ θ
θ

θ θ

⎡ ⎤−
⎢ ⎥= + +
⎢ ⎥
⎣ ⎦

,                                (22) 
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where 2

1

n i
j jj a

θ σ
= +

=∑ , ( ) ( )2
0 1 3 21 2 3h θ θ θ= − , and cα is the normal deviate cor-

responding to the upper 100(1 )α− percentile. ( 1, , )j j a nσ = + L  is obtained via 

singular value decomposition as follows 

1

1
T
KPCA

n
=

−
Y UΣV

T ,                                              (23) 

here p n
KPCA R ×∈Y  is the KPCA-transformed feature vectors of the normal training 

data, and n pR ×Σ∈  contains the nonnegative real singular values of decreasing mag-
nitude 1 2( )pσ σ σ≥ ≥ ≥L . 

4   Simulations 

4.1   System Description 

To validate the fault detection performance of KPCA plus FDA scheme, the following 
system is simulated and analyzed. This system was used in [15-16] and was originally 
used by Dong and McAvoy [11]. It consists of three variables nonlinearly related with 
t , which are generated by 

1
2

2
3 2

3

3

3

t e

t t e

t t e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

x  ,                                           (24) 

where white Gaussian noise (0,0.01)ie N  and [ ]0.01,1t ∈ . Letting 0.01α = , 

100-run Monte Carlo simulations are performed.  
Gaussian kernel function (Eq. (25)) is used 

( )
2

, expk
σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x y
x y   ,                                       (25) 

where ⋅ is l2-norm and σ  is the width of a Gaussian function.  

Training samples and testing samples used in KPCA method are: 

1) Training data consists of 100 samples (samples 1–100) obtained using Eq. (24).  
2) The testing data set consists of two parts: the first 100 samples (samples 101–

200) are collected in the same condition as the normal condition in training data, and 
the second 100 testing samples (samples 201–300) are obtained using the system but 

with 3x expressed as 3 2
3 31.1 3.2x t t e= − + + .  

In the training procedure of KPCA plus FDA method, normal training samples and 
faulty training samples are all needed. In the following, training samples and testing 
samples used in KPCA plus FDA method are given: 
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1) Normal training data is the same as the training data used in KPCA method. An-
other testing data set is generated by the same method as used in KPCA method, and 
then samples 101-200 are used as faulty training data. 

2) The testing data set is the same as that used in KPCA method. 

4.2   Fault Detection Results 

Fault detection results of KPCA method (data from Ref. [16]) are compared with that 
of KPCA plus FDA method proposed in this paper in terms of type I error and type II 
error, as shown in Table 1. Type I error corresponds to false alarm rate, and type II 
error corresponds to missing alarm rate. Because there are two classes of samples, the 
number of non-zero eigenvalue of KPCA plus FDA method is one. The result of 
KPCA plus FDA method in Table 1 is obtained using the eigenvector corresponding 
to the non-zero eigenvalue.  

Table 1 shows that, kernel parameter σ  plays an important role in fault detection. 
For 0.02 0.10σ = − , type I error and type II error of KPCA plus FDA method are all 
smaller than KPCA method. For 0.01σ = , although type II error of KPCA plus FDA 
method (12.6％) is a little higher than that of KPCA method (9.2％), type I error of 
KPCA plus FDA method (4.2％) is significantly smaller than that of KPCA method 
(76.7％). It can be seen that, KPCA plus FDA method has shown superior performance 
of fault detection in terms of type I error and type II error compared to KPCA method.  

The selection of kernel parameters is critical to KPCA calculation since the degree 
to which the nonlinear characteristic of a system is captured depends on kernel func-
tion. For KPCA plus FDA method, a wider kernel parameter range is reasonable, and 
then KPCA plus FDA scheme has stronger adaptive ability to kernel parameters. 

Table 1. Fault detection results (%) of KPCA method and that of KPCA plus FDA method 

Type I error Type II error σ  Method 
min max average min max average 

KPCA 68.0 84.0 76.7 2.0 18.0 9.2 
0.01 KPCA plus 

FDA 
2.0 8.0 4.2 5.0 22.0 12.6 

KPCA 34.0 62.0 20.6 10.0 33.0 20.6 
0.02 KPCA plus 

FDA 
1.0 7.0 3.9 4.0 25.0 9.8 

KPCA 18.0 45.0 31.0 23.0 40.0 31.2 
0.03 KPCA plus 

FDA 
2.0 7.0 3.5 4.0 23.0 10.8 

KPCA 10.0 30.0 19.8 31.0 51.0 40.5 
0.04 KPCA plus 

FDA 
2.0 7.0 4.6 3.0 26.0 15.5 

KPCA 30.0 23.0 12.5 37.0 59.0 49.9 
0.05 KPCA plus 

FDA 
2.0 7.0 4.3 11.0 32.0 21.4 

KPCA 0.0 5.0 2.5 70.0 90.0 77.6 
0.10 KPCA plus 

FDA 
2.0 5.0 3.8 32.0 57.0 42.4 
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5   Conclusions 

In recent years, KPCA has been utilized directly for nonlinear process monitoring, 
and it has been proven to outperform conventional PCA method. This paper focuses 
on the improvement of KPCA for fault detection. FDA is performed for fault detec-
tion after KPCA calculation, and is named as KPCA plus FDA method. KPCA per-
forms a PCA in feature space. In this sense, KPCA aims at reconstruction but not 
classification, so it is not fit for the task of fault detection very well. FDA aims to find 
an optimal transformation by minimizing the within-class distance and maximizing 
the between-class distance simultaneously, and this makes up for the shortcoming of 
KPCA method. Simulations conducted on a nonlinear process have demonstrated that, 
KPCA plus FDA method is more efficient for fault detection than KPCA method in 
terms of low false alarm rate and low missing alarm rate. 
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Abstract. The volume of data with a few uncertainties overwhelms classic in-
formation systems in the distribution control center and exacerbates the existing
knowledge acquisition process of expert systems. The paper describes a system-
atic approach for detecting superfluous data. It is considered as a ”white box”
rather than a ”black box” like in the case of neural network. The approach there-
fore could offer user both the opportunity to learn about the data and to validate
the extracted knowledge. To deal with the uncertainty and deferent structures of
the system, rough sets and fuzzy sets are introduced. The reduction algorithm
based on uncertainty rough sets is improved. The rule reliability is deduced using
fuzzy sets and probability. The simulation result of a power distribution system
shows the effec-tiveness and usefulness of the approach.

1 Introduction

In recent years, there is an increasing urgent demand for useful knowledge rather than
mountains of data during the emergency condition by the operators. Quick and correct
fault diagnosis has realism meaning to reduce time of electric energy’s interruption and
improve the reliability of power supply. It is easier with complete and exact information
than without. However, when distribution system occurs fault, the certainty and integrity
of information will be damaged by a good many causations [1]. In order to improve the
accuracy and rapidity of fault diagnosis, it is necessary to discovery a new method that
has high fault tolerant and can compress data space and filtrate error data [2]-[4]. To deal
with indiscernibility, rough set theory was first proposed by Pawlak (1982) [5]. And a
lot of methods are put forward based on rough sets by scholars. It is a pity that most of
them make attributes reduction for dis-crete data and ignore the voltage and current. But
for the dis-tribution, especially in the country, the discrete signals, such as the switched
and protection devices, are not exact in some cases, where the current and voltage are
more important attrib-utes for the fault diagnosis. But the rough set cannot deal with the
continuous attribute directly and the hard discretization method may damage the useful
information [6], [7]. And in a distribution system, for the tens of possible structures, the
imaginable fault grids will be more than 1000 and the rules several times to them. The
chain fault grids are too much to add up. So the classical method of establishing expert
rules considering all kinds of possible faults is not enough now.
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Facing to the problems, fuzzy sets are employed to handle linguistic input informa-
tion (by a soft discretization to voltage and current) and ambiguity in output decision,
while rough set extracts the relevant domain knowledge to the fault diagnosis from his-
tory data, and then the chain faults are deduced by the probability-rough methods. A
worked examples is applied to explain the procedure of the diagnosis and a simulation
on the actual power distribution proves the effectiveness and usefulness of the approach.

The rest of this paper is structured as follows. Section 2 and section 3 introduces the
preliminaries and deduces the reduction and diagnosis procedure. Section 4 discusses
the uncertainty of input and output varieties in the distribution. Section 5 describes
the experimentation carried out on the real problem and presents the results. Section 6
concludes the paper.

2 Preliminaries

2.1 Rough Set

An uncertainty-rough classification problem can be described as follows. The universe
U = {xi|i = 1, · · · , n} is described by the discretization attributes {P1, P2, · · · , Pp}.
Each attribute measures some important feature of and is limited to linguistic terms
A(Pi) = {Fik|k = 1, · · · , Ci}. Each object xi ∈ U is classified by a set of classes
A(Q) = {Fl|l = 1, · · · , CQ}. Each Fl ∈ A(Q) may be a crisp or membership function
and Q is decision attribute. The set U/P = {Fik|i = 1, · · · , p; k = 1, · · · , Ci} can be
regarded as a kind of partitions of U by a set of attributes P using uncertainty model.

Definition 1. [8]-[11] Given U is limited universe, the set function P : 2U → [0, 1]
is probability estimation. And the lower and upper probability of probability-rough set
are defined by

PAα(X) = {x ∈ U |P (x|[x]) ≥ α}
PAβ(X) = {x ∈ U |P (x|[x]) > β} (1)

where ≤ β < α ≤ 1.

Definition 2. Given arbitrary fuzzy setμA(x) : U → [0, 1]; ∀x ∈ U andFik ∈ U/P .
The lower and upper membership function of fuzzy-rough set are defined by

μA(Fik) = inf
x∈U

max{1 − μFik
(x), μA(x)}

μA(Fik) = sup
x∈U

min{μFik
(x), μA(x)} (2)

3 Rough Sets with Uncertainty

Similar to the Definition 1 and Definition 2, the lower and upper approximation func-
tions of uncertainty-rough model can be obtained.

Definition 3. The information entropy can be defined as

μA(Fik) = inf
x∈U

max{1 − μFik
(x), μA(x), α}

μA(Fik) = sup
x∈U

max{min{μFik
(x), μA(x)}, β} (3)
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The positive region of a rough set is the maximum membership degree classified by
Fik; ∀k = 1, 2, · · · , Ci, i.e.,

μPOS(Fik) = sup
Fl∈A(Q)

{μFl
(Fik)} (4)

Membership of x ∈ U to the positive region can be calculated by

μPOS(x) = sup
Fik∈A(Pi)

min{μFik
(x), μPOS(Fik)} (5)

Dependency degree γS(Q) (0 ≤ γS(Q) ≤ 1) of Q on the set of attributes P is
defined by

γP (Q) =

∑

x∈U

μPOS(x)

n
(6)

From the above-mentioned methods, the system after reduction is obtained and a
fuzzy logic consequence method is applied to it. With the fuzzy sets Ã(x) and B̃(x),
fuzzy set is

(Ã → B̃)(x, y)
def←→ [Ã(x) ∧ B̃(y)] ∨ [1 − Ã(x)] (7)

From (23) a fuzzy relationship matrix R can be calculated by different input-output
relationships. Then when a fault occurred, a decision with membership function can be
obtained from fuzzy relationship matrix as following.

B̃(x) = Ã(x) ◦ R (8)

where mark “◦” denotes fuzzy relation synthesized.
Considering multi-fault condition, a probability-rough consequence method is

introduced.
Supposing a = P (x|[x]), b = P (Y |[x]), the compound probability can be defined

as,a11 = P (X ∩ Y |[x]), a12 = P (X ∩ (∼ Y )|[x]),a21 = P ((∼ X) ∩ Y |[x]),a22 =
P ((∼ X) ∩ (∼ Y )|[x]). Obviously the compound probability satisfies the following
restriction condition.

a11 + a12 = a, a21 + a22 = 1 − a
a11 + a21 = b, a12 + a22 = 1 − b

(9)

The entropy function of compound probability is

H(P ) = −
2∑

i,j=1

aij log aij (10)

When a aij = 0, H(P ) can be calculated as 0×log0=0.
From (9) we can see that only one free variety. We can choose a11 as free variety,

then ⎧
⎨

⎩

a12 = a − a11
a21 = b − a11
a22 = 1 − (a + b) + a11

(11)
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Take (23) to (9) can obtain

H(P ) = −a11 log a11 − (a − a11) log(a − a11)
−(b − a11) log(ba11)
−[1 − (a + b) + a11] log[1 − (a + b) + a11]

(12)

From definition 3 and probability we can know that
{

μX∩Y (x) ≥ max{0, μX(x) + μY (x) − 1}
μX∩Y (x) ≤ max{μX(x), μY (x)} (13)

We can get max{0, a + b − 1} ≤ a11 ≤ min{a, b}. Get the derivative of a11 from
(12), and make the derivative is zero.

dH(P )
da11

= log
(a − a11)(b − a11)

a11[1 − (a + b) + a11]
= 0 (14)

From (14), we can get a11 = ab, and it is easy to see that H(P )is the most when
a11 = ab and H(P )is the least when a11 = max{0, a + b − 1} or a11 = min{a, b}.
With (9) we can get

{
μX∩Y (x) = μX(x)μY (x)
μX∪Y (x) = μX(x) + μY (x) − μX(x)μY (x) (15)

It is with the most entropy. Or get
{

μX∩Y (x) = max{0, μX(x) + μY (x) − 1}
μX∪Y (x) = min{1, μX(x) + μY (x) − 1}

when a11 = max{0, a + b − 1}
(16)

and {
μX∩Y (x) = min{μX(x)μY (x)}
μX∪Y (x) = max{μX(x)μY (x)}

when a11 = min{a, b}
(17)

They are with the least entropy.

4 Distribution System Data Modelling

The error of current value can be defined as [12]

ΔI% = (KI2 − I1)/I1 × 100% = ε% + λi1Φ + λi2Id (18)

where Φ is the magnetic flux of instrument current transformer, Id is the short circuit
current value, K is the transformation ratio, I1 and I2 are primary and secondary rated
current, λi1 and λi2 are the coefficient and ε% is the level error of the fluxmeter of
current mutual inductance which can be defined as following,

ε% =
100
I1

×

√
1
T

∫ T

0
(KIi2 − i1)2dt (19)
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where I1 is primary virtual value, i1 and i2 are primary and secondary short circuit
current, T is the period of short circuit current.

The error of voltage value is

ΔU% = (KU2 − U1)/U1 × 100%
= ε% + λu1 cosϕ + λu2I0

(20)

where cosϕ is power factor, I0 is no-load current value, λu1 and λu2 are the coefficient,
K is the transformation ratio, U1 and U2 are primary and secondary rated voltage,and
ε% is the level error of the instrument potential transformer which can be defined as the
level error of the fluxmeter of current mutual inductance.

For ε% can be described with different level (four levels are defined in China), it can
be regarded as a fuzziness variety. And the other varieties are decided by short circuit
situation data and user as a random occurrence. Then the error of current value and
voltage value can be defined as a kind of fuzziness randomness variety as following.

ξ(ΔI%, ΔU%) =

⎧
⎪⎪⎨

⎪⎪⎩

μ1 + σ1; ΔI% , ΔU% = ω1
μ2 + σ2; ΔI% , ΔU% = ω2
μ3 + σ3; ΔI% , ΔU% = ω3
μ4 + σ4; ΔI% , ΔU% = ω4

(21)

where μi is the accuracy level of mutual inductance described by experts, σi is the
random error and ωi is the probability of measure error.

As for the fault voltage and fault current in the certainty system, the following equa-
tion can be obtained.

⎡

⎣
V̇a

V̇b

V̇c

⎤

⎦ = l

⎡

⎣
Żaa Żab Żac

Żba Żbb Żbc

Żca Żcb Żcc

⎤

⎦

⎡

⎣
İa

İb

İc

⎤

⎦ + R

⎡

⎣
İfa

İfb

İfc

⎤

⎦ (22)

where İf = İa − İLa; V̇a: a-phase voltage; İa:a-phase current; İfa: a-phase fault cur-
rent; İLa: a-phase load current; l: fault distance; R: fault resistance;Ż :line impedance
matrix. Note that the voltage equation contains two unknown variables-fault distance
(l) and fault resistance (Ṙ). The fault voltage and current equation with uncertainty can
be defined.

V̇a = (lŻ + R)İa − RİLa (23)

where V̇a, İa, İLa and Żare known and l, R are random. For İa  İLa,the RİLa can
be deemed as σi in (21) and (lŻ + R)İa can be disassembled with a certain variety and
a fuzzy variety.

Considering the 6 classes fault as following. [13]

(a) Single line-to-ground fault: Let us assume that phase a is shorted to ground. We
see thatVaf = 0; Ib = Ic = 0; Ia = If . The three sequence networks are connected at
the fault point.

(b) Line-to-line fault: Vbf = Vcf ; Ia = 0; Ib + Ic = 0. Since the fault does not
involve ground, the zero-sequence network is absent.
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(c) Double line-to-ground fault: Vbf = Vcf = 0; Ia = 0; If = Ib + Ic.
(d) Three –phase fault: There are no zero or negative-sequence current. Vaf =

Vbf = Vcf = 0; Ia + Ib + Ic = 0.
(e) One open conductor: Open-conductor conditions may be caused by broken con-

ductors or a deliberate single-phase switching operation. Such faults may involve the
opening of one phase or two phases of a three-phase circuit.

A section of a three-phase system with phase a. Let va,vb and vc be series voltage
drops in phases, respectively; Ia,Ib and Icare the line currents.

vb = vc = 0; Ia = 0

(f) Tow open conductors: Consider the condition with phases b and c open. va =
0; Ib = Ic = 0.

5 Simulation

A typical 3 partitions and 3 connections country power distribution system of Shenyang,
the Northeastern city of China, is shown in Fig.1. It contains 71 nodes and 72 circuits,
23 identified fault grids and 19 the operable switches (numbered 0, 5, 10, 14, 18, 19, 22,
27, 30, 36, 41, 44, 47, 51, 54, 58, 64, 69, 72). There are 105 kinds of network structures
including over-loud and insecure ones in the case of no fault. Maybe some of structures
are impossible, but most of them are acceptable and potential.

For any of the structures, such as 5, 22, 27, 36, 41, 69 switches off and the others
on, the system structure can be reconfigured as Fig.2 shown. 7 electric isolated islands

Fig. 1. A typical 3 partitions and 3 connections countryside power distribution system
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Fig. 2. A kind of structure of distribution when there is no fault

are divided. There are 1 to 4 fault grids differently in each electric isolated island. The
whole fault grids reach 13. The similar count is in any other structures. As a whole, the
imaginable fault grids will be more than 1000 and the rules several times to them. The
chain fault grids are too much to add up.

In the system, the current values of the nodes with operable switches are mea-
surable, named by node number (such as I0, I5, · · · , I72). And the measurable volt-
age values are only on the outside power supply nodes, also named by node number
(U0, U18, · · · , U72). The count of condition attributes is 26, and the count of decision
attributes is only 2 (fault grid and fault type). Fault type is composed of a: single line-to-
ground, b: line-to-line, c: double line-to-ground, d: three-phase, e: one open conductor
and f: tow open conductors. With 1000 history fault records, the origin decision table
can be established.

For the error of the data in the requirement and transport process, the origin rules are
not authoritative completely. So the reduction end condition is γPk+1(Q)−γPk

(Q) < ε;
∀ε > 0. In the simulation we take ε = 0.2. The fuzzy membership function type is
shown in Fig.1.

The count of attributes after reduction is 18, except I14, I22, I47, I54, I64I72, U30, U47.
The effectual reduction rate is Card(U − {P})/Card(U) = 0.31.

The fault diagnosis process based on probability is stopped by μ∩X(x) ≤ 0.3 or
Card(∪X) ≥ 4, which can save the time of reasoning time. And the fault type of chain
faults needed to be deduced.

For the reduction rules, we take 200 groups of fault data of different system structures
to examine. For instance, by the structure as shown in Fig.1 some fault results are shown
in Table.1. Some of the rules with the lower confidence are leaved out in the table for
the space.
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Table 1. Some Examples of Diagnosis by Examination

Test Diagnosis
f10−14 d f10−14 ,

0.92 d,0.69
f14−18

,0.11 b, 0.33
f10−14∩14−18 0.10 f10−14∪14−18 0.93

f38−51and
f51−58 c

f38−51 ,0.71
d, 0.55

f51−58,0.82
c, 051

f54−58

0.62
f38−51∩51−58 0.58
f38−51∩54−58 0.44
f54−58∩51−58 0.51

f38−51∪51−58 0.95
f38−51∪54−58 0.89
f54−58∪51−58 0.93

f58−64

e
f58−64 0.95
e,1

f51−58 0.33
e,1

f58−64∩51−58 0.31 f58−64∪51−58 0.97

Table 2. Rules of Worked Example

λ
Fault types
Total Symmetrical

fault
Other short
fault

Open con-
ductor

Multi-fault

0.8 85.7% 91.1% 86.4% 92.0% 67.9%
0.5 86.3% 87.7% 84.2% 89.9% 79.5%
0.3 83.1% 84.4% 84.8% 88.6% 71.0%

The whole test conclusions are shown in Table.2. The exactness rate is defined as�

μi≥λ,fi=ftest

Card(xi)·μi

�

μi≥λ

Card(xi)·μi
, where Card(xi) is the count of the rules; μi is the weight of

each rule; λ is the membership function threshold value.
From the table we can see that the symmetrical fault and open conductor fault are

easy to diagnosis, but the multi-fault is hard. And a better result can be obtained by
λ = 0.5.

6 Conclusion

An overabundance of data may cause serious inconvenience to those engineers and dis-
patchers who have to analyze and respond to an emergency. By improving how we
retrieve information, our information anxiety will be reduced and our confidence in
making the correct decision increases. The pursuing aim of system is: the right infor-
mation to the right people at the right place and the right time.

The proposed method in this paper can help reduce the amount of data stored at the
source and increase the quality of information presented to the end users. A compu-
tational intelligence approach using uncertainty rough sets is described in the paper.
The knowledge is represented by a group of fuzzy rules. In order to reduce abundant
fuzzy rules and attributes or inconsistent information, rough set theory is employed to
find a minimal reduction and form a group of final fault diagnostic rules. The rule re-
liability is computed using fuzzy sets and probability. It not only generates useful and
easily readable rules with voltage and current but also allows faster knowledge acquisi-
tion and information transfer to streamline the decision making process by probability
fuzzy method. The technique optimizes the way we handle masses of information by
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reducing the amount of data presented to the operator, particularly during and after an
emergency condition. Effectively, it conveys a clearer picture of the system condition.
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Abstract. A design method of associative memory model with expect-
ing fault-tolerant field is proposed.The benefit of this method is to make
the designed associative memory model memory sample fault-tolerant
field which implements the hoped situation. For any different P sam-
ples in n dimensional binary information space Dn = [1, −1]n and any
the p compartmentalization C1, C2, . . . , Cp of Dn, an associative memory
model with expecting fault-tolerant field C1, C2, . . . , Cp can be designed
by the method. The method better solves the difficult synthesis problems
of associative memory models.

1 Introduction

There is a very long history in the research of the associative memory [1-2].
In 1961, Steinbuch put forward the concept of studying matrix. In 1972, Ko-
honen set up related matrix memory device, and then, Nakano proposed the
associating machine. In 1988, Kosko provided the bi-directional associative mem-
ory model. In 1990, Jeng proposed the index bi-directional associative memory
model. In 1998, Lee provided and realized a kind of multi-valued mode asso-
ciative memory [3]. In 2000, Yingquan Wu etc. gave three layers feed-forward
bidirectional associative memory [4-5]. In 2001, Yingquan Wu etc. improved the
above work by taking out some constraint conditions [6]. In 2003, Jyh-Yeong
Chang,Chien-Wen Cho constructed a second-order asymmetric bidirectional as-
sociative neural network design with a maximum field of attraction [7]. In 2003,
Kamio, T., Morisue, M. constructed an associative memory network by using cell
nerve network with copying stencil steadiness space [8], Costantini, G., Casali,
D., Perfetti, R.proposed associative memory neural network method of storing
gray-coded gray-scale images [9]. Mehmet Kerem Mezzinoglu etc. respectively
proposed a new design method of complex value multi-state Holpfield associa-
tive memory and binary system associative memory design in 2003 and 2004
� Supported by the National Natural Foundation of China No.60673101 and 863

Project of China (No.2006AA04Z110, 2006AA01Z123).
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[10-11]. For nearly ten years in China scholars such as Zhang Ling, Zhang Bo,
Liang Xuebin, Chen Songcan, Tao Qing, Wei Hui, Yang Guowei etc. have made
the further research work [12-17], and developed the research of the associative
memory. Base on the associative memory research results, we can establish the
artificial brain and the artificial life with associative memory function of which
is similar to that of humanbeings [1,18].

Associative memory divides into heteroassociate memory and autoassociate
memory. Heteroassociate memory is a kind of mapping mode feed-forward, which
make the input directly mapping to the needed output by constructing some
mapping (transform), For instance the multi-layer network, perceiving device
,etc. (remarksome heteroassociate associative memory can be realized by the
network motive evolvement). The process of autoassociate memory is generally
a kind of evolution course systematic in dynamics which makes the mode to be
discerned as the initial state of the network, and the network evolves according
to certain dynamics law, the final state is the associate result. As the network
export, the Model Hopfield network belongs to this cluster. But to form this kind
of associative memory network need take longer time, and sometimes this kind of
associative memory network can not form even in standing time (the evolvement
can not converge), which means this kind of network model associative memory
is slow.

The associative memory gets a great achievement. But up till now the size and
position of the existing associative memory model fault-tolerant fields (attractive
field) can not be shifted by the designer’s desire. None of them can achieve the
purpose that what kind of the sample fault-tolerant field I want and then I
can finish it. Some associative memory model fault-tolerant fields even have no
general recognition, just exiting in theory [1-16]. This deformity of associative
memory model has a strong impact on its range of application and effect.

Example 1. By using models in [4, 5, 6, 12] to associate memory the following
two mode of Nine Square

Fig. 1. Nine Square two big difference mode

Therefore the Hamming distance of the two mode is 2. Therefore, both of
the fault-tolerant radius are 1, and the two fault-tolerant fields only have one
sample point. So once there is noise, the two mode can not associate correctly
(classification or recognition), that is, we can not guarantee the results if this
model apply to two kind mode classify recognition. However, we can find the big
gap and difference between the two mode, both of their fault-tolerant should be
a little larger.
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We know that the research of associative memory model includes analyze and
synthesize the associative memory model system. The purpose of analysis is to
find the functions of the system, while synthesis is to build a system with destine
functions. The reason why the above deficiency exists mainly because ① The tra-
ditional method of the associative memory model is to ”design the associative
memory model first, then find the sample fault-tolerant field or prove the pres-
ence of the sample fault-tolerant field”. Such design concept is ”system analyze
method”, it can foreknow functions the system possess, but can not guarantee
system must possess those functions, for example, it can not guarantee a sample
possess the fault-tolerant field; ② It is an unresolved system synthetic intractable
problem that ”design the sample fault-tolerant field first, then construct the as-
sociative memory model with such fault-tolerant field”.

In the article, A method that design the sample expecting fault-tolerant field
first, base on the expecting sample fault-tolerant field( set of learning point ), we
can construct an ahead masking associative memory with the expecting sample
fault-tolerant field model by learning. The associative memory model designed
by this method not only can associate the given sample, but also can guarantee
the size and position of sample fault-tolerant field as designed. Consequently, it
can achieve the purpose that what kind of the sample fault-tolerant field I want
and then I can finish it. The operation of the model design method is easy and
its algorithms can be finished in limited step.

2 Design of Expecting Sample Fault-Tolerant Field
(Attractive Field)

Consider n dimensional information spaces Dn = {(x1, . . . , xi, . . . , xn)T |xi =
1or − 1}. Suppose that (X1, Y 1), (X2, Y 2), . . . , (Xp, Y p) are different P sample
pairs from each other in Dn, X1 = (x11, x21, . . . , xn1)T , . . . , Y 1 = (y11, y21, . . . ,
yn1)T , P ≤ 2n.

Let P nonempty sets Cj ⊆ Dn, j = 1, . . . , p, if Cj ∩ Ci = Ø, i �= j, i, j =

1, 2, . . . , p,
p⋃

j=1
Cj = Dn, we call C1, C2, . . . , Cp is P compartmentalization of

Dn. By permutation and combination, there are many ways to compartmental-
ize Dn in P blocks. And we also can figure out the compartmentalization of

X1 ∈ C1, X
2 ∈ C2, . . . , X

p ∈ Cp. Let
{

m
r

}
represent the number of r nonempty

nonintersectant subsets compartmentalization of the set with m elements. Then{
m
r

}
= r

{
m − 1

r

}
+

{
m − 1
r − 1

}
. And the number of the P compartmentaliza-

tion of Dn is
{

2n

p

}
. The number of the P compartmentalization of Dn with

X1 ∈ C1, X
2 ∈ C2, . . . , X

p ∈ Cp is p2n−p.
We can prove the following theorem by mathematics knowledge.

Theorem 1. Let di = min{dH(X i, Xj)|i �= j}, D(X i) = {X |dH(X i, X) <
di

2 , X ∈ Dn}, i = i, . . . , p − 1, and D(Xp) = {X |dH(X i, X) ≥ di

2 , X ∈ Dn, 1 ≤
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i ≤ p − 1}, where dH is Hamming distance. Then D(X1), D(X2), . . . , D(Xp) is
P compartmentalization of Dn. The compartmentalization feature is that X i is
center of D(X i), and in average significance lets D(X i) at a maximum radius.

Now suppose X1 ∈ C1, . . . , X
i ∈ Ci, i = 1, . . . , p and C1, C2, . . . , cp is a com-

partmentalization of Dn. Mapping
f : Dn −→ Dn

(f1(X), · · · , fn(X)) = f(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y 1, whileX ∈ C1,
...

...
Y i, whileX ∈ Ci,
...

...
Y p, whileX ∈ Cp

While there is a neural network NN precisely implement f, this network NN is
a associative memory model of (X1, Y 1), (X2, Y 2), . . . , (Xp, Y p), and Ci is the
fault-tolerant field of Ci. Especially, while X1 = Y 1, X2 = Y 2, . . . , Xp = Y p,
this network NN is an autoassociate memory model of X1, X2, . . . , Xp, and Ci

is the fault-tolerant field(attractive field) of X i. There are many design methods
of Ci, i = i, . . . , p from the above illustration, to different needs, we can design
Ci in particular, for example, the design in Theorem 1.

Now we design an ahead masking associative memory model with expecting
fault-tolerant field to precisely implement mapping f .

3 An Ahead Masking Associative Memory Model
Topology

The topology of an ahead masking associative memory model is made up of
a general feed-forward network[19] with n input nodes, and circumscribe with
double layers feed-forward neural networkeach layer contains n neurons, and
neurons on the same layer do not connect with each other.

General Feed-forward network (no closed loop) is the neural network that all
the neurons have serial number except input nodes ( seen as neurons) input
nodes are connected with all the neurons, neurons which are lined in front are
connected with all the neurons behind them, neurons are not connected with
themselves, and neurons which are lined in latter are not connected with neurons
before them.

To feed-forward network, suppose nerve network contains N input notes( num-
ber 1 to N) and M neurons(number N = 1 to N + M),Wij(i = 1, 2, . . . , N, j =
N + 1, N + 2, . . . , N + M) is the connecting weighting value between neurons.If
Wij = 0 denotes there is no connection between i to j, then the topology of the
neurons can be described by i to j condition of Wij = 0.

Therefore, the sufficient and necessary condition of General Feed-forward net-
work GFFN is

Wij = 0, if j ≤ N or i ≥ j.
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The sufficient and necessary condition of single layer perceiving device is :

Wij = 0, if i > N or j ≤ N.

The sufficient and necessary condition of single hidden layer lamination feed-
forward network( number of the hidden neurons is a, a < M) is:

Wij = 0, while

⎧
⎪⎨

⎪⎩

j ≤ N,

or i ≤ N, j > N + a,

or i > N, j ≤ N + a.

The sufficient and necessary condition of three layers perceiving device ( i.e.
two hidden layers feed-forward network, which the number of neurons on the
second hidden layer respectively is a and b, a + b < M)

Wij = 0, while

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ≤ N,

or i ≤ N, j > N + a,

or i > N, j ≤ N + a,

or N + a ≥ i ≥ N, j > N + a + b,

or i > N + a, j ≤ N + a + b,

or i > N + a + b.

It is clear that General Feed-forward network (GFFN) is the most widespread
feed-forward network, and any lamination feed-forward network is one excep-
tional case of it. While the above GFFN condition, that is formula (2), is the
feed-forward network basic condition.

Determination of the Ahead Masking Associative Memory Model
with Expecting Fault-tolerant Field: Determination of the ahead masking
associative memory model with expecting fault-tolerant field includes three parts
of work. First part is general feed-forward network (GFFN) model determina-
tion (sequential learning algorithm) in the model, second part is determination
of the connecting weighting value(matrix) from general feed-forward network
(GFFN) output neuron to the first layer of double layers feed-forward network,
third part is the determination of double layers feed-forward network model.

Determination of General feed-forward network (GFFN) model (se-
quential learning algorithm): Supposes C1, C2, . . . , Cp is P compartmental-
ization of Dn = [1, −1]n, and X1 ∈ C1, X

2 ∈ C2, . . . , X
p ∈ Cp.

Suppose that the input space is the n dimension space Dn = {(xi, . . . , xi, . . . ,
xn)T |xi = 1or−1}, neuron uses the linear output during learning, that is output
=

∑
WI, neuron uses hard limited step activation function during recognition

f(Z) =

{
1, Z ≥ 0,

0, Z < 0.

Activation threshold value of the neuron is W0, input biggest coupling number
of the neuron is N + a ( a = 1, 2, . . ., is the serial number of neuron), where n
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couplings come from n input notes, a−1 couplings come from the output neuron
with serial number < a, one coupling is the input of activation threshold is −W0.

Supposes that input sample space is Dn = [1, −1]n = C1 ∪ C2 ∪ . . . ∪ Cp, the
total number of the input samples is S = 2n, where S1 samples are assigned to
be the cluster X1 (samples belong to C1), and S2 samples are assigned to be the
cluster X2 (samples belong to C2), and S3 samples are assigned to be the cluster
X2 (samples belong to C3),. . . , by parity of reasoning : S = S1 + S2 + . . . + Sp.
Frist suppose all the connection intensity are zero between neurons (no connec-
tion), suppose the output activation function of neuron is linear, that is output

=
n∑

i=1
MiIi.

Step 1. Compute the unit direction vector of each note from origin to Dn =
[1, −1]n = C1 ∪ C2 ∪ . . . ∪ Cp, the set can be written as M .

Step 2. Stochastically chooses α group of vectors from as input weighting
values neurons which has not arranged, then put all samples in C1 ∪C2 ∪ . . .∪Cp

through the input notes in order and at the same time put them to neurons
which has not arranged to carry on the computation respectively (α is user-
defined learning parameter).

Step 3. Get the computed result =
∑

WI of input sample of each neuron
which has not arranged, to each neuron respectively line up the result from big
to small by size, from the line up results, find out each neuron to the similar
sample computed result may separate to the same cluster of sample number from
big to small. (the definition of separation is the max distance which separates
two sides different cluster of samples computed result bigger than some definite
value D, the established D value may affect total number of neurons and the
ability of network exudes the ability.)

Step 4. Find out the not arranged neuron which can separate the sample
most, record its related weighting value and separation place value W0 =

∑
W0I0

(remark if threshold value of neuron is this value, the neuron can separate to the
same cluster of sample number most, those separated same cluster sample value∑

WI is bigger or equal to this value θW0 =
∑

W0I0, while other all sample
value

∑
WI is smaller than W0 =

∑
W0I0) to spare, if the separation sample is

bigger than its previous record, then covers previous record.
Step 5. From further increases separation sample number and enlarge the

direction of separation distance, that is, chooses α group of vectors from unit di-
rection vector M as α input weighting values of neurons which has not arranged,
regulate the input weighting values of neurons which has not arranged, again cal-
culates those neurons.

Step 6. Duplicate 2 to 4th step β times. Take the neuron with most record
as the neuron which has arranged, follows closely the arranged neuron, (or begin
arranged neuron), record the separation sample number of this neuron and the
separation value

∑
W0I0, and mark the separation sample cluster (X1 or X2 or

X3 . . . etc.) of this neuron.
Step 7. Take away the sample which is separated by this neuron from the

original sample set, and take the left samples as a new sample set.
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Step 8. Duplicates 2 to 7th step until the sample set is only left one kind
sample.

Step 9. As well as another neuron, which arrangement follows closely outside
the arranged neuron, (it will be the biggest arrangement in this nerve network,
which arrange number is total number of the neuron which pattern classification
needs), from the left sample computation results, we can get the smallest value
in

∑
WI, use this value subtract D as this neuron separation value, and mark

the classification of the sample.
Step 10. Change the activate function of all neuron into hard limited step

function, and set the corresponding threshold value as W0 =
∑

W ′I ′, where∑
W ′I ′ is the recorded separation value.
Step 11. Note Wmax as the absolute maximum weight of the weights from

the above input nodes to any neurons multiplied by the total number of input
nodes N. Let the weight from the neuron of lower sequential order to that of
higher sequential order equal to +Wmax, if both the neurons are marked with
the same cluster. Let the weight from the neuron of lower sequential order to
that of higher sequential order to be −Wmax, if both neurons are marked with
different cluster.

After the above sequence feed-forward masking algorithms of the learning or-
dering have been performed, the general feed-forward network model has been
determined. The neuron, marked with certain cluster (X1 or X2 or X3 . . . etc.)
with the highest sequential order, corresponds to the output neuron of the clus-
ter. When an input pattern belongs to this cluster, the output of this neuron
is 1, otherwise it is 0. It is should be pointed out that the number of the con-
necting weights of the edges originating from a certain neutron to other neutrons
of higher order may be less than or equal to the total number of the classified
clusters, for among the neutrons of a certain cluster of higher order, it is enough
to choose a neutron with the lest order as the objective to be connected. This
neuron may continue to mask the previous neuron of the higher sequential order.

The determination of the weight from general feed-forward network
to the two- layer feed-forward network: Let 1 be the connection weight
from the neuron of the highest sequential order in cluster X1 of the general feed-
forward network output neurons to the first neuron on the first layer of two-
layer feed-forward network, set 1 as the connection weight from the neuron of
the highest sequential order in cluster X2 of the general feed-forward network
output neuron to the second neuron on the first layer of the two- layer feed-
forward network,. . . , set 1 as the connection weight from the neuron of the
highest sequential order in cluster Xp of the general feed-forward network output
neurons to the neutron p on the first layer of the two- layer feed-forward network,
all the other weights from the general feed-forward network output neurons to
the first layer of the two-layer feed-forward network are endowed with 0.

The determination of the two-layer feed-forward network model:
Suppose that (X1, Y 1), (X2, Y 2), . . . , (Xp, Y p) are different P associative mem-
ory sample pairs from each other in Dn, X1 = (x11, x21, . . . , xn1)T , . . . , Y 1 =
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(y11, . . . , yn1)T , . . .. Set each layer of the two-layer feed-forward network includ-
ing n neurons. The weight matrix from the neutrons on the first layer to those
on the second layer of the two-layer feed-forward network is

⎛

⎜
⎜
⎜
⎝

y11 y12 . . . y1p

y21 y22 . . . y2p

...
...

...
...

yn1 yn2 . . . ynp

⎞

⎟
⎟
⎟
⎠

n×p

As soon as the above work has been completed, the ahead masking associative
memory model with expecting sample fault-tolerant field can be determined. For
this model, we have the following theorem.

Theorem 2. Let Dn = {(x1, . . . , xi, . . . , xn)T |xi = 1or − 1}. Suppose that
(X1, Y 1), (X2, Y 2), . . . , (Xp, Y p) are different P associative memory sample pairs
from each other in Dn, X1 = (x11, x21, . . . , xn1)T , . . . , Y 1 = (y11, y21, . . . , yn1)T ,
. . .. Suppose that C1, C2, . . . , Cp is p compartmentalization of Dn, where X1 ∈
C1, X

2 ∈ C2, . . . , X
p ∈ Cp. Therefore the cybernetic fault-tolerant field ahead

masking associative memory model determined by the above method can be pre-
cisely implemented by the mapping f of the form 1and consequently, (X1, Y 1),
(X2, Y 2), . . . , (Xp, Y p) can be associatively memorized, and the sample fault-
tolerant field Xk is

D(Xk) = Ck, k = 1, . . . , p,

such that
⋃

k

D(Xk) = Dn = C1 ∪ C2 ∪ . . . ∪ Cp,

In the case that Xk = Y k, k = 1, . . . , p, the ahead masking associative memory
model is a kind of auto-associative memory.

Example 2. In example 1, the fault-tolerant field D(Xk) = Ck, k = 1, 2 of
the two modes can be established previously as the set including 29−1 different
modes. According to the above design method of the ahead masking associative
memory model, we can correspondingly get the cybernetic fault-tolerant field
ahead masking auto-associative memory model. Generally speaking, the fault-
tolerant D(Xk) = Ck, k = 1, 2 of the two samples of this model are the maximal.
The experiment indicates that under slightly noises, this auto-associative mem-
ory model can correctly associate (classify or recognize) the two different mode
of Nine Square.

Corollary 1. The ahead masking associative memory model with expecting
sample fault-tolerant field does not have pseudo-attractor.

Proof. Due to Dn =
p⋃

k=1
D(Xk), that is, the union of the fault-tolerant fields

(attractive field) of the memory samples is the whole space Dn. Therefore, the
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ahead masking associative memory model with expecting sample fault-tolerant
field does not have pseudo-attractor.

Network capacity refers, under certain conditions of the admissible associative
error probability, the maximal mode sample number which the network can save.
It is generally defined as the quotient of the sample number M and the sample
vector dimension n

M
n ,

The maximum memory capacity of the static state associative memory network
is 1[20]. According to the definition of network capacity, we have the following
corollary.

Corollary 2. The capacity of a cybernetic fault-tolerant field ahead masking
associative memory model CFTFAMAM (network) is p

n , where is input space
dimension and is any positive integer.

Remark. If we do not hope that the fault-tolerant field X1, X2, . . . , Xp of p
samples is too big, and do not hope them to be the whole space Dn, we can
previously set a small fault-tolerant field D(Xk) = Ck, k = 1, . . . , p. Having set

a point pair X0, Y 0, we have to find X0 such that X0 ∈ Dn −
p⋃

k=1
D(Xk), Y 0 �=

Y 1, Y 2, . . . , Y p. Suppose that the fault-tolerant field of X0 is Dn−
p⋃

k=1
D(Xk), for

(X0, Y 0), (X1, Y 1), (X2, Y 2), . . . , (Xp, Y p), we then construct an ahead masking
associative memory model according to the given method. Therefore the ob-
tained associative memory model fault-tolerant field can also meet the required
situation.

4 Conclusions

It is well known that setting the fault-tolerant field first and then, trying to con-
struct an associative memory model with the set fault-tolerant field is still a chal-
lenge for the researchers. In this article, some implementation algorithms of an
ahead masking associative memory model with the expecting fault-tolerant field
are proposed so as to make the sample of the associative memory model fault-
tolerant field easier to be implemented and to meet the desired performance. In
fact, the size and the position of the associative memory model fault-tolerant
fields (attractive field) can be shifted by the designer’s desire completely. It can
also fulfill the purpose that the designed associative model is of the exactly the
sample fault-tolerant field the researchers wanted. It is obvious that the method
proposed in this article has very good application prospect in pattern recogni-
tion. The specific application will be proposed in other articles latter on for the
sake of the volume of this article.
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Abstract. This paper introduces an efficient technique to design a classifier for 
classifying and diagnosing mechanical faults. The bispectra features of 
vibration signals resulting from mechanical faults are extracted and then 
evaluated using the Fisher’s class-separability discriminant measure. The local 
bispectra with the most discriminant power and sensitivity are selected as the 
classification feature vector that can effectively represent the fault class of 
concern over a broad range of sample data. A RBF neural network is 
implemented to realize identification and diagnosis for different mechanical 
faults. The suggested technique is demonstrated to design a classifier for fault 
signals of rolling bearings that is verified to be highly accurate and robust even 
in the presence of excessive noise. 

1   Introduction 

Mechanical fault diagnosis is a challenging problem concentrated on the extraction of 
fault features from the available raw data as the recognition performance is strongly 
determined by the characterization power of the features. Providing the energy 
distribution for different frequency components of signals, the power spectra features 
were used widely. However, the power spectra would lose phase information of fault 
signal and fail to deal with non-minimum phase system and non-Gaussian signals. 
Whereas the vibration signals of mechanical faults and self-excitation signals of 
complicated machinery are non-Gaussian. On the other side, when machines suffer 
early faults, the scrannel fault information would be submerged by Gaussian noise 
greatly, which results in great difficulty of extracting features for mechanical faults. 

Nevertheless, the high order cumulants and spectra can not only retain the 
amplitude and phase information of non-Gaussian signals, which will bridge a gap of 
power spectra, but also handle Gaussian noise very efficiently[1]. Therefore, the high 
order spectra may extract more useful information when analyzing mechanical 
vibration signals. Barker had monitored rotating tool wear using high order spectral 
features[2]. Murray and Penman managed to extract fault feature information for 
vibration signals of induction motors using bispectra analysis[3]. Also, Mccormick 
had presented two methods for diagnosing mechanical faults based on high order 
spectra[4], and the faults diagnosis for rotation machinery and reciprocator using 
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bispectra was proposed in [5]. However, the aforementioned methods take the whole 
bispectra or the three order spectra results as feature vector, and the classification 
results are not satisfactory since too many features are used by the classification 
network, and using the whole bispectra requires a complicated two-dimensional 
matching template, which brings about heavy computation. Accordingly, the integral 
bispectra are designed to transform the two-dimensional bispectrum into a one-
dimensional template. However, the proposed radially integrated bispectra(RIB)[6], 
axially integrated bispectra(AIB)[7] and circularly integrated bispectra(CIB)[8] may 
lose the scale variance or part of phase information. Also, these integral bispectra 
need computation approximately, and some bispectrum values on the bifrequency 
plane will be lost caused by discrete computation. Moreover, the irregular distribution 
of the cross-terms on the bifrequency plane makes the integrated bispectra difficult to 
avoid numerous cross-terms. Consequently, the aforementioned methods would 
reduce the accuracy for diagnosis of mechanical faults. 

To avoid the above problems, a method of assessing classification features is used 
in Section 2, and Fisher’s class-separability discriminant measure is used to evaluate a 
large amount of bispectra features of vibration signals and extract the high 
discriminative local bispectra. Then, a RBF neural network is implemented to realize 
classification and diagnosis for different mechanical faults in Section 3. In Section 4 
the experimental results for fault signals of rolling bearings demonstrate that the 
scheme using features evaluation combined with RBF network can not only extract 
fine mechanical fault information, reduce scale of the features and be computational 
efficient, but also has a high recognition rate for mechanical faults in low SNR. 

2   Feature Evaluation Function and Extraction of the Local 
Bispectra 

The mechanical faults diagnosis is actually a problem of pattern recognition, whereas 
the extraction and selection of classification features is the key of pattern recognition. 
The experiments and engineering applications have demonstrated that bispectra of 
raw mechanical vibration signals can reveal the fault information[9], [10]. Let ( )x t be 

the continuous mechanical vibration signal. Its bispectra are defined by 

( ) ( ) ( )∫ ∫
+∞

∞−

+∞

∞−

+−= 2121321
2211,, ττττωω τωτω ddecB j

x
, 

(1) 

where 1 23 ( , )xc τ τ is the third order correlation of ( )x t . 

Nevertheless, a large amount of bispectra features are included in the raw 
bispectra. Since too many inputted features will increase the scale of the classification 
network and affect the accuracy of classifier, it is necessary to evaluate the bispectra 
features, eliminate the useless ones and select a subset of features with the most 
discriminant power and sensitivity. The principle of evaluation method is that the less 
the distance between features in the same class and the larger the distance between 
features in different classes is, the stronger and more sensitive the feature is. 
Accordingly, Fisher’s class-separability is used as the discriminant measure function 
to evaluate a large amount of bispectra of fault signals. 
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Suppose the training set consists of bispectra samples { }
1 2

( ) ( , ) ,i

kB ω ω  

1, 2, 3, , ik N= , where subscript k denotes the computed bispectra of the kth 

observation record of fault signal, superscript i denotes the ith signal class, and iN is 

the set numbers of observation records for the ith class signals, where 1, 2, ,i M= , 

and M is the number of fault signals classes. Let 
1 2

( , )ω ω ω=  and
1 2

( ) ( , )B Bω ω ω= . 

Correspondingly, the Fisher class-separability evaluation function between the ith and 
jth fault classes is defined by [11]. 

( ) ( ){ }
( )

2
( ) ( ) ( )

,

( )

,

( , )
( )

mean ( ) mean mean ( )

( )
var ( )

,

l l l

k k l k k
t i j

l

k k
t i j

i j

l
vE

p B B

p B
i j

ω ω
ω

ω
=

=

−
=

⎡ ⎤⎣ ⎦
≠

∑

∑
, (2) 

where ( )lp is the prior probability of ( ) ( )l

kB ω , ( )mean ( ( ))l

k kB ω  and ( )var ( ( ))l

k kB ω  

are mean value and variance of all the sample bispectra at the frequencyω of the lth 

class of fault signal, and ( )[ ]( )mean mean ( )l

l k kB ω  is the total centroid of all the 

sample bispectra at the frequencyω over all the fault classes. The larger ( , )
( )

i j
vE ω  is, 

the stronger the separability between class i and class j is. Accordingly, by setting a 
selection threshold, the frequency subset { }1, 2, 1,2,3, ,( , ),m m m m Lω ω ω == with the 

most discriminant sensitivity among ( , )
( )

i j
vE ω for all possible combinations ( , )i j  can 

be chosen, and bispectra ( )mB ω at the local frequencies mω are the local bispectra, 
which can be utilized as the identification vector. 

Through feature evaluation the extracted bispectra have not only the most 
discriminant power, but also can avoid the interference of the cross-terms brought in 
by the integral paths when using integral bispectra. Thus, the identification feature 
vector has stronger immunity to the cross-terms and provides the fault signal a strong 
individual characteristic. More importantly, the local bispectra can eliminate the 
useless and baneful features from the bispectra of mechanical fault signals, which can 
decrease the scale of RBF network greatly. Hence, the training and diagnosis is very 
computational efficient. 

3   Classification and Diagnosis Algorithm Using RBF Network 

Suppose that the kth observation record of the vibration signal of the lth class 

mechanical fault is ( ){ ( )}l

kx n , where 1, 2, 3, , lk N= , 1, 2, 3, ,l M=  is fault signal 

class and lN  is the number of observation records for the lth class mechanical fault. 

The classification and diagnosis algorithm is as follows. 

Step 1: Calculate Fourier transform ( ) ( )l

kX ω  for fault signal ( ){ ( )}l

kx n , and then 

compute bispectra ( ) ( )l

kB ω  using (3). 
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( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2( ) ( , ) ( ) ( ) ( )l l l l l

k k k k kB B X X Xω ω ω ω ω ω ω= = +  . (3) 

Step 2: Use (2) to compute the Fisher class-separability measure ( , )
( )

i j
vE ω for all 

class combinations ( , )i j , determine the effective number of specified bispectra for 
between-class ( , )i j , and denote it by ( )ijL . The corresponding frequencies { }( ) ,ij

mω  
( )1, 2, 3, , ijm L=  are the effective frequencies. 

Step 3: Arrange the obtained effective frequencies ( ) ( )1, 2, 3, ,,ij ij
m m Lω =  into the 

sequency { ( ), 1, 2,3, , }q q Lω = , ( , ) ( )i j ij
L L= Σ , and arrange the corresponding 

bispectra of the kth record in class l into the sequency { }( ) 1, 2, 3, ,( ),l
k q LB q = , 

1, 2, 3, , lk N=  with the same order of frequency pairs 
1 2

( , )ω ω . Define 

ky =[ ( ) ( )(1), ( )l l

k kB B L⋅ ⋅ ⋅ ] T  as a 1L ×  vector. Thus, lN  template vectors can be 

obtained for class l. Suppose that the number of template feature vectors for each 

class of fault signal is N after data fusion. Then, the classification feature vector for 

the lth class of fault signals is denoted by 

[ ] 1, 2, , ( 1),l i i lN lN l NY y = + + += , { }1, 2, ,l M∈  
Step 4: Use the feature vector to train the radial-basis function(RBF) neural 

network as a classifier. Let H be the MN MN× hidden node output matrix, and its 
element is computed by 

2

2
exp( )

i j

ij

y y
h

σ
−

−= , (4) 

where the variance 2σ of the Gaussian kernel function is the total variance of all 

feature vectors 1, 2, 3, ,,i i MNy = . Accordingly, the weight matrix of the RBF 

neural network is given by 

1( )H H−=W H H H O , (5) 

where  

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

O , (6) 

is the ( )MN M×  output matrix. Once the RBF neural network as a classifier is 

trained, the weight matrix W is stored. 

Step 5: Implement the testing task for diagnosis using the trained RBF neural 

network. Let [ ](1), (2), , ( )
T

t y y y Ly = be the extracted feature vector evaluated 
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through a set of computed bispectra of an unknown mechanical fault class. Then, the 

RBF network’s hidden node output 1MN × vector [ ]ih h=  corresponding to ty  can 

be computed as 

2

2
exp( )

t i

i

i

y y
h

σ

−
= − , (7) 

where the variance 2

iσ in the Gaussian kernel function is the variance of the feature 

vector iy  determined in the training phase. Then, the output vector of the RBF neural 

network is given by 

T

TO h= W , (8) 

which gives the diagnosis result of the unknown mechanical fault class. 

4   Experiment Results 

The observation records of fault signals utilized by the experiments are recorded from 
a group of rolling bearings with the model ***6204, and the rotational speed is 
2416Hz during the sampling procedures. The raw mechanical vibration signals are 
recorded at four different working modes, which are bearing normal, outer ring 
damage, inner ring damage and stenting damage, and the four modes are denoted 
by , 1,2,3, , 4iT i = . Fig. 1 shows the typical signal waves in time domain for the 

four classes of raw mechanical faults. 
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Fig. 1. Raw mechanical vibration signals for four classes of working modes (normal, outer ring 
damage, inner ring damage and stenting damage) 
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A total of 200 records of raw mechanical signals are observed and analyzed, in 
which every 50 records are sampled from one bearing working mode distinguishingly, 
and the data length of each record is 2048. According to the classification algorithm 
proposed in Section 3, a total of 200 feature vectors can be obtained, and they are 
divided into two groups of vector sets. The training set has 120 feature vectors, in 
which every 30 vectors are extracted from one bearing working mode, and the 
remaining 20 vectors extracted from the same working mode are used by the testing 
and diagnosis set, which has 80 feature vectors in total. In contrast to the local 
bispectra, the direct bispectra and radially integrated bispectra(RIB) are also used as 
classification feature vectors in the way of the aforementioned diagnosis procedures 
in Section 3, and the test results are given in Table 1. 

Table 1. Recognition rates for the four classes of mechanical fault signals (S/N=10dB) 

Recognition rates using different identification feature vectors Class of 
Mechanical faults Direct Bispectra RIB Local Bispectra 
T1 68.3% 74.3% 90.5% 
T2 70.2% 76.2% 92.3% 
T3 67.7% 74.8% 89.7% 
T4 69.3% 75.8% 92.9% 
Average 
recognition rate 

68.9% 75.2% 91.3% 

As can be seen from Table 1, the average recognition rate is lower than 70% when 
direct bispectra is used as the feature vector, and the percentage can be raised to 76% 
approximately when RIB is used. However, when the local bispectra are utilized, the 
average recognition rate is over 91%. The experiment results with rolling bearings 
also demonstrate that the local bispectra features are able to reveal the fine difference 
between individual mechanical fault signals when SNR is low as 10dB. 

5   Conclusions 

This paper has introduced a classification technique for mechanical faults. The main 
objective of this technique is to represent each fault signal class by a feature vector 
with sufficient accuracy, and bispectra features, Fisher’s class-separability 
discriminant evaluation function and RBF neural network are the main signal 
processing tools employed in the proposed technique. The experiments for fault 
signals of rolling bearings demonstrate that this new scheme can extract a strong 
individual feature, decrease the scale of RBF network greatly and improve the 
accuracy of diagnosis. 

In this paper, the main concern was to describe an efficient technique for 
mechanical faults and to verify its usefulness in a realistic and reasonably challenging 
classifier design experiment. Future work, however, needs to extend applications to 
more complicated classification problems regarding the decision speed, memory 
requirements for reference storage as well as the number of fault classes. 
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Abstract. As high-voltage electric equipment has complex structure and works 
in harsh environment, this paper is aimed at applying Optical Fiber Sensors to a 
temperature-variation fault diagnosis system of high-voltage electric equipment 
based on the combination of neural network and expert system. Neural network 
has the characteristics of self-adapted, distributed storage and associative 
memory. Using BP neural network, we can make on-line diagnosis of 
temperature-variation fault of high-voltage electric equipment. All the uses 
above can increase the speed of diagnosis and make results be more exact.  

1   Introduction 

In recent years, there is an ever-growing demand for electric power and stability of 
high-voltage electric equipment. Temperature-variation is the major signal to indicate 
early hidden troubles of high-voltage electric equipment, and it is realistically 
significant to monitor high-voltage electric equipment. But with the harsh 
environment of the high-voltage monitoring, the fault monitoring becomes more 
difficult. FBG (Fiber Bragg Grating) sensors have the merit of high anti-jamming, 
high stability in communication, endurance of high-voltage, and great security [1], 
[2]. So in this paper it is applied to high-voltage electric equipment online monitoring 
to gain accuracy.  

The reasons of temperature-variation fault diagnosis of high-voltage electric 
equipment are always complex. Taking temperature as the only factor, it is difficult to 
diagnose the fault. Besides temperature, we also need other factors such as current, 
voltage for parallel disposal and synthesized diagnosis. Neural network has the 
function of distributed storage and large-scale parallel disposal, so it can be used to 
temperature-variation fault diagnosis of high-voltage electric equipment. BP neural 
network now is one of the most sophisticated and widely used methods [3]. 

Neural network has net-input and net-output, net-output reflects the results of fault 
diagnosis. But when it comes to accurate temperature-variation fault diagnosis of high-
voltage electric equipment, the net-output conclusions are not clear enough [4]. This 
paper puts forward a method to monitor temperature-variation fault diagnosis of high-
voltage electric equipment by combining BP neural network with expert system [5], [6]. 
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2   Application of FBG in High-Voltage Electric Equipment 
Monitoring 

In this paper, we use optical fiber sensors based on FGB techniques to monitor 
temperature variation in high-voltage electric equipment. FBG sensors can fulfill the 
real distributed-measuring, high space resolution, high precision and good real-time 
character, so it can be well applied to temperature monitoring in high-voltage electric 
equipment. FBG sensors work on the C waveband, the wavelength of spectrum is 
from 1525nm to 1625nm. FGB sensors reflect the temperature variation by 
wavelength variation, every change of 100°C can make a wavelength variation of 
1nm. The Bragg wavelength is given by Equation (1). 

2eff effnλ = Λ , (1) 

where, effn is the effective refractive index of the fiber(modal index) and Λ  is the 

Bragg grating period. We obtain Bragg wavelength shift BλΔ  in temperature sensors 

by differentiating Equation (1) with respect to temperature: 

2 2B eff effn nλΔ = Δ Λ + ΔΛ . (2) 

3   Structure of Monitoring System Based on FBG Sensors 

The system based on FBG sensor techniques can realize distributed-monitoring by 
different modules. There are three parts: host computer, industrial controllable computer 
and monitoring modules based on FBG sensors. The structure is shown in Fig. 1.  

Host computer

Monitoring module

Monitoring module

Industrial controlable computer

FBG sensorFBG sensor

FBG sensorFBG sensor

...

...

FBG sensors matrix

High-speed bus

 
Fig. 1. Structure of temperature-variation fault monitoring system of high-voltage electric 
equipment 
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4   Combine the Neural Network with Expert System 

BP neural network has good capability of mode recognition. The basic principle of 
BP algorithm is to revise weights from output layer according to the total error 
between expected output and actual output of the sample, until the error of the two 
becomes smaller than fixed value. The training of BP neural network is composed of 
the course of output by forward propagating and the course of adjusting by back 
propagating. In the course of forward propagating, input signals from input layer 
propagate to output layer by disposing in hidden layer. The state of every layer of 
neuron only influences the state of next layer: If cannot get expected output from 
output layer, the error signal of output will propagate back along with the original 
connected path, until it get to input layer. By revising the weights through the path, it 
will make the total error to be the minimum value. 

The input of neural network reflects the feature of diagnosed object. The output 
shows possibility of fault, but it doesn’t have the function of explanation. Expert 
system is a reasoning system based on symbol reasoning. The inference engine of 
expert system under the support of knowledge base and database uses different 
regulations to do some reasoning to get results, so it has the function of explanation. 
We designed a system by combining expert system with BP neural network to 
diagnose fault of high-voltage electric equipment.  

Expert system, also called the system based on knowledge. It can solve the 
problem which the model is difficult to set up or not set up yet , the knowledge base is 
easy to expand and perfect, and has the ability of self-study and self-refresh, so it is 
widely applied to fault diagnosis of electric equipment. This system is made up by 
main 5 parts, such as knowledge base, reasoning machine, database, knowledge 
getting part by neural network and man-machine interface.  

Reasoning machine is the organization part which controls the structure by data 
information in database. Using rules in knowledge base and carrying on reasoning 
according to certain reasoning tactics, it gets the corresponding conclusion. The 
database is mainly to store data during equipment running and original information  
 

 

Fig. 2. The structure of temperature-variation fault diagnosis system of the high-voltage electric 
equipment 

Knowledge 
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BP neural
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from fault diagnosis. The neural network has self-study function, so it is used to 
obtain knowledge from expert experience and realistic fault. The man-machine 
interface carries on media of information interchange, offering the ocular and 
convenient reciprocation means to users. The structure of fault diagnosis system is 
shown in Fig. 2. 

The expression of knowledge in neural network is hidden, it is expressed by 
topology structure and connected values. Neural network is a net system which 
unified the information storing and proposing. Combining neural network with expert 
system, reasoning in the course of knowledge storing and answer getting are all 
solved, neural network is the engine of knowledge and inference. 

5   Fault Diagnosis Based BP Neural Network 

5.1   The Construction of Three Layers BP Neural Network Model 

The three layers BP neural network is composed of an input layer, an output layer and 
a hidden layer. The structure is shown in Fig. 3. 

 

Fig. 3. Three layer neural network based on BP model 

where, input vectors are 1( , ..., , ..., )i nX x x x= , output vectors are 

1( ,..., , ..., )k lY y y y= , and expected output vectors are 1( ,..., , ..., )k lD d d d= , the 

weights matrix from input layer to hidden layer and from hidden layer to output layer 

is W , ijω is the weights from the i  node of input layer to the j  node of the hidden 

layer, jkω is the weights of the j node of the hidden layer to the k node of output 

layer, and the activation function is sigmoid function: 

1
( )  

1 xf x
e−=

+
. (3) 

5.2   The Training of Neural Network 

The training of neural network can be divided into four steps: 

x1 

x2 

xn 

y1

y2

yl

ωij ωjk 

Input Hidden Output 
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(1) At the beginning of training, weights and threshold values of nodes are 
initialized by a group of random numbers.  

(2) Input p  training samples, these are 1 2( , ,..., )px x x . And initializing expected 

outputs, there are a group of teacher values 1 2( , ,..., )pd d d .  

(3) After calculated by the potential function of neural network, the error of actual 
output propagates back to input layer, which makes the neural net continue to revise 
weights and threshold values of nodes to reduce the function value.  

(4) Making py  close to pd  as much as possible, until it reduces to a threshold 

value that can be accepted or cannot reduce again. 

Setting 0n  as iteration number, the revising formulas of weights and threshold 

values are: 

 0 0
1

( 1) ( )
p

jk jk jk jn n λ λ

λ
ω η δ οω

=
+ = + ∑ ,  (4) 

0 0
1

( 1) ( )
p

ij ij ij in n λ λ

λ
ω ω η δ ο

=
+ = + ∑ , (5) 

where η  is the length of step. 

( ) (1 )jk k k k kt y y yλ λ λ λ λδ = − − , (6) 

0 0
1

( 1) ( )
p

ij ij ij in n λ λ

λ
ω ω η δ ο

=
+ = + ∑ , (7) 

when the total error E  can fulfill the conditions: 

2

1

1
( )

2

l
l l
k k

k
E t y ε

=
= − <∑ , (8) 

then the course can be terminated, and the training of weights and threshold values of 
nodes is finished. 

5.3   Classification of Faults and Restoration of Characteristics 

According to the characteristics of high-voltage electric equipment, temperature- 
variation can often reflect faults. But other factors also can affect fault diagnosis, such 
as environment variety, high load (mainly caused by high voltage or big current), and 
different equipment have different features. Here temperature-variation is the main 
reason of faults and we classified the faults into five different kinds: temperature-
variation fault, high load resulting from high voltage, high load resulting from big 
current, high environment temperature and running normally. Then using the analysis 
of high-voltage electric equipment and normalization, we get 8 characteristics.  
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5.4   The Steps of Fault Diagnosis by Neural Network 

BP neural network uses the policy of forward reasoning driven by data, which is 
reasoning from the initial state to the final state. There are four steps: 

(1) Input fault samples to every neuron of input layer.  
(2) Calculate output of neurons and regard it as input of the output layer. 
(3) Try to get the output according to Equation (3).  
(4) Using the weights function to get final results of neuron from output layer 

, ,

, ,
k

l

Ture if y
F

False other

ϕ>⎧
= ⎨
⎩

 (9) 

where,ϕ  is the threshold value. 

5.5   Fault Diagnosis 

According to the characteristics of temperature-variation fault diagnosis, we choose 
three layers BP neural network. The number of input layer, hidden layer and output 
layer is: 8, 6 and 5; the steplength is 0.01, and the system error is 0.01. The number of 
net training is 5000. Five fault samples are shown in Table 1. Through MATLAB 
simulation, we get the output of 5 fault samples shown in Table 2. 

Table 1. Typical fault samples 

Characters Fault samples 
1 2 3 4 5 6 7 8 

Temperature-
variation fault 

0.00 0.10 0.00 0.00 0.80 0.00 0.00 0.20 

High load 
caused by high 

voltage 
0.05 0.00 0.06 0.90 0.10 0.20 0.08 0.15 

High load 
caused by big 

current 
0.95 0.20 0.30 0.05 0.01 0.15 0.02 0.08 

High 
environment 
temperature 

0.11 0.02 0.30 0.15 0.20 0.12 0.85 0.07 

Running 
normally 

0.00 0.00 0.01 0.40 0.11 0.87 0.05 0.30 

The eight characteristics of “temperature-variation fault” in Table 1.are trained by 

neural network, and in the five outputs of this fault, only 2y  can meet the demand: 

2 0.8900 0.85y ϕ= > = . (10) 

So we can get the result that there is a “temperature-variation fault”. 
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Table 2. The target outputs of the typical fault sample 

Output  y 
Fault samples 

1 2 3 4 5 

Temperature-variation fault 0.0001 0.8900 0.2200 0.0020 0.0020 

High load caused by high 
voltage 

0.0020 0.0012 0.0050 0.8650 0.0031 

High load caused by big 
current 

0.0000 0.0003 0.0031 0.0021 0.9501 

High environment 
temperature 

0.9773 0.3001 0.0010 0.0050 0.1200 

Running normally 0.1002 0.0001 0.9100 0.0000 0.0030 

6   Sections Needed to Be Improved 

Although the results of combination of BP neural network and expert system are 
good, there are still some parts need to be further researched: 

(1) BP algorithm is a kind of algorithm based on gradient descent, so the 
convergence speed in calculating course is slow, and if the function of connected 
values and weights is not chosen rightly, it may not get the convergence values. 

(2) Based on neural network fault diagnosis have a good function of self-study, it 
can solve the problem of acquiring knowledge. But it needs lots of samples to get a 
stable result, and the scale of neural net cannot be too big in training. 

(3) The nodes number of hidden layer must to be confirmed as soon as the topology 
structure of BP neural network is fixed. So it is necessary to optimize the structure of 
neural net. 

(4) To diagnose different fault of high-voltage electric equipment, we need to build 
up different kinds of BP neural net, that maybe increase the convergence speed. 

7   Conclusions 

In this paper, we use FBG sensors to monitor the temperature-variation fault diagnosis 
of high-voltage electric equipment on-line based on the combination of neural 
network and expert system. Through MATLAB simulation, the method is proved to 
be effective. 

Acknowledgements 

This paper was supported by the National Natural Science Foundation of China 
(Grant No.60674107), the Natural Science Foundation of Hebei Province (Grant 
No.F2006000343), and the Research and Development Plan of Science and 
Technology of Shijiazhuang (Grant No.06713026A). 



640 Z.-Y. Wang et al. 

References 

1. Sun, S.: The Fiber Measurement and Sensing Technology. Harbin Polytechnical University 
Press (2002) 

2. Jung, J., Nam, H., Lee, B., Byun, J. O., Nam, S. K.: Fiber Bragg Grating Temperature 
Sensor with Controllable Sensitivity. Applied optics 38 (13) (1999) 2752-2754 

3. Zhang, D., Shao, H.: A Illation Method of Fault Diagnosis Based on Neural Network. 
Journal of Shanghai Jiaotong University 33 (5) (1999) 619-621  

4. Wu, L.: A Fault Diagnosis Expert System Based on Neural Network.  
5. Zhang, Y., Wang, H., Zhu, Y., Yang, Z.: Study for a Fault Diagnosis Expert System Based 

on Artificial Neutral Network. Measurement & Control Technology 23 (11) (2004) 55-57 
6. Fan, H., Xiao, M., Xiang, H.: Studies of the Fault Diagnosis Expert System Based Neural 

Nets. Modern electric techniques 9 (2002) 29-31 



D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 641–650, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Diagnosis of Turbine Valves in the Kori Nuclear Power 
Plant Using Fuzzy Logic and Neural Networks 

Hyeon Bae1, Yountae Kim1, Gyeongdong Baek1, Byung-Wook Jung1,  
Sungshin Kim1, and Jung-Pil Shin2 

1 School of Electrical and Computer Engineering, Pusan National University, Jangjeon-dong, 
Geumjeong-gu, Busan 609-735, Republic of Korea 

{baehyeon, dream0561, gdbaek, wooroogy, sskim}@pusan.ac.kr 
2 Department of Computer Software, The University of Aizu,  

Aizu-Wakamatsu City, Fukushima 965-8580 Japan 
jpshin@u-aizu.ac.jp 

Abstract. This manuscript introduces a fault diagnosis system for a turbine-
governor system that is an important control system in a nuclear power plant. 
Because the turbine governor system is operated by high oil pressure, it is very 
difficult to maintain the operating condition properly. The turbine valves in the 
turbine governor system supply an oil pressure for operation. Using the pressure 
change data of the turbine valves, the condition of the turbine governor control 
system is evaluated. This study uses fuzzy logic and neural networks to evaluate 
the performance of the turbine governor. The pressure data of the turbine 
governor and stop valves is used in the turbine governor diagnosis algorithms. 
The features of the pressure signals are defined to be applied in the fuzzy 
diagnosis system. And Fourier transformed signals of the pressure signals are 
used in the neural network models for diagnosis. The diagnosis results both by 
fuzzy logic and neural networks are compared to evaluated the performance of 
the designed system.  

1   Introduction 

The nuclear power generation was introduced in the middle of 1950’s and has been 
continuously expanded until now. Recently, 440 nuclear power generations are 
charging 16% of total electric power production in the world [1]. However, the 
nuclear power generation is a large-scaled and complex system that firstly requires 
stability of the plant. Therefore, it is very difficult and complicated to control and 
manage the power generation. In nuclear power stations, various types of the system 
faults occur. Particularly, when the important functional devices are broken, the fault 
can be derivatively enlarged to the serious accident, that is, a radiation accident. 
Therefore fault diagnosis and management should be precisely achieved for stable 
operation of the plant.  

In this study, the turbine valve system that is one of the core systems in the nuclear 
power plant is the target system. It is difficult to acquire data from the operating 
system of the turbine valve because it is a mechanically controlled device using oil 



642 H. Bae et al. 

pressure and to prognose it because it has strong nonlinearity. Oil for pressure 
preservation leaks in several parts, so fault diagnosis and maintenance is complicated. 
From the year 2001 and to the end of the year 2005, in Kori nuclear power plant, the 
turbine operating systems were broken 30 times and at the times it was difficult to 
analyze find the fault causes [2-4].  

In the latest studies, NPPC (national pollution prevention center) was developed 
at Georgia Institute of Technology. This system is an expert system that supports 
the operator of the nuclear power plant to find the cause of the abnormal failure 
applying the system operating model and relative rules [5]. EG&G Idaho company 
designed a rule based expert system that inspects measuring instruments and 
diagnoses the nuclear reaction systems in order to check the reaction conditions [6]. 
The diagnosis systems of the nuclear power plant are newly developed using neural 
networks and fuzzy logic recently. But researches related to governor are not 
sufficiently achieved. 

In this study, the operator support system was developed to diagnose the governor 
operating system based on inspecting the pressure variation of the turbine valve 
operating system. But it is not easy to diagnose and analyze the operating systems in 
the field. In this study, fuzzy logic and neural networks were applied to design the 
diagnosis system. Both techniques are representative intelligent methods to make 
models and rules. 

In this manuscript, Section 2 shows description of turbine operating systems of 
nuclear power generation, Section 3 explains normal operation and diagnosis 
information of the valves. Section 4 deals with fault diagnosis using fuzzy logic and 
Section 5 introduce fault diagnosis using neural networks. The conclusions are 
summarized in Section 6. 

2   Turbine Operation Systems of Nuclear Power Generation 

2.1   Pressurized Water Reactor (PWR) 

This research dealt with the pressurized water reactor (PWR) that is a global model 
for power generation. This is the most common type, with over 230 in use for 
power generation and a further several hundred in naval propulsion. The design 
originated as a submarine power plant. It uses ordinary water as both coolant and 
moderator. The design is distinguished by having a primary cooling circuit which 
flows through the core of the reactor under very high pressure, and a secondary 
circuit in which steam is generated to drive the turbine. Pressure is maintained by 
steam in a pressurizer.  

As shown in Fig. 1, the water is also the moderator in the primary cooling circuit, 
and if any of it turned to steam the fission reaction would slow down. The secondary 
shutdown system involves adding boron to the primary circuit. The steam drives the 
turbine to produce electricity, and is then condensed and returned to the heat 
exchangers in contact with the primary circuit [7].  
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Valve installation site

 

Fig. 1. A system structure of the pressurized water reactor 

2.2   Summary of the Governor Operating System 

2.2.1   Operating Systems in Physical Plant 
Figure 2 shows a monitoring window of the power governing valve in the nuclear 
power plant. In this study, we want to diagnose the high pressure stop valve and 
governor valve as shown in the boxes. The oil supply and operating system of the 
turbine valve is installed in each turbine valve to drive the turbine valve. The turbine 
valve opens by the hydraulic servo cylinder and closes by the compressed spring. If a 
driver is broken, the broken driver can be repaired without turbine shut down [8].  

Governor and stop valve  

Fig. 2. The hydraulic lines of turbine valve driver 
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2.2.2   Control Characteristics of the Turbine Governor 
At starting up, it is necessary that the turbine governor controls a fluid to the reference 
speed. At driving, the turbine governor controls it to 1800 rpm with 4 groups 16 
valves (as shown in Fig. 2). The high pressure turbine valve handling about 80% of 
the fluid must have good responsibility with respect to the control signal and maintain 
variation of valve opening to low 0.5% under any circumstances. 

Pressure can be changed corresponding to conditions of the governor valves and 
stop valves. Pressure is cyclically controlled and an internal leak continuously occurs 
in the driving system because of the mechanical characteristic of the system. This 
pressure variation affects on valve control. This can cause malfunction of the driving 
system. Figure 3 shows pressure signal of the valve. The slope of unloading time is 
closely related to the valve condition, so the values are used for valve diagnosis in this 
study. Loading time is the time interval that pressure reaches to the set-point 
(pressurization). Unloading time is the time interval that measures from the peak point 
to the valley point of unloading time (compression).  
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Fig. 3. Control patterns (cycling) of a governor valve based on pressure 

3   Normal Operation and Diagnosis Information of the Valves 

3.1   Oil Pressure of Each Valve Under Normal Operation  

Oil pressure of the governor valve should be pressurized from 100 to 110kg/cm2 for 
handling the driving system and it must be persevered more than 80kg/cm2 under any 
circumstance. If pressure variation is bigger, then internal leak of the cylinder and 
valve swing can happen. If pressure is less than 80kg/cm2 that surmounts spring 
tension of the inner cylinder, the valve can close regardless of the control signal. 
Thus, it is best to shorten loading time and to lengthen unloading time for 
optimization of the operating system. 
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3.2   Operation Information for Fault Diagnosis 

3.2.1   Operation Information of a Stop and Governor Valve 
Under normal operation, 55~60% of valve opening and 100~115 of pressure is kept 
and then if the dump solenoid coil is cut off, oil pressure is nosedived by loss of the 
power supply and then valve opening is quickly closed. Coil defect, stop interlocking 
driving, and inner faults of the solenoid driver are major fault causes of this 
phenomenon. Close interlocking is promptly closed after 4 seconds when 20% of the 
deviation value comparing with the reference value occurs. This fault can happen 
based on motor stop. Table 1 and 2 show the standard values of time and pressure. 

Table 1. Standard values for the operation pressure of the stop and governor valve 

Variables Valve type Standard value (kg/cm2) Field value (kg/cm2) 
Stop valve 123~127 125~126 Bottom pressure 
Governor valve 96~102 99~104 
Stop valve 134~140 135~140 Upper pressure 
Governor valve 107~113 107~113 

Table 2. Standard values for the operation loading time of the stop and governor valve 

Variables Valve type Standard value (s) Field value (s) 
Stop valve Under 6 2.6~4.2 Loading time 
Governor valve Under 6 2.6~4.2 
Stop valve Over 15 27~43 Unloading time 
Governor valve Over 15 Over 30 

3.2.2   Diagnosis Information for the Stop and Governor Valve 
Qualitative and quantitative features of loading time are finally used to present the 
operating conditions of the valves. Practically, field operators usually diagnose the 
leak condition and other defects using the slop of loading time. In this study, we want 
to develop the automatic diagnosis algorithm that extracts systematic rules from data 
based on the field information.  

Basic information for rule extraction in this study is shown in Table 3 and 4. The 
final rules used in the fuzzy diagnosis system are generated by the information. The 
valve condition corresponding to loading time was defined by expert’s knowledge.  

Table 3. Fault diagnosis rules for the loading time 

Loading time Fault condition 
Short (under one (s)) No inner leak  
Normal (from one to six (s)) Exist inner leak but normal operation is possible 
Long (over six (s)) Leak of cylinder and relief, unloading, and servo valve 
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Table 4. Fault diagnosis rules for the system pressure 

Features Fault condition 
Vertical decline  Dump solenoid valve closing 
Exponential decline Motor stop, pump broken, large quantity of cylinder leak 
Cycling action Normal operation 

3.3   Measurement Signals for Valve Diagnosis 

The goal of the diagnosis system is to classify the valve conditions to the four levels 
such as very good, good, not bed, and bed. Conditions of the valves are assessed using 
the valve pressure based on operating information that is mentioned above. Pressure 
magnitudes and patterns of each valve indicate the status of the valves. The pressure 
signals are generally used in the physical fields. Field operators can empirically make 
a decision of the valve condition using the pressure signals. Figure 4 and 5 show the 
pressure signals of the stop and the governor valves based on the valve condition. The 
stop valve has small leakage in order of SV3, SV4, SV2, and SV1 and the governor 
valve has small leakage in order of GV1, GV4, GV2, and GV3.  

Figure 6 shows distribution of loading time and unloading time to indicate the 
valve conditions. In this distribution, loading time of the stop and the governor valve 
is not sufficient for rule generation, because the conditions can not be classified 
significantly. However, unloading time is a good feature to recognize the valve 
conditions. But GV1 and GV4 are not detected well by loading time, so in this study, 
the other feature was defined such as the area ratio.  
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Fig. 4. The pressure feature of the high pressure turbine stop valves 
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Fig. 5. The pressure feature of the high pressure turbine governing valves 
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Fig. 6. The distribution of the unloading time of the stop and governor valves 
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4   Fault Diagnosis Using Fuzzy Logic 

Because in this study, the conditions GV1 and GV4 of the governor valve can not 
diagnosed by loading time alone, the complementary feature is necessary. As shown 
in Fig. 7 (a), a triangle is built with three lines between the peak point and the valley 
point of loading and unloading time, and both valley points. The final pattern is 
calculated by difference between the physical area and the triangular area. As shown 
in Fig. 7(b), GV1 and GV4 can be classified by the new defined feature, that is, the 
area ratio (ref. Eq. (1)). Final fuzzy rules are extracted as shown in Table 5. The fuzzy 
rules are generally generated by operator’s knowledge. Both unloading time and the 
area ratio are feature variables for the rules. 

physical area-triangular area
Area ratio

triangular area
=  (1) 

The diagnosis results of the high pressure turbine valves are shown in Table 6. The 
high pressure turbine valve consists of the four stop valves and the four governor 
valves. When the output of the fuzzy diagnosis results is smaller, the valve condition 
is better. The diagnosis result is the same with the expert decision. Therefore the 
diagnosis system has good accuracy for field application. The experiment results 
mean that the high pressure valves can be evaluated and diagnosed by the fuzzy 
diagnosis system. 
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Fig. 7. The calculation of unloading area ratio and the ratio distribution of a governor valve 

Table 5. Final fuzzy rules extracted from both information for the stop and governor valve 

R1: IF Unloading time is Short and Area ratio is Minus value then Oil leak is Large 
R2: IF Unloading time is Short and Area ratio is Zero value then Oil leak is Large 
R3: IF Unloading time is Short and Area ratio is Plus value then Oil leak is Large 
R4: IF Unloading time is Medium and Area ratio is Minus value then Oil leak is Medium 
R5: IF Unloading time is Medium and Area ratio is Zero value then Oil leak is Medium 
R6: IF Unloading time is Medium and Area ratio is Plus value then Oil leak is Medium 
R7: IF Unloading time is Long and Area ratio is Minus value then Oil leak is Small 
R8: IF Unloading time is Long and Area ratio is Zero value then Oil leak is Small 
R9: IF Unloading time is Long and Area ratio is Plus value then Oil leak is Medium 
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Table 6. The performance evaluation for the stop and governor valves 

Valve Status Unloading time (s) Area ratio Fuzzy results Expert decisions 
SV1 22 13 0.549 (4th) Bad 
SV2 30 2.5 0.275 (3rd) Not bad 
SV3 45.5 -7.5 0.0632 (1st) Best 

Stop 
valve 

SV4 36 -7 0.216 (2nd) Good 
GV1 115  -10  0.0817 (1st) Best 
GV2 99  9  0.288 (3rd) Not bad 
GV3 75  4  0.689 (4th) Bad 

Governor 
valve 

GV4 115 3.5 0.153 (2nd) Good 

5   Fault Diagnosis Using Neural Networks 

Fault diagnosis using fuzzy logic shows good performance for field application, but 
the several stages for rule extraction and rule evaluation are necessary. The fuzzy 
rules can be easily generated if good expert’s knowledge exists, but if no sufficient 
information, it is very difficult to extract rules. To solve the weak point, neural 
networks are applied to design the diagnosis model for comparing with fuzzy logic.  

In this study, Fourier transform (FFT) is applied to extract features from the 
pressure data. Power values and first three frequencies of the peak points of FFT, and 
difference values between maximum and minimum of the pressure were used for 
inputs of the neural network models in diagnosis. Figure 8 shows the features that are 
extracted from time and frequency based signals such as pressure and FFT signals.  

The transformed data are used for neural network inputs and then the fault is 
diagnosed by the frequency data. Backpropagation, one of the neural network 
structures, is applied and the node number is determined by the trial and error method. 
Table 7 shows the final results of valve diagnosis. The four conditions of the stop 
valve and the governor valve were classified clearly by the diagnosis model. As 
shown in Table 7, the four conditions for each valve could be identified by the neural 
network models using the four features. The results mean the selected features for 
inputs have the specific information for diagnosis. 
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Table 7. The results of valve diagnosis using neural networks 

Valve Conditions of Stop Valves Conditions of Governor Valves 
SV1 SV2 SV3 SV4 GV1 GV2 GV3 GV4 Target 

No 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 
1 0 0 0.0062 1 1 0 1 1 0 0 0 1 1 0 1 1 
2 0 0 0.0082 1 1 0 1 1 0 0 0 1 1 0 1 1 
3 0 0 0.005 1 1 0 1 1 0 0 0 1 1 0 1 1 
4 0.0001 0 0.0048 1 1 0 1 1 0 0 0 1 1 0 1 1 
5 0 0 0.0046 1 1 0 1 1 0 0 0 1 1 0 1 1 

6   Conclusions  

This study is on the fault diagnosis of the valve oil system in the Kori nuclear power 
plant. The valves are operated by oil pressure. Aging conditions and faults of the 
valve inside can be analyzed and diagnosed using pressure information. In this study, 
fuzzy logic and neural networks are applied to design the diagnosis system. 
Unloading time and the area ratio of the oil pressure signal are used for inputs of the 
fuzzy diagnosis system. And the pressure signal of the valves is implemented for 
inputs of the neural networks. Status of the valve corresponding to structure change is 
immediately detected by the designed diagnosis algorithm. 
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Abstract. A novel method for the multiuser detection in CDMA 
communication systems based on a stochastic cellular neural network (SCNN) 
is proposed in this paper. The cellular neural network (CNN) can be used in 
multiuser detection, but it may get stuck in a local minimum resulting in a bad 
steady state. The annealing CNN detector has been proposed to avoid local 
minima; however, the near-far effect resistant performance of it is poor. So, the 
SCNN detector is proposed here through adding a stochastic term in a CNN. 
The performance of the proposed SCNN detector is evaluated via computer 
simulations and compared to that of the conventional detector, the stochastic 
Hopfield network detector, and the Annealing CNN detector. It is shown that 
the SCNN detector can avoid local minima and has a much better performance 
in reducing the near-far effect than these detectors, as well as a superior 
performance in bit-error rate.  

1   Introduction 

Code Division Multiple Access (CDMA) has been the subject of extensive research in 
the field of mobile radio communications. This technique permits a large number of 
users to communicate simultaneously on the same frequency band. However, this 
creates multiple access interference (MAI), which makes the conventional detector 
(CD) of demodulating a spread-spectrum signal in a multiuser environment not 
reliable and sensitive to near-far effect. For this reason multiuser detection, which can 
overcome this problem, is a hot topic now for CDMA systems.  

The optimal multiuser detector (OMD) [1] proposed by Verdu, is shown to be near-
far resistant and has the optimal performance, however, the exponential complexity in 
the number of users makes it impractical to use in current CDMA systems. Therefore, 
research efforts have concentrated on the development of suboptimal detectors, which 
exhibit good near-far effect resistant properties, have low computational complexity 
and achieve relatively high performance, such as MMSE detector [2], Hopfield neural 
network (HNN) detector [3], and stochastic HNN (SHN) detector [4-5]. 

A cellular neural network (CNN) [6] constitutes a class of recurrent and locally 
coupled arrays of identical dynamical cells, which can be implemented easily by very 
                                                           
* Project Supported by Development Program for Outstanding Young Teachers in Harbin 

Institute of Technology. 
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large scale integrated circuits (VLSI) and applied to signal processing problems. The 
CNN can also be used in multiuser detection, in which the energy function is related 
to the objective function of the OMD. Though the CNN detector can be implemented 
with low complexity, it may get stuck in a local minimum resulting in a bad steady 
state. So the Annealing CNN detector [7] has been proposed which can avoid local 
minima. However, the performance of the near-far effect resistance in the Annealing 
CNN detector is poor. In this paper, the stochastic CNN (SCNN) detector is proposed 
through adding a stochastic term in a CNN. The SCNN detector can also avoid local 
minima and has a much better performance in reducing the near-far effect than the 
Annealing CNN detector, as well as a superior performance in bit-error rate (BER). 

2   Traditional Detection Methods 

2.1   Conventional Detector 

Assuming there are K users of a CDMA system in a synchronous single-path channel, 
the received signal can be expressed as 

1

( ) ( ) ( ) ( ) ( )
K

k k k

k

r t A t g t d t n t
=

= +∑  ,                                        (1) 

where Ak(t), gk(t), and dk(t) are the amplitude, signature code waveform, and 
information of the kth user, respectively. n(t) is additive white Gaussian noise 
(AWGN), with a two-sided power spectral density of N0/2 W/Hz. 

The CD described in (1) is a bank of K matched filters, and can be shown in Fig.1.  

 
 
 
 
 
 
 
 

 

Fig. 1. The conventional detector 

In Fig.1, the existence of MAI has a significant impact on the capacity and 
performance of the CD system because the CD follows a single-user detector strategy. 
As the number of interfering users increases, the amount of MAI increases. 

2.2   Optimal Multiuser Detector 

Verdu has shown that the OMD may be achieved by producing an estimate for the 
information vector transmitted based on the maximization of the logarithm of the 
likelihood function. The objective function of the OMD [1] is given as 
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where b∈{+1, -1}, YT=(y1, …, yk) is the row vector consisting of the sampled outputs 
of the matched filters, A is the diagonal matrix consisting of the corresponding 
received amplitudes, and H=ATRA, in which R is a K×K uniform correlation matrix. 

Despite the huge performance and capacity gains over the CD, the OMD is not 
practical. The exponential complexity in the number of users makes the cost of this 
detector too high. 

3   Cellular Neural Network Based Multiuser Detector 

Because of the exponential growth of the computational complexity of the OMD with 
the number of active users, many suboptimal multiuser detectors have been proposed. 
Detectors based on the CNN are discussed and the SCNN detector is proposed. 

3.1   Cellular Neural Network 

A CNN is composed of regular distributed dynamical cells, in which each cell is 
composed by a linear capacitor, a linear resistance, several linear and non-linear 
current sources controlled by voltages. And each cell can only communicate with its 
neighbors directly, which is called local-connection. The local mutual communication 
among cells makes it very convenient to realize the CNN with VLSI. Additionally, 
the nice continuous time domain characteristic of the CNN without delay can meet the 
requirements of real-time digital signal processing. 

The dynamical equation describing the statue of the each cell of the one-
dimensional CNN is 

( ) 1
( ) ( ) ( )

( ) ( )

i

i ij j ij j i

j N i j N ix r r

dV t
C V t D V t B u t I

dt R ∈ ∈

= − + + +∑ ∑  ,                     (3) 

where Vj(t) is the state of the ith cell, uj(t) is the input of the jth neighbor cell, Ii is the 
independent current source of the ith cell, C is the capacitance of a linear capacitor, 
and Rx is the resistance of a linear resistor. The output function of the ith cell is 

1
( )= ( ( )+1 ( ) 1 )

2
i i i

V t V t V tγ − −  .                                       (4) 

The energy function of the CNN described in (3) is given as 

          
1 1

( )= ( ) ( ) ( ) ( ) ( )
2 2

ij i j i i ij i j

i j i i jx

E t D V t V t I V t B V t u t
R

γ γ γ γ− − +∑∑ ∑ ∑∑  ,         (5) 

where Vγi(t) is the output of the ith cell. 
It is apparent from (2) that the OMD objective function is very similar to the CNN 

energy function, and (2) can be rewritten as  
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since bTEb is always a positive number. In (6) E=ATA is the diagonal matrix 
containing the energy of each user. 

Therefore, the OMD objective function can be directly translated into the energy 
function of the CNN in (5) with the templates: 

D= −(H − E)， 
                                                                  B= 0，                                                    (7) 

    I=YTA. 

And then we can get the CNN detector. 
Once the network of a CNN detector is initialized, it iteratively converges to a 

possible stable state after which the signs of the network’s outputs are used to 
calculate the estimates of the transmitted signals. 

However this optimization process is localized and therefore the detector will get 
stuck in a local minimum resulting in a bad steady state. In [7] the authors proposed 
an Annealing CNN detector which can avoid local minima in the CNN. 

3.2   Stochastic Cellular Neural Network 

Although the Annealing CNN detector can avoid local minima in the CNN and reduce 
the BER of CDMA systems, its performance in reducing near-far effect is still poor. 
In [4] the authors proposed a SHN which can avoid local minima of the HNN by 
adding a stochastic term in its dynamical equation and we can also use this stochastic 
method in a CNN to get a global optimum, so the SCNN detector is proposed here. 

The distribution of the stochastic term used in the SHN detector is given as: 
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In determining the change in α(k), a tradeoff must be made between convergence 
and BER performance. If α(k) is increased quickly over the iterations, the network 
converges faster at the expense of performance. If α(k) is increased slowly, the 
performance is near optimum but this occurs over a large number of iterations. 

The output function used in the SCNN is a nonlinear function, defined by 
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where α is a positive constant that controls the slope of the nonlinearity. In particular, 
when α→∞, then G(.)→sign(.). 
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In (3), if a stochastic term given by (8) is added, the sigmoid output function given 
by (9) is used, the templates described in (7) are accepted and set C=1, Rx=2.5, we can 
get the iterative function of the SCNN detector, given by 
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where v(k) the stochastic term, Vi(k) is the state of the ith cell at the kth iteration and 
Vγi(k) is the output of the ith cell at the kth iteration. 

4   Simulation Results  

In order to evaluate the performance of the SCNN detector, a CDMA system with 
three users using it is designed as Fig.2. 

 

 

 

 

 

 

Fig. 2. A CDMA system using SCNN detector 

In Fig.2, there are four users in the CDMA system and the PN sequences used are 
all Gold sequences of length N=63. The received signal r(t) is handled in the CD, the 
outputs of which are fed into the SCNN detector, and then we can get the estimate of 
the baseband information transmitted of each user. 

A variety of simulation experiments are presented comparing the performance of 
the CD, the SHN detector, the Annealing CNN detector, and the SCNN detector in the 
system depicted in Fig.2. The BER versus signal-noise ratio (SNR) curves with equal 
energy of each user, are depicted in Fig.3. It is shown that if the near-far effect is not 
considered, the SCNN detector achieves much better performance than the CD, the 
SHN detector, and the Annealing CNN detector. We also deal with the near-far effect 
problem. The BER curves of the first user are compared when its energy is increasing 
with the energy of the other two users unchanged, and the results are shown in Fig.4. 
From the simulation results, we can see that near-far effect resistant performance of 
the SHN detector and the SCNN detector is much better than the CD and the 
Annealing CNN detector, with the BER of the SCNN detector much lower than the 
SHN detector. Therefore, the overall performance of the SCNN detector is much 
better than the other detectors discussed and it is more suitable as a neural network 
based multiuser detection scheme in CDMA systems. 
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Fig. 3. Bit-Error Rate vs. Signal-Noise Ratio Fig. 4. Bit-Error Rate vs. Near-Far Ratio 

5   Conclusions 

In this paper, a novel multiuser detection method based on the SCNN for the spread 
spectrum communication in CDMA systems is proposed. Through adding a stochastic 
term, the SCNN detector can avoid local minima in the CNN detector and achieve 
global optimum. The simulation results show that the proposed SCNN detector offers 
significant performance gains compared to the CD and other recurrent neural network 
multiuser detectors in reducing bit-error rate and near-far effect while it can be 
implemented easily using VLSI. 
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Abstract. This paper develops a new blind channel identification method in 
frequency domain. Oversampled signal has the property of spectral redundancy 
in frequency domain which is corresponding to the cyclostationarity property in 
time domain. This method exploits the cyclostationarity of oversampled signals 
to identify possibly non-minimum phase FIR channels. Unlike many existing 
methods, this method doesn’t need EVD or SVD of correlation matrix. Several 
polynomials are constructed and zeros of channels are identified through 
seeking for common zeros of those polynomials. It is in the similar spirit of 
Tong’s frequency approach, but this new algorithm is much simpler and 
computationally more efficient. A sufficient and necessary condition for 
channel identification is also provided in this paper. This condition is quite 
similar to Tong’s time domain theory but it is derived from a novel point of 
view. 

1   Introduction 

Digital communication through multi-path environment is subject to inter-symbol 
interference (ISI). In mobile communication, ISI will be very severe. To achieve 
high-speed reliable communication, channel equalization is necessary to combat 
ISI. Traditional equalizer works based on a training sequence. Training signals 
waste some band source, especially in time-varying channels where require 
periodically sending training sequence, or in broadcast network, where training 
each new-joining sub-machine will occupy much time. In recent years, blind signal 
processing techniques have received considerable attention [1-6] and have been 
reaching many application fields including channel equalization. Blind channel 
equalization only bases on the received data (i.e., without training sequence), so is 
very attractive. 

Since communications channels are likely to be non-minimum phase, the 
identification problem was naturally addressed using higher-order statistics (HOS) of 
the channel output [7-9], because second order statistics (SOS) of stationary output 
don’t include the channel’s phase information. In 1991, Gardner pointed out that the 
SOS of cyclostationary series provides both magnitude and phase information of 
channels [10]. Compared to HOS, estimation of SOS needs fewer observations, thus 
allows faster signal processing. But Gardner’s approach [10] is still based on a  
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slow-rate training sequence. Also in 1991, Tong et al., show that when channel output 
is sampled at a rate greater than the symbol rate (oversample), the output is 
cyclostationary and they give a method rely on the SOS only [11]. Since then, many 
SOS based blind identification methods have been proposed. These methods usually 
use SVD or EVD of output matrix for identifying channels parameters; see [12-13]. 
To reduce the computer complexity of such methods, LXH develop a method using 
QR factorization [14]. In 1995, Tong et. al., develop a frequency domain approach 
[15] and give some channel identifiable condition both in time and frequency domain. 
Tong’s frequency method provides a good insight of spectral redundancy in 
cyclostationary signals. 

Based on the spirit of Tong’s frequency method, this paper introduces a new 
approach. The new approach presents the desirable properties of being 
computationally more efficient. A sufficient and necessary condition for this approach 
is given as well. 

The rest of paper is organized as follows: In section 2, the cyclostationarity of 
oversampled signals is discussed. A new channel identification method is proposed in 
section 3, together with the conditions for this method to be valid. Section 4 presents 
the detailed new algorithm. In section 5, the complexity of the new method is 
analyzed and some ways for simplifying are pointed out. Finally, a conclusion is 
given in section 6. 

2   Cyclostationarity 

In PAM communication systems, when the channel is time invariant with finite 
response length, source signal ( )s n and the received signal ( )x n can be represented as  

( ) ( ),k
k

s n s n kTδ= −∑  
(1) 

( ) ( ) ( ),k
k

x n s h n kT w n= − +∑  (2) 

where { }ks is the source symbol sequence, ( )h ⋅ is the discrete channel impulse 

response, ( )w ⋅ is the additive noise, ( )δ ⋅ is the discrete impulse function. T is the 

source symbol interval. The sampling interval is normalized to 1.  
In the sequel, we adopt the following basic assumptions: 

1). T is a known integer and 1T > , i.e. oversample rate isT . 
2). { }ks is white with zero mean and unit variance, i.e. *( ) ( )k lE s s k lδ= − .  

3). ( )w ⋅ is zero mean, white and uncorrelated with{ }ks , and variance is 2σ . 

To observe the cyclostationarity of oversampled signals, define the source 
autocorrelation function as *( , ) ( ( ) ( ))sr n m E s n s n m= + . We begin by deriving the 

autocorrelation function according to (1) and assumption 2): 
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*( , ) ( ) ( ) ( )

( ) ( ).

s k l
l k

l

r n m E s s n lT n m kT

m n lT

δ δ

δ δ

= − + −

= −

∑∑

∑
 (3) 

Obviously ( , )sr n m is a periodic function of n  with period T , so ( )s n is a 

cyclostationary process. From (2), similarly, we have the autocorrelation of ( )x ⋅ as 

* 2( , ) ( ) ( ) ( , ) ( ).x s
l k

r n m h l h k r n l m k l mσ δ= − + − +∑∑  (4) 

Since ( , )xr n m is linear to ( , )sr n m , it is also periodic in n  with periodT . Owing to 
the periodicity, for channel identification purpose, we only need to use a set of 
autocorrelation functions in one period. In the following paper, we only consider the 
followingT functions: (0, )xr m ， (1, )xr m ，…， ( 1, )xr T m− . 

3   Channel Identification 

Oversampled channel with oversample rate T can be equivalently considered as 

T subchannels. Define subchannels { }( ), 0, , 1
i

h i T⋅ = − as ( ) ( )ih n h nT i= +  and 

correspondingly define the output of each subchannel as ( ) ( )ix n x nT i= + , the 

additive noise to each subchannel ( ) ( )iw n w nT i= + . Then the input-output relation 
of each subchannel can be expressed as 

( ) ( ) ( ), 1, , 1.i k i i
k

x n s h n k w n i T= − + = −∑  (5) 

Define the co-correlation function of two subchannels’ output as 

*
, ( ) ( ( ) ( )), , 1, , 1.i j i jr m E x n x n m i j T= + = −  (6) 

From (2) and assumption 2), we further obtain: 

* 2
, ( ) ( ) ( ) ( ) ( ), , 0, , 1.i j i j

k

r m h n k h n m k m i j i j Tσ δ δ= − + − + − = −∑  (7) 

To observe the zeros of , ( )i jr m , do Z-transform and get: 

* * 2
, ,( ) ( ) ( ) (1/ ) ( ).

L
m

i j i j i j
m L

r z r m z H z H z i jσ δ−

=−

= = + −∑  (8) 

For notational convenience, let 

2
, ,( ) ( ) ( ).i j i jR z r z i jσ δ= − −  (9) 

Then we have 

* *
, ( ) ( ) (1/ ).i j i jR z H z H z=  (10) 
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Theorem. ( )iH z can be identified from { }, ( )i jR z if and only if { }( ), 0, , 1iH z i T= −  

share no common zeros. Moreover, if ( )iH z is identifiable, the zeros of ( )iH z are the 

common zeros of the{ }, ( ), 0, , 1i jR z j T= − , i.e. 

,( ( )) ( ( )),i i j
j

Z H z Z R z=∩  (11) 

Where ( ( ))iZ H z  stands for a set of zeros of the thi subchannel. 

Comments. Zeros of ( )iH z are reciprocals of the zeros of * *(1/ )iH z , i.e., 

if 0 ( ( ))iz Z H z∈ , then * * *
0(1/ ) ( (1/ ))iz Z H z∈ , so, { }( ), 0, , 1iH z i T= − sharing no 

common zeros means that { }* *(1/ ), 0, , 1iH z i T= − sharing no common zeros. 

Proof. Firstly we proof the sufficient part. Suppose { }( ), 0, , 1iH z i T= −  share no 

common zeros, i.e., { }* *(1/ ), 0, , 1iH z i T= − share no common zeros, from (10)  

* *
,( ( )) ( ( )) (1/ ).i j i j

j j

Z R z Z H z H z=∩ ∪∩  (12) 

Since * *(1/ )i
j

H z φ=∩ , we get ,( ( )) ( ( ))i j i
j

Z R z Z H z=∩ ; 

The necessity part: Suppose all subchannels share a common zero 0z , 

i.e. *
0(1/ )z ∈ * *(1/ )j

j

H z∩ , 0z becomes an unidentifiable zero. The reason is when we 

substitute 0z by *
0(1/ )z  in ( )iH z , we would obtain the same * *( ( )) (1/ )i j

j

Z H z H z∪∩ , 

then between 0z and *
0(1/ )z  we can’t determine which one belongs to ( )iH z . 

4   The Algorithm 

1) Estimate the co-correlation of each two subchannels according to (6); 
2) Estimate the noise power 2σ (if not known) and calculate the coefficients of 

, ( )i jR z by: 

2
,

,
,

(0) 0, ,
( )

( ) .
i j

i j
i j

r m i j
m

r m others

σ
η

⎧ − = =⎪= ⎨
⎪⎩

 (13) 

3) Estimate zeros of { }( ), 0, , 1iH z i T= −  according to (11).  

4) Using the estimated zeros to rebuild subchannels.  
5) From (7), power of thi  subchannel is given by 
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* 2
,( ) ( ) ( ) (0) .i i i i i

k

p h h k h k r σ= = −∑  (14) 

Normalize thi subchannel’s power to ( )ip h , so the total channel is identified. 

6) According to the estimated channel, construct an inverse filter for recovering 
original signals.  

5   Complexity Analysis 

Through the derivation, it is obvious that 2T =  is enough for the new algorithm. 
Even for systems which the oversample rate is higher than 2, it is still possible to use 
only two subchannels for estimation, in condition that there happened to exist two 
channels sharing no common zeros. For example, if ( )jH z  and ( )kH z  share no 

common zeros, then, for each subchannel ( )iH z , we have  

( )
, ,

* * * *

( ( )) ( ( ))

( ( )) ( (1/ )) ( (1/ ))

( ( )).

i j i k

i j k

i

Z R z Z R z

Z H z Z H z Z H z

Z H z

=

=

∩
∪ ∩  (15) 

The methods can be further simplified through the following observation: If ( )iH z  

has (0 )k k l< ≤  identified identical zeros, then, if , ( )i jR z  owns just l k+  identical 

zeros, the other l  zeros of , ( )i jR z are the zeros of * *(1/ )jH z  directly. 

6   Conclusion 

In this work, a new approach of blind channel identification is proposed. By 
exploiting the cyclostationarity of oversampled signals, this method identifies non-
minimum phase FIR channels without resorting to HOS. This work is based on the 
similar spirit of Tong’s frequency approach but different. The new algorithm is 
simpler and computationally more efficient. A sufficient and necessary condition for 
the new approach is given in this paper.  
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Abstract. The recently introduced square contour algorithm (SCA)
combines the benefits of the generalized Sato algorithm (GSA) and the
constant modulus algorithm (CMA). It implicitly updates phase and
is less likely to converge to incorrect solutions. But the SCA has rel-
atively large residual error after the algorithm reaches its steady state
for high-order constellations. A new blind equalization algorithm is pro-
posed based on concurrent square contour algorithm (SCA) and soft
decision-directed (SDD) adaptation. Like the SCA, the proposed concur-
rent SCA and SDD algorithm includes phase recovery and offers good
convergence characteristics. Simulation results demonstrate that the pro-
posed SCA+SDD algorithm offers practical alternatives to blind equal-
ization of high-order QAM channels and provides significant equalization
improvement over the CMA, GSA and SCA.

1 Introduction

Blind equalization improves system bandwidth efficiency by avoiding the use of
a training sequence. Furthermore, for certain communication systems, training
is infeasible and a blind equalizer provides a practical means for combating
the detrimental effects of channel dispersion in such systems. Although various
blind equalization techniques exist, the best known algorithms are the constant
modulus algorithm (CMA) [1], [2], [3] and the generalized Sato algorithm (GSA)
[4]. The GSA is simple to implement, but does not always give reliable initial
convergence [5]. For the CMA convergence is more consistent, but an arbitrary
phase rotation is imparted. The recently introduced square contour algorithm
(SCA) [6], [7] combines the benefits of the GSA and CMA and it implicitly
updates phase during convergence and is less likely to converge to incorrect
solutions. But the SCA has relatively large residual error after the algorithm
reaches its steady state for high-order constellations, such as 16- and 64-QAM
signals.

The soft decision-directed (SDD) equalization algorithm [8], [9] or blind clus-
tering algorithm, has been proposed. In this algorithm the equalizer output is
modeled by M Gaussian clusters, of which mean is the symbols of the constel-
lation set. The proposed concurrent SCA and SDD (SCA+SDD) algorithm may

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 663–671, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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be viewed as operating a SCA equalizer and a last-stage bootstrap maximum
a posteriori probability (MAP) [10] blind equalizer concurrently. Like SCA, the
proposed SCA+SDD algorithm also combines the benefits of the CMA and GSA.
It includes phase recovery and offers good convergence characteristics. The pro-
posed SCA+SDD algorithm has better steady-state equalization performance
and faster convergence speed than the CMA, GSA and SCA. Simulations and
analysis demonstrate the good performance of the proposed algorithm.

A brief overview of blind equalization model is given in Section 2.The develop-
ment of the proposed SCA+SDD algorithm is provided in Section 3. In Section 4,
we present some simulation results and Section 5 concludes this paper.

2 Blind Equalization Model

Consider an equalizer implemented as a linear transversal filter with 2K+1 taps.
The received signal at symbol-spaced sample k is given by

r(k) =
m∑

i=1

his(k − i) + n(k), (1)

where m is the length of the channel impulse response (CIR), hi is the complex-
valued channel tap weights, n(k) is a complex-valued Guassian white noise, and
the complex-valued symbol sequence is assumed to be independently identically
distributed and takes the value from the M -QAM symbol set defined by

S = {s
ql

= (2q − Q − 1) + j(2l − Q − 1), 1 ≤ q, l ≤ Q}, (2)

with Q =
√

M .
The output of the equalizer for the kth symbol is

y(k) =
K∑

l=−K

w
l
(k)r(k − l) = wT (k)r(k), (3)

where w(k) = [w−K
, . . . , w0(k), . . . , w

K
(k)]T is the equalizer weight vector at

time k, and r(k) = [r(k + K), . . . , r(k − K)]T is the input vector of the symbol-
spaced samples at the kth symbol time.

An equalization algorithm attempts to minimize its particular cost function
with respect to w(k) of the weight vector. Using a stochastic gradient algorithm
to seek the minimum, we have the general form for the equalizer weight update

w(k + 1) = w(k) − μe(k)r∗(k), (4)

where * denotes complex conjugation, e(k) is an error function arising from
the instantaneous gradient with respect to of the particular equalization cost
function, and μ is the adaptation step size.
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3 The Concurrent SCA and Soft Decision-Directed
Equalization

3.1 Square Contour Algorithm(SCA)

The cost function [6] for the SCA equalizer is given as

JSCA = E

{((
|yr(k) + yi(k)| + |yr(k) − yi(k)|

)p − Rp
SCA

)2
}

, (5)

where p is a positive integer and Rp
SCA is a constellation-dependent constant

Rp
SCA =

E
{(

|sr(k) + si(k)| + |sr(k) − si(k)|
)p

G
}

E{G} , (6)

where

G =
(
|sr(k) + si(k)| + |sr(k) − si(k)|

)p−1

×
(
sgn[sr(k) + si(k)](1 + j) + sgn[sr(k) − si(k)](1 − j)

)
s∗(k). (7)

Its weight update error function is

eSCA(k) =
((

|yr(k) + yi(k)| + |yr(k) − yi(k)|
)p − Rp

SCA

)

×
(

|yr(k) + yi(k)| + |yr(k) − yi(k)|
)p−1

×
(
sgn[yr(k) + yi(k)](1 + j) + sgn[yr(k) − yi(k)](1 − j)

)
. (8)

We focus on the case p = 2 as a special case which yields good performance
with reasonable complexity of implementation. For p = 2, (8) can written as

eSCA(k) = 4yr(k)
(
4y2

r(k) − R2
SCA

)
X(k) + j4yi(k)

(
4y2

i (k) − R2
SCA

)
Y (k). (9)

Note that

X(k) =
sgn(yr(k))

2
[
sgn

(
yr(k) + yi(k)

)
+ sgn

(
yr(k) − yi(k)

)]

=
{

1, |yr(k)| ≥ |yi(k)|
0, |yr(k)| < |yi(k)| , (10)

Y (k) =
sgn(yr(k))

2
[
sgn

(
yr(k) + yi(k)

)
− sgn

(
yr(k) − yi(k)

)]

=
{

1, |yr(k)| ≤ |yi(k)|
0, |yr(k)| > |yi(k)| . (11)

For the SCA cost function (5), the zero-error contour is a square contour, and
the SCA minimizes dispersion of the equalizer output from this contour. With
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the square zero-error contour, the SCA combines the reliable convergence of the
CMA and the phase recovery characteristics of the GSA. As is the case for most
other blind equalization algorithms, the SCA only considers the statistics of the
overall signal constellation and ignores detailed knowledge of the constellation
points so that the SCA has relatively large residual error after the algorithm
reaches its steady state for high-order constellations, such as 16- and 64-QAM
signals [7].

3.2 The Concurrent SCA and Soft Decision-Directed Algorithm

The proposed blind equalization algorithm operates a SCA equalizer and a SDD
equalizer concurrently. Specifically, let

w = ws + wd, (12)

where ws is the weight vector of the SCA equalizer and wd is the weight vector
of the SDD equalizer. At sample k, given

y(k) = wT
s (k)r(k) + wT

d (k)r(k). (13)

When the equalizer weights have been correctly chosen, the equalizer output can
be expressed as [9]

y(k) ≈ s(k) + v(k), (14)

where v(k) = vr(k) + jvi(k) is approximately a Gaussian white noise. Thus,
when the equalization is accomplished, the equalizer output can be modeled
approximately by M Gaussian clusters with the cluster means being s

ql
for

1 ≤ q, l ≤ Q . All the clusters have an approximate covariance:
[

E[v2
r(k)] E[vr(k)vi(k)]

E[vi(k)vr(k)] E[v2
i (k)]

]
≈

[
ρ 0
0 ρ

]
. (15)

Under the above conditions, the a posteriori probability density function
(p.d.f.) of y(k) is

p(w, y(k)) ≈
Q∑

q=1

Q∑

l=1

p
ql

2πρ
exp

[

−
∣
∣y(k) − s

ql

∣
∣2

2ρ

]

, (16)

where p
ql

are the a priori probability of s
ql

. We can divide the complex plane
into M/4 regular regions. Each region Si,l contains four symbol points:

Si,l = {s
pq

, p = 2i − 1, 2i, q = 2l − 1, 2l}. (17)

If the equalizer output y(k) is within the region Si,l , a local approximately
to a posteriori p.d.f. of y(k) is

p̂(w, y(k)) ≈
2i∑

p=2i−1

2l∑

q=2l−1

1
8πρ

exp

[

−
∣∣y(k) − s

pq

∣∣2

2ρ

]

, (18)
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with a priori probability p
pq

=1/4. The purpose of the SCA sub-equalizer is to
open the eye, so that the local p.d.f. expression (18) is approximately valid. The
SDD sub-equalizer is designed to maximize the log of the local a posteriori p.d.f.
criterion

J̄LMAP(w) = E [JLMAP(w), y(k))] , (19)

where
JLMAP(w, y(k)) = ρ log(p̂(w, y(k)) . (20)

Using a stochastic gradient algorithm to seek the minimum, we have the SDD
equalizer weight update

wd(k + 1) = wd(k) + μd
∂JLMAP(w, y(k))

∂wd
, (21)

with

∂JLMAP(w, y(k))
∂wd

=

2i∑

p=2i−1

2l∑

q=2l−1
exp

[
−|y(k)−spq |2

2ρ

]
(
spq − y(k)

)

2i∑

p=2i−1

2l∑

q=2l−1
exp

[
−|y(k)−spq |2

2ρ

] r∗(k). (22)

The proposed SCA+SDD algorithm can be achieved by:

w(k) = ws(k) + wd(k) , (23)

y(k) = wT (k)r(k) , (24)

ws(k + 1) = ws(k) − μseSCAr∗(k) , (25)

wd(k + 1) = wd(k) + μd
∂JLMAP(w, y(k))

∂wd
. (26)

It is obvious that this SDD scheme corresponds to the last stage of the boot-
strap MAP scheme. The SCA sub-equalizer includes phase recovery and offers
good convergence characteristics and the SDD sub-equalizer minimizes the resid-
ual SCA inter-symbol interference and increases the convergence rate.

4 Simulations

The performance of the proposed SCA+SDD, CMA, GSA and SCA blind equal-
izers in terms of clustering the signal constellation, suppression of inter symbol
interference (ISI), was evaluated in computer simulations. The residual ISI at
the output of the equalizer is defined as follows [11]:

ISI =

∑

i

|h(i) ∗ w(i)|2 − |h(i) ∗ w(i)|2max

|h(i) ∗ w(i)|2max
. (27)

All simulation experiments described in this section employed the equalizer of
transversal filter structure with 11 tap weights and the equalizers were initialized
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Table 1. 7-tap channel impulse response

Tap No. 1 2 3 4 5 6 7

Real -0.005 0.009 -0.024 0.854 -0.218 0.049 -0.016

Imaginary -0.004 0.030 -0.104 0.520 0.273 -0.074 0.020

Table 2. Algorithm parameter settings in simulations

Example CMA GSA SCA SCA+SDD

μ μ μ μs μd ρ

1 1.5 × 10−5 1.5 × 10−4 2 × 10−6 2 × 10−6 2 × 10−3 0.6

2 8 × 10−7 5 × 10−5 1.2 × 10−7 1.2 × 10−7 5 × 10−4 0.6

with the central tap weights set to one and all others set to zero. A typical
voice-band communication channel [12] was assumed in all the simulations, with
complex impulse response (CIR) shown in Table 1. Table 2 lists the algorithm
parameters used in the simulation for the four blind equalizers. Choosing proper
values of the parameters were chosen experientially.

Example 1. In this example, 16-QAM symbols were transmitted through the
7-tap channel, whose CIR is listed in Table 1. The noise power was adjusted
such that it gave rise to a channel SNR of 30dB. 15,000 symbols were taken
to estimate the channel, of which last 5000 are shown in Fig.1 which shows
the signal constellations of four blind equalizers after convergence. The results
confirm that the signal constellation of the CMA has an obvious phase rotation
which is recovered and corrected by the GSA, SCA and SCA+SDD and the
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Fig. 1. Equalizer output signal constellations after convergence for example 1.
(a) CMA. (b)GSA. (c)SCA. (d)SCA+SDD.
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Fig. 2. Comparison of convergence performance in terms of residual ISI for example 1

clustering performance of the SCA+SDD is better than the CMA, GSA and
SCA. The comparison of the convergence performance in terms of residual ISI is
shown in Fig.2. The plots clearly reveal that the SCA+SDD has better steady-
state performance and faster convergence speed than the CMA, GSA and SCA.

Example 2. In this example, the transmitted data symbols were 64-QAM and
the channel given in Table 1 was used with the SNR of 30dB. The equalizer
output signal constellations after convergence are shown in Fig.3. The learning
curves of the four blind equalizers in terms of residual (ISI) are shown in Fig.4.
It can be seen that for this example the SCA+SDD algorithm also has faster
convergence and better steady-state equalization performance. Fig.5 compares
the performance of the SCA+SDD with different values of the parameter, ρ = 0.8
and ρ = 0.3. The smaller value of ρ gives somewhat slightly smaller value of
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Fig. 3. Equalizer output signal constellations after convergence for example 2.
(a) CMA. (b)GSA. (c)SCA. (d)SCA+SDD.
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Fig. 4. Comparison of convergence performance in terms of residual ISI for example 2
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Fig. 5. Performance for the SCA+SDD with different values of the parameter, ρ = 0.8
and ρ = 0.3

residual ISI. But if a too small ρ is used, the algorithm attempts to impose a
very tight control in the size of clusters and may fail to do so. On the other
hand, if the value of ρ is too large, a desired degree of separation may not be
achieved. As the minimum distance between the two neighboring symbol points
is 2, typically ρ is chosen to be less than one.

5 Conclusion

In this paper, a new blind equalization algorithm has been proposed based on
operating a SCA equalizer and a SDD equalizer concurrently. The proposed
SCA+SDD algorithm combines the benefits of the CMA and GSA so that it
includes phase recovery and offers good convergence characteristics. The pro-
posed SCA+SDD algorithm has better steady-state equalization performance
and faster convergence speed than the CMA, GSA and SCA. This new blind
algorithm, offers practical alternatives to blind equalization of high-order QAM
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channels and provides significant equalization improvement over the CMA, GSA
and SCA. Additional effort is needed to extend it to more practical situation,
including longer channels and equalizers.

References

1. Godard, D.: Self-Recovering Equalization and Carrier Tracking in Two-
Dimensional Data Communication Systems. IEEE Trans. Commun. 28 (1980)
1867-1875

2. Treichler, J.R., Agree, B.G.: A New Approach to Mutipath Correction of Constant
Modulus Signals. IEEE Trans. Acoust. Speech Signal Process 31 (1983) 459-472

3. Johnson, C. (ed.): Blind Equalization using the CM Criterion: A Review. Proc.
IEEE 86 (1998) 1927-1950

4. Sato, Y.: A Method of Self-Recovering Equalization for Multilevel Amplitude Mod-
ulation Systems. IEEE Trans. Commun. 23 (1975) 679-682

5. Yang, J. (ed.): The Multimodulus Blind Equalization and Its Generalized Algo-
rithm. IEEE J. Sel. Areas Common. 20 (2002) 997-1051

6. Thaiupathump, T., Kassam, S.A.: Square Contour Algorithm: A New Algorithm
for Blind Equalization and Carrier Phase Recovery. Proceedings of the 37th Asilo-
mar Conference on Signals, Systems and Computers (2003) 647-651

7. Thaiypathump, T., He, L., Kassam, S.A.: Square Contour Algorithm for Blind
Equalization of QAM Signals. Signal Processing 86 (2006) 3357-3370

8. Karaoguz, J., Ardalan, S.H.: A Soft Decision-Decided Blind Equalization Algo-
rithm Applied to Equalization of Mobile Communication Channels. ICC92. IEEE,
Chicago 3 (1992) 1272-1276

9. Chen, S.: Low Complexity Concurrent Constant Modulus Algorithm and Soft Deci-
sion Directed Scheme for Blind Equalization. IEE Proc.-Vis. Image Signal Process
150 (2003) 312-320

10. Chen, S. (ed.): Multi-Stage Blind Clustering Equalizer. IEEE Trans. Commun. 43
(1995) 701-705

11. Shalvi, O., Weninstein, E.: New Criteria for Blind Deconvolution of Nonminimum
Phase Systems (channels). IEEE Trans IT 36 (1990) 312-321

12. Weerackody, V., Kassam, S.A.: Dual-Mode Type Algorithms for Blind Equaliza-
tion. IEEE Trans. Commun. 42 (1994) 22-28



D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 672–677, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Call Admission Control Using Neural Network in 
Wireless Multimedia Networks 

Yufeng Ma and Shenguang Gong 

Department of Weapon Engineering, 
Naval University of Engineering, Wuhan 430033, P.R. China 

050904@163.com 

Abstract. Scarcity of the spectrum resource and mobility of users make Qual-
ity-of-Service (QoS) provision a critical issue in wireless multimedia networks. 
This paper uses neural network as call admission controller to perform call ad-
mission decision. A performance measurement is formed as a weighted linear 
function of new call and handoff call blocking probabilities of each service 
class. Simulation compares the neural network with complete sharing policy. 
Simulation results show that neural network has a better performance in terms 
of average blocking criterion.  

1   Introduction 

With the development in wireless communication and network technologies, multi-
media applications and services are widely used in mobile cellular networks in recent 
years. The next generation wireless networks are expected to support multimedia 
services such as voice, data and video, which request different bandwidths and quality 
of service (QoS) requirements. How to guarantee the QoS of multi-class services is 
the main issue for network designers. Mobility of users, scarcity of the spectrum re-
source and channel fading make QoS provision more challenging task in wireless 
networks compared with the provisioning problem existing in wireline networks. 

Call admission control (CAC) is very important technology in wireless resource 
management, and it is one of the key mechanisms in guarantying the QoS. It can be 
defined as the procedure of deciding whether or not to accept a new connection. In 
wireless networks, one important parameter of the QoS is call blocking probability 
(CBP), which indicates the likelihood of the new connection being denied. The other 
important parameter is call dropping probability (CDP), which expresses the likeli-
hood of the existing connection being denied during handoff process due to insuffi-
cient resource in target cell. From the user’s point of view, having a call abruptly 
terminated in the duration of the connection is more annoying than being blocked 
occasionally on a new call attempt. It is acceptance to give higher priority to handoff 
call. Reduction of CBP and CDP are conflicting requirements, and optimization of 
both is extremely complex. To guarantee an acceptable CDP is one of the main goals 
of QoS provisioning in wireless networks. 
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Imprecision, dynamic change and burst are features of the flow of wireless traffic. 
The fluctuation in the flow of traffic can not be predicted in advance, conventional 
call admission control policy can not adapt itself to the change of traffic. But intelli-
gent control has lots of advantages to cope with complexity and uncertainty. Intelli-
gent techniques include fuzzy logic systems, neural networks, genetic algorithm and 
expert systems. Without any math model developed in advance, these intelligent tech-
niques can deal with uncertain and dynamic systems, and they can solve complex 
problems in communications and networks in most cases. Recently, intelligent tech-
niques have been applied to call admission control [1-5]. Neural network is used in 
ATM networks in [3,4]. Fuzzy neural network is used for call admission control in 
wireless network in [5], but neural network is used to adjust the parameter and mem-
bership function of fuzzy controller. In this paper, we use neural network as call  
admission controller to perform call admission decision in wireless networks. 

The remainder of this paper is organized as follows. Section 2 describes system 
model and goal. Section 3 gives the structure of neural network and learning algo-
rithm. Section 4 runs simulation to compare the neural network with the complete 
sharing scheme. Then, it discusses the simulation results. Finally, section 5 gives 
conclusion of the paper. 

2   System Description 

2.1   System Model 

In our model, we consider a cellular network with a limited number of bandwidths or 
channels and total channel capacity of a cell is C. There are K classes of call services. 
Different classes of calls may have different requirement of QoS. The arrival rates of 
new calls and handoff calls of class i, i=1, 2, …, K, are assumed to form a Poisson 

process with mean niλ  and hiλ , respectively. The channel holding times of new calls 

of class i are assumed to follow an exponential distribution with mean 1/ niμ . The 

cell residence time, i.e., the length of time that a user stays in a cell during a visit, is 

assumed to follow an exponential distribution with mean 1/ hiμ  and hiμ  denotes the 

call handoff rate. ib  denotes the number of channels required to accommodate the 

class i calls. 

2.2   The Goal 

Let CBPi denote the new call blocking probability for class-i users. Let CDPi denote 
the handoff blocking probability for class-i users. We define a weighted linear  
function of CBPi and CDPi as average blocking criterion.  

1

{ },
K

ni i hi i
i

P CBP CDPω ω
=

= +∑  (1) 
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where niω  and hiω  represent the weighting factor of new call and handoff of class i. 

nihi ωω > , because handoff failure is considered less desirable to user compared 

with new call attempt failure. 
Let CDPid denote an upper bound for the handoff blocking probability for class-i 

users. QoS requirement is defined as follows: 

.i idCDP CDP≤  (2) 

The goal is to minimize average blocking criterion defined in (1), with the con-
straints defined in (2). 

3   Neural Network Call Admission Controller 

3.1   Neural Network Based Call Admission Control 

We define system state of a cell as a vector 

1 2 1 2{ , , , , , , , },n n nK h h hKx x x x x x x=   for 1,2, , ,i K=  (3) 

where nix  and hix  denotes the number of new calls and handoff calls of class-i in the 

cell, respectively. The state space is given by  

1

: 0, 0, ( ) .
K

ni hi i ni hi
i

X x x x b x x C
=

⎧ ⎫= ≥ ≥ + ≤⎨ ⎬
⎩ ⎭

∑  (4) 

An action is defined as  

1 2 1 2{ , , , , , , }, , {0,1}.n n nK h h hK ni hia a a a a a a a a= ∈   (5) 

If nia =1, it stands for the acceptance for a new call arrival in class-i. In other 

words, if the next call request is a new call and it is from class-i, it will be accepted. If 

nia =0, it stands for the rejection for a new call arrival in class-i. 

If hia =1, it stands for the acceptance for a handoff call arrival in class-i. In other 

words, if the next call request is a handoff call and it is from class-i, it will be ac-

cepted. If hia =0, it stands for the rejection for a handoff call arrival in class-i. 

The action space is defined by 

{ : 0 ; 0 },ni ni hi hiA a a if x e X a if x e X= = + ∉ = + ∉    (6) 

where nie  and hie  are vectors of zeros, except for an one in the i-th position. The 

system state and action can be represented as  
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: ( ).f X A f X→ =  (7) 

In other words, the call admission policy can be interpreted as a mapping. The 
functional mapping divides the 2K-dimensional state space into two regions: the  
accept region and the reject region. 

We use BP neural network as call admission controller. The neural network struc-
ture for call admission control is shown in Fig.1. It includes input layer, hidden layer 
and output layer. The inputs are the numbers of new calls and handoff calls of class-i 
(i=1,2,…,K). The output is call admission decision. We choose training data set based 
on upper limit (UL) policy that has a threshold for a class-i call originating in a cell. 
An incoming handoff call of any class is accepted only if there are enough available 
channels for the call. During the learning phase of neural network, the resulting QoS 
will be measured and compared to the target QoS. If the QoS is still hold, the output 

nia  or hia  is 1, i.e., the call will be accepted. Otherwise, the request is rejected. After 

the learning phase, the neural network can be used in the recalled mode to perform 
call admission control. 

1na

nKa

1ha

hKa

1nx

nKx

1hx

hKx

...

 

Fig. 1. Structure of neural network 

3.2   Learning Algorithm 

For each training data set, starting at the input nodes, neural network can compute to 

obtain the actual outputs of call admission control decision, and iCDP  can be meas-

ured. iCDP  will be compared to the target QoS. In order to meet the QoS require-

ment, we define the error function as 

2
, arg

1

1
( ) ( ) .

2

n

i t et i
i

E n CDP CDP
n =

= −∑  (8) 

On the other hand, from the output node, back propagation operation is used to com-
pute back propagation error for hidden nodes. Then, weight vector parameters will be 
updated. When )(nE  is small enough, the learning process will stop and weight 

vector will be stored. 
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4   Simulation 

4.1   Simulation Parameters 

In order to evaluate the performance of neural network, we implement and simulate 
complete sharing scheme for comparison. We let C=50, K=2, b1=1, b2=2. We assume 
that the handoff call arrival rate is proportional to the new call arrival rate by 

nihi αλλ =  for every class (i=1,2). We set α =0.5, 21 2 nn λλ = , 21 2 hh λλ = . 

1/ niμ  and 1/ hiμ  is assumed to follow exponential distribution with mean 200 sec-

onds and 100 seconds, respectively. We choose weighting factor 1nω =1, 2nω =2, 

1hω =5, 2hω =10. We set thresholds for CDP1 and CDP2 as 0.01 and 0.02, respec-

tively. UL is set to (13,5). We choose number of hidden nodes is 9 in neural network. 

4.2   Simulation Results 

The measures obtained through the simulation are CBP and CDP of every service 
class and average blocking criterion. We simulate when new call arrival rate changes 
from 0.08 calls per second to 0.15 calls per second. The measures are plotted as a 
function of the new call arrival rate. 

Simulation curves of the CBP1 and CBP2 of the NN and CS schemes are shown in 
Fig.2. We can notice that the values of the CBPi increase as the traffic load increases 
for two schemes. The CBPi of the CS scheme are lower than that of NN. The curves 
of the CDP1, CDP2 are shown in Fig.3. The CDPi of CS scheme are higher than NN. 
The CDP1, CDP2 of CS scheme are far higher than thresholds for CDP1  and CDP2 
respectively. The CS scheme can not meet the requirement of QoS. The CDP1, CDP2 
of NN are lower than their thresholds. 

Simulation curves of average blocking criterion are shown in Fig.4.  We can see 
from the figure, the average blocking criterion of NN is lower than CS scheme. It 
indicates that the NN scheme has a better performance. It can adapt to changes in the 
network load.   

            

               Fig. 2. Call blocking probability                 Fig. 3. Call dropping probability 
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Fig. 4. Average blocking criterion 

5   Conclusion 

In this paper, we use neural network as call admission controller to perform call ad-
mission decision in wireless multimedia networks. Simulation results show the NN 
has a better performance. It outperforms the complete sharing scheme. 
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Abstract. Using the neural network model for oriented principal com-
ponent analysis (OPCA), we propose a solution to the data least squares
(DLS) problem, in which the error is assumed to lie in the data ma-
trix only. In this paper, We applied this neural network model to chan-
nel equalization. Simulations show that DLS outperforms ordinary least
square in channel equalization problems.

1 Introduction

Linear least squares (LS) problems involve finding “good” approximate solutions
to a set of independent, but inconsistent, linear equations

A x = b, (1)

where A is an m × n complex data matrix, b is a complex m × 1 observation
vector, and x is a complex n × 1 prediction vector, which is optimally chosen
to minimize some kind of squared error measure [1]. It is usually assumed that
the underlying noiseless data satisfy (1) with equality. Different classes of LS
problems can be defined in terms of the type of perturbation necessary to achieve
equality in the system of equations described by (1). For example, in the ordinary
least squares (OLS) problem, the error (or perturbation) is assumed to lie in
b [2].

AxOLS = (b + r), (2)

where r is the residual error vector that corresponds to a perturbation in b.
The OLS solution vector xOLS is chosen so that the Euclidean (or Frobenius)
norm of r is minimized. It is implicitly assumed in the OLS problem that A is
completely errorless, and therefore the columns of A are not perturbed in the
solution [1]. On the other hand, the total least squares (TLS) problem assumes
error in both A and b [1].

(A + E)xTLS = (b + r). (3)

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 678–685, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The TLS solution vector is chosen so that the Euclidean norm of [E r] is
minimal. Another interesting case that is described and solved in this corre-
spondence assumes that errors occur in A but not in b. This is called the data
least squares (DLS) problem because the error is assumed to lie in the data
matrix A as indicated by

(A + E)xDLS = b. (4)

DeGroat, et. al. in [2] developed a close form solution to (4) and demonstrated
that it outperforms OLS and TLS in case of noisy data matrix. However, the
solution is a kind of batch type algorithm.

In this paper, we propose a neural network model for DLS solution with a
neural network model for oriented principal component analysis (OPCA). We
applied this neural network model to channel equalization. Simulations show
that the proposed DLS network outperforms ordinary least square in channel
equalization problems.

2 Generalized Total Least Square Problem

Given an unknown system with finite impulse response and assuming that both
the input and output are corrupted by the Gaussian white noise, the system
should be estimated from the noisy observation of the input and output, as in
Fig.1.

Fig. 1. The model of generalized total least square

The unknown system is described by

h = [h0, h1, · · · , hN−1]
H ∈ CN×1, (5)

where h may be time-varying or time-invariant. The desired signal is given by

d(n) = xH(n)h + no(n), (6)



680 J.-S. Lim

where the output noise no(n) is a Gaussian white noise with variance σ2
o and

independent of the input signal, and the noise free input vector is represented as

x(n) = [x(n), x(n − 1), · · ·x(n − N + 1)]T . (7)

The noisy input vector of the system estimator is given by

x̃(n) = x(n) + ni(n) ∈ CN×1, (8)

where ni(n) = [ni(n), ni(n − 1), · · ·ni(n − N + 1)]T and the input noise ni(n) is
the Gaussian white noise with variance σ2

i .
Notice that the input noise may originate from the measured error, interfer-

ence, quantized noise and so on. Hence, we adopt a more general signal model
than the least squares based estimation. Moreover, the augmented data vector
is defined as

x(n) =
[
x̃T (n), d(n)

]T ∈ C(N+1)×1. (9)

The correlation matrix of the augmented data vector has the following structure

R =
[
R̃ p
pH c

]
, (10)

where p = E {x̃(n)d∗(n)} and c = E {d(n)d∗(n)}, R̃ = E
{
x̃(n)x̃H(n)

}
=

R + σ2
i I, R = E

{
x(n)xH (n)

}
. We can further establish that p = RHh and

c = hHR̃h + σ2
o .

The constrained Rayleigh quotient is defined as

J(w) =
[wT , −1]R[wT , −1]H

[wT , −1]D[wT , −1]H
, (11)

where D =
[
I 0
0 γ

]
with γ = σ2

o

σ2
i
[3]. The generalized total least square solution is

obtained by solving

min
w

J(w). (12)

DLS is a special case in (11) with γ=0 [3].

3 Oriented Principal Component Analysis (OPCA)

In this section we extend the standard principal component analysis problem by
introducing OPCA [4] which corresponds to the generalized eigenvalue problem
of two random signals and bears the same relationship to generalized eigenvalue
decomposition (GED) as PCA bears to ordinary eigenvalue decomposition (ED).
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More precisely, the goal is to find the direction vector w that maximizes the
signal-to-signal ratio

JOPC =
E{(w̃Hx1)2}
E{(w̃Hx2)2}

=
w̃HR1w̃
w̃HR2w̃

, (13)

where R1 = E{x1xH
1 } and R2 = E{x2xH

2 }. We assume that R2 is strictly
positive definite, hence nonsingular. Quite often {x1k} and { x2k } are stationary
stochastic processes, where R1 = E{x1kxH

1k} and R2 = E{x2kxH
2k} and OPCA

is still defined by (13). As usual there is little difference between random vectors
and stationary random processes, and hence the term OPCA is used for both
cases interchangeably.

The optimal solution to (13) will be called the principal oriented component
of the pair (x1, x2). The adjective ”oriented” is justified by the fact that the
principal component of x1 is now steered by the distribution of x2: it will be
oriented toward the directions where v has minimum energy while trying to max-
imize the projection energy of x1. Jopc is nothing but the generalized Rayleigh
quotient for the matrix pencil (R1,R2), so the principal oriented component
is the principal generalized eigenvector of the symmetric generalized eigenvalue
problem [5].

R1w̃ = λR2w̃. (14)

4 Neural Network Model for Oriented Principal
Component (OPC) Extraction

We initially focus on the extraction of the first component. The maximum value
of Jopc in (13) is the principal generalized eigenvalue λ1. Therefore, the function

V (w̃) =
1
2
(λ1 − JOPC(w̃)) (15)

is such that V (w̃) > 0, and V (w̃) = 0 only for w̃ = e1, so V may serve as
a Lyapunov energy function for a system to be proposed. The proper gradient
descent algorithm would be

dw̃
dt

= −∇V =
1

w̃HR2w̃

(
R1w̃ − w̃HR1w̃

w̃HR2w̃
R2w̃

)
(16)

with the globally asymptotically stable fixed point w̃ = e1.
In fact, even the simpler equation

dw̃
dt

=
(
R1w̃ − w̃HR1w̃

w̃HR2w̃
R2w̃

)
, (17)

is stable since

dV

dt
=

dw̃H

dt
∇V = − 1

w̃HR2w̃

∥
∥∥
∥R1w̃ − w̃HR1w̃

w̃HR2w̃
R2w̃

∥
∥∥
∥

2

≤ 0, (18)
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and again the point w̃ = e1 is the globally asymptotically stable attractor.
From (18), we can indirectly conclude that the proposed algorithm converges
asymptotically.

5 Neural Network for Data Least Square (DLS) Solution

We can apply the neural network based method in section 4 to solution of DLS.
If we modify (11) and (12), the object function for DLS becomes

J̃(w) =
w̃HDw̃
w̃HRw̃

=
[wH , −1]D[wT , −1]T

[wH , −1]R[wT , −1]T
. (19)

The DSL solution can be derive as (20). Applying the recursive algorithm in
section 3 for the maximization of (20) yields

max
w̃

J̃(w̃), and then w = w̃(1 : N)/(−w̃(N + 1)), (20)

where w̃(1 : N) is a vector with the elements from the 1-st to the N-th, and
w̃(N + 1) is the (N+1)-th element in w̃. Applying the OPCA to (19) yields

Δw̃ =
1

(w̃HRw̃)2
(
(w̃HRw̃)Dw̃ − (w̃HDw̃)Rw̃

)
. (21)

w̃(n) = w̃(n − 1) + β
(
(w̃H(n − 1)R(n)w̃(n − 1))D̄w̃(n − 1)

−(wH(n − 1)w(n − 1))R(n − 1)w̃(n − 1)
)
, (22)

where R(n) = λfR(n − 1) + x̄(n)x̄H(n) and λf is a forgetting factor. The
algorithm is summarized in table 1.

Table 1. OPCA based Data Least Square (NN-DLS) Algorithm

1. Initialize λf ,β,x̄(0) = [xT(0), d(0)], w̃(0) = [wT(0), −1]with the
w(0) ∈ CN×1 to a random vector
2. Fill the matrix Q(0) ∈ CN×N with small random values
3. Initialize scalar variables C(0) to zero
For j >0
4. Compute z(j) = w̃H(j − 1)x̄(j)
5.Update the weight vector as

w̃(j) = w̃(j − 1)+
β
�
z2(j)D̄w̃(j − 1) − (wH(j − 1)w(j − 1))z(j)x̄(j)

�

6. Normalize the weight vector
7. w(j) = w̃(1 : n − 1)/(−w̃(n + 1))
loop
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If we cancel the estimation of autocorrelation matrix, we can obtain a simpler
update equation as follows.

w̃(n) = w̃(n−1)+β
(
z2(n)D̄w̃(n − 1) − (w̃H(n − 1)w̃(n − 1))z(n)x̄(n)

)
, (23)

where z(n) = w̃H(n−1)x̄ (n). By this simplification, the algorithm needs 7N+9
of multiplications in each iteration.

6 A Channel Equalization Application

In this section, we demonstrate the usefulness of the DLS neural network model
by comparing it with the optimal method and OLS methods in a channel equal-
ization problem. The channel equalization problem is graphically described by
the block diagram in Fig. 2. Basically, the solution vector, w = [w1, w2,. . . ,
wp]T represents an FIR approximate inverse filter to the channel characteristic
H(z).The output of the inverse (equalization) filter can be written in matrix form
using the output of the channel as input to the finite impulse response (FIR)
equalization filter. The output of the equalized channel should be approximately
equal to the original input

⎡

⎢
⎢
⎢
⎣

s̃p−1
s̃p

...
s̃N−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

vp−1 · · · v1 v0
vp · · · v2 v1
...

...
...

...
vN−1 · · · vN−p+1 vN−p

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

w1
w2
...
wp

⎤

⎥
⎥
⎥
⎦

≈

⎡

⎢
⎢
⎢
⎣

sp−1
sp

...
sN−1

⎤

⎥
⎥
⎥
⎦

, (24)

where p is the FIR filter order; and N is the total number of output samples. In
this problem, we assume that the left side in (24) is known without error because
the input training signal is assumed to be known without error. It is easy to see
that (24) has the form of (4).

For the simulation, a well-known complex nonminimum-phase channel model
introduced by Cha and Kassam [6] is used to evaluate the proposed neural

(a)

[n]s~

(b)

Fig. 2. Transmission and Equalization model: (a) received signal model, (b) equalizer
model (s[n]: transmitted signal, h[n]: channel model, η[n]: additive noise, v[n]: received
signal, d[n]: training signal)
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Fig. 3. Equalization results in 4-PAM signaling: (a) constellation of received signals
(b) constellation of outputs of optimal equalizer (c) constellation of outputs of RLS
equalizer (d) constellation of outputs of the proposed equalizer

network based DLS equalizer performance for 4-PAM signaling. The channel
output v(n) (which is also the input of the equalizer) is given by

v(n) = (0.34−j0.27)s(n)+(0.87+j0.43)s(n−1)+(0.34−j0.21)s(n−2)+η(n) (25)

Where η(n) is white Gaussian noise. 4-PAM symbol sequence s(n) is passed
through the channel and the sequence s(n) is valued from the set {±1, ±3}. All
the equalizers, the recursive least square (RLS) based equalizer and the proposed
neural network based equalizer, are trained with 1000 data symbols at 15 dB
SNR. The RLS is a recursive algorithm for the OLS problem. The order of
equalizer was set to 9.

Fig. 3 (a) shows the distribution of the input data of the different equalizers.
This figure shows received signals scattered severely due to transmission channel
effect. Figures 3 (b), (c) and (d) show the scatter diagrams of the outputs of the
three equalizers, optimal one, RLS based one and the proposed one, respectively.
From these figures, we can see that the constellation from the proposed algorithm
is almost the same as the equalized signals by the optimal equalizer which is



A Neural Network Solution on DLS Algorithm 685

derived from the Wiener solution, while RLS based equalizer produced widely
scattered constellation. It leads to the conclusion that the proposed algorithm
outperforms the RLS algorithm. Moreover, it works almost the same as optimal
equalizer.

7 Conclusion

In this paper, we proposed a neural network model based data least square
(DLS) solution. Channel equalization simulations were performed to compare the
proposed algorithm with the algorithms in OLS and we found better performance
over OLS methods.
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Abstract. In this paper, authors propose a multiuser detection (MUD)
scheme using a radial basis function (RBF) network for a space-time
block coding (STBC) systems with multiple receive-antennas. The neu-
ron centers of the RBFs are jointly carried out in space and time do-
mains, which lead to a powerful technique to combat the interference
resulting from different sources. Simulations compare this detector with
traditional receiver structures such as the minimum mean square error
(MMSE) receiver and maximum likelihood detection (MLD). It shows
that this RBF-based space-time MUD can be flexibly trade off between
the bit error rate (BER) performance, the center initialization- rate and
the number of the receive-antennas.

1 Introduction

Without the channel state information (CSI) available at the transmitter, space-
time block coding (STBC) can utilize the information in the spatial and time
domains simultaneously, bring the diversity gain to the systems[1]-[3]. Multiuser
Detection (MUD) for STBC systems has been widely studied in recent years
[2][3]. Specifically, the signals emitted from the different transmit antennas of
a same STBC transmitter can be viewed as if they were originated from differ-
ent virtual users so that STBC detection in the case of single user can also be
regarded as a MUD problem. Due to multiple users and multiple transmit anten-
nas (virtual users), STBC systems face serious multi-access interference (MAI)
in the uplink and limit the capacity. The maximum likelihood detection (MLD)
can achieve satisfactory bit error rate (BER) performance but the computation
complexity varies exponentially with the number of users. Therefore, the MUD
technique is a non-deterministic polynomial (NP)-hard problem, which requires
unforeseeable huge computing power in order to find a global optimum solution.

Our proposal of the utilization of a radial basis function (RBF) network as
MUD detector for STBC systems is inspired by two facts, in which RBF tech-
niques and modifications are used [4]. In the first, an RBF network is used as
an equalizer [5]. The second includes the MUD in code division multiple access

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 686–694, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(CDMA) systems [6][7]. However, because of the complexity in terms of neuron
centers, research has been extended to suboptimum receivers with more rea-
sonable computational complexity [8]. Furthermore, a RBF-base MUD for the
BLAST has been proposed for the point-to-point MIMO communications [9].
However, to the best of our knowledge, using RBF network to MUD in a STBC
multiuser system has not been generally investigated and presented. This paper
proposes a multiple receive-antennas aided and RBF-based MUD for the STBC
systems, which including the RBF-based MUD for single receive-antenna STBC
systems as a special case. Specifically, the neuron centers of the RBFs are jointly
carried out in space and time domains, considering of all the diversity aspects.
Computer simulations are used to verify and compare the performance of this
detector against the traditional receiver structures such as the minimum-mean-
square error (MMSE) receiver and MLD.

2 System Model

We consider the uplink of the STBC systems, where K active users transmit on
the same frequency in the same cell. Without loss of generality, the STBC code
g2 in [1] is selected in this study:

g2 =
[

x1 x2
−x∗

2 x∗
1

]
. (1)

For each user, 2 transmit antennas is employed. At the base-station receiver,
there are M receive antennas spacing far away enough with each other to ensure
the signals arrived at different antennas undergoing independent fading. The
transceiver block diagram is shown in Fig.1. The input symbol-stream of the kth
user is firstly STBC coded and form 2 symbol-streams. Then these 2 symbol-
streams are transmitted out from 2 antennas, respectively. When only the kth
user is active, the signal received at the mth antenna during 2 consecutive symbol
periods can be expressed as

[
rm(2t − 1)

r∗m(2t)

]
=

[
h(m,1,k) h(m,2,k)

h(m,2,k)∗ −h(m,1,k)∗

] [
sk(2t − 1)

sk(2t)

]
+

[
nm(2t − 1)

n∗
m(2t)

]
. (2)

where h(m,n,k) is the path gain of user k from it’s nth transmit antenna to the
mth receive antenna at the base-station, sk(2t − 1) and sk(2t) are the symbols
transmitted by the kth user in the tth STBC block, nm(2t − 1) and nm(2t) are
the noise part received at the mth antenna during (2t -1)-th and 2t -th symbol
periods. The above signal model takes the cost of conjugating half of the CSI and
received signals. Moreover, it is impossible to apply (2) for all the generalized
STBC designs, such as the following STBC code:

S =

⎡

⎢
⎢
⎣

x1 x2 x3 0
−x∗

2 x∗
1 0 −x3

x∗
3 0 −x∗

1 −x2
0 −x∗

3 x∗
2 −x∗

1

⎤

⎥
⎥
⎦ . (3)
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Fig. 1. The transceiver block diagram of an uplink STBC MUD system

Therefore, a redundant form is introduced in the following. For the kth user, the
path gain for the mth receive antenna is

h(m,k) = [h(m,1,k) h(m,2,k)]T . (4)

The signal symbols per STBC block can be denoted as

sk = [Re(sk(2t − 1)) Re(sk(2t)) Im(sk(2t − 1)) Im(sk(2t))]T . (5)

The signal received at the mth receive antenna is rm = [rm(2t−1) rm(2t)]T and
noise at the mth receive antenna is nm = [nm(2t − 1) nm(2t)]T . Using STBC
encoding, the received signal at the mth receive antenna can be obtained by the
following transformation, which is applicable to any STBC design:

rm(t) = g2h(m,k) + nm(t) = Hm,ksk + nm(t) . (6)

where Hm,k for g2 design is defined as

Hm,k =
[
h(m,1,k) h(m,2,k) h(m,1,k) h(m,2,k)

h(m,2,k) −h(m,1,k) −h(m,2,k) h(m,1,k)

]
. (7)

When all K users are active, the signal received at the mth antenna is

rm(t) =
K∑

k=1

Hm,ksk(t) + nm(t) = Hms(t) + nm(t) . (8)

where Hm = [Hm,1, ...,Hm,K ], and s(t) = [sT
1 (t), ..., sT

K(t)]T can be taken as
a vector containing the 2K virtual users’ transmitted symbols’ real and image
parts. The signal out from all M antennas after 2 consecutive symbol periods
can be expressed as

r(t) = Hs(t) + ñ(t) . (9)

where ñ(t) = [nT
1 (t), ...,nT

M (t)]T , and H = [HT
1 , ...,HT

M ]T is a 2M ×4K matrix.
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Fig. 2. Structures the RBF network and RBF-based MUD. (a): RBF network. (b):
RBF-based MUD.

3 RBF-Based Multiuser Detection

The structure of an RBF network is composed of two layers, as shown in
Fig. 2(a), with the output obtained as

y =
J∑

j=1

wj exp

(

−||r − cj ||2
σ2

j

)

. (10)

where cj , σ2
j , wj and r are the j th center of an N -dimensional vector, the degree

of the spread of the j th basis function, the weight of the j th basis function, and
the input signal of an N -dimensional vector, respectively. Moreover, ||.|| denotes
the Euclidean norm of the vector. Input data are connected to the hidden layer
in which the number of RBFs is J. In the hidden layer, the nonlinear output
of a basis function is obtained by using the spread of a basis function and the
Euclidean distance between a center vector and an input vector. The output
y of an RBF network is then obtained by linear summation of the nonlinear
functions’ outputs, which are multiplied by weights, as shown in (10). Generally,
centers and weights are trained by a supervised k-means clustering algorithm or
an unsupervised clustering algorithm and a least mean square (LMS) algorithm,
respectively [5]. In this paper, the Gaussian function in (10) is chosen as RBF.

Fig.2(b) shows the structure of the proposed space-time MUD receiver for
STBC g2 , where an RBF network is applied to the space-time domain. When
the number of bits per symbol is p and number of symbols per STBC block is
q, the required number of basis functions is J = (2p)Kq, which stands for the
complete set of user data [6]. In other words, the center vectors of the RBF
network represent the noise free input vectors of receive antennas for possible
Kq virtual users data bit combinations. Using the channel response matrix H
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(or the estimated one), the j th center vector of the complex value for the STBC
g2 is initialized as

cj = Hsj =

⎡

⎢
⎢⎢
⎣

∑2K
k=1 H1,ksj

k∑2K
k=1 H2,ksj

k
...∑2K

k=1 H2M,ksj
k

⎤

⎥
⎥⎥
⎦

, 1 ≤ j ≤ J . (11)

where Hl,k stands for the element of H in the lth row and kth column, sj
k is

the kth element of sj , and sj is the j th combination of 2K active virtual users’
symbols. Thus, each center takes the sum of the users’ data and spans in the
space-time domain. The data output from the space-time domain is used as the
input to the basis functions. The basis function outputs are multiplied by the
weight vector, wk, assigned to the kth virtual user, which can be defined as

wk = [wk,1, wk,2, ..., wk,J ]T , 1 ≤ k ≤ 2K . (12)

where wk,j , the weight of the j th basis function for the kth virtual user, is
initialized by sj

k. To apply this to other users, we need only change the weight
vector to that particular user’s weight vector [7][8]. Then the linear combining
is used to obtain the decision variables for the transmitted symbols. As a result,
the estimated symbols vector of all users at time t is expressed as

ŝ(t) = [ŝ1(t), ŝ2(t), ..., ŝ2K(t)]T =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

∑J
j=1 w1,j exp

(
− ||r(t)−cj||2

σ2
j

)

∑J
j=1 w2,j exp

(
− ||r(t)−cj||2

σ2
j

)

...
∑J

j=1 w2K,j exp
(
− ||r(t)−cj ||2

σ2
j

)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

. (13)

During data transmission, supervised learning no longer applies and the decision-
directed learning algorithm is used for adaptation. This adaptation process for
an RBF network involves computing the squared Euclidean distance between the
centers and the received signal vector, selecting the minimum squared Euclidean
distance and moving the corresponding center closer to the received signal vector.
That is to say, each distorted set of the 2K virtual users’ symbols is trained by
each RBF center. Therefore, the phase components of each center will estimate
the phases of a channel under slow-varying fading channel conditions [7].

4 Simulation Results

The bit-error rate (BER) performances of the proposed RBF-based MUD for
STBC systems are investigated by the simulation. In the simulations, the path
gain for different transmit-receive antenna-pair of different users are assumed
to be independent. For all path gains, the normalized maximum Doppler shift



Multiple Receive-Antennas Aided and RBF-Based MUD for STBC Systems 691

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-6

10-5

10-4

10-3

10-2

10-1

100

SNR (dB)

BE
R

MMSE
proposed, IR=1/(120Tblock)

proposed, IR=1/(80Tblock)

proposed, IR=1/(40Tblock)

MLD

Fig. 3. BER performance of the RBF-based MUD for STBC g2, fdTs = 0.001, BPSK
modulation, M=4, K=4

is fdTs = 0.001, where fd and Ts are the maximum Doppler shift and symbol
period, respectively. For MMSE and MLD, the AWGN noise variance σ2 is as-
sumed to be known. For the RBF center initialization, each center spread is set
to be σ2

j = σ2. The perfect CSI is assumed for MMSE and MLD detectors, while
for the proposed RBF-based MUD, the perfect CSI can only be available at
the centers initialization process, as performed in (11). Furthermore, to prevent
the RBF-based MUD from becoming a MLD, the initialization of RBF centers
can only be carried out at a rate less than 1/(qTs), where qTs stands for one
STBC block period. In the simulation, the initialization-rate (IR) are defined
as IR = 1/(40qTs), IR = 1/(80qTs) and IR = 1/(120qTs), respectively. During
data transmission, RBF centers are adapted by the decision-directed learning
algorithm [5] with a learning rate of 0.2.

Fig.3 shows the average BER performance vs. the signal-to-noise-ratio (SNR)
when the number of user is 4 (K=4), and the number of receive antennas is 4
(M=4). As can be seen from Fig.3, when the IR is 1/(40qTs), the RBF-based
MUD has very close BER performance as that of MLD. When the IR becomes
smaller, the BER performance becomes worse. When the IR is 1/(120qTs), the
BER of the RBF-based MUD is worse than the MMSE receiver for SNR> 5dB.
However, even when the IR is 1/(80qTs), the RBF-based MUD has better BER
performance than MMSE (Noting at this IR, the center initialization process
happens per 80 STBC blocks).

Fig.4 shows the average BER performance vs. the SNR when the number of
receive antennas is 3 (M=3). As can be seen from Fig. 4, the BER of RBF-based
MUD with IR= 1/(40qTs) is close to that of MLD, and the BER of RBF-based
MUD increases when the IR becomes slow. Besides, the BER of MMSE receiver
is worse than that of the RBF-based MUD with IR= 1/(120qTs), noting the later
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Fig. 4. BER performance of the RBF-based MUD for STBC g2, fdTs = 0.001, BPSK
modulation, M=3, K=4
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Fig. 5. BER performance of the RBF-based MUD for STBC g2, fdTs = 0.001, BPSK
modulation, M=1(single receive-antenna), K=4

initializes the centers per 120 STBC blocks. The reason for the BER deterioration
of MMSE receiver is that the channel matrix H in (9) becomes a fat matrix when
M is 3 and K is 4.

Fig.5 shows the average BER vs. the SNR when single receive antenna is
employed (M=1), which is the special case of the proposed MUD. As can be
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seen from Fig. 5, the MMSE receiver can not recovery the signal for serious fat
channel matrix effect, while the RBF-based MUD can still achieve a favourable
BER performance.

Fig.6 shows the average BER versus the number of the receive antennas
when the SNR is 6dB. As can be seen from Fig.6, when the number of receive-
antennas becomes smaller, the BER of MMSE receiver becomes worse more
rapidly than the proposed scheme. When the number of receive antennas is
less than 4 and the IR is larger than or equal to 1/(120qTs), the proposed
scheme has smaller BER than the MMSE receiver. On the other hand, as
can be seen from Fig.6, the proposed scheme can achieve very close BER as
the MLD when the IR and the number of receive antennas are properly
chosen.

5 Conclusion

A multiple receive-antennas aided and RBF-based multiuser receiver for the
uplink of STBC systems is proposed. The neuron centers of the RBFs are jointly
carried out in space and time domains, which lead to a powerful technique to
combat the interference resulting from different sources. Simulation results verify
that: the proposed RBF-based MUD has similar BER performance as MLD
when the centers initilization-rate is high, and has superior BER performance
to the MMSE receiver for quite slow centers initialization-rate. The proposed
scheme can also flexibly trade off between the BER performance, the centers
initialization-rate and the number of the receive-antennas.
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Abstract. The fluid-flow model is suitable for vehicle traffic on high-
ways but not for pedestrian movements at variable velocities. Consid-
ering the change of a mobile’s velocity within a short time is limited
due to physical restrictions, therefore a mobile user’s future velocity is
likely to be correlated with its past and current velocity. Since Gauss-
Markov model captures the essence of the correlation of a mobile’s ve-
locity in time, we propose a Gauss-Markov process based fluid model
that it is suitable for both vehicle traffic on highways and pedestrian in
street, and presents the total cost estimation of location management for
the Gauss-Markov process based fluid model.Considering the importance
of memory level in the Gauss-Markov model, we estimate the parame-
ter using neural network. Considering the measurements of updating
and paging cost is not consecutive but contain missing observations,
we propose the methods of location management total cost estimation
with missing measurement for PCS, and utilize the Kalman filter to de-
duce the steady covariance of the estimation error of total cost per unit
time. A numerical example is given to illustrate the use of the proposed
approach.

1 Introduction

Location management, which keeps track of the mobile terminals moving from
place to place in personal communication system (PCS) networks, is a key issue
in PCS networks. There are two basic operations in location management [8]:
location update and paging. Location update is the process through which system
tracks the location of mobile terminals. The mobile terminal reports its up-to-
date location information dynamically. A paging area (PA) may include one or
more cells. When an incoming call arrives the system searches for the mobile
terminal by sending polling signals to cells in the PA. This searching process
is referred to as paging. To perform location update or paging will incur a sig-
nificant amount of cost (e.g., wireless bandwidth and processing power at the
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mobile terminals, the base stations, and databases), which should be minimized
in the systems.

The main issue of location management scheme is to decrease the waste of
wireless bandwidth by reducing the active traffic between the network and the
mobile host. Generally, if the size of a location area (LA) increases, the location
update load decreases, while the paging load increases due to the increased
number of cells for paging. Thus, a tradeoff between location update cost and
paging cost is required [13].

Three kinds of dynamic location management schemes have been proposed [10],
namely, distance based, movement based, and time based. Under the distance-
based scheme, the location update is performed whenever the distance (in term
of number of cells) between the current cell of the terminal and the last cell
in which the update is performed, where the distance is threshold. Under the
movement-based scheme, the location update is performed whenever the mobile
terminal completes movements between cells, where the movement is threshold.
Under the time-based scheme, the location update is performed every units of
time, where the time is threshold. It has been pointed out that the movement-
based location update method may be the most practical, because it is ef-
fective and can be easily implemented under the framework of current PCS
networks [2].

Fluid flow model is commonly used movement-based mobility models in the
literatures [9], [14], [15], and is more suitable for users with high mobility, in-
frequent speed, and direction changes. Under the fluid-flow model, the average
location update rate is equal to the average number of crossings of the bound-
ary of region LA per unit time, and the motion speed of a mobile terminal
(MT) is constant or average value [11], [3], [7], [17]. For pedestrian movements
in which mobility is generally confined to a limited geographical area such as
residential and business building, the velocity of a MT should be variable. The
fluid-flow model is suitable for vehicle traffic on highways but not for pedestrian
movements at variable velocities. Furthermore, the change of a mobile’s velocity
within a short time is limited due to physical restrictions. Therefore, a mobile
user’s future velocity is variable and likely to be correlated with its past and
current velocity.

Gauss-Markov model [7] represents a wide range of user mobility patterns,
including, as its two extreme cases, the random walk [5] and the constant velocity
fluid-flow models [6]. Since Gauss-Markov model captures the essence of the
correlation of a mobile’s velocity in time, we propose a Gauss-Markov process
based fluid model that it is suitable for both vehicle traffic on highways and
pedestrian in street.

Consider the measurements of updating and paging cost are not consecutive
but contain missing observations, and the missing observations [12] are caused
by a variety of reasons, e.g., a certain failure in the measurement, intermittent
sensor failures, and accidental loss of some collected data, or some of the data
may be jammed or coming from a high noise environment, etc. For these reasons,
this paper presents an approach to the total cost estimation of variable velocity
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mobile location management for PCS with missing measurements. The key to the
cost estimation is the design of an estimator. A Kalman filter of linear uncertain
discrete stochastic system with missing measurement is thus developed to serve
this purpose.

The rest of this paper is organized as follows. In Section 2, we describe a Gauss-
Markov process based fluid model. The model is a linear uncertain discrete-time
stochastic system. Sections 3 presents the total cost of location management
for the Gauss-Markov process based fluid model. The design of Kalman fil-
ter for total cost estimation with missing measurement is studied in 4 Section.
Numerical example is presented in Section 5, and Section 6 concludes this
paper.

2 System Description

Due to physical restrictions, mobile users often move at one speed one moment
and at another speed the next. We postulate that the mobile process is a fluid
process at inconstant speed that satisfies Gauss-Markov process. The fluid Model
characterizes aggregate movement behavior as the flow of a fluid. Under the
fluid-flow model, the direction of an MT’s movement in the LA is uniformly
distributed in the range of (0, 2π) [15]. Let v̄ be average speed (km/hr), and
S(d), L(d) be area and perimeter of a LA including d rings respectively. A ring
is a circle made up of cells around one cell. The average location update rate is
equal to the average number of crossings of the boundary of region LA per unit
time, i.e.

Nupd =
L(d)v
πS(d)

(1)

1-D discrete version of Gauss-Markov mobility model [7]

vn = αvn−1 + (1 − α)μ + σ
√

1 − α2wn−1 (2)

Where vn is a mobile velocity during the nth period, α is the memory level
of the Gauss-Markov mobility model. The parameter is easily determined by
training an artificial neural network [16] from the mobile database of PCS in
mobile switching center. σ2 is the variance of vn, wn is an uncorrelated Gaussian
process with zero mean, unit variance and is independent of vn. Let un = vn −μ,
β = σ

√
1 − α2 we obtain the following simple and clear form

un = αun−1βwn−1 (3)

Substituting v̄ in (1) by un + μ in (3), we obtain a Gauss-Markov process based
fluid model as follows

Nupd =
L(d)(un + μ)

πS(d)
(4)
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3 The Total Cost Study for Location Management Per
Unit Time

3.1 Cost of Location Update

Let the cost for performing a location update be δupd, which accounts for the
wireless and wire line bandwidth utilization and the computational cost for
processing a location update in for crossing a LA. Consider (4), and then the
expected cost of location updates per unit time is expressed as

cupd = Nupdδupd =
L(d)(un + μ)

πS(d)
δupd (5)

3.2 Cost of Paging

Let the cost for polling a cell be δpoll. As was mentioned earlier, all the cells in the
PA are paged when an incoming call arrives. Consider the PCS networks with
hexagonal cell configurations. The number of cells in the paging process with
movement-based location update scheme, denoted by Npoll, is upper bounded as
follows:

Npoll ≤ (1 +
d−1∑

i=1

6i) (6)

We use the upper bound in (6) as an approximation to Npoll. The expected
paging cost per call arrival, denoted by cpaging , is given by

cpaging = Npollδpoll

= (1 +
d−1∑

i=1

6i)δpoll

= [1 + 3d(d − 1)]δpoll (7)

The Poisson process is a good model used to describe the arrivals of incoming
phone calls per unit time. In the analysis, we assume that the call arrival to each
mobile terminal is a Poisson process with rate λ. With these parameters, the
expected paging cost per unit time

cpaging = [1 + 3d(d − 1)]λδpoll (8)

3.3 Total Cost Per Unit Time

Consider L(d) = 6d, S(d) = 3
√

3d2

2 .To sum up (5), (8), we obtain the clear and
simple formulation for the total cost per unit time for movement-based location
update scheme as follows:

cn = cpaging + cpoll

=
4δupd√

3πd
(un + μ) + [1 + 3d(d − 1)]λδpoll

=
4δupd√

3πd
un +

4μ√
3πd

δupd + [1 + 3d(d − 1)]λδpoll (9)
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Let η = 4δupd√
3πd

, κ = 4μ√
3πd

δupd + [1 + 3d(d − 1)]λδpoll in (9), we obtain

cn = ηun + k (10)

4 Filter Design for Linear Uncertain Discrete Time
Stochastic System with Missing Measurement

We have obtained the following linear uncertain discrete stochastic system in
section 2

un = αun−1 + βwn−1 (11)

with the measurement equation or total cost per unit time

cn = ηun + k (12)

Consider missing measurement, the (10) follow as

cn = γnηun + κ (13)

where γn is a Bernoulli distributed white sequence, is assumed to be independent
of wn, u0, and is taking values on 0 or 1 with

Pr ob{γn = 1} = γ (14)

where γ̄ is a known positive constant. Let

γ̃n = γn − γ̄ (15)

en = un − ûn (16)

where γ̃n is a scalar zero mean stochastic variable with variance σ2
�γ = (1 − γ̄)γ̄,

ûn stands for the state estimate of un, the estimate error of total cost per unit
time as follow

c̃n = cn − (γηûn + κ)
= (γnηun + κ) − (γηûn + κ)
= γηen + γ̃nηun (17)

The linear filter considered in this note is of the following structure:

ûn+1 = gûn + qc̃n (18)

where g, q are the filter parameters to be scheduled, and subsequently the state
error

en+1 = un+1 − ûn+1

= (α − g − qγ̃nη)un + (g − γqη)en + βwn (19)
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Define

xf
n+1 =

(
un+1
en+1

)

An =
(

α 0
α − g − ηqγ̃n g − ηqγ

)

B =
(

β 0
0 β

)

wf
n =

(
wn

wn

)

Considering (3) and (19), we obtain the following augmented system:

xf
n+1 = Anxf

n + Bwf
n (20)

Define

Xn = E[xf
n(xf

n)T ] =
(

Xuu
n Xue

n

Xeu
n Xee

n

)
(21)

Consider

E[wf
n(wf

n)T ] =
(

1 1
1 1

)
Δ= E0 (22)

A
Δ=

(
α 0

α − g g − ηqγ̄

)
(23)

and γ̃n is independent of wn, un, en, and wn is white.
We obtain by (20), (21) and (22)

Xn+1 = AXnAT + BE0B
T (24)

If the state of (24) is mean square bounded, the steady-state covariance X defined
by

X
Δ= lim

n→+∞Xn (25)

exists and satisfied the following discrete-time modified Lyapunov equation:

X = AXAT + BE0B
T (26)

Theorem 1. If the state in (24) is mean square bounded, |α| < 1, there exist a
unique symmetric positive-semidefinite solution to (26) if and only if the Kalman
filter parameters g, q satisfy

|g − qγ η| < 1 (27)

Proof. : It follows from [4] that, there exist a unique symmetric positive-
semidefinite solution to (26) if and only if

ρ{A ⊗ A} < 1 (28)
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where, ρ is the spectral radius and ⊗ is the Kronecker product. Consider

A ⊗ A =
(

α2 0
(α − g)(α + g − ηqγ) (g − ηqγ)2

)
(29)

Substitute (29) into (28), the (28) is equivalent to

max{α2, (g − qηγ)2} < 1 (30)

Consider |α|, the (30) is equivalent to

|g − qηγ| < 1 (31)

This completes the proof of this theorem.

Theorem 2. The covariance of estimation error of total cost per unit time is
equivalent to variance the estimation error of the state in equation (3), in other
words C̃n = (ηγ)2Xee

n

Proof. We know from (17) that

c̃n = γηen + γ̃ηun =
(
γ̃η γη

)
(

un

en

)
(32)

Define

Ψ
Δ=

(
γ̃
γ

)
(33)

Substitute (33) into (32), we obtain

c̃n =
(
γ̃η γη

)
(

un

en

)
= ηΨT xf

n (34)

Then covariance of estimation error of total cost per unit time follows as

C̃n = ε[c̃n(c̃n)T ] = η2ε(ΨT xf
n(xf

n)T Ψ) (35)

Considering γn, un is uncorrelated and γn is white noise sequences, we obtain
from (35) that

C̃n = η2ε(ΨT xf
n(xf

n)T Ψ)

= η2 (0, γ)
(

Xuu
n Xue

n

Xeu
n Xee

n

) (
0
γ

)

= (ηγ)2Xee
n (36)

The theorem is proofed.

We obtain the corollary from theorem 1 and 2 as follows
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Corollary 1. If |α| < 1 and parameters g, q in the filter (18) satisfy (27),
the steady covariance of estimation error of total cost per unit time exists and
satisfies (26).

Proof. If |α| < 1 and parameters g, q satisfy (27), by theorem 1, there exist a
unique symmetric positive-semi-definite solution to (26). Considering the rela-
tion of C̃n, Xee

n in theorem (2), this completes the proof of this corollary.

As summary, we give our main results as follows

Corollary 2. Let C̃
Δ= lim

n→+∞ C̃n, ε
Δ= g − ηqγ , If the state of (24) is mean

square bounded |α| < 1 and |ε| < 1, then the steady covariance of estimation
error of total cost per unit time

C̃ =
(ηβγ̄)2

(1 − εα)
(37)

Proof. If the state of (24) is mean square bounded, |α| < 1, |ε| < 1, then, it
follows directly from theorem 1 and the Lyapunov equation (26) as follows

Xee =
β2

(1 − εα)
(38)

Consider the equation C̃n = (ηγ)2Xee
n in theorem 2 and C̃

Δ= lim
n→+∞ C̃n, Xee =

lim
n→+∞Xee

n , it follows immediately (37) This completes the proof of this corollary.

5 Numerical Example

In this section, we demonstrate how to design the Kalman filter through an
example.

In a personal communication system the number of rings of location area
d = 4. The velocity, vn of a mobile user is a Gauss-Markov based fluid process
with mean μ = 4.32km/h or μ = 1.2m/s memory level α = 0.8, σ2 is the
variance of vn, σ = 0.2, the cost for performing a location update , δupd = 1, the
cost for polling a cell , δpoll = 2, and the probability for complete observation
is assumed to be 0.7, in other words γ̄ = 0.7. The packet rate is λ = 2. We can
calculate from η = 4δupd√

3πd
that η = 4δupd√

3πd
= 1√

3π
. Substituting η = 1√

3π
and

γ̄ = 0.7 into (31) gives
∣∣
∣g − 0.7√

3π
q
∣∣
∣ < 1.

The purpose of this example is to design the Kalman filter parameters, g
and q, such that the steady covariance of estimation error of total cost per unit
time satisfies C̃ ≤ 0.0007. Let q = 10

√
3π, then g = 7.8, ε = 0.8, and the

estimation error of total cost per second C̃ = (ηβγ̄)2

(1−εα) = 0.00067. The average
total cost κ = 148.127 packets per second. This example shows how to esti-
mate location management cost for PCS with missing measurements. Based on



Location Management Cost Estimation for PCS Using Neural Network 703

Eq. (37) that if the memory level 0 ≤ α < 1 and |g − qηγ| < 1, the steady co-
variance of estimation error of total cost per second C̃ = (ηβγ̄)2

(1−εα) = (ησγ)2(1−α2)
1−(g−ηqγ)α ,

then lim
α→0

C̃ = (ησγ)2, lim
α→1

C̃ = 0, and lim
γ→0

C̃ = 0, lim
γ→1

C̃ = (ηβ)2

(1−εα) .

We can see from this example that the approach proposed possesses both
effectiveness and flexibility.

6 Conclusion

This paper discusses the total cost estimation of mobile location management for
PCS with missing measurements. Mobile nodes are assumed to move at variable
velocity. Considering the fact that the change of a mobile’s velocity within a
short time period is necessarily limited due to physical restrictions, which leads
a mobile node’s future velocity to be correlated with its past and current velocity,
we propose to use a Gauss-Markov mobility model to capture the correlation of
a mobile’s velocities. A Kalman filter of a linear uncertain discrete stochastic
system is designed to estimate the total cost, and the formulas for steady state
covariance of the estimation error of total cost computation are presented. The
design of the proposed Kalman filter is illustrated by a numerical example.

Possible future research directions to location management in PCS include
location management for time delay with measurement missing PCS, location
management for special routing protocols, and location management for QoS of
mobile decision support in PCS.
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Abstract. A neural-based method for source separation in nonlinear
mixture is proposed in this paper. A cost function, which consists of the
mutual information and partial moments of the outputs of the separation
system, is defined to extract the independent signals from their nonlinear
mixtures. A learning algorithm for the parametric RBF network is estab-
lished by using the stochastic gradient descent method. This approach
is characterized by high learning convergence rate of weights, modular
structure, as well as feasible hardware implementation. Successful exper-
imental results are given at the end of this paper.

1 Introduction

Recently, blind source separation in signal processing has received considerable
attention from researchers, due to its numerous promising applications in the
area of communications and speech signal processing, medical signal process-
ing including ECG, MEG and EEG, and monitoring [1,2]. A number of blind
separation algorithms have been proposed based on different separation models.
These algorithms play increasingly important roles in many applications. The
study of blind signal processing techniques is of both theoretical significance and
practical importance.

Generally speaking, Blind source separation is to recover unobservable inde-
pendent sources (or “signals”) from several observed data masked by linear or
nonlinear mixing. Most existing algorithms for linear mixing models stem from
the theory of the independent component analysis (ICA) [3]. Therefore, a solu-
tion to blind source separation problem exists and this solution is unique up to
some trivial indeterminacies (permutation and scaling) according to the basic
ICA theory [3]. Even though the nonlinear mixing model is more realistic and
practical, most existing blind separation algorithms developed so far are valid
for linear models. For nonlinear mixing models, many difficulties occur and both
the linear ICA theory and existing linear demixing algorithms are no longer
applicable because of the complexity of nonlinear characteristics [4].

So far several authors studied the difficult problem of the nonlinear blind
source separation and proposed a few efficient demixing algorithms [4,5,6,7,8,9].
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Deco [5] studied a very particular scenario of volume-conserving nonlinear trans-
forms. Pajunen et al.[6] proposed model-free methods which used Kohonen’s self-
organizing map (SOM) to extract independent sources from nonlinear mixture,
but suffers from the exponential growth of network complexity and interpola-
tion error in recovering continuous sources. Burel [7] proposed a nonlinear blind
source separation algorithm using two-layer perceptrons by the gradient descent
method to minimize the mutual information (measure of dependence). Subse-
quently, Yang et al. [8] developed an information backpropagation (BP) algo-
rithm for Burel’s model by natural gradient method. In their model cross nonlin-
earities is included. Taleb et al. [9] proposed an entropy-based direct algorithm
for blind source separation in post nonlinear mixtures. Recently, authors[12,13]
proposed several algorithms and approaches for separation of nonlinear mixture
of sources.

The purpose of this paper is to investigate a radial-basis function (RBF)
neural network model for blind-style demixing of nonlinear mixtures in the pres-
ence of cross nonlinearities. Since the instinct unsupervised learning of the RBF
network and blind signal processing are in essence unsupervised learning proce-
dures, therefore the study of the RBF-based separation system seems natural
and reasonable.

2 Nonlinear Mixture Model

A generic nonlinear mixture model for blind source separation can be described
as x(t) = f [s(t)], where x(t) = [x1(t), x2(t), ..., xn(t)]T is the vector of observed
random variables, superscript T denotes the transposition, s(t) = [s1(t), s2(t), ...,
sn(t)]T is the vector of the latent variables called the independent source vector,
f is an unknown multiple-input and multiple-output (MIMO) mapping from Rn

to Rn called nonlinear mixing transform (NMT). If the mixing function f is
linear, this model reduces to the linear mixing. In order for the mapping to be
invertible we assume that the nonlinear mapping f is monotone. The left part of
Fig. 1 shows the general model of blind source separation system which contains
both channel and cross-channel nonlinearities.

s

f(s)

NMT

Unknown Mixing System Separating System

yx

NST

g(x,  )θ

Fig. 1. Nonlinear mixing and separating systems for blind signal separation

The separating system g(·, θ) in the right part of Fig. 1, also called nonlinear
separation transform (NST), is used to recover the original signals from the
nonlinear mixture x(t) without the knowledge of the source signals s(t) and
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the mixing nonlinear function f(·). Obviously, this problem is untractable, in
particular for nonlinear mixing system, unless conditions are imposed on the
nonlinear function f(·). At first, the existence of the solution for the NST can
be guaranteed. According to related nonlinear ICA theories, the nonlinear ICA
problem always has at least one solution. That is, given a random vector x,
there is always a function g so that the components of y = [y1, · · · , yn]T given
by y = g(x) are independent[6,4].

Unfortunately, this kind of mapping is not at all unique. It is shown in [4] that
a unique solution subjected to a rotation can be obtained under the assumptions
that the problem is a two-dimensional one, mixing function is a conformal map-
ping, and the densities of the independent components are known and have
bounded support. In order to obtain a unique solution of the model in Fig. 1, we
assume that f(·) is invertible and its inverse f−1(·) exists and can be uniquely
approximated by a parametric RBF network shown in Fig. 2 of the following
section. In addition, we add some constraints on the output; i.e., the moment
matching between the outputs of the separating system and sources. According
to Fig. 1, the output of the nonlinear separating system can be written as

y(t) = g(x(t), θ) = g(f(s(t)), θ) = s(t) (1)

where g(·, θ) = f−1(·) denotes a parametric fitting function class, θ is a para-
meter vector to be determined.

Generally speaking, g(·, θ) can be altered by varying θ. If we find such θ =
θ̂ that g(·, θ̂) is a good approximation of the inverse of the nonlinear mixing
function f−1(·), then a good separation of nonlinear mixture is achieved.

3 Nonlinear Separation Based on an RBF Network

3.1 The RBF Neural Network

Fig. 2 shows an n-input and n-ouput RBF network model. It consists of three
layers; i.e., input layer, hidden layer and output layer. The neurons in hidden
layer are of local response to its input and called RBF neurons while the neurons
of the output layer only sum their inputs and are called linear neurons. The RBF
network of Fig. 2 is often used to approximate an unknown continuous function
φ : Rn → Rn which can be described by the affine mapping

u(x) = BK(x,p) (2)

K(x,p) = [1, exp(−(x−μ1)
T (x−μ1)/σ2

1), · · · , exp(−(x−μM )T (x−μM )/σ2
M )]T .

(3)

where B = [αij ] is a n×M weight matrix of the output layer, K(x,p) is Gaussian
kernel function vector of the RBF network, which consists of the locally receptive
functions. p = (μ1, σ1, · · · , μM , σM )T is the parameter set of the kernel function.
Here we let the first component of K(x,p) be 1 for taking the bias into account.
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Fig. 2. The radial basis function networks with n output units

3.2 Nonlinear Separation System Based on RBF Network

Since the local response power of RBF networks offers great classification and
approximation capabilities, the Gaussian RBF network is used as a good func-
tion approximator in many modelling applications. If we let S be a compact
subset in Rn and p(x) be a continuous target vector on S, then for any ε > 0
there exist M centroids μi = [μi1, · · · , μin]T and an n × M constant matrix B
such that r(x, θ) = B · K(x,p) satisfies |r(x, θ) − p(x)| < ε for all x ∈ S. This
approximation ability of RBF networks directly stems from the classic Stone-
Weierstrass theorem and is closely related to Parzen’s approximation theory.
Therefore, the inverse of the nonlinear mixing model can be modeled by us-
ing an RBF network. Such architecture is preferred over multilayer perceptrons
(MLP) as an RBF network has better capability for functional representation.
Since its response is linearly related to its weights, learning in an RBF network
is expected to train faster while its local response power offers a good approxi-
mation capability. As a result, we can reach

y = B̂K[f(s), p̂] ∝ s (4)

where g(·, θ̂) = B̂K[., p̂], B̂ and p̂ are the final estimates of parameters B and p
of the RBF network such that the inverse of f is well approximated by the RBF
network.

3.3 Cost Function

In order to deal with the nonlinear separation problem effectively, we define a
cost function, or contrast function, which is the objective function for signal
separation, as

C(θ) = I(y) +
∑

i1···in

ci1···in [Mi1···in(y, θ) − Mi1···in(s)]2 (5)

where I(y) is mutual information of the outputs of the separation system,
Mi1···in(y, θ) and Mi1···in(s) are the i1 · · · in-th moments of y and s, respec-
tively, ci1···in are constants which are used to balance the mutual information
and the matching of moments.
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According to information theory and related the Kullback-Leibler divergence,
mutual information I(y) in Eq. (5) is expressed as

I(y) =
n∑

i=1

H(yi) − H(y) (6)

where H(y) = −E[log(py(y)] is the joint entropy of random vector y, H(yi) =
−E[log(pyi(yi)] is the entropy of random variable yi, the ith component of y,
and E(·) denotes the expectation operator.

The i1 · · · inth moment of y is defined as

Mi1···in(y) = E(yi1
1 · · · yin

n ) − E(yi1
1 ) · · · E(yin

n ). (7)

It can be seen from Eqs. (5)- (7) that the constrast function defined in Eq. (5)
is always non-negative, and reaches zero if and only if both mutual information is
null and a perfect matching of moments between the outputs of the separation
system and original sources is achieved. Therefore, independent outputs with
the same moments as that of original sources can be found by minimizing the
contrast function by adjusting the parameters of the RBFN separating system,
i.e.,

θ̂ = arg min
θ

{I(y) +
∑

i1···in

ci1···in [Mi1···in(y, θ) − Mi1···in(s)]2}. (8)

3.4 Learning Algorithm of the Separating RBF Network

In order to derive the unsupervised learning algorithm of all the parameters of
the separating RBF network, we employ the gradient descent method. First of
all, we compute the gradient of the contrast function of Eq. (5) with respect to
the parameter θ and obtain

∂C(θ)
∂θ

=
∂I(y)
∂θ

+
∑

i1···in

2ci1···in [Mi1···in(y, θ) − Mi1···in(s)]
∂Mi1···in(y, θ)

∂y
∂y
∂θ

(9)
where mutual information can be further rewritten as

I(y) =
n∑

i=1

H(yi) − E{log |∂g(x, θ)
∂x

|} − H(x) (10)

where |∂g(x, θ)/∂x| is the determinant of the Jacobian matrix of g(x, θ) with
respect to vector x.

In Eq. (10), the computation of H(yi) needs to use the pdf of yi which is
unknown. By applying the Gram-Charlier expansion suggested by Amari et al.
[10] to express each marginal pdf of y, the marginal entropy can be approximated
as

H(yi) ≈ 1
2

log(2πe) − (ki
3)

2

2 × 3!
− (ki

4)
2

2 × 4!
+

3
8
(ki

3)
2ki

4 +
1
16

(ki
4)

3 (11)
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where ki
3 = mi

3, ki
4 = mi

4 − 3 and mi
k = E[(yi)k], j = 1, · · · , n.

Since H(x) does not contain any parameters of the separating RBF network,
it becomes null when taking gradient with respect to the parameters.

Regarding different concrete parameters B, μ and σ of the parameter set θ
of the RBF network, we have the following gradient equations of the separated
signal y

∂y
∂B

= K(x, t), (12)

∂y
∂μ

= B · diag[v1 ◦ K(x, t)], (13)

∂y
∂σ

= B · diag[v2 ◦ K(x, t)]. (14)

where v1 = [2(x−μ1)/σ2
1 , · · · , 2(x−μM )/σ2

M ]T , v2 = [2‖x−μ1‖2/σ3
1 , · · · , 2‖x−

μM‖2/σ3
M ]T , function diag[·] denotes diagonal matrix, symbol ◦ denotes Hada-

mard product which is the multiplication of corresponding pairs of elements
between two vectors.

Finally, from Eqs. (9), (12)- (14), we can easily calculate the gradients of the
constrast function with respect to each parameter of parameter set θ, then give
the following learning updating formula:

δB = −η
∂C(θ)

∂B
, δμ = −η

∂C(θ)
∂μ

, δσ = −η
∂C(θ)

∂σ
(15)

where μ = [μ1, · · · , μM ]T and σ = [σ1, · · · , σM ]T ; η denotes the positive learn-
ing rate; δB, δμ and δσ indicate the adjustments of B, μ and σ, respectively.

3.5 Performance Index and Algorithm Description

From Eq. (10), by omitting the unknown H(x), an index to measure the inde-
pendence of the outputs of the separation system is defined as

Ji =
n∑

i=1

H(yi) − E{log |∂g(x, θ)
∂x

|} (16)

Even though the index Ji may be negative, the lower the value of Ji is, the
more independent the outputs of the separating system is. The smallest negative
value of Ji is just equal to the reciprocal of H(x). In a similar manner, according
to Eq. (10), a performance index measuring moment match up to the k-th order
between the outputs of the separation system and original sources can also be
directly defined as

Jk
m =

∑

i1···in≤k

[Mi1···in(y, θ) − Mi1···in(s)]2 (17)
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The maximum value of k is chosen such that the inverse of the mixing non-
linear transform can be uniquely approximated by an RBF network through the
minimization of the cost function. In actual implementation, usually only up
to forth-order moment is enough for this purpose by experiments. We expect
both Ji and Jk

m are at their minimia simultaneously, so the two indices can be
combined into one overall index as follows

J = Ji + αJk
m (18)

where α is a proportionality constant weighting the two quantities.
In addition, a stopping criterion to terminate the iterative process is defined

as a relative change amount of the overall index er is less than a predetermined
small positive constant ε. What follows summarizes the steps of the learning
algorithm.

1: Given initialization parameters B, μ, σ, for our RBF network, choose a
small learning rate η and index balance number α as well as the order number
k of the moment to be matched.

2: Adjust parameters, B, μ, σ, of the RBF network by using Eqs (12)-(15).
3: Compute the performance indices Ji, J

k
m, J according to Eqs. (16) to (18)

by making use of current model parameters.
4: Verify the termination criterion (er < ε) and exit, otherwise go to step 2.
Note that in the approach we initialize the RBF network randomly even

though a good initialization greatly benefits a gradient descent learning
algorithm.

4 Simulation Results

Consider a two-channel nonlinear mixture with a cubic nonlinearity:
(

x1
x2

)
= A2

[
(·)3
(·)3

]
A1

(
s1
s2

)
(19)

where mixing matrices A1 and A2 are nonsingular and given as

A1 =
(

0.25 0.86
−0.86 0.25

)
, A2 =

(
0.5 0.9

−0.9 0.5

)

Obviously, the inverse of the mixing model exists and can be expressed as
(

y1
y2

)
= A−1

1

[
sgn(·)(·)1/3

sgn(·)(·)1/3

]
A−1

2

(
x1
x2

)

where sgn function is to take the sign of the argument.
The source vector s(t) consists of a sinusoidal signal and an amplitude-

modulated signal; i.e., s(t) = [0.5 ∗ [1 + sin(6πt)] cos(100πt), sin(20πt)]T .
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An RBF network shown in Fig. 2 is used to separate this nonlinear mixture.
In this experiment we choose six hidden neurons with Gaussian kernel function.
The moment matching is taken up to third-order. An example of the evolution
curves for the learning algorithm is shown in Fig. 3. The learning curve is smooth
and it converges after 500 iterations.

The value of the performance index after convergence of the learning algorithm
is very small so that the separated signals obtained by our model are seen to be
mutually independent.
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Fig. 3. Learning curve of the proposed algorithm
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Fig. 4. Two source signals (above) and their nonlinear mixtures (below)

Fig 4 shows the two source signals s(t) and the input signals x(t) of the
separating system of Fig 1, i.e., the mixture of the sources. Fig 5 show the
signals separated by the proposed approach. For convenient comparison, we also
have plotted the separating results of the linear demixing algorithm proposed
in reference [11] for this case into Fig 6 It can be seen that the linear demixing
algorithm fails to separate the nonlinear mixture but our proposed model and
algorithms can give a clear separation of this nonlinear mixture. We also used
the other specific nonlinear algorithms such as the SOM algorithm [6], but no
useful results have been obtained.



Neural-Based Separating Method for Nonlinear Mixtures 713

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 5. Separated signals of our proposed method
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Fig. 6. Separated signals of adaptive algorithm for linear mixture case

5 Concluding Remarks

A neural-based separating approach is established to separate nonlinearly mixed
sources in terms of a novel cost function which consists of mutual information
and cumulants’ matching. because of the local response of RBF networks, this
proposed method is characterized by fast learning convergence rate of weights,
natural unsupervised learning characteristics, modular network structure as well
as suitable hardware implementation. All of these properties make it be an ef-
fective candidate for real-time multi-channel separation of nonlinear mixtures of
sources. Extensive simulation results verified the validation of our methods.
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Abstract. An adaptive natural gradient algorithm for blind source separation 
based on convolutional mixture model is proposed. The proposed method 
makes use of cost function as optimum criterion in separation process. The up-
date formula of separation matrix is deduced. The learning steps for blind 
source separation algorithm are given, and high capability of the proposed algo-
rithm has been demonstrated. The simulations results have shown the validity, 
practicability and the better performance of the proposed method. This tech-
nique is suitable for many applications in real life systems. 

1   Introduction 

Blind signal separation (BSS) is the problem of recovering mutually independent 
unobserved signals (sources) from multiple observed data masked by linear or nonlin-
ear mixing. Since the late 1980s, blind source separation in signal processing has 
attracted significant coverage from researchers, due to its wide number of applications 
in diverse fields, such as communications and speech signal processing [1][2], medical 
signal processing including ECG, MEG, and EEG [3], and machine fault diagnosis [4]. 
After Herault [5] and Weinstein [6], various methods for blind separation have been 
proposed.  

BSS consists of recovering signals from different physical sources from several 
observed combinations independently of the propagation medium. BSS is also a 
promising tool for nondestructive control systems condition monitoring by signals 
analysis, as it is intended to retrieve the signature of a single device from combina-
tions of several working status. In this way, BSS can be seen as a pre-processing step 
that improves the diagnosis. 

The paper is organized as follows. In section 2, we describe the blind source sepa-
ration problem. Section 3 describes the optimization criterion of objective function in 
BSS process and in section 4 the learning algorithm for achieving blind source separa-
tion are derived. The advantages in terms of performance of proposed method are 
shown by simulation results in section 5.  



716 J. Feng et al. 

 

2   Problem Definition 

BSS consists in recovering signals of different physical sources from the observation 
of several combinations of them. Typically, the observations are obtained as the out-
put of a set of sensors, where each sensor receives a different combination of source 
signals. The adjective "blind" indicates that the source signals are not observed and 
also that no information is available about the combinations and the noises. This ap-
proach is usually used when it is too difficult to model the transfer from the sources to 
the sensors. The lack of knowledge about the combinations and the sources is com-
pensated by the hypothesis of mutually independent sources. Nevertheless, signals of 
different physical sources generally satisfy this condition. This assumption allows 
exploitation of the spatial diversity provided by many sensors and is the fundamental 
basis of BSS. 

BSS can be very computationally demanding if the number of source signals is 
large (say, of order 100 or more). In particular, this is the case in biomedical signal 
processing applications such as electroencephalographic/magnetoencephalographic 
data processing, where the number of sensors can be larger than 100 and where it is 
desired to extract only some “interesting” sources. Fortunately, blind signal extraction 
method overcomes somewhat this difficulty. The general model of BSS with noise 
free model is shown in Fig. 1. 
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1
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Separating 
Matrix W

 

Fig. 1. BSS general scheme with noise free model 

Suppose that the statistically independent source signals ( )is t , 1, ,i n= , 

1,t = , are picked up by m sensors ( m n≥ ) through an unknown propagation me-

dium (mixing matrix A) at the discrete time t. The coefficients ija  in mixing matrix A 

( m n× ) are time-independent if the propagation delay through the medium is very 
short (in relation to the sampling period). But in some real life systems, the propaga-
tion medium is accounted for transmission with severe filtering and delays. Thus the 
model used for this application is a linear time dependent mixture, called a convolu-
tional mixture. Each ija represents the linear transfer function from the ith to the jth 

sensor and is given by 
1

0

( ) ( )
P

k
ij ij

k

a z a k z
−

−

=

= ⋅∑ , where P is the length of mixing filter, 

1z−  is the backward-shift operator. The observation vector [ ]1( ) ( ), , ( )nt x t x t=X  is 

therefore a mixture of the n sources: 

 
1

( ) ( ) ( )
n

i ij j
j

x t a z s t
=

=∑ . (1) 
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Using z transform, this equation can be expressed in vector notation as follows 

 ( ) ( ) ( )t t t=X A S , (2) 

where [ ]1( ) ( ), , ( )
T

mt x t x t=X , [ ]1( ) ( ), , ( )
T

nt s t s t=S , and [ ( )]ija z=A . 

Sometimes, mixture ( )tX  is also considered as linear combination of  ( )tX and 

additive noise, but noise is also supposed to be independent of the sources. Both the 
sources and the noises are required to be stationary and have a zero mean. 

So, the aim of BSS is to estimate a stable inverse system of A, a separating filter 
matrix W ( n m× ) to make the output signals statistically independent. Each ( )ijw t  is 

given by 
1

0

( ) ( )
L

l
ij ij

l

w z w l z
−

−

=

= ⋅∑ , where L is the length of separating filter, 1z− is the 

backward-shift operator. The output ˆ ( )tS  of the separating filter matrix W is also an 

optimal estimate of source ( )tS , such as 

 ˆ ( ) ( ) ( )t t t=S W X , (3) 

where  

 ( ) ( )
L

l

l

z l z−=∑W W
-1

=0

. (4) 

3   Optimization Criterion 

Usually, a kind of cost function is chose as objective function in BSS process. When 
cost function obtains its maximum or minimum, we consider that separation process is 
done. The selection of cost function lies on certain BSS problem. The following rules 
are necessary for choice: (1) cost function should include as much characteristic infor-
mation of source signals as possible. (2) There exists extremum in the cost function, 
and signals are linear irrelevant or mutual independent. (3) The computational con-
sumption is as lower as possible. Because autocorrelation property of non-stationery 
signals is time-dependent, ideal cost function should include correlation information as 
much as possible at any time. But its computational consumption is too expensive to 
fulfill on-line. In this paper, we choose the cost function as in [7], such as 

 2

0 0

ˆ ˆ( ) ( ) || { ( ) ( )} ( ) ||
d d

T
q q F

q q

t t E t t q t
= =

= = − −∑ ∑J J S S D , (5) 

where {}E ⋅ denotes mathematical expectation,  q is delay time coefficient at time t, d 

is total number of all delay, ( )q tD is a diagonal matrix in relation to q, || ||F⋅  denotes 

Frobenius norm of matrix. Frobenius norm of matrix A is defined as  

 2|| || | |
m n

F ij
i j

a= ∑∑A . (6) 

The cost function (5) is a covariance matrix of output signals ˆ ( )tS . When the  

Frobenius norm of its non-diagonal components takes the minimum or equals to zero, 
blind signal separation can be achieved.  
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Wu obtained adaptive separation algorithm based on linear instantaneous mixture 
model using conventional gradient descent method. According to the same idea, in 
convolutional mixture model, adaptive iterative equation of the separating filter ma-
trix W can be obtained as follows: 

 
1 1

, ,
0

( ) ( ) ( )

ˆ ˆ{[ ( ) ( )] ( ) [ { ( ) ( )} ( )]},

i i i

i

T T T

d
T T T

l q l q q
q

l l l

t t z E t t q tη

+ +

=

Δ = −

= − + − −∑

W W W

C C W S S Di
 (7) 

where , ( ) { ( ) ( )}T
l q t E t l t q= − −C X X , η  is learning rate parameter(stepsize) to de-

termine the learning speed. 

4   Adaptive Separating Algorithm 

Conventional gradient descent algorithm allows a fast convergence without introduc-
ing an additional algorithmic delay. But it always receives local optimum solution and 
the computational complexity is increased. In non-orthogonal space, Conventional 
gradient descent algorithm can not receive optimum performance. 

Amari [8] proposed a kind of natural gradient algorithm with low computational 
consumption and proved its asymptotical stability. We can deduce the cost function 
(5)according to natural gradient principle. Such will be stated next. 

At time t, the separating filter matrix W satisfies 

 ˆ ˆ( ) ( ) ( ), ( ) ( ) ( )t t t t q t t q= − = −S W X S W X . (8) 

Let M  be 

 ˆ ˆ{ ( ) ( )} ( )T
qE t t q t= − −M S S D , (9) 

the cost function (5) can be rewrited as follows 

 
0

( ) ( )
d

T

q

t tr
=

=∑J M M , (10) 

where operator ( )tr ⋅  denotes matrix trace, the sum of the elements of the principal 

diagonal of a matrix. 
Calculating the derivative in equation (10), 

 
0

( )
2

d

q

d t

d =

= ∑J
M

M
. (11) 

At time t, an adaptive iterative formula can be obtained as follows 

 
0

ˆ ˆ( 1) ( ) 2 [ ( ) ( ) ( )]
d

T
t q

q

t t t t t qη
=

Δ = + − = − −∑M M M Λ S S , (12) 

where ˆ ˆ( ) ( ( ) ( ))T
q t diag t t q= −Λ S S , tη  is stepsize factor at time t. We can get follow-

ing equation from (9): 
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, ,

1
, ,( ( ) ( )) ( ) ( )( ( ) ( ))

( ) l q l q

T T T
l q l qT

d
t t z z t t

d l
−= + = +M

C C W W P P
W

, (13) 

where ,
ˆ ˆ( ) { ( ) ( )}T

l q t E t l t q= − −P S S . 

If we substitute instantaneous value for expectation, the relation between M  and 
( )lW  can be expressed in form of differential equation: 

 1
, ,

ˆ ˆ( )[ ( ) ( )] ( )T T
l q l qz t t l−Δ = + ΔM W S S W , (14) 

where ,
ˆ ˆ ˆ( ) ( ) ( )T

l q t t l t q= − −S S S . 

Combining (12) and (14), we can obtain 

 1
1 , ,

0

ˆ ˆ ˆ( ) 2 {[ ( ) ( )] ( )( )[ ( ) ( )]}
d

T T
i t l q l q i q q

q

l t t z l t tη −
+

=

Δ = + −∑W S S W Λ S  (15) 

Because of decreased correlation in iterative process, correlation matrix inclines 

diagonal. Substituting ,
ˆ( ) ( ( ))q l qt diag t=Λ S  for ,

ˆ ( )l q tS , we can obtained adaptive 

iterative formula of separation update matrix 1( )T
i l+ΔW  as follows: 

 1
1 ,

0

ˆ( ) { ( ) ( )[ ( ) ( )]}
d

T
i t l q i q q

q

l t z t tη −
+

=

Δ = −∑W Λ W Λ S  (16) 

Similarly, the learning steps for BSS can be given as follows: 

1) Choose the length of separation filter L and delay coefficient q, initialize 
separation matrix. 

2) Compute output ˆ ( )tS  according to (3). 

3) Compute update matrix 1( )T
i l+ΔW  according to (16). 

4) Construct separation matrix (4). 
5) Compute the cost function ( )tJ  according to (5) by making use of current 

separation matrix parameter. 
6) Verify that  ( )tJ  is smaller than the selected threshold and exit, otherwise go 

to step 2). 

5   Simulation Results 

The model and algorithms proposed in this paper have been implemented by Matlab 
toolbox. A number of simulations have been performed to fully evaluate the validity 
and performance of the algorithms for stationary source signals with complex convo-
lutional mixture. 

As an exemplary simulation, we consider random mixtures of 5 normalized sources 
with zero mean and unit variance. We performed 100 times simulations and used the 
histogram to distinguish the desired sources among those estimated. In each simula-
tion, we ran the extraction algorithm one or several times until all the sources signals 
were extracted. The obtained results were that, in 18% of the experiments in which 
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we extracted all the desired sources with just the first run of the algorithm, this quan-
tity increases to 87% of the experiments if a second run is allowed and to 96% after 
the third run. Thus, we can prove the proposed algorithm has a high capability. Better 
results have been also obtained for instantaneous mixture model. 

6   Conclusion 

In this paper, we adopt an adaptive natural gradient algorithm to solve blind delayed 
source separation problem. We choose cost function as criterion. We also deduced the 
update formula of separation matrix. This technique is suitable for convolutional 
mixture model in some real life systems. Simulations demonstrate the effectiveness of 
the proposed approach. 
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Abstract. Extracting independent source signals from their nonlinear mixtures 
is a very important issue in many realistic models. This paper proposes a new 
method for solving nonlinear blind source separation (NBSS) problems by ex-
ploiting particle swarm optimization (PSO) algorithm and natural gradient de-
scent. First, we address the problem of separation of mutually independent 
sources in post-nonlinear mixtures. The natural gradient descent is used to esti-
mate the separation matrix. Then we define the mutual information between 
output signals as the fitness function of PSO. The mutual information is used to 
measure the statistical dependence of the outputs of the demixing system. PSO 
can rapidly obtain the globally optimal coefficients of the higher order polyno-
mial functions. Compared to conventional NBSS approaches, the main charac-
teristics of this method are its simplicity, the rapid convergence and high  
accuracy. In particular, it is robust against local minima in search for inverse  
functions. Experiments are discussed to demonstrate these results. 

1   Introduction 

Nowadays BSS has been wildly studied because it has potential applicability in many 
areas such as medical data processing, speech recognition and radar signal communi-
cation [1], [2]. In the blind source separation, the source signals and the parameter of 
transfer channel are unknown, by using only observed signals, the unknown source 
signals can he separated and estimated. 

So far the theory of BSS has been successfully approached in linear instantaneous 
mixing model. Various algorithms have been proposed, for example, Independent 
Component Analysis (ICA), Principle Component Analysis (PCA), high-order statis-
tical cumulants and others [3], [4], [5]. 

Nonlinear blind source separation (NBSS) is a much more recent research topic 
since the mixing models in actual cases are usually nonlinear [6], [7]. Nevertheless, 
few methods mention both the accuracy and convergence velocity in the NBSS. Yang 
and Amari [7] proposed an information back propagation algorithm (BP) for training 
network parameters by a two-layer perceptron. One drawback of this method is slow 
convergence rate yield from the highly nonlinear relationship between the output and 
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learning weights of the network. An approach using RBF network proposed by Tan 
and Wang [8] can recover source signals and the convergence rate is very fast. How-
ever, this method degrades greatly when high-level noise is present with nonlinear 
distortion. In [9], Bayesian ensemble learning algorithm is proposed for a post-
nonlinear mixture. Genetic algorithms are introduced in [10], [11], which minimize 
nonlinear mixing degree of signals using GA to achieve blind signal separation. How-
ever, in the post-nonlinear (PNL) mixtures, the optimized functions which are the 
invertible functions of nonlinear mixture functions usually have high dimensions and 
many local minima, so that it is difficult to achieve global optimization. 

This paper mainly researches on a blind source separation method of nonlinear 
mixed signals, which is based on particle swarm optimization (PSO) algorithm and 
natural gradient descent. The natural gradient descent method is applied to estimate 
the separation matrix. PSO which enhances the global search velocity and search 
ability is used to obtain the globally optimal higher-order polynomial coefficients.  

2   Nonlinear Blind Source Separation 

The nonlinear mixing model is described by PNL mixtures. )]([)( tAsftx = , where 
T

n txtxtxtx )](,),(),([)( 21= is an n dimension mixed signal vector, T
n tstststs )](),(),([)( 21= is an n 

dimension unknown source signal vector, A  is an nn×  unknown full-rank matrix, and 
T

nffff ],,,[ 21= is the set of unknown invertible nonlinear mixture functions. It is 

supposed that the source signals )(,),(),( 21 tststs n are non-Gaussian and mutually 

statistically independent. Generally speaking, their means are zero, and their variances 
equal unity. Mixed signals are described as: 
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Fig. 1. Nonlinear mixing and demixing process 

Fig.1. shows that the separation model is a demixing process. First we need to ap-
proximate the inverse function 1−

if  of each transfer channel, transform the nonlinear 

mixing model into a linear model, and then apply the natural gradient descent method 
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to estimate the separation matrix W , finally achieve the estimations iy  of source 

signals. 

∑
=

=
n

j
jjiji txgwty

1

))(()(                                                  (2) 

The inverse function 1−
if  may be approximated by higher-order odd function poly-

nomials
jg : 

∑
=

−=
p

k

k
jjkjj xgxg

1

12)(                                                    (3) 

where 
jkg  is a parameter to be determined by PSO. 

The detailed steps of NBSS are expressed as follows. Firstly we use a natural gra-
dient rule to compute separation matrix W  [12]: 

WyyIWW
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yyI
W TTn ])([

),,( 1 ϕη −=
∂

∂−=Δ                                (4) 

where I is a unit matrix, η denotes study ratio, T
nyyy ],,[ 1= is an n dimension output 

signal vector. )](,),([)( 11 nn yyy ϕϕϕ =  denotes the activation function [6]. Its each ele-

ment )( ii yϕ is described as [6]:  
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where 3)(),( 4
4

3
3 −== i

i
i

i yEkyEk . 

Then the mutual information is applied to define fitness function and the mutual in-

formation between iy  is described: 

∑
=
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n

i
inn yHyyHyyI

1
11 )(),,(),,(                                      (6) 

Values near to zero of mutual information between iy imply independence between 

output signals being statistically independent [6], [10], [11]. According to differential 
entropy relation, namely 

∑
=
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1 |])(|[log|)det(|log),,(                         (7) 

where {.}E denotes the expression operator. 

Using some algebra, and suppose that 11 =jg  (this only scales the polynomial), we 

can get 
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Then substituting (7), (8) into (6), we can get the mutual information between iy : 
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In (9), each marginal entropy )( iyH is calculated by the Gram-Charlier expansion, 

namely 
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i
i

i yEkyEk . 

Finally the fitness function that we compute in particle swarm optimization  

algorithm will be mutual information between output signals iy : 

)()(_ yIyfunctionfitness =                                          (11) 

3   Particle Swarm Optimization Algorithm 

Particle swarm optimization (PSO) is an evolutionary computation technique, intro-
duced by Kennedy and Eberhart [13], which developed out of work simulating the 
movement of flocks of birds. In past several years, PSO has been successfully applied 
in many research and application areas [14].  

Each particle is treated as a volumeless particle in n-dimensional search space. The 
position and the velocity of the i th particle in the n-dimensional search space is repre-
sented as ),,,( 21 iniii xxxx = and ),,,( 21 iniii vvvv = respectively. The best position 

(pbest) of the i th particle is recorded and represented as ),,,( 21 iniii pppp = . The 

global best particle (gbest) is denoted by ),,,( 21 gnggg pppp = , which represents the 

best particle found so far at time t in the entire swarm. The modified velocity and 
position of each particle can be calculated using the current velocity and the distance 

from ijp to gjp as follows:  

))()(())()(()()1( 2211 txtprctxtprctvwtv ijgjijijijij −+−+⋅=+                  (12) 

)1()()1( ++=+ tvtxtx ijijij
          ),,2,1,,,2,1( njli ==                  (13) 

where l is number of particles in a group. m is number of members in a particle. t is 

pointer of iterations (generations). 1c and 2c are constants respectively called social 

and cognitive coefficients distributed in the range of [0, 2]. w  is called the inertia 

weight. 1r  and 2r  are two independent random numbers uniformly distributed in the 

range of [0, 1]. 
In (12), the inertial weight w provides the necessary diversity to the swarm by 

changing the momentum of particles and hence avoids the stagnation of particles at 

local optima. The setting for the value of w is 
max

minmax
max t

ww
tww

−⋅−= . Where maxt  is 

the maximum iteration number.  
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The detailed procedure of PSO is described as follows: 

Step 1 Initialize a population of particles with random positions and velocities. 
Step 2 Evaluate the fitness value of each particle. 
Step 3 For each particle, compare its current fitness value with the fitness value of 

its previous best position (pbest). If current fitness value is better, then update 
pbest and its fitness value with the current position and fitness value.  

Step 4 Determine the global best particle of current swarm with the best fitness 
value. If the fitness value is better than the fitness value of global best posi-
tion (gbest), then update gbest and its fitness value with the position and  
fitness value of the current best particle. 

Step 5 Update the velocity and position of each particle according to (12) and (13). 
Step 6 If a predefined stopping criterion is met, then output gbest and its fitness 

value, otherwise go back to Step 2. 

Hence the global optimum solution (minimum) of the swarm is obtained, so are the 
polynomial coefficients. 

4   Simulation Results 

In this section we discuss simulation and experiment results of the proposed algo-
rithm. To verify the validity and performance of the proposed algorithm, several com-
puter simulations are conducted to test the PSO-based method to blind separation of 
independent sources from their post-nonlinear mixtures. 

4.1   Example 1 

Consider the mixture of two independent random source signals: a sinusoidal sig-
nal )2sin( tπ  and a random noise signal rand [(1 N)] uniformly distributed in interval  
[-1, 1]. There are 200 samples from each signal (N=200). The mixture matrix is cho-

sen randomly as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

9562.02582.0

5177.07373.0
A . The nonlinear transfer functions are chosen 

randomly as )tanh()(1 xxf = , )8.0tanh()(2 xxf = . 

Fig.2 and 3 show source signals and their mixtures. The separated signals which 
are the estimations of source signals are obtained by a demixing model. Our goal is to  
 

 

Fig. 2. Source signals 
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Fig. 3. Mixed signals 

obtain the separation matrix W  and the higher-odder odd function polynomial 
jg  

which is the approximation of 1−
if . Then we transform the nonlinear mixing model 

into a linear model to extract independent source signals. The detailed process is de-
scribed as follows: 

First, according to natural gradient descent method in (4), (5), we obtain separation 
matrix W : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
21158.0074525.0

14159.026142.0
W  

The iteration curves of separation matrix coefficients are shown in Fig.4. Then we 
define the mutual information between output signals as the fitness function of PSO. 
The mutual information is used to measure the statistical dependence of the outputs of 
the demixing system. Values near to zero of mutual information imply independence 
between output signals being statistically independent. So we utilize (9), (10), and 
(11) to calculate the minimum of the fitness function of PSO. The inverse function 

1−
if may be approximated by higher-order odd function polynomial

jg whose optimal 

parameters
jkg  are obtained by PSO. 

jkg  denote the coordinate of the global best parti-

cle of current swarm with the best fitness value (minimum).  

 

Fig. 4. Separation matrix coefficients using natural gradient descent method 

The parameters of PSO are summarized as follows: The population size of  
the swarm is 20. The number of iterations is 40. The order of odd function polynomial 
is defined as 5, namely k=1, 2, 3. Using some algebra, we suppose that 11 =jg  (this 

only predigests the polynomial). So the dimension of search space is selected as 4. 

Constants 221 ==cc . 1r  and 2r are two independent random numbers uniformly  
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distributed in the range of [0, 1]. The inertia weight w is reduced linearly from 0.9 to 
0.4 during the search. At last, we obtain the optimal parameters

jkg  by PSO, which are 

shown in Table 1. 

Table 1. The polynomial parameters obtained by PSO-based method 

jkg  x1 x3 x5 

g1(x) 1 0.78418 -0.54287 
g2(x) 1 0.74199 -0.016257 

Fig.5 shows the separated signals obtained with the proposed method (PSO-based). 
Many simulations have been conducted to produce such results, so Fig.5 reports the 
performance for one of many runs. It is shown from the Fig.5 that PSO-based method 
achieves the successful separation of the two source signals from their nonlinear mix-
tures. However, theoretical results already prove that it is not possible to separate the 
sources without nonlinear distortion in the general case [6]. Therefore, in order to 
evaluate and compare the performance of BSS, the source to distortion ratio (SDR) is 
used to verify the similarity between the source signals is and separated signals iy with 

N samples. Now, we defined SDR as 
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where the bigger )(tSDRi
is, the better the effect of separated signals is. Each source 

to distortion ratio (SDR) is calculated according to (14). dBSDR 245.14
1

= , 

dBSDR 567.142 = . 

 

Fig. 5. Separated signals by PSO-based method 

Apart from the PSO-based method, we also give experimental results of GA-based 
method for comparison. In the GA-based method, the odd function polynomial coeffi-
cient

jkg  is obtained by GA. The parameters of GA are summarized as follows: The 

encoding is generated as 20-bit binary string. The population size is 20=N . The  
number of generations is 40=sGeneration . We use roulette selection and single point 
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crossover. The crossover rate 8.0=cP  and mutation rate 04.0=mP . These values were 

selected because of their better performance when compared with other combinations 
that were evaluated as well. In order to compare the performances of the two meth-
ods, we track the evolution curve of GA and the search process of PSO in Fig.6. In 
Fig.7 we show the separated signals obtained by the GA-based method. 

 

Fig. 6. Comparison of the evolution and search process of the two methods 

 

Fig. 7. Separated signals by GA-based method 

It is obvious that PSO-based method has much better performance and faster con-
vergence velocity to optimal solution than the traditional GA-based method. In the 
search and evolution process, GA need set some key parameters such as population 
size, probability of mutation, probability of crossover, population initialization, etc. If 
these parameters were not presetted suitable, efficiency of GA would lower. Further-
more, during calculation, GA need convert parameters from solution space to genetic 
space and from genetic space to solution space several times. This translation brings 
additional time-consumption. PSO does not need genetic operation such as crossover 
and mutation, so it is fast to obtain the global optimization and available to achieve 
real-time blind source separation. 

4.2   Example 2 

To further test the practical applicability of the proposed method, we consider a 
“cocktail party” problem. The signals match up with two different persons saying the 
word “hello” in English respectively. We obtain the speech signals from Brain  
Science Institute RIKEN (www.bsp.brain.riken.jp). These two different speech sig-
nals are mixed by randomly mixture matrix and randomly inverse nonlinear function 
which are as same as Example 1. All parameters of PSO are also as same as exam-
ple 1. Figs.8 shows the original speeches. Fig.9 shows their mixtures. 



 Blind Source Separation in Post-nonlinear Mixtures 729 

 

Fig. 8. Original speeches s corresponding to two different persons saying the word hello  

 

Fig. 9. Mixed signals x after a post-nonlinear mixture 

 

Fig. 10. Separated speech signals y by PSO-based method 

Table 2. Performance comparison of the two algorithms 

Algorithm 
type 

Population 
size 

Iteration 
Number ∑

=

n

i
iSDR

n 1

1  Time of convergence for 
NBSS 

PNL mixtures of a sine signal and random noise signal 
PSO-based 20 40 14.406 dB 625   ms 
GA-based 20 40 8.109   dB 2432 ms 
PNL mixtures of two speech signals 
PSO-based 20 40 17.775 dB 1828 ms 
GA-based 20 40 12.803 dB 7242 ms 

Fig.10 shows the separated results by the proposed PSO-based method for one of 
the simulations. As can be seen, the separated signals are very similar to the source 
signals, up to possible scaling factors and permutations of the sources (e.g., separated 
signal 2y  match up with source signal 1s , but it changes also in amplitude. Separated 

signal 1y  match up with source signal 2s , but it also overturns its amplitude). To save 

space, the separated results by GA-based method are not shown due to its somewhat 
similarity to that in Example 1. At last, some conclusions such as SDR and time of 
convergence for NBSS can be drawn from the experimental performance results of 
the two approaches shown in Table 2. 
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5   Conclusions 

A nonlinear blind source separation method using natural gradient descent and parti-
cle swarm optimization algorithm has been proposed in this paper. Simulation results 
show that the proposed method can obtain clearer estimations of source signals from 
their PNL mixtures. The traditional approaches to NBSS for example GA have the 
drawback that it may not achieve the separation accuracy and convergence velocity 
simultaneously. The proposed method enhances both the global search velocity and 
local search ability in search for inverse function. 
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Abstract. This paper deals with the employment of Echo State Net-
works for identification of nonlinear dynamical systems in the digital
audio field. The real contribution of the work is that such networks have
been implemented and run in real-time on a specific PC based software
platform for the first time, up to the authors knowledge. The nonlin-
ear dynamical systems to be identified in the audio applications here
addressed are the mathematical model of a commercial Valve Amplifier
and the low-frequency response of a loud-speaker. Experimental results
have shown that, at a certain frequency sampling rate, the ESNs consid-
ered (after the training procedure performed off-line) are able to tackle
the real-time tasks successfully.

1 Introduction

Neural Networks [1] have been extensively employed in the literature to face dif-
ferent problems in several application fields, likely related to the Digital Signal
Processing (DSP) area. Numerous distinct architectures and learning algorithms
have been proposed on purpose, in dependence on the task under study. In par-
ticular, it often happens that the learning system is asked to have dynamical
mapping capabilities, i.e. the ability of storing and updating context informa-
tion occurring at arbitrarily distant time instants. Common static networks, as
the FeedForward Neural Networks (FFNN), are not well-suited to tackle the
problem and typically the focus is directed to the Recurrent Neural Networks
(RNN) because they have an internal state that can represent context informa-
tion. Gradient based algorithms are widely used for their simplicity and low com-
putational cost as learning algorithms: back-propagation through time (BPTT)
and real-time recurrent learning (RTRL) are well-known examples [1].

However, those types of algorithms have shown to be not sufficiently powerful
to discover contingencies spanning long temporal distances. Indeed, as a conse-
quence of the vanishing gradient effect [1], [2], either the system gets information
latching being resistant to noise or, alternatively, it is efficiently trainable by
gradient descent learning algorithm, but not both. Several solutions have been
proposed to mitigate this effect [2], as the Recurrent Multiscale Architecture
(RMN) [3], which significantly reduces the impact of the vanishing gradient
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even maintaining the usage of BPTT algorithm. However, the Echo State Net-
work (ESN) [4], [5], recently appeared in the literature, seems to be the most
effective solution from this perspective. Indeed the approach followed in ESNs
consists in providing a large set of basis functions through a network of fixed
recurrent connections and in combining them through a static linear or nonlin-
ear adaptive mapper for optimal input representation. This allows dealing with
dynamical properties of the input time series avoiding training the network feed-
back synapses, and so resulting in a strongly simplified learning procedure with
immunity to the vanishing gradient effect. Such a property has been experimen-
tally verified by some of the authors in a recent paper [3], by comparing ESNs,
RMNs and common globally RNNs performances when applied to a specific
benchmark.

ESNs properties have been also tested in the literature on more complicated
and realistic tasks, as identification of NARMA systems [6], neural activity map-
ping [7], mobile robot modeling and control [8], Q-function modeling in reinforce-
ment learning [9], speech recognition [10]. However, up to author’s knowledge
this work represents the first effort to evaluate their capabilities in real-world au-
dio tasks, where we can experience nonlinear and dynamical systems to identify,
taking also real-time constraints into account. Here, the modeling of a com-
mercial Valve Amplifier and the identification of a loud-speaker low-frequency
response are the audio applications addressed and ESNs have been employed for
their fulfillment. Once performed the training procedure offline, we implemented
the adapted networks on the Nu-Tech framework, a suitable SW platform for
real-time audio processing directly on the PC hardware. As expected, the related
real-time constraints result in some restrictions on the network parametrization,
which, however, does not affect the effectiveness of the approach in the tasks
under study, as shown by the computer simulations carried out.

2 Echo State Networks

The basic working principle of ESNs is that, under certain conditions, its ac-
tivation state x (n) is a function of past input values u(n),u(n − 1), ..., so it
can be interpreted as an echo of the input history. Let us introduce an ade-
quate terminology to describe such a kind of network. It has K input lines, N
internal neurons and L output units. There are four types of synaptic weights:
input, internal, output, output-internal. They are described by the correspond-
ing weight matrices W in, W , W out, W back, whose dimensions are respectively
N ×K, N ×N , L×(K + N + L), N ×L. Connections between input and output
lines and among output units are allowed. There are no specific assumptions on
the topology of internal neural block, namely reservoir; in particular we are not
constrained to consider a layer architecture. However it is expected that the in-
ternal connections form recurrent paths in order to have a state space behavior.
The block diagram of an ESN is depicted in Fig.1. The activation state of the
reservoir is given by:

x(n + 1) = f(W inu(n + 1) + Wx(n) + W backy(n)), (1)



Echo State Networks for Real-Time Audio Applications 733

where f = (f1, ..., fN ) are the activation functions of the internal units (usually
sigmoidal). T he out-put equation is:

y(n + 1) = fout(W out(u(n + 1), x(n + 1), y(n)), (2)

where fout = (fout
1 , ..., fout

L ) are the activation functions of the output units
(usually sigmoidal). In other words, it can be said that the echo functions are
the basis functions that the output static mapper has to select for an optimal
input representation. Therefore, the Echo State Property has to be satisfied.
If we want the state to depend on the past inputs W back must be neglected
first. Then, as shown in [4], [5], a sufficient condition is contractivity of W .
Nevertheless a weaker operative condition holds in practice: the spectral radius
|λmax| of W is less than unity. Sparseness and randomness of W connections
are two important requirements to have sufficiently rich dynamics, for the final
network to yield the desired mapping. Concerning the learning algorithms, it
must be underlined that the reservoir weights are fixed. This allows getting
a relevant simplification of the adaptation process, since we do not have to
worry about adapting the recurrent connections, the main reason of vanishing
gradient occurrence in gradient based algorithms. The only part of ESN subject
to learning is the static mapper, for which we can use methods developed in
the literature for static NNs. In particular, if the output lines have no feedback
weights and the related nonlinearities are invertible, linear regression algorithms
might be employed, avoiding iterative procedure based on gradient calculation.
According to these assumption, and neglecting the direct input-output synapses,
(2) becomes

ỹ(n) =
(
fout

)−1 (y(n)) = W outx(n), (3)

where x(n) is the state vector. If we consider a training observation range equal
to [1 · · ·Ttr, ], (3) becomes:

ỹ = W outX. (4)

By applying Singular Value Decomposition (SVD) we can obtain the optimal
W out in terms of the available observations.

3 Implementation Issues

A graphical tool for dealing with ESNs has been developed in C++ (Fig.2),
and it can be basically seen as composed by three different parts. The first is
related to the determination of the Echo State Network , i.e. the number of
internal units, the spectral radius, the internal matrix connectivity, the output-
internal weight presence and the type of activation function. The second part
refers to the training algorithm that could be based on the gradient based al-
gorithms (like the conjugate gradient), or, as aforementioned, on the linear re-
gression approach, performed through the Singular Value Decomposition (SVD).
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Fig. 1. Echo State Network block diagram: the input line, the reservoir and the output
line (static mapper).

The last part gives out the values of the ESN parameters in different operating
conditions (initialization, training, generalization). In the learning phase, be-
ginning from the input and target signal, it is important to define the samples
number requested to improve the forgetting time of the starting state. In order
to have satisfying performances, the samples number should be greater than the
network dimensions and the spectral radius. Furthermore it is possible to add
white noise in order to avoid instability problems and generally improve the
achievable results. At the end of the training phase, the output weight matrix
and the correlation matrix of the internal states could be displayed and analyzed
to evaluate the generalization performances of the network. It must be said, that
in all computer simulations performed, the linear regression method has been
employed.

Once trained, the ESN can be suitably saved in a proper format and then
used for real time applications. This has been accomplished through the Nu-
Tech Platform [11]. This software allows to implement and test real time DSP
algorithms in multi-channel scenarios: the Nu-Tech framework is basically com-
posed by two elements, i.e. the interface to the PC sound card and the PlugIn
architecture. The former allows handling the audio streams (frame-by-frame)
from the I/O sound card channels also through an accurate management of
the latency times. The latter lets the user develop his own C/C++ algorithms
within the graphical routing scheme reproducing the sound-card MIMO
structure.

In our case study, an ESN Nu-Tech PlugIn has been realized as a standard
C++ dll file able to operate within the Nu-Tech interface (Fig.3). Such a Plu-
gIn can process the audio streaming according to the parametrization related
to the trained Echo State Network contained in the proper file coming from the
aforementioned C++ based tool.It must be remarked that the combination of
the graphical tool and the Nu-Tech framework presents significant pros from
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Fig. 2. Graphical tool for ESN generation, initialization, training and testing

Fig. 3. Nu-Tech Platform with ESN PlugIn

a pure technological point of view: indeed we can easily adapt and run suit-
able ESNs for real-time applications by just dealing with the available friendly
user-interfaces.
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Looking at the real-time processing constraints, it must be said that they
induce some restrictions on the ESN parametrization allowed. Looking at them
from the perspective of the applications described in the following, we can say
that the activation function of the internal units must be a sigmoidal function
in order to have a lower computational cost and the maximum limit of dynamic
reservoir dimension must be 200 units with a connectivity factor of 2.5% to avoid
clicks during streaming.

4 Experimental Results

In this section some experimental results related to the field of audio processing
will be presented and analyzed. The Echo State Networks have been created,
initialized, and trained by using the C++ based graphical tool. Then, for the
generalization phase mono wave files (sampled at 44100 Hz) have been used as
the inputs feeding the trained networks running in real-time on the Nu-Tech
platform. To evaluate the algorithm performances, a normalized mean square
error has been defined as follows

NRMSE =

√
ΣT

i=1 (y [i] − d [i])2

T · σ2 , (5)

where y is the output of the network, d is the desired response of the system
to identify, σ2is the target variance and T the observation time range. For each
experimental results a table will be shown with the ESN parameters and NRMSE
calculated for the training and testing phases.

4.1 Linear Dynamical Systems

As starting case study, we consider a linear system identification problem. In
this case we have considered the behavior of a signal filtered by a FIR filter of
order M. To simulate the filter behavior, the Echo State Network has to cal-
culate M+1 parameters storing M past input values. The filter lengths are 50,
80, 100 samples and the dynamical reservoir dimension strictly depends on this.
The activation function can be linear or sigmoidal taking into account its linear
zone and scaling the input values. The spectral radius is very high (0.97, 0.99) to
improve the store capacity of the network. The results are shown in the Table 1.
As we can see the best results are achieved for 200 internal units with a connec-
tivity of 5.2% and high spectral radius.

4.2 Modelling of a Commercial Valve Amplifier

Almost a century after their introduction, vacuum tube amplifiers are still ap-
preciated for their special sound qualities. It is known indeed that valve ampli-
fiers are highly rated by audiophiles and musicians, and often preferred to the
their digital counterpart [12]. So recently several works have been orientated to



Echo State Networks for Real-Time Audio Applications 737

Table 1. Linear system identification experimental results. FO is the filter order, DR
is the dimension of the dynamical reservoir, CP is the connectivity percent, SR is
the spectral radius, NRMSEtr is the normalized mean square error calculate for the
training phase and NRMSE for ESN application.

FO DR CP SR NRMSEtr NRMSEtr NRMSE NRMSE
mean st.dev mean st.dev

50 120 8% 0.97 0.0240 9.78 10−4 0.048 9.65 10−4

80 200 5.2% 0.99 0.0054 1.4 10−3 0.0079 1.42 10−3

100 330 3.3% 0.99 0.0143 3.4 10−3 0.0217 3.2 10−3

the non linear digital modeling of a Tube Amplifier. There are mainly two ap-
proaches: the former refers to the application of a mathematical model derived
from the study of the equivalent circuit, the latter is based on the characteri-
zation of a real Valve Amplifier through non linear identification techniques. In
this work, as a term of comparison, we have used a free commercial VST PlugIn
[13] that implements the behavior of a real tube amplifier. First of all the train-
ing phase has been based on a target signal filtered by the VST PlugIn, then
the behavior of the ESN has been tested. The results are shown in Table 2. As
we can seen, the best results have been achieved using the sigmoidal activation
function both for the internal and the output weights. Moreover, the general-
ization performances do not improve if we increase the size of the dynamical
reservoir.

Table 2. Modelling a commercial Valve Amplifier: experimental results. AF is the type
of the activation function, DR is the dimension of the dynamical reservoir, CP is the
connectivity percent, NRMSEtr is the normalized mean square error calculate for the
training phase and NRMSE for ESN application.

AF DR CP bias NRMSEtr NRMSEtr NRMSE NRMSE
mean st.dev mean st.dev

Ell 150 5.2% Low 0.0022 5.23 10−4 0.0057 1.8 10−4

Ell 100 8% Low 0.0040 8.54 10−4 0.0069 1.6 10−3

Ell 100 8% Med 0.0037 1.40 10−3 0.0104 3.3 10−3

Ell 100 8% High 0.0041 2.20 10−3 0.0195 1.2 10−3

Atan 100 8% Low 0.0116 4.99 10−3 0.0294 2.6 10−3

Tanh 100 8% Low 0.0218 1.40 10−3 0.1392 1.09 101

4.3 Identification of a Loudspeaker Low-Frequency Response

In the last decade, several efforts have been made to model the non linear re-
sponse of loudspeaker in order to reduce the non linear distortion especially
at low frequency. The principal causes of non linearities in loudspeaker in-
clude non linear suspension and non-uniform flux density. The main results refer
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to a model derived from an equivalent circuit of a loudspeaker system. In this
work we have considered a mathematical model of a Loudspeaker to analyzed its
Low Frequency response as in [14]. The loudspeaker has the following
parameters:

x (k + 1) =

⎡

⎣
−0.1 0 −0.2

0 1 1
0.6 −0.5 −0.15

⎤

⎦x (k) +

⎡

⎣
0.4
0
0

⎤

⎦u (k)

+

⎡

⎣
−0.04x2 (k)x3 (k) − 0.05x2

2 (k)x3 (k)
0

−0.08x3
2 (k) + 0.01x1 (k)x2 (k) + 0.02x1 (k)x2

2 (k)

⎤

⎦ ,

(6)

y (k) =
(
0 1 0

)T
x (k) . (7)

This relation derived from two differential equation associated to the mechan-
ical and electrical equivalent circuit of the loudspeaker taking into account the
distortions constraints. In the training phase, noise signal low pass filtered at
1kHz has been used. The reservoir dimension vary from 120 to 200 units with
a connectivity of 2-1.5%; the activation functions are sigmoidal while the ra-
dius spectrum varies from 0.8 to 0.97. The results are shown in table 3. After
the training, the neural network has been tested with a white noise signal and
sweep signal (20Hz - 1kHz), played in the wave format within Nu-Tech. Again,
the usage of sigmoidal activation functions both for the internal and the output
weights with higher spectral radius allows to achieve the best results. Further-
more increasing the dimension of the dynamical reservoir does not yield better
results.

Table 3. Identification of a Loudspeaker Low-Frequency response: experimental re-
sults . AF is the type of the activation function, DR is the dimension of the dynamical
reservoir, CP is the connectivity percent, rs is the spectral radius, NRMSEtr is the
normalized mean square error calculate for the training phase, NRMSEt for ESN ap-
plication with noise input and NRMSEs for ESN application with sweep input.

AF DR CP rs NRMSEtr NRMSEtr NRMSEt NRMSEs
mean/std mean/std mean/std mean/std

Ell 120 2% 0.97 0.0049 0.0482 0.0181 2.521 1016

2.8 10−3 4.9 10−3 9.1 10−3 2.01 1016

Ell 120 2% 0.8 0.0027 0.0562 0.0112 7.49 1017

6.36 10−4 1.6 10−3 4.8 10−3 1.03 1016

Tanh 120 1.8% 0.8 0.00078 0.0618 0.0067 2.63 1017

1.17 10−4 9.23 10−4 9.64 10−4 3.05 1017

Ell 200 1.5% 0.92 0.0038 0.0579 0.0138 2.653 1015

3.1 10−3 1.8 10−3 2.2 10−3 3.753 1015
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5 Conclusions

In this paper we have faced the problem of implementing the Echo State Net-
works in the Nu-Tech framework for real-time audio applications. Up to the
authors’ knowledge this represent the first attempt in this direction, and the
achieved results seem to be encouraging: indeed, even though the real-time con-
straints induce some restrictions on the ESN parametrization, the performed
ESNs (once adequately trained off-line) are able to solve the tasks successfully.
Deep studies are actually ongoing on the possibility of implementing the training
phase also in real-time, paying attention to the further to the ESN parametriza-
tion limitations which inevitably arise. Moreover, future work could be done to
evaluate the applicability of other types of Neural Networks with memory (as
RNNs) and compare them to the ESNs in terms of performances in real-time
audio applications.
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Abstract. When the source signals are known to be independent, pos-
itive and well-grounded which means that they have a non-zero pdf in
the region of zero, a few algorithms have been proposed to separate these
positive sources. However, in many practical cases, the independent as-
sumption is not always satisfied. In this paper, a new approach is pro-
posed to separate a class of positive sources which are not required to be
independent. These source signals can be separated very quickly by using
genetic algorithm. The objective function of genetic algorithm is derived
from uncorrelated and some special assumptions on such positive source
signals. Simulations are employed to illustrate the good performance of
our algorithm.

1 Introduction

Blind source separation (BSS) recovers n original source signals from m observed
signals from sensors without any prior information of sources and mixing process.
The simplest instantaneous BSS model is the following:

x(k) = As(k), (1)

where x(k) = [x1(k), · · · , xm(k)]T is a m×1 vector of mixed observations, s(k) =
[s1(k), · · · , sn(k)]T represents the samples of the unobserved source signals, and
A ∈ Rm×n(m ≥ n) is a constant but unknown mixing matrix with full rank.
Assume the weight matrix W ∈ Rn×m and the output y(k) = Wx(k) at time k.
The goal of a BSS algorithm is to find a weight matrix W such that y(k) is a
permutation of source signals up to a scaling factor.

The problem of blind source separation has been studied by many authors in
recent years since the pioneering work by Jutten and Herault[8]. Many BSS al-
goirhtms are proposed based on independent component anlaysis (ICA) models,
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the infomax method, and the nonlinear principal component analysis (PCA), etc.
(for details, see e.g.[5,7]). Since nonnegative assumption on the sources is very
natural for many practical applications (for a review, see e.g.[10,12]), recently, a
few authors considered the nonnegative assumption on source signals[10,11,12,9].
If the source signals are positive, independent and well-grounded which means
that they have a non-zero pdf in the region of zero, E. Oja and M. Plumbley have
proposed a few algorithms to separate these sources [10,11,12]. And the global
convergence has been proved in [15]. Although these algorithms have good per-
formance of separation [10], they cannot be applied to nonindependent positive
source signals. When the independent assumption is replaced by the following
special nonnegative assumption A: ’for each source, there is at least one value
of the acquisition variable for which this source presents a non-null response, to
exclusion of all other sources’, Naanaa and Nuzillard proposed a new method
to separated these sources by solving a constrained optimization problem [9].
In many applications, the source signals fall into this category, for example, the
nuclear magnetic resonance (NMR) spectroscopy signals. However, their method
needs to compute a constrained optimization problem for each observed signal.
If the number of sampled observed signals is increased, the efficiency of their
algorithm will decrease quickly.

In this paper, we propose an effective and efficient BSS algorithm for a class
of positive source signals by using evolutionary computation techniques. This
class of positive signals are uncorrelated and satisfy assumption A. Moreover, if
the mixing matrix is orthonormal, the mixing matrix can be computed by using
our algorithm very quickly. Simulations confirm the utility of our algorithm. The
techniques used in this paper may give some hints to the research of more general
positive source separation.

2 Problem Statements

Suppose we have unobserved source signals s = [s1(k), s2(k), · · · , sn(k)]T for
k ≤ N where the real-valued component si(k) are positive, uncorrelated, and
have bounded non-zero variance. And the source signals satisfy the following
condition[9]:

Assumption A. For each i ∈ {1, 2, · · · , n} there exists an ji ∈ {1, 2, ..., N} such
that si(ji) > 0 and sk(ji) = 0(k = 0, · · · , i − 1, i + 1, · · · , n).

Without loss of generality, assume the sources have unit variances σ2
si

=
E{(si(k) − s̄i)2} = 1. Otherwise, we can scale the variance of source signal
to be unit. For example, let the sources are scaled to s′(k) = Gs(k) such that
x(k) = A′s′(k) with A′ = AG where G = diag(g1, · · · , gn) and gi = σ−1

si
. The

scaled signals s′(k) also satisfy the assumption A as well as the source signals
s(k).

In this paper, we will not handle the original observed signals x(k) directly.
By performing a pre-whitening step [3,11], the matrix Q ∈ Rn×m is generated
such that the covariance matrix Cz = E{(z(k) − z̄)(z(k) − z̄)T } = In where
z(k) = Qx(k) and z̄ is the mean of z(k) for 1 ≤ k ≤ N . This pre-whitening
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method does not change the nonnegativity of the sources. When the number
of source signals is unknown, it can be estimated if the observed signals are
sufficiently sampled [4].

Since the covariance matrix of source signals Cs = In, so the covariance
matrix of observed signals x(k) is given by Cx = E{(x(k) − x̄)(x(k) − x̄)T } =
ACsA

T = AAT . Since A is bounded and has rank n, Cx is a positive definite
symmetric matrix which can decomposed as Cx = UxΛxUT

x where Ux ∈ Rn×n

is the eigenvector matrix and Λx is the diagonal eigenvalue matrix respectively.
Let Q = RΛ

−1/2
x UT

x where R is any n × n orthonormal rotation matrix with
RRT = RT R = In, then Cz = QCxQT = In which means that the square
matrix QA is orthonormal.

After the above pre-whitening procedure, equation (1) is changed to the fol-
lowing equation,

z(k) = Bs(k), (2)

for 1 ≤ k ≤ N and B = QA is an n×n orthonormal matrix. Suppose W ∈ Rn×n

is an orthonormal matrix with WWT = WT W = I and y(k) = Wz(k) =
WBs(k) = Us(k) where U = WB. The goal of our algorithm is to find an or-
thonormal matrix such that U is a permutation matrix, i.e. y(k) is a permutation
of s(k).

3 The Algorithm

Let us fist present a useful lemma which has already been proved in [11].

Lemma 1. Let U = [μij ] be an n × n orthonormal matrix such that UUT =
UT U = In. Then all elements of U are nonnegative if and only if U is a per-
mutation matrix, i.e. a matrix for which, given a sequence {ji|0 ≤ i ≤ n} of n
distinct integers 0 ≤ ji ≤ n, we have μij = 1 if j = ji and μij = 0 otherwise.

Assume the matrix B = [B1, B2, · · · , Bn], equation (2) can be rewritten as the
following,

z(k) =
n∑

i=1

si(k)Bi, (3)

for 1 ≤ k ≤ N . Because the source signals satisfy the Assumption A, each signal
si there exists at least one time ji such that si(ji) > 0 and sk(ji) = 0 for k �= i.
At time ji, equation (3) is changed to

z(ji) = si(ji)Bi. (4)

This means that each column of B will be collinear with at least one of the
observed signals z(k)(1 ≤ k ≤ N).

Because the matrix B is orthonormal, i.e. BBT = In and BT B = In, the
problem to estimate the mixing matrix is changed to find n orthogonal vectors
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V1, V2, · · · , Vn in the normalized observed signals z(k) for 1 ≤ k ≤ N such that
the following function is minimized,

Γ (V ) = ‖V V T − In‖F + ‖V T V − In‖F , (5)

where V = [V1, V2, · · · , Vn] and ‖ · ‖F is the standard Frobenius matrix norm.
Next, we will show the solution matrix V is unique.

Lemma 2. Assume the source signals s(k) are positive for 1 ≤ k ≤ N and
satisfy assumption A, for z(k) = As(k) where 1 ≤ k ≤ N , there is only one
n × n othonormal matrix V up to a permutation matrix.

Proof. Suppose we have an othonormal matrix V , the columns of which belong
to the normalized observed signal set. For simplicity, suppose the time index
of the corresponding observed signals is [t1, t2, · · · , tn], i.e. V = [z(t1)/‖z(t1)‖,
z(t2)/‖z(t2)‖,· · · , z(tn)/‖z(tn)‖]. It means that

V = AS̄,

where the elements of matrix S̄ are positive. Since the matrices V and A are
othonormal, and S̄ is a positive matrix, by Lemma 1, the matrix V will be the
same as the matrix A up to a permutation matrix.

Similarly as the method in [9], we first form a data set Z̄ by discarding those
observed signals z(k) where ‖z(k)‖ < ε and normalizing every observed signal
vector. Then from data set Z̄, construct a new data set Ẑ in which all signals are
mutually noncolinear. After that, re-index the vectors in Ẑ. Suppose the index
set Q = {1, 2, · · · , N̄}. Now, our goal is to find n distinct orthogonal vectors
ẑ(ki) ∈ Ẑ, ki ∈ Q such that the matrix V = [ẑ(k1), · · · , ẑ(kn)] is orthonormal.

If we find these n orthogonal vectors directly, in the worst case we need com-
pute Cn

N̄
times. If the number of sampled observed signals is large, it is unreason-

able for practical computation. Naturally, we consider the evolutionary search
techniques to find these orthogonal vectors.

Define the feasible solution in the form of string (or chromosome) [k1,k2,· · ·,
kn], where k1,k2,· · ·, kn ∈ Q are integers. This means that [ẑ(k1),· · · , ẑ(kn)] is
the matrix we wanted. For example, consider a four-dimensional problem with
N̄ = 1000. If a feasible solution is [23, 45, 899, 934], it means that the vectors in
Ẑ with index {23, 45, 899, 934} will construct an orthonormal matrix.

Let the function Γ be the objective function of our genetic algorithm. The
evolutionary search starts with a population of p random solutions and iter-
atively used the processes of selection, crossover, and mutation to perform a
combination of hill climbing, solution recombination, and random search over
the possible index combinations. The process was continued until some criteria
are satisfied [6]. In each stage of the algorithm, a set of best index solutions (the
most minimum Γ values) were kept. At the end of the algorithm, these solu-
tions were reported. The technique to keep the best solutions in each iteration
can guarantee the convergence to the optimal solution in some sense, which was
shown in [13,14]. The genetic algorithm can be summarized as follows:
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Algorithm 1. Evolutionary-Search (Number of feasible solutions: m, Dimen-
sionality: n)

Begin
S=Initial seed population of p strings;
BestSet=null;
While no(termination criterion) do begin

NewS=Selection(S);
NewS=CrossOver(NewS);
NewS=Mutation(NewS);
S=Reinsertation(S,NewS);
Update Bestset to be the m solutions in BestSet∪S with most minimum

Γ values;
End;
return BestSet;

end

The initial population is achieved by generating p strings using a random in-
teger generator that uniformly distributes numbers in the range [1, N̄ ]. Selection
process determines the individuals for reproduction and the number of offsprings
that an individual can produce. Here, we select 90 percent of individuals to pro-
duce new individuals, and keep 10 percent of individuals which have minimum
values. During the selection phase, each individual of current population is as-
signed a fitness value derived from the corresponding objective function value.
Then, the selection algorithm selects individuals for reproduce on the basis of
their relative fitness values. In our algorithm, the fitness values are calculated
using linear ranking method with pressure 2 in [2] as follows

F (xi) = 2 − Max + 2(Max − 1)
xi − 1
p − 1

, (6)

where Max is always chosen in [1.1, 2] which is used to determine the selective
pressure such that no individuals generate an excessive number of offsprings.
And xi is the position of the ith individual in the re-ordered population based
on their corresponding objective function values.

The popular rank selection principle is used. The idea is to replicate copies of
a solution by ordering them by rank and biasing the population in favor of the
higher-rank solution. This method is very stable since it results in a global hill
climbing of an entire population of solutions. For our implementation, we use
the stochastic universal sampling (SUS) method in [2]. The procedure of SUS
algorithm is as follows: First, obtain a cumulative sum of the fitness value vector
corresponding to the population, and generate equally spaced numbers between
0 and sum; then, one random number is generated, all the others used being
equally spaced from the point; in the end, the indexes of the selected individuals
are determined by comparing the generated numbers with the cumulative sum
vector.
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Crossover (recombination) phase produces the new strings which are recom-
bined by parts of parents. In our algorithm, we use the simplest form of crossover,
i. e. single-point crossover. Consider an example with dimensionality 5 and N̄ =
1000. There are two strings: A1 = [23 34 78 899 901] and A2 = [45 92 37 309 267].
Assume the switch position is randomly generated as 3, then the new strings will
be A′

1 = [23 34 78 309 267] and A′
2 = [45 92 37 899 901]. For the default setting,

70 percent of old strings will be recombined to reproduce new offsprings.
Mutation phase produces the new strings by randomly modifying the elements

of strings in the whole population. Mutation is used to uncover the good strings
that may be lost in the actions of selection and crossover. Consider an example
for our problem with dimensionality 5, there is a string [23 79 345 898 900] which
is changed to [23 89 345 898 900] by mutation. In our algorithm, mutation is
randomly applied with probability 0.3 based on the number of population.

Reinsertation function handles the case that the number of new population
produced by selection, crossover and mutation are fewer or more than that of
old population, and keeps the most fit old individuals. Our technique is that the
new individuals are fitness-based reinserted into the old population. The least
fit old individuals are replaced and discarded.

The algorithm to separate the uncorrelated positive source signals which sat-
isfy assumption A can be summarized as the following.

Algorithm 2. GA-BSS (Observed signal set: Z, Dimensionality: n)

1. Discard those columns z(k) from the observed signal set Z = {z(k), k =
1, · · · , } such that ‖z(k)‖ < ε and form a new data set Z̄ by normalizing the
remaining signal vectors.

2. Form the matrix Ẑ consisting of all mutually noncolinear vectors of Z̄, and
reindex the vectors in the new data set.

3. Call the function Evolutionary-Search(Number: m, Dimensionality: n) and
return the best index set BestSet.

4. Select observed signal vectors from BestSet which has the minimum value
of objective function Γ and form the matrix Ā.

5. Replace each column in Ā by the average of all vectors in Z̄ that are colinear
to it.

6. Compute the estimate of source signals: s̄(k) = Ā−1z(k), 1 ≤ k ≤ N .

In the algorithm GA-BSS, step 1 and step 2 come from the algorithm LP-BSS
in [9]. These two steps can reduce the range of search and the effects of noise.
Two vectors ei and ej are defined to be collinear if their angle θ does not exceed
a tolerance threshold.

4 Simulations and Discussions

The efficiency of GA-BSS algorithm will be illustrated by using a few experi-
ments. Since only LP-BSS and GA-BSS algorithms can be applied to recover
positive source signals exactly when they are not guaranteed to be independent,
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we only compare the performance of GA-BSS with that of LP-BSS. Other BSS
methods cannot recover the source signals exactly, for example, the standard
ICA algorithm, nonlinear PCA algorithm, etc.

Without loss of generality, suppose the mixing matrix A is an orthonormal
and constant matrix. For recovering the source signals, the purpose of both
algorithms is to find an orthonormal matrix Ā such that A and Ā are equivalent
up to a permutation matrix P , i.e. Ā ≈ AP . To evaluate the performance of
separation, two same performance indexes are used as in [9]. Let D = A′Ā, the
first Comon’s index is defined in [3] as follows:

e(D) =
∑

i
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where dij the element of matrix D. The second Choi’s index in [9] is defined by

e′(G) =
1

2(n − 1)

n∑

i=1

(
n∑

k=1

|gik|2
maxj |gij |2

− 1

+
n∑

k=1

|gki|2
maxj |gji|2

− 1

)

,

where gij is the element of matrix G = Ā−1A. These two indexes are zero if and
only if the matrices A and Ā are equivalent.

In the first experiment, we will show the scalability of GA-BSS and LP-BSS
algorithms. There are three 252x252 images and the pixel intensities were scaled
to unit variance. The source sequence s(k) is the sequence of pixel values of
the images from top left to bottom right and 1 ≤ k ≤ 63504. Since the source
images have nonnegative pixel values, so they are suitable for positive source
signal separation. The original images used are shown in Fig.1.

Fig. 1. Source images used for the positive BSS algorithms

Let s(k)(k = 1, · · · , N) are the source signals where N < 63504. We first
de-correlate these signals, then let only one signal has positive value and other
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signals equal to zero at some randomly chosen time k such that the final source
signals satisfy assumption A. The observed signals x(k)(k ≤ N) are obtained
by mixing these source signals using a randomly generated orthonormal matrix.
These mixed signals are fair to test both algorithms because all of them can
recover the source signals exactly. Under the same accuracy with respect to
these two performance indexes, the evaluation time of GA-BSS and LP-BSS are
draw in Fig.2 when the number N is from 2000 to 20000. It can be seen that
GA-BSS are more efficient than that of LP-BSS with large number of observed
signal data. This is because LP-BSS algorithm need compute the scores of every
observed signal vectors by using revised simplex method to decide which vectors
can construct the mixing matrix. As the number of observed signal vectors is
increasing, the execution time will increase quickly.
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Fig. 2. The evaluation time (seconds) of two BSS algorithms with respect to different
sizes of observed signal data

Table 1. The performance of GA-BSS and LP-BSS algorithms

Algorithm Comon’s index Choi’s index Evaluation time(s)

GA-BSS 3.3746e-005 2.8725e-006 2.3434

LP-BSS 9.2540e-005 6.2286e-006 2.7540

In the second experiment, the same source signals in [9] are used, which
are NMR Spectroscopy signals. The observed signals are constructed by mix-
ing the source signals using a randomly generated orthonormal matrix. Table 1
shows the evaluation results of GA-BSS and LP-BSS algorithms. It can be seen
that GA-BSS algorithm are more efficient and accurate than that of LP-BSS
algorithm.
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5 Conclusions

We proposed an effective and efficient BSS algorithm for a class of positive
source signals. This class of positive signals are uncorrelated and satisfy as-
sumption A. Moreover, if the mixing matrix is orthonormal, our algorithm can
handle the case that the positive source signals are partially correlated and sat-
isfy assumption A. Our main contribution is that our algorithm can recover
the mixing matrix very quickly based on evolutionary search techniques. Sim-
ulations confirm the efficiency and effectiveness of our algorithm. Our studies
may give some hints to the research of blind separation of more general positive
signals.
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Abstract. The speech enhancement method based on blind source sep-
aration and post-processing in subband [1] is an effective method in
noise and reverberation environments. Performance analysis and com-
puter simulations indicate that its performance is degraded under un-
correlated or mild correlated noise cases, and sometimes it might cause
distortion of the enhanced signals. To apply the method in real environ-
ment, some improvements have been made on it. These are that adap-
tive noise cancellers are only used in the subbands with poor separa-
tion results and the independent component analysis (ICA) operations
in low frequency bands are replaced by the efficient time-frequency mask-
ing method. Experimental results show the effectiveness of the proposed
method.

1 Introduction

The speech signals received by microphone array are inevitably interfered by
noise from the environment and the reverberation of the rooms in the speech
communication system. Multi-microphone techniques are a growing filed in speech
enhancement since beamforming and related techniques have a great potential
for noise reduction. Spatial information is often exploited to enhance the speech
signal in a noisy environment. The conventional methods for spatial processing
techniques include delay-sum beamforming, adaptive beamforming [2] and post-
filter algorithm [3] and so on. Unfortunately, the performance of the beamform-
ing based methods will degrade if any apriori information about the acoustical
environment and the sources involved is unknown. Besides, a large number of mi-
crophones are generally required for good speech enhancement performance [1].
Unlike beamforming technique, ICA method [1], [5], [6] which estimates original
source signals using only the mixed signals observed in each input channel is an
unsupervised adaptive technique [6]. Comparing with beamforming approach,
ICA [4] has two advantages: it only needs a small number of microphones and
does not require apriori information about the sources. Clearly, the weakness
of the beamforming algorithm is the advantage of the ICA algorithm [1]. The
method suggested by Low, S.Y. et al [1] has achieved high performance in de-
pressing noise and reverberation. Regrettably, its performance was degraded
under uncorrelated or mild correlated noise cases. To apply the method in real
environment, some improvements have been made on it. These are that adaptive
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noise cancellers are only used in the subbands with poor separation results and
time-frequency masking method [7], [8] instead of ICA is used in low frequency
bands.

2 The Model of Array Signals

Ideal model and practical model are two widely used models for speech enhance-
ment. The former only deals with environmental noise, while the latter considers
environmental noise and reverberation simultaneously. A microphone array with
L microphones was placed in the acoustic enclosure environment where speech
and noise coexist. In the practical model, the signals xi(t)(t = 1, 2, · · · , L) re-
ceived by the ith microphone can be modeled as

xi(t) = gi ∗ s(t) + ni(t) (1)

where xi(t) is the nonstationary speech signal, ni(t) represents the stationary
noise, gi is the room impulse response between the speech source and the ith
microphone and ∗ denotes convolution.

3 The Proposed Method

3.1 The Structure of the Proposed System

The proposed speech enhancement scheme is shown in Fig.1. There are seven
main modules, namely, analysis filter bank, time-frequency masking, subband
ICA, kurtosis calculation, judgment, adaptive noise canceller (ANC) and syn-
thesis filter band.

Comparing Fig. 1 with the Fig. 1 in [1], we can see that the modules including
the analysis and synthesis filter banks to decompose and reconstruct signals, the
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A Speech Enhancement Method in Subband 753

subband ICA to approximately separate the speech signal and noise, and the
kurtosis to ascertain which output contains the most dominant interference are
the same and have been discussed by Low, S.Y. et al [1] in detail. But the
remainder modules are different from [1]. Hence, in the following subsections,
we will analyze the performance of adaptive noise canceller, then propose the
rule to decide in which subbands the ANC is executed. Furthermore, we will
investigate the time-frequency masking method.

3.2 The Performance of the Adaptive Noise Canceller [9]

The architecture of the adaptive noise canceller is shown in Fig.2. The signal-
to-noise ratio (SNR) at the reference input is represented as follows [9]

ρref (z) =
(
Φss(z) |J(z)|2

)/(
Φnn(z) |H(z)|2

)
(2)

where Φss(z) and Φnn(z) denote the power spectrum of the speech signal and
noise respectively. When the noises at the primal input and the reference input
are correlated with each other, the SNR at the output is

ρout(z) = 1/ρref (z) (3)

Next, the signal distortion D(z) is defined as
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Fig. 2. Diagram of the adaptive noise canceller

D(z) ≈
(
Φss(z) |J(z)/H(z)|2

)/
Φss(z) = |J(z)/H(z)|2 (4)

The SNR at the primal input is defined as follows

ρpri = Φss(z)/Φnn(z) (5)

Naturally, the signal distortion D(z) can be calculated as

D(z) ≈ ρref (z)/ρpri(z) (6)
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Equation (6) indicates that it causes small signal distortion if SNR at the primal
input is high while SNR at the reference input is low.

Finally, the power spectrum of noise at the output can be represented as
follows [9]

Φoutputnoise(z) ≈ Φnn(z) |ρref (z)| |ρpri| (7)

Equation (7) indicates that the smaller the product of |ρref (z)| and |ρpri| is, the
better result can be gotten by ANC.

3.3 The Rule to Execute Adaptive Noise Canceller

Unfortunately, equation (7) might not been guaranteed in [1] because the perfor-
mance of the subband ICA can not be controlled. As a result, when the subband
ICA performs well and results in a high value of |ρpri| , the degradation of the
enhanced signal occurs.

Considering the conclusion drawn above, a scheme to resolve this problem
is proposed. The speech signal with super-Gaussian distribution usually has a
larger value in term of kurtosis, while the noise with Gaussian-like distribution
always has a smaller value. Thus, we can safely say that the difference between
the values of the two outputs from kurtosis block is large in the subbands where
the ICA algorithm successfully separates the mixtures, while the difference is
small in the subbands where the ICA algorithm fails to separate the mixtures.
Based on this point, a rule to decide in which subbands the ICA algorithm
performs well is designed as

ξ(d) =
(
ξd
speech − ξd

ref

)/
ξd
speech (8)

where ξd
speech denotes the larger kurtosis value in the dth subband, ξd

ref is the
smaller kurtosis value. If ξ(d) > th ,where th is a threshold, the ICA algorithm
performs well in this subband. In this case, the adaptive noise canceller is not
needed; otherwise, it is executed.

4 Time-Frequency Masking

Binary time-frequency masks are powerful tools for the separation of sources
from mixtures. The algorithm depends on two major points [7]: (1) the existence
of an invertible transformation T that transforms the signals to a domain on
which they have disjoint representations; (2) finding functions F and G that
provide the means of labelling on the transform domain. Further discussion about
this algorithm can be found in [7].

Let us discuss the motivation for replacing the ICA algorithm in low frequency
bands by efficient time-frequency masking. Firstly, there is an inevitable scaling
problem which is difficult to deal with in ICA algorithm. However, the problem
doesn’t exist in the time-frequency masking algorithm. Secondly, as a fact, most
energy of the speech signal is contained in low frequency bands, so it is important
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to keep the speech energy in these bands from losing. The time-frequency mask-
ing method performs better than ICA method in this aspect. The efficiency of
time-frequency masking can be seen in section 5. The purpose of time-frequency
masking is to obtain another version of output that contains more energy of
speech signal and less energy of noise.

5 Experiments

To illustrate the efficiency of the time-frequency masking method, some sim-
ulation experiments have been carried out. The noises received by two micro-
phones are uncorrelated with each other. The performance comparison of ICA
and time-frequency masking is shown in Fig.3. As expected, the waveform of
speech enhanced by time-frequency masking method (Fig.3 (f)) indicates that
most energy of speech is successfully kept while noises are perfectly depressed.
However, ICA method shown in Fig.3 (d) fails to do so.

Fig. 3. Performance comparison of ICA and time-frequency masking, (a)-(b) are sig-
nals received by two microphones respectively. (c)-(d) are separated outputs from ICA
algorithm. (e)-(f) are the outputs of time-frequency masking method.

To illustrate the performance of the proposed method, we carried out ex-
tensive experiments using noisy signals recorded in an actual room acoustics
environment with dimensions of 5m × 4m × 4m . The microphone array with
two microphones was placed on a table 1.2m away from a woman speaker. Here,
the sampling rate was 16 KHz. The noise produced by computer and room re-
verberations are the main interferences. Fig.4 (a)-(b) show the waveforms of the
received signals. The former with higher SNR value seems to bring in larger
speech distortion, while the later with lower SNR value can better represent
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Fig. 4. A example of speech enhancement by the proposed method. (a)-(b) are signals
received by the microphones respectively. (c) speech enhanced by Low, S.Y. method.
(d) speech enhanced by the proposed method.

the practical speech signal. The reason for it may be that the parameters of
the two microphones are not identical. Fig.4 (c) is the result using the origi-
nal method [1]. The waveform of speech enhanced by the proposed method is
shown in Fig.4 (d). Comparing Fig.4 (c) with Fig.4 (d), it can be seen clearly
that the proposed method causes less distortion on the enhanced speech signal
than the original method, meanwhile successfully depresses noises, and moreover,
the hearing test verifies this point. The SNR comparisons between the original
method and the proposed method are shown in Table 1. Comparing with the
input SNR of Mic2, the output SNR enhanced by original method results in an
improvement of 10.8385 dB, while the proposed method results in an improve-
ment of 13.8420 dB. Comparing with the input SNR of Mic1, the two methods
both yield SNR improvements too, but the proposed method performs better.
Furthermore, we have carried out six other experiments, and the same conclusion
has been achieved.

Table 1. SNR comparison of the original and the proposed method

Input SNRs (dB) Output SNRs (dB)

Mic1 Mic2 Original method Proposed method
16.4835 8.3949 19.2334 22.2369

6 Conclusion

A new speech enhancement method in subband was proposed in this paper. The
performance of the ANC was analyzed in detail, and a rule to decide in which
subbands the ANC would be executed was proposed. Besides, the efficient time-
frequency method was introduced in the system. Simulation results show the
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effectiveness of the proposed method. Especially, the listening tests show that it
causes less distortion on the enhanced speech signal than original method [1].
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Abstract. The sequential blind signal extraction method with a linear
predictor is proposed. The Kalman filter is introduced to overcome the
problem of the choice of the linear predictor coefficients. Using a defla-
tion technique, the proposed algorithm is able to sequentially recover
the source signals one-by-one. Simulation results verify the validity and
performance of the proposed algorithm.

1 Introduction

Over the past decade blind source separation(BSS) has received much research
attention. The objective of BSS is to recover source signals from their mixture
without prior information on the source signals and mixing channel. This class of
signal processing techniques can be used in many areas such as communications,
medical signal processing, speech recognition, image restoration, etc. [1,2].

There are two approaches for recovering the original source signals, namely,
the simultaneous separation approach [2,3,4,5] and the extraction approach. In
the extraction approach, the source signals are extracted one-by-one by elim-
inating the the already extracted sources from their mixtures with deflation
techniques. Many blind source extraction (BSE) algorithms use the property
of sparseness [6] or high-order statistics [7,8,9] to extract a specific signal. But
they often have high computation load. Thus the versatile extraction algorithms
based on second-order statistics (SOS) [10,11,12] become popular. A class of
SOS approaches employing a linear predictor was analyzed [13], which proposed
a new method to perform one source extraction based on the normalized mean
square prediction error. The key to the success of the proposed algorithm is the
choice of the linear predictor coefficients.

We therefore address this problem by introducing the Kalman filter [14] to
estimate the linear predictor coefficients. The simulation results confirm the
validity of the proposed method.

2 Proposed Algorithm

The observed sensor signals at discrete time t can be expressed through the
following linear model

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 758–763, 2007.
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x(t) = As(t) t = 0, 1, 2, · · · (1)

where x(t) is an n × 1 sensor vector, s(t) is an n × 1 unknown mixing matrix,
and the subscript t denotes time index.

To cope with ill-conditioned cases, we first decorrelate the sensor signals x(t)
by a linear transformation, i.e., x1(t) = V x(t) such that E

{
x1(t)xT

1 (t)
}

= In,
where V is a prewhitening matrix.

To extract one of the sources, we can employ a linear neural network cascaded
with a linear predictor, where the input-output relation of the network and the
prediction error are given, respectively, as follows:

y1(t) = wT
1 (t)x1(t), (2)

and
e1(t) = y1(t) − BT

1 ỹ1(t), (3)

where the predictor coefficient vector B1 = [b1, b2, · · · , bP ]T with P length and
ỹ1(t) = [y1(t−1), y1(t−2), · · · , y1(t−P )]T . It has been pointed out in [13] a single
source can be recovered by minimizing the normalized mean square prediction
error under the constraint ||w1(t) = 1||. This way, the cost function was proposed
as

J1(w) =
E{e2

1(t)}
E{y2

1(t)}
. (4)

After prewhitening process, the cost function J1(w) becomes

J1(w) = E{e2
1(t)}. (5)

It yields the online update rule in [13]:

w1(t + 1) = w1(t) − μe1(t)x̃1(t), (6)

where μ is learning rate and

x̃1(t) = x1(t) −
P∑

p=1

bpx1(t − p). (7)

The update is followed by the normalization of the demixing vector

w1(t + 1) = w1(t + 1)/
√

wT
1 (t + 1)w1(t + 1). (8)

Unfortunately, the algorithm’s performance strongly depends on the choice
of the linear predictor coefficients B [13]. However, due to the blind nature of
the problem, the AR coefficients of the source signals are not known in advance.
Therefore it is difficult to find such an optimal linear predictor. Thus they are
just generated randomly, which, as a result, has negative influence upon the
source extraction. In this paper, we use the Kalman filter [14] to estimate the
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linear predictor coefficients so as to improve the extraction performance. For
simplicity, we transform the eqn. (3) to be

y1(t) = BT
1 ỹ1(t) + e1(t). (9)

Since B1, the linear predictor coefficients vector, is unknown but invariable, it
is can be described by

B1(t + 1) = B1(t). (10)

In state-space expression, the eqn. (9) and the eqn. (10) are called observation
and state equations, respectively. Denote by B̂1(t) the estimation of B1(t) and by
Q(t) the estimation covariance matrix. B̂1(t) and Q(t) are given by the Kalman
filter equations

K1(t) = Q1(t)ỹ1(t)
[
ỹT
1 (t)Q1(t)ỹ1(t) + σ2

1
]−1

, (11)

B̂1(t + 1) = B̂1(t) + K1(t)v1(t), (12)

and
Q1(t + 1) = Q1(t) − K1(t)ỹT

1 (t)Q1(t), (13)

where v1(t) = y1(t) − B̂T
1 ỹ1(t) and σ2

1 indicates the variance of e1(t). As it is
well known the Kalman filter is optimal in estimating B1 when the observa-
tion and state equations are of the form in (9) and (10). Thus the unknown
linear predictor coefficients vector B1 used to obtain e1(t) in (3) and x̃1(t)
in (7) is substituted by B̂1(t). Therefore the eqns. (3)-(8) combined with the
Kalman filter equations (11)-(13) are used to extract the first source signal. Fi-
nally, the extraction process could be easily generalized for extraction of next
sources, say, y2, · · · , yn, in cooperation with the deflation procedure described
below.

Now let us suppose that yj has been extracted, where the subscript j also
indicates the total number of source signals being extracted so far. We exploit
the knowledge of yj to generate the new input vector xj+1 which will not include
the already extracted signals yj . This can be easily carried out by the linear
transformation

xj+1(t) = xj(t) − w̃j(t)yj(t). (14)

The problem now is to get the appropriate w̃j(t). Since yj(t) is the estimated
source signal we seek the w̃j(t) so as to remove the extracted signal from mix-
ture signal. Although the ideal condition is that the components of xj+1(t) are
independent to yj(t) respectively, the weaker condition, decorrelation, can find
out the appropriate w̃j(t). Assume yj(t) and xj+1(t) are uncorrelated, it holds

E {yj(t)(xj(t) − w̃j(y)yj(t))}
= E {yj(t)} E {xj(t) − w̃j(t)yj(t)}
= 0. (15)
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Then we have
E {yj(t)xj(t)} − w̃j(t)E

{
y2

j (t)
}

= 0. (16)

It yields

w̃j(t) =
E {yj(t)xj(t)}

E
{
y2

j (t)
} . (17)

The deflation algorithm (17) is also derived in [15], which obtains it by minimiz-
ing the energy function J̃j(w̃j(t)) = 1

2‖xj+1‖2.
The deflation rule (14) and (17) can be continued until all of the estimated

source signals are recovered. In every extraction operation the weight learning
rules (3)-(8) combined with the Kalman filter equations (11)-(13) are used to
extract the source signal.

3 Simulations

In our simulations, we use four source signals s1, · · · , s4 as shown in Fig. 1. They
can be found in the file ABio7.mat provided by the ICALAB toolbox with the
book [2]. The source signals were mixed by the randomly mixing matrix

A =

⎡

⎢
⎢
⎣

−0.0001 0.0269 −0.0392 0.0155
−0.0172 −0.0034 −0.0112 0.0230
0.0543 −0.0253 −0.0705 −0.0148
0.0125 1.0118 0.0459 0.0008

⎤

⎥
⎥
⎦ .
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Fig. 1. Source sinals

Firstly, we use two algorithms to extract the first signal. One is the algorithm
in [13], for which the linear predictor coefficient vector B is randomly given.
Simulation results indicates the extracting performance varies with the choice
of B. The relative good result is shown in Fig. 2(a). Another algorithm is our
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Fig. 2. The first extracted signal:(a) is recovered by the algorithm [13]; (b) is by our
algorithm

algorithm, for which B is given by the Kalman filter. The extracted signal is given
in Fig. 2(b). Obviously, the first extracted signal by our algorithm is clearer, while
the one by [13] is slightly mixed by other source signals.

Fig. 3 shows the sequential extraction results by our proposed extraction algo-
rithm and the deflation method (17). The extracted signals successfully recover
the source signals except for the amplitude and permutation ambiguity.
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Fig. 3. The sequentially extracted signals by our approach

4 Conlusions

Developing algorithm by linear predictor is one of the trends in BSE. However,
the linear predictor coefficients heavily affect the extraction results. We introduce
the Kalman filter to estimate the linear predictor coefficients. This measure
can help to improve the extraction performance. Then we propose a deflation
technique to accomplish recovering source signals sequentially. The simulation
results verify the new extraction and deflation method.
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Abstract. This paper presents a new approach to speed up the operation of time 
delay neural networks for fast code detection. The entire data are collected 
together in a long vector and then tested as a one input pattern. The proposed 
fast time delay neural networks (FTDNNs) use cross correlation in the 
frequency domain between the tested data and the input weights of neural 
networks. It is proved mathematically and practically that the number of 
computation steps required for the presented time delay neural networks is less 
than that needed by conventional time delay neural networks (CTDNNs). 
Simulation results using MATLAB confirm the theoretical computations. 

1   Introduction 

Recently, time delay neural networks have shown very good results in different areas 
such as automatic control, speech recognition, blind equalization of time-varying 
channel and other communication applications. The main objective of this research is 
to reduce the response time of time delay neural networks. The purpose is to perform 
the testing process in the frequency domain instead of the time domain. Our approach 
was successfully applied for sub-image detection using fast neural networks (FNNs) 
as proposed in [1,2,3]. Furthermore, it was used for fast face detection [7,9], and fast 
iris detection [8]. Another idea to further increase the speed of FNNs through image 
decomposition was suggested in [7].  

FNNs for detecting a certain code in one dimensional serial stream of sequential data 
were described in [4,5]. Compared with conventional neural networks, FNNs based on 
cross correlation between the tested data and the input weights of neural networks in the 
frequency domain showed a significant reduction in the number of computation steps 
required for certain data detection [1,2,3,4,5,7,8,9,11,12].  Here, we make use of our 
theory on FNNs implemented in the frequency domain to increase the speed of time 
delay neural networks. The idea of moving the testing process from the time domain to 
the frequency domain is applied to time delay neural networks. Theoretical and practical 
results show that the proposed FTDNNs are faster than CTDNNs. In section 2, our 
theory on FNNs for detecting certain data in one dimensional matrix is described. 
Experimental results for FTDNNs are presented in section 3.  
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2   Fast Code Detection Using Cross Correlation in the Frequency 
Domain 

Finding a certain code/data in the input one dimensional matrix is a searching 
problem. Each position in the input matrix is tested for the presence or absence of the 
required code/data. At each position in the input matrix, each sub-matrix is multiplied 
by a window of weights, which has the same size as the sub-matrix. The outputs of 
neurons in the hidden layer are multiplied by the weights of the output layer. When 
the final output is high, this means that the sub-matrix under test contains the required 
code/data and vice versa. Thus, we may conclude that this searching problem is a 
cross correlation between the matrix under test and the weights of the hidden neurons.   

The convolution theorem in mathematical analysis says that a convolution of f with 
h is identical to the result of the following steps: let F and H be the results of the 
Fourier Transformation of f and h in the frequency domain. Multiply F and H* 
(conjugate of H) in the frequency domain point by point and then transform this 
product into the spatial domain via the inverse Fourier Transform. As a result, these 
cross correlations can be represented by a product in the frequency domain. Thus, by 
using cross correlation in the frequency domain, speed up in an order of magnitude 
can be achieved during the detection process [1,2,3,4,5,7,8,9,14]. In the detection 
phase, a sub matrix I of size 1xn (sliding window) is extracted from the tested matrix, 
which has a size 1xN, and fed to the neural network. Let Wi be the matrix of weights 
between the input sub-matrix and the hidden layer. This vector has a size of 1xn and 
can be represented as 1xn matrix. The output of hidden neurons h(i) can be calculated 
as follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih                                        (1) 

where g is the activation function and b(i) is the bias of each hidden neuron (i). 
Equation 1 represents the output of each hidden neuron for a particular sub-matrix I. It 
can be obtained to the whole input matrix Z as follows: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk)   Z(uk)(iWg(u)ih                               (2) 

Eq.2 represents a cross correlation operation. Given any two functions f and d, 
their cross correlation can be obtained by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x)                                    (3) 

Therefore, Eq. 2 may be written as follows [1]: 

( )ibZiWgih +⊗=                                              (4) 

where hi is the output of the hidden neuron (i) and hi (u) is the activity of the hidden 
unit (i) when the sliding window is located at position (u) and (u) ∈ [N-n+1].  
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Now, the above cross correlation can be expressed in terms of one dimensional 
Fast Fourier Transform as follows [1]: 

( ) ( )( )iW*FZF1FZiW •−=⊗                                          (5) 

Hence, by evaluating this cross correlation, a speed up ratio can be obtained 
comparable to conventional neural networks. Also, the final output of the neural 
network can be evaluated as follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u)                                    (6) 

where q is the number of neurons in the hidden layer. O(u) is the output of the neural 
network when the sliding window located at the position (u) in the input matrix Z. Wo 

is the weight matrix between hidden and output layer. 

The complexity of cross correlation in the frequency domain can be analyzed as 
follows: 

1- For a tested matrix of 1xN elements, the 1D-FFT requires a number equal to 
Nlog2N

 of complex computation steps [13]. Also, the same number of complex 
computation steps is required for computing the 1D-FFT of the weight matrix at each 
neuron in the hidden layer.  
2- At each neuron in the hidden layer, the inverse 1D-FFT is computed. Therefore, q 
backward and (1+q) forward transforms have to be computed. Therefore, for a given 
matrix under test, the total number of operations required to compute the 1D-FFT is 
(2q+1)Nlog2N. 
3- The number of computation steps required by FNNs is complex and must be 
converted into a real version. It is known that, the one dimensional Fast Fourier 
Transform requires (N/2)log2N

 complex multiplications and Nlog2N complex 
additions [13]. Every complex multiplication is realized by six real floating point 
operations and every complex addition is implemented by two real floating point 
operations. Therefore, the total number of computation steps required to obtain the 
1D-FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                                          (7) 

which may be simplified to: 

ρ=5Nlog2N                                                           (8) 

4- Both the input and the weight matrices should be dot multiplied in the frequency 
domain. Thus, a number of complex computation steps equal to qN should be 
considered. This means 6qN real operations will be added to the number of 
computation steps required by FNNs.  
5- In order to perform cross correlation in the frequency domain, the weight matrix 
must be extended to have the same size as the input matrix. So, a number of zeros = 
(N-n) must be added to the weight matrix. This requires a total real number of 
computation steps = q(N-n) for all neurons. Moreover, after computing the FFT for 
the weight matrix, the conjugate of this matrix must be obtained. As a result, a real 
number of computation steps = qN should be added in order to obtain the conjugate of 
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the weight matrix for all neurons.  Also, a number of real computation steps equal to 
N is required to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These 
(N/2) complex numbers are multiplied by the elements of the input matrix or by 
previous complex numbers during the computation of FFT. To create a complex 
number requires two real floating point operations. Thus, the total number of 
computation steps required for FNNs becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N                                (9) 

which can be reformulated as: 

           σ=(2q+1)(5Nlog2N)+q(8N-n)+N                                     (10) 

6- Using sliding window of size 1xn for the same matrix of 1xN pixels,                 
q(2n-1)(N-n+1) computation steps are required when using CTDNNs for certain code 
detection or processing (n) input data. The theoretical speed up factor η can be 
evaluated as follows: 

   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-q(2n

2 +++
+=η                                  (11) 

3   Simulation Results 

Time delay neural networks accept serial input data with fixed size (n). Therefore, the 
number of input neurons equals to (n). Instead of treating (n) inputs, our new approach 
is to collect all the input data together in a long vector (for example 100xn). Then the 
input data is tested by time delay neural networks as a single pattern with length L 
(L=100xn). Such a test is performed in the frequency domain as described in section II. 
Complex-valued neural networks have many applications in fields dealing with 
complex numbers such as telecommunications, speech recognition and image 
processing with the Fourier Transform [6,10]. Complex-valued neural networks mean 
that the inputs, weights, thresholds and the activation function have complex values. In 
this section, formulas for the speed up ratio with different types of inputs will be 
presented. The special case of only real input values (i.e. imaginary part=0) will be 
considered. Also, the speed up ratio in the case of a one and two dimensional input 
matrix will be concluded. The operation of FNNs depends on computing the Fast 
Fourier Transform for both the input and weight matrices and obtaining the resulting 
two matrices. After performing dot multiplication for the resulting two matrices in the 
frequency domain, the Inverse Fast Fourier Transform is calculated for the final 
matrix. Here, there is an excellent advantage with FNNs that should be mentioned. The 
Fast Fourier Transform is already dealing with complex numbers, so there is no change 
in the number of computation steps required for FNNs. Therefore, the speed up ratio in 
the case of complex-valued time delay neural networks can be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 

Multiplication of (n) complex-valued weights by (n) real inputs requires (2n) real 
operations. This produces (n) real numbers and (n) imaginary numbers. The addition 
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of these numbers requires (2n-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(2n-1)(N-n+1)                                                       (12) 

The speed up ratio in this case can be computed as follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+=η                                    (13) 

The theoretical speed up ratio for searching short successive (n) data in a long 
input vector (L) using complex-valued time delay neural networks is shown in  
Tables 1, 2, and 3. Also, the practical speed up ratio for manipulating matrices of 
different sizes (L) and different sized weight matrices (n) using a 2.7 GHz processor 
and MATLAB is shown in Table 4.  

Table 1. The theoretical speed up ratio for time delay neural networks (1D-real values input 
matrix, n=400) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

10000 4.6027e+008 4.2926e+007 10.7226 
40000 1.8985e+009 1.9614e+008 9.6793 
90000 4.2955e+009 4.7344e+008 9.0729 

160000 7.6513e+009 8.8219e+008 8.6731 
250000 1.1966e+010 1.4275e+009 8.3823 

Table 2. The theoretical speed up ratio for time delay neural networks (1D-real values input 
matrix, n=625) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

10000 7.0263e+008 4.2919e+007 16.3713 
40000 2.9508e+009 1.9613e+008 15.0452 
90000 6.6978e+009 4.7343e+008 14.1474 

160000 1.1944e+010 8.8218e+008 13.5388 
250000 1.8688e+010 1.4275e+009 13.0915 

Table 3. The theoretical speed up ratio for time delay neural networks (1D-real values input 
matrix, n=900) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

10000 9.823 e+008 4.2911e+007 22.8933 
40000 4.2206e+009 1.9612e+008 21.5200 
90000 9.6176e+009 4.7343e+008 20.3149 

160000 1.7173e+010 8.8217e+008 19.4671 
250000 2.6888e+010 1.4275e+009 18.8356 
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Table 4. Practical speed up ratio for time delay neural networks (1D-real values input matrix) 

Length of 
input matrix 

Speed up ratio 
(n=400) 

Speed up ratio 
(n=625) 

Speed up ratio 
(n=900) 

10000 17.88 25.94 35.21 
40000 17.19 25.11 34.43 
90000 16.65 24.56 33.59 
160000 16.14 24.14 33.05 
250000 15.89 23.76 32.60 

B) For a two dimensional input matrix 

Multiplication of (n2) complex-valued weights by (n2) real inputs requires (2n2) real 
operations. This produces (n2) real numbers and (n2) imaginary numbers. The addition 
of these numbers requires (2n2-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(2n2-1)(N-n+1) 2                                                (14)  

The speed up ratio in this case can be computed as follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+=η                           (15) 

The theoretical speed up ratio for detecting (nxn) real valued submatrix in a large 
real valued matrix (NxN) using complex-valued time delay neural networks is shown 
in Tables 5, 6, 7. Also, the practical speed up ratio for manipulating matrices of 
different sizes (NxN) and different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Table 8.  

Table 5. The theoretical speed up ratio for time delay neural networks (2D-real values input 
matrix, n=20) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 3.1453e+008 4.2916e+007 7.3291 
200x200 1.5706e+009 1.9610e+008 8.0091 
300x300 3.7854e+009 4.7335e+008 7.9970 
400x400 6.9590e+009 8.8203e+008 7.8898 
500x500 1.1091e+010 1.4273e+009 7.7711 

Table 6. The theoretical speed up ratio for time delay neural networks (2D-real values input 
matrix, n=25) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 4.3285e+008 4.2909e+007 10.0877 
200x200 2.3213e+009 1.9609e+008 11.8380 
300x300 5.7086e+009 4.7334e+008 12.0602 
400x400 1.0595e+010 8.8202e+008 12.0119 
500x500 1.6980e+010 1.4273e+009 11.8966 
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Table 7. The theoretical speed up ratio for time delay neural networks (2D-real values input 
matrix, n=30) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 5.4413e+008 4.2901e+007 12.6834 
200x200 3.1563e+009 1.9608e+008 16.0966 
300x300 7.9272e+009 4.7334e+008 16.7476 
400x400 1.4857e+010 8.8201e+008 16.8444 
500x500 2.3946e+010 1.4273e+009 16.7773 

Table 8. Practical speed up ratio for time delay neural networks (2D-real values input matrix) 

Size of input 
matrix 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 17.19 22.32 31.74 
200x200 17.61 22.89 32.55 
300x300 16.54 23.66 33.71 
400x400 15.98 22.95 34.53 
500x500 15.62 22.49 33.32 

2) In case of complex inputs  

A) For a one dimensional input matrix 

Multiplication of (n) complex-valued weights by (n) complex inputs requires (6n) real 
operations. This produces (n) real numbers and (n) imaginary numbers. The addition 
of these numbers requires (2n-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(4n-1)(N-n+1)                                              (16)  

The speed up ratio in this case can be computed as follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+=η                                (17) 

Table 9. The theoretical speed up ratio for time delay neural networks (1D-complex values 
input matrix, n=400) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 9.2111e+008 4.2926e+007 21.4586 
200x200 3.7993e+009 1.9614e+008 19.3706 
300x300 8.5963e+009 4.7344e+008 18.1571 
400x400 1.5312e+010 8.8219e+008 17.3570 
500x500 2.3947e+010 1.4275e+009 16.7750 

The theoretical speed up ratio for searching short complex successive (n) data in a 
long complex-valued input vector (L) using complex-valued time delay neural 
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networks is shown in Tables 9, 10, and 11. Also, the practical speed up ratio for 
manipulating matrices of different sizes (L) and different sized weight matrices (n) 
using a 2.7 GHz processor and MATLAB is shown in Table 12.  

Table 10. The theoretical speed up ratio for time delay neural networks (1D-complex values 
input matrix, n=625) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 1.4058e+009 4.2919e+007 32.7558 
200x200 5.9040e+009 1.9613e+008 30.1025 
300x300 1.3401e+010 4.7343e+008 28.3061 
400x400 2.3897e+010 8.8218e+008 27.0883 
500x500 3.7391e+010 1.4275e+009 26.1934 

Table 11. The theoretical speed up ratio for time delay neural networks (1D-complex values 
input matrix, n=900) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 1.9653e+009 4.2911e+007 45.7993 
200x200 8.4435e+009 1.9612e+008 43.0519 
300x300 1.9240e+010 4.7343e+008 40.6410 
400x400 3.4356e+010 8.8217e+008 38.9450 
500x500 5.3791e+010 1.4275e+009 37.6817 

Table 12. Practical speed up ratio for time delay neural networks (1D-complex values input 
matrix) 

Length of 
input matrix 

Speed up ratio 
(n=400) 

Speed up ratio 
(n=625) 

Speed up ratio 
(n=900) 

10000 37.90 53.58 70.71 
40000 36.82 52.89 69.43 
90000 36.34 52.47 68.69 
160000 35.94 51.88 68.05 
250000 35.69 51.36 67.56 

B) For a two dimensional input matrix 

Multiplication of (n2) complex-valued weights by (n2) real inputs requires (6n2) real 
operations. This produces (n2) real numbers and (n2) imaginary numbers. The addition 
of these numbers requires (2n2-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                                                  (18)  

The speed up ratio in this case can be computed as follows: 

   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(4n
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The theoretical speed up ratio for detecting (nxn) complex-valued submatrix in a 
large complex-valued matrix (NxN) using complex-valued neural networks is shown 
in Tables 13, 14, and 15. Also, the practical speed up ratio for manipulating matrices 
of different sizes (NxN) and different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Table 16.  

Table 13. The theoretical speed up ratio for time delay neural networks (2D-complex values 
input matrix, n=20) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 6.2946e+008 4.2916e+007 14.6674 
200x200 3.1431e+009 1.9610e+008 16.0281 
300x300 7.5755e+009 4.7335e+008 16.0040 
400x400 1.3927e+010 8.8203e+008 15.7894 
500x500 2.2197e+010 1.4273e+009 15.5519 

Table 14. The theoretical speed up ratio for time delay neural networks (2D-complex values 
input matrix, n=25) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 8.6605e+008 4.2909e+007 20.1836 
200x200 4.6445e+009 1.9609e+008 23.6856 
300x300 1.1422e+010 4.7334e+008 24.1301 
400x400 2.1198e+010 8.8202e+008 24.0333 
500x500 3.3973e+010 1.4273e+009 23.8028 

Table 15. The theoretical speed up ratio for time delay neural networks (2D-complex values 
input matrix, n=30) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 1.0886e+009 4.2901e+007 25.3738 
200x200 6.3143e+009 1.9608e+008 32.2021 
300x300 1.5859e+010 4.7334e+008 33.5045 
400x400 2.9722e+010 8.8201e+008 33.6981 
500x500 4.7904e+010 1.4273e+009 33.5640 

Table 16. Practical speed up ratio for time delay neural networks (2D-complex values input 
matrix) 

Size of 
input matrix 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 38.33 46.99 62.88 
200x200 39.17 47.79 63.77 
300x300 38.44 48.86 64.83 
400x400 37.92 47.23 65.99 
500x500 37.32 46.89 64.89 
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4   Conclusion 

New FTDNNs have been presented. Theoretical computations have shown that 
FTDNNs require fewer computation steps than conventional ones. This has been 
achieved by applying cross correlation in the frequency domain between the input 
data and the input weights of time delay neural networks. Simulation results have 
confirmed this proof by using MATLAB. This algorithm can be successfully applied 
to any application that uses time delay neural networks. 
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Abstract. During preceding theory study and engineering application, we 
dealed with the parameter estimation of one-dimension long memory process 
actually, and rarely take into account high dimensions. There are few papers 
about it. In this paper, using the decorrelation property of discrete wavelet 
transform, high dimension situation (mainly 2D) is simplified to 1D and 
corresponding referrers are improved according to new idea, combining with 
matrix transform. So the computation complexity is reduced effectively and 
estimation precision is satisfied. Some experiment results show that this 
algorithm has a better general performance. 

1   Introduction 

In theory study and engineering, there is a sort of time series or stochastic process, 
called long memory processes with the property that the process which is widely 
separated still has a nonnegligible correlation [1]. Just for their wide existence in 
many fields, research of this type of processes has great scientific value and broad 
application background [2, 3]. Especially estimation of process parameters is very 
popular in current research.  

For the long term correlation of long memory process, there exists a problem in 
Traditional Maximum Likelihood Estimation (TMLE), which is the great 
computational burden because of the determination and matrix inversing are 
computationally expensive to evaluate, even to moderate the length of time series. 
This leads to less efficient implement to the theory. Wavelets are useful tools to 
handle the signal, and good at analyzing the object both in time and frequency 
domains locally. Due to decorrelating even highly correlated series and having the 
orthnormal feature, wavelet is studied in scientific work broadly, and be given an 
honorary name-- “mathematic microscope” [4]. 

                                                           
∗ This work is partially supported by NSFC (60434020, 60374020), International Cooperative 

Project Foundation (0446650006), Henan Outstanding Youth Science Fund (0312001900), 
and Ministry of Education Science Foundation (205092). 
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The paper developed a new method combining wavelet transform with TMLE, 
named MMLE [5], simplified previous given two computations with local analysis 
of wavelet, and applied it to a kind of long multivariate memory processes with 
broad application background. The approach decreases the computation burden 
when estimate the parameter with satisfied precision. For the convenience, the 
paper mainly aimed at two-dimension long memory process without losing 
generaltion. 

2   Model for Long Memory Process and Traditional Estimation to 
Parameters 

2.1   Model for Long Memory Process  [6] 

Definition 1. we call )}({ kx as long memory process, if the spectral density function 

(SDF) of stochastic process )}({ kx satisfies next two conditions, 

 （1） α||)( ffS ∝x  

（2） ∞→)( fSx ，当 0<α ， 0→f  

Definition 2. pure power low time series (PPLTS) 
We say that discrete parameter time series )}({ kx is a pure power law time series if its 

SDF has the form. 

2
1

2
1,||)( ≤≤−= ffCfS S

α
x ， 0>SC  

For 01 <<− α , the PPLTS is the stationary long memory time series. 

Definition 3. cross-spectrum 
The cross-spectrum matrix of two dimension time series )}({ kz can be obtained via 

the formula  
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is the cross spectral density ,and xyγ is cross 

covariance. 
Cross covariance matrix of the stationary time series is written be 

[ ][ ]{ }TkEkkEkE )}({)()}({)()( τττ +−+−= zzzzP  

where τ is the integer, symbol { }⋅E  denotes the expectation; Superscript T denotes 

transpose. Without losing generally, we only studied the time series with zero mean in 
paper. 
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2.2   Traditional Maximum Likelihood Estimation to Parameters of  
Two-Dimensions Process 

Suppose now that we have a two dimension time sequence 
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two components { })(kx 、 { })(ky with zero mean and unknown parameters 

],,[ 21 nααα=α , and its cross covariance matrix is 
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where )()( ττ yxxy PP = ,and suppose )(τxP 、 )(τxyP 、 )(τyP 、 )(τyxP  are 

descending functions about variate τ . 
Define a portion of a time series 
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The realization of time series is a two dimension scalar with corresponding length. 

[ ])1(,),1(),()1,( −++=−+ NkzkzkzNkkZ TTT  

or  

⎥
⎦

⎤
⎢
⎣

⎡
−+
−+

=−+
)1,(

)1,(
)1,(

NkkY

NkkX
NkkZ  

where 

[ ]TNkxkxkxNkkX )1(,),1(),()1,( −++=−+  

[ ]TNkykykyNkkY )1(,),1(),()1,( −++=−+  

,2,1;)(),( 1 =∈ kRkykx  

Under the assumption that )1,( −+ NkkZ obeys a multivariate Gaussian 

distribution, the likelihood function [7]is given by 
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Now maximization of (2) is equivalent to minimization of the log likelihood 
function 

( ) ( )
.)log(

)2log())1,(log(2)1,(
1ZZ

NNkkZLNkkZl
T −+=

−−+−≡−+

ZZ PP

αα π
 (3) 

We can obtain estimated parameter ]ˆ,,ˆ,ˆ[ˆ 21 nααα=α  by solving likelihood 

function (3). 
In theory, we can get the estimation of parameter α  utilizing traditional 

likelihood estimation method. However, one of the bottlenecks of TMLE is its great 
computational burdens. ( )zαL  can be very time consuming, because 

determination ZP and inverse of ZP are computationally expensive to evaluate, even 

for moderate N [8]. So researches about decreasing the computation complexity of 
likelihood function are valuable both on academic and practical. 

3   Multiscale Estimation for Two-Dimensions Time Series 

3.1   Basic Theory of Wavelet Transform 

A wavelet filter }1,,0:{ −= Llhl , where L is the width of the filter and must be an 

even integer, must satisfy the following three properties: 
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for all nonzero integers n . 
The required second filter is the ‘quadrature mirror’ filter (QMF) { }lg that 

corresponds to { }lh [4]: 
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According (5)、(7), the filters satisfy   

                1
1

0

2 =∑
−

=

L

l
lg   (8) 



778 C.-L. Wen et al. 

             0
1

0

=∑
−

=

L

l
ll gh   (9) 

3.2   Multiscale Transform for Two-Dimension Time Series 

In order to represent wavelet transform theory conveniently, we express a time series 
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where subscript V denotes the smoothing space where get time series. Let superscript 

M be finest scale and ML  is the linear operator. Suppose iH and iG  are the scale 

operator and wavelet operator to make wavelet transform for one dimension time 
series )1,( −+ NkkX  and )1,( −+ NkkY  separately. So the decomposition 

transformation from )(m th scale to )1( −m th scale can be written be  
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where superscript *denotes matrix conjugate transpose, then the smooth operator and 
detailed operator in (10)-(12) can be expressed as[9] 
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Then the decomposition and reconstruction can be written be 
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where ZW is called wavelet operator 
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and because of orthonormal ,satisfies  
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Theorem 1. Let ZWγ Z= ,we can obtain 
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3.3   Multiscale Analysis to the Property of Two-Dimension Sequence 
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According above knowledge, we got the result 
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3.4   Multiscale Covariance Analysis 

Lemma 1 [10] 

Suppose that block matrixes satisfy ⎥
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According above knowledge, we obtained the result 
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Then γP became a diagonal matrix. 

With above theorem 3.3, we got the result 
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Where XYXXYYYY PPPPB 1
1

−−= , XY
1

YYXyXX PPPPP −−=2 ,then 1−
γP is simplified . 

Remark 1. Using MMLE, when we estimated parameters, not only correlation in 
each component become weaker but also between components. The non-diagonal 
elements in every diagonal block are very small, so we can approximate every small 
matrix by a diagonal matrix. Computation complexity decreases to )(NO  from 

)( 3NO . 

3.5   Simulation and Precision Analysis 

In this subsection, the setup of simulation environment and the statistics are listed in 
table 1 and 2 respectively. Studied object is a long memory process- pure power 
process(PPLP) 
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Table 1. Simulation environment 

selected  
parametersα

the length of sampled  
series N

repeating times M  selected wavelet filter 

4.01 −=α
75.02 −=α 256 1024 Daubechies(4) 

 

Table 2. Researched statistic  

Sample Mean α ample biasα~ Sample standard 
deviation (SD) 

Root Mean Square 
Error (RMSE) 
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Table 3. Performance comparison 

α Traditional MLE MMLE Precision losing 
sample bias (α~ ) 0.0056 0.0157 2.525% 
standard bias (SD) 0.0577 0.0625 7.682% 
Root Mean Square 

Error RMSE 0.0591 0.0644 8.229% 
sample bias  (α~ ) 0.0089 0.0276 2.493% 

standard  
bias  (SD) 0.0330 0.0348 5.455% 
Root Mean 

Square Error 
RMSE 

0.0366 0.0389 6.284% 

Complexity  
comparsion 

710 210
 

From table 3, we can find the precision loss is rather small if using the method we 
propose in paper, but, compared with traditional MLE, computation complexity 
decreases greatly. So MSMLE and MSLSE’s performance is quite well. And the 
Multi-Scale estimation method can be used as a good alternative of parameter 
estimation. 
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Abstract. The principal aim of this work is to demonstrate, from an
empirical point of view, the effectiveness of a previously proposed tech-
nique for the Blind Source Separation (BSS) with Post Non Linear (PNL)
underdetermined instantaneous mixing model (uBSS), in the more com-
plex and realistic case where delayed sources are considered in the linear
part of the mixing (PNL-uBSS with delays). The proposed approach is
composed of two consecutive stages: in the first stage the inverse nonlin-
earities are estimated by Gaussianization of the mixtures; in the second
stage source signals are extracted from the linearized mixtures using a
three step approach already known in the literature for linear delayed
uBSS. An improved technique based on Extended Gaussianization is
also provided for the estimation of inverse nonlinearities. Experimental
results using synthetic mixtures of real world data (speech signals) are
given to prove the effectiveness of the proposed approach.

1 Introduction

The Blind Source Separation (BSS) problem deals with the identification and
separation of unknown source signals, only knowing a certain number of their
mixtures, when the generative mixing model is supposed to be unknown as well.
The scientific community has paid more and more attention to the BSS problem
in the last decades, because of its potential applications in several fields of signal
processing, as in telecommunications or in bioinformatics, just to name a few.

To make the BSS problem solvable, some further assumptions on the gener-
ating mixing model and/or knowledge on the source statistics (e.g. the source a
priori distribution) have to be introduced. Different formulations and proposed
approaches can be found in the literature, specially focusing on linear quadratic
mixing models [1], where as many mixtures as the sources to be recovered are
supposed to be available for the separation process. In such a case, under the
only assumption of statistically independent source signals, the separation prob-
lem becomes formally equivalent to a Independent Component Analysis (ICA)
problem, so that classical ICA techniques can be used [2]. A more challenging
but complex situation is obtained considering nonlinear mixing models. Indeed it

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 783–792, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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has been shown [3] that for these kinds of model, also under the only assumption
of statistically independent source signals, the original signals can be recovered
only up to a nonlinear distortion, that is not allowable in most practical appli-
cations. For this reason only particular kinds of nonlinearities must be used. A
particularly interesting nonlinear mixing model is the Post Non Linear (PNL)
model [3], that can be used in all real situations where a system with a linear
transmission channel and with sensors introducing nonlinear memoryless distor-
tions (e.g.: saturation-like distortions) has to be modeled. The quadratic PNL
BSS problem is separable (i.e. it admits unique solution up to the usual permu-
tation and scaling indeterminacies) under the only assumption of statistically
independent source signals.

In this work the underdetermined (number of mixtures smaller that number
of sources) PNL mixing model with delays is studied, and it can be considered
a more realistic improvement of a previously described technique [4]. It is well
known that in the overcomplete case also when the mixing model is supposed
to be available, the separation problem cannot be considered solved. Sources are
usually recovered by an estimation process exploiting information about the a
priori amplitude distribution. Therefore the separation procedure can be split
in two consecutive stages: in the first one nonlinearities are compensated, ob-
taining a linear underdetermined BSS problem; in the succeeding stage classical
linear BSS techniques can be used. Here nonlinearities are recovered by Gaus-
sianization of the known mixtures and a subsequent step for compensation of
residual nonlinearities (Extended Gaussianization); a three step approach for
sparse sources [5] is used for the linear delayed demixing. It should be high-
lighted since now that the Gaussianization technique does not lead to an exact
estimation of nonlinearities, but it is particularly useful when the nonlinearities
does not allow to get any estimation of the mixing model, making the separation
not feasible. Experimental results given in Sec. 4 support these remarks.

2 Delayed Post Nonlinear BSS Mixing Model

Let s1 (t) , · · · , sn (t), for t = 1, . . . T , be the n unknown source signals to be
recovered only knowing the m mixtures signals x1 (t) , · · · , xm (t). Denoting s (t)
and x (t) the source and the mixture vectors respectively, the nonlinear delayed
mixing model can be written in the most general way as:

x (t) =

⎡

⎢
⎣

h1
(
s1 (t − τ11) · · · sn (t − τ1n)

)

...
hm

(
s1 (t − τm1) · · · sn (t − τmn)

)

⎤

⎥
⎦ , H (.) =

⎡

⎢
⎣

h1 (.)
...

hm (.)

⎤

⎥
⎦ : Rn → Rm,

where H (.) is an unknown nonlinear mapping to be estimated. If a generic
non linearity H (.) is used, also considering instantaneous (τij = 0, ∀i, j) and
complete (m = n) mixing for independent sources, we can not get a solution to
the BSS problem. A specific kind of nonlinearity has to be chosen to make the
problem solvable: following the notation in Fig. 1, the generic mixture signal is
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supposed to be generated from a first linear mixing with delays, followed by a
component wise non linearity H (.), according to the following generative model:

xi (t) = hi

⎛

⎝
n∑

j=1

βijsj (t − τij)

⎞

⎠ , for i = 1, · · · , m, (1)

where τij and βij are unknown real-valued parameters, describing attenuations
and delays from the j-th source to the i-th sensor respectively. The n sources
sj (t) are supposed statistically independent and sparse (modeled by a Laplacian
distribution), whilst the nonlinearities hj (·) must be invertible and derivable and
B = [βij] a full rank matrix. Using the PNL model, the non linearity recovery
stage is independent from the successive linear demixing, so that the last stage
can be accomplished by using standard linear techniques for delayed BSS.

3 A Practical Approach to Separation

In this paragraph a new approach for independent source estimation for delayed
PNL-uBSS problem is introduced. The separation procedure is composed of two
successive stages: in the first one Gaussianization and Extended Gaussianiza-
tion techniques are used to get the inverse nonlinearities gi (Fig. 1), such that
gi ◦ hi are as much linear as possible. After nonlinearity compensation a linear
delayed uBSS problem needs to be solved; for this pourpose in this work a three
step approach [5] is used, made of: 1) geometric technique (potential function)
for attenuation matrix B recovery; 2) iterative technique for differential delays
recovery; 3) Maximum Likelihood (ML) based technique for source estimation.

3.1 First Stage: Non Linearity Recovery Using Gaussianization

The non-linearity recovery step is based on two fundamental considerations.
The first one is that the amplitude distribution of ui (due to Central limit
Theorem) is closer to a Gaussian distribution than the independent components
si, whilst the applied nonlinearity hi tends to distort it. Therefore a practical
statistical approach for nonlinearity compensation could be defined that makes
use of nonlinear functions g

′

i to transform the mixture signals xi in new signals
vi, with Gaussian amplitude distribution (Fig. 1). This transformation is called
Gaussianization and has been proposed in [7].

The second fundamental consideration is that (due to the practical limita-
tion of Central Limit Theorem) the amplitude distribution of ui is not exactly
Gaussian, but we assume it as close-to-Gaussian distribution. In order to obtain
a better nonlinearity compensation we can determine a second function g

′′

i us-
ing a parametric model based on the Cornish-Fisher Expansion [6], so that the
output signals zi is as similar as possible to statistical amplitude distribution of
ui. The global Post Non-Linear compensation functions are obtained by com-
position of either g

′

i and g
′′

i (gi = g
′

i ◦ g
′′

i ). After nonlinearity compensation the
signals zi could be considered as linear mixture with delays, so that we could
apply all known approaches to solve Linear uBSS with delays problems.
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Fig. 1. PNL-uBSS with delays problem: mixing model and separation structure

Gaussianization. Gaussianization is an invertible transformation T (ξ) that
transforms a random variable into a standard Gaussian random variable with
zero-mean and unitary variance. The Gaussianization transformation [7], [9] can
be written as

T (ξ) = Φ−1 (F (ξ)) , (2)

where Φ (.) is the Standard Normal Distribution and F (.) is the cumulative
distribution function (CDF) of input signal. F (.) is an unknown function, and it
can be estimated in different ways; for the sake of easiness, we can use empirical
CDF (ecdf) methods

F̂ (ξ) =
1

N + 1

N∑

k=1

I
(
ξ(k) ≤ ξ

)
, (3)

where N is the number of samples, ξ(k) is the k-th sample, and I
(
ξ(k) ≤ ξ

)

is a function with value 1 if ξ(k) ≤ ξ and 0 otherwise. A low-computational
implementation method for Gaussian transformation, limiting the influence of
outliers is the following

v(k) = Φ−1

(

c
rank

(
u(k)

)

N + 1
+

1
2
(1 − c)

)

, (4)

where rank(u(k)) indicates the position of u(k) in sorted (from smallest to
largest) sample vector, and c value is application dependent, but not critical.

Cornish-Fisher Expansion to Improve Nonlinearity Compensation. It
is known that for an ideal Gaussian distribution all cumulants of order higher
than two are equal to zero, whereas a distribution close to Gaussian, such as
xi amplitude distribution, can be modeled using an estimation of them. With
Extended Gaussianization method, we want to create a parametric function to
model the remaining nonlinearity after Gaussian transformation, using vi as
input and skewness and kurtosis as parameters. Cornish and Fisher have pro-
pounded a particular expansion in which the terms are polynomial functions
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of the standard Gaussian quantiles, with functions of known cumulants as co-
efficients [6]. The four-term Cornish-Fisher (C-F) expansion for α-quantile I is

ξ (ηα) � ηα +
1
6

(
η2

α − 1
)
k3 +

1
24

(
η3

α − 3ηα

)
k4 − 1

36
(
2η3

α − 5ηα

)
k2
3 , (5)

where k3 and k4 are skewness and kurtosis of x respectively, ηα is the α− quantile
of the standard Gaussian distribution, and ξ (ηα) is zero-mean and of unitary
variance. Since the distribution of zi is assumed to be close to Gaussian and vi

is the outcome of the Gaussian transformation, the C-F expansion can be used
to approximate zi in terms of vi

zi � vi +
1
6

(
v2

i − 1
)
k3,i +

1
24

(
v3

i − 3vi

)
k4,i − 1

36
(
2v3

i − 5vi

)
k2
3,i. (6)

In [6] the parameters k3 and k4 come out from the adaptation process respon-
sible for finding the independent components contained in the PNL mixtures,
assuming to be in the complete case. In our overcomplete case, we give a prac-
tical estimation of them by using the ones related to the vi variables, exploiting
the approximation limits of the Gaussianization process. This is not analytically
exact but has the advantage of being very effective in terms of computational
load and improvement of performances.

3.2 Second Stage: Three-Step Approach to Linear Delayed uBSS
Problem

After the recovery of nonlinearities we have to face a linear underdetermined
and delayed BSS problem, to solve which a three step approach described in [5]
has been implemented. A brief overview of this technique can be found in the
remainder of this section; refer to [5] or [10] for further details.

Supposing a perfect compensation of nonlinearities, from (1) we get

zi (t) =
n∑

j=1

βijsj (t − τij), for i = 1, · · · , m, (7)

and our aim is to recover both the mixing parameters and the source signals.
In the first step the Short Time Fourier Transform (STFT) Zi[k] (where k is
the frequency index) of linearized mixtures zi in (7) is computed over K-sample
frames. It can be shown that, under the assumptions of independent and sparse
source signals si, and exploiting linearity and the circular shift property of STFT,
the representation of Mag(Z) (amplitude of Z, where Z = [Zi]) tends to cluster
along certain directions, corresponding to the columns of the attenuation matrix
B, that can be thus be recovered, using a potential based clustering technique
on Z amplitudes; since sources can always be recovered up to a permutation and
a scaling factor, the columns of the attenuation matrix B are chosen of unitary
norm. In the two-dimensional case (m = 2), a potential function based approach
can be used [5]. Since the columns of B have been chosen of unitary norm, the
norm of vectors Z turns to be fixed.
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The second step deals with delays recovery. Since both Z and delay matrix
T = [τij] are unknown, only differential delays of source j between different
sensors can be determined. As can be esaily understood from (7), all the infor-
mation about delays is contained in Sj phase. Considering the two-dimensional
case (m = 2), if a phase correction exp(−j2πkR/K) (where R = [ρj/2; −ρj/2]
and ρ is the differential delay of j-th source between the two sensors) is applied,
a cluster reappears in the scatterplot of both the real and the imaginary part
of mixture amplitudes. The employed approach consists, thereby, in iteratively
adjusting the delay between the two sensor signals, until a cluster along Bj di-
rection (already known) reappears. At each iteration step the potential function
along the direction relative to source j is evaluated and the ρ̄ value that max-
imizes this function is used as an estimation of the corresponding differential
delay. This procedure must be executed for all sources, yielding the final esti-
mation of the delay matrix T, that together with the estimation of attenuation
matrix B allows to recover the whole linear mixing model with delays. This pro-
cedure can be easily extended to the case of m > 2 channels, by estimating the
differential delays between each pair of channels.

The third and last step of the algorithm is source estimation, needed because,
when m < n, the equation system (7), for all i’s is overcomplete, also knowing
the mixining parameters βij and τij . A Maximum Likelihood (ML) estimation of
sources is then performed, employing the previously inferred linear mixing para-
meters. Under the assumption of independent and laplacian distributed sources,
source estimation turns into a special formulation of a second order cone pro-
gramming problem

mins

j=1∑

n

Mag(Sj) under the constraint Z = WS, (8)

where W = B ∗ e−j2πkT/K and ∗ denotes the element wise matrix product
operator. Different techniques can be found in the literature to solve (8) (e.g.
[11],[10]).

4 Experimental Results

In order to show the validity of the proposed method several test simulations have
been performed by using synthetic mixtures of real speech signals and different
sets of mixing parameters and nonlinearities. Since, up to authors’ knowledge, no
other algorithm has been proposed in the literaure to hanlde the PNL-uBSS with
delays, no direct comparisons can be reported. In the following, we shall focus
on two test scenarios, differing for the type of component-wise nonlinearities
involved. Two male and one female speech signals (37k samples at 11025Hz
sampling frequency) are used and mixed-up to yield two observable sequences.
For objective evaluation of performances the Signal-to-Noise Ratio (SNR) and
the Itakura-Saito (IS) index have been employed. The SNR is defined as follows

SNR = 10 log
{
‖sk‖2

/ ‖sk − yk‖2
}

, (9)
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Fig. 2. a) Potential functions. b) scatterplot of PNL-uBSS mixtures with delays for
the first case study (strong nonlinearity).

where sk and yk are the original and the recovered k-th signals respectively. IS
calculates the spectral distance between the AR coefficients relative to related
signals and obtained by means of a 16-th order linear predictor. The IS measure
is very sensitive to the spectral mismatch in formant locations and is less affected
by the mismatch in spectral valleys. Such characteristics are closely related to
those of the human auditory system, that is why the IS index is widely used also
for subjective evaluation of the speech quality. As previously mentioned, the two
addressed experimental test sessions share the same linear mixing parameteri-
zation. In particular, the attenuation matrix is:

B =
[

cos (θ1) cos (θ2) cos (θ3)
sin (θ1) sin (θ2) sin (θ3)

]
, with θ1 = 0.1, θ2 = 0.6, θ3 = 1, 3(rad),

(10)
whereas the delay matrix (as known written in terms of differential delays) is:

D =
[

0 0 0
−10 4 8

]
. (11)

The first test considers the presence of strong nonlinearities having a relevant
distortion impact on the mixtures, by using the following functions h1 and h2:

x1 = h1 (u1) = u3
1,

x2 = h2 (u2) = tanh (2 ∗ u2) .
(12)

In Fig. 2a the potential functions for parameter estimation are depicted; they
have been calculated in the following case studies: linear, non-linear without
nonlinearity compensation, non-linear with compensation accomplished through
Gaussianization and non-linear with compensation accomplished through Ex-
tended Gaussianization. As we can observe, in the case of nonlinear mixtures
it is not possible to proceed with the mixing parameter and delay estimation
and so with the fulfilment of the separation procedure. In contrast, this can be
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Fig. 3. a) Potential functions. b) scatterplot of PNL-uBSS mixtures with delays for
the second case study (weak nonlinearity).

carried out if Gaussianization is applied. This can be also confirmed if we look
at the scatterplots in Fig. 2b.

Table 1 reports the values of the estimated parameters: it must be observed
that the attenuation matrix is perfectly recovered in the linear case study and
that the extended Gaussianization allows achieving a significant improvement
compared to the classic Gaussianization. In all situations the differential delays
are estimated correctly. In Table 2 the SNR and IS index values are reported,
confirming and the beneficial impact of the improved nonlinearity compensation
through the C-F expansion based method.

In the second test weak nonlinearity acting on the second mixture has been
used. Therefore the mixture equations become:

x1 = h1 (u1) = u1,
x2 = h2 (u2) = tanh (2 ∗ u2) + u2.

(13)

Looking at the plots in Fig. 3a, always related to the potential functions in
the four different case studies already considered above, it can be noted that
now it is possible to recover the unknown mixing parameters even neglecting the
nonlinearity compensation stage. In such a situation, the detection of potential
function peaks is not as straightforward as in the cases of Gaussianization based
approaches, indeed the achieved results are sensitive to the algorithm adopted
on purpose (the ones reported in table 2 are the best attained). This is also
confirmed by the fact that the first recovered source in the ”nonlinear” case
present unsatisfying SNR and IS values, whereas the performances are likely
uniform when Gaussianization is employed. Again, also in this test session, the
estimation of differential delays is not critic and the Extended Gaussianization
is preferable compared to the classic one.

Looking at achieved results from a global perspective, it can be highlighted
that in presence of weak nonlinearities the Gaussianization method is not as
much effective as in the presence of strong nonlinearities. Therefore its ben-
eficial impact on the source recovery procedure is particularly recommended
when mixtures are highly distorted by post-nonlinear functions. This observation



Gaussianization Based Approach for PNL Underdetermined BSS 791

confirms the overall efficiency of the practical Gaussianizaztion based approach
here proposed, even though the source separability properties of the method still
need to be theoretically analyzed: this surely represents an interesting issue for
future research.

Table 1. Attenuation coefficients estimated for the performed computer simulations.
Two are the case studies addressed, referred to (12) and (13) respectively.

θ1 = 0.10 θ1 = 0.60 θ1 = 1.30
Linear 0.1 0.6 1.3

Case Study 1
After Gaussianization 0.13 0.66 1.27

After Extended Gaussianiz 0.12 0.66 1.28

Case Study 2
Non Linear 0.25 1.1 1.47

After Gaussianization 0.12 0.66 1.27
After Extended Gaussianiz 0.11 0.66 1.28

Table 2. SNRs and IS index of recovered sources for the performed computer simula-
tions. Two are the case studies addressed, referred to (12) and (13) respectively.

SNR(dB) IS INDEXES
S1 S2 S3 S1 S2 S3

Linear 9.3 11.65 13.54 1,7E-3 1.10E-02 5.50E-03

Case Study 1
Non linear - - - - - -

Gaussianzation 1.84 3.83 3.51 6.90E-02 2.30E-01 7.70E-01
Ext. Gaussianiz. 2.08 4.09 3.84 6.20E-02 2.00E-01 6.50E-01

Case Study 2
Non linear 3.84 9,26 10,94 1.96E-02 4.90E-02 2.10E-02

Gaussianzation 6.57 8.62 9.89 1.20E-02 3.70E-02 1.30E-01
Ext. Gaussianiz. 7.1 9.15 10.65 9.60E-03 2.70E-02 1.00E-01

5 Conclusions

In this work the validity of a practical approach for speech source recovery for the
PNL-uBSS mixing with delays in the linear part of the mixing has been proved.
As previously noticed the Gaussianization and Extended Gaussianization tech-
niques do not allow to get a perfect recovery of nonlinearities, as amplitude
distributions of a linear mixtures are approximated with a Gaussian or close-
to-Gaussian distribution. Nevertheless experimental results given in Section 4
have shown that the inverse nonlinearity recovery obtained with the previously
introduced Gaussianization based techniques leads to an improved quality of
recovered signals, specially in presence of strong distortions. For these kinds of
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distortion the mixing parameters could not be recovered without any preprocess-
ing on the nonlinearities, so that the separation is not achievable.

Current efforts are on the development of a better estimation of the unknown
C-F parameters for further improvement of separation performances, whereas
future works will consider the presence of convolutive mixing with non lin-
ear distortion in order to achieve good performances also in real world data
situations.
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Regularized Alternating Least Squares

Algorithms for Non-negative Matrix/Tensor
Factorization
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Abstract. Nonnegative Matrix and Tensor Factorization (NMF/NTF)
and Sparse Component Analysis (SCA) have already found many po-
tential applications, especially in multi-way Blind Source Separation
(BSS), multi-dimensional data analysis, model reduction and sparse sig-
nal/image representations. In this paper we propose a family of the
modified Regularized Alternating Least Squares (RALS) algorithms for
NMF/NTF. By incorporating regularization and penalty terms into the
weighted Frobenius norm we are able to achieve sparse and/or smooth
representations of the desired solution, and to alleviate the problem of
getting stuck in local minima. We implemented the RALS algorithms in
our NMFLAB/NTFLAB Matlab Toolboxes, and compared them with
standard NMF algorithms. The proposed algorithms are characterized
by improved efficiency and convergence properties, especially for large-
scale problems.

1 Introduction and Problem Formulation

Nonnegative Matrix Factorization (NMF) and its multi-way extensions: Non-
negative Tensor Factorization (NTF) and Parallel Factor analysis (PARAFAC)
models with sparsity and/or non-negativity constraints have been recently pro-
posed as promising sparse and quite efficient representations of signals, images, or
general data [1,2,3,4,5,6,7,8,9,10]. From a viewpoint of data analysis, NMF/NTF
provide nonnegative and usually sparse common factors or hidden (latent) com-
ponents with physiological meaning and interpretation [4,7,11]. NMF, NTF and
SCA are used in a variety of applications, ranging from neuroscience and psy-
chometrics to chemometrics [1,2,7,8,9,10,11,12,13,14].

In this paper we impose nonnegativity and sparsity constraints, and possibly
other natural constraints, such as smoothness for the following linear model:

Y = AX + E, (1)
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where Y ∈ R
I×T is a matrix of the observed data or signals, A ∈ R

I×R
+ is

a mixing or basis matrix, X ∈ R
R×T
+ represents unknown sources or hidden

(nonnegative and sparse) components, and E ∈ R
I×T represents a noise or error

(residuum) matrix. Usually, in BSS applications: T >> I ≥ R, and R is known
or can be estimated using SVD. Our objective is to estimate the mixing (basis)
matrix A and the sources X, subject to nonnegativity and sparsity constraints.

The above model can be extended to the 3D PARAFAC2 or NTF2 model in
which a given tensor Y ∈ R

I×T×K is decomposed to a set of matrices X, D and
{A1, A2, ..., AK} with nonnegative entries [9,15,16,17]. The NTF2 model can be
described as

Y k = AkDkX + Ek, (k = 1, 2, . . . , K) (2)

where Y k = Y :,:,k = [yitk]I×T ∈ R
I×T are frontal slices of Y ∈ R

I×T×K , K
is a number of frontal slices, Ak = [airk]I×R ∈ R

I×R
+ are the basis (mixing

matrices), Dk ∈ R
R×R
+ is a diagonal matrix that holds the k-th row of the

D ∈ R
K×R
+ in its main diagonal, and X = [xrt]R×T ∈ R

R×T
+ is a matrix repre-

senting the sources (or hidden nonnegative components or common factors), and
Ek = E:,:,k ∈ R

I×T is the k-th frontal slice of the tensor E ∈ R
I×T×K represent-

ing error or noise depending upon the application. The objective is to estimate
the set of nonnegative matrices {Ak}, (k, . . . , K), D and X, subject to some
non-negativity constraints and other possible natural constraints such as sparse-
ness and/or smoothness. Since the diagonal matrices Dk are scaling matrices
they can be usually absorbed by the matrices Ak by introducing the column-
normalized matrices Ak := AkDk, so usually in BSS applications the matrix X
and the set of scaled matrices A1, . . . , AK need only to be estimated. It should be
noted that the 3D PARAFAC2 and the corresponding NTF2 models1 can be eas-
ily transformed to a 2D non-negative matrix factorization problem by unfolding
(matricizing) tensors. Such 2D models are equivalent to a standard NMF model.
In fact, the 3D PARAFAC2 model can be represented as column-wise unfolding.
The unfolded system can be described by a single system of the matrix equation:
Y = AX + E, where Y = [Y 1; Y 2; . . . ; Y K ] ∈ R

IK×T is a column-wise (verti-
cal) unfolded matrix of all the frontal slices Y k, A = [A1; A2; . . . ; AK ] ∈ R

IK×R
+

is a column-wise unfolded matrix of the slices Ak representing (the frontal
slices), and E = [E1; E2; . . . ; EK ] ∈ R

IK×T is a column-wise unfolded matrix of
errors.

Solutions of NMF algorithms may not be unique, therefore it is often required
to impose additional data-driven natural constraints, such as sparsity or smooth-
ness. Moreover, many existing algorithms for NMF are prohibitively slow and
inefficient, especially for very large-scale problems. For large-scale problems a
promising approach is to apply the Alternating Least Squares (ALS) algorithm
[1,8]. Unfortunately, the standard ALS algorithm and its simple modifications
suffer from unstable convergence properties, giving often not optimum solution,
1 Analogously, NTF1 model described by a set of the matrix equations Y k =

ADkXk + Ek, k = 1, 2, . . . , K, can be transformed to the standard NMF problem
by row-wise unfolding.



Regularized Alternating Least Squares Algorithms 795

and they are characterized by high sensitivity to near-collinear data [1,4,8,10].
The main objective of this paper is to develop efficient and robust regularized
ALS (RALS) algorithms. For this purpose, we exploit several approaches from
constrained optimization and regularization theory, and propose additionally
several heuristic algorithms.

2 Regularized ALS Algorithms

The most of known and used adaptive algorithms for NMF are based on alternat-
ing minimization of the squared Euclidean distance expressed by the Frobenius
norm: DF (Y ||A, X) = 1

2‖Y − AX‖2
F , subject to nonnegativity constraints of

all the elements in A and X. Such a cost function is optimal for a Gaussian
distributed noise [12,11].

In this paper we consider minimization of more general and flexible cost func-
tion that is a regularized weighted least-squares function with sparsity penalties:

D
(α)
F (Y ||AX) =

1
2
‖W−1/2(Y − AX)‖2

F + αAs ||A||L1 + αXs ||X ||L1

+
αAr

2
||W−1/2ALA||2F +

αXr

2
||LXX||2F , (3)

(usually subject to additional constraints such as nonnegativity constraints)
where W ∈ R

I×I is symmetric positive definite weighting matrix2, αAs ≥ 0 and
αXs ≥ 0 are parameters controlling a sparsity level of the matrices, and αAr ≥ 0,
αXr ≥ 0 are regularization coefficients. The penalty terms ||A||L1 =

∑
ir |air |

and ||X||L1 =
∑

rt |xrt| enforce sparsification in A and X, respectively, and
sparseness can be adjusted by αAs and αXs. The regularization matrices LA

and LX are used to enforce a certain application-dependent characteristics of
the solution. These matrices are typically unit diagonal matrices or discrete ap-
proximations to some derivative operator. Another option is to use the following
setting: αXrL

T
XLX = AT (I − ASAT

S )A where AS contains the R first prin-
cipal eigenvectors of the data covariance matrix RY = (Y T Y )/I = UΣUT

associated with the R largest singular values [2]. It is worth noting that both
matrices LT

XLX ∈ R
R×R and LALT

A ∈ R
R×R are in general symmetric and

positive definite matrices.
The gradients of the cost function (3) with respect to the unknown matrices

A and X are expressed by

∂D
(α)
F (Y ||AX)

∂A
= W−1(AX − Y )XT + αAs SA + αAr W−1A LALT

A, (4)

∂D
(α)
F (Y ||AX)

∂X
= AT W−1(AX − Y ) + αXs SX + αXr LT

XLX X, (5)

2 W −1/2 = V Λ−1/2V T means in Matlab notation W −1/2 = inv(sqrtm(W )) and
‖W −1/2(Y − AX)‖2

F = tr
�
(Y − AX)T W −1(Y − AX)

�
.
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where SA = sign(A) and SX = sign(X) 3. In the particular case for a NMF
problem the matrices SA, SX will be transformed to the matrices ĒA and ĒX

of the same dimension with all the entries equal to ones.
By equalizing the gradients (4)-(5) to zero, we obtain the following fixed-point

regularized ALS algorithm

A ← (Y XT − αAsWSA)(XXT + αAr LALT
A)−1 (6)

X ← (AT W−1A + αXr LT
XLX)−1(AT W−1Y − αXs SX). (7)

In order to achieve high performance, the regularization parameters αAr ≥ 0
and αXr ≥ 0 are usually not necessarily fixed but rather should be dynam-
ically changed in time, depending how far we are from the desired solution.
For example, we may gradually decrease exponentially the regularization coef-
ficients during a convergence process. We found by computer experiments that
quite a good performance for small-scale problems can be achieved by choosing
αAr(k) = αXr(k) = α0 exp(−k/τ) with typical values α0 = 20 and τ = 50 and
LT

XLX ≈ ĒX where Ē means a matrix with all ones entries4. For large-scale
problems α0 should be higher.

An alternative approach is to keep the regularization parameters fixed and
try to compensate (reduce) their influence by additional terms as the algorithm
converges to the desired solution. For this purpose let us consider the following
simple approach [4,10]. It is easy to note that the equation (7) can be re-written
in the equivalent form as

(AT W−1A + αXr LT
XLX)Xnew = AT W−1Y − αXs SX (8)

In order to compensate the regularization term αXr LT
XLXXnew we can add to

the right-hand side the similar term αXr LT
XLXXold which gradually compen-

sates the regularization term when X → X∗, i.e.

(AT W−1A + αXr LT
XLX)Xnew = AT W−1Y − αXs SX + αXr LT

XLXXold

The magnitude of the bias (or influence of the regularization term) is a function
of the difference between Xold and Xnew. As the algorithm tends to converge
to the desired solution X∗, this difference is gradually decreasing, and the effect
of regularization and bias is smaller and smaller.

Hence, after simple mathematical manipulations our RALS algorithm can
take the following general and flexible form:

A ← (Y XT − αAsWSA + αAr ALALT
A)(XXT + αAr LALT

A)+, (9)
X ← (AT W−1A + αXrL

T
XLX)+(AT W−1Y − αXsSX + αXrL

T
XLXX),

(10)
3 sign(X) means a componentwise sign operation (or its robust approximation) for

each element in X .
4 In this case, to drive the RALS algorithm rigorously, we have used the following mod-

ified regularized cost functions: 0.5‖Y −AX‖2
F +αX‖X‖L1 +0.5αXr tr{XT ĒX}+

αA‖A‖L1 + 0.5αAr tr{AĒAT }.
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where A+ means Moore-Penrose pseudo-inverse of A. It should be noted that
the proposed algorithm for W = I and for all the regularization coefficients
setting to zero (αAs = αAr = αXs = αXr = 0) simplifies to the standard ALS.
On the other hand, if we take all the regularization parameters equal to zero and
W = RE = (EET )/I, where the error matrix E = Y −AX is evaluated in each
iteration step, we obtain the extended BLUE (Best Linear Unbiased Estimated)
ALS algorithm. Finally, in the special case when W = I and matrices LALT

A

and LT
XLX are diagonal our algorithm is similar to the MALS (modified ALS)

proposed by Wang et al in [10], and Hancewicz and Wang in [4].

3 Implementation of RALS Algorithms for NMF

On the basis of the above consideration we have developed and implemented in
MATLAB the following RALS algorithm for the NMF, especially suitable for
large-scale problems:

Outline of the RALS algorithm for NMF

– 1a. Set the initial values of matrices W , LA, LX and parameters αAs, αXs,
αAr, αXr,

– 1b. Set the initial values of A, (e.g., multi-start random initialization, or
eigenvalue decomposition (SVD), ICA, or dissimilarity criteria [15,4,8],

– 2a. Calculate the new estimate of Xnew from Y and Aold using iterative
formula (10),(set SX = ĒX),

– 2b. Xnew = max{Xnew, 0} (set negative values to zero or alternatively
to a small positive value, typically, ε = 10−16). Impose additional optional
natural constraints on rows of X such as low-pass filtering or smoothness,

– 3a. Calculate the new estimate of Anew from (9), (set SA = ĒA),
– 3b. Anew = max{Anew, 0} (set negative values to zero or to a small posi-

tive value ε). Impose some additional finite constraints such as clustering or
smoothness,

– 3c. Normalize each column of Anew to unit length l1-norm,
– 4. Repeat the steps (2) and (3) until convergence criterion is reached.

The above algorithm with a suboptimal set of the default parameters have been
implemented in our NMFLAB and NTFLAB [15].

Further improvement of the RALS algorithm has been achieved by applying a
hierarchical multi-layer system with multi-start initialization [13,15] which can
be implemented as follows: In the first step, we perform the basic decomposition
(factorization) Y = A1X1 using the RALS algorithm. In the second stage, the
results obtained from the first stage are used to perform the similar decompo-
sition: X1 = A2X2 using the same or different set of parameters, and so on.
We continue our factorization taking into account only the last achieved compo-
nents. The process can be repeated arbitrarily many times until some stopping
criteria are satisfied. In each step, we usually obtain gradual improvements of
the performance. Thus, our model has the form: Y = A1A2 · · · ALXL, with the
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(a) (b)

(c) (d)

Fig. 1. Example 1: (a) Original 6 sources of Mandelbrot fractal images; (b) Observed
12 mixed images (uniformly distributed random mixing matrix); (c) Estimated sources
using the standard Lee-Seung algorithm with Kullback-Leibler divergence (SIR = 6.4,
7.6, 0.2, 3.7, -0.2, 7.3 [dB], respectively); (d) Estimated source images using RALS
algorithm (SIR = 50.61, 128.1, 17.6, 41, 16.6, 13.1 [dB], respectively) given by (6)–(7)
with parameters: W = I (identity), αAr = αAs = αXs = 0, LT

XLX = Ē and αXr

given by the exponential rule with αXr = 20 exp(−k/50).
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(a) (b)

Fig. 2. Example 1: Histograms of 100 mean-SIR samples from Monte Carlo analysis
performed with the algorithms: (a) standard ALS; (b) RALS with the same parameters
as in Fig. 1.

basis nonnegative matrix defined as A = A1A2 · · ·AL. An open theoretical issue
is to prove mathematically or explain more rigorously why the multilayer dis-
tributed NMF/NTF system results in considerable improvement in performance
and reduces the risk of getting stuck at local minima. An intuitive explanation
is as follows: the multilayer system provides a sparse distributed representation
of basis matrix A, which in general can be a dense matrix. So even a true basis
matrix A is not sparse it can be represented by a product of sparse factors. In
each layer we force (or encourage) a sparse representation. On the other hand,
we found by extensive experiments that if the basis matrix is very sparse, most
NTF/NMF algorithms have improved performance (see next section). However,
not all real data provides sufficiently sparse representations, so the main idea is
to model any data by a distributed sparse hierarchical multilayer system. It is
also interesting to note that such multilayer systems are biologically motivated
and plausible.

4 Simulation Results

In order to confirm validity and high performance of the proposed algorithm
we extensively tested it for various sets of free parameters and compared them
with standard NMF algorithms. We illustrate the performance by giving only
two examples. In the first example (see Fig. 1), we used 6 images which were
mixed by a uniformly distributed randomly generated mixing matrix A ∈ R

12×6.
We found by the Monte Carlo analysis performed for 100 runs that our RALS
algorithm (with the exponentially decaying regularization term for the matrix
X) significantly outperforms the standard ALS (see Fig. 2).

In the second example, the 9 sparse nonnegative signals (representing syn-
thetic spectra) have been mixed by the mixing matrix A ∈ R

18×9. Additive
Gaussian noise with SNR = 20 dB has been added. In this case the standard
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Example 2: (a) Original 9 source signals; (b) Observed 18 mixed signals (uni-
formly distributed random mixing matrix) with SNR = 20 dB; (c) Estimated sources
using the standard Lee-Seung algorithm with Kullback-Leibler divergence (SIR = 3.7,
8.2, 3.6, 6.1, 4.5, 2.9, 5.2, 5.8, 2.2 [dB], respectively) with 1 layer; (d) Estimated sources
using the standard Lee-Seung algorithm with Kullback-Leibler divergence (SIR = 6.9,
6.6, 6.7, 18.2, 14, 8.7, 7.6, 5.8, 15.9 [dB], respectively) with 3 layers; (e) Estimated
source images using the RALS algorithm (SIR = 18.2, 12.2, 21.1, 20.7, 22.5, 19.1, 21.3,
19.9 [dB], respectively) given by (9)–(10) with 1 layer and for the following parameters:
W = RE, αAr = αAs = 0, αXs = αXr = 0.1, LT

XLX = I; (f) Estimated source images
using the same RALS algorithm (SIR = 19.4, 17.4, 21.5, 22.6, 17.9, 18.5, 22.2, 21.6,
22.2 [dB], respectively) with 3 layers.
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NMF algorithms completely failed to estimate the original sources while the
RALS algorithm successfully estimates all the sources. We observed a consid-
erable improvement in performance applying the multilayer procedure with 10
initializations in each layer.

We also performed the test on large-scale problems, increasing the number of
observations in the second example to 1000. The mixing matrix A ∈ R

1000×9 was
randomly chosen. For such a case we got the elapsed times and mean-SIRs given
in Table 1. It should be noted than the ISRA and EMML algorithms (which are
the basic Lee-Seung multiplicative algorithms that minimize the Frobenius norm
and Kullback-Leibler divergence, respectively) failed to estimate the original
components.

Table 1. Performance of the NMF algorithms for a large-scale problem with 1000
observations and 9 nonnegative components

Algorithm Elapsed time [s] Mean-SIRs [dB]

RALS 16.6 SIR > 43

ISRA 36 SIR < 10

EMML 81 SIR < 16

5 Conclusions and Discussion

In this paper we proposed the generalized and flexible cost function (controlled
by sparsity penalty and flexible multiple regularization terms) that allows us to
derive a family of robust and efficient alternating least squares algorithms for
NMF and NTF. We proposed the method which allows us to automatically self-
regulate or self-compensate the regularization terms. This is a unique modifica-
tion of the standard ALS algorithm and to the authors’ best knowledge, the first
time this type of constraints has been combined together with the ALS algorithm
for applications to NMF and NTF. The performance of the proposed algorithm
is compared with the ordinary ALS algorithm for NMF. The proposed algorithm
is shown to be superior in terms of performance, component resolution ability,
speed and convergence properties, and ability to be used for large-scale problems.
The proposed RALS algorithm may be also promising for other applications, such
as Sparse Component Analysis and EM Factor Analysis because it overcomes the
problems associated with ALS, i.e. the solution of RALS tends not to get trapped
in local minima and will generally converges to the global desired solution.
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Abstract. A novel sparse measure of signal is proposed and the efficient 
number of sources is estimated by the best confidence limit in this work. The 
observations are classified by SVM trained through samples which are 
constructed by direction angle of sources. And columns of the mixing matrix 
corresponding to clustering centers of each class are obtained based on the sum 
of samples belong to the same class with different weights which are adjusted 
adaptively. It gets out of the trap of the initial values which interfere k-mean 
clustering quite a lot. Furthermore, the online algorithm for estimating basis 
matrix is proposed for large scale samples. The shortest path method is used to 
recover the source signals after estimating the mixing matrix. The favorable 
simulations show the stability and robustness of the algorithms. 

1   Introduction 

Nowadays, blind source separation (BSS) has been attached more and more 
importance because of its widely application in signal processing, including space 
signal, EEG, ECG, speech signal, geophysical and chaos signals and so on. Most of 
the algorithms separated the signals successfully under the consumption that the 
mixing matrix is invertible, such as classical ICA [8], algorithms based on signal 
temporal predictability [10]. However, they failed when the matrix was ill-
conditioned (e.g., the sources are more than sensors) [2], [3]. It found that the 
separation quality seemed to improve with the higher sparsity of the sources for the 
underdetermined case [6], and many source signals were sparse [2], [3], [4], [7] in the 
time-domain, furthermore, many natural signals could have sparser representations in 
other transform domain, such as the Fourier Transform, the Wavelet Transform and 
the Modified Discrete Cosine Transform (MDCT) [2]. Based on the sparse quality of 
sources, several methods had been developed for BSS. For instance, the mixing 
matrix and sources were estimated using overcomplete representation [1], the 
maximum posterior approach and maximum-likelihood approach [11]. And a two-
stage method (TSM) that was clustering-then- 1l -optimization approach was proposed 
by Bofill, in which six sources were separated [2]. The necessary and sufficient 
condition of separability using TSM was introduced in [4], [9], K-mean clustering [3] 
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and K-EVD [5] were used to estimate the mixing matrix. TSM was an attractive 
method to recover the sources for underdetermined case in stead of ICA which asked 
for independence and stationarity of the sources, however, the error from the 
estimation of the basis matrix would affect precision of separation inevitably. There 
existed several problems using methods above to obtain basis matrix (mixing matrix): 
1) the number of the sources was unknown, so that it was hard to get the amount of 
the clustering centers, but the method with k-means clustering depended on it quite a 
lot; 2) clustering algorithms above were sensitive to initialization which was random 
in reality; 3) the high sparsity of sources could guarantee a high probability that the 
sources could be recovered [6], however, there was still lack of an efficient measure 
for the sparsity of sources. 

In this work, a novel measure for sparsity is proposed, including the efficient 
estimation of the amount of the sources with the similar method in [15], after that, the 
observations are classified using support vector machine (SVM) [13], [14]. The 
clustering center of each class is obtained by sum of samples with different weights 
such that the mixing matrix is estimated at last. After that, the shortest path method is 
used to recover the sources by minimizing the 1-norms of the source vectors under 
some constraints. 

The typical model for BSS with m  sources and n  sensors is as follows [11]: 

( ) ( ) ( )X t A S t v t= ⋅ + , (1) 

where ( )X t are observations, n mA R ×∈ is a mixing matrix, ( )S t  are sources and 

( )v t are additive noises. If m n> , it is the underdetermined model, and equation (1) 

can be wrote as following neglecting noise: 

11 11 12

2 21 22 2
1 2

1 2

( )

( )
( ) ( ) ( )

( )

m

m
m

n n n nm

ax t a a

x t a a a
s t s t s t

x t a a a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (2) 

Based on the sparsity of the sources, m  basis vectors with n  dimension are 
obtained to construct the mixing matrix and the shortest path way is used to recover 
the sources. 

The paper is organized as follows: the learning theory of SVM is introduced in 
Section 2, together with the training method of sequential minimal optimization 
(SMO). In Section 3, the algorithms for estimating the basis matrix are described in 
detail in both batch mode and online mode, including recovering the sources using 
TSM. The experimental results are shown in Section 4. Finally, a conclusion is given 
in Section 5. 

2   The Learning Theory of SVM 

In 1960s, the statistic learning theory was introduced by Vapnik and Cervonenkis, and 
as a new learning machine algorithm, SVM was proposed under the standard of 
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structure risk minimum (SRM). It is adopted widely because of its firm theory basis, 
good generalizing quality and implementing algorithms. 

The process of training the SVM equals to solving a quadratic programming (QP) 
problem [13]: 

For a group of training samples as follows: 

{( , ) | 1, , ; , { 1, 1}}n
i i i iy i T R y= ∈ ∈ − +x x . (3) 

The aim is to get the decision-making function below: 

1

( ) ( , )
T

i i i
i

f sign y k bα
=

⎧ ⎫= −⎨ ⎬
⎩ ⎭
∑x x x , (4) 

where ( , )i jk x x is the kernel function, α is the Lagrange multiplier, b is the threshold 

and 1{ }T
i iα = are results of the following QP problem [13]: 

1 , 1
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1
max ( ) ( , )
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. . 0,0 , 1, ,

T T

i i j
i i j

T

i j i
j

W Q i j

S T y C i T

α α α

α α
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=

⎧ = −⎪
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⎨
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∑ ∑

∑

α
α

 (5) 

where ( , ) ( , ) T T
i j i jQ i j y y k R ×= ∈x x . 

For large scale samples, the traditional method such as Newton’s way can not be 
used to solve (5) because of the limitation of the PC memory, and sequential minimal 
optimization (SMO) will be adopted to improve it in this work. SMO is a famous 
approach for training SVM [13], and it is a reduced algorithm which gets out of the 
limitation of the scale of the samples. 

3   BSS with TSM  

The traditional TSM will be used for BSS for underdetermined case [2], that is 
estimating mixing matrix firstly and then recovering sources using the shortest path 
method [15]. Furthermore, online algorithm for estimating mixing matrix is proposed 
for large scale samples.  

In this work, SVM is used to estimate the mixing matrix for its excellent quality. 
The best confidence limit will be introduced firstly, based on which, a novel measure 
for sparsity (Spa) is proposed, including the efficient estimation of the amount of the 
sources [15]. In the case of 2n = , the direction angle of the sources is as follows: 

2

1

( )
( ) tan

( )

x t
t a

x t
θ = , (6) 

where 1,2, ,t T= . 

Obviously, ( ) [ , ]
2 2

t
π πθ ∈ − , let ( ) [min_ , max_ ] [ , ]

2 2
t U

π πθ θ θ∈ = ⊆ − . 
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Definition 1. let confidence interval sets { } , 1, 2, ,iU i N=  cover U , and the length 

d  of which is the same, then, the interval covering the most samples is the best 
confidence interval and covering the least samples is the worst one;  

Definition 2. let , {1, 2, , }iU i N∈  cover iM samples, and then the confidence limit 

of iU  is as following [15]:  

i
i

M
D

T
=  (7) 

Based on the sparsity of the sources, the distribution of direction angles can be used to 
estimate its efficient number through the best confidence limit; 

Definition 3. For interval [ , ]B b b ε= + , if 0ε < , then B = ∅ ; 

Definition 4. For [ , ], ( 1,2)i i iB b b iε= + = , 1 2 1 2, ,b b B B< ≠ ∅ , [ , ]A a a ε= + , if   

1 2( , )a b b∈ ,  then 1 2( , )A B B∈ , that is A lies between 
1B and 2B ; 

Definition 5. let 
1 2 3
, ,j j jU U U are three conjoint best confidence intervals, the 

confidence limit of 
2j

U is
2j

D , for  interval sets constructed by 

1 2 2 3
( , ) ( , )

ks j j j jU U U U U∈ ∪ ,its average confidence limit is sD , then the sparsity of 

the source signal corresponding to 
2j

U is defined as following: 

2

2

j

j s

D
Spa

D D
=

+
, (8) 

where sD is also called the rest average confidence limit. If
1j

U = ∅ , then 

1
[min_ ,min_ ]jU dθ θ= + , and if 

3j
U = ∅ , then 

3
[max_ ,max_ ]jU dθ θ= − . 

From equation (8), we can see that bigger Spa corresponding to higher sparsity of 

sources and better precision of the estimation for mixing matrix. 
Two methods will be introduced for estimating mixing matrix as following: 

3.1   Batch Algorithm 

1) Initialization, if observations are not sparse in time area,  then we can transform 
them into sparse area, using the Fourier Transform, the Wavelet Transform,  the 
Modified Discrete Cosine Transform (MDCT) and so on. Signals with sparse quality 
are flagged as ( ), 1, 2, ,x t t T= ; 

2) Generalize ( )x t  into ( )x t′ , that is 

( ) [ ( )]
( )

[ ( )]

x t E x t
x t

Var x t

−′ =  (9) 

Where [ ]E ⋅  means expectation and [ ]Var ⋅  means variance; 
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3) Filter ( )x t′  into ( ), 1, 2, ,x t t T= , based on the direction angles from equation (6), 

set several intervals with the same length, and calculate the corresponding confidence 
limit using  equation (7). The number m of efficient sources is the number of intervals 
with the fist largest confidence limit and the samples in the intervals with the last least 
confidence limit will be deleted. 
4) Observations in the intervals with the first largest confidence limit are chosen as 
the training samples, based on which, super-planes are constructed using multi-class 

SVM [14], and ( ), 1, 2, ,x t t T= will be classified into m  classes; 

5) Reconstruct intervals for each class, and obtain m clustering centers through sums 
with weights which got from confidence limit of intervals in each class. These centers 
are corresponding to columns of the mixing matrix. 

3.2   Online Algorithm 

When observations are sufficient, online algorithm can be adopted for estimating 
mixing matrix. For the existing q  observations with sparsity, calculating the mean μ  

and variance σ , the first best confidence intervals , 1, 2, ,iU i m= , the last worst 

confidence , 1,2, ,iV i p=  and the corresponding mixing matrix are obtained using 

method above. The online algorithm is as following: 
Begin: for the 1q +  sample x  

1) generalize x  into x′ : 

x
x

μ
σ
−′ =  (10) 

2) calculate the direction angles θ ′ of x′  using equation (6), 

if 
1

p

i
i

Vθ
=

′ ∈∪  

delete x′ , and the mixing matrix remains the same, goto “Begin”; 

else if 
1

m

i
i

Uθ
=

′∈∪  

reconstruct training samples, renew clustering centers such that renew mixing 
matrix; 
else 

let super-plane remain the same, and renew the clustering center of the class 
to which x′  belongs, so as to renew mixing matrix; 

3) renew ,μ σ  

(1 )

1

1 1

new

new

x

q
x x

q q

μ α μ α

σ σ

′⎧ = − +
⎪
⎨ ′ ′= +⎪ + +⎩

 (11) 

Where z x y= means that i i iz x y= ⋅  

4) goto “Begin”; 



808 Z. Yang, S. Luo, and C. Chen 

4   Simulations and Discussions 

The following simulations will be introduced to display the advantages of the 
algorithms in this work using two kinds of indices as follows:  

Angle Error of ,a b :          
2 2

180
( , ) arccos

Ta b
AE a b

a bπ
⎛ ⎞

= ⎜ ⎟⎜ ⎟⋅⎝ ⎠
, (12) 

where ,a b  are column vectors with the same dimension. 

Signal-Noise Ratio:            
2

2

[ ( )]
10 log

[( ( ) ( )) ]
i

i
i i

E s k
SNR

E y k s k
=

−
. (13) 

Obviously, better estimation of mixing matrix and sources are corresponding to lower 
AE  and higher SNR . 

In this experiment, three speech signals are used (see Fig. 1). They are mixed by a 
random matrix and 16000 samples are chosen for each signal for online learning. 
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Fig. 1. Three speech source signals  

Mixing matrix is as follows: 

Mixing Matrix:            1 2 3

0.8275 0.6674 0.1465
[ , , ]

0.5614 0.7447 0.9892
A a a a

−⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

. (14) 

4.1   Experiments for Batch Algorithm 

Based on the method above, the mixing matrix is estimated as following:  

Estimating Matrix:        1 2 3

0.8315 0.6481 0.1780
[ , , ]

0.5564 0.7621 0.9852
A a a a

− −⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
. (15) 

And the result based on k-means clustering is: 
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Estimating Matrix:        1 2 3

0.8431 0.6393 0.1992
[ , , ]

0.5378 0.7689 0.9800
A a a a

− −⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 (16) 

The distribution of direction angles of the observations (Fig. 2) and the sparsity 
(Spa), SNR and Angle Errors corresponding to sources (Table 1) with two methods 
above are as following: 
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Fig. 2. Distribution of direction angles  

Table 1. Spa, SNR, and AE from the methods above 

sources Spa SNR AE( ,i ia a ) AE( ˆ,i ia a ) 

1s  0.8020 29.3061 0.3798 1.7460 

2s  0.6537 19.6893 1.4884 2.1242 

3s  0.6023 17.8069 1.8171 3.0658 

 
Using SVM in this work, the distribution of the direction angles of samples after 

filtering (Fig. 3) and the recovering sources (Fig. 4) are as following: 
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Fig. 3. Distribution of direction angles from SVM  
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Fig. 4. Recovery signals of sources  

4.2   Experiments for Online Algorithms 

When samples are sufficient, the mixing matrix can be estimated with online 
algorithm. The direction angle errors of sources are as following (Fig. 5) 
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Fig. 5. Direction angle error using online algorithm 

5   Conclusions 

In this work, TSM is used for underdetermined BSS. In the first step, mixing matrix is 
estimated using SVM, together with the number of the source signals and the 
corresponding sparsity measure is introduced. The result is independent on the initial 
condition and there are no assumptions for the stationarity and independence of 
sources using shortest method to recover sources. Both batch and online methods are 
proposed for estimating mixing matrix and good simulations show that our algorithms 
work quite well. 
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Abstract. A novel Support Vector Regression(SVR) algorithm has been
proposed recently by us. This approach, called Lagrangian Support Vec-
tor Regression(LSVR), is an reformulation on the standard linear support
vector regression, which leads to the minimization problem of an uncon-
strained differentiable convex function. During the process of computing,
the inversion of matrix after incremented is solved based on the previ-
ous results, therefore it is not necessary to relearn the whole training set
to reduce the computation process. In this paper, we implemented the
LSVR and tested it on Mackey-Glass time series to compare the perfor-
mances of different algorithms. According to the experiment results, we
achieve a high-quality prediction about time series.

1 Introduction

Time is a phenomenon which is both very complex and very important in many
real world problems. Its importance comes from the fact that almost every kind
of data contains time-dependent information. Time series is the representation
of time. In the modelling of time series, two of the key problems are noise and
non-stationarity. The noisy characteristic refers to the unavailability of complete
information from the past behaviors of the time series to catch the dependency
between the future and the past. The information that is not included in the
model is considered as noise. The non-stationarity characteristic implies that
the distribution of time series is changing over time. This will lead to gradual
changes in the dependency between the input and output variables.

Support vector machines(SVM)[1][2] is a very specific type of learning algo-
rithms characterized by the capacity control of the decision function, the use of
kernel functions and the sparsity of the solution. SVMs have been applied suc-
cessfully to classification and regression with the introduction of ε–insensitive
loss function. We also call ε–support vector regression(SVR). SVR[13]is a pow-
erful technique for predictive data analysis with many applications to varied
areas of study. For example, SVR has been used in drug discovery[15], civil
engineering[16], and time series prediction[10][11][12][17].
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Based on the fast and efficient properties of Lagrange Support Vector Regres-
sion (LSVR), we propose the online incremental regression algorithms for LSVR.
In the algorithms proposed, the inversion of matrix is solved by iteration when
the new samples are added, therefore it is no necessary to relearn the whole train-
ing set to reduce the computation process. In this paper, we implemented the
LSVR and tested it on Mackey-Glass time series to compare the performances
of different algorithms. According to the experimental results, the algorithms
proposed in this paper are much efficient in time series. The paper is organized
as follows: section briefly sketches the algorithm, Section 3 gives experiments on
Mackey-Glass time series, and Section concludes the whole paper.

2 Lagrange Support Vector Regression

Lagrange Support Vector Machine (LSVM) is transformed from a standard SVM
in [3], and Lagrange Support Vector Regression (LSVR) is defined in [4]. Sim-
ilarly to the classification problem, the training set of the regression problem,
T = {(xi, yi)|xi ∈ Rn, yi ∈ R}, i = 1, · · · , m, where xi is a sample of an n-
dimensional space, and yi ∈ R is the target value of the corresponding xi, which
is different from the class label in the classification problem. The regression
problem is to construct a predicted function f(x) based on the training set, in
which the decision function can be represented by fewer support vectors (That
is to say the sparsity (e.g.[7]) of the classifier.) While the approach is extended
to the regression problem, it is also expected to construct the SVR algorithm
satisfying the sparsity. Since the sparsity of the SVR algorithm is related to the
loss function, Vapnik[1] introduced the ε-insensitive loss function:

c(x, y, f(x)) = |y − f(x)|ε,

such that
|y − f(x)|ε = max{0, |y − f(x)| − ε},

where ε is a predefined positive number.
This defines an ε tube so that the loss is zero if the predicted value is within

the tube. If the predicted point is outside the tube, the loss is the magnitude of
the difference between the predicted value and the radius ε of the tube.

LSVR is a reformulation of the standard regression problem, in which the ξ(∗)

in the objective function is changed from 1-norm to the square of 2-norm, so the
non-negative constraint of ξ(∗) is omitted. The maximal margin of the LSVR is
also changed from the n-dimensional to (n + 1)-dimensional space, i.e., (w, b).
The regression problem after reformulation is strong convex and its solution is
almost identical to that of the standard SVR problem[3].

The linear LSVR problem is:

min 1
2 (‖w‖2 + b2) + C

2 (ξ∗T ξ + ξT ξ)

s.t.

(
A em

−A −em

) (
w
b

)
−

(
y
−y

)
≤ εe2m +

(
ξ
ξ∗

)
.

(1)
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The dual model is:

min 1
2 (α∗ − α)T (AAT + emeT

m)(α∗ − α) − yT (α∗ − α)+

εeT
m(α∗ + α) + 1

2C (α∗T α∗ + αT α)

s.t. α(∗) ≥ 0.

(2)

According to the KKT condition, w and b can be solved based on the solution
of the dual problem:

w = AT (α∗ − α), b = eT (α∗ − α).

Therefore, the optimal regression function is,

f(x) = (α∗ − α)T Ax + eT (α∗ − α).

Let α̂T = (α∗T αT ), then the dual problem shown in (2) can be transformed
into:

min
α̂≥0

1
2
α̂T

(
I

C
+

(
AAT + emeT

m −(AAT + emeT
m)

−(AAT + emeT
m) AAT + emeT

m

))
α̂−

(
(y − εem)T ,−(y + εem)T

)
α̂.

(3)

Let H=
(

A em

−A −em

)

2m×(n+1)
, Q= I

C +HHT , and lT=
(
(y − εem)T ,−(y + εem)T

)
.

Equation (3) can be transformed into:

min
�α≥0

1
2
α̂T Qα̂ − lT α̂, (4)

therefore the sufficient and necessary KTT condition of problem (4) is:

0 ≤ α̂ ⊥ Qα̂ − l ≥ 0. (5)

LSVR algorithm is to solve the above KTT condition to obtain the solution
of the problem.

For each two real numbers (or vectors) a and b,

0 ≤ a ⊥ b ≥ 0 ⇔ a = (a − λb)+, λ > 0,

where x+ =
{

x if x ≥ 0
0 if x < 0 . Thus, the KKT condition in (5) can be represented

as:
Qα̂ − l = ((Qα̂ − l) − λα̂)+, λ > 0. (6)

Therefore, the following simple iteration formula for the LSVR algorithm can
be obtained based on the above optimality condition,

α̂i+1 = Q−1 (
l + ((Qα̂i − l) − λα̂i)+

)
, λ > 0, i = 0, 1, 2, . . . (7)

While 0 < λ < 2
C , the algorithm is the global linear convergence from any

starting point [3]. The inversion of m matrix Q changes to the inversion of n +
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1(n � m) matrix by using SMW identity. This leads to process large data sets
feasibly, and the computation time is reduced.

The SMW identity is:
(

I

C
+ HHT

)−1

= C

(
I − H(

I

C
+ HT H)−1HT

)
,

where C > 0 and H is an m × n matrix.
When the LSVR algorithm is extended from the linear case to the nonlinear

classification case, Q = I
C + K(H, HT ), and the optimal regression function is

f(x) = (α∗ − α)T K(A, x) + eT (α∗ − α).

Other properties are same to those of the linear case.
Let us consider the case that there is one new sample added into the training

set. Assume that there are m samples in the original training set T represented
by A, and the sample added newly is xm+1.

The corresponding dual problem after adding xm+1 is:

min 1
2 (α∗T α∗

m+1 αT αm+1)Qnew

⎛

⎜⎜
⎝

α∗

α∗
m+1
α

αm+1

⎞

⎟⎟
⎠ − l̂T

⎛

⎜⎜
⎝

α∗

α∗
m+1
α

αm+1

⎞

⎟⎟
⎠ ,

(α∗T α∗
m+1 αT αm+1)T ≥ 0,

(8)

where l̂T =
(
(y − εem)T , ym+1 − ε, −(y + εem)T , −(ym+1 + ε)

)
, and α̂T

new =
(α∗T , α∗

m+1, α
T , αm+1).

Let h = (xT
m+1, 1), and H1 = (A e), therefore H =

(
H1

−H1

)
, and HT

new =
(
HT

1 hT − HT
1 − hT

)
.

The solution of the new problem can be computed using Equation (7). Ac-
cording to Equation (7), the key problem of the iteration is to solve Q−1

new. In
order to solve Q−1

new, the following lemmas are given first.

Lemma 1[8]. If T =
(

A B
C D

)
and the matrix D is inverse, then

T−1 =
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1C(A − BD−1C)−1BD−1 + D−1

)
.

Lemma 2[9]. If 1 + vT A−1u 	= 0, then (A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
.

(u, v ∈ Rn, and A is nonsingular).
Following the above lemmas, we present the following strategies for online

incremental regression, which includes two cases: linear case and nonlinear case.

(1) Linear Case

In the linear case, Q = I2m
C + HHT , and Qnew = I2m+2

C + HnewHT
new. Based

on the SMW identity,
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Q−1
new = C

(
I2m+2 − Hnew(In+1

C + HT
newHnew)−1Hnew

)

= C
(
I2m+2 − Hnew(In+1

C + HT H + 2hT h)−1Hnew

) .

Let B = In+1
C +HT H , and B−1 be the computation value of the previous step.

According to Lemma 2, (B + 2hT h)−1 =
(

B−1 − 2B−1hT hB−1

1 + 2hB−1hT

)
, therefore

Q−1
new = C

(
I2m+2 − Hnew

(
B−1 − 2B−1hT hB−1

1 + 2hB−1hT

)
HT

new

)
. (9)

(2) Nonlinear Case
In the nonlinear case, Q = I2m

C + K(H, HT ), Qnew = I2m+2
C + K(Hnew,

HT
new), therefore SMW identity is not available. We have elementary operation

on HnewHT
new first.

In the nonlinear case, Q = I2m
C + K(H, HT ). We have elementary operation

on HnewHT
new first.

P2P1HnewHT
newQ1Q2 =

⎛

⎝
HHT HhT 02m×1
hHT hhT 0
01×2m 0 0

⎞

⎠ = H,

where

P1 =

⎛

⎜
⎜
⎝

Im 0m×1 0m×m 0m×1

01×m 1 01×m 0
0m×m 0m×1 Im 0m×1
01×m 1 01×m 1

⎞

⎟
⎟
⎠ , P2 =

⎛

⎜
⎜
⎝

Im 0m×1 0m×m 0m×1

0m×m 0m×1 Im 0m×1

01×m 1 01×m 0
01×m 0 01×m 1

⎞

⎟
⎟
⎠ ,

Q1 =

⎛

⎜
⎜
⎝

Im 0m×1 0m×m 0m×1
01×m 1 01×m 1
0m×m 0m×1 Im 0m×1

01×m 0 0m×1 1

⎞

⎟
⎟
⎠ , Q2 =

⎛

⎜
⎜
⎝

Im 0m×m 0m×1 0m×1
01×m 01×m 1 0
0m×m Im 0m×1 0m×1

01×m 01×m 0 1

⎞

⎟
⎟
⎠ ,

HnewHT
new = P−1

1 P−1
2 HQ−1

2 Q−1
1 ,

Qnew = I2m+2
C + K(Hnew, HT

new)

= P−1
1 P−1

2

⎛

⎝P2P1Q1Q2
C +

⎛

⎝
K(H, HT ) K(H, hT ) 02m×1

K(h, HT ) K(h, hT ) 0
01×2m 0 0

⎞

⎠

⎞

⎠Q−1
2 Q−1

1

= P−1
1 P−1

2

⎛

⎜
⎝

I2m+2
C + K(H, HT ) K(H, hT ) 02m×1

K(h, HT ) 1
C + K(h, hT ) 1

C
01×2m

1
C

2
C

⎞

⎟
⎠ Q−1

2 Q−1
1 .

Let B = (K(H, hT ) 02m×1 ), BT =
(

K(h, HT )
01×2m

)
, D =

( 1
C + K(h, hT ) 1

C
1
C

2
C

)
,

D−1 = C2

1 + 2CK(h, hT )

( 2
C − 1

C
− 1

C
1
C + K(h, hT )

)
.



Predicting Time Series Using Incremental Langrangian SVR 817

According to Lemma 1,

�
Q B
BT D

�−1

=

�
(Q − BD−1BT )−1 −(Q − BD−1BT )−1BD−1

−D−1BT (Q − BD−1BT )−1 D−1BT (Q − BD−1BT )−1BD−1 + D−1

�
.

According to Lemma 2,

(Q − BD−1BT )−1 =
(

Q − 2CK(H, hT )K(H, hT )T

1 + 2CK(h, hT )

)−1

= Q−1 + 2CQ−1K(H, hT )K(H, hT )T Q−1

1 + 2CK(h, hT ) − K(H, hT )Q−1K(H, hT )
= A,

Q−1
new = Q1Q2

(
A −ABD−1

−D−1BT A D−1BT ABD−1 + D−1

)
P2P1. (10)

Therefore, we can compute the new solution by using equation 7.

3 Experimental Results

In order to test the performance of the algorithms presented in this paper, the
experiments are made based on time series data set. In all experiments, 10-fold
cross-validation was used to get an estimation of the mean squared error(MSE).
The experiments are implemented by Matlab 7.0, and they run on PC environ-
ment. The main configurations of the PC are: (1) CPU: Pentium IV 2.0G, (2)
Memory: 256M, and (3) OS: Windows XP.

The data considered in this experiment are a high dimensional chaotic system
generated by the Mackey-Glass delay differential equation, which are originally
introduced as a model of blood cell regulation[6] and become quite common as
artificial forecasting benchmark. The equation is :

dx(t)
dt

= −0.1x(t) +
0.2x(t − Δ)

1 + x(t − Δ)10

with parameter Δ = 17. In order to keep consistent with the approaches in
[4], the initial condition for the above equation is x(t) = 0.9 for 0 ≤ t ≤ Δ.
The series is generated by numerical integration using a fourth order Runge-
Kutta method. Figure. 1 presents the first 1000 points of the time series. The
dataset is divided as follows: (1) the first 400 points are used for training set;
(2) the points in the range from 401th to 500th provide a validation set to select
parameters; and (3) the prediction error is measured on the test set in the range
from 501th to 1000th. The kernel for LSVR is a Gaussian Radial Basis Kernel
K(x, y) = exp(−‖x − y‖2/2σ2).

First some preliminary experiments based on validation set ensure that the
free parameters σ, C, and ε work fairly well. Through experiments, the values
of the free parameters are determined, which are σ = 1, C = 100, and ε = 0.1.
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Fig. 1. 1000 points of the Mackey-Glass time series MG17
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Fig. 2. The predicted
results of test set of
MG17
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Fig. 3. The predicted results of test set of
MG17 with noise, θ = 0.1

Table 1. The comparison results of three methods for Mackey-Glass time series

Dataset Methods (σ, C, ε) MSE

SV M light (1,1000,0.1) 0.0049
Mackey-Glass SOR-SVR (1,1000,0.1) 0.0047

LSVR (1,100,0.1) 0.0021

In order to test the prediction performance of the algorithms proposed in this
paper, we have experiments on the test set. In order to test the robustness of our
algorithm, we add normal distribution noise model Ω with mean 0 and EΩ = θ2.
The experimental results are shown in Figure. 2 and Figure. 3, respectively.
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We compare our algorithm with other approaches such as SV M light and
SOR-SVR(Successive OverRelaxation)[14]. The experimental results are shown
in Table 1.

4 Conclusions

This paper presents the online incremental learning algorithms for LSVR that
can be used for time series analysis. The main contributions of our algorithm
are that it is not necessary to re-learn the whole data set while a new sample is
added. The experimental results show that our algorithm performs very well on
time series prediction.
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Abstract. A new approach for maximum posterior probability (MAP) image 
restoration based on cellular neural network (CNN) is proposed in this paper, 
and hardware realization is also discussed. According to analysis of MAP im-
age restoration, a new template is proposed for CNN image restoration. The 
computer simulation result proves the approach is reasonable, then a hardware 
system based on CNN processor is setup for the restoration algorithm, and the 
effectiveness of the CNN processor is also confirmed in this system. 

1   Introduction 

Cellular Neural Network (CNN) is a parallel processing system [1,2] that has been 
utilized widely in the field of image processing [3]. It is attractive that l CNN could be 
easily realized with electronic circuit. Though the structure of CNN is simpler than 
that of Hopfield Neural Network, such advantage as parallel processing ability is still 
kept. There is the definition of energy function in the field of CNN, so such algorithm 
based on stochastic image model could be utilized when the template is designed. 

Because each cell of CNN is only connected with its neighbor, CNN is more easily 
realized than Hopfield Neural Network. The connection relationship is similar and 
definite, so it is easily realized with circuit or hardware system. According to the 
similarities between stochastic image model [4] and CNN, the CNN template for 
MAP image restoration is designed in this paper, After the template of CNN is found, 
the design method for integrate circuit is employed, then a neural network processor 
based on FPGA is easily set up. 

This paper is organized as follows, the similarities of Gibbs image model (GIM) 
and CNN is shown in section 2. Then physics meaning of MAP restoration algorithm 
based on GIM is analyzed in next section,. According to the analysis, the CNN tem-
plate for MAP binary image restoration is proposed, and some simulation results are 
also shown in section 3. Section 4 describes how to set up a CNN processor for image 
restoration based on FPGA. At last the conclusion is given in Section 5. 

2   Similarity Between Gibbs Image Model and CNN 

At first some basic definitions in Gibbs image are introduced. Think about  
random fields defined over a rectangular N N1 2×  lattice of points: 
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L i j i N j N= ≤ ≤ ≤ ≤{( , )| , }1 11 2 , (i,j) is a pixel, to the image which is processed in 

this paper, N1 = N 2 =512. A very important concept in Gibbs image model is clique, 

a clique C is a subset of L, and following condition should be satisfied: (1) C consists 
of a single pixel, or (2)for ( , ) ( , )i j k l≠ , ( , )i j C∈  and ( , )k l C∈  implies that 

(i,j) in the neighborhood system of (k,l). 

 

Fig. 1. Neighborhood system of pixel (i,j) and Clique which contains two pixels 

The Arabic numerals 1,2 mean that the correspond pixel is in the mth order 

neighborhood system. 
Another important concept is potential function, the appearing probability of image 

X={ Xij } is decided by U(x): the potential function of the image. The clique’s poten-

tial is denoted by V xc ( ) , and U(x) is the sum of each clique’s potential. This rela-

tionship between appearing probability and U(x) is described as following equations: 

P X x
e

Z

U x

( )
( )

= =
−

, (1) 

U x V xc
c C

( ) ( )=
∈
∑ , (2) 

Z e U x

x

= −∑ ( ) . (3) 

When Gibbs image model is utilized for image restoration question, the initial nor-
malized image Y={ Yij } is noisy, and we assume the noise is white gauss noise which 

its mean value is 0, then the relationship between Y and X is defined as follows: 

Y F X Wij ij ij= +( ) , (4) 

Yij  is the gray-level value of pixel (i,j). Xij  is region type of pixel (i,j), the random 

field X consist of M discrete values. Xij  is 0 or 1 to binary image. F(.) is a function 

which maps the region type to the corresponding gray-level. We can make MAP  
estimation to the segmentation question: 
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P X x Y y
P Y y X x P X x

P Y y
( | )

( | ) ( )

( )
= = =

= = =
=

. (5) 

In order to get MAP (maximum a posterior) restoration result, a NP complete ques-
tion need to be solved [4]. The cost of computation is very high. The approach based 
on CNN is easily realized with hardware system and the result could be gotten rap-
idly, so it is valuable to realize the statistical restoration algorithm with CNN. Now 
we note the similarity between Gibbs image model and CNN. 

 

Fig. 2. Neighborhood system of pixel (i,j) and Clique which contains two pixels 

The structure of network is presented in Fig.2. The cell C(i,j) is only linked with its 
r-neighborhood [4], only 1-neighborhood of the cell C(i,j) is shown in Fig.2. Obvi-

ously, it is similar with neighborhood system ηd  of Gibbs image model when d=1, 2. 

If these characteristics are utilized, more image problems could be processed by 
CNN. Equation (6) shows the state equation of CNN, and (7) shows the energy func-
tion of CNN. When CNN become stable, the energy function gets it local minimum or 
global minimum. 

C
dV t

dt R
V t A V t B V t I

Xij

X
Xij ijkl Ykl

k l N i j
ijkl U kl

k l N i j
ij

r r

( )
( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

= − + + +
∈ ∈
∑ ∑1

, (6) 

E(t) = -
1

2
A(i, j;k,l)V B(i, j;k,l)VYij

ji
Yij

ji

V IV
R

V VYkl Yij
i j x

Yij Ukl
i j

− + −∑∑∑ ∑∑∑
, ,

1

2
2  (7) 

To make use of Gibbs image model to process an image question, we also need to 
minimize a cost function. The cost function gets to its global minimum, then the right 
solution is gotten. So the similarity is not lies in the structure, but also in the process-
ing approach. 

Only the clique that contains two pixels is used. The clique which contain one 
pixel is nonsense to the noisy image because statistic characteristic of the image can 
not be utilized [5]. To the clique which contains two pixels, its potential can be  
described as: 

V x W i j k l V VC ij kl( ) ( , ; , )= − , (8) 

Vij  and Vkl  is the gray value of the pixel, W(i,j;k,l) is the connection parameter 

(coefficient of template A or B). 
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To make MAP estimation, formula (5) should be maximized. Since the noisy  
image is given, P(Y=y) is also definite. So maximization of the numerator is equal to 
maximization of (9). 

 ln ( | ) ln( )
( )

,

P Y y X x
N N y qij m

i jm

M

= = = − −
−

∑∑
=

1 2 2

2

2
12

2
2

πσ
σ

,  (9) 

ln ( ) ln ( )P X x Z V xC
c C

= = − −
∈
∑ .  (10) 

Calculate logarithm of (9) and ignore the constant, the next equation should be  
minimized: 

             − − +∑∑ ∑ ∑W i j k l V V I V Vij
k l

k l
i j

ij
i j

ij ij
ij

( , ; , )
,

,
, ,

1 1

22 2
2

σ σ
.            (11) 

From (9),(11), if we minimize function  (11) we can make MAP estimation 

     min( − − +∑∑ ∑ ∑W i j k l V V I V Vij
k l

k l
i j

ij
i j

ij ij
ij

( , ; , )
,

,
, ,

1 1

22 2
2

σ σ
).           (12) 

Equation (12) is similar to CNN energy function (7), so CNN can be used to get 
minimum of (12), but the form of W(i,j;k,l) is still unknown, in next section we will 
analyze the physics meaning of MAP restoration, and show the answer. 

3   Physics Meaning of MAP Image Restoration 

In this section we note the relationship between MAP restoration and special maxi-
mum entropy (ME) restoration [6], it’s helpful to analyze the meaning of MAP resto-
ration. The discussion is focused on the linear image model. The corrupt image  
model is: 

g Hf n= + 0 . (9) 

In equation (13), g is the corrupt image; f is the original image, H the correlative  
matrix between g and f. 

To the following ME estimation approach: 

max( ln )−f fT . (10) 

Reference [6] prove that ME restoration is a kind of MAP restoration.  The result of 
ME image restoration is similar with that of MAP estimation. We can get the CNN 
template from the physics meaning of ME image restoration [7]. The physics meaning 
of ME is very definite, H f  is the sum of the entropy, E is the sum of the gray-level, 

because the mean value of Gaussian noise is zero, E is a constant. So the gray-level of 
each pixel should be close when the entropy get its maximum value, so the meaning 
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of ME image restoration is smoothness. Based on the analysis and equation (9)(12), 

the CNN template should be: A=
1 0 1 0 1 0

1 0 1 05 1 0

1 0 1 0 1 0

. . .

. . .

. . .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, B=0, C=1, R X =1. Because CNN 

should become stable, the medium factor should be greater than other. So we adopt 
the medium factor is 1.05 because of these two requirements. 

4   Hardware Realization 

After the parameter is definite, the CNN could be realized with CNN. We choose a 
chip that is named as Altera cyclone EP1C-20, there are 20060 logic units (LE) and 
295K RAM in the chip [8]. Each pixel of the image corresponds to one LE. The most 
difficult is not the speed of calculation, it is the speed of data exchanging between 
CNN processor and other devices. To deal with this question, dual-access RAM is 
utilized. The following image is 128128×  pixel, so the size of dual-access RAM 

is. 130130 × =16.9Kbytes, because the boundary pixel should be calculated spe-
cially, and the enlarged pixel is equal to the original boundary pixel. When the calcu-
lation is carried out, lots of processing data is created. The last result is rely on these 
data, so 128128×  Bytes dual-access RAM is defined for these data. FIFO (first in 
first out) RAM is defined for CNN template, and the size is 2Kbytes. Now the buffer 
is enough, so we can read the noisy image data, then calculate in FPGA. 

In our experiment, the CNN processor is connected with DSP (TMS 320C5416) 
[9]. The MCBSP protocol (multi-channel synchronization port) is employed, and the 
speed of data exchange is 50Mbits/s. It’s enough to process the small image. After 
DSP get the result, it transfers the data to the computer, and the results are shown  
at last. 

The work procedure is described as follows: 

(1) Initial RAM, read the noisy data from DSP. 
(2) Multiply and add, calculate according to equation (6), the step is 0.002. 
(3) Write the result to the buffer, and if the calculation times are not enough, then 

calculate again. If the condition satisfied, transfer the data to DSP through MCBSP. 
(4)The CNN processor goes back to the waiting status, if a processing instruction is 

sent, the CNN processor will initial RAM again. 

                 

Fig. 3. Lenna                 Fig. 4. Noisy image (SNR=0dB)         Fig. 5. Restoration 
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We test the system with a 128128×  image. Fig.3 is original image “LENA”. Fig.4 
is the noisy image which is corrupted by Gauss noise, and the variance of noise is 1.0, 
and SNR=0dB. Fig.5 is the result of CNN processor. The result is good, and 
SNR=27.5dB. Though we discuss image restoration in this paper, the CNN processor 
is useful for other CNN templates, such as segmentation. The speed of the processor 
is 30 frames /second in our test. 

We also test the case of a 512512× image with the CNN processor. The image is 
divided into 16 blocks to process. Fig.6 is original image “LENA”. Fig.7 is the noisy 
image which is corrupted by Gauss noise, and the variance of noise is 1.0, and 
SNR=0dB. Fig.8 is result of median filter. Fig.9 is the result of CNN processor, and 
SNR (signal/noise) is 37.6dB. Obviously the result of CNN is better than that of me-
dian filter. The speed of this case is 1 frames /second in our test. 

           

                 Fig. 6. Lenna                             Fig. 7. Noisy image (SNR=0dB) 

 

           

Fig. 8. Restoration with median filter            Fig. 9. Restoration with CNN 

5   Conclusion 

In this paper a new approach for MAP image restoration based on CNN is proposed, 
and a CNN processor for image restoration is realized with FPGA. According to 
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analysis of MAP image restoration, a new template is proposed for CNN image resto-
ration. The computer simulation result confirms that we can get very good result with 
this novel CNN. Experimental hardware system based on this approach is setup, and 
the effectiveness of CNN processor is also confirmed in this system. 
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Abstract. In this paper, an algorithm which enables Alpha-Beta associative 
memories to learn and recall color images is presented. The latter is done even 
though these memories were originally designed by Yáñez-Márquez [1] to work 
only with binary patterns. Also, an experimental study on the proposed 
algorithm is presented, showing the efficiency of the new memories. 

1   Introduction 

Basic concepts about associative memories were established three decades ago in  
[2-4], nonetheless here we use the concepts, results and notation introduced in the 
Yáñez-Márquez's PhD Thesis [1]. An associative memory M is a system that relates 
input patterns, and outputs patterns, as follows: x→M→y, whose k-th association is 

denoted as ( )kk yx ,  . Associative memory M is represented by a matrix whose ij-th 

component is mij, which is generated from an a priori finite set of known associations, 
called the fundamental set of associations. If μ is an index, the fundamental set is 

represented as: ( ){ } 21  , ,p,,μyx …=μμ  with p the cardinality of the set. The patterns 

that form the fundamental set are called fundamental patterns. If it holds that 

{ } ,,2,1 , pyx …∈∀= μμμ  , M is auto-associative, otherwise it is heteroassociative. 

A distorted version of a pattern kx  to be recalled will be denoted as kx~ . If when 

feeding a distorted version of ϖx  with { }p,,2,1 …=ϖ   to an associative memory M, 

it happens that the output corresponds exactly to the associated pattern ϖy  , we say 

that recall is correct. Among the variety of associative memory models described in 
the scientific literature, there are two models that, because of their relevance, it is 
important to emphasize: morphological associative memories which were introduced 
by Ritter et al. [5], and Alpha-Beta associative memories [1]. 

In this paper we propose an extension of the binary operators Alpha and Beta, 
foundation for the Alpha-Beta associative memories [1], which allows memorizing 
and then recalling k-valued input and output patterns. Sufficient conditions for perfect 
recalling and examples are provided. 
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2   Alfa-Beta Associative Memories 

αβ associative memories are of two kinds and are able to operate in two different 
modes. The operator α is useful at the learning phase, and the operator β is the basis 
for the pattern recall phase. The heart of the mathematical tools used in the Alpha-
Beta model, are two binary operators designed specifically for these memories. These 
operators are defined as follows: First, we define the sets A={0,1} and B={00,01,10}, 
then the operators α and β are defined in tabular form: 

 BAA →×:α  AAB →×:β  

x y α(x,y)    x y β(x,y) 
0 0 01    00 0 0 
0 1 00    00 1 0 
1 0 10    01 0 0 
1 1 01    01 1 1 
      10 0 1 
      10 1 1 

 
The ij-th entry of the matrix txy ⊕  is: [ ] ( )jiij

t xyxy ,α=⊕  . If we consider the 

fundamental set of patterns: ( ){ }pyx ,,2,1, …=μμμ  where nAx ∈μ  and mAy ∈μ , then the ij-th 

entry of the matrix ( )txy μμ ⊕  is: ( ) ( )μμμμ α ji
ij

t
xyxy ,=⎥⎦

⎤
⎢⎣
⎡ ⊕ . 

3   The New Model 

In this section we show how binary αβ memories can be used to operate with RGB 
images. Without lose of generality, let us just analyze the case of the Alpha-Beta 
autoassociative memories of kind V. 

First, we need to define four operators and prove four propositions derived from 
them, which will be useful for both phases of the model: learning and recalling. Due 
to reasons of space, the full proofs of the propositions are omitted here. 

Definition 1. Let r be a non-negative integer number. The minimum binary string 
operator k(r) is defined as follows: k(r) has r as input argument and its output is the 
minimum of the members of the set {x | x=log22

k, where k∈ Z+ and 2k > r}. 

Proposition 1. If x is an integer number such that 0 ≤ x ≤ 255, then k(x) ≤ 8. 

Definition 2. Let r be a non-negative integer number and k a positive integer number, 
which make the expression k≥k(r) true. The k-binary expansion operator ( )kr,ε  is 

defined as follows: ( )kr,ε  has r and k as input arguments and its output is a binary  

k-dimensional column vector whose components correspond to the k bits binary 
expansion of r, with the least significant bit in the lower side. 
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Proposition 2. If x is an integer number such that 0 ≤ x ≤ 255, then it is possible to 
obtain the 8-binary expansion operator ( )8,xε . 

Definition 3. Let b be a binary column vector of dimension n, and k an integer 

positive number such that k≥n. The k-binary inverse expansion operator ( )b1−
kε  as 

follows: ( )b1−
kε  has as input argument a binary k-dimensional column vector, whose 

first k-n components are 0’s, and the last n components coincide one to one with the 
components of vector b, having the least significant bit in the lower side. The output 

of ( )b1−
kε  is a non-negative integer number r which is computed through the 

expression: ∑
=

−•
k

i

ik
ib

1

2  . 

Proposition 3. If b is a binary column vector of dimension n ≤ 8, it is possible to 

obtain the 8-binary inverse expansion operator ( )b1
8
−ε , whose output is calculated as: 

∑
=

−•
8

1

82
i

i
ib . 

Definition 4. Let m be a positive integer number and rm non-negative integer numbers 
r1, r2, …, rm. Additionally, let k be a positive integer number whose value is 
compatible with Definition 2 for the computation of the m k-binary expansion 
operators ε(r1, k), ε(r1, k), …, ε(rm, k). The ordered concatenation C of ε(r1, k), ε(r1, 
k), …, ε(rm, k) is defined as a binary column vector of dimension m, made up of the 
binary strings ε(r1, k), ε(r1, k), …, ε(rm, k) put in order from top to bottom. This 
ordered concatenations is denoted by: 

( ) ( ) ( )[ ]
( )
( )

( )⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

kr

kr

kr

krkrkr

m

m

,

,

,

,,,,,, 2

1

21

ε

ε
ε

εεε …C . 

Proposition 4. If x, y, z are three integer numbers which make trae these inequalities: 
0 ≤ x ≤ 255, 0 ≤ y ≤ 255 and 0 ≤ z ≤ 255, then the ordered concatenation 

( ) ( ) ( )[ ]8,,,8,,8, zyx εεε …C  is a binary column vector of 24 bits. 

 
The fundamental set for the new model is made up by p color images in RGB format, 
where p is a positive integer number. The A set for the new model is formed by RGB 
triplets, and is denoted as: A = { x | x is an RGB triplet }. 

If Iμ represents the μ-th image, the fundamental set is represented as: 
{(Iμ, Iμ)} | μ = 1, 2, …, p}. 

Let us call n=hv to the total number of pixels in each Iμ, where h is the number of 
horizontal pixels and v is the number of vertical pixels. That is, Iμ is made up by n 

RGB pixels. Also, Iμ∈An , ∀μ∈{1, 2, …, p} and { }niAIi ,,2,1, …∈∀∈μ . 
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According to the alter paragraph, for each μ∈{1, 2, …, p} and each i= 1, 2, …, n, 

component μ
iI  has three parts, corresponding to the R, G, and B of that RGB triplet. 

These three parts will be denoted as μ
iR , μ

iG , and μ
iB , respectively. 

Just as in the original model of Alpha-Beta associative memories, the B set is 
B = {00, 01, 10}. 

LEARNING PHASE 
For each μ=1, 2, …, p and each i= 1, 2, …, n, obtain ( )8,με iR , ( )8,με iG , ( )8,με iB , 

and ( ) ( ) ( )[ ]8,,8,,8, μμμ εεε iii BGRC . 

For each μ=1, 2, …, p obtain [ ]μμμμ
mCCC ,,, 21 …C=x . 

For each μ=1, 2, …, p and each association (xμ, xμ) build ( )
nm

t

×⎥⎦
⎤

⎢⎣
⎡ ⊗ μμ xx . 

Apply the binary operator ∨  to the former matrices in order to obtain 

( )
nm

t
p

×=
⎥⎦
⎤

⎢⎣
⎡ ⊗= ∨ μμ

μ
xxV

1

. 

RECALLING PHASE 
CASE 1: Recall of a fundamental pattern Iω∈An with ω∈{1, 2, …, p}. 

For each i= 1, 2, …, n obtain ( )8,ωε iR , ( )8,ωε iG , ( )8,ωε iB , and 

( ) ( ) ( )[ ]8,,8,,8, ωωωω εεε iiii BGRC C= . 

Obtain [ ]ωωωω
nCCC ,,, 21 …C=x . 

Do operation ω
β xVΔ . 

The result is a binary column vector of dimension m = 24n, with its i-th component 
given by: 

( ) ( )

( ) ( )
1

1 1

, ,

, , .

m

ij ji
j

pm

i j ji
j

v x

x x x

ω ω
β

ω μ μ ω
β

μ

β

β α

=

= =

Δ =

⎧ ⎫⎡ ⎤⎪ ⎪Δ = ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∧

∧ ∨

V x

V x

 

For each i= 1, 2, …, n : 
Form a binary column vector b of dimension 8 such that: 

( ) ( ) jijb
+−

Δ=
124

ω
β xV , for 0 < j ≤ 8. 

Calculate ∑
=

−•=
8

1

82
j

j
ji bRω . 

Form a binary column vector b of dimension 8 such that: 

( ) ( ) 8124 −+−
Δ=

jijb ω
β xV , for 8 < j ≤ 16. 
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Calculate ∑
=

−•=
8

1

82
j

j
ji bGω . 

Form a binary column vector b of dimension 8 such that: 

( ) ( ) 16124 −+−
Δ=

jijb ω
β xV , for 16 < j ≤ 24. 

Calculate ∑
=

−•=
8

1

82
j

j
ji bBω . 

Create the RGB triplet and assign it to the i-th component of μ
iI . 

The recalled pattern is the fundamental pattern Iμ∈An . 
CASE 2: Recall of a pattern I~  which is a version of some fundamental pattern 
Iω∈An, ω∈{1, 2, …, p},altered with additive, substractive or mixed noise. The steps 
of the algorithm are similar to those of the Case 1, using I~  instead of Iμ. 

4   Experiments with RGB Images 

In this section the new Alpha-Beta associative memories are tested with ten color 
images. The images, shown in the Figure 1, are 100 by 75 pixels and 24 bits of depth 
per pixel, RGB. Only the new Alpha Beta autoassociative memories type V were 
tested. 

 

 

Fig. 1. Images of the ten objects used to test the new αβ associative memories 

LEARNING PHASE 
Each one of all the ten images was presented to the new Alpha Beta autoassociative 
memory type V, following the learning phase described in the latter section. 

RECALLING PHASE 
All the ten patterns in the fundamental set were perfectly recalled. 

To perform the experiments with altered versions of the fundamental patterns, the 
images in the fundamental set were corrupted with additive noise. Four groups of 
images were generated: The first one with very weak additive noise (1%), the second 
one with weak additive noise (5%), the third one with medium additive noise (20%), 
and the fourth one with severe additive noise (50%), a huge amount of noise. Forty 
corrupted images were obtained changing randomly some pixel values. In all the 
cases the desired image was correctly recalled. Notice how despite the level of noise 
introduced in the fourth column is too severe (in any system, 50% of noise is a huge 
amount), all the images are still correctly recalled! 
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5   Conclusion and Future Work 

We have shown how it is possible to use binary Alpha-Beta associative memories, to 
efficiently recall patterns made with color images, in particular using the RGB format. 
This is possible because an RGB image can be decomposed into binary patterns. It is 
worth to mention that the proposed technique can be adapted to any kind of binary 
associative memories while their input patterns can be obtained from the binary 
expansions of the original patterns. Currently, we are investigating how to use the 
proposed approach in the presence of mixed noise and other variants. We are also 
working toward the proposal of new associative memories based on others 
mathematical results. 
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Abstract. The enlargement of the digital image implies the improvement of the 
image resolution, where the high frequency components lost in sampling must 
be estimated. In this paper, an image enlargement method using a high resolu-
tion neural network is proposed, corresponding to the region with rapid change 
(high local variance) and the region requiring a smooth interpolation (low local 
variance). It is shown that the high resolution NN has high potential ability. 

1   Introduction 

The enlargement of the digital image implies the improvement of the image resolu-
tion, where the high frequency components lost in sampling must be estimated [2-5]. 
As a means to cope with the requirement, the authors have proposed a method using 
the high-resolution neural network [3]. The method is an extension and generalization 
of the method proposed by Greenspan [2]. The high resolution NN is a three-layered 
NN, and is trained by error back-propagation. The high resolution obtained by train-
ing is not much affected by the kind of training image or its resolution, and the per-
formance is improved more remarkably than by Greenspan’s method. 

The method [3] has the following two problems: 

(1) As already pointed out in Ref. 3, when the image is enlarged using the high-
resolution NN, artifacts may be produced on the enlarged image, if the magnification 
ratio is 4 or more. 

(2) Although a high-resolution NN can be composed with a remarkably better per-
formance than by Greenspan’s method, independently of the training image, the per-
formance may vary by approximately 10%, in terms of the mean square error (MSE), 
due to the different properties of the training image and the image to be enlarged. 

The artifacts on the enlarged image in problem (1) are especially remarkable in the 
smoothly changing region of the image. This is due to the fact that the high-resolution 
NN is trained to improve the resolution in the region with a rapid signal change as in 
the case of the edge signal, and produces unnecessary changing components in the 
region with the smooth signal. In order to remedy this point, there is an approach 
where two NN divide the processing for the region of the image with smooth changes 
and the region with rapid changes. 
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As seen from the above discussion, an image contains the region where the resolu-
tion should be improved, and the region where the signal should simply be interpo-
lated. It is expected that the high-resolution NN will be constructed with different 
properties, depending on the ratio of those regions in the image. This is the reason for 
problem (2). It is again expected that this problem can be solved by preparing separate 
NN for those requirements (i.e., the requirement to improve the resolution and the 
requirement for simple interpolation). 

With such a view as the background, this paper proposes the use of high-resolution 
multi-neural networks (MNN) for enlarging digital images (high resolution). In the 
proposed method, the local variance is used as the criterion for discriminating the 
regions for resolution improvement and the regions for smooth interpolation. It is 
logical to expect that the signal region with a high local variance will require resolu-
tion improvement, and the signal region with a low local variance will require smooth 
interpolation. 

From such a viewpoint, the high-resolution MNN based on the local variance is 
composed of two NN, and the result of enlargement (or interpolation) is given as the 
weighted sum of the two NN outputs. The weights are determined as functions of the 
local variance. By learning of the high-resolution MNN, the coupling weights in  
the two NN, as well as the weights for the two outputs are determined in parallel. The 
two constructed NN are defined as the NN for low local variance and the NN for high 
local variance, respectively. 

2   High Resolution Multi-neural Networks Based on Local 
Variance 

It is expected that the problems of the high-resolution NN pointed out in Fig. 1 will be 
remedied by constructing and operating separately the network to interpolate the re-
gion near the edge, and the network to interpolate the region with smooth signal 
changes. This section newly proposes a high-resolution MNN based on the local  
variance along the above idea, and presents its training procedure. 

The signal region with rapid changes that requires the resolution improvement and 
the signal region that requires the smooth interpolation can be discriminated using the 
local variance. From such a viewpoint, the proposed high resolution NN is con-
structed using the NN for high variance (NNH) and the NN for low variance (NNL), 
and the result of enlargement (interpolation) is defined by the weighted sum of the 
two NN outputs. The weights are determined as functions of the local variance. Then, 
the two NN satisfying the above requirements can be derived by training. 

Formulating the above idea, the output O of the high resolution MNN is given as 
follows, using the outputs OH and OL of NNH and NNL, respectively: 

LH O)(gO)(fO υυ +=                                                 (1) 

In the above, )(f υ  and )(g υ  are functions of the local variance υ. They are  

defined as follows: 
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Thus, the high resolution MNN proposed in this paper has the structure shown in 
Fig. 1. Hυ  and Lυ  are the thresholds for the local variance. The functions )(f υ  and 

)(g υ  are represented as in Fig. 2. Those two threshold values are also adjusted by 

training. 
As in the case of the high resolution NN in [3], MNN is trained by minimizing the 

mean square error between the supervisor’s signal Ln-1 and the MNN output O over all 
training signals. More precisely, letting the coupling weights for NNH and NNL in  
the high resolution MNN be Hω  and Lω , respectively, the following optimization  

problem is solved: 
Minimize: 

])OL[(E),,,(J nLHLH
2

1 −= −υυωω                                   (4) 

Let the instantaneous error J be 

2
121 )OL(/J n −= −                                                 (5) 

The coefficients are updated as follows: 
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Fig. 1. The structure of MNN 

 

Fig. 2. Nonlinear functions )(f υ , )(g υ  

By the above training of MNN based on the local variance, the threshold value 

Hυ , Lυ  as well as the weight coefficients Hω , Lω  of the networks are optimized. 

3   Simulation 

This section examines the characteristics of the high resolution MNN, and also exam-
ines whether or not the two problems in the high-resolution NN are dissolved, through 
an application example of the high resolution MNN to the natural image signal. As 
the numerical indices for evaluation, the MSE between the ideal enlarged image and 
the resultant image of the enlargement processing, the MSE in the flat region (the 
region where the local variance in 3×3 region of the ideal enlarged image is less than 
200) of the image (called background MSE, BMSE), and the MSE in the detailed 
region (the region where the local variance in 3×3 region of the ideal enlarged image 
is 200 or more) of the image (called detailed region MSE, DMSE) are used. 

As the test images in this study, the original images of Lena and Lighthouse are 
contracted to one-half by down sampling after Gaussian filtering. The contracted 
image is used as the input to the high-resolution NN and the high resolution MNN. 
The corresponding original image is used as the supervisor signal in the training. Five 
networks are constructed [NN-Le, MNN-Le (5×5), (7×7), NN-Lh, MNN-Lh (5×5)]. 
As the region in which the local variance is calculated, two regions-5×5 and 7×7 are 
set in the input image in the input layer, especially for Lena. The one-half-contracted  
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images (Lena, Boat, Lighthouse) are input to the five networks, and the resolution is 
improved (enlarged). Table 1 shows the numerical evaluations between the enlarged 
results and the ideal images. 

In this study, it is assumed that the two NN are switched based on the local vari-
ance (soft switching). The size of the region for which the local variance should be 
calculated is discussed in the following. In the input image to the high-resolution 
MNN (the image obtained by inserting 0 values in the image to be enlarged), 5×5 and 
7×7 regions are specified as the regions for calculating the local variance, and two 
MNN-Le are constructed. It should be noted that 5×5 is the minimum region for 
which the local variance can be calculated. 

As seen from Table 1, the result of MNN-Le (5×5) is better than that of MNN-Le 
(7×7). Since the two NN in MNN are the networks for satisfying, respectively, the 
contradictory requirements, it may seem better that the networks should have different 
properties. When the local region is widened, however, there may arise regions which 
can not be decided as the edge or the flat region. This will make discrimination of the 
two NN ambiguous, and degrades the performance. From such a viewpoint, the 5×5 
region seems adequate as the region to calculate the local variance in the high  
resolution MNN. 

Table 1. Enlargement results (MSE/BMSE/DMSE) 

Image Lenna Boat Lighthouse 
Greenspan 106.4 (35/361.2) 76.5 (30.5/256.4) 254.5 (40.0/669.4) 

NN-Le 75.9 (22.4/273.7) 52.9 (20.8/178.5) 217.8 (31.6/577.8) 
NN-Lh 83.0 (27.3/276.8) 58.6 (25.6/187.9) 213.5 (34.6/559.5) 

MNN-Le (5×5) 70.3 (20.5/248.2) 53.2 (18.6/188.9) 215.3 (30.2/573.4) 
MNN-Le (7×7) 73.1 (21.3/258.3) 53.2 (19.4/184.9) 220.5 (31.6/585.9) 

MNN-Lh 76.4 (24.2/263.2) 56.1 (23.4/184.0) 205.3 (21.7/541.1) 

4   Conclusions 

This paper has pointed out the problems in digital image enlargement by the high-
resolution NN, which was previously proposed by the authors. In order to solve those 
problems, a high-resolution MNN is proposed, which is composed of two NN. It is 
shown that the high resolution MNN has high potential ability and can dissolve the 
problems in the high-resolution NN.  

In this paper, the processing is divided between the two NN, based on the local 
variance information. It is of course conceivable that the number of NN is increased 
to 3, 4. . . . So that the local variance is considered in more detail. As an example,  
the processing is divided among three NN based on the local variance information. 
The result for Lena, however, shows only an improvement of MSE from 70.3 to 70.1. 
The situation is similar for Lighthouse and other images. Thus, it is verified experi-
mentally that the division of processing is sufficient if two NN are used. In order to 
improve further the enlargement performance by MNN, new local information should 
be introduced, which is left for future study. 
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Abstract. A generalized regression neural network based error correc-
tion scheme for linear image interpolation approach is proposed. A mid-
dle image with the same size of source image is obtained by interpolating
a down-sampled image from the source image. Then neural network is
established with employing the interpolation error between the source
image and the middle image. Finally interpolation correction is applied
to the linear interpolation result of source image using neural network
estimation to obtain more accuracy result image. Experimental results
of the proposed approach demonstrate the effectiveness of the scheme.

1 Introduction

Image interpolation has a wide range of applications in remote sense, medical
diagnoses, multimedia communication and other image process fields. The well-
known approaches to image interpolation are linear interpolation and cubic inter-
polation [1]. However these methods blue images particularly in edge regions [2].
Other algorithms have been extensively studied to solve the problem of blurring,
such as adaptive interpolation methods [3], [4]. Some other learning based inter-
polation approaches have also been proposed, such as support vector machines
based image interpolation approach that was suggested in [5].

Most of these interpolation approaches did not use interpolation error cor-
rection scheme. However error correction scheme is usually efficient to improve
interpolation accuracy of result images. An error correction scheme employing
support vector machines is provided in [6]. And it is shown that error correction
scheme is benefit to improve the quality of result images. In this paper a more
efficient error correction scheme using neural network for linear interpolation
approach is proposed. And experimental results show that the quality of the
result images produced with the proposed scheme is better than the well-known
interpolation approaches.

2 Generalized Regression Neural Network Estimation

Line regression and logistic regression are the standard statistical approaches to
establish mathematical relationship between the independent variables and the

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 840–845, 2007.
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final decision. They often require prior knowledge about the relationship pat-
terns. Neural network is efficient for patterns detection where the relationships
can not be easily expressed in a mathematical form. Neurons in neural network
are interconnected to receive signals in input layer and produce output in out-
put layer. Firstly the network structure is decided. Then a learning algorithm is
employed for the network training with sample vectors. In this training process
network parameters are modified to minimum the error between the actual out-
put and the desired output. Finally the trained neural network can be used to
estimate the output for any vector from the input space.

Radial basis function (RBF) neural network is an important neural network
architecture with many important applications. The RBF neural network has
the universal approximation ability, so it can be used for the interpolation prob-
lem [7]. A Gaussian radial basis function is highly nonlinear and powerful for
learning complex input-output mapping. A typical RBF neural network includes
an input layer, a single hidden layer that is called radial basis layer for non-linear
processing, and a output linear layer [7]. The output of RBF neural network is

f(x) =
n∑

i=1

wiφi(‖x − ci‖), (1)

where x is input vector, φi(.) denotes the processing function of the i-th node in
the hidden layer, ‖.‖ denotes the Euclidean norm, wi are weights between i-th
node in the hidden layer and output node, n is the total number of neurons in
the hidden layer, and ci are the RBF centers in the input vector space. Euclidean
distances that are the distances between the input vector and the input weight
matrix for each neuron in the hidden layer are calculated, and a nonlinear func-
tion of the distance is obtained in the hidden layer outputs. The output of the
neural network is a weighted sum of the hidden layer outputs. Gaussian function
is often employed as the radial basis process function.

Constant spread S is employed in the radial basis layer to set each bias of this
layer to 0.8326/S. The spread S can determine the area width for each neuron
responds in the input space. So the spread S needs to be selected correctly to
overlap the regions of the input space.

Generalized regression neural network (GRNN) which is similar to the RBF
is often used for function approximation [8]. The number of the neurons in the
radial basis layer of GRNN is just the number of input target vectors. And the
radial basis layer of GRNN is similar to that of RBF. GRNN has a special linear
output layer that is different from RBF. The neurons number in the output layer
of GRNN is also equal to the number of input target vectors. And in this layer
the dot product of the weights and the input vector is calculated and normalized
at first, then the result is employed as input of linear neurons.

It has been shown that GRNN can approximate a continuous function to
an arbitrary accuracy when a sufficient number of hidden neurons are given.
GRNN can be established quickly for no training is needed. In this paper gen-
eralized regression neural network is employed to estimate interpolation error
distribution.
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3 Previous Work of Interpolation

3.1 Linear and Cubic Interpolation

Let x denote the coordinate value to be interpolated. Assume that xk−1, xk,
xk+1 and xk+2 are the nearest available neighbors of x, where xk ≤ x < xk+1.
Let f(xk−1), f(xk), f(xk+1) and f(xk+2) denote the available gray value of xk−1,
xk, xk+1 and xk+2, respectively. Then the distance between x and neighbors can
be defined as

s = x − xk, 1 − s = xk+1 − x (0 ≤ s ≤ 1). (2)

We have one-dimensional linear interpolation of x

f̂(x) = (1 − s)f(xk) + sf(xk+1). (3)

Similarly, we have one-dimensional cubic interpolation of x

f̂(x) = [f(xk−1)((3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3)
+f(xk)((2 + s)3 − 4(1 + s)3 + 6s3)

+f(xk+1)((1 + s)3 − 4s3) + f(xk+2)s3]/6.

(4)

For an image with two dimensions, we can apply one-dimensional linear inter-
polation equation (3) or cubic interpolation equation (4) to the image along the
rows firstly, then the interpolation is applied to the image along the columns.
And this two-dimensional interpolation algorithm is called bilinear interpolation
or bicubic interpolation [1] [3].

3.2 Warped Distance Based Adaptive Interpolation

Recently an adaptive linear space variant approach based on the evaluation of
warped distance was proposed in [3]. To sharpen edge regions the concept of
warped distance was introduced to evaluate image local activities properties. To
adjust the distance s in (3) and (4) an asymmetry operator was denoted by

A =
|f(xk+1) − f(xk−1)| − |f(xk+2) − f(xk)|

L − 1
. (5)

For 8-bit gray images, L=256 and Aε[−1, 1]. Adaptive interpolation expressions
of (3) and (4) can be modified by replacing distance s with warped distance.
Then we have adaptive bilinear interpolation function

f̂(x) = (1 − s)cf(xk) + sdf(xk+1), (6)

and adaptive bicubic interpolation function

f̂(x) = [cf(xk−1)((3 + s)3 − 4(2 + s)3

+6(1 + s)3 − 4s3)
+cf(xk)((2 + s)3 − 4(1 + s)3 + 6s3)

+df(xk+1)((1 + s)3 − 4s3) + df(xk+2)s3]/6,

(7)

where c = 1 − mA, d = 1 + mA, and m denotes a constant.
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4 Proposed Interpolation Correction Scheme

The critical task of image interpolation is to reduce estimation error of the pixel
gray value to be interpolated, especially in edges and detail regions where the
interpolation error is usually greater than in other regions. Usually the edges and
detail regions in the interpolated result images of the source image is similar to
that of the down-sampled images. So the interpolation error of the source images
can be estimated by using the interpolated result image of the down-sampled
image. GRNN can be employed to estimate the interpolation error distribution.

Suppose we need calculate the 2× interpolation result image T with size
4a × 4b from source image P with size 2a × 2b, our proposed error correction
scheme can be described as follows:

Step 1. The source image P is down-sampled to get image Q with size a ×
b. And Q is interpolated to establish middle image Q1 with size 2a × 2b by
employing linear interpolation approach.

Step 2. An interpolation residual image R can be calculated as

R = P − Q1. (8)

Some pixels in Q1 those have corresponding residue gray values in R are obtained
with interpolation calculation, that is say they are not in the down-sampled
image Q. Their corresponding residue gray values are collected as the sample
vectors of GRNN. The patterns in the input vector of these samples are their
relative coordinates, and the output is the corresponding residual image gray val-
ues. After the GRNN is established, it can be employed to estimate interpolation
error.

Step 3. Linear interpolation result image T1 with size 4a×4b is calculated by
applying the linear interpolation algorithm to the source image P.

Step 4. The interpolation result image T1 is corrected with GRNN error
estimation. The input vector of GRNN is the relative coordinates of the pixels
those are in image T1 and not in image P, and output is the error estimation of
gray values. The final corrected result image T can be calculated as

T = T1 + R/v, (9)

where v is the correction parameter to control correction degree.
In this correction scheme for linear interpolation, spread S and v can be

selected by optimal search. In the search process image Q can be regarded as
source image, then different S and v can be applied to the proposed scheme
for interpolation to decide the optimal parameter values for S and v. In this
procedure all the interpolation results images are known, so we can use these
known result images to compare interpolation results and judge the optimal
parameters. After these parameters are selected, these optimal parameters can
be used in the proposed scheme to perform interpolation and correction for
source image P to get final unknown interpolation result T.

This scheme can be easily generalized to those interpolations where the mag-
nification times is integer.
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5 Experimental Results

Some standard images that have been widely used in other literature were tested
in our experiments. We obtained similar results when these standard images are
tested with linear, cubic, warped distance adaptive interpolation algorithms and
our proposed scheme. Experiments are performed in Matlab. Results with differ-
ent interpolation approaches are employed to the test image peppers and airplane
are compared in Table 1 and Table 2 respectively. Where the double row and col-
umn expanded is performed to the source images with different approaches. All
the parameters m for warped distance based adaptive interpolation approaches
and S, v for proposed correction scheme are selected with optimal search proce-
dure. In Table 1, m = 0.6 for adaptive linear interpolation algorithm, m = 0.7
for adaptive cubic interpolation algorithm, where S = 2.5 and v = 2 for pro-
posed scheme. In Table 2, m = 0.1 for both adaptive interpolation algorithms,
where S = 2.0 and v = 3 for proposed scheme. It is shown from the tables that
the proposed correction scheme reduces mean square error (MSE) and improves
peak signal to noise ratio (PSNR) of result images. It is also shown that these
experimental results are superior than the support vector machines based error
correction scheme in [6].

Table 1. Different Interpolation Approaches Applied to Image Peppers

Algorithm MSE PSNR

Linear 115.96 27.488
Adaptive Linear 112.45 27.621
Cubic 120.58 27.318
Adaptive Cubic 116.98 27.450
Proposed 103.65 27.975

Table 2. Different Interpolation Approaches Applied to Image Airplane

Algorithm MSE PSNR

Linear 49.33 31.199
Adaptive Linear 49.30 31.202
Cubic 50.85 31.068
Adaptive Cubic 50.87 31.066
Proposed 43.57 31.739

6 Conclusion

A novel linear interpolation error correction scheme based on neural network has
been proposed. This scheme can be employed to interpolation applications, such
as enlarge image where the magnification times is integer. We can also notice
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that applying the error correction scheme to the linear interpolation approach,
we can get better result images than employing more complex approaches, such
as cubic approach and warped distance based adaptive algorithms. It shows that
the interpolation compensation scheme can be applied to simple interpolation al-
gorithm to get better result images than some complex interpolation algorithms.
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Abstract. A novel edge enhancement based on Hopfield neural net is
presented in this paper, which is a post-processing complement for a
pre-existing edge detector. This term is added to the output of the edge
detector. Firstly, the energy function which is used to find the final sta-
ble edges is provided in the Hopfield neural net, and then, based on
the window iteration, it improves the performance of the edge detector
by recovering missing edges and eliminating false edges. In experiments
conducted on various images, we demonstrate the performance of the
algorithm on them.

1 Introduction

Edges are of primary importance in visual quality perception[1], because ob-
ject boundaries are crucial information to the human visual system (HVS). In
many image analysis and computer vision applications edges are used as primary
features[2], such as in case of image enhancement, object classification, object
detection and tracking. Therefore, the edge enhancement is an essential step for
obtaining the excellent edges.

Many edge enhancement methods have been researched in last decades, apart
from the dedicated algorithms, it is desirable to incorporate appropriate con-
trast enhancement on edges in various image processing tasks, such as image
reconstruction or demosaicing, post-processing for decompressed images/video.
Edge enhancement can be evaluated via estimating local contrast[3], kurtosis[4]
and width/amplitude of lines and edges[5], based on subband decomposition.
Although most edge detectors do a reasonable job of locating better edges, most
of enhancement methods for edges was treated as a positive factor towards vi-
sual quality, and excessive edge sharpness and the influence of surrounding pixels
were not considered.

In this paper, we propose a novel enhancement algorithm using Hopfield
Neural Net (HNN) for edge enhancement, which are only added to a pre-existing
edge detector as a post-processing complement for an exquisite edge. Firstly, an
energy function corresponding to HNN is to be revealed, whose minimum should
correspond to the possible stable situations in which the edges are a pixel width
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and continuous. And based on it, the structure of a HNN is designed. This
efficiently captures the topological and structural properties of the edge data
obtained from pre-existing edge detector. Finally, stable structures for edges
are obtained by establishing proper interconnections among neurons and updat-
ing the neural computation toward the right solution. To verify the proposed
method, we compare it with the common methods in the term of images which
have no noise and noise respectively. The experimental results show that the
effect of the proposed method is superior to them.

The remainder of this paper is organized as follows: Section 2 contains a review
of HNN technique. Based on the analysis of such technique, the motivation and
contribution of the proposed method is explained. In section 3, the customized
HNN process is described where the energy function to be minimized is derived.
Section 4 exhibits and discusses the experimental results. Lastly, the conclusions
of this paper are provided in section 5.

2 The Review of HNN

The HNN paradigm initially proposed by Hopfield has been widely used for
solving optimization problems[6]. This implies fixing two characteristics: Its ac-
tivation dynamics and an associated energy function which decreases as the
network evolves.

The HNN is a recurrent network containing feedback paths from the outputs
of the nodes back into their inputs so that the response of such a network is
dynamic. This means that after applying a new input, the output is calculated
and fed back to modify the input. The output is then recalculated, and the
process is repeated again and again. Successive iterations produce smaller and
smaller output changes, until eventually the outputs become constant, i.e., at this
moment the network achieves an acceptable stability. The connection weights
between the nodes in the network may be considered to form a matrix T. the
classical approach shown that a recurrent network is stable if the matrix is
symmetrical with zeros on its diagonal[7], that is, if Tij = Tji for all i and j and
for Tii = 0 all i neurons.

There are two kinds of Hopfield networks: 1) Analog, in which the states of
the neurons are allowed to vary continuously in an interval, such as [-1, 1]; and
2) discrete, in which these states are restricted to the binary values -1 and +1.
The drawback of these binary networks is that they oscillate between different
binary states and settle down into one of many locally stable states. Hopfield
has shown that analog networks perform better since they have the ability to
smooth the surface of the energy function which prevents the system from being
stuck in minor local minima. For analog Hopfield networks, the total input into
a node is converted into an output value by a sigmoid monotonic activation
function instead of the thresholding operation for discrete Hopfield networks.
The dynamic of a node is defined by
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dui

dt
= − ui

Ri
+

∑

j �=i

TijVj + Θi (1)

Where the Vj value represents the output of the j th node; Tij is the weight
of the connection between nodes; Ri is a time constant that can be set to one
for simplicity. The quantity describing the state of the network, called energy
function, is defined as follows:

E = −1
2

∑

i

∑

j �=i

TijViVj −
∑

i

ΘiVi + β
∑

i

∫ Vi

0
g−1(V )dV (2)

Where g(V) is the sigmoid activation function, β a is a scale coefficient. The
continuous Hopfield model described by the system of nonlinear first-order dif-
ferential equation (1) represents a trajectory in phase space, which seeks out the
minima of the energy function in (2).

3 Edge Enhancement by HNN

Our purpose is to enhance edges to obtain an edge map with one pixel width
based on existent edges by the pre-existing edge detector, remove noise and
recover missing edges. Several factors such as what kind of edge structures
are stable, and how to update the edge measurement to approach the final
result should be considered. For existent edge pixels, we define four edge ori-
entations, such as fig.1 shown, which are the expected outputs of HNN. And
the number of pixel in every orientation is counted for a 5×5 window. The
maximum decide central pixel belong to which orientation. If the number is
equal for all four orientations, the orientation is decided by previous pixel. In
our research, the end pixels and abrupt points of edges are ignored. The key
problem of HNN is to find a configuration for minimizing an energy function
which describes the stable situations of edges. The neurons inside the window
are fully connected to each other. The correlation between the central element
and the element outside the window can be ignored without effecting the final
result.

Class 4Class 1 Class 2 Class 3

Fig. 1. The four edge orientations
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The possible stable edge structures are analyzed according to the expected
effects which are single pixel width, continuous. Summarize the conditions in
which computation will be finished if window reaches one of them:

1. An edge with the orientation under consideration through the window,
2. No edge in the window.

Here, let the value "-1" be an edge credit for a non-edge, and the value "+1"
denote an edge pixel. Therefore, the energy function for the Class 2 (others are
similar) should be constructed such that it favors states that:

1. Have in each row only one +1 and other all -1,
2. Have all -1 in all rows, and
3. The total number of +1 is n (for n×n window).

The energy function which satisfies the above states is:

E = A

5∑

x=1

5∑

i=1

5∑

j=1, �=i

(Vx,i + 1)(Vx,j + 1) + B

5∑

x=1

5∑

i=1

[(Vx,i + 1) − 2]2

×
5∑

j=1, �=i

(Vx,j + 1) + C

5∑

x=1

(|
5∑

i=1

Vx,i| − 5)2 (3)

Where, V represents the output of the neural cell with values ranging from -1
to +1, and A,B,C,D, and are parameters. Each item in the energy function has
minimum value 0 since the output V is from -1 to 1. The first two items are
designed to satisfy the first state. When having all ?1 in all rows, or only one
+1 and other all -1, (Vx,i + 1)(Vx,j + 1) is zero. So the first two items have
minimum value zero. For the second item, as there is only one +1 at each row,∑5

i=1[(Vx,i +1)−2]2 will be 2, which makes the first term equal zero. Therefore,
the first two items reach their minimum zero when the edge structure in a window
is stable at state 1. The last three items are designed to satisfy the second state.
When having all -1 or +1 in a column, |

∑5
i=1 Vx,i| be 5, and (|

∑5
i=1 Vx,i| − 5)2

will be zero, which makes the whole item equal zero. The same result can be
obtained for the last two items.

From the energy function, the time derivation of the central unit in a window
can be derived as:

dy3,3

dt
= −y3,3 − A

5∑

j=1,i�=3

(V3,j + 1) − B

5∑

i=1

[(V3,i + 1) − 2]2 − 2B

5∑

j=1, �=i

(V3,j + 1)

×
5∑

j=1

(V3,j + 1)
5∑

i=1

[(V3,i + 1) − 2] − 2C

5∑

x=1

Vi,3(|
5∑

i=1

Vx,i| − 5) (4)

The terms with coefficients A and B are for interactions between the central unit
and the other units on the row. The last three terms determine the interactions
between the central unit and the other units on the column. All parameters in
the above equation are positive. When the system does not reach a stable state,
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the first parts of the last three terms decide whether to inhibit or excite the
central unit, and how strong the interaction is. When it is close to a stable state,
the second parts approach 0 so that the exciting or inhibiting is very small.

The enhancement procedure will be terminated when neural computation
enters into a situation such that most of the windows are in a stable state with
minimum energy. After processing maps in each of four orientations, we assemble
four resultant maps and special edges into one edge map.

4 Experiments and Discussion

All of our experimental results were obtained by detecting every pixel in the
image using a 5×5 neighborhood window, and the enhancement is applied after
labeling edges by a pre-existing edge detector. To test the performance of differ-
ent algorithms, we compare the results we obtained from other algorithms with
those from our algorithm.

Fig.2(a) shows a standard class1 edge, and (b) shows a interrupted edge. Based
on Matlab7.04 simulating, the interrupted edge is convergent to the standard
class1 edge by 11 iterations, the 10 errors are -1.0484, -0.3894, 0.0669, 0.3829,
0.6018, 0.7533, 0.8582, 0.9309, 0.6332, and 0.1080 respectively.

Fig. 2. A standard and interrupted edge for class1 orientation

Fig.3 displays the results by different enhancement algorithms. Fig.3(b) is
the results by Canny operator. the enhanced result in literature [8] is shown in
Fig.3(c), and Fig.3(d) present enhanced edge of the proposed algorithm corre-
sponded to them. From the results, it could be seen that our operator obtains a
single pixel width and continuous edge, while the Canny operator obtains a dis-
connected edge, and the enhanced method of literature [8] get a more wide edge.
That proves that the HNN can thin edge efficiently. But the proposed algorithm
does not perform well for edges at corners comparing to other algorithms, this
is our next work that we want to amend.

Fig.4 displays the enhancement result of edges with noise. Fig.4(b) is the re-
sults by Canny operator. the enhanced result in literature [8] is shown in Fig.4(c),
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(a) (b) (c) (d)

Fig. 3. The different enhancement results of edge without noise

and Fig.4(d) present enhanced edge by our method. As shown, although the
original images have been corrupted by noise, the proposed algorithm could get
the better edge images which outlines are still clearly legible. It has little effect on
recognizing the image contour and many details. But, there are many false edges
in the results detected by Canny and literature [8] operators which are brought
by the noises. That makes details so bad that it could not be recognized what
they are. From a mass of experiments, we find that the more noise contained, the
worse the results are. And contrastive effects between the proposed algorithm
and classical edge operators are more evident.

    
(a) (b) (c) (d)

Fig. 4. The different enhancement results of edge with noise

5 Conclusions

In this paper, we have proposed a novel post-processing edge enhancement al-
gorithm. Taking advantage of pre-exist edge detector, we obtain the outlines
of edge maps. The edge enhancement is performed on the four edge orienta-
tions respectively, and the maps are updated after iteration by the HNN. It
efficiently thinned and repaired the edge elements with any orientation. This
approach enables the utilization of global edge information as the information
is "propagated" to surrounding elements in the edge maps. Therefore, the edges
can be enhanced by recovering missing edges, and eliminating false edges. From
the experimental results, it can be seen that the proposed algorithm in this pa-
per is superior to other methods, this advantage is more prominent under the
noisy condition and the robusticity is better.
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In future work, we will modify our algorithm at where end pixels and abrupt
pixels are, and make our method more available. We will also explore the use
of weak edges, and asymmetric illumination, to add more information into the
edge map.
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Abstract. A novel image quality metric based on the characteristics
of wavelet coefficients of images is proposed in this paper. An image is
decomposed into several levels by means of wavelet transform. The stan-
dard deviations of the diagonal details (HH coefficients) at each level
increase with the noise standard deviation increasing and decrease with
the blurring radius increasing. According to that, an image quality can
be measured by analyzing the characteristics of its wavelet coefficients.
Neural network is used to realize the algorithm of image quality assess-
ment. The results of experiments demonstrate that the image quality
metric is reasonable and the algorithm realization using neural network
is feasible and performs well.

1 Introduction

In vision-aided terminal guidance system using inertial navigation system (INS),
a reliability metric of target recognition is necessary for the system to decide
the vision information can be used or not. The performance of the guidance
system can be improved by the real target or distorted by the error target,
which provided by the vision system. The precision of the vision target relies on
both good image and appropriate algorithm of image processing, so that image
quality measure is needed.

There are many kinds of image quality measures, which vary with the appli-
cation of image[1,2,3]. For example, in multimedia application, since a human
observer is the end user an image quality measure that is based on a human
vision model seems to be more appropriate for predicting user acceptance and
for system optimization. However for computer vision task, prediction of the
algorithmic performance in terms of imaging distortions is of great significance.

The wavelet transform produces a hierarchical decomposition of functions. Ac-
cording to Mallat[4] a function is described by means of a low-resolution function
plus a series of details from low to high resolution. Wavelets provide means of
frequency and space analysis. Neural networks[5,6] are very sophisticated model-
ing techniques capable of modeling extremely complex functions. For their huge
power and easing to use, neural networks have been successfully applied across
an extraordinary range of problem domains.
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Noise reduces the number of edges those can be detected. Blurring reduces the
standard deviation of the HH coefficients at each level of wavelet decomposition.
A novel image quality metric based on the loss of edges and the reduction of
standard deviation of HH coefficients is proposed. Wavelet transform is used to
analysis the distortion of images in various frequencies. Neural network is used to
model the function about the image quality metric and the wavelets coefficient
of images.

The rest of the paper is organized as follows: section 2 gives the wavelet
coefficients property of the image. In section 3 we describe the algorithm of
image quality metric. Section 4 presents the results of experiments. Section 5
reports some conclusions and future works.

2 Characteristics of Wavelet Coefficients

2.1 Wavelet Transform

A wavelet transform decomposes a function in different Levels-Of-Detail[7]. It
provides frequency and space analysis.

Fig. 1. Wavelet decomposition of an image

The original points are grouped and related to the wavelet coefficients accord-
ing to their position and level. Each set of 2×2-neighboring points in the original
image is related to four corresponding coefficients in LL, LH, HL and HH bands
at level 1 of the wavelet transform, as shown in figure 1. These coefficients are
extracted from the original image by using four kinds of filters: row high pass
(horizontal details H1), column high pass (vertical details H1), row low pass
(horizontal average H0) and column low pass (vertical average H0). The filtered
data from the row high pass filter and the column high pass filter is stored as the
HH coefficients, which are the diagonal edge details of image. The filtered data
from the row low pass filter and the column high pass filter is the LH coefficients.
The filtered data from the row high pass filter and the column low pass filter is
the HL coefficients. And the filtered data from the row low pass filter and the
column low pass filter is the LL coefficient, which is the approximate signal of
original image. The LL coefficient is now treated as the original data and the low
and high pass filters are then applied to this data again. This process repeats
until there only one point left in the LL coefficient.
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2.2 Characteristic of Wavelet Coefficients in Distorted Images

Edge points have high gradient in contrast with others in images. The edge con-
trast decrease due to the distortion, for example, blurring, noise, compression
and sensor inadequacy. In this paper we mainly discuss noise and blurring dis-
tortion. Noise usually has higher contrast than real edge, and blurring smoothes
the edge. In noise image, the noise points as their high gradient may be de-
tected as edge points, and the real edge can’t be detected, thus high error rate
will occur. In blurred image, the edge contrast is smoothed and the real edge
is replaced by several points, in this case, multiple responses to a single edge
will happen. According to Canny’s criteria of optimal edge detector measure[8]:
low error rate, well localized and one response to signal edge; noise and blur-
ring brake the law of optimal detector, and the target position is not exactly
in noise or blurred image. Hence, in vision guidance system, the distortion de-
gree of images is needed to measure the reliability of the target detected from
images.

As mentioned in section 2.1, the HH coefficients reflect the diagonal edge
details of image, noise may be detected as the details. That is, the HH coef-
ficients are connected with the edge of object; however, in noise image those
may be noise signal. The HH coefficients also can be distorted by blurring for its
smoothing. Experiments are designed to show the distortion of noise and blurring
(Fig.2).

 (a)                                      (b) 

Fig. 2. Standard deviations of three levels wavelets coefficients in images. (a) Coeffi-
cients standard deviation (Std) in noise images. (b) Coefficients Std in blurred images.

The original image in figure 2 is Lena image. In Fig.2.a we select 15 (36×36
pixels) images at random in Lena image. The noise image is generated by
adding standard Gaussian white noise to each image. The standard deviations
of Gaussian noise σ2 are given by σ2 = 0.01i{i = 0, 1, ..., 29}. There are to-
tal 150 (15×30) noise images. In Fig.2.b the blurred images are generated by
increase the blurring radius, r, which are given by r = 2i{i = 0, 1, ..., 5} and
r = 4i − 10{i = 6, 7, ..., 10}. There are 49(36×36 pixels) original images selected
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from Lena image. Hence, there are totally 539(49×11) images. Each of noise or
blurred images is decomposed into three levels using Daubechies (db2) wavelets.

To discriminate the lines, we respectively plot the standard deviation of HH
coefficients at three levels and that of original images on the baseline of zero, 1, 2
and 3. From figure 2, we can see that the standard deviations of HH coefficients
and original images are increase as the noise increase, and decrease as the radius
of blurring increase. Therefore, wavelet coefficients can reflect the distortion
degree of images.

3 Algorithm

3.1 Image Quality Metric

The number of edge points that can be detected is smaller in noise images than
in ’good’ image. The number decreases gradually as the noise standard deviation
increases (Fig.3.a). Therefore we can use the loss of edge points as the image
quality metric to reflect the noise distortion degree. In noise free image, the
edge loss is zero; we set image quality measure of the ’good’ image as 1, on the
contrary if the object is masked by noise, we set the measure as zero. We give
the image quality metric, d, as follows:

d = 1 − e − e1

e
=

e1

e
(1)

where d varies from zero to 1, which reflects the distortion of the image; e and e1
are the numbers edge points in ’good’ and noise image respectively. The image
quality measures of noise images used in Fig.2.a are shown in Fig.3.a.

 

(a)                      (b)                      

Fig. 3. The image quality metric. (a) Edge number ratios of ’good’ and noise images.
(b) Std ratios of the HH at level 3.

As shown in Fig.2.b, the standard deviations of HH coefficients at every level
of wavelet decomposition decrease with the blurring radius growing. Here we
use the ratio of the HH coefficients standard deviation of blurred images to that
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of ’good’ images, as the metric to reflect the blurring distortion in images. To
omit noise influence, the HH coefficient at level 3 is selected. The image quality
measures of blurred images used in Fig.2.b are shown in Fig.3.b.

3.2 Algorithm Using Neural Network

As discussed in section 2.2, the standard deviation of the HH coefficients at three
levels and that of original image can reflect the distortion including noise and
blurring. On the other hand, the image quality metric proposed in section 3.1 also
can reflect the distortion. There is some relationship between the image quality
metric and the standard deviation of wavelets coefficients. Neural networks are
sophisticated modeling extremely function. Therefore, neural network is used to
model the relation between the image quality metric and the standard deviations
of wavelets coefficients. Back propagation (BP) network is used in this work.

Fig. 4. Architectures of feed-forward BP neural network

The parameters of the network architectures used in this work are shown in
figure 4. The feed-forward back-propagation network has three layers. There are
4 TANSIG neurons in the input layer (first layer) and 10 TANSIG neurons in
the hidden layer (second layer) and one PURELIN neuron in the output layer
(third layer). O

(L)
i , net

(L)
i and θ

(L−1)
i are the ith output, input and threshold of

the Lth layer respectively.
The neural network has four inputs, O1−4

(0), and one output, O(3). The HH
coefficients standard deviations at levels 1 to 3 are the three of the inputs of
neural network. The standard deviation of original image is the fourth input.
The output of neural network is the image quality metric, which varies from
zero to 1. If the metric is 1, that means the image is not distorted (that is ’good’
image). On the contrary, if the metric is small (for example, smaller than 0.2),
that means the image can’t be used for its severe distortion.

4 Simulation Results

Experiments are designed to show the results of the algorithm described above.
There are 64(36×36 pixels) original images selected from Lena image(128×128
pixels). Different noise and blurring distortions added to the original images to
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generate 1452 sample images, those are used to train the neural network. The
sample images include ’good’ images, noise images, blurred images and blurred-
noise images. Using Daubechies (db2) wavelet, each image is decomposed into
three levels. The standard deviations of the three levels HH coefficients and
those of sample images are the inputs of neural network. The output of neural
network is the image quality metric, which is computed by the method proposed
in section 3.1. In noise images the metric are the ratios of edge number and
in blurred image the metric are the ratios of standard deviations of the HH
coefficients at level 3. The BP neuron network described in section 3.2 is used
in the experiments.

Two groups of test images are presented. The original images of test 1 are
selected from Lena image, which are different pixels of training samples images.
The original images of test 2 are selected from an airport image (Fig.5.c), which
is cut from a satellite image of Orlando, Florida’s airport (orlando airport.jpg in
[9]). The noise and blurred test images are generated in the same way as training
sample images.

 

             
(a)                                      (b) 

(c)                                (d) 

Fig. 5. The results of the neural network of experiments. (a) The neural network
training error. (b) The image quality metric error of test 1. (c) Airport image. (d) The
image quality metric error of test 2.

From the errors of image quality measure shown in figure 5, we can see that
the neural network performance well to the similar images and different images.
That means the image quality metric is reasonable and the algorithm realization
using neural network is feasible and performs well.
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5 Conclusions and Future Works

The image quality measure is needed in some applications. Through theoretical
analysis and experiment demonstration, we found that the standard deviations of
wavelet coefficients are varying with the distortion. Noise reduces the number of
edges those can be detected. Blurring reduces the standard deviation of the HH
coefficients at each level of wavelet decomposition. An image quality metric based
on the loss of edges and the reduction of standard deviation of HH coefficients
is proposed. Neural network is used to realize the algorithm of image quality
assessment. The results of experiments show that the image quality metric is
reasonable and the algorithm realization using neural network is feasible and
performs well.

The image quality metric proposed in this paper make full use of the property
of multiresolution analysis of wavelet transform to analyze image in frequency
domain. The metric do not need any standard images to compare with and
can be computed fast. Those are very important for real-time guidance system,
where no picture store and little time can be spent.

In future works, the images quality metric will be used as a factor to assess
the reliability of images object in vision aided guidance system and other vision
applications.
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Abstract. A quasi-equiripple one- and two-dimensional linear-phase FIR digital 
filters design approach is proposed based on a novel neural network optimization 
technique. Its goal is to minimize the weighted square-error function in the fre-
quency domain. The design solution is presented as a parallel algorithm to ap-
proximate the desired frequency response specification, and the weight coeffi-
cients are updated according to the error function. Thus, the proposed 
approximation method can avoid the overshoot phenomenon which may happen 
near the pass-band and stop-band edges of the designed filter, and may make a 
fast calculation of the filter’s coefficients possible. Several optimal design ex-
amples are given to illustrate the effectiveness of the proposed approach. 

1   Introduction 

With the rapid development of digital devices having increased speed and storage  
capabilities, the design and applications of one-dimensional (1-D) and two- dimen-
sional (2-D) digital filters have received considerable attention in recent years. Many 
techniques [1]–[8] have been established for the design of 1-D and 2-D FIR filters. The 
window function method [1] is one of the earliest and simplest techniques for FIR fil-
ters design, but this method gives a filter design which is not optimal in any sense. 
McClellan transformation technique [2] yields a good approximation for some fre-
quency responses. However, this method cannot be used to closely approximate all 
magnitude responses. The optimization techniques approximate a desired behavior by 
minimizing an error function that is formulated using the Lp or the ∞L  norm. The 

weight least-square (WLS) technique [3]–[4] using L2 norm is seen as an efficient  
optimal design method. Although it can be reduce to the solution of a system of linear 
equations, the time-consuming iterative procedure or matrix inversion operation is 
often needed. The analytical WLS method [5]–[6] avoids matrix inversion operation, 
but this method may result in an unstable filter. Semi-definite programming [7] can 
design optimal filters, but it suffers from a heavy computation burden. 

In this paper, we proposed a new weighted neural network algorithm (NNA) for the 
design of linear-phase quasi-equiripple 1-D and 2-D FIR filters. The design problem is 
formulated based on the approximation of a magnitude response. The focus is placed on 
developing the neural network design method. 
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2   Neural Network Optimal Approach of 1-D FIR Filters 

The frequency response of a 1-D FIR filter with length N can be expressed as 
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Therefore, the design problem of a linear-phase FIR filter is turned to find the co-
efficients a(i) in (2) such that the magnitude response { })(ωdH  is close to a given 

magnitude response in some optimal sense. In this section, a neural networks algorithm 
is used for solving the filter design problem. 

2.1   Neural Network Algorithm 

First, sample uniformly )(ωdH  in π],[],0[ sp ωωω ∪∈  to get its discrete values, then 

(2) can be expressed as 
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then (3) can be rewritten as 
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Now define error function as 
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)])(...)2()1(([diag MbbbB  (9) 

here, W(m), W(m) is one in the pass-band and sp δδ /  in the stop-band, is a weighting 

coefficient, and b(m), b(m)>0, is a weighting function. Then define performance index J as 
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To minimize J, a parallel back-propagation neural network model is chosen in Fig. 1. 
Then a is recursively calculated as 
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where η , 0>η , is learning rate. 
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Fig. 1. Neural network model 

In order to ensure convergence of the neural network, it is important to select proper 
learning rateη . Next, we present and prove the convergence theorem of neural net-

works algorithm. 

Theorem 1. If learning rate satisfies 
2

T)(2 cBDcBD<η , the neural network algo-

rithm is stable and convergent asymptotically to its global minimum. 
Proof: Define (10) as a Lyapunov function. Since 
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It is easy to see from (13) that if 
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(14) 

then 0)( ≤Δ kJ e . Since 

0)(
2

T cBDcBD
 

(15) 

thus if 0)( =Δ kJ e , we have 

0=ke , (16) 

0=Δ ka , (17) 

0)( =kJ e . (18) 

Therefore, if 
2

T)(2 cBDcBD<η , the neural network algorithm is stable and  

convergent asymptotically to its global minimum. The theorem is proved completely. 
To design equiripple FIR filters, the weighting function b(m) is to be updated as 

follow (see [3]): 

∑
−

=+

m
k

dd
kk

me

mHmMmW
mbmb

)(

))()()((
)()(1 . (19) 

In order to avoid bk(m) getting too close to zero, a lower bound, r, is necessary to be 
specified. Our extensive numerical experience indicates that, for numerical stability, r 
should be close to 0.001. 

Due to illustrate the design procedure, some guidelines are listed below. 

1) Initial values: Specify the frequencies sample point length M, weighting coeffi-
cients W(m) and b(m). Then define an arbitrary small positive real number ε , and 
select learning rate η . Produce an initial random weight vector a. 

2) Produce new predicted output Hd of neural networks using (6), and calculate e and 
J via (7) and (10). 

3) Update the weighting coefficient vector b according to (19).  
4) Update the weighting vector a according to (11). 
5) If ε>J , go to step 2), otherwise, close the training of the neural network. 

The above guidelines will be followed in the design examples given in the next 
subsection. 

2.2   Design Examples 

In this section, two design examples are considered to illustrate the effectiveness of the 
proposed design algorithm. 

Example 1. Consider a multi-band FIR filter design example given in [2], i.e., 65=N , 
and 

1, for 0 0.1π , 0.5π 0.66π,
( )

0, for 0.16π 0.44π , 0.7π π.
H

ω ω
ω

ω ω
≤ ≤ ≤ ≤⎧

= ⎨ ≤ ≤ ≤ ≤⎩
 (20) 
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Let η=1.792, M=100, 4.1/ =sp δδ . It takes the proposed algorithm 3000 times train-

ing to converge to a multi-band FIR filter with the magnitude response shown in Fig. 2. 
The maximum ripple is 0.1955 dB in the first pass-band and 0.1999 dB in the second 
pass-band, and the minimum attenuation is 35.5212 dB in the first stop-band and 
35.0320 dB in the second stop-band. By comparison, a Chebyshev design algorithm 
was used to design this filter in [2], the maximum ripples in the first and second 
pass-band are all more than 0.5 dB, while the minimum attenuation is less than 35 dB in 
the first stop-band and 32 dB in the second stop-band. 

Example 2. Considering the example 2 in [8], design a FIR notch filter specified by 

π84.0* =ω . 
Let 135=N , 5.1=η , 1000=M , 5/ =sp δδ . After 2500 times training, the algo-

rithm converged to a linear phase FIR notch filter with the magnitude response shown 

in Figure 3. The actual parameters are π8402.0* =ω  and π0812.0=Δω  for 
dB0103.3−=a , the maximum ripple 0.0198 dB in the two pass-bands, and the 

minimum attenuation 81.55dB on notch point. Comparing with the design example 2 in 

[8], the actual 135-order filter parameters are π8428.0* =ω  and π1206.0=Δω  for 
dB0103.3−=a , and the minimum attenuation 60 dB on notch point, based on an 

analytical design algorithm. 
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Fig. 2. Magnitude response of the designed multi-band FIR filter, see Example 1 
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Fig. 3. Magnitude response of the designed notch Filter, see Example 2 

3   2-D FIR Filter Design 

For a class of 2-D linear-phase filter with quadrantal symmetry, the coefficient matrix 

Ĥ  of the 21 NN × th-order filter can be partition as (see [7]) 

333231

T
2322

T
21

131211

ˆ

HhH
hh
HhH

H h

 

(21) 

where, 21ˆ NNR ×∈H , N1 and N2 are odd integers, 21
333113,11 ,, nnR ×∈HHHH , 

1
3212

1, ×∈ nRhh , 1
2321

2, ×∈ nRhh , Rh ∈22 , 2/)1( 11 −= Nn , 2/)1( 22 −= Nn , and 
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here, flipud  and fliplr represent the operation of flipping a matrix upside down and 

from left to right, respectively. Therefore, the magnitude response of the filter is given 
by 

)()(),( 221
T
121 HccdH  (23) 

where T]cos...,2cos,cos,1[)( iiiiii n ωωωω =c  for 1=i , and 2, and 

⎥
⎦

⎤
⎢
⎣

⎡
=

3332

T
2322

42

2

Hh

h
H

h
. (24) 

Consequently, the task of designing a 2-D linear-phase FIR filter reduces to the 
following problem: find filter coefficient matrix H such that ),( 21 ωωdH  approxi-

mates the desired magnitude response ),( 21 ωωdM . 

3.1   Approximation of ),( 21 ωωdM  Using NNA 

Now we denote the sampled magnitude response matrix by 
MM

dM
×

, and let 

2,1,))((...))2(())1(( iMiiiiiii cccD  (25) 

then (23) can be rewritten as 

2
T
1 HDDH d = . (26) 

Now we define error function as 

)(*.*. dHMBWe d  (27) 

where, “.*” is matrix element group multiplication operation in MATLAB, i.e., 

MMijij BW ×= ][*. BW , W(m1, m2), W(m1, m2) is one in the pass-band and sp δδ /  in the 

stop-band, is a weighting coefficient, and 1 2( , )B m m , B(m1, m2)>0 in the pass-band and 

stop-band and B(m1, m2)=0 in the transition band , is a weighting function. Now define 
performance index J as 

M

m

M

m

mmeJ
1 1

21
2

1 2

),(
2
1)(e

 
(28) 

then the steepest descent algorithm for the approximate mean square error is 

T
211 )*.*.( DeBWDH

H
HH kk

k
kk

J ηη +=
∂
∂−=+ . (29) 

To design equiripple 2-D FIR filters, the weighting function B(m1, m2) is to be updated 
as follow: 
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Obviously, H can be obtained from formula (30), and the coefficient matrix Ĥ  of 2-D 
linear phase FIR filter can also be obtained. So we can design a 2-D linear phase FIR 
filter by training the magnitude response of a desired 2-D FIR filter based on the NNA. 

3.2   Design Example 

Consider a circularly symmetric low-pass filter in [7], the designed 2-D magnitude 
response ),( 21 ωωdM  is 

1 2

1 , 0 ,

( , ) ( ) ( ) , ,

, others,0

g p

d a g a p p g aM

ω ω
ω ω ω ω ω ω ω ω ω

⎧ ≤ ≤
⎪= − − ≤ ≤⎨
⎪
⎩

 (31) 

where 2
2

2
1 ωωω +=g , π425.0=pω , π575.0=aω . 

 

 

 
Fig. 4. Magnitude response of the designed circularly symmetric low-pass filter 
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Sample uniformly the desired amplitude response ),( 21 ωωdM  to obtain 100100×  

training samples in ]π,0[, 21 ∈ωω , and let )23,23(),( 21 =NN . First specify 

1/ =sp δδ , and η=40. After 1000 times training, the magnitude response of the design 

circularly symmetric FIR low-pass filter is shown in Fig. 4, and the actual maximum 
ripples of the pass-band and stop-band are 0.0168 and 0.0167, respectively. Comparing 
with the designed example 1 in [7], the maximum ripple is 0.0397 in the pass-band and 
0.0578 in the stop-band based on semi-definite programming. 

4   Conclusion 

In this paper, we propose a method to design linear-phase quasi-equiripple FIR filters 
using neural network. A novel weight back-propagation neural networks algorithm is 
developed to control the overshoot phenomenon that may happen near the pass-band 
and stop-band edge of the designed filter. The design equations are given together with 
some guidelines. Several design examples are also given and the results show that the 
neural network method can easily achieve higher design accuracy than some conven-
tional methods. 
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Abstract. In this paper, a texture image segmentation algorithm based on 
improved wavelet neural network is proposed.This algorithm can overcome 
shortcomings of traditional threshold segmentation techonologies. By using 
texture features of images, a series of fractal texture feature parameters which 
will be taken as input layer factors of wavelet network are created by this 
algorithm. Then, the wavelet neural network is trained with self-adaptive 
pheromone volatilization mechanism and dynamic heuristic search strategy of 
improved ant colony algorithm. Finally, the trained wavelet neural network is 
taken as the classifier of image pixel to realize segmentation of texture images. 
Simulation experiment shows that, improved algorithm could realize self-
adaptive segmentation based on different texture features of images and it is 
robuster. However, further researches on methods of improving convergence 
speed of this algorithm and objective criteria for assessing whether texture 
images have been segmented successfully or not are needed. 

1   Introduction 

As a key technology of image processing, the aim of image segmentation is to 
segment closed areas which are relatively complicated and abstract parts needed. 
Common segmentation methods mainly adopt threshold techonology, which can 
achieve better effect for images with uniformly distributed gray, but often generates 
holes within and noise outside of the segmented area for most complicated images 
due to blurry boundary and severe gray overlapping between image background and 
the target area. Therefore, this results in great error. 

By combining wavelet transform principle and artificial neural network theory, 
wavelet neural network constructs a new neural network model, which has strong 
approximation capability and fault-tolerant capability by virtue of good time-
frequency localization characteristics of wavelet transform and self-learning function 
of neural network. As a new branch of neural network research, wavelet neural 
network has been applied in signal processing, data compression, pattern recognition, 
fault diagnosis and other research areas. In training process of wavelet neural, 
stochastic gradient method has relatively slow convergence speed and may result in 
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local minimum. In orthogonalization process with orthogonal least square method, 
overlarge weight of network could be resulted because of orthogonal vector with quite 
small amplitude that may appears [1]. Ant colony algorithm proposed by Italian 
researchers M.Dorigo, V.Maniezzo and A.Colorini is a kind of heuristic search 
algorithm based on bionics. It has features of positive feedback and parallelism and 
has been widely applied in combinatorial optimization [2]. On the basis of basic ant 
colony algorithm, the pheromone updating strategy, heuristic function and pheromone 
volatilization mechanism are revised and applied to parameter training of wavelet 
network in this paper. Meanwhile, fractal dimension eigenvector of image is 
constructed with fractal theory. Finally, image segmentation is achieved through 
using both of improved wavelet neural network and the fractal dimension eigenvector 
of texture image. Simulation experiments have proved the efficiency of this 
algorithm. 

2   Design of Wavelet Neural Network 

WNN (Wavelet Neural Network) combines wavelet analysis theory with artificial 
neural network theory. In this paper, we use compact wavelet neural structure. Hidden 
layer function in common neural network is replaced with wavelet function, and  
corresponding weight values from input layer to hidden layer and hidden threshold 
are replaced with scale parameter and translation parameter of wavelet function, 
respectively. 

Researches on existence and structure of compactly supported orthonormal wavelet 
carried out by Daubechies and multiresolution analysis theory proposed by Mallat 
strongly guarantees the feasibility of orthonormal basis wavelet network of 
multiresolution analysis. Hidden layer nodes of wavelet network are composed of 
wavelet function node ψ and scale function node φ. The analysis process is shown as 
follows: 

In wavelet network constructed by discrete wavelet function, if f (x)∈L2(R), to  
approximate f (x) with resolution m can be described as 

, ,( ) ( ) ( ),m m m n m nf x C f x c xϕ= =  (1) 

where, Cm is the orthogonal projection operator in space Vm, and cm,n is the weight of 
scale cell of corresponding network that is the projection of scale function φm,n(x). 
Owing to the multiresolution analysis theory, Wm denotes the orthonormal 
complement space of Vm on Vm-1, that is, Vm-1=Vm⊕Wm, Vm⊥Wm , where, Dm is the 
orthogonal projection operator in Wm. The approximation of f (x) at m-1 scale is  

1 [ ] ( ) ( ) ( ) ,m m m m mf C D f x C f x D f x− = ⊕ = ⊕  (2) 

( ) ( ) ,m m n m n
k

D f x d xψ
+ ∞

= − ∞

= ∑  (3) 

where, dm,n, the projection of wavelet function ψm,n(x) in corresponding network is 
called the detail on this resolution. 
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The approximation of f (x) on resolution m-1 will be given by 

1 , , , , , ,( ) ( ) ( ) ( ) ( ).m m m n m n m n m n m n m n
n n n

f x f x d x c x d xψ ϕ ψ
+∞ +∞ +∞

−
= −∞ = −∞ = −∞

= + = +∑ ∑ ∑  (4) 

When wavelet network to be constructed is a single hidden layer, the weight value 
from input layer to hidden layer is set to be 1. Scale function φm,n(x) in hidden layer 
constructs the approximation to signal on the most rough resolution and wavelet 
function ψm,n(x) constructs the gradual detail approximation to signal. 

In this paper, we take Daubechies wavelet as the activation function of wavelet 
network. Scale function φm,n(x) and wavelet function ψm,n(x) are described as follows: 

1

0

( ) 2 (2 ),
N

n
k

t h t kϕ ϕ
−

=

= −∑  (5) 

1

0

( ) 2 (2 ),
N

n
k

t g t kψ ψ
−

=

= −∑  
(6) 

where, hk and gk are filter coefficients of corresponding orders and 4th order vanishing 
moments is taken where N=8. 

In wavelet network learning algorithms, the stochastic gradient may easily make a 
network with local optimization and the least square method may result in parameter 
drift of the network. In this paper, by using characteristics of positive feedback, 
distributive computation and heuristic convergence of ant colony algorithm, we adopt 
improved ant colony algorithm to implement parameter training of the wavelet 
network. 

3   Coupling Between Improved Ant Colony Algorithm and WNN 

Ant colony algorithm is a kind of heuristic optimal algorithm with distributed 
paprallel computing mechanism, and it has been applied in neural network 
optimization to some extent [4]. In this paper, problems of local minimum of wavelet 
neural network are effectively avoided through improving basic ant colony algorithm 
and training wavelet neural network with self-adaptive pheromone dynamic update 
strategy and heuristic learning algorithm [5]. 

Suppose there are n parameters in wavelet neural network including all scale 
function parameters and translation parameters of wavelet function, which are called 
weight value and threshold value respectively. Firstly, wavelet network parameters pi 

(1≤i≤n) are initialized to N random non-zero values to form the aggregate I={pi}. 
Each ant in ant colony selects one weight value in aggregate I so that a set of weight 
values of wavelet neural network are made in all aggregates. The number of ants is m 
and τj denotes the information amount of the jth element pi in aggregate I. Elements 
chosen by different ants are independent from each other during the process of ants 
search. Each ant starts from aggregate I and select one element according to 
information amount and state transition probability of each aggregate respectively. 
The ant could not arrive at food source until it completes selections in all aggregates. 
When the ant arrives at food source, information amounts of elements in aggregate I 
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are adjusted. The process is repeated till evolution trend is not apparent or the given 
iteration time is reached. 

The procedure of learning algorithm of the improved wavelet network is described 
as follows. In ant colony initialization stage, both time t and circle time Nc are set to 
be zero, and the maximum of circle time Ncmax  is decided. The information amount of 
each element in every aggregate is made where τj＝C and △τj＝0. When all ants are 
in formicary, start up all ants. The state transition probability of ant k (k=1,2,…,n) in 
aggregate I could be obtained according to Eq.(7) and Eq.(8)[6]: 

0arg max ({[ ( , )] [ ( , )] }, ,
k

a

u allowed
s r u r u q qβτ η

∈
= ≤  (7) 

[ ( )] .[ ] / [ ( )] .[ ( )] ,

0 ,
( )

a
ij ij is is k

s allowed k

t t t j allow ed

k
ij otherw ise

p t

β α βτ η τ η
∈

∈∑⎧⎪= ⎨
⎪⎩

   0,q q≥  (8) 

where, q and q0 are uniformly distributed random number and the parameter within 

the range of [0,1] respectively, 
ij

kp  presents the probability of ant at node i to move to 

node j, allowedk denotes the allowed node which ant k can select at next step, and ηij 
and τij are visibility factor and pheromone amount remained at position (i,j), 
respectively. 

When all ants arrive at food source, we replace t and Nc with t+n and Nc+1, 
respectively. According to weight values chosen by each ant, the output value and 
error of wavelet network are gained, and the current optimal solution is obtained. 
After n time units, ants reach food source from the formicary, and the information 
amount on every route is updated according to following equations: 

( , ) (1 ( )). ( , ) ( ).( ( , ) . m ax , )),
ku allow ed

r s t r s t r s r s uτ ρ τ ρ τ τ
∈

← − + Δ + （  (9) 

1 1 1

( ) / / | | ,
k

m m m
k

ij i j F k
k k k

t Q e Q O Oτ τ
= = =

Δ = Δ = = −∑ ∑ ∑  (10) 

where, ek presents the output error gained by taking a set of weight values chosen by 
the kth ant as the weight value of wavelet network, and O and OF denote the actual 
output and the expected output respectively. For pheromone volatilization factor ρ, 
when the optimal value obtained by ant colony algorithm is not obviously improved 
in N cycles, we adopt ρ(t) to achieve self-adaptive adjustment, where, ρmin is the 
minimum of ρ, which could avoid decreasing the covergence speed of algorithm 
resulted from a too small value of  ρ. 

{ min

min

0.95 ( 1), 0.95 ( 1) ,
.( ) t when t

otherwiset ρ ρ ρ
ρρ − − ≥=  (11) 

When all ants converge to the same route or cycle time Nc is not less than Ncmax , 
the cycle is finished and the computation result is outputted, or else, the computation 
of state transition probability is continued. 

To avoid the local optimization, we limit the maximum and minimum  
of the information amount at every route stage, that is, ( ),ij tτ∀ ∃
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min max , ( , [1, ..., ])ij i j nτ τ τ≤ ≤ ∈ . Moreover, in order to improve the global 

search ability of ant colony and increase its search speed, tabu table is adopted to 
record the optimal route matrix, from which the weight matrix and coefficient matrix 
of wavelet neural network are taken subsequently. The optimal value within one cycle 
is gained and conserved. And in the next cycle, the optimization is continued 
according to features of the conserved optimal solution. Therefore, during the 
evolution process, as a result of diffusion of pheromone, this algorithm has the ability 
of continuously obtaining the optimal solution. 

4   Segmentation Algorithm Based on Improved WNN 

In the texture image segmentation process, feature abstraction and segmentation 
algorithm are two most important parts of the research. As fractal dimension can be 
taken as an image roughness measurement which is insensitive to scale [7], and it could 
combine spatial information with gray information of image simply and organically, 
therefore, in this paper, according to self-similarity of image texture, we adopt box-
counting method to compute fractal dimension [8] and construct a set of fractal texture 
eigenvalues of image. Then self-adaptive segmentation of image is realized through 
taking improved wavelet neural network as the classifier of image pixel. 

Let F be a randomly nonempty bounded subset of R n. Nδ(F) is the least number of 
subsets, whose  biggest diameter is δ and which could cover F. The box dimension is 
described as 

0
( ) lim log ( ) /( log ).D im F N Fδδ

δ
→

= −  (12) 

Different textures could probably correspond to the same fractal dimension 
because fractal dimensions of images usually exist within the range of [2.0, 3.0]. To 
reach a better segmentation result, on the basis of fractal dimension of origin image, 
we define a set of fractal dimensions Dim(F1), Dim(F2), Dim(F3), Dim(F4) and 
Dim(F5) based on transforming image and combine them into one eigenvector to 
segment image, where, fractal dimension (F1) of the original image is selected as the 
first feature and fractal dimensions of gradient images (0o,45 o,90 o,135 o) of texture 
image in four directions are selected as the last four features (Dim(F2), Dim(F3), 
Dim(F4) and Dim(F5)) .  

Owing to directivity of texture image, direction gradient is helpful to distinguish 
textures in different directions. In this paper, Kirsch template is adopted. By 
convolution operation of template and the original image, the corresponding gradient 
image is formed, and each fractal dimension is obtained with box-counting method. 

 
(a) gradient 0 o           (b) gradient 45o                (c) gradient 90o               (d) gradient 135o 

Fig. 1. Kirsch template 
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For a N×N image, gradient images in four directions are formed with Kirsch 
template in Fig. 1. From the start point of original image, the M×M window slides in 
horizontal and vertical direction, respectively. Fractal dimension of image within the 
window is computed and taken as the fractal eigenvalue of image at the center of  
the window. On selection of the size of sliding window, if the window is too large, the 
computation speed and precision of straight line fitting would be affected. If it is too 
small, statistic characteristics of images could not be accurately reflected. In this 
experiment, the size of the window is 9×9. By using of the above algorithm, the local 
fractal dimension of each point in the inputted grey image is obtained, and the fractal 
dimension distribution image is gained. 

In the segmentation process of texture image based on wavelet neural network, the 
network has 3 layers. The input layer is divided into 5 units, which correspond to a set 
of fractal dimensions (Dim(F1), Dim(F2), Dim(F3), Dim(F4) and Dim(F5)), 
respectively. The output value of output layer with 1 unit is 1 or 0, which corresponds 
to the background and the target, respectively. The activation function of wavelet 
network adopts Daubechies wavelet (N=8), which is 4th order vanishing moments. 
When computing fractal dimension, line-by-line scanning of image is done by sliding 
window and fractal eigenvector is taken as input of the wavelet neural network. The 
segmentation algorithm is divided into two parts of training stage and testing stage. 
Learning sample is composed of pixels randomly abstracted from sample image, and 
the eigenvalue of each sample is computed inputted into wavelet neural network and 
trained with improved ant colony algorithm. In testing stage, image pixels are 
classified according to optimized network parameters. Finally, the segmented image 
is obtained by specifying a kind of color for each class. 

5   Result and Analysis of Simulation Experiment 

In simulation experiment, we take standard 512×512×3 image with gray level of [0, 
255] as the testing image shown in Fig. 2.(a0) under the circumstance of 
MATLAB7.0. To verify the robustness of this algorithm, we add Gauss white noise 
with 0 mean and 0.001 variance into the original image like shown in Fig. 2.(b0). 

In the improved wavelet network, parameters of ant colony algorithm are set as 
α=1,β=2,q0=0.6,N=20,Nmax=2000,ρmin=0.1,τmin=0.001 and τmax=0.001. Daubechies 
wavelet function DB8 is taken as the activation function of network and the size of 
the sliding window is 9×9 for computation of fractal dimension of image at the input 
end of the network. After 2380 iterations, error less than 0.001 is obtained. To prove 
the efficiency of this algorithm, wavelet networks with gradient descend learning 
algorithm and OSTU algorithm are taken to compare with this proposed algorithm, 
where, in wavelet network formed by gradient descend learning algorithm, learning 
rate and momentum coefficient are set as 0.1 and 0.08 respectively, and in OSTU 
algorithm, the graythresh function is adopted to calculate the global threshold. 
Simulation results are shown in Fig. 2, where, a0 is the original image; b0 is the image 
with noise; (ai) and (bi) (i=1,2,3) are segmentation results of a0 and b0 generated by 
OSTU algorithm, gradient descend learning algorithm and the improved WNN, 
respectively. 
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                     (a0)                             (a1)                             (a2)                           (a3)  

 
                     (b0)                              (b1)                           (b2)                           (b3) 

Fig. 2. Comparation of Image Segmentation Results 

In the experiment, the eigenvector at network input end is the fractal dimension 
generated when the window sliding over the original image and its four gradient 
images, where, the fractal dimension of corresponding target area and that of other 
areas are shown in Tab. 1, in which D_1 is the window image with target area and 
D_2 and D_3 are fractal dimensions of two window images in other areas. 

Table 1. Fractal Dimensions of Some Areas in the Original Image  

Image Dim(F1) Dim(F2) Dim(F3) Dim(F4) Dim(F5) 

D_1 2.0552 1.2107 1.2115 1.1124 1.1258 

D_2 2.5861 1.4123 1.4352 1.5124 1.4258 

D_3 2.6034 1.5429 1.5817 1.6124 1.4121 

On visual expression, some discrete spots appear within the even area when using 
OSTU algorithm to segment image; and with gradient descend learning algorithm, the 
even area is continuous but more misjudgements would exist for edges of areas. 
However, this algorithm put forwarded in this paper could not only achieve the 
continuousness with in the even area but also increase the judgment accuracy for 
points near the edge of the area. 

On evaluation criterion for image segmentation, error rate is taken to evaluate 
performance of this algorithm. By comparing results in Fig. 2 (a0) with that generated 
by all methods we have taken, error rates are obtained and shown in Tab. 2. 

Table 2. Comparison of Error Rates 

Method OSTU WNN Improved WNN 

Err(％)    15.127 11.023 6.271 

Err(％)(with noise) 18.214 12.926 7.512 
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According to comparison of these three methods, we can see that image 
segmentation done by the algorithm proposed in this paper is more accurate, which 
decreases misjudgement of inner points through smoothing inner part of the area and 
increases judgment accuracy for points near  the edge of the area by greatly reserving 
edge of the area. 

Evaluation for image segmentation is very important for improving performance 
and segmentation quality of the existing algorithm. Different evaluation criteria often 
reflect different aspects (usually one aspect) of segmentation algorithms. Therefore, 
several evaluation criteria are usually used in combination for a comprehensive 
evaluation. Thus, we will carry out further research on how to combine all kinds of 
evaluation criteria together and realize objective evaluation for image segmentation 
performance. 

6   Conclusion 

Image segmentation is a key step from image processing to image analysis. It is the 
basis of object expression and has great influence on feature measurement. According 
to self-comparability of image texture, we adopt the fractal theory to obtain fractal 
dimensions of segmented areas, and segment the image by coupling strategy of the 
improved ant colony and wavelet neural network afterwards. Simulation experiment 
results show that this method is more reliable and accurate, and it could greatly 
segment texture images. However, due to computation of fractal dimensions, 
segmentation procedure based on texture information takes much longer time. 
Therefore, further researches on how to improve the selection of input parameter 
eigenvalues of network, increase convergence speed of network and makeup criteria 
for objective evaluation on segmentation results are needed. 

References 

1. Zhang, H., Wu, B.: Research and Prospects of Wavelet Neural Networks. Journal of 
Southwest China Institute of Technology 17 (1) (2002) 10–12 

2. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant system: Optimization by A Colony of 
Cooperating Agents. IEEE Trans On System, Man and Cybernetics-Part B 26 (1) (1996) 1-13 

3. Feng, D.-C., Yang, Z.-X., Qiao, X.-J.: The Application of Wavelet Neural Network with 
Orthonormal Bases in Digital Image Denoising. In: Wang, J.,et al.(eds.): ISNN2006. 
Lecture Notes in Computer Science, 3972. Springer-Verlag, Berlin Heidelberg New York 
(2006) 539-544  

4. Hong, B.-R., Jin, F.-H., Gao, Q.-J.: Multi-layer Feedforward Neural Network Based on Ant 
Colony System. Journal of Harbin Institute of Technology  35 (7) (2003) 823-825 

5. Liu, J.-C., Wang, Z.-O.: Fast Learning Algorithm of Wavelet Neural Networks and Its 
Application. Journal of Tianjin University 34 (4) (2001) 455-457 

6. Duan, H.-B.: Ant Colony Algorithms: Theory and Applications.1st edn. Science Publishing 
House (2005) 

7. He, Z.-Y., Bao, K., Dong, H., He, S.-C.: Texture Image Segmentation Based on the Fractal 
Dimension. Journal of Data Acquisition & Processing 11 (3) (1996)163-165 

8. Sun, X., Wu, Z.-Q., Huang, Yun.: Fractal Theory and Application. University of Science 
and Technology of China Publishing House (2003) 



Local Spatial Properties Based

Image Interpolation Using Neural Network

Liyong Ma, Yi Shen, and Jiachen Ma

School of Information Science and Engineering,
Harbin Institute of Technology at Weihai, Weihai 264209, P.R. China

hitmaly@yahoo.com.cn, shen@hit.edu.cn, hitmjc@sohu.com

Abstract. A neural network based interpolation scheme using the local
spatial properties of the source image for image enlargement is proposed.
The local spatial properties that are used for neural network training in-
clude the neighbor pixels gray values, the average value and the gray
value variations between neighbor pixels in the selected region. Gaussian
radial basis function neural network is used for image local spatial prop-
erties pattern learning and regression estimation for image interpolation.
The trained neural network is used to estimate the gray values of un-
known pixels using the known neighbor pixels and local spatial properties
information. Some interpolation experiments demonstrate that the pro-
posed approach is superior to linear, cubic and other neural network and
support vector machines based interpolation approaches.

1 Introduction

In recent years there has been considerable interest in image interpolation. Im-
age interpolation has a wide range of applications in image processing fields. The
well-known approaches to image interpolation are linear interpolation and cubic
interpolation. However these methods blue images particularly in edge regions
[1] [2]. Some learning based image interpolation approaches have been developed
to get better result images recently. Neural network is powerful to solve nonlin-
ear mappings problems and has been used for image interpolation in [3] where a
multi-layer perceptron neural network based interpolation approach is proposed.
As powerful machine learning tools, support vector machines (SVMs) are also
employed for image interpolation. A support vector machines based image inter-
polation approach was presented in [4] where the gray value of the pixel to be
interpolated was estimated with SVMs that were trained with the gray values of
neighbor pixels. Error correction schemes employing learning based approaches
for image interpolation were also reported recently. A support vector machines
based error correction scheme was developed in [5], and a more efficient error cor-
rection algorithm using neural network for linear interpolation is proposed in [6].

Most of these learning based approaches employ only neighbor pixels gray val-
ues and their corresponding coordinates. And other local spatial properties of the
source image are not used for the interpolation. In this paper a neural network
based image interpolation approach in which more local spatial properties are

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 877–883, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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used as input vector for neural network is proposed. The experimental results
showed that the proposed approach can produce higher quality result images
than linear interpolation, cubic interpolation approach and other learning based
interpolation approaches.

2 Gaussian RBF Neural Network

Line regression and logistic regression are the standard statistical approaches to
establish mathematical relationship between the independent variables and the
final decision. They often require prior knowledge about the relationship pat-
terns. Neural network is efficient for patterns detection where the relationships
can not be easily expressed in a mathematical form. Neurons in neural network
are interconnected to receive signals in input layer and produce output in out-
put layer. Firstly the network structure is decided. Then a learning algorithm is
employed for the network training with sample vectors. In this training process
network parameters are modified to minimum the error between the actual out-
put and the desired output. Finally the trained neural network can be used to
estimate the output for any vector from the input space.

Radial basis function (RBF) neural network is an important neural network
architecture with many important applications. The RBF neural network has
the universal approximation ability, so it can be used for the interpolation prob-
lem [7]. A Gaussian radial basis function is highly nonlinear and powerful for
learning complex input-output mapping. A typical RBF neural network includes
an input layer, a single hidden layer that is called radial basis layer for non-linear
processing, and a output linear layer [7]. The output of RBF neural network is

f(x) =
n∑

i=1

wiφi(‖x − ci‖), (1)

where x is input vector, φi(.) denotes the processing function of the i-th node in
the hidden layer, ‖.‖ denotes the Euclidean norm, wi are weights between i-th
node in the hidden layer and output node, n is the total number of neurons in
the hidden layer, and ci are the RBF centers in the input vector space. Euclidean
distances that are the distances between the input vector and the input weight
matrix for each neuron in the hidden layer are calculated, and a nonlinear func-
tion of the distance is obtained in the hidden layer outputs. The output of the
neural network is a weighted sum of the hidden layer outputs.

Gaussian function is often employed as the radial basis process function.
Gaussian radial basis function neural network has the process function given
as

φ(r) = exp(
−r2

S2 ). (2)

Spread parameter S is used in the radial basis layer to set each bias of this
layer to 0.8326/S. The spread parameter S can determine the area width for
each neuron responds in the input space. So the spread S needs to be selected
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correctly to overlap the regions of the input space. Gaussian RBF network is
established as a three-stage network, that is input stage, intermediate stage of
Gaussian units and output stage of conventional summation units. Gaussian
RBF network is illustrated in Fig 1. In this paper Gaussian RBF network is
used for local spatial properties of the source image learning and interpolation
estimation.

1ic
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( )2• 1jw
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Fig. 1. Gaussian RBF network

3 Interpolation

3.1 Linear and Cubic Interpolation

Let x and f(xk) denote the coordinate value to be interpolated and available
data respectively. Assume that xk and xk+1 are nearest available neighbors of
x. Then the distance between x and neighbors can be defined as

s = x − xk, 1 − s = xk+1 − x (0 ≤ s ≤ 1). (3)

We have one-dimensional linear interpolation of x

f̂(x) = (1 − s)f(xk) + sf(xk+1). (4)

Similarly, we have one-dimensional cubic interpolation of x

f̂(x) = [f(xk−1)((3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3)
+f(xk)((2 + s)3 − 4(1 + s)3 + 6s3)

+f(xk+1)((1 + s)3 − 4s3) + f(xk+2)s3]/6.
(5)

Applying above two equators to image along the rows then columns we can
calculate two-dimensional bilinear or bicubic interpolation.
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3.2 Learning Based Interpolation

We can regard the position and the gray value of a pixel in a digital image that
is two dimensions as the coordinates value and the corresponding curve surface
value. So we can perform interpolation by data fitting approach employing SVMs
as proposed in [4]. Let q denote the pixel to be interpolated. We can select the
nearest known pixels around q and the number of these neighbor pixels is denoted
as m × m . Then SVMs are trained by employing relative coordinates value of
the neighbor pixels around q as input pattern and the gray value of the neighbor
pixels as output pattern. The neighbor area size can be selected as 4 × 4. After
training the pixel gray value of pixel q can be estimated with trained SVMs.
During the estimation period the input pattern of SVMs is the relative coordi-
nates value of q and the output pattern the estimated interpolation value. We
call this approach as SVMs based data fitting (SVMDF) interpolation approach.

Another learning based interpolation approach is multi-layer perception
neural network based neighbor pixels (MLPNP) approach [3]. Every pixel in the
known source image is used as sample for neural network training. And the gray
value of every pixel and the gray values of the neighbor pixels are employed as
output vector and input vector of samples during the training process. In this ap-
proach the coordinates of pixels are not used at all. Then a multi-layer perception
network is employed for image patterns training. After the training, interpolation
result image can be obtained with every pixel to be interpolated is estimated by
trained neural network. During the estimation process the gray values of neighbor
pixels around the pixel to be interpolated are employed as an input vector. And
the output of the neural network is the gray value of the pixel to be estimated.

4 Proposed Interpolation Approach

Little information about the local spatial properties of the pixel to be interpo-
lated is used in the above learning based approaches. The interpolation results
are related to some critical local spatial properties of the pixel to be interpolated,
such as the smooth properties of the region and the directional information of
the edges around the pixel. We expect to obtain high quality interpolation re-
sult image by using more local spatial information of the source image for neural
network training and estimation. Our proposed interpolation scheme employs
the average value in the region around the pixel to be interpolated as one of the
properties in the input vector. And the gray value differences of various direction
around this pixel are also used as properties of input vector.

Row expansion and column expansion of a source image are often performed
for image enlargement. Now we consider the situation that the source image
is requested to perform row double expansion. Other generalized interpolation
with the magnification times is integer can be performed as row expansion firstly
and then column expansion. And it is easier to apply the proposed approach to
source image for other expansion magnification times is greater than 2. Our
proposed interpolation scheme is described as follows.
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Firstly a region around the pixel to be interpolated needs to be decided before
the interpolation calculation. The regions selected for double row expanding is
illustrated in Fig. 2. As illustrated in the figure, the gray values of six known
pixels in the selected region are denoted as p(i), where i = 1, 2, ..., 6.

Known pixel

p(1) p(2) p(3) Pixel to be interpolated 

p(4) p(5) p(6) NN training samples

NN estimation pixel

Fig. 2. Region for proposed interpolation approach

Secondly the neural network training is performed. Gaussian RBF network is
used for training and estimation. Two methods can be used for network archi-
tecture decision. One is to initialize the neurons in the RBF layer as zero, then
repeat the neurons increase steps until the mean squared error of the network is
under the given value or the maximum neurons is reached. The steps for neurons
increase is to find the input vector with the greatest error during the simula-
tion firstly, then a neuron is added with its weights equal to the input vector,
and linear layer is redesigned to minimize error. Another method is to establish
a zero error RBF network quickly. This can be achieved with setting the first
layer weights according to input vectors, and the first layer biases are all set to
0.8326/S. The latter method is used in our proposed interpolation approach.

During the training period every pixel in the source image is employed as
the samples of neural network. The input vector include the pixel gray values of
the neighbor known pixels in the selected region. Other properties of the input
vector include average gray value of neighbor known pixels and some other local
spatial properties in the selected region. The average gray value of neighbor
known pixels in the selected region is calculated as

v̄ =
6∑

i=1

p(i). (6)

Other local spatial properties employed as input are calculated as

v1 = p(1) − p(3)
v2 = p(4) − p(6)
v3 = p(1) − p(4)
v4 = p(2) − p(5)
v5 = p(3) − p(6)
v6 = p(1) − p(6)
v7 = p(3) − p(4)

(7)
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Then a 14 dimensions vector is employed for neural network input. And the
output is the gray value of the central pixel to be estimated. After the training,
the trained neural network can be employed to estimate unknown gray values of
the pixels to be interpolated.

In this interpolation approach, spread S can be selected by optimal search. In
the search process the source image is reduced to get a middle image with half size
of the source image width and height. Then this middle image can be regarded as
a new source image, then different S can be applied to the proposed approach for
interpolation to decide the optimal parameter values. In this procedure all the
interpolation result images are known, so we can use these known result images
to compare interpolation results and judge the optimal parameters. After these
parameters are selected, these optimal parameters can be used in the proposed
approach to perform interpolation to get final unknown interpolation result.

This approach can be easily generalized to other interpolations where the
magnification times is integer.

5 Experimental Results

Row and column expansion [3] is used for interpolation experiments. Some stan-
dard test images that have been widely used in other literatures are used in our
experiments. These test images include Cameraman, Lena, etc. The test images
are downsampled with row reduction, column reduction and row and column re-
duction with different scales. Then these reduced images are enlarged to obtain
result images with various interpolation approaches to perform row expanding,
column expanding and row and column expanding. Result images are compared
with the original images to calculate mean square error (MSE) and peak signal
to noise ratio (PSNR).

Table 1. Interpolation Results of Image Cameraman

Interpolation MSE PSNR

Linear 313.99 23.162
Cubic 223.66 24.635
MLPNP 334.06 22.893
SVMDF 333.92 22.894
Proposed 193.70 25.259

Table 2. Interpolation Results of Image Lena

Interpolation MSE PSNR

Linear 195.46 25.220
Cubic 156.02 26.199
MLPNP 291.98 23.477
SVMDF 269.05 23.832
Proposed 122.50 27.250
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The interpolation approaches tested in our experiments are linear interpo-
lation, cubic interpolation, MLPNP, SVMDF and our proposed local spatial
properties based neural network interpolation. The experiments are performed
in Matlab. All the neural network training is performed in the reduced image
that is obtained by reducing the original source image.

Some result data of the 2 times row expanding to image Cameraman and Lena
are listed in Table 1 and Table 2. The best spread parameter S is searched for
optimal result images, and the result is that S = 23 for image Cameraman, S =
35 for image Lena. It is obvious that our proposed local spatial properties based
neural network interpolation scheme gets the least MSE value and the highest
PSNR value. It means that the proposed scheme obtains the best result image.

6 Conclusion

A novel local spatial properties based image interpolation approach using neural
network is proposed. The proposed approach can be used to interpolation ap-
plications, such as enlarge image where the magnification times is integer. And
some experiments indicate the effectiveness of the scheme. Experimental results
also showed that the proposed approach is superior to linear interpolation, cu-
bic interpolation, SVMs based interpolation and multi-layer perceptron neural
network interpolation approaches.
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Abstract. This paper illustrates the potentials of the PCNN for image process-
ing. A description of three schemes for image processing using the PCNN is 
presented in this paper. The first scheme is related to image segmentation, the 
second to automatic target location, ATL, and the third to face recognition. The 
first scheme was developed in order to obtain an insight of the behavior of  
the PCNN as a preprocessor element, the second one is an application to test the 
performance of the PCNN in an ATL problem. The third is a feature extraction 
method for face recogiton. The segmentation scheme showed great potentials to 
perform pixel grouping. The second scheme turned into a system with an ATL 
performance as good as other systems reported in the literature. And the third 
scheme seems to improve the performance of a face recognition system. 

1   Introduction 

The Pulse Coupled Neural Network, PCNN, is a relative new ANN model with a 
great potential in the area of image processing. A PCNN, is a model derived from a 
neural mammal model [1]-[4]. Current works with PCNN document how the PCNN 
can be used to perform important image processing task; edge detection, segmenta-
tion, feature extraction, and image filtering [2]-[10]. Because of this kind of perform-
ance the PCNN is considered a good preprocessing element.  

The basic model of a neuron element of a PCNN has three main modules: the  
dendrite tree, the linking and the pulse generator [1]. The dendrite tree includes two 
special regions of the neuron element, the linking and the feeding. Neighborhood  
information is incorporated through the linking. The input signal information is ob-
tained through the feeding. The pulse generator module compares the internal activity, 
linking plus feeding activity, with a dynamic threshold to decide if the neuron element 
fires or not. Fig.1 illustrates the basic model of the PCNN. A PCNN mathematical 
definition is given by (1) to (5). Equation (1) corresponds to the feeding region of the 

neural element, where FeedG  is the feed gain, S is the input image, tFΔα  is the time 

constant of the leakage filter of the feeding region, )(tY is the neuron output at time t, 

and W is the feeding kernel. The outputs )(tY  of the PCNN can be observed as 

output images called pulsed images of the PCNN. Equation (2) describes the linking 

activity. Here LinkG is the linking gain, tLΔα is the time constant of the leakage filter 

of the linking region, and M is the linking kernel. Equation (3) corresponds to the  
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internal activity of the neuron element. The internal activity depends on the linking 
and feeding activity. In (3) β  is the linking coefficient. β  defines the amount of 

modulation of the feeding due to the linking activity. The dynamic threshold is im-

plemented by (4), where θα is the time constant of the leakage filter of the threshold 

and V is the threshold gain. Finally the output of the neuron is defined by (5). In the 
case of an image processing task, each pixel is related to a neural element. For more 
information on how a PCNN works consult [1]. 

 

Fig. 1. Basic model of the PCNN 

( ) ( ) ( )1 1
tFF t G e F t S Y t WFeed

α− Δ
= − + + − ∗ , (1) 

( ) ( ) ( )1 1
tLL t G e L t Y t MLink

α− Δ
= − + − ∗ , (2) 

( ) ( ) ( )1U t F t L tβ⎡ ⎤= +⎣ ⎦ , (3) 

( ) ( ) ( )
1

1t e t VY t
αθθ θ

−
= − + , 

(4) 

( ) ( ) ( )1,   if  ,

0,   otherwise.

U t t
Y t

θ⎧ 〉⎪= ⎨
⎪⎩

 (5) 

2   Segmentation Experiment with the PCNN 

One important characteristic of the PCNN is the grouping property. Since the fire of a 
neuron element depends on the input information and the neighbor information, it is 
possible to make that a set of neurons fire at the same time. This situation occurs 
when the neurons are related to image pixels corresponding to a uniform region. Tak-
ing advantage of this property we use the PCNN to perform segmentation. Fig 2 illus-
trates the pulsed images of the PCNN. In this application a noisy image, composed of 
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a black square and noise, was processed by a PCNN using low pass filters as the feed-
ing and linking kernels and using the basic PCNN model. In this case low pass filter 
kernels are used since the purpose is to emphasize the ability to generate uniform  
regions, as observed in pulse 4. It can be observed in pulsation 4 that the object is  
practically defined. 

  
Pulse 1 Pulse 3 Pulse 4 Pulse 7 Pulse 14 

Fig. 2. Noisy image processed by the PCNN for segmentation purpose 

3   PCNN Automatic License Plate Location Scheme 

This scheme shows the application of the PCNN in automatic target location, ATL. 
The problem to solve is to locate license plates on digital images using a scheme 
based on a dynamic PCNN network. The images tested with the proposed ATL sys-
tem are taken without special conditions, which is a difference with other works re-
ported in the literature [11]-[13].Not special conditions means; images acquired with 
a video camera, no special illumination equipment, and there is not restriction about 
the position of the license plate. The purpose of not restrict the acquisition stage is to 
evaluate the PCNN system with similar conditions where a person will succeed. 

The dynamic PCNN ATL model that we proposed is an iterative model based on 
the PCNN, Fig. 3. The original image is preprocessed by the PCNN. The PCNN 
pulses and generates an output image. The PCNN is designed to yield regions [6], 
such that they may contain candidate regions of the license plate. A whole license 
plate segmentation is guaranteed because of the region constitution of the license 
plate. These regions are then analyzed to obtain labeled regions, ),( yxrn . These can-

didate regions are analyzed using area, and the minimum rectangle features to keep 
only regions that are good candidates, ),( yxrng . After this process, statistics of the 

Fourier transform of the candidate regions are computed. These statistics are then 
used to decide if the region contains or not a license plate. If any of the regions con-
tains the license plate then the process iterates to the point where the PCNN pulses 
again. In this new iteration the parameters of the PCNN are redefined, making a dy-
namic process. The objective of the change of parameters is to force the PCNN to 
generate smaller regions than the ones generated in the previous step. In the first itera-
tion the parameters are adjusted to generate big regions. The parameters are adjusted 
after the second iteration to yield smaller regions. The initial parameters of the PCNN 
and the updated parameters are shown in Table 1. The kernels W and M are 3x3 aver-
age kernels, because average kernels reinforce grouping. At the time of the realization 
of this work it was not known an analytic procedure to determine the parameter 
changes, thus the parameters were estimated by experimentation using a PCNN proc-
essor software [9], and based on the knowledge of the PCNN behavior.   
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Table 1. PCNN  parameters 

First iteration Next iterations
0.1=β  0.1=β  

2.0=FeedG 7.0=FeedG

1.0−=
F

α  1.0−=
F

α  

1.0=LinkG  6.0=LinkG

1.0−=
L

α  1.0−=
L

α  

75.0=θα  75.0=θα  

10=V  10=V  

A first discrimination process of regions is used to discard regions like point, lines, 
etc. Discrimination of regions is performed by (6). 

( , ) : ( , ) ( , )r n ngf A M r x y r x y→ , (6) 

where A is the area of the region and rM  is the minimum rectangle. Equation (6) 

analyzes the possibility of a ( , )nr x y  to be a ( , )ngr x y  based on the features area 

and minimum rectangle.  Each region ( , )ngr x y  is then represented by a feature vec-

tor consisting of statistics of the Fourier transform of the region as follows 

( , )ngR u v
μ
σ
⎡ ⎤

→ = ⎢ ⎥
⎣ ⎦

T , (7) 

where μ , and σ , are the mean and standard deviation, of ( , )ngR u v . The represen-

tative vectors for each class are, region with plate, wpT , region without plate, npT . 

wpT and npT were determined by statistical analysis. Under this scheme if the condi-

tion    inpiwp |||||||| TTTT −>−  is true for all regions ( , )ngiR u v , then the pulsed image 

does not have a region with the license plate and the process iterates to the point 
where the PCNN pulses again. Fig 4 shows an example of a car image and the license 
plate found. 

3.1   Results for License Plate Location 

The segmentation scheme yield adequate results when the PCNN is used with low 
pass filter kernels.  

High pass filters kernels were also implemented to achieve segmentation by edges; 
however, results were not satisfactory. In the case of the ATL scheme, the proposed 
system was tested with a database of 60 images acquired with a video camera without 
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special conditions of illumination. Results yield an 85% of correct license plate loca-
tion. Other systems to locate license plate report results from 80% to 95%, of correct 
location under special conditions [14]-[16]. Based on these results it can be said that 
the PCNN architecture may provide important advantages in the preprocessing stage 
of images. 

Decision 

Pulse control 

Original 
image 

PCNN Pulsed 
Image Region segmentation 

& labeling 

Discrimination, 
“area”

Discrimination 
“dimension”Candidate 

regions 

Fourier 
transform 

Statistics 

Edge extraction 
(optional)

Object  

Fig. 3. Dynamic PCNN ATL model 

 

 

Fig. 4. Original image and the plate located in the image 
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4   PCNN in the Face Recognition Problem 

The problem related to face recognition has been investigated from different points of 
view. Artificial Neural Networks, ANN, is not the exception. In this section we  
present a novel approach for face recognition based on three features, first the Pulse 
Coupled Neural Network, PCNN; second, the Hough transform, HT; third, the Kar-
hunen-Loeve transformation. The facial features are introduced in a neurofuzzy  
system based on the fuzzyfication of the inputs on an RBF neural network with a 
variable architecture on the first layer. The system performs well with ORL and 
YALE face databases, reaching recognition rates comparable with current face  
recognition systems. 

The automatic face recognition systems have 5 main stages: Input, Motion  
Detection/Face Detection, Feature Extraction, Face Recognition, and the Out-
put/Identification, as shown in Fig 5.  Here we use the PCNN as feature extraction 
method for a face recognition system. 

4.1   PCNN Initial Parameters 

For this particular project, the initial parameters of the PCNN are shown in Table 2. 
The kernels W and M are 3x3 average kernels, because average kernels reinforce 
grouping. 

4.2   PCNN Facial Feature Extraction 

In previous sections we have defined what a pulsed image is, as a result of applying 
the PCNN to a given image. Now, if a gray-scale image is given to the input of the 
PCNN, we obtain pulsed images similar to the ones in Fig. 6 where it is shown that 
the pulsations of the faces changes across time. The selected pulses are the 36 to 40. 
These pulsations are selected because their content of facial information is useful to 
construct a feature vector. As in Fig. 6 the pulses 36 to 40 have more content rather 
than the first 10 pulsations. 

The original image ),( yxI  is preprocessed by the PCNN.  The PCNN pulses and 

generates an output image ),( yxI p . The canonical form of a pulsed image ),( yxI p  is 

40pi  (row vector). The pulsed images, 36 to 40, from the PCNN are collected to  

generate a feature vector,  

36 37 40
    ...  pcnn p p p

⎡ ⎤= ⎣ ⎦T i i i . (8) 

The original image face is reduced to the static size of 1820×  pixels no matter what 
the original size is.  This amount of reduction is performed only for this particular part 

of the feature vector. Now we have that the size of pcnnT  will be 1800 because 

0081518205 =××=×xy .  
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Table 2. PCNN initial parameters 

For 50 iterations
0.1=β  

1.0=FeedG  

1.0=
F

α  

1=LinkG  

1.0=
L

α  

5=θα  

5=V  

 

 

 

Fig. 5. Proposed face recognition system 
using PCNN as feature extractor 

Fig. 6. Images pulsed by a PCNN when a face im-
age is the input. Pulsations from 36 to 40 are se-
lected as features. 

4.3   Final Face Feature Vector 

The final face feature vector includes three main components, face feature lines FFL 

iz , Karhunen-Loève feature transformation [14], KLT ˆxyi  (a variation of the PCA), 

and the features extracted with the PCNN pcnnT . Face feature lines are four promi-

nent lines that can be extracted with the Hough transform from low resolution image 
faces, and are important features documented in newborn face recognition studies 
[15]. The KLT features are defined by 
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ˆ T
xyn KLT xyn=i W i , (9) 

where xyni  is the whole training set composed by n xyi  vectors, xyi  is the canonical 

form of the original ( , )I x y , and T
KLTW  is the transformation matrix composed by 

the eigenvectors of the covariance matrix of xyni .   

The final feature vector can be now defined as 

[ ]xyi xy i pcnn+ =d z i T . 
(10) 

4.4   Neuro-Fuzzy Network 

The design of the network is based on a probabilistic RBF neural network with two 
layers and fuzzy inputs. The number of neurons on the first layer is the same as the 
number of the training samples. In this case we will be using different number of 
samples from 10 (one sample per class) to 80 (8 samples per class). Therefore we 
have from 10 to 80 neurons. The activation functions of the first layer are Gaussian. 
The number of neurons of the last layer is equal to the number of classes, in this work 
we will be recognizing ten people, therefore we have 10 classes, consequently 10 neu-
rons. The way to fuzzificate the inputs of the network is achieved by membership 
functions for each component of the feature vector. These membership functions are 
created according to the distribution of each component for every single person. The 

input vectors iz  and ˆxyni are fuzzyfied with the membership functions just created.   

4.5   Experiments and Results 

We have experimented with two options to see the performance with and without 
PCNN. This experiment is one of the main contributions of this paper, to see how a 
PCNN improves or makes poor the performance of a face recognition system. The 
general scheme for the face recognition system when the PCNN is added to the sys-
tem is shown in Fig 7. The experiments consist on changing the number of samples 
for training, selecting from 1 to 9 out of 10 samples per subject, and randomly selec-
tion of the samples. The experiments were designed to recognize 10 individuals. 
These experiments were realized over the OLR and YALE face databases. The testing 
results on the ORL without the PCNN have a maximum performance of 98%. For 
YALE without the PCNN the highest performance obtained reaches 78%. The testing 
results on ORL with PCNN show an improvement on 2 training samples (TS) for the 
subject #8 (S8) reaching 95%. The performance for YALE increases using the PCNN 
to 81%. Fig. 8 illustrates the performance of the experiments on the two databases, 
ORL and YALE with/without the PCNN. It is shown that the algorithm performs  
better on the ORL database because of less variation of the face samples regarding  
lighting conditions. 
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4.6   Conclusions of the Face Recognition Scheme 

We have presented a neurofuzzy scheme for face recognition based on the PCNN fea-
ture extraction in a combination with the FFL and KLT features. The neurofuzzy al-
gorithm was constructed extracting facial features via the PCNN, fuzzyfying the FFL 
and KLT features. These features are the inputs of an RBF neural network classifier 
which reaches 98% of recognition rate. This result is comparable to other systems 
previously developed [14]-[18]. As can be shown in Fig. 7 the algorithm performs 
well on ORL and it also performs better using PCNN over the YALE database even 
its severe lighting condition variations. 

 

Fig. 7. General architecture for the PCNN neurofuzzy Hough-KLT face recognition system 

 

Fig. 8. Comparison of the experiments performed on the ORL and the YALE face databases 
with/without PCNN 

5   Final Conclusions 

This paper presented three applications of the PCNN architecture in image processing 
tasks. The first scheme is related to image segmentation, the second to automatic tar-
get location, and the third to face recognition.  Results achieved in these three applica-
tions suggest that the PCNN architecture may be considered as a good preprocessor 
element to increase the performance of vision systems. The findings have demon-
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strated the potential of the PCNN to generate useful information especially in seg-
mentation and feature extraction tasks. The two last applications have shown how the  
PCNN architecture can be incorporated in vision systems to achieve complex tasks.  
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Abstract. Image segmentation is a classical problem in the area of im-
age processing, multimedia, medical image, and so on. Although there
exist a lot of approaches to perform image segmentation, few of them
study the image segmentation by the cluster ensemble approach. In this
paper, we propose a new algorithm called the cluster ensemble algorithm
(CEA) for image segmentation. Specifically, CEA first obtains two set of
segmented regions which are partitioned by EM according to the color
feature and the texture feature respectively. Then, it integrates these re-
gions to k segmented regions based on the similarity measure and the
fuzzy membership function. Finally, CEA performs the denoise algorithm
on the segmented regions to remove the noise. The experiments show that
CEA works well during the process of image segmentation.

1 Introduction

Image segmentation is a hot topic in many areas [1]-[4], such as medical analysis,
image processing, pattern recognition, multimedia, and so on, due to its broad
applications. Given an image I, the image segmentation algorithm subdivides
the image I into k regions. The pixels in each region have common properties,
such as similar color, similar texture, similar contour, and so on.

The color feature and the texture feature are the most popular features which
are used by the image segmentation algorithm. We focus on the image segmen-
tation algorithms which consider the color feature and the texture feature at
the same time. There exist three approaches to combine the color feature and
the texture feature: (i) the approach which combines the color feature and the
texture feature directly. Since the value range of the color feature is greater than
that of the texture feature, the approach will pay more attention to the color fea-
ture. (ii) the approach which combines the color feature and the texture feature
after normalizing within the range [0, 1]. It will emphasize the texture feature,
since the number of dimensions of the texture feature are much larger than that
of the color feature in most cases, especially when the number of dimensions of
the color feature is 3. (iii) the approach which adds the weighs to the variables
of the color and the texture. Although it can balance the importance of the color
and the texture, the weighs are difficult to determine. In order to combining the
color feature and the texture feature more effectively, we explore a new approach
based on cluster ensemble which is used to combine the property of the color
and the texture.

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 894–903, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The remainder of the paper is organized as follows. Section 2 describes the
framework of the cluster ensemble algorithm. Section 3 evaluates the effectiveness
of our approach through the experiments. Section 4 concludes the paper and
describes possible future works.

2 Overview of the Algorithm

Figure 1 illustrates the framework of the cluster ensemble algorithm (CEA) for
image segmentation. It first extracts the color feature and the texture feature
from the original image. Then, the expectation maximization algorithm is ap-
plied to perform image segmentation based on the color feature and the texture
feature respectively. In the third step, CEA performs cluster ensemble which
merges the similar regions by considering the position, color and texture. Fi-
nally, CEA obtains the final segmented regions.

Original image

Color feature

k regions:

C1, C2, …, Ck

EM

Original image

Texture feature

k regions:

T1, T2, …, Tk

EM

Core regions

k segmented regions

Merging surrounding 

regions

C
lu

s
te

r 

e
n
s
e
m

b
le

The denoise algorithm

Fig. 1. The framework of cluster ensemble

2.1 Feature Extraction

The color feature is extracted from the CIE L*a*b* color space for each pixel.
We adopt the CIE lab color feature here since this color space is one of the most
widely adopted color models for describing colors visible to the human eye. Color



896 Z. Yu et al.

and color contrast are important features for humans to identify the objects in
an image, and our approach is based on this observation. A 3-dimensional color
feature vector is obtained for each pixel of the image.

Gabor filter [5] [6] is applied to extract the texture feature, since the filter not
only can achieve the required selectivity in the preferred orientation and the pre-
ferred spatial frequency, but also possesses optimal joint localization properties
in both spatial and frequency domains. we apply the family of two dimensional
Gabor functions (GF) to extract the local image texture features :

GFl,θ,φ(x, y) = e−( (x′2+r2y′2)
2σ2 )cos(2π

x′

l
+ φ) (1)

x′ = xcosθ + ysinθ y′ = −xsinθ + ycosθ (2)

where l represents spatial frequency bandwidth (l ∈ {20, 30, 40}), θ denotes the
eight different equidistant preferred orientations (θ ∈ {0, π

8 , 2π
8 , ..., 7π

8 }), φ is
the initial phase (φ ∈ {0, −π

2 }), σ is the standard deviation of the Gaussian
component (σ = 0.56l), and r is the spatial aspect ratio of the x- and y-axis of
the Gaussian ellipse (r = 0.5).

Then, the Gabor feature image GFI(x, y) is obtained by convolving the input
image I(x, y) with the Gabor function GF (x, y):

GFI(x, y) =
∫ ∫

S

I(x, y)GF (u − x, v − y)dxdy (3)

where (x, y) ∈ S, and S denotes the set of points in the image domain.
We further merge the outputs of the symmetric Gabor kernel filter and the

antisymmetric Gabor kernel filter by the following Gabor energy equation (GE):

GEl,θ(x, y) =
√

GFI2
l,θ,0(x, y) + GFI2

l,θ,−π
2
(x, y) (4)

where GFIl,θ,0(x, y) and GFIl,θ,−π
2
(x, y) are the responses of the symmetric

and the antisymmetric Gabor kernel filters respectively. By the Gabor energy
equation, we obtain a 24-dimensional texture feature vector for each image pixel.

2.2 Expectation Maximization Algorithm

In the second, the expectation maximization algorithm (EM [7]) is applied to
subdivide the image into k regions based on the color feature and the texture
feature respectively. We assume (i) X = {x1, x2, ..., xn} denotes a set of feature
vectors (color vectors or texture vectors); (ii) the distribution of the feature
vectors can be approximated by Gaussian mixture models with k components
cj (j ∈ [1, k]); and (iii) the objective of EM is to maximize the log-likelihood
L(θ|X) as follows:

θ∗ = argmaxθ∈Θ L(θ|P )
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= argmaxθ∈Θ

∑

x∈X

log(
k∑

j=1

πj · p(x|cj)) (5)

p(xi|cj) =
1

√
(2π)d|Σi|

e[− 1
2 (xi−μj)T (Σj)−1(xi−μj)] (6)

where θ = {πj , μj , Σj}k
j=1, πj is the mixing proportion of the component cj , μj

is the mean vector of the component cj , and Σj is the covariance matrix of the
component cj .

After randomly selecting the parameters, EM first performs E-step, which
estimates the probability that the data point xi belongs to the component cj in
the tth iteration by the Bayes rule:

p(t)(cj |xi) =
p(xi|cj)

∑k
l=1 p(xi|cl)

(7)

s
(t)
j =

∑

x∈X

p(xi|cj)
∑k

l=1 p(xi|cl)
(8)

Where s
(t)
j is the sum of the probabilities.

Then, it updates the parameters of GMM as follows:

π
(t+1)
j =

s
(t)
j

n
(9)

μ
(t+1)
j =

1

s
(t)
j

n∑

i=1

xi · p(t)(cj |xi) (10)

Σ
(t+1)
j =

1

s
(t)
j

n∑

i=1

(p(t)(cj |xi))(xi − μ
(t+1)
j )(xi − μ

(t+1)
j )T (11)

E-step and M-step are performed recursively until the the log-likelihood
L(θ|X) is maximized. Finally, the feature vectors are assigned to the corre-
sponding components.

2.3 Cluster Ensemble

The output of EM is two sets of segmented regions: the segmented regions based
on color (C = {C1, C2, ..., Ck}) and the segmented regions based on texture
(T = {T1, T2, ..., Tk}). The common regions (R), in which all the pixels have
similar color and similar texture, is defined as follows:

Rh = Ci ∩ Tj , for ∀ i, j ∈ [1, k] (12)

where h ∈ [1, k2].
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The core regions are defined as the first k common regions which have the
largest number of pixels. Then, the common regions can be subdivided into two
parts: the core regions (CR) and the non-core regions (NCR). The core regions
are the basic blocks for the final segmented results. After obtaining the core
regions, the cluster ensemble algorithm (CEA) merges non-core regions with
the core regions based on the similarity measure and the fuzzy membership
function.

For each region, CEA extracts a 29-dimensional feature vector (−→f = {c1, c2,
c3, t1, ..., t24, p1, p2}) which not only considers the color (c1, c2, c3) and the tex-
ture (t1, ..., t24), but also considers the position (p1, p2). Since the position is as
important as the color and the texture, we adopt a new representation of the
feature vector −→

f :
−→
f = {ωc1 · c1, ..., ωt1 · t1, ..., ωt24 · t24, ωp1 · p1, ωp2 · p2} (13)

3∑

j=1

ωcj = 1,

24∑

j=1

ωtj = 1,

2∑

j=1

ωpj = 1 (14)

where ωc1 = ωc2 = ωc3 , ωt1 = ωt2 = ... = ωt24 and ωp1 = ωp2 .
The similarity Sim(−→fi ,

−→
fj ) between two regions (Ri and Rj) is defined as the

Euclidean distance between two feature vectors (−→fi and −→
fj ):

Sim(−→fi ,
−→
fj ) = d(−→fi ,

−→
fj ) = (−→fi − −→

fj )2 (15)

The fuzzy membership function m(−→f NCRi
,
−→
f CRh

) between the non-core re-
gion NCRi (NCRi ∈ NCR ) and the core region CRh (CRh ∈ CR) is defined
as follows:

m(−→f NCRi
,
−→
f CRh

) =
1

∑k
j=1(

d(
−→
f NCRi

,
−→
f CRh

)

d(
−→
f

NCRi
,
−→
f

CRj
)
)

2
q−1

(16)

where −→
f NCRi

denotes the feature vector of the i-th non-core region NCRi,−→
f CRj

and −→
f CRh

denotes the feature vector of the j-th and h-th core regions
CRh and CRj respectively, and 2

q−1 is the fuzziness exponent and we set q = 2.

The membership function m(−→f NCRi
,
−→
f CRh

) can be converted to the follow-
ing form:

m(−→f NCRi
,
−→
f CRh

) =

1

d(
−→
f

NCRi
,
−→
f

CRh
)

2
q−1

∑k
j=1

1

d(
−→
f NCRi

,
−→
f CRj

)

2
q−1

(17)

CEA will merge the non-core region NCRi with the core region CRh∗ which
has the largest value for the membership function:

h∗ = argminh∈[1,k] m(−→f NCRi
,
−→
f CRh

) (18)
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After merging all the non-core regions, we obtain k segmented regions of the
original image.

2.4 The Denoise Algorithm

CEA uses morphological operations [8] [9] to eliminate the very small discon-
nected regions and the noise from the segmented regions after merging. Our
denoising algorithm is motivated by the observed properties of the noise and
outliers, which are essentially a set of discontinuous and distributed pixels with
small areas. The denoising algorithm considers the segmented regions one by
one, and applies morphological operations to eliminate all connected compo-
nents whose areas are smaller than a threshold, which is set at 1% of the total
image area. Figure 2 shows examples of applying this algorithm to the images.

(a)Noise-corrupted 

images

(b) Segmentation 

regions
(c) The binary 

image

(d) Eliminate 

noise

(e) The final 

result

Fig. 2. Examples of applying the denoising algorithm

2.5 The Example

Figure 3 illustrates an example of the clustering ensemble algorithm (CEA).
CEA first partitions the original image by the EM algorithm based on the color
feature and the texture feature respectively. The partition results are shown in
the second row of Figure 3. Then, CEA generates a set of the common regions.
In the third step, it selects k core regions from the common regions as shown
in the second red rectangle of Figure 3. The corresponding non-core regions will
be merged with the similar core regions based on the similarity measure and the
fuzzy membership function. Finally, we obtain the final segmented regions as
shown in the last row of Figure 3, after eliminating the very small regions and
the noise.
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Core regions

Segmented regions

Fig. 3. The example of cluster ensemble

3 Experiment

Our database consists of 2000 images. Part of the images come from the COREL
image library, and other images are mutually collected from the web.
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CEA AD ANOriginal image

Fig. 4. Comparison of different approaches
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In the following experiment, we compare our method (CEA) with two ap-
proaches: (i) the approach (AD) which combines the color and the texture as
the feature vector directly, and (ii) the approach (AN) which combines the color
and the texture after normalizing the values within [0, 1].

We randomly select four images from the image database to illustrate the
performance of three approaches. Figure 4 compares the segmented results by
different approaches. CEA can separates the mountain completely from the sky
and the beach in the first image of Figure 4, while AD and AN only identify
part of the mountain. In the second image of Figure 4, CEA combines the houses
with the mountains, since the positions of the houses are closest to that of the
mountains. But AD and AN separates the houses from the mountain, which
break the connection between the houses and the mountain. CEA subdivides
the original image into three segmented regions (the sky, the elephant and the
grass) in the fourth image of Figure 4, while AD and AN confuse part of the
elephant and the grass.

4 Conclusion and Future Work

In this paper, we investigate the problem of image segmentation based on cluster
ensemble. Although there exist a lot of approaches for image segmentation, few
of them explore the possibility of image segmentation by the cluster ensemble
approach. Our major contribution is a new algorithm (CEA) for image segmenta-
tion according to cluster ensemble. Specifically, CEA applies EM to separate the
original image into k regions by the color feature and the texture feature respec-
tively. Then, it obtains k2 common regions by integrating the regions based on
color feature and texture feature. In the third step, CEA partitions the common
regions into the core regions and the non-core regions. Finally, the segmented
results of the original image are obtained by merging the non-core regions to the
closest core regions. In the future, we will improve the cluster ensemble approach
and explore the application in the image processing area further.
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Abstract. This paper presents a Decision-based Hybrid Image Watermarking 
(DHIW) technique, based on the Human Visible System (HVS) and an Artifi-
cial Neural Network (ANN), for image copyright protection in wavelet domain. 
In [1], an image watermarking technique, called the IWNN technique, utilizes 
an ANN to extract watermarks without original images. However, the IWNN 
technique performs poorly for highly complicated image textures because the 
generalization capability of neural networks is powerfully effective in dealing 
with smooth image textures. Therefore, the PAIW method is proposed to en-
hance the IWNN technique, which uses the spatial information associated with 
wavelet-transformed images. The DHIW technique takes advantages of these 
two techniques by using a decision preprocessor. Experimental results prove 
that the DHIW technique remarkably outperforms other existing schemes.  

1   Introduction 

Nowadays, digital watermarking, which allows for the imperceptibly embedding wa-
termarks (or digital signatures) in an original multimedia data, has emerged as a 
broadly approved way of performing copyright protection and ownership identifica-
tion [1]–[11]. 

Many image watermarking schemes have been developed in frequency domain, 
which invisibly insert a watermark into an original image by modifying the coeffi-
cients of the transformed image [5]–[9]. Some watermark-embedding algorithms ap-
ply the Discrete Cosine Transform (DCT) to an image, and then hide the ownership 
information in DCT coefficients of an image [5] – [6]. Recently, another frequency 
transformation, the Discrete Wavelet Transform (DWT), is involved in the design of 
the wavelet-based watermarking techniques that modify DWT coefficients of the im-
age upon embedding owner signatures [7] – [9]. Moreover, both the DCT and the 
DWT are also employed to devise robust image watermarking [9]. An advantage of 
the frequency-domain methods is that, in general, they are often robust to malicious 
attacks. Unfortunately, less embedding capacity is a major drawback of them. Conse-
quently, a class of watermarking methods has been proposed by taking the advantages 
of the spatial-domain and the frequency-domain methods [10] – [11]. However, above 
methods still have three disadvantages, requiring original images during watermark 
extraction, mere performing watermark detection, and not exploiting the HVS to  
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enhance their transparency. Hence the DHIW technique, which integrates the IWNN 
and the PAIW techniques, is proposed here to overcome disadvantages mentioned 
above. 

The IWNN technique employs an ANN to memorize the relationship between the 
original DWT coefficients and their modified versions. That is, the relationship can be 
realized by a trained ANN due to that a trained ANN can perform a universal map-
ping [12]. The IWNN technique utilizes the trained ANN to retrieve a watermark 
without the original image. Additionally, a wavelet-transformed image still preserves 
its spatial information. The PAIW technique adaptively modifies two DWT coeffi-
cients in a detailed sub band (for example, the vertical-line information), such as HL2 
[13]. During watermark embedding, these two methods refer the Just Noticeable Dif-
ference (JND) values of two DWT coefficients so as to improve the imperceptibility 
of a watermarked image. Note that the JND is a crucial characteristic of the HVS, and 
is applied in diverse real-world applications of image processing [1], [3], [11]. Most 
methods, which employ the HVS to enhance their imperceptibility, almost perform 
watermark detection instead of watermark extraction. The methods, which merely 
perform watermark detection, suffer from the problem, not getting the clues of the pi-
racy. Although the method proposed in [1] can perform watermark extraction, how-
ever, the trained ANN fails to retrieve watermarks from the sort of images with highly 
complex textures, for instance, Baboon image. Consequently, the paper presents the 
DHIW technique which employs a decision algorithm to alternatively apply one of 
the two methods upon watermark embedding and watermark extraction. Fig. 1 depicts 
the conceptual design of the DHIW technique. The decision procedure plays an im-
portant role that distributes non-complex-texture image blocks to the IWNN tech-
nique or dispatches the remainder of image blocks to the PAIW technique.  

The rest of this paper is organized as follows. Section 2 presents image denotations 
and the DWT. Then, Section 3 describes the DHIW technique. Next, Section 4 shows 
experimental results. Finally, Section 5 gives conclusions. 

2   Image Denotations and DWT  

A gray-level image, X, with size L × K can be denoted by X = [xρ]L×K, where xρ ∈{0, 
1, …, 255}. That is, xρ represents the gray value of a pixel located at position ρ = (i, j) 
over X, where i ∈{0, 1, …, L-1} and j ∈{0, 1, …, K-1}. Fig. 2(a) shows that X is parti-

tioned into 
⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢

88

KL

 non-overlapped blocks of size 8 × 8. For example, b21 stands for 
a block that the center pixel in the block is located at position (2, 1) on X. Let b21(r, c) 
stands for the gray level of a pixel at the position (r, c) in the block b21. As a result, a 
set Φ of the non-overlapped blocks of X can be represented by 

{ ⎣ ⎦ ⎣ ⎦} 8
,,1,

8
,,1 KjLibij ===Φ ， (1) 

where the size of each block bij is 8 × 8. 
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In the experiment of the paper, a watermark, W, is denoted as a 2D binary image, 
which can be transformed to be a binary sequence in a row-major fashion. Thus, the 
watermark can be expressed as 

W = (w1, w2, …, wk, …, wm) (2) 

where m stands for the size of W and wk ∈ {-1, 1}. 
Fig. 2(b) illustrates that each non-overlapped block bij in Φ for an image X is  

decomposed through the DWT. Let Bij represent the corresponding wavelet block 
consisting of 64 coefficients. Moreover, Bij(r, c) stands for the coefficient at the posi-
tion (r, c) on the block Bij. Fig. 2(c) shows bij is transformed through DWT with two 
levels. First, each wavelet block Bij at each level consists of four bands (components): 
low- low band (LL1), low-high band (LH1), high-low band (HL1), and high-high 
band (HH1). LL1 band can be further divided into four subbands: low-low subband 
(LL2), low-high subband (LH2), high-low subband (HL2), and high-high subband 
(HH2). Generally, HL2, LH2, HH2, HL1, and LH1 are called middle-frequency  
components (or detailed subbands).  
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Fig. 1. The conceptual design of the DHIW technique 
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Fig. 2. (a) X is segmented into 
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 non-overlapped blocks with size 8 × 8. (b) bij is trans-
formed through DWT. (c) Components are constituted of a wavelet image block with size 8 × 8 
at level 2. 
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3   The DHIW Technique 

3.1   The Embedding Algorithm of the DHIW Technique 

Fig. 3(a) exhibits the diagram of the DHIW technique. First, the pseudo-random num-
ber generator (PRNG) component is realized by the scheme in [14]. While feeding the 
PRNG component with two seeds (s1, s2), a sequence P of random positions can be 
generated and denoted as  

P = {ρ1, ρ2, …, ρk …, ρm}, (3) 

where ρk = (ik, jk). The DHIW technique constructs a set, Ψ, comprising m blocks 
which are randomly selected from Φ by using the PRNG component. The set Ψ can 
be expressed as a form 

( ){ }P  , ∈=Ψ = kji kkk
b ρρ , (4) 

where k = 1, 2, …, m. 
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Fig. 3. (a)The diagram of the watermark embedding of the DHIW technique. (b) The structure 
of watermark extraction of the DHIW technique. 

Next, Observing experimental results, the difference between the absolute values 
of these two coefficients ( )0,02,2,k

Bρ and ( )0,12,2,k
Bρ  in subband HL2, is employed in 

the design of the decision procedure as described in the following.  
Algorithm Decision ( ( )kkk jiB ,=ρ ). 

Step 1.  Input ( )kkk jiB ,=ρ . 

Step 2.  If ( ) ( )( ) TH0,10,0 2,2,2,2, <−
kk

BB ρρ
  

Step 3.  then using the PAIW technique and keyk = 0. 
Step 4.  else using the IWNN technique and keyk = 1. 

 
The PAIW technique embeds a watermark bit wk via using the formula in (5).  

Note that sgn(·) and |·| represent the sign function and the absolute value operator,  
respectively.  
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k
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JNDw

B
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k

k
 

(5) 

Specifically, in (5), the technique employs the superimposition operation to two 
coefficients ( )0,02,2,k

Bρ and ( )0,12,2,k
Bρ  in subband HL2. An attempt of the technique, 

like the patchwork algorithm in [2], is to enlarge the distance between these two coef-
ficients in order to enhance its robustness. The PAIW technique is mainly developed 
to compensate for the incorrect watermark estimates with the IWNN technique for 
non-smooth image textures. The intention of the embedding procedure of the PAIW 
technique is to hide information in the non-smooth image textures. Generally, the vis-
ual results to modify non-smooth image textures are more imperceptible than smooth 
image textures. 

The IWNN technique employs the modification formula in (6) for embedding wk . 

( )τρρρ ++←′ (0,0),,(0,0),,(0,0),, 222222 kkkk
JNDwBB  (6) 

Additionally, a positive constant τ is involved in (6) to increase the strength of the 
modification in order to enhance its robustness. The embedding algorithm of the tech-
nique differs from the PAIW technique in only modifying a coefficient, ( )0,02,2,k

Bρ . 

The reason is that, ideally, the DHIW technique assigns smooth- textures image 
blocks to the IWNN technique. In order to avoid annoying artifacts on watermarked 
images, it just modifies one coefficient instead of two coefficients. Let the key vector 
KEY be expressed as a form in (7).  

KEY = (key1, key2, …, keym) (7) 

where a bit, keyk, indicates which embedding algorithm is involved for wk. The em-
bedding algorithm of the DHIW technique is summarized in the following.  

Step 1.  Input X, W, (s1, s2), τ, and a threshold TH. 
Step 2.  Segment X into a set Φ of non-overlapped image blocks with size 8×8. 
Step 3.  Present the PRNG with two seeds (s1, s2) to generate P in (3).  
Step 4.  Use P to get Ψ in (4). 
Step 5.  For each ( )kkk jib ,=ρ . 

Step 6.  ( )kkk jiB ,=ρ = DWT( ( )kkk jib ,=ρ ). 

Step 7.  Calculate
k

JNDρ
. 

Step 8.     Call Algorithm Decision ( ( )kkk jiB ,=ρ ). 

Step 9.   If (keyk = 0) then embed wk using (5). 
Step 10. If (keyk = 1) then embed wk using (6). 
Step 11. ( )kkk jib ,=′ρ = IDWT( ( )kkk jiB ,=′ρ ). 

Step 12. Until all wk are embedded. 
Step 13. Output an watermarked image X ′ and a key vector KEY. 
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Note that the IDWT stands for inverse DWT. The calculation of 
k

JNDρ
can be found in 

[1]. Each coefficient in 
k

JNDρ
 is associated with a range of error visibility. That is, a 

modified coefficient still retains imperceptions if the magnitude of the modification to 
the coefficient is in the range of error visibility. Subsequently, two seeds (s1, s2) and 
the KEY should be secured from pirates. 

layerinput  layer hidden layeroutput 
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Fig. 4. The architecture of the ANN used in the DHIW technique 

In the IWNN method, an ANN is used for memorizing the relationship between 
original coefficients and their watermarked version. The architecture of the ANN is 
displayed in Fig. 4. The ANN comprises three layers: the input layer with sixteen neu-
rons, the hidden layer with twelve neurons, and the output layer with a single neuron 
11. The ANN is so-called a 16-12-1 Multilayer Perceptrons (MLP). A back-
propagation learning algorithm is applied to train the ANN by correcting its weights. 
These weights are adjusted to decrease the errors between the inputs and their corre-
sponding target outputs. The set ϒ of weights, associated with the ANN, can be ex-
pressed as a form in (8), 

{ } { }12 , 2, 1,=1,=,162, 1,=,12, 2, 1,== 21 jiWjiW ijij ∪ϒ . (8) 

A set Τ of training patterns is denoted as 

( ){ }1,2,2 ,1,2,=(0,0),= mkB
kk ρBΤ ′  (9) 

and 

( ))1,1(,(0,0),,(0,0),,(0,0),= 4,2,4,2,2,2,,2,1 kkkk
BBBBk ρρρρ ′′′′′B . (10) 

Here kB′  and (0,0),2,2k
Bρ  represent an input vector and its corresponding desired 

output, respectively. The cardinality of the set Τ in (9) is m1 where m1 is less than or 
equal to m and stands for the number of image blocks which is assigned to the IWNN 
technique by the Decision component in the DHIW technique. In other words, the 
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number of 1’s in the KEY is equal to m1. Let (0,0)ˆ
,2,2k

Bρ denote the corresponding 

estimated output of the trained ANN while presenting the trained ANN with an input 

vector kB′ in (10). 

3.2   The Extraction Algorithm of the DHIW Technique 

Fig. 3(b) depicts the structure of watermark extraction of the DHIW technique. Two 
seeds (s1, s2) and the KEY are required at the receiver site before watermark extrac-
tion. The position sequence P can be obtained after feeding the PRNG with (s1, s2). 
Next, a set Ψ′  of watermarked blocks can be constructed using P and a watermark 
image X ′ . Here two seeds (s1, s2), the KEY, and the position sequence P are the same 
as those utilized in the watermark embedding of the DHIW technique. The estimated 
watermark 

kŵ is computed by  

( ) ( )( )
( ) ( )( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

≥−′=

≥′−′=

=

.else,1

,00,0ˆ0,0 & 1keyif,1

,00,10,0&0keyif,1

ˆ 2,2,2,2,

2,2,2,2,

kk

kk

BB

BB

w k

k

k ρρ

ρρ  
(11) 

The watermark-extraction algorithm of the DHIW technique is described as follows. 

Step 1.  Input X ′ , the key vector KEY, (s1, s2), τ, and a threshold TH. 
Step 2.  Segment X ′  into a set Φ′  of 8 × 8 non-overlapped image blocks. 
Step 3.  Present the PRNG with two seeds (s1, s2) to generate P in (3).  
Step 4.  Use P to get Ψ′  in (4). 
Step 5.  For each ( )kkk jib ,=′ρ . 

Step 6.  ( )kkk jiB ,=′ρ = DWT( ( )kkk jib ,=′ρ ). 

Step 7.  Call Algorithm Decision ( ( )kkk jiB ,=′ρ ). 

Step 8.  Retrieve 
kŵ using (11). 

Step 9.  Until all kŵ  are retrieved.  

Step 10. Output an estimated watermark Ŵ . 

4   Experimental Results 

In this experiment, a binary image, as shown in Fig. 5(a), is taken as the watermark 
(digital signature) of the copyright owner of an image. The quantitative index, PSNR 
(Peak Signal to Noise Ratio), is employed to measure the imperceptible quality of the 
watermarked images, and is defined by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛′
′) ,MSE(

255
log10

2

= ) ,PSNR(
XX

XX , (12) 

where  
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MSE(X, X ′ ) = ( )∑ ∑ ′−
× = =

1-

0

1-

0

21 L

i

K

j
ijij xx

KL
. (13) 

Higher PSNR value reveals that the watermarked image X more resembles its original 
version X ′ . Another quantitative index, BCR (Bit Correction Rate), is used for evalu-
ating the quality of the estimated watermarks, and is specified by  

m

ww
WW

m

k
kk

2

ˆ-
 -1  )ˆ ,(BCR 1
∑

= = . (14) 

Note that the BCR (W, Ŵ ) ∈ [0, 1]. The higher BCR value conveys that Ŵ  is more 
similar to W. 

Fig. 5(b) - (g) exhibit six 512 × 512 original images, Baboon, Babara, Peppers, 
Lena, Couple, and Goldhill images, respectively. Their watermarked images are dis-
played in Fig. 5(h) - (m). The imperceptibility of the DHIW technique is compared 
with that of existing methods [5], [6], [8], [9]. Fig. 6 shows the comparison results in 
terms of the PSNR values of the six test images for these six methods. The transpar-
ency of Shih’s method is the best among them because it adopts least-significant-bit 
(LSB) embedding algorithm. However, it is very susceptible to common attacks.  
According, its robustness is poor. Fig. 7 displays its results.  

In the attack-free case, the watermark-extraction ability of the DHIW technique is 
investigated here and also compared with that of these methods under consideration. 
Fig. 7 illustrates the comparison results in terms of the average BCR value of the six 
test images examined by exploiting these six methods. In addition, Fig. 7 displays the 
comparison results for the robustness of above methods under 15 unintentional attacks 
which are simulated by image-processing manipulations. Fig. 8 exhibits the visual re-
sults of extracted watermarks using these six methods for testing Baboon image. Ob-
serving Fig. 7, in most cases, the robustness of the DHIW technique is significantly 
better than that of other existing methods being considered here. 

 
(a) 

      
(b)      (c)        (d)        (e)                        (f)                       (g) 

       
(h)      (i)        (j)            (k)                        (l)                       (m)  

Fig. 5. (a) the original watermark. (b) - (g) are original images, Baboon, Babara, Peppers, Lena, 
Couple, and Goldhill images, respectively. (h) - (m) are their watermarked version. 
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Fig. 6. The comparison results in terms of the PSNR value of the six test images 
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Fig. 7. The comparison results of watermark retrieval for six methods where 15 attacks, simu-
lated by image-processing manipulations, are involved to investigate the robustness of six 
methods 
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5   Conclusions 

In this paper, a decision-based hybrid image watermarking technique, called the 
DHIW technique, has been proposed to improve the performance of the existing 
methods. The DHIW technique employs a decision algorithm so as to take the advan-
tages of the IWNN and the PAIW methods. Experimental results demonstrate that the 
DHIW technique can achieve acceptable performance of both imperceptibility and 
robustness, and show that the technique is superior to other existing schemes under 
consideration.  
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Abstract. A new algorithm for magnet resonance (MR) image registration is 
proposed based on a modified Pulse-Coupled Neural Networks (PCNN’s). The 
transformed image and reference image are applied as inputs to two modified 
networks with the same parameters respectively. Taking advantage of 
translation, rotation, and distortion invariant characteristics of PCNN’s, fired 
neuron groups of the two networks are acquired correspondingly, then the 
barycenters of those groups are extracted as characteristic points to attain the 
registration parameters. Experiment results showed that the proposed algorithm 
for MR image registration is fast and effective. 

1   Introduction 

Over the past decades, the brain research has been an active area of research and has 
made much important progress, which should be mainly owed to the development of 
medical imaging technology to some extent. Magnet resonance imaging (MRI) is one 
of the powerful imaging technologies which would be able to detect the structure and 
function of the brain woundlessly. People always extract the information of brain 
function by preprocessing and analyzing the time-series images acquired by MRI. At 
present, many modified processing algorithms have played an important role in the 
preprocessing course, such as image enhancement and registration etc.[1]. In this 
paper, we propose a new algorithm about the registration of magnet resonance image 
based on the modified Pulse-Coupled Neural Networks (PCNN’s).  

The medical image registration, using appropriate optimization method to achieve 
the maximal similarity of pixel intensity, is always used to implement the process of 
registration of entire image information. In general, most of the optimization methods 
can be classified as two classes, the local search such as Powell method and the global 
search such as simulated annealing method [2]. The local search approach in process 
is likely to run into a local extremum, resulting in a false registration. But the global 
search approach is more complicated and demands a great deal of computational time 
and space. Therefore, appropriate optimization method must be chosen to achieve a 
compromise between the accuracy and the speed. Because of the small computational 
load and strong anti-interference in small translation and rotation bias condition, the 
image registration algorithm based on projective method has attracted the attention of 
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many researches. However, when the contrast of translation and rotation between the 
transformed image and reference image is obvious, the extent of search will be 
largened, and the computational load will be increased rapidly as well. So this paper 
makes an effort to look for a new registration algorithm based on characters including 
the corner, point, line, boundary and surface etc. to outcome this problem.  

According to the principle of the pulse synchronization behavior in the visual 
cortices of cats[3], a new simplified model, PCNN has been proposed and developed 
in 1990’s, which primarily based on the grouping characteristic has proven to be 
highly effective when use in a diverse set of application such as image processing, 
communication and optimization [4] etc.. Taking advantage of the translation, 
rotation, scale, distortion and intensity signal invariance [5] of PCNN, this paper 
proposes a new registration algorithm, which considers the coordinate barycenter of 
neuron group as the characteristic point. This algorithm has been applied to the MR 
image registration successfully and has strong anti-noise performance. In addition, 
those factors, such as image rotation bias and translation bias etc., have no effect on 
its computational load. A great number of experiment results have shown the validity 
of this new algorithm. 

In Section 2 of this paper, the modified model of PCNN is described simply. The 
image registration algorithm based on PCNN is proposed in Section 3. In Section 4, 
the experiment result is presented. Finally, conclusions and recommendations are 
given in Section 5. 

2   PCNN Model and Its Characteristics 

PCNN is a new simplified model [6] based on pulse synchronization behavior in the 
visual cortices of cats [7]. Now it has been successfully applied to various image 
processing, including image segmentation [8], image smoothing [9], image thinning 
[10], and target extraction [11] etc. 

In PCNN model, there are three leaky integrators. Each leaky integrator has three 
parameters, the amplification factor, decay time constant and weighing factor, which 
will interact with each other. In reality, the mathematical analysis of the operation of 
the network is a difficult task. And the determination of values for all parameters in 
the model to effectively control the network operation is not a trivial task. Therefore 
this paper modifies the PCNN model to overcome the above shortcoming as follows: 

( )ij ijF n S= , (1) 

( ) ( )1
ij

ij k
k N

L n Y n
∈

= −∑ , 
(2) 

( ) ( ) ( )( )1ij ij ijU n F n L nβ= + , (3) 

( ) ( ) ( )( )1ij ij ijY n step U n nθ= − − , (4) 

( ) ( ) ( )1 1ij ij ijn n e V Y nα
θθ θ −= − + − , (5) 
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where ijF , ijS ,
ijL , ijU , ijθ  and ijY  are the feeding input, external stimulus, linking 

input, internal activity, threshold and output of the neuron ij ; ijN  the set of adjacent 

neurons; Vθ  the threshold amplitude constant; β  linking strength; α time decay 

coefficient; n iteration. Furthermore, each neuron can pulse only once during a 
pulsing cycle in the modified model. 

As well known, PCNN has a feature that the fire of one neuron can capture its 
adjacent neuron to fire via the linking stimulus due to their spatial proximity and 
intensity similarity. These neurons stimulate each other to compose of a unique group. 
The firing time and relative location of each group is fixed even if the network is 
translated, rotated or zoomed. So in the image registration processing, when the 
transformed image and reference image are applied as input to the PCNN’s with the 
same parameters, one-to-one correspondence exits between the groups of the images, 
and the firing time and relative location of the corresponding grouping neurons are the 
same. Assumption that the characteristic points of the corresponding groups can be 
picked up, they will surely inherit the invariant characteristics of translation, rotation 
and a little distortion. That is why this paper expects to use the PCNN to achieve the 
image registration. 

3   Image Registration Algorithm Using PCNN’s 

The main idea of the new algorithm is described as follows: 

(1) Find out all the firing groups of the transformed image and reference image 
based on the grouping characteristic of PCNN’s. 

(2) Then use their invariant characteristics of translation, rotation and a little 
distortion to match all the groups so that the image registration will be 
implemented. But the number of grouping neurons in every set is usually too 
large to achieve the registration process fast. Considering that the barycenter in 
physics also has the invariant characteristics of translation and rotation, the 
barycenter of every firing group is picked up as the character point to complete 
the registration process.  

The algorithm is composed of three steps. Firstly, obtain the object region by a 
special PCNN segmentation algorithm. Secondly, pick up barycenters of all firing 
groups as characteristic points. This step is the most important one in the image 
registration. Finally, compute the registration parameters on the basis of the data of 
barycenters and then finish the image registration process. 

3.1   Background Segmentation of MR Image 

The background pixels consist of those ones that often distribute in the image edge 
and the intensity is close to 0. To reduce their influence on the registration precision, 
the segmentation algorithm of MR image is implemented to obtain the object region. 
Considering the distributing character of the intensity of background pixels, the pixels 
belonging to the boundary of the image were fired first. For the internal pixels, they 
will be captured unless their intensity are close to 0 and receive linking inputs from 
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three neighbors. In this paper, their intensity are assumed less than 15. The 
segmentation algorithm using PCNN’s is described as follows: 

Step 1: Initialize the network parameters. Let 0ij ij ijL U Y= = = , 0.4ijθ = , 

1β = , 0α =  for each neuron ij. The F element corresponding to the boundary 

pixels is adjusted to 1, others 0.1. 
Step 2: Run the network by using Eq. (1)-(5) and capture the appropriate neurons 

that haven’t fired with an intensity of less than15. 
Step 3: If there is not any neuron fires in this iteration, go back to Step 2, 

otherwise algorithm is completed. 

The pixels corresponding to the fired neurons in the processing are called the 
background pixels. Others are object pixels. In image registration processing, only the 
object pixels should be considered in the next step. 

3.2   Pick Up Characteristic Points — Barycenters of Firing Groups 

Because of the singular intensity distribution of MR image, most of the neurons may 
be captured in some firing groups and the number of some groups may be too small. 
In order to get enough characteristic points to improve the registration, this algorithm 
adopts the process below. The object region is applied as input to the PCNN, and then 
all the pixels will be divided into 8 groups according to their firing time order, each 
group has the same number of pixels. As a result, the pixels in any group fire prior to 
those in the next group, but later than the former group. After that, compute the 
barycenters of all the groups by using barycenter formula and get two barycenter sets 
corresponding to the transformed image and reference image respectively. 

The algorithm using PCNN is described as follows: 

Step 1: Initialize the network parameters. Let 0ij ij ijL U Y= = = , 255ijθ = , 

ij ijF S=  for each neuron ij. 

Step 2: Let 1

ij

β
θ

= , ln
1

ij

ij

θ
α

θ
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 and run the network using Eq.(1)-(5). 

Then divide all the neurons into 8 groups in order. 
Step 3: If not any neuron fires in this iteration, go to Step 2. 
Step 4: Compute the barycenters of all the groups by using barycenter formula and 

get two barycenter sets. 

It appears that the implementation of PCNN could be greatly simplified if 
threshold signals are allowed to decay linearly rather than exponentially. So this paper 

let ln
1

ij

ij

θ
α

θ
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
. At the same time, supposing that the intensity of most of the 

pixels are low, let 1

ij

β
θ

=  so that the number of firing neuron in every firing process 

will be more homogeneous and the linking strength can be adjusted automatically. 
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By the time, the barycenters have been acquired. The next step is to use the result 
to finish the image registration process. 

3.3   Compute the Registration Parameters 

Consider the 8 barycenters as the characteristic points arranging in order for 
transformed image and reference image. Firstly, compute the barycenter of the above 
8 barycenters that has been defined as the center of the image before. The difference 
between the centers of the two images is consistent with the registration translation 
bias ( xΔ , yΔ ). Secondly, connect all the barycenters to the center of every image 

and calculate the angles relative to the horizontal axis. Then add the differences 
between one-to-one corresponding angles and the average of the sum is equal to the 
rotation parameter αΔ  relative to center of images. An example is shown in Fig.1, 
where the red crosses denote the centers of these images. Finally translate and rotate 
the transformed image with the parameters（ xΔ ， yΔ ， αΔ ）and complete the 

registration process. 

                  
(a)    (b) 

Fig. 1. The distribution of the barycenters of reference image is shown in (a). The distribution 
of the barycenters of transformed image is shown in (b). 

One considerable problem of the algorithm is that the rotation angle αΔ  is relative 
to the center which is not actually the rotation center. Strictly speaking, the center of 
the rotation in the MRI experiment is random. Hence, the translation bias calculated 
from the algorithm derives from two factors: one is the singular translation; the other 
is the rotation. And translation bias will increase along with increment of the rotation 
angle. However, these phenomena will not affect the registration result. After taking 
the translation and rotation operation, the transformed image will match the reference 
image well. 

3.4   Evaluation of Image Registration 

There are many evaluation methods for the image registration. The sum of square 
error [12] and mutual information are in common use. Considering that these above  
 

αΔ
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approaches would be influenced by other factors such as the number of image pixels 
and intensity distribution, this paper presents a new evaluation parameter σ as 
follows: 

( )2'

,

1
ij ij

i j

S S
N

σ = −∑  (6) 

It represents the average difference of intensity between the transformed image and 
reference image. And the definition of the evaluation parameter σ  would be more 
intuitionistic to evaluate the registration result. 

4   Simulation and Analysis 

The image registration algorithm described in Section 3 was coded in Visual C++6.0 
and applied to large number of medical MR images. Take the 512×512 fMRI image 
shown in Fig. 2(a) for example. Fig.2 (b) shows the result of background 
segmentation of Fig.2 (a). Fig.2 (b) illustrates that the segmentation is effective and 
satisfying. 

              
(a)                                                         (b) 

Fig. 2. The reference image is shown in (a). The result of background segmentation is shown  
in (b). 

The next step is the registration algorithm of object region based on PCNN. Fig. 3 
and Fig.4 show the firing groups of the reference image and transformed image 
rotated 45 degree at odd iterations. The bright pixels denote the neurons firing in the 
corresponding iteration computation, whose barycenter is labeled by a red cross. The 
figures clearly verify the grouping characteristic and invariant characteristics of 
translation and rotation of PCNN. 

As to the case that the image is only translated by a constant, this paper assumes 
two cases. In one case small translation bias is provided, the other large. The 
registration result is shown in the Table 1, where the angle unit is degree, and 
translation and rotation parameters are denoted as ( x, y, )αΔ Δ Δ . 
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     (a)                               (b)                                        (a)                               (b) 

              
(c)                              (d)                                        (c)                                (d) 

Fig. 3. The first, third, fifth and seventh firing 
groups of the reference image are shown in 
(a), (b), (c) and (d) respectively 

Fig. 4. The first, third, fifth and seventh firing 
groups of the transformed image are shown in 
(a), (b), (c) and (d) respectively 

Table 1. The registration result considering the case the image is only translated by a constand 

Translation 
bias 

Standard parameters 
Registration 
parameters 

Evaluation 
parameterσ  

large (75.0, 26.0, 0.0)  )1097.0,0.26,0.75( 4−×  0 

small (4.0, 4.0, 0.0)  -4(4.0, 4.0, 9.46 10 )×  0 

The evaluation parameter σ  is equal to 0, which illustrates that the registration 
algorithm does well in this case. 

Table 2. The registratio result with translation and rotation bias 

Standard 
parameters 

Registration result 
Evaluation 

parameterσ  

(4.0, 7.0, 1.0)  (4.3, 6.7, 0.86) 1.9384 

(4.0, 7.0, 2.0)  (4.1,6.8,1.88)  1.5771 

(4.0, 7.0, 4.0)  (3.6,7.2,4.14)  1.8453 

Moreover, the translation and rotation always appear synchronously, so this paper 
assumes that the transformed image has a small translation bias and rotation bias 
compared to the reference image. Considering that the image resolution is 512×512,  
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the translation bias is given to be (4.0, 7.0). The rotation center of the image is 
adopted randomly near by the center of object region. The Table 2 shows the typical 
result of registration with certain rotation bias, where the angle unit is degree. 

The results indicate that: 

(1) Regardless of the rotation bias, the rotation parameters of registration are 
similar to the standard parameters and the angle differences are always less than 0.2 
degree, even 0.1 degree. A great number of experiments indicate that the angle 
differences are usually less than 0.3 degree when the rotation angle small enough  
(＜5°). Even when the rotation angles become big, the angel differences would be less 
than 0.5 degree. 

(2) The differences of translation bias happen. The experiments of large rotation 
bias even up to 90 degree are implemented. The results indicated that the difference 
will increase along with the increment of rotation bias. The reason for this phenomena 
is that the image center, to which the rotation angle αΔ  is relative, is not actually the 
rotation center, just as what has been predicted in Section 3. 

(3) The evaluation parameters are not actually equal to zero. The error mainly 
derives from the discrete distribution of image. But the error is small enough relative 
to the largest intensity 255 of MR image. Therefore, the result of registration 
algorithm when the translation and rotation take place synchronously is satisfying.  

5   Conclusions and Recommendations 

Taking advantage of the invariant characteristics of translation, rotation and a little 
distortion in PCNN, this paper proposes a new registration algorithm to apply to the 
MR image. Lots of experiment results have shown that this method for MR medical 
image registration is effective and has high precision. Furthermore, the computational 
load of the automatic algorithm is small and it needn’t face those problems in the 
algorithm based on projective method, such as how to choose the initial value and 
when the translation or rotation bias becomes large, its search extent and 
computational load will increase greatly. The existence of Gausses noise is familiar in 
the MR image. In this new method, many neurons will fire synchronously each 
iteration, which makes the location of barycenters more fixed, so it is more effective 
and steadier, and insensitive to the noise, all of which will be benefit for the medical 
MR image registration. However, besides medical MR image, the algorithm can only 
be applied to the image of nonsymmetrical structure. When the image of 
nonsymmetrical structure is applied as input to PCNN, the barycenters of all groups 
are dispersed and the registration result is satisfying and has high precision. For 
symmetrical structure, the barycenters of all groups for the image may overlap. As a 
result, the registration algorithm won’t work well. However, for the medical MR 
image, the probability of symmetrical structure is so small that this case can be 
considered negligible. In order to extend the utilization of this algorithm, how to 
improve the mechanism of firing to make the barycenters apart from each other is the 
point that we are focusing on in future.  
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Abstract. Image magnification is among the basic image processing operations. 
The most commonly used techniques for image magnification are based on 
interpolation method. However, the magnified images produced by the 
techniques, such as nearest neighbor, bilinear and cubic method, often appear a 
variety of undesirable image artifacts such as 'blocking' and 'blurring' into the 
several processing for image magnification. In this paper, we propose image 
magnification method by properties of human visual system which reduce 
information during transforming from receptors to ganglion cells in retina and 
magnify information at visual cortex. Our method uses the whole image to 
exactly detect the edge information of the image and then emphasizes edge 
information. Experiment results show that the proposed method solves the 
drawbacks of the image magnification, such as blocking and blurring, and has a 
higher PSNR and Correlation than the traditional methods.  

Keywords: Image magnification, edge detection, image reduction, retina, 
visual cortex. 

1   Introduction 

Image magnification is among the basic image processing operations and has many 
applications in a various area. In recent, image equipments, CCD camera, digital 
camera and cell phone are now widespread and as a result, computer users can buy 
them and acquire many digital images as desired. This is why the need to display and 
print them also increases [1,2].  

However, such various images with optical industry lenses are used to get high-
resolution. The lenses are not only expensive but also too big for us to carry. So, they 
are using the digital zooming method with the lenses to solve the problems. This is 
why the common use is cheaper and faster than the lenses. The digital zooming 
method generally uses the nearest neighbor interpolation method, which is simpler 
and faster than other methods. But it has a drawback such as blocking phenomenon 
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when an image is enlarged. Also, to improve the drawbacks, there are the bilinear 
interpolation method and the cubic convolution interpolation commercially used in 
the software market. The bilinear method uses the average of 4 neighborhood pixels. 
It can solve the blocking phenomenon but brings about the loss of the image like the 
blurring phenomenon when the image is enlarged. Cubic convolution interpolation is 
improved in image loss like the nearest neighbor interpolation and bilinear 
interpolation. But it has another problem that its processing time is long as it uses the 
offset of 16 neighborhood pixels [3-5].  

A number of methods for magnifying images have been proposed to solve  
the problems until now. However, proposed methods on magnifying images have the 
disadvantage that either the sharpness of the edges cannot be preserved or that some 
highly visible artifacts are produced in the magnified image. Although previous 
methods show a high performance in special environment, there are still the basic 
problems left. 

Recently, researches on Human vision processing have been in the rapid progress. 
In addition, a large number of models for modeling human vision system have been 
proposed to solve the drawbacks of machine vision such as object recognition and 
object detection [6]. 

This paper presents a method for magnifying images that produces high quality 
images based on human visual properties which have image reduction on retina cells 
and information magnification of input image on visual cortex. 

The rest of this paper is organized as follows. Section 2 presents the properties on 
human visual system and related works that have proposed for magnifying image. 
Section 3 presents our method that extracts the edge information using wavelet 
transform and uses the edge information base on the properties of human visual 
processing. Section 4 presents the results of the experiment and some concluding 
remarks are made in Section 5. 

2   Related Works and Human Visual Processing 

2.1   Related Works 

The simplest way to magnify images is the nearest neighbor method by using the 
pixel replication and basically making the pixels bigger. It is defined by equation 1. 
However, the resulting magnified images have a blocking phenomenon [7].  

( ) ( )

( ) image magnified a is ji, Z where  ,
j

l
i

k

integer  ji   lkIjiZ

⎥⎦
⎤

⎢⎣
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⎤
⎢⎣
⎡≡

≤=

2
int,

2
int

,,0,,,
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Other method is bilinear method, which determines the value of a new pixel based 
on a weighted average of the 4 pixels in the nearest 22 × neighborhood of the pixel in 
the original image [7]. Therefore this method produces relatively smooth edges with 
hardly any blocking and is the better than the nearest neighbor but appears blurring 
phenomenon. It is defined by equation 2. 



 Image Magnification Based on the Properties of Human Visual Processing 925 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]lkIlkIjiZ   lkIjiZ

lkIlkIjiZ   lkIjiZ

iii ,1,,2
1,12,,,2

1,,,2
112,,,2,

+=+=

+=+=
 (2) 

More elaborate approach uses cubic convolution interpolation which is more 
sophisticated and produces smoother edges than bilinear interpolation. Bicubic 
interpolation is a bicubic function using 16 pixels in the nearest 44× neighborhood of 
the pixel in the original image and is defined by equation 3. This method is most 
commonly used by image editing software, printer drivers and many digital cameras 
for re-sampling images. Also, Adobe Photoshop offers two variants of the cubic 
convolution interpolation method: bicubic smoother and bicubic sharper. But this 
method arises in another problem that the processing time takes too long by the 
computation for the offsets of 16 neighborhood pixels [8]. 
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 where a=0, or -1 (3) 

Recently, research on interpolation images taking into account the edges has 
gained much attention. Allebach and Wong and Salisbury et al. proposed methods 
that search for edges in the input images and use them to assure that the interpolation 
does not cross them. The problem is one of how to define and find the important 
edged in the input image [9]. 

Other edge-adaptive methods have been proposed by Jensen and Anastassiou[10]. 
The commercial software Genuine Fractals also used an edge adaptive method to 
magnify images, but the details of the algorithm are not provided. Currently, the 
methods presented in [10,11] are the most widely known edge-adaptive methods. 
They can well enough avid jagged edges, but a limitation is that they sometimes 
introduce highly visible artifacts into the magnified images, especially in areas with 
small size repetitive patterns [12].  

In section 3, we will propose an efficient method by image reduction and edge 
enhancement based on the properties on human visual processing. 

2.2   Human Visual Processing 

In the field of computer vision, many researches have been conducted in relation with 
edge information to solve the problem of magnification. Image information received 
from retina in Human visual system is not directly transmitted to the cerebrum when 
we recognize it. This is why there are the properties of many cells in Human visual 
system [13].  

First, the visual process begins when visible light enters the eye and forms images 
on the retina, a thin layer of neurons lining the back of the eye. The magnified view of 
the retina consists of a number of different types of neurons, including the rod and 
cone receptors, which transform light energy into electrical energy, and fibers that 
transmit electrical energy out of the retina in the optic nerve. Second, The signals 
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generated in the receptors trigger electrical signals in the next layer of the retina,  
the bipolar cells, and these signals are transmitted through the various neurons in the 
retina, until eventually they are transmitted out of the eye by ganglion cell fibers, 
These ganglion cell fibers flow out of the back of the eye and become fibers in the 
optic nerve [13,14]. 

Retina

Photoreceptor
Bipolar cell 

Ganglion cell

LGN
Visual cortex 

 

Fig. 1. The processing steps of human vision system 

Third, most of these optic nerve fibers reach the lateral geniculate nucleus (LGN), 
the first major way station on the way to the brain. The LGN is a bilateral nucleus, 
which means that there is an LGN on the left side of the brain, and also one on the 
right side. Finally, Fibers from the LGN stream to the primary visual receiving area, 
the striate cortex or V1 in the occipital love. In conclusion, the main properties in 
human visual processing are as follows: 

First, in retinal cells, the large difference between the number of receptors and the 
number of ganglion cells means that signals from many receptors converge onto each 
ganglion cell. Second, in visual cortex, this cell responds to the directions such as 
vertical, horizontal and orthogonal. Finally, the signal from ganglion cells coming 
from retina in fovea needs more space on the cortex than the signals from retina in 
periphery. The result is the cortical magnification factor [13].  

We propose the magnification method considering the properties of human visual 
processing in section 3. 

3   Image Magnification by the Properties of Human Vision System 

Based on the properties of human visual processing discussed in section 2, we now 
describe a magnification method for improving the performance of conventional 
image magnification methods. Human vision system does not transfer image 
information from retina to visual cortex in the brain directly. By the properties of 
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retinal cells, there is the reduction of information when vision information is 
transferred from receptors to ganglion cells. In addition, the reduced information from 
retina is transfer to the visual cortex with the magnified information. We proposed the 
magnified method with the properties. The schematic diagram of the method is shown 
in fig.2.  
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Fig. 2. The basic diagram of proposed method 

The input image to be magnified is denoted as 1I . First the input image is reduced 

in size by a factor of 2 in both dimensions such as 2I  and 2D , where 2I  is also half 

of 1I  and 2D  is edge information such as vertical, horizontal and orthogonal 

information. For convenience, we will only set the case of magnification by a 
zooming factor of k2 , where k is an integer. Wavelet transform is used to reduce 
input image. In the contrary, the input image is able to magnify if the edge 
information is calculated.  

We were able to obtain the wavelet coefficients with quarter of image from the 
input image. The wavelet transform is used for detecting the edge of input image. The 
information by wavelet transform has the edge information in several directions such 
as vertical, horizontal and diagonal information. In this paper, we enhanced 
magnification algorithm to remove the blurring phenomenon using high-frequency 
information of sub-bands.  

Fig. 3 shows the detailed algorithm. The main steps are as follows: First, 
decomposes the input image with wavelet analysis in order to obtain the edge 
information from the input image as convergence of receptors onto ganglion cells in 
the retina. Second, In order to obtain a edge information, it make used of the high 
frequency, which have the vertical, horizontal and orthogonal information, from 
wavelet transformation. This process is similar to magnify the image information to 
visual cortex which has the properties that magnify information from retina.  

And then, generate the approximated image by compose the magnified edge and 
the input image. Finally, normalize the generated magnification image by Gaussian 
filter. Gaussian filter is similar to the acuity in human response degree.  

Harr function is used to obtain the edge information. This is why Harr has a linear 
computation and has the properties of the orthogonal and the normalization. 
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Fig. 3. The detail algorithm of proposed method 

In addition, it is a simple and basic function among the mother wavelets. In next 
step, we use bilinear method to emphasize the edge information. And equation 4 
shows that the magnified image is reconstructed by the input image 1I  and edge 

information 1D . 
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Here, 1LH is the horizontal direction of the edge information, 1HL is the vertical 

direction of the edge information, and 1HH  is the diagonal direction of it, and. we 

calculate by moving to the point of adding half of the size because the size of the 
input image is half size of the magnified image. We calculate the magnified image 0I  

through combination and decomposition by using the edge information 1D  magnified 

by bilinear interpolation.  
As a last step, the magnified image is convolved with a Gaussian low pass filter 

mask in equation 5. 
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The filter is used for removing stray noise and used for having the effect of slightly 
blurring similar to the properties of visual cortex.  The Gaussian filter is mainly used 
in analyzing brain waves in visual cortex. And once a suitable mask has been 
calculated, then the Gaussian smoothing filter can be performed through standard 
convolution methods. By setting the standard deviation of input image as σ and the 

Gaussian operator as ( )
2

22

2 22

1

σπσ
ji

e
+− , the magnification image [ ]jiMI ,  is 

obtained.  

4   Experimental Results 

We used the Matlab 6.0 in a Pentium 2.4GHz with 512MB memory in a Windows XP 
environment and a lot of images were simulated by several methods. We used the 
SIPI Image Database and HIPR Image Library package used in other research papers 
on image processing [14,15]. In order to evaluate the performance of the proposed 
algorithm, we calculated with the PSNR and the correlation, which is numerically 
expressing the difference between the original image and the magnified image, in 
comparison with the previous algorithms in order to evaluate objectively.  

First, we calculated the processing time taken for the 256256×  sized of the Lena 
image to become enlarged to a 512512×  sized Lena image in evaluated performance. 
Fig. 4 shows the processing time of the algorithms. The nearest neighbor interpolation 
is very fast in the processing time (0.016s), but it loses a part of the image due to the 
blocking phenomenon.  
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Fig. 4. The processing time in each algorithm  

The nearest neighbor method is faster than our method in the processing time 
(0.110s), but it also loses a part of the image because of the blurring phenomenon. 
The cubic convolution interpolation does not have any image loss such as the 
blocking and blurring phenomenon, but is too slow in the processing time (0.307s) 
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because it uses 16 neighborhood pixels. The proposed algorithm solves the problem 
of image loss and is faster than the cubic convolution and bilinear interpolation in the 
processing time (0.047s). And then, figure 5 shows a reduced image of the 

512512× sized Lena image to a 256256× sized Lena image by averaging 33×  
windows. This is followed by an enlargement of the 512512× image through the use 
of each algorithm. 

 
             (a) Lena image                      (b) Nearest neighbor interpolation 

       
       (c) Bilinear interpolation           (d) Bicubic interpolation           (e) Proposed algorithm 

Fig. 5. Close-up comparison of Lena image 

Fig. 5 compares the results when closing up the central part of Lena image 8 times 
to present a vision performance. For comparison, we can find the blocking 
phenomenon within vision in the nearest neighborhood interpolation (b). And we can 
also find the blurring phenomenon within vision in the bilinear interpolation(c). The 
proposed algorithm has better resolution than the cubic convolution interpolation and 
emphasizes the edge information in figure 4(d, e). Second, we calculated the PSNR 
with an objective decision.  

Table 1 presents PSNR and Correlation in each algorithm. The MSE is a mean 
square error between the original image and the magnified image. Generally, the 
PSNR value is 20-40db. Our method is better than any other algorithm the PSNR 
value is 29.94. 



 Image Magnification Based on the Properties of Human Visual Processing 931 

Table 1. Comparison of the PSNR & Correlation of each algorithm 

Evaluation performance 
Methods 

PSNR(db) Cross-correlation 

Nearest neighborhood interpolation 19.54 0.978983 

Bilinear interpolation 29.36 0.983878 

Cubic convolution interpolation 29.93 0.985839 

Proposed algorithm 29.94 0.985559 

Also, table 1 shows that the cross-correlation is used to compare objectively in 
other images. The cubic convolution interpolation is better than another method in 
Correlation. But it also has similar results in cross-correlation. So we tested other 
images (Baboon, Pepper, Aerial, Airplane, and Barbara) by the cross-correlation and 
PSNR in Table 2 and 3. Table 2 and 3 show that the proposed algorithm is better than 
any other methods in PNSR and Correlation on other images. 

Table 2. Comparison of the PSNR of our method and general methods in several images 

Standard images 
Methods 

Baboon Pepper Aerial Airplane Barbara 

Nearest neighborhood interpolation 21.91 28.18 23.54 32.55 24.04 

Bilinear interpolation 22.13 29.06 24.45 33.44 24.12 

Cubic convolution interpolation 22.22 29.17 24.67 33.72 24.25 

Proposed algorithm 22.44 30.08 24.69 34.18 24.33 

Table 3. Comparison of the correlation value of our method and general methods in several 
images 

Standard images 
Methods 

Baboon Pepper Aerial Airplane Barbara 

Nearest neighborhood interpolation 0.87687 0.98326 0.90590 0.96654 0.95657 

Bilinear interpolation 0.88288 0.98648 0.92402 0.97378 0.95743 

Cubic convolution interpolation 0.88522 0.98677 0.92750 0.97556 0.95860 

Proposed algorithm 0.89096 0.98934 0.92729 0.97475 0.95928 

5   Conclusions    

In image processing, the interpolated magnification method brings about the problem 
of image loss such as the blocking and blurring phenomenon when the image is 
enlarged. In this paper, we proposed the magnification method considering the 
properties of human visual processing to solve such problems. As a result, our method 
is faster than any other algorithm and is capable of removing the blocking and 
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blurring phenomenon when the image is enlarged. The cubic convolution 
interpolation in image processing can obtain a high resolution image when the image 
is enlarged. But the processing is too slow as it makes use of the average of 16 
neighbor pixels. The proposed algorithm is better than the cubic convolution 
interpolation in the processing time and performance. In the future, to reduce the error 
ratio, we will enhance the normalization filter which has reduced the blurring 
phenomenon because the Gaussian filter is a low pass one. 
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Abstract. The effect of image quality on the performance of multimodal 
biometric verification is studied. A biometric system based solely on single 
modality is often not able to meet the system performance requirements for 
poor image quality. Prior studies of multimodal biometric authentication have 
shown that it can improve performance over use of a single unimodal biometric. 
The well-known multimodal methods do not consider the quality information of 
the data used when combining the results from different matchers. In the paper, 
a novel SVM-based multimodal biometric authentication system is presented. It 
is based on SVM classifiers and quality measures of the input biometric signals. 
Experimental results on a prototype application based on fingerprint and face 
are reported. The proposed scheme is shown to outperform significantly 
multimodal systems without considering quality signals and unimodal systems 
over a wide range of image quality. 

1   Introduction 

Automatic access of persons to services is becoming increasingly important in the 
information era. Although person authentication by machine has been a subject of 
study for more than thirty years, it has not been until recently that the matter of 
combining a number of different traits for person verification has been considered [1], 
because single unimodal biometric is still facing numerous problems, some of them 
inherent to the technology itself(e.g., bad quality fingerprints due to some people 
whose fingers are too dry, wet and temporal or permanent damages or Changes in 
hairstyle, makeup, facial hair, etc in face verification). As a result, much research 
work has been done in multimodal biometric system. 

From a practical point of view, multimodal verification has also been studied as a 
two-class classification problem by using a number of machine learning paradigms. 
Some design guidelines for a multi-biometric system are known and well accepted. 
Previous related literatures can be found in various publications. Hong et a1 [2] 
introduced the method of integrating faces and fingerprints, however, without the 
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evaluation of fingerprint image quality, the system may be unable to extract features 
from fingerprints associated with specific individuals, due to the poor quality of the 
fingerprints. Souheil Ben-Yacoub et a1 [3] used SVM-based method to fuse the voice 
and faces, but the accuracy of the multi-model system may be unsatisfied for the 
reason of complex background and the change of voice. Marcos et a1 [4] presented a 
multiple impression system, the system captures and processes two or more 
fingerprint images to improve robust, as in [5], the fingerprints of specific individuals 
are too dry or moist, which will decline the performance.  

Current trends in multimodal biometrics research include the exploitation of 
quality signals. In this paper, we propose a novel quality-based adaptive trained 
multimodal fusion scheme based on support vector machines. With adaptive fusion 
scheme, we mean that the fusion scheme readapts to each identity claim as a function 
of the estimated quality of the input biometric signal. 

The paper is organized as shows. The evaluation of biometric signals quality is 
briefly introduced in Section 2. In Section 3, the proposed quality-based multimodal 
biometric system is presented. The results based on the proposed algorithm are 
discussed in Section 4, Conclusions will be finally given in section 5. 

2   Automatic Image Quality Assessment 

The benefits of having an automatic quality estimate include the following: in a 
multimodal biometric system involving several traits, e.g. face, fingerprint and 
speech, the quality of the presented images influences the weight given to the 
respective expert at fusion stage, where a final decision is made. However, a universal 
quality method or model appears to be impossible: One application may use 
information of an image not useful to another application. In biometrics, for example, 
a face image contains information not useful to a fingerprint machine expert, so we 
use different model when trying to estimate the quality of biometric images.  

2.1   Fingerprint Quality Assessment 

By human experts, the quality of a fingerprint image is usually expressed in terms of 
the clarity of ridge and valley structures, as well as the extractability of certain points 
(minutiae, singular points). For efficiency reasons, we use the method proposed by 
Hong huang [5]. The automatic evaluation of fingerprint image quality includes the 
following: 

1) Direction and foreground estimation. This step determines if a given block 
depicts a portion of a fingerprint and extracts a nominal direction from a 
foreground block.  

2) Dominant direction. After the foreground blocks are marked, it is 
determined if the resulting direction for each block is prominent. The idea 
is that a block with a prominent direction should exhibit a clear ridge/valley 
direction that is consistent with most of the pixel directions in the block.  

3) Image quality computation. Since regions (or accordingly minutiae) near 
the centroid are likely to provide more information for biometrics 
authentication, the overall quality of the fingerprint image is computed 
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from the directional blocks by assigning relative weight wi for foreground 
block i at location xi given by 

wi=exp{-||xi-xc||
2/(2q2)}, (1) 

where xc is the centroid of foreground, and q is a normalization constant. The overall 
quality Q of a fingerprint image is obtained by computing the ratio of total weights of 
directional blocks to the total weights for each of the blocks in the foreground by 

Q=∑DWi / ∑FWi. (2) 

Here D is the set of directional blocks and F the set of foreground blocks. The quality 
Q is used as a measure of how much reliable directional information is available in a 
fingerprint image. If the computed Q is less than the quality threshold, T, the image is 
considered to be of poor quality. 

2.2   Face Quality Assessment 

When it comes to estimate the quality of face images, the quality of a face image is 
usually expressed in terms of sample properties. The sample property includes two 
aspects, the first is Character: features of the sample source (e.g. pose expression), the 
second is Fidelity: accuracy with that the sample represents its source (e.g. sharpness, 
resolution).We can model the behavior of the sample property with following 
features: sharpness, openness of eyes, deviation from frontal pose (here, frontal 
means: within 5 degrees yaw and pitch angle) and wearing of glasses. Sample 
properties found to have considerable influence on the performance of face 
verification subsystem [6]. 

Consider a data set, F, containing the samples of face images, then we apply 3×3 
mean filter to F, we can get the result F’. The sharpness problem is solved using the 
representation 

D=abs(F-F’). (3) 

Sharpness is defined by the average pixel value over image D. Well-focused 
images get high sharpness values, blurred images low ones. Other three sample 
properties (openness of eyes, deviation from frontal pose, wearing of glasses) are 
determined as follows: 

1) Apply wavelet transform to relevant portion of face image. 
2) To result, apply support vector machine trained on labeled image samples. 

3   Our Proposed Multimodal Biometric System 

Our proposed system consists of four phases as follows: image-acquisition phase, 
image quality assessment phase, fingerprint and face verification subsystems, fusion 
and decision phase (see Fig. 1).  
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Fig. 1. Block-diagram of the proposed multimodal biometric system 

3.1   Fingerprint Verification Subsystem 

Most fingerprint identification systems represent the uniqueness of a fingerprint by 
means of its minutiae pattern; we will now adopt the system proposed by Jain [7], 
because it is a complete and well documented system which is very suitable for 
explanation and further comparison with other systems proposed in the literature. A 
method was developed consisting of several steps that we will now describe briefly 
(see Fig. 2): 

 

Fig. 2. Block-diagram of the proposed multimodal biometric system 

(1) First, an orientation field is estimated. This field represents the orientation of 
the ridges and valleys at each region of the image, and it is estimated taking into 
account the vertical and horizontal gradients along all pixels in the image. 

(2) After the region of interest has been delimited, the ridges are extracted and 
thinned. 



 Incorporating Image Quality in Multimodal Biometric Verification 937 

 

(3) At this point, minutiae points can be easily found. For each minutiae point, its 
position is stored, as well as the orientation field in this point and a segment of the 
associated ridge. 

Once the minutiae points have been found, a matching strategy has to be 
developed. As the minutiae representation scheme does not take into account the 
possible variability between several fingerprint images from the same finger, this 
problem has to be dealt with in matching stage. Factors that may cause two 
representations to be different, even though they come from the same individual, 
include possible rotations, nonlinear deformations caused by the pressure of the finger 
upon the sensor and the inherent imprecise nature of the extraction minutiae 
procedure. Therefore, the matching procedure must be based on a somehow elastic 
comparison between both point (minutiae) patterns. The system uses a matching 
strategy that is divided into two stages (see Fig. 3): 

(1) As the alignment of point patterns is generally a hard task, specially in the 
presence of noise and deformations, the ridges associated to each minutiae point are 
used, so that using these corresponding curve segments makes the problem easier and 
the results more robust. 

(2) The minutiae matching score is computed then by using a variant of the edit 
distance on polar coordinates and based on a size-adaptive tolerance box. 

 

Fig. 3. Flowchart of the minutia matching algorithm 

3.2   Face Verification Subsystem 

Face verification involves extracting a feature set from a two-dimensional image of 
the user’s face and matching it with the template stored in the database. The feature 
extraction process is often preceded by a face detection process during which the 
location and spatial extent of the face is determined within the given image. This is a 
difficult process given the high degree of variability associated with human faces 
(color, texture, expression, pose, etc.). The problem is further compounded by the 
presence of complex backgrounds and variable lighting conditions. A variety of 
techniques have been described in the literature to locate the spatial coordinates of a 
face within an image (Burel and Carel, 1994; Rowley et al., 1998; Yang and Huang, 
1994). Once the boundary of the face is established, we use the eigenface approach to 
extract features from the face (Kirby and Sirovich, 1990; Turk and Pentland, 1991). In 
this approach a set of orthonormal vectors (or images) that span a lower dimensional 
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subspace is first computed using the principal component analysis (PCA) technique. 
The feature vector of a face image is the projection of the (original face) image on the 
(reduced) eigenspace. Matching involves computing the Euclidean distance between 
the eigenface coefficients of the template and the detected face. 

3.3   Support Vector Machine 

Support vector machine (SVM) is based on the principle of structural risk 
minimization [8]. It aims not only to classify correctly, all the training vectors, but 
also to maximize the margin from both classes. The optimal hyperplane classifier of a 
SVM is unique, so the generalization performance of SVM is better than other 
methods that possible lead to local minimum. 

Given a set (xi, yi),i=1,…,n,x∈Rd,y∈{+1,-1}, where the xi belongs to either of two 
classes, w1,w2 which are assumed to be linearly separable, yi is the indicator(+1 for 
w1,-1 for w2). In this paper, we take into account the case of non-separable patterns, 
the training errors are allowed and the problem formulation in that case is called as 
soft margin SVM. This can be done by introducing positive slack variablesξi, in 
constraints with (4): 

0( , ( ) ) 1 , ,i i H iy w x w iξ〈 Φ 〉 + ≥ − ∀  (4) 

0, 1, , .i i Nξ ≥ =  (5) 

Hence a logical way to assign an extra cost for errors is to change the objective 
function to be minimized into: 

21
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2 ii
w C i Nξ+ • =∑  (6) 

where C is a chosen parameter andξi are slack variables . The optimization problem in 
(4), (5) and (6) is solved using the dual representation [9]: 
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3.4   SVM-Based Multimodal Fusion Using Quality Signals 

Given a multimodal biometric verification system consisting of R different unimodal 
systems r = 1,…,R, each one computes a similarity score xr∈R between an input 
biometric pattern and the enrolled pattern of the claimant. Let the similarity scores, 
provided by the different unimodal systems, be combined into a multimodal score x = 
[x1,…, xR]’, where ’denotes transpose. The design of a trained fusion scheme consists 
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in the estimation of a function f:RR→R based on empirical data so as to maximize the 
separability of client {f(x)|client attempt}and impostor {f(x)|impostor attempt} fused 
score distributions[12]. 

The fused score sT of a multimodal test pattern xT is defined as follows: 

* *
0( ) , ( ) ,T T T Hs f x w x w= = 〈 Φ 〉 +  (10) 

which, applying the Karush-Kuhn-Tucker (KKT) conditions to the problem in (4), (5) 
and (6) can be shown to be equivalent to the following sparse expression 

* *
0( ) ( , ) ,T T i i i T

i SV

s f x a y K x x w
∈

= = +∑  (11) 

where (w*,w0*) is the optimal hyperplane,(a1*,…,aN*)is the solution to the problem in 
(7), (8), (9), and SV={i|ai*>0}indexes the set of support vectors. w0* is obtained from 
the solution to the problem in (7), (8), (9) by using the KKT conditions. 

As a result, the training procedure in (7), (8), (9) and the testing strategy in (11) are 
obtained for the problem of multimodal fusion. 

Let q=[q1,..,qR]’denote the quality value vector of the multimodal and R is the 
number of modalities, qr is supposed to be in the range [0,1], and Qmax corresponds to 
the highest quality. As a result, q=[q1,..,qR]’ is computed from quality measures on the 
fingerprint- or face-based input biometric signals. The proposed quality-guided fusion 
scheme (from now on also referred to as SVMQ) is based on using the quality vector q 
as follows (the bimodal case R = 2 is described):  

1) Training phase: an initial fusion scheme (SVM) is trained as described above 
by using 

,1 ,2 1
2
max

( ) ,i i
i

q q
C C

Q
α=  (12) 

where qi,1 and qi,2 are the components of the quality vector qi associated with 
training sample (xi, yi) and C is a positive constant. As a result, the higher the 
overall quality of a multimodal training scores the higher its contribution to 
the fusion scheme. Additionally, two SVMs of dimension one (SVM1 and 
SVM2) are trained by using training data from respectively first and second 
traits. Similarly to Eq.(12), Ci= C(qi,j/Qmax)a1 for SVMj with j=1, 2. 

2) Authentication Phase: at this step, the three above-mentioned classifiers SVM, 
SVM1 and SVM2 are trained (i.e., the combining functions fSVM(·), fSVM1(·) 
and fSVM2(· ) introduced in (10) are available). An input multimodal 
biometric sample with quality vector qT = [qT,1, qT,2]’ (suppose qT,1 > qT,2, 
otherwise interchange indexes) claims an identity and thus generates a 
multimodal matching score xT = [xT,1, xT,2]’. The combined quality-based 
matching score is computed as follows: 

1
,1( ) ( ) (1 ) ( ),

Q
SVM T SVM T SVM Tf x f x f xβ β= + −  (13) 

where 
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4   Experiments Results 

4.1   Experimental Setup 

To evaluate the performance of the system a database containing fingerprint and face 
samples was required. The XM2VTS [11] frontal-face-images database was used as 
the face database and the CQU-Veridicom fingerprint database of chongqing 
university was used as the fingerprint database. The CQU-Veridicom fingerprint 
database contains a total of 2,500 fingerprint images(8-bit,500 dpi,256×300 array, 256 
grey levels.) from 250 individuals with 10 images per individual, which were 
captured from a set of volunteers in the 20-73 age range (55% male) with a solid-state 
sensor manufactured by Veridicom. As the fingerprint and the face databases contain 
samples belonging to different people, a“chimerical” multimodal database was 
created using pairs of artificially matched fingerprint and face samples that were 
made for testing purposes. 

The database was divided into two sets: the training set and the testing set. The 
training set consisted of 500 image pairs of 125 people (4 image pairs per person) and 
was used as a training database for individual modalities, to get the distributions of 
the unimodal matching scores used in the decision fusion module and to get the 
weightings associated with different modalities. 

The testing dataset consisted of 1000 image pairs of 125 people (8 image pairs per 
person) and was used exclusively for the evaluation of the system performance. Out 
of 8 image pairs for each person, 5 were used in the enrolment stage and 3 were used 
for testing. The tests involved trying to verify every test pair for every one of the 131 
people enrolled in the database. This setup makes for 375 (125 x 3) valid client 
experiments and 46,500 (125 x 3 x 124) impostor experiments. 

4.2   Results 

In the following, the proposed quality-based multimodal approach (α1= 0.5, α2 = 1 
and C = 100) is compared to multimodal fusion without quality assessment (q=1 for 
all signals).Comparative performance results are given in Fig. 4.  

Figure 4 shows the performance of the fusion based on the different fusion rules. 
Fusion of fingerprint and face using the score fusion rule gives a large improvement 
in the GAR compared to the best single modality (here, fingerprint). The quality-
based fusion rule further improves the GAR. For example, at a FAR of 0.1%, the 
GAR of the fingerprint modality is 84%, while the GAR of the score and quality-
based product fusion rules are 94.5% and 98.0%, respectively. From figure 2, we also 
observe that the performance of the quality-based fusion rule is comparable to the 
score normalization fusion method proposed. 

Figure 5 shows the biometric samples of a user whose face images are of good 
quality (q1 = 0.8), but fingerprint images are of poor quality (q2 = 0.3). The direct 
fusion score is low, resulting in a false reject. However, the quality-based fusion rule 
implicitly assigns a higher weight to the modality with better quality (face). Hence, 
the quality-based is high and the user is accepted by the multimodal biometric system. 
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Fig. 4. ROC Curves of the two single modal and multi-modal biometric verification systems 

 

Fig. 5. Illustration of quality-based fusion. This user’s fingerprints ((a) template and (b) query) 
are of poor quality and the face images ((c) template and (d) query) are of good quality. 
Quality-based fusion rule implicitly assigns a higher weight to the face modality, resulting in a 
correct acceptance of a genuine user who was falsely rejected by the simple direct fusion rule. 

5   Conclusions 

“Multimodal Technology makes Biometrics work” – this was the advertising slogan 
that we have started with [10]. We have proposed a SVM-based scheme to achieve 
quality-dependent match score fusion. The proposed method does not use any ad-hoc 
weighting scheme to combine the match scores. Instead, by estimating the quality of 
fingerprint and face data. The proposed quality-based fusion scheme provides 
significant improvement in the performance of a multimodal biometric system. 

Future work includes the investigation of automatic quality measures for the 
different biometric signals, the generalization of the proposed scheme to the case of 
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combining more than two modalities and the comparison of the reported scheme with 
other quality-based strategies. 

Furthermore, considerable advantage of SVM in addition to other methods is the 
fact that very few parameters needs to be fixed or estimated. In other methods the 
choice of parameters is very difficult and time-consuming and demands often a lot of 
a priori knowledge about the training data. The choice of the few parameters of an 
SVM (kernel function/parameter of kernel function/penalty of misclassification) is 
more general and does not necessarily influence the final results in a considerable 
way. 
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Abstract. In the new H.264 video coding standard, motion estimation takes up 
a significant encoding time especially when using the straightforward full 
search algorithm (FS). We present an efficient scheme based on BP neural 
network algorithm which we believe can overcome to a significant degree this 
shortcoming. The mean squared error (MSE) between the current block and the 
same position in the reference frame is an often used matching criteria in block 
matching process. The scheme presented is very well suited to neural network 
training where the performance index is the mean squared error. The 
experimental results in Table 1 and Table 2 in the full paper compare our 
method with the full search algorithm. These comparisons show preliminarily 
but clearly that our method dose overcome to a significant degree the 
shortcoming of FS mentioned at the beginning of this abstract with neglectable 
coding efficiency loss.        

Keywords: Motion Estimation; mean squared error; BP neural network.  

1   Introduction 

Motion Estimation (ME) is an important part of any video compression system, since 
it can achieve significant compression by exploiting the temporal redundancy existing 
in a video sequence. Unfortunately it is also the most computationally intensive 
function of the entire encoding process. In motion estimation the current image is 
divided into Macro-Blocks (MB) and for each MB, a similar one is chosen in a 
reference frame, minimizing a distortion measure. The best match found represents 
the predicted MB, while the displacement from the original MB to the best match 
gives the so-called Motion Vector (MV). Only the MV and the residual need to be 
encoded and transmitted into the final stream. 

Full Search Block-Matching motion estimation is the technique suggested in the 
reference software models of all the previous video coding standards, such as MPEG-
1/2/4 and H.261/3. The FS algorithm exhaustively checks all the macro-blocks in the 
SW, thus finding always the optimum match, but it is the most computationally 
intensive ME algorithm possible and the most CPU-consuming part of the entire 
encoding process. 
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In the new, emerging H.264 standard[1], each 16x16 pixels MB can be sub-
partitioned into smaller blocks, down to sizes of 4x4 pixels. This feature gives the ME 
process the ability to adapt to the local characteristics of the image, but it makes ME 
even more computationally intensive than in the case of other previous standards. It 
has been proven that with generalized predictors selection, zonal search and early 
termination criteria it is possible to achieve almost the same visual quality of the FS, 
while doing a dramatically reduced number of matches between blocks. 

In this paper we present an efficient scheme based on BP neural network algorithm 
for H.264 encoding schemes. The high computational demands of the H.264 video 
encoder are reduced by the scheme presented. 

2   Block Matching 

In the popular video coding standards (H.261, H.263, MPEG-1, MPEG-2 and  
MPEG-4), motion estimation and compensation are carried out on 8 x 8 or 16 x 16 
blocks in the current frame. Motion estimation of complete blocks is known as block 
matching. 

For each block of luminance samples (say 16 x 16) in the current frame, the motion 
estimation algorithm searches a neighbouring area of the reference frame for a 
‘matching’ 16 x 16 area. The best match is the one that minimizes the energy of the 
difference between the current 16 x 16 block and the matching 16 x 16 area. The area 
in which the search is carried out may be centred around the position of the current 16 
x 16 block, because (a) there is likely to be a good match in the immediate area of the 
current block due to the high similarity (correlation) between subsequent frames and 
(b) it would be computationally intensive to search the whole of the reference frame. 

 

Fig. 1. Current 3 x 3 block and 5 x 5 reference area 

Figure 1 illustrates the block matching process. The current ‘block’ (in this case,  
3 x 3 pixels) is shown on the left and this block is compared with the same position in 
the reference frame (shown by the thick line in the centre) and the immediate 
neighbouring positions (±l pixel in each direction). The mean squared error (MSE) 
between the current block and the same position in the reference frame (position  
(0, 0)) is given by 
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3   Block-matching Scheme Based on BP Neural Network 
Algorithm 

The algorithm used is a variation of Newton’s method and Levenberg-Marquardt 
algorithm that was designed for minimizing function that are sums of squares of 
nonlinear functions[2]. This is very well suited to neural network training where the 
performance index is the mean squared error. 

Let’s begin by considering the form of newton’s method where the performance 
index is a sum of squares. Newton’s method for optimizing a performance index F(x) 
is  

kkkk gAxx 1
1

−
+ −= , (2) 

where 
kxxk xFA =∇≡ )(2 and 

kxxk xFg =∇≡ )( . 

If we assume that F(x) is a sum of squares function: 
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The gradient can therefore be written in matrix form: 

)()(2)( xvxJxF T=∇ , (5) 

where )(xJ is the Jacobian matrix. Next we want to find the Hessian matrix. The k,j 

element of the Hessian matrix would be 
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The Hessian matrix can then be expressed in matrix form: 

)(2)()(2)(2 xSxJxJxF T +=∇ , (7) 

where 
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If we assume that )(xS is small, we can approximate the Hessian matrix as 
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)()(2)(2 xJxJxF T=∇ . (9) 

This leads to the Levenberg-Marquardt algorithm according to Gauss-Newton[3]: 

)()(])()([ 1
1 kk

T
kkk

T
kk xvxJIxJxJxx −

+ +−= μ . (10) 

This algorithm has the very useful feature that as kμ  is increased it approaches the 

steepest descent algorithm with small learning rate: 
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Now let’s see how we can apply the Levenberg-Marquardt algorithm to the multilayer 
network training problem. The performance index for multilayer network training is 
the mean squared error. If each target occurs with equal probability, the mean squared 
error is proportional to the sum of squared errors over the Q targets in the training set: 
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where qje ,  is the jth element of the error for the qth input/target pair. 

The backpropagation process computed the sensitivities through a recurrence 
relationship from the last layer backward to the first layer. We can use the same 
concept to compute the terms needed for the Jacobian matrix if we define a new 
Marquardt sensitivity: 
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The Marquardt sensitivities can be computed through the same recurrence relations 
as the standard sensitivities with one modification at the final layer, which for 
standard back propagation is computed with Eq.(13). For the Marquardt sensitivities 
at the final layer we have 
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Therefore when the input Pq has been applied to the network and the corresponding 

network output M
qa  has been computed, the Levenberg-Marquardt back propagation 

is initialized with 

)(
~ M

q
MM

q nFS −= , (16) 

where FM(nM) is defined in Eq.(12). Each column of the matrix M
qS

~
 must be back 

propagated through the network produce one row of the Jacobian matrix. The column 
can also be back propagated together using 
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The total Marquardt sensitivity matrices for each layer are the created by 
augmenting the matrices computed for each input: 
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So, the interations of the back propagation algorithm can be summarized as follows: 

(1) Present all inputs to the network and compute the corresponding network 

outputs (using Eq.(13)) and the errors 
M

qqq ate −= . Compute the sum of 

squared errors over all inputs, )(xF , using Eq.(12). 

(2) Compute the Jacobian matrix. Calculate the sensitivities with the recurrence 
relations Eq.(17), after initializing with Eq.(16). Augment the individual 
matrices into the Marquardt sensitivities using Eq.(18). Compute the elements 
of the Jacobian matrix with Eq.(14). 

(3) Solve Eq.(10) to obtain kxΔ . 

(4) Recompute the sum of squared errors using kk xx Δ+ . If this new sum of 

squares is smaller than that computed in step1, then divide μ  by ϑ , let 

kkk xxx Δ+=+1  and go back to step1. If the sum of squares is not reduced, 

then multiply μ  by ϑ  and go back to step3. 

The algorithm is assumed to have converged when the norm of the gradient, 
Eq.(5), is less than some predetermined value, or when the sum of squares has been 
reduced to some error goal. 

4   Results 

We present the experimental results with the algorithm implemented into the 
reference software model JM 11.0. In Table 1, a comparison between Block-matching 
scheme based on BP neural network algorithm (BPNN) and FS is reported for QCIF 
and CIF sequences compressed at QP=31, Intra period=12 and two different SR 
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values (16 and 32). As the tests were made at constant QP, the most important result 
is the length of the encoded bit stream (in Bytes/Picture), which indicates the 
compression rate achieved for the given visual quality QP parameter. The 6 column 
reports the per cent increase of bytes-per-picture for BPNN against FS. Table 1 also 
shows the average Peak Signal-to-Noise Ratio (PSNR) and the number of matches 
performed per block (NM column). For FS the latter is a constant value equal to 
(2*SR+1)2, whereas for BPNN it is an average value.  

Table 1. Comparison Between FS and BPNN 

Seq SR Algorithm B/Pict PSNR NM 
16 FS 466.70 33.86 1083 
16 BPNN 471.96 33.74 10.7 
32 FS 466.58 33.91 4217 

 
Foreman 
QCIF 

32 BPNN 471.91 33.82 10.5 
16 FS 3052.89 32.81 1084 
16 BPNN 3160.41 32.69 10.6 
32 FS 3043.36 32.87 4217 

 
Football 
CIF 

32 BPNN 3144.81 32.75 10.9 

Table 2. Comparison Between FS and BPNN at 64kbit/s 

Seq SR Algorithm PSNR NM 
16 FS 30.87 1083 
16 BPNN 30.54 10.6 
32 FS 31.02 4217 

 
Foreman 
QCIF 

32 BPNN 30.84 10.1 
16 FS 25.33 1084 
16 BPNN 25.12 9.7 
32 FS 25.16 4217 

 
Teeny 
QCIF 

32 BPNN 25.04 10.2 

Tables 2 presents a comparison between the two algorithms made at constant bit 
rate. Table 2 refers to QCIF sequences encoded at 64 kbit/s. As it can be seen in the 
two tables, BPNN ensures a PSNR very close to the one of FS at low bit rates, and a 
speedup factor around 100 with Search Range of 16 pixels, and around 400 with 
Search Range of 32 pixels. 

5   Conclusion 

In this paper, an efficient motion estimation technique suitable for H.264/AVC 
compression schemes is implemented. The high computational demands of the H.264 
video encoder are reduced by the block-matching algorithm based on BP neural 
network algorithm. Our results demonstrate that the efficient motion estimation 
algorithm presented can produce similar and in some cases better results compared to 
even FS algorithm while having considerably lower complexity. 
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Abstract. Visual tracking has been an active area of research in computer vision. 
However, robust tracking is still a challenging task due to cluttered backgrounds, 
occlusions and pose variations in the real world. To improve the tracking 
robustness, this paper proposes a tracking method based on multi-cue adaptive 
fusion. In this method, multiple cues, such as color and shape, are fused to 
represent the target observation. When fusing multiple cues, fuzzy logic is 
adopted to dynamically adjust each cue weight in the observation according to its 
associated reliability in the past frame. In searching and tracking object, neural 
network algorithm is applied, which improves the searching efficiency. 
Experimental results show that the proposed method is robust to illumination 
changes, pose variations, partial occlusions, cluttered backgrounds and camera 
motion.  

1   Introduction 

Visual tracking has become a popular topic in the field of computer vision. Its potential 
applications include smart surveillance, virtual reality, perceptual interface, video 
conferencing, etc. Although visual tracking has been intensively studied in the 
literature, developing an algorithm that is robust to a wide variety of conditions is still 
an open problem. 

Visual tracking can be considered to match coherent relations of image features 
between frames. In the last decades, various algorithms have been proposed, such as 
Kalman filter [1], Condensation [2], Mean Shift [3], Cam Shift [4], etc. However, most 
of them are based on a single image cue. It is clear that no single image cue can be 
robust enough to successfully deal with various conditions occurring in the real-word 
environments. Shape-based trackers or color-based trackers, for example, are distracted 
by other targets with similar shape or color characteristics. To overcome the weak 
robustness of single-cue tracking, many algorithms have been proposed based on 
multi-cue fusion. The fusion of multiple cues not only can provide more reliable 
observation when estimating a state, but different cues may be complementary in that 
one may succeed when another fails. The key challenge for this kind of algorithm is 
how to optimally fuse multiple cues. In most algorithms [5-8], the fusion scheme is 
non-adaptive, in which the reliability of each cue is assumed to be unchanged during 
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the tracking. However, such assumption is often invalid due to the dynamically 
changing environments. In this paper we propose a tracking method based on multi-cue 
adaptive fusion. In this method, color and shape cues are fused to represent the target 
observation. During the tracking, fuzzy logic is applied to dynamically adjust the each 
cue weight in the observation. By employing fuzzy logic, multiple cues are adaptively 
fused, which greatly increases the reliability of the observation. In searching and 
tracking object, genetic algorithm is applied, which improves the searching efficiency. 
Experimental results show that the proposed method is robust to illumination changes, 
pose variations, partial occlusions, cluttered backgrounds and camera motion. 

2   Algorithm Description 

In this paper, target tracking is implemented by using genetic searching. We adopt 
genetic algorithm (GA) to find the candidate target in each frame that best matches  
the target model. The target observation is represented by the color and shape cues. The 
GA mainly depends on the observation similarity between the target model and the 
candidate target to find the target in each frame. During the tracking process, the color 
and shape cue may change due to the target movement and the dynamically changing 
backgrounds, so in this paper fuzzy logic is adopted to adaptively fuse color and shape 
cue, which greatly increases the reliability of the observation. The whole tracking 
process is shown in Figure 1. 

Weight in the next frame

The target model The current target 

Color 

information

Shape 

information

Color 

information

Shape 

information

Color reliability level
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Shape 
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Color 
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Shape 
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Shape 
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(a) (b) 

Fig. 1. Flowchart of the tracking process 

3   Observation Representation 

3.1   Color Cue 

Color distribution of the target is represented by color histogram. In our experiments, 
color histogram is calculated with m (m=8×8×8) bins in RGB space. We only consider 
the color distribution inside the target region. In this paper, the contour of the target is  
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approximated by an ellipse, so the target region is an elliptic region. Assume the  
target region (elliptic region) is centered at ),( yxx = with a size of ),(h yx hh= ,  

where xh  and yh  are the lengths of two half axes of the elliptic region, and let 

hii niyx ,...,1),,(xi == , be the locations of the pixels in the target region, then the color 

distribution can be calculated as 
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where δ  is the Kronecker delta function, )x( ib  is a function which associates the 

pixel at location ix  with the bin index )x( ib  of the histogram, (.)k  is a weighting 

function that has the following form 
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If we denote mu
uqq ,,1

)( }ˆ{ˆ …==  as the color distribution of the target model and 

mu
upp ,,1

)( )},(ˆ{),(ˆ …== hxhx  as a candidate target, the similarity between q̂  and 

),(ˆ hxp  can be measured by the Bhattacharyya distance [3] 

     )],(ˆ,ˆ[1)],(ˆ,ˆ[ hxhx pqpqdc ρ−= , (3) 

where )],(ˆ,ˆ[ hxpqρ  is the Bhattacharyya coefficient that has the following form 
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After obtaining a distance dc on the RGB color histogram, we define a color 
likelihood function as follows 
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where cσ  is the Gaussian variance. In our experiments, cσ  is selected as 0.2. 

Equation (5) shows that the larger ( | , )cp z x h  is, the more similarity between two 

histograms. 
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3.2   Shape Cue 

In this paper, the tracked target is a human head. In general, the human head can be 
approximated by an ellipse. So we use an ellipse to model the contour of the head in 
our experiments. It means that the shape template is an ellipse.  

We use Chamfer distance to measure the similarity of the shape between the 
template and the candidate target. Given a binary image T of the shape template, a 
binary image I (Figure 2(b)), and the distance image DI of I (Figure 2(c)), about the 
distance image, the reader can refer to [9],[10] for more details, and assume the 
candidate target is at location ),(x yx=  in the image I, then the Chamfer distance 

between the shape template and the candidate target can be calculated as 

     ∑
∈

=
Tt

s tDI
T

ITd )(
||

1
]),,([ hx , (6) 

where ( , )T x h  denotes the shape template T with a size of h ( , )x yh h=  centered at 

x ( , )x y=  in the image I, |T| denotes the number of features in the image T, and DI(t) 

is the value of the pixel in the distance image DI which lies under the tth feature 

(pixel) of the image T. After obtaining the Chamfer distance between two shapes, we 

define a shape likelihood function as follows 

     )
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]),,([
exp(

2

1
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2

2
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s
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ITd
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σσπ
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hxz −= , (7) 

where
sσ is the Gaussian variance. We set 

sσ as 0.5 in our experiments. Equation (7) 

shows that the larger ( | , )sp z x h  is, the more similarity between two shapes. 

         
                          (a)                                          (b)                                             (c) 

Fig. 2. (a) original image (b) binary image (c) distance image 

3.3   Multi-cue Adaptive Fusion  

The observation information is represented in this paper by two kinds of image cues: 
color cue and shape cue. Assume the nth candidate target region (elliptic region) has a 
size of ),( )()( n

y

n

x hhn =h  and is centered at ),( )()( nn yxn =x  in the image I, then the 

entire observation likelihood function of the nth candidate target can be calculated as 
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     1),,|(),|(),|( =++= βαβα nnsnncnn ppp hxzhxzhxz , (8) 

where ),|( nncp hxz  and ),|( nnsp hxz  are the likelihoods of the color and shape 

cues, respectively, which are defined in equation (5) and equation (7), 10 ≤≤ α  is the 
weight of the color cue, 10 ≤≤ β  is the weight of the shape cue. The cue weights in 

most algorithms are assumed to be unchanged during the tracking. However, such 
assumption is often invalid in practice. Instead of assuming the fixed weights, we  
use fuzzy logic to adjust the weights dynamically according to the former reliability  
of the cue. 

It is worth pointing out here that the proposed fusion scheme is an open framework 
into which other cues can be easily included too. 

3.3.1   Adjusting Cue Weights Using Fuzzy Logic 
The main parts of the fuzzy logic are fuzzification, fuzzy rule base, fuzzy inference, 
and defuzzification. In this paper, the fuzzy logic is designed based on the singleton 
fuzzification, product inference, and centroid defuzzification, and the fuzzy rule is 
defined as 

  : If e1 is    and e2 is    … and el is    then u is    , j=1,…,L,      (9) 

where jR is the jth fuzzy rule, L is the total number of the fuzzy rule, T
lee ),,( 1 …=e  

and u are the input and output of the fuzzy logic, respectively, j
iA and jB  are fuzzy 

linguistic terms characterized by membership function. 
In our experiments, the inputs of the fuzzy logic are the reliability levels of the 

color and shape cues in the current frame, while the output is the color weight α  in 
the next frame. The shape weight β  is calculated by αβ −=1 . We denote the 

reliability levels of the color and shape cues by ec and es, respectively, which can be 
calculated by equation (5) and equation (7). The fuzzy sets of ec and es are both {SR, 
S, M, B, BR} and α  is {ST, VS, SR, S, M, B, BR, VB, BT}, where ST stands for 
smallest, VS for very smaller, SR for smaller, S for small, M for middle, B for big, 
BR for bigger, VB for very bigger, BT for biggest. The membership functions of ec, es 
and α  are all Gaussian functions, which are shown in Figure 3. The fuzzy rule base is 
shown in  
Table 1. By employing fuzzy logic, the unreliable cues are suppressed quickly while 
cues that have proved to be reliable in the recent past are given larger weights. 
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Table 1. Fuzzy rule base 

ec α  
SR S M B BR 

SR M B BR VB BT 

S S M B BR VB 

M SR S M B BR 

B VS SR S M B 

 
 
es 

BR ST VS SR S M 

4   Target Searching Based on Neural Network Algorithm 

Neural network algorithm is a powerful searching algorithm. It has proved to be a 
robust and efficient way of solving optimization problem. In this paper, we adopt 
neural network algorithm to find the target in the current frame. Assume the target 
state is denoted by ),,,( yx hhyxS = , where ),( yx  is the position center of the target 

and ),( yx hh  is the size, then the parameters in S are the searched parameters.  

Given an input-output pair pjinetf jij ,...,1;3,2,1),,( 0 == , our task is to train the 

neural network off-line by the back-propagation learning algorithm with a momentum 
term such that 

     ( )2
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1

2 j ij
i j

E net f= −∑∑ , (10) 

is minimized. Letting ijw  be the adjustable weights of the neural network, the 

training rule is 
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where )1,0(∈α  is the learning rate, and ( )1,0∈η  is a momentum factor. 
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Fig. 4. The structure of three-layer feed forward neural network 
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5   Experimental Results and Analysis 

In this section we evaluate our method on a sequence image with 500 frames1. This 
sequence simulates various tracking conditions, including illumination changes, pose 
variations, partial occlusions, cluttered backgrounds and camera motion. In the 
experiments, the target model is initialized by hand in the first frame. We present the 
comparison between the results obtained by four kinds of methods. The tracking results  
 

 

 
(a) Tracking results based on color cue 

 

 
(b) Tracking results based on shape cue 

 

 
(c) Tracking results based on multi-cue non-adaptive fusion 

 

 
(d) Tracking results based on multi-cue adaptive fusion 

Fig. 5. Tracking results using four kinds of methods 

                                                           
1 http://vision.stanford.edu/~birch 
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are shown in Figure 5. In image (a), the tracking is only based on color cue. This 
method can succeed when target color has no great change. But if target color changes 
dramatically, the tracking will be lost, such as the 100th frame. Image (b) shows the 
tracking result based on shape cue. This method can work well in simple background. 
However, when the background is cluttered, such as the 100th and 120th frame, the 
tracking will fail. Image (c) shows the tracking results using multiple cues. We can see 
that the tracking results are better than image (a) and (b). But the tracking still fails in 
the 230th frame. It’s mainly because that in this method, the reliability of each cue is 
assumed to be unchanged during the tracking. Such assumption is invalid in our 
experiments due to the head rotation and the camera moving. Image (d) gives the 
results of our method. The tracking results show that our method tracks the head very 
robustly and accurately throughout the whole sequence image. This fact can be 
explained by multi-cue adaptive fusion. Figure 5 shows the evolution of the color and 
shape cue. We can see that the proposed fusion scheme can successfully suppress the 
cue that is unreliable for tracking. For example, at about the 65th frame, the color cue 
becomes unreliable due to the head rotation, while the shape cue can work well, so the 
color weight automatically decreases and the shape weight correspondingly increases 
to keep tracking robustly. At about the 270th frame, the color weight begins to 
increase, it’s because that the color cue becomes reliable due to the face turning to 
camera again. From about the 420th to the 480th frame, the weights change 
dramatically, the reason behind this is that during this period the target is partially 
occluded by another face. 
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Fig. 6. Weight curves of the color and shape cues 

6   Conclusions 

In this paper we proposed a tracking method based on multi-cue adaptive fusion. In this 
method, the color and shape cue are fused to represent the target observation. When 
fusing multiple image cues, an adaptive fusion scheme is adopted. In this fusion 
scheme, fuzzy logic is applied to dynamically adjust the weight of each cue, which 
greatly improves the reliability of the observation. The experimental results show that 
with adaptive fusion of multiple image cues, the tracker becomes more robust to 
illumination changes, pose variations, partial occlusions, cluttered backgrounds and 
camera motion. 
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One-Class SVM Based Segmentation for SAR Image 
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Abstract. Image segmentation is of great importance in the field of image 
processing. A wide variety of approaches have been proposed for image 
segmentation. However, SAR image segmentation poses a difficult challenge 
owing to the high levels of speckle noise. In this paper, we proposed a SAR 
image segmentation method based on one-class support vector machines (SVM) 
to solve this problem. One-class SVM and two-class SVM for segmentation is 
discussed. One-class way is a kind of unsupervised learning, and one-class 
SVM based segmentation method reduces greatly human interactions, while 
yielding good segmentation results compared to two-class SVM based 
segmentation method. The segmentation results based on SVM are also 
compared to threshold method and adaptive threshold method. Experimental 
results demonstrate that the proposed method works well for image 
segmentation while reducing the speckle noise.  

1   Introduction 

Synthetic aperture radar (SAR) is an important use for military reconnaissance and 
civil activity, so it has practical meaning and application prospect to study feature 
extraction and object recognition for SAR images. SAR Image segmentation is the 
most difficult and important preprocess technique in the process of SAR. A wide 
variety of approaches have been proposed for image segmentation, such as threshold 
segmentation using maximum entropy, cluster segment and so on. But a major issue 
in SAR images is that they are generally affected by multiplicative speckle noise 
which damages radiometric resolution and affects the tasks of human interpretation 
and scene analysis. So, it is very important to segment SAR image accurately and 
efficiently. Traditional segmentation methods demand removing noise before 
segmentation, thus lose inevitably some targets and structural information, affecting 
the final segmentation result. So traditional segmentation techniques of images cannot 
obtain desired segmentation results, and affect the recognition rate of target. Recently, 
a kernel based classification technique: Support Vector Machine (SVM) [1, 2] is 
widely used in feature recognition. Studies on training algorithms for SVM are 
important issues in the field of machine learning. It is a challenging task to improve 
the efficiency of the algorithm without reducing the generalization performance of 
SVM. This paper is structured as follow; firstly, we briefly introduce two-class SVM, 
which is common classifier. Then we discuss one-class SVM, and make comparison 
between one-class classification and two-class classification. Thirdly the experiments 
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of SAR images segmentation are executed through respectively using traditional 
methods, one-class SVM based method and two-class SVM based method. Segmen-
tation results are given and analyzed through comparison with other segmentation 
methods. The final results demonstrate SVM based SAR image segmentation is better 
than traditional method and one-class SVM is suitable for SAR image segmentation, 
outperforming the two-class SVM. 

2   Support Vector Machine 

For the binary classification problems, n-dimensional training vectors xi labeled by y 
∈{-1, 1}. The goal of learning is to find a suitable value of α parameter in the 
decision function f(x,α), which makes that f(x,α) =y, ∀x. In other words, we can get a 
correct classification result. Suppose we have some hyperplane which separates the 
positive from the negative examples. The vectors x lie on the hyperplane satisfy 
w·x+b=0, where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance 
from the hyperppane to the origin. Let d+ (d−) be the shortest distance from the 
separating hyperplane to the closest positive (negative) example. Define the “margin” 
of a hyperplane to be (d+ + d-). It is the hyperplane with largest margin that support 
vector algorithm wants to look for. Suppose that all the training examples satisfy the 
following constraints:  

1 , 1i iw x b if y+ ≥ =i , (1) 

1 , 1i iw x b if y+ ≥ − = −i . (2) 

Now consider the cases that the equality constraints above hold on. The points for 
which the equality in Eq. (1) holds lie on the hyperplane H1: w·xi+b≥1 with normal w 
and perpendicular distance from the origin |1-b|/||w||. Similarly, the points for which the 
equality in Eq. (2) holds lie on the hyperplane H2: w·xi+b≤−1 with normal again w and 
perpendicular distance from the origin |-1-b|/||w||. Hence d+ = d−=1/||w|| and the margin 
of the separating hyperplane is simply d+ +d−=2/||w||. Therefore our task is to make the 
margin largest, that is to say we try to minimize ||w||2 subject to constraints (1) and (2). 

H2

H1

|b|/||w||
2/||w||

 

Fig. 1. Linear separating hyperplane for the separable case 
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There is shown the solution for a typical two dimension case in Fig. 1. Those 
training examples for which the equalities in constraints (1) and (2) are called support 
vectors; they are indicated in Fig. 1 by the extra circles.  

Consider the points for which the inequalities in constraints (1) and (2) do not hold, 
which are nonseparable datas. Vapnik and Cortes (1995) introduced positive slack 
variables (Here, slack variables are the errors of classification):  

ξi ≥ 0, i=1,…, l.  (3)  

They gave a quadratic convex programming [3]:  
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where C>0 is a parameter to be chosen by user, a lager C corresponding to assigning a 
higher penalty to errors. Minimizing the first term of objective function gives the 
maximum margin, while minimizing the second term assures the minimum total error 
of all training examples.  

By using Lagrange multiplier techniques and kernel functions, one can have the 
following optimization problem: 
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…
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Therefore we have the decision function of nonlinear support vector machine:  

( )( )1( ) sgn , .l
i i i if x y K x x b== α +∑  (6) 

If αi ≠ 0, the corresponding training example xi is called support vector. Note that 
w can be completely described as a linear combination of support vectors. In a sense, 
the complexity of function’s representation by SVs is independent of the dimension of 
the input space, and depends only on the number of SVs. This is useful for deal with 
high input dimensional problems. 

3   Support Vector Machine Based Segmentation of SAR Image 

In two-class classification, the data from two classes are available. Most two-class 
classifiers assume more or less equally-balanced data classes and thus do not work 
well when one class is severely undersampled or even completely absent. To achieve 
a satisfied classified result by using two-class classification, we need to know the 
number of classes and the distributions of target data and non-target data of  
SAR images in order to achieve representative and balanced data samples. The 
requirement is impractical and often impossible to meet. These disadvantages make 
the conventional segmentation systems not very useful. So the one-class way of 
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unsupervised learning is also used for segmentation of SAR images. One of the 
advantages of this one-class SVM based segmentation is that human interactions have 
been greatly reduced, while yielding better segmentation results compared to other 
supervised two-class or multi-class based segmentation methods. 

One-class SVM was proposed by Schölkopf et al. in 2001 for estimating the 
support of a high-dimensional distribution. One-class classification is a kind of 
unsupervised learning mechanism, which trains on unlabelled data, trying to assess 
whether a test point is likely to belong to the distribution underlying the training data. 
Given training vectors xi ∈ Rn, i = 1,...,l without any class information, the primal 
form [4] is:  
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1 1
minimize ,
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The dual is: 
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minimize ,
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α α
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where Qi,j=K(xi, xj)≡φ(xi)
Tφ(xj).  

The decision function is 

( )
1

sgn ( , )
l

i i
i

K x x
=

α − ρ∑ . (9) 

The parameter ν is of significance, which characterizes the fractions of SVs and 
outliers. So the selection of the parameter ν is very important. In this paper, 
polynomial kernel is used to train data for one-class based SVM segmentation for 
SAR images. Experiments are done by using the LIBSVM [5]. 

4   Experiments and Results 

In this paper, the performances of SAR image segmentation based on one-class SVM 
and two-class SVM are tested, and are compared with the traditional segmentation 
methods. The traditional methods used in this paper include threshold segmentation 
and adaptive threshold segmentation. The segment results of airplane1 and aireplane2 
with above methods are shown in Fig.2 and Fig.3, respectively. From the Fig.2 and 
Fig.3, we can see that the traditional methods do not work well in the presence of 
spectacle noise, while the SVM based segmentation method can obtain desired result 
in both extracting object and reducing spectacle noise, outperforming the other 
methods. The segmentation results of one-class SVM are better than that of two-class 
SVM. And for one-class SVM based segmentation, the selection of parameter υ is 
important, and segmentation results with the smaller υ will lose some details.  



 One-Class SVM Based Segmentation for SAR Image 963 

 

   
                                   (a)                                                    (b) 

    
                                     (c)                                                      (d) 

   
                                    (e)                                                         (f) 

Fig. 2. Segmentation for Airplane1: (a) Original Image, (b) Threshold Segmentation, (c) 
Adaptive Threshold Segmentation, (d) Two-class SVM Based Segmentation, (e) One-class 
SVM Based Segmentation with υ=0.5, (f) One-class SVM Based Segmentation with υ=0.2 
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                                      (a)                                                  (b) 

    
                                      (c)                                                (d) 

    
                                     (e)                                                (f) 

Fig. 3. Segmentation for Airplane2: (a) Original Image, (b) Threshold Segmentation, (c) 
Adaptive Threshold Segmentation, (d) Two-class SVM Based Segmentation, (e) One-class 
SVM Based Segmentation with υ=0.5, (f) One-class SVM Based Segmentation with υ=0.3 

For segmentation of SAR image, there is not a general evaluation standard. In this 
paper, the grey-level contrast and region non-uniformity are applied to evaluate the 
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segmentation results. In evaluation of grey-level contrast (GC) [6], for two adjacent 
regions which grey-level means are respectively f1 and f2, the grey-level contrast are 
calculated as: 

1 2

1 2

f f
GC

f f

−
=

+
. (10) 

Region non-uniformity [6, 7] is defined as:  

2

2

fr

r r

F
NU

F B

σ
=

+ σ
, (11) 

where 2σ  represents the variance of the whole image, 2
fσ  represents the foreground 

variance. Fr and Br denote the foreground and background area pixels in the test 
image. It is expected that a well-segmented image will have a non-uniformity measure 
close to 0, while the worst case of NU=1 corresponds to an image for which 
background and foreground are indistinguishable up to second order moments. 

From Table 1, Fig. 2, Table 2 and Fig. 3, we can deduce that the SVM based 
segmentation for SAR image can effectively segment noisy SAR image. And the 
results of one-class SVM based segmentation are better than that of two-class SVM 
based segmentation.  

Table 1. Segmentation results of airplane1 for different segmentation methods 

Segmentation method Grey-level contrast Non-uniformity 
Threshold Segmentation 0.30719 0.65085 
Adaptive Threshold Segmentation 0.28892 0.68932 
Two-class SVM Based Segmentation 0.34048 0.53698 
One-class SVM Based Segmentation υ=0.5 0.36949 0.56019 
One-class SVM Based Segmentation υ=0.2 0.52386 0.28304 

Table 2. Segmentation results of airplane2 for different segmentation methods 

Segmentation method Grey-level contrast Non-Uniformity 
Threshold Segmentation 0.40665 0.92038 
Adaptive Threshold Segmentation 0.33735 0.72519 
Two-class SVM Based Segmentation 0.37244 0.70132 
One-class SVM Based Segmentation υ=0.5 0.35797 0.71422 
One-class SVM Based Segmentation υ=0.3 0.39741 0.53126 

5   Conclusion 

SAR images are characterized by the intrinsic multiplicative noise, which affects 
negatively image analysis techniques. In this paper, we presented a one-class SVM 
based segmentation method for SAR images, which can effectively segment noisy 
SAR images. One-class SVM based segmentation is not necessary to provide a 
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representative sample because of unsupervised leaning. Experimental results show 
that proposed method has better segmentation performance than two-class SVM 
based segmentation and the traditional segmentation methods. The one-class SVM is 
suitable for segmentation of SAR image. The selection of the parameter υ in one-class 
SVM based segmentation impacts the performance of segmentation.  
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Abstract. High Intensity Focused Ultrasound (HIFU) is one of promising 
non-invasive thermal ablation techniques of tumor. In this paper, we present a 
segmentation method based on Support Vector Machine (SVM) for HIFU 
image-guided system where SVM is used to construct the prior model about the 
intensity and the shape of the structure from the training set of images and the 
boundaries. When segmenting a novel image, we improved level set method by 
incorporating this prior model. Segmentation results are demonstrated on 
ultrasonic images. It shows that the prior model makes segmentation process 
more robust and faster. 

1   Introduction 

HIFU is receiving increasing attention as a non-invasive method of destroying 
deep-seated tumors. Image guidance is required to target and monitor therapy. 
Currently, ultrasound is leading imaging modalities for guidance of HIFU therapy due 
to advantages in cost, ease of integration, and real-time implementation. Segmentation 
is the key part of image-guided system. In HIFU image-guided system, a series of 
consecutive two dimensional ultrasonic slices are gathered in order to produce full 
three dimensional volumes of the anatomy. When we perform the segmentation slice by 
slice, it is extremely tedious and time consuming. In the face of this challenge prior 
knowledge needs to be added to make the segmentation methods more robust and 
faster. SVM approach is considered as a good candidate for utilizing the prior 
knowledge because of its high generalization performance and sparse solution. In the 
sequential images, there are many similar factors in neighboring slices, such as 
intensity and shape of the structure. So we select some slices segmented manually to be 
training samples. Then SVM for density estimation are used to construct a prior model 
of the structure based on these training data. To segment object from a neighboring 
slice, the level set method is improved by incorporating the prior model. 

2   Density Estimation Based on SVM 

The density, ( )P x , is the solution of the following linear operator equation [3]: 
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then the solution of Eq.1 is: 
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In order to satisfy Eq.2 being density, the weights 
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α  should be as following: 
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Then when we use the technique of Linear SVM and ε -insensitive loss function, the 
problem of density estimation is equivalent to the Linear Programming problem as: 
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density estimation by substitute 
i

α  into Eq.2. 

3   Segmentation Algorithm Based on SVM 

3.1   Shape Model Based on SVM 

Signed distance function is used as the shape representation. We construct a statistical 
relationship between final curve, involving curve and the gradient of image as 
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*( | , )P Iφ φ ∇ , where φ  is the evolving surface in some step, I∇  is the gradient of image, 
*φ  is the final surface. At each evolving step, the MAP of *φ with the conditions ofφ  

and I∇  is estimated: 

*

* *arg max ( | , )
MAP

P I
φ

φ φ φ= ∇  . (7) 

According to [1], *( | , )P Iφ φ ∇ can be expressed as: 

* * * *( | , ) ( | ) ( | ) ( )P I P P I Pφ φ φ φ φ φ∇ ∝ ∇  . (8) 

The last term *( )P φ  on right hand side of Eq.8 can be modeled by training the 

samples segmented manually. The training set of shape can be defined as 
* * *

1 2
{ , , , }

n
T φ φ φ= . Here *

i
φ is aligned as column vector in sequence. It is infeasible to 

train T  directly because each signed distance function include a large amount of data. 
So we use the method similar to the Eigenface method [2] to transform the training 

set T , lower its dimension. Define *1
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φ φ μ= − and * * *
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covariance matrix 
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MM

n
 is decomposed as 

1
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U U MM
n

Σ = , where U  is a matrix whose 

column vectors represent the set of orthogonal modes of shape variation and Σ  is a 

diagonal matrix of corresponding singular values. An estimate of a novel shape, *φ , of 

the same class of object can be represented by k  principal components in a 

k -dimensional vector of coefficients, *( )T

k
Uα φ μ= − , Where 

k
U  is a matrix 

consisting of the first k  columns of U  that is used to project a surface into the 

eigen-space. Given the coefficientα , an estimate of the shape *φ , is reconstructed 

from 
k

U  and μ , namely *

k
Uφ α μ= + . So the training set is transformed as 

1 2
{ , , , }

n
T α α α= . The shape distribution model *( )P φ  can be transferred to ( )P α . 

It can be derived using the method of SVM described in the last section. 

The second term *( | )P I φ∇  on right hand side of Eq.8 describes the relationship 

between the signed distance function and the gradient of the image. We can find the 
relationship through regression estimation method based on SVM. Training set can be 

construct as { }* *

11
( ) ( ) ( ) ( ), , , ,x x x x

nn
I IT φ φ∇ ∇= . Find *

)(f φ , the regression estimation 

of I∇ ，then define *( | )P I φ∇  as: 

2* *( | ) exp( ( ) )P I f Iφ φ∇ = − − ∇  . (9) 
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The first term *( | )P φ φ  on right hand side of Eq.8 describes the relationship 

between final surface and evolving surface. According to [1], supposing initial curve 

lies inside the object we want to segment, *( | )P φ φ  can be defined as: 

*( | ) exp( )
outside

P Vφ φ = −  . (10) 

Here 
outside

V  is the volume of the evolving curve that lies outside the final curve. 

After construct the shape model, at each step during the surface evolution process, 

we use simple gradient ascent on the log probability function in Eq.8 to estimate *

MAP
φ . 

In order to evolve the surface towards the MAP estimate, the surface increment induced 
from the shape model is: 

*( , ) ( , ) ( , )x x xS t t tφ φ φΔ = −  . (11) 

3.2   Intensity Model Based on SVM 

We construct a statistical relationship between the intensity of image and the surface as 
( ( ) | ( ), ( ( )))x x xP I Nφ φ , where ( )xN  is the neighborhood of the point x . It 

expresses the probability of the value of the surface at the point x , given the intensity 
value of the image at the same point and the neighboring values of the surface. This 
conditioned distribution can be approximated as [4]: 

( ( ) | ( ), ( ( ))) ( ( ), ( )) ( ( ), ( ) | ( )) ( ( ), ( ) | ( ))x x x x x x xP I N P I P t t P n nφ φ φ φ φ φ φ φ φ∝ + − + −  . (12) 

here, four neighbors in the direction of the local normal ( n +， n − ) and the tangent 

( t +， t − ) are used to the embedded curve. During the segmentation process, we 
maximize the probability to estimate each surface point ( )xφ  independently while 

assuming the rest of the surface is constant: 

( )

( ) max log ( ( ) | ( ), ( ( )))
x

x x x xP I N
φ

φ φ φ=  . (13) 

In each evolving step, the surface increment induced from intensity model is: 
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(14) 

The first term on right hand side of Eq.12 relates the intensity and the surface at x . 

The training set of this term is { }
1 1
, , , ,

n n
T I Iφ φ= . This term can be derived from 

the training set using the method of SVM described in the last section. Then the first 
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term in Eq.14 is computed by taking the gradient of the sampled probability in the 
direction of ( )xφ . 

The middle term on right hand side of Eq.12 reflects the curvature profile of the 

training data. According to [4], curvature k  reflects the distribution of ( )tφ + , ( )tφ −  

and ( )xφ . So we use { }
1
, ,

n
k k  as the training set. This term is derived from the 

training set using the method of SVM described in the last section. Then the middle 
term in Eq.14 can be computed by taking the gradient of the sampled probability in the 
direction of ( )xφ .  

The last term on right hand side of Eq.12 prevent the surface from evolving 
arbitrarily. According to [4], The last term in Eq.14 is defined as: 

log ( ( ), ( ) | ( , )) ( ( ) ( ) 2 ( , ))
( , )

x x
x

d
P n n t n n t

d t
φ φ φ α φ φ φ

φ
+ − = + + − − . (15) 

3.3   Evolving the Surface 

Here we improved the level set method by incorporating the prior knowledge into the 
surface evolving process. The update rule for the surface is: 

1 2
( , 1) ( , ) ( , ) ( , )x x x xS It t t tφ φ β φ β φ+ = + +Δ Δ  . (16) 

The two parameters 
1

β  and 
2

β  are used to balance the influence of the shape model 

and intensity model. Evolving the surface accords to Eq.16 until there is little change. 
Then extract the zero level set, it is the boundary of the desired structure. 

4   Experiment Results and Discussion 

Let us present an experiment to illustrate our segmentation method. There is a set of egg 
in ultrasonic images. We select 20 slices as training samples. They are segmented 
manually. Select a neighboring slice to be segmented. We segmented the image using 
level set method based on C-V model (Fig.1) and the method researched in this paper 
(Fig.2) independently. The figures illustrate the initial, middle, and final steps in the 
evolution process of segmentation.  

Comparing Fig.1 with Fig.2, we can find that the method in this paper have better 
result than the method based on C-V model. Furthermore, to achieve the final curve 
from the initial curve, Fig.1 iterated 70 times, while Fig.2 needs 45 iterates. Since 
incorporating the prior information, our method converges on the boundary faster and 
more robustly. In our segmentation method, SVM was used to construct the prior 
model. The experiments showed that the number of support vectors only amounts to 
20% ~ 40%  of the number of training samples. Because of the sparse solution, SVM 
method to build the prior model reduced the computational labor of updating the 
surface, compared to Parzen method.  
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Fig. 1. Segmentation of egg in ultrasonic image using C-V method 

 

Fig. 2. Segmentation of egg in ultrasonic image using the method researched in this paper.  
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Abstract. The adequacy of improved back propagation (IBP) neural network to 
model the inside air temperature and humidity of a production greenhouse as a 
function of outside parameters including temperature, relative humidity, wind 
speed, and solar radiation was addressed. To avoid standard BP algorithm’s 
shortcoming of trapping to a local optimum and to take advantage of the genetic 
algorithm (GA)’s globe optimal searching, a new kind of hybrid algorithm was 
formed based on the IBP neural network and GA. BP neural network was 
improved by adding the inertia impulse and self-adaptation learning rate to 
lessen convergence vibration and increase the learning speed. Then the 
initialized weights and thresholds of IBP neural network were optimized with 
GA. Through carrying out the experiments, the specimen data were collected on 
half-hourly basis in a greenhouse. After the network structure and parameters 
were determined reasonably, the network was trained. A comparison was made 
between measured and predicted values of temperature and relative humidity, 
and the results showed that the IBP neural network model combined with GA 
given a good prediction for inside temperature and humidity. By using the root 
mean square error (RMSE) algorithm, the RMSE between temperature 
predicted and measured was 0.8℃, and the relative humidity RMSE was 1.1%, 
which can satisfy with the demand of greenhouse climate environment control.  

1   Introduction 

The greenhouse microclimate is a typical complicated nonlinear system, which pro-
vides the plants with good environmental conditions for growing. Temperature and 
humidity are considered key factors in greenhouse climate and they are the results of 
complex and interactive heat and mass exchanges between the inside air and the 
several other elements of the greenhouse (e.g., construction, vegetation, controllers, 
etc.) and the outside boundaries (e.g., outside air, sky, solar radiation, etc.). It is hard 
to build the greenhouse mechanism model with simple mathematical formulas or 
transform functions. However, the method of building model with artificial neural 
network has strong ability of nonlinear function mapping, which is applied to many 
production process systems. 
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Over the last decades, a large effort was devoted to study the greenhouse with the 
method of artificial neural networks [1]-[5]. Hugo and Linker trained a neural net-
work using experimental data to model the internal temperature [6] [7]. And Ferreira 
etc. also created a RBF neural network model, and it was incorporated in an 
environment control strategy, which made the model very complicated [8]. By 
comparison, the present study extended the use of neural network models by not only 
fitting models to the experimental data, but also by using them to predict the 
greenhouse climate inside. For few utilized the BP neural network and GA to 
investigate the greenhouse climate, this paper combined IBP neural network with GA 
to predict the inside air temperature and humidity by using outside parameters entirely 
in a glass greenhouse. 

2   Improved BP Neural Network Model 

Standard BP neural network consists of an input layer, an output layer and hidden 
layers. The hidden layer can has one or more layers with each having several neurons. 
It possesses fault-tolerant and generalization ability for prediction. However, the 
standard BP neural network is prone to trapping to a local optimum and the 
convergence speed and learning rate is slow, which will influence the precision of 
prediction. 

In order to overcome the disadvantages aforementioned, the standard BP neural 
network needs to be modified to predicting greenhouse temperature and humidity. 
Two aspects were improved: 

1) Adding the inertia impulse α  into the formula of network weights. This 
method can consider not only the error effect on grads, but also the influence 
of change trend on error curve when modifying the weights. It can filter the 
high frequency vibration, smoothen the network convergence process, and 
increase the training speed. The weights modifying formulas with inertia 
impulse are: 

( 1) (1 ) ( ),

( 1) (1 ) ( ).
ij i j ij

i i i

w t p w t

b t b t

α ηδ α
α ηδ α

Δ + = − + Δ⎧
⎨ Δ + = − + Δ⎩

 (1) 

In (1), t  is the training times, η  is the learning rate. 

2) In standard BP algorithm, the learning rate η  is a fixed value. For high 

prediction precision, η  should be small enough, which results in the slow 

learning process. To resolve this, in training process, the method of adjusting 
η  automatically was adopted. The adjusting formula is as follows and 

( )SSE t  is the network square sum of error: 
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⎩
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3   Methods and Procedures 

3.1   Hybrid Algorithm Based on Improved BP Neural Network and GA 

The IBP algorithm adopted the error derivative to instruct the learning process, it was 
still the local optimum searching. For ensuring the precision of network model, GA 
was chosen to change this status. GA is an algorithm of globe optimum inspired from 
biology and anthropology, and it is good at globe optimum searching. 

In network training, GA was used to determine the network initial weights and 
thresholds. The steps of GA optimizing the network weights and thresholds are as 
follows: 

1) Initialize a population, including its scale, selection probability, crossover 
probability, mutation probability and the individual generated randomly. Each 
individual of population represents a group of initial weights of the whole 
network. 

2) Decode each individual to network weight, input the training specimen, and 
calculate the neural network error function corresponding to every group of 
weights, then determine the fitness of each individual. The fitness function is: 

2

1 1

1
( )

( )

q

N m
q

pk pk
p k

f X

t O
= =

=
−∑∑

. 
(3) 

In (3), N is the training specimen number, m is the output node number, the 
expected output of network is , 1,2, ,pkt p N= ⋅⋅⋅ , the practical output is 

, 1,2, ,q
pkO q M= ⋅⋅ ⋅ , M is the individual number of population. 

3) If the population can’t satisfy the precision expected (after optimization with 
GA, network square sum of error 2SSE ε′ > ), generate the new population. 

4) Return to 2) with the new population, and circulate and repeat the process of 
fitness evaluation, population judgment, selection, crossover, and mutation. 
Make the individual fitness and average fitness in population increase till the 
optimal individual fitness reach the demand expected, then the algorithm 
finishes. Decode the individual searched by the optimum fitness, and the 
optimum network weights and thresholds are obtained. 

After GA optimized the network weights and threshold, if the error of network still 
can’t reach the precision expected, then IBP algorithm was used to continue searching 
in space of network weights and threshold searched by GA for optimizing the weight 
space. 

3.2   Data Source and Pretreatment 

Outside temperature Tout, relative humidity RHout, wind speed Wout, and solar radiation 
SRout are the main factors affecting greenhouse inside air temperature Tin and humidity 
RHin in the summer [9]. The relationship between network input and data output was 
built, which aimed at model creating and prediction by neural network. 
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The specimen data were all measured in a glass greenhouse of China Agricultural 
University, and the experiment data were acquired on half-hourly basis from 4-19 
August 2005. Inside temperature and relative humidity were measured by the 
hygrothermograph automatically. The outside weather factors were collected by 
greenhouse computer controlling system, and the parameters measured including 
outside temperature, humidity, wind speed, and solar radiation. 

For input specimen belonged to different dimension, make the input specimen 
unitary and fall within a specified range. The method of proportion compress was 
chosen, and the following formula was used to scale the input specimen into the range 
of 0 to 1: 

max min
min min

max min

( )
T T

T T X X
X X

−
= + −

−
. (4) 

In (4), X  is the original data, maxX  and minX  are the maximum and minimum of the 

original data. T  is the target data, maxT  and minT  are the maximum and minimum of 

the target data, and maxT =0.9, minT =0.1. Then make the data obtained finally revert, 

the formula is: 

max min
min min

max min

( )
X X

X X T T
T T

−
= + −

−
. (5) 

After all specimen data were measured, organized, and analyzed, 300 specimen 
groups were selected to predict temperature and humidity. Pick out 60 specimen 
groups for prediction, and 70 groups chosen randomly from 240 left for validation. 

3.3   Determination of Neural Network Structure 

The hidden layer number and nodes are key factors of neural network structure. 
Basing on the Kosmogorov approaching theory, the BP neural network with a hidden 
layer can approach any continuous function with any precision, the neural network 
with only one hidden layer was chosen. According to the main factors affecting the 
greenhouse inside climate, the network input layer node was set as 4. The output layer 
node was 2. For the determination of the node number in the hidden layer, we chosen 
different nodes of hidden layer to try after inputting the same training and validating 
specimen. Table 1 was the error comparison of different nodes in hidden layer. When 
the node in hidden layer was 9, after inputting the training specimen and validation 
specimen for network training, the network output node error sum of squares was the 
smallest, which showed the network structure was better. 

According to analysis, the neural network model was 3 layers BP neural network 
with the structure of 4-9-2. The transfer function was: 

( ) 1 (1 )xf x e−= + . (6) 

By using the hybrid algorithm to train the network and some correlative parameters 
were determined by self-adjusting in model running, the parameters corresponding 
with BP neural network: the learning rate η =0.3, the inertia impulse α =0.95, the 
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maximal circulation time maxt =10000, the network precision 1ε =0.0001. The 

parameters corresponding with GA: the population scale N=40, the network precision 

2ε =0.001, crossover probability cP =0.70, mutation probability mP =0.05. After the 

network weights and thresholds were obtained by network training, specimen groups 
selected were input for validation and prediction. 

Table 1. Error comparison of different nodes in hidden layer 

Network error sum of squares (×10-4) Nodes in 
hidden layer Training specimen Validating specimen 

7 4.7762 4.5561 
8 5.6643 3.4416 
9 0.9305 0.9851 

10 2.0292 3.3905 
11 4.2264 4.8115 
12 5.6678 5.9456 

4   Results and Discussion 

Fig. 1 and Fig. 2 were the comparison curves between measured and predicted values 
of the inside temperature and relative humidity. Fig. 3 and Fig.4 were the fit curves 
between measured and predicted inside temperature and relative humidity. The 
temperature relative error was within ±6%, which was lower than the humidity fit 
precision, but it also can be applied in practice. The relative humidity relative error 
was within ±3%, which was difficult to obtain by physical model. Owing to the 
process of building the physical model, the ununiformity of greenhouse humidity in  
 

 

Fig. 1. Comparison between measured and predicted values of inside temperature  
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space and measuring error will influence the result. But when creating model with the 
method of neural network, the weather in periods of experiments is the same 
approximately, and the measuring sensors positions are not changed, in the process of 
network training and validating, it can remember these characteristics of system, 
which makes the prediction precision higher than physical model. 

The results obtained showed that there was excellent agreement between measured 
and predicted values. By utilizing the RMSE algorithm to analyze the values, the 
RMSE between the temperature measured and predicted was 0.8 ℃ , which 
illuminated the neural network model had the ability of prediction. And the RMSE 
between the relative humidity measured and predicted was 1.1%. The results 
demonstrated the neural network model can predict the change of inside temperature 
and relative humidity of greenhouse accurately. 

 

Fig. 2. Comparison between measured and predicted values of inside relative humidity  

 

Fig. 3. The fit curve between measured and predicted temperature 
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Fig. 4. The fit curve between measured and predicted relative humidity 

5   Conclusions 

An IBP neural network combining with GA was proposed for modeling the internal 
greenhouse temperature and humidity and the network structure was determined 
reasonably. Compared with the traditional method of building greenhouse model, the 
neural network can reflect the greenhouse nonlinear characteristics. And through 
network training and validation, the predicting results obtained showed a good 
performance and fitness between measured and predicted data, which indicated that 
the neural network model can be used in practice to predict greenhouse internal 
temperature and relative humidity by making use of external weather data, and it also 
can meet the need of greenhouse environment prediction. 
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A Modified RBF Neural Network and Its Application in 
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Abstract. Aiming at the problem of parameter estimation in radar detection, a 
modified RBF neural network is proposed to estimate parameter accurately 
because of its good approximation ability to random nonlinear function and 
quick convergence speed. Two classical detection methods, which widely used 
in radar field, are listed in this paper, and their corresponding parameters are 
estimated with modified RBF neural network. Theoretical analysis and 
numerical results both show that the proposed method has good parameter 
estimation accuracy and quick convergence speed.  

1   Introduction 

In radar detection field, parameter estimation problem is often encountered to detect 
target. In the view of math, such case can be considered as a mapping between 
variables and functions, i.e. there is certain mapping relationship between variable t 
and expression ( )tf (both t and ( )tf  belong to real value), however, either ( )tf or t may 
not be expressed by each other with closed-form expression. For expression ( )tf with a 
given value, we need estimate its corresponding parameter to variable t, two 
conventional ways are used to solve such problem, one is numerical searching method 
and the other is Monte-carlo simulation method, but in both of the methods, the 
former needs a long time to search and the latter needs large samples or long 
simulation time. Considering the advantages of radial basis function (RBF) neural 
network, such as good nonlinear approximation ability and quick convergence 
speed[1,2], and the character of parameter estimation in radar detection, a modified 
neural network (MNNT) via RBF is proposed to estimate parameter accurately. And 
reason of the MNNT’s good approximation is analyzed in theory. Finally, as classical 
examples, two detection methods, which are widely used in radar, are listed in this 
paper. Theoretical analysis and numerical results show that the parameters estimation 
method has a good parameter estimation accuracy and short convergence speed time. 

2   Modified RBF Neural Network 

The RBF NNT can approximate any nonlinear function in theory, i.e. the mapping 
between variable t  and function ( )tf  can be approximated with it (both t  and ( )tf  
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belong to real). The block diagram of conventional RBF NNT (CNNT) is shown in 
Fig.1, and the mapping can be represented as ( )[ ] RRtff →− :1 , where ( ) Rtf ∈=⋅−1  and 
R  denote real value. Their relationships can be written as 

( ) ( )( )1

1

|| ||
M

j j
j

t f f t w f t cϕ−

=

= = −⎡ ⎤⎣ ⎦ ∑  (1) 

where ( )⋅ϕ is a RBF, and Gaussian function is used in this paper, i.e. 

( )( ) ( ) 2

2

|| ||
|| || exp j

j
j

f t c
f t cϕ

σ
⎛ ⎞− −

− = ⎜ ⎟⎜ ⎟
⎝ ⎠

 
(2) 

where parameters jc and jσ ( )Mj ,,2,1=  are center and width of Gaussian function for 

the jth hidden layer, respectively, parameter jw ( )Mj ,,2,1=  is linking weight for the 

jth hidden layer. 
Block diagram of the modified RBF neural network (MNNT) is shown in Fig.2 in 

this paper, and the relationship between variable t and function ( )tf is 

( )( )
1

|| ||
M

j j
j

t w G f t cϕ
=

= −⎡ ⎤⎣ ⎦∑  
(3) 

where the parameters jc , jσ ( )Mj ,,2,1= , jw and ( )⋅ϕ have the same meanings as that in 

eqn.2, the relationship between function ( )[ ]tfG  and function ( )tf is 

( )[ ] ( )[ ]tfktfG lg=  (4) 

where parameter k is a constant, but not zero, and its value is related to the given 
problem. 

 

f(t) 
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Fig. 1. Block diagram of the CNNT          Fig. 2. Block diagram of the MNNT 

The main reason for using the MNNT in radar is that the values of given ( )tf  are 

usually very small（for example 610− ）, and each value of ( )tf maps only one value 
of variable t, inversely, different value of t maps different value of ( )tf . Such a 
mapping relationship can be approximated by a NNT, whose input samples and 
output samples are a set of values of ( )tf and t respectively, thus such mapping 
problem in math can be equivalent to pattern classification problem, therefore, 
different value of t maps different value of ( )tf can be equivalent to that different 
value of t belongs to different pattern value of ( )tf . It is well known that the accuracy 
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of pattern classification is related to the distance among samples, i.e. the less the 
distance between samples/patterns is, the larger the classification error is. For a 
trained CNNT, in which the variables jc , jσ , jw and M are fixed, less distance among 

samples will lead to larger estimation error, so we can’t directly use the CNNT to 
estimate radar detection parameter t. For the reason above, in order to improve 
classification/approximation accuracy, one effective way is to enlarge the distance 
among samples, which can be achieved by nonlinear transformation to the input 
samples, thus we can estimate parameter t accurately for a given value of ( )tf . 

In eqn.2 and eqn.3, the MNNT parameters M , jc , jσ and jw ( )Mj ,,2,1=  can be 

obtained through training the neural network. Here, we use K-means algorithm [2,3] to 
obtain the network parameters jc and jσ ; and the linking weights jw ( )Mj ,,2,1=  

between hidden layer and output layer are achieved by using orthogonal least squares 
learning algorithm[4,5], the orthogonal least squares learning algorithm can not only 
obtain linking weights and the number of hidden nodes, but also ensure that the 
network has the least clustering center, which can decrease the network dimension 
and quicken the network operation speed. The paper [6] listed the MNNT training 
steps in detail. Before the training of the MNNT, the maximum number of initial 
nodes in hidden layer is equal to the number of input samples. 

3   Parameters Estimation Problem in Radar Detection 

In this section, we list two classical parameters estimation problem in radar detection. 
In fact, there are many similar cases in radar detection. 

3.1   Parameter Estimation for Binary Window Integration Detection  

As a conventional radar detection algorithm, Binary Sliding Window Integration 
Detection (BSWID) mainly including two parts, one part is binary hypothesis test (0 
or 1 declared), the other part is m/n sliding window integration detection. The binary 
hypothesis test is usually implemented with a given detection rule such as CFAR 
detection、likely ratio test rule or Neyman-Pearson rule etc, here, we respectively 
denote 1faP and 1dP as the binary hypothesis test’s false probability and detection 

probability. For a detector, there are two steps to evaluate its detection performance, 
the first step is to estimate detection threshold (DT) by a given 1faP , the second step is 

to obtain relationship between DT, signal to noise/clutter ratio (SNR/SCR) and 1dP . 

For the m/n sliding window integration detection part, a target is declared once there 
exists m’s 1 in n’s echoes (n>m). If the BSWID’s total false alram probability and 
total detection probability are denoted by faP and dP , respectively, then the relationship 

between faP and 1faP can be represented as[7] 

( ) in
fa

i
fa

n

mi
fa PP

i

n
P −

=
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑ 11 1  (5) 

and relationship between dP and 1dP can be written as[7] 
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where
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i

n is binomial coefficients ( )[ ]!!
!

iin
n

− . In practice, we need estimate the value 

of 1faP in the presence of a given value of faP , obviously, it is difficult to obtain the 

closed-form of 1faP with respect to faP from eqn.5, however, with given 1faP , we can 

obtain faP from eqn.5, then we can use values of faP  as input samples and values of 

1faP  as output samples to train the MNNT, once the network is trained, we can easily 

estimate the corresponding value of 1faP in the given value of faP (for example 10-6). 

3.2   Parameter Estimation in CFAR Detection 

Constant false alarm rate (CFAR) detection plays an important role in radar detection, 
and it is widely used in practice. It is not only used to judge whether the target is 
present or not, but also can hold CFAR during detection by adjusting detection 
threshold adaptively, which is more important. The detection threshold, denoted by D , 
is obtained by the product of background noise/clutter power level, denoted by Z ,and 
scaling factor, denoted by S , their relationship is  

SZD =  (7) 

In eqn.7, the scaling factor parameter S needs to be estimated, and the greatest-of 
(GO) CFAR detection algorithm is usually used in practice, with the assumption of 
that Gaussian noise/clutter background and square law detector, the target fluctuating 
model is Swerling II, false alarm probability of the GO CFAR detector, denoted 
by GOfaP , , can be written as[7] 
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Detection probability of the GO CFAR detector, denoted by GOdP , , can be written 

as[7] 
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where variable L is the number of the reference cell of GO CFAR detector, variable λ  
is signal to noise/clutter ratio (SNR/SCR). Similar to the section 3.1, the value of 
variable S needed estimated in the case of a given value of GOfaP , . It is difficult to 

obtain the closed-form of S with respect to GOfaP , from eqn.8, however, with 

given 1faP , we can obtain faP from eqn.8, then we can use values of GOfaP , as input 
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samples and values of S as output samples to train the MNNT, once the network is 
trained, we can easily estimate the corresponding value of S in presence of a given 
value of GOfaP , . 

4   Numerical Analysis 

Numerical analysis includes following parts: compare parameters estimated accuracy 
using the MNNT algorithm and the CNNT algorithm, the corresponding values of 
variables are set as following in numerical analysis, for the BSWID detector, n=15, 
m=6, 610−=faP ,the input samples range of 1faP  is 210− ~ 110− , 20−=k . And for the GO 

CFAR detector, corresponding parameters are set as following, n=32, 6
, 10−=GOfaP , the 

input samples range of GOfaP , is 310− ~ 910− and 1−=k . Numerical results are shown in 

Fig.3 to Fig.8 and Table 1. Relationship between variable faP and variable 1faP is shown 

in the Fig.3, Relationship between variable faPlg20− and variable 1faP is shown in the 

Fig.4, the Fig.5 shows trained results of the MNNT and the CRBF. The Fig.6 is 
relationship between variable faP and variable S, Relationship between variable  

 

Table 1. Parameters estimation results of two detectors in 610−=faP  

Parameters Estimated 
Estimated value of faP  via 

estimated value ( 1faP /S) 
faP Estimation error 

1faP  0.02497488 1.000002407×10-6 2.407×10-12 

S 0.982770951 9.999274278×10-7 7.25722×10-11 
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falgP− and variable S is shown in the Fig.7, the Fig.8 shows trained results of the 

MNNT and the CRBF. Parameters estimation error, using MNNT, is listed in Table 1 
for the two detectors. It takes very short time to estimate the corresponding 
parameters with the MNNT algorithm, it is not listed here for the limit of paper. 

Some conclusions can be drawn from the Fig.3 to Fig. 8 and Table 1. Firstly, if the 
input samples are not transformed with nonlinear method, the distance among input 
samples so small that it can not effectively approximate using CNNT algorithm, 
however, once using MNNT algorithm, the mapping relationship can be accurately 
represented between input samples and output samples. Secondly, parameters can be 
estimated effectively using the MNNT algorithm, but it cannot be done well with 
CNNT. Lastly, since The MNNT algorithm has few restricting factors, it can be 
widely used in radar field. 
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5   Conclusion 

In order to estimate parameter accurately in radar detection, the RBF NNT is applied 
because of its advantages, such as good nonlinear approximation ability and quick 
convergence speed; meanwhile, considering the characters of parameter estimation in 
radar detection, a MNNT via RBF is proposed to estimate parameters more 
accurately, and as examples, two classical radar detection problems are listed in this 
paper. Theoretical analysis and numerical results both show that the MNNT algorithm 
has good parameters estimation accuracy, and can be widely used in radar field. 
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Abstract. This paper presents an approach for solving the driving load
forecasting problem based on Cascade Neural Networks with node-
decoupled extended Kalman Filtering (CNN-NDEKF). Because of the
inherent advantages, hybrid electric vehicles (HEV) are being given more
and more attention. The power control strategy of HEVs is the key tech-
nology which determines the HEV’s efficiency and pollutive emission
level. Since the extent of improvement involved with HEV power con-
trol strategies greatly depends on the future driving load forecasting, in
this paper, we attempt to achieve driving load forecasting using CNN-
NDEKF. Instead of forecasting the entire load sequence, we define 5
load levels by a fuzzy logic method and then we forecast the load level.
Simulation study is given to illustrate the feasibility of the driving load
forecasting approach.

1 Introduction

Aimed at solving the more and more serious problems of energy and pollution,
HEV is one of the best practical applications for transportation with high fuel
economy and low emission. The power control strategy of HEVs is the key tech-
nology which makes the HEVs more efficient and less pollutive. Since the extent
of improvement involved with HEV power control strategies greatly depends on
the driving load forecasting, CNN is used to forecast the driving load in this
paper.

The main control objective of power control is to satisfy power requirement
with the cooperation of electric power source and fuel power source. At the same
time, the corresponding fuel consumption and emissions should be as low as
possible. For a HEV, the fundamental problem is the optimal split of the power
of combustion engine and electric motor at an optimum engine speed. It has to
be solved “online” during the operation. In general, power control strategies can
be roughly classified into three kinds.

The first approach is rule-based algorithm, such as energy follow and ther-
mostatic. In energy follow strategy, the engine is always on, and it changes the
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energy output based on the energy requirement. The thermostatic control strat-
egy obtains electric power through generator and engine, and it turns the engine
on and off based on SOC [1]. This kind of control strategy works fast and reliable,
but often produces results far away from an optimal control.

The second approach is based on static optimization method. The optimiza-
tion solutions figure out the proper split between the electric power and fuel
power using steady-state efficiency maps, and realize HEV optimization based
on the operation with the optimal parameters [2], [3]. However, how to deter-
mine the efficiency maps and optimal parameters are the challenges of this kind
of approach.

The third approach is real-time optimization. Several algorithms have been
proposed, including fuzzy logic controller [4], energy-flow analysis [5], Dynamic
Programming [6], etc. The control strategy with real-time optimization calculates
the optimal torque based on the feature parameters of vehicle, and decides the
actual torque output by modifying the optimal torque based on real-time road
situation and SOC. Dynamic optimization parameters can be changed based on
real-time operation state and energy requirement, then present a real-time opti-
mal solution for power control. This kind of approach are more accurate under
transient conditions than the first two methods, but the inherent disadvantages
of heavy computational cost limits its application.

In general, existing approaches have some limitations that they used only the
current vehicle state for decision-making in power distribution; little considera-
tion is generally given to the future load. As a result, the existing approaches
do not consider the effects of variations on the vehicle emissions and fuel con-
sumption over the future forecasting load to which the vehicle may be subjected.
After studying the methods for HEV power control strategy, in this paper, we
use CNN to forecast the future load of HEVs.

The rest of the paper is organized as follow: In section 2, the definition of load
level will be introduced. The load forecasting approach based on CNN-NDEKF
are described in Section 3. Section 4 is devoted to the presentation of simulation
results. Conclusions are presented in Section 5.

2 Definition of Load Level

The driving load in a future time slot is proportional to the vehicle net wheel
torque as calculated by equation (1):

TTs = 1
Ts

∫ Ts

0 Twh(t)dt

Twh(t) = a(t)Mrrd + BwhV (t) + V (t)r2
d

|V (t)| (Fr + Fa(V (t)))
(1)

where TTs is the average torque of the future time slot Ts, Twh(t) is the net wheel
torque at time t, a(t) is the acceleration of the vehicle at time t, Mr = Mv+Jr/r2

d

is the effective mass of the vehicle, Mv is the mass of the vehicle, Jr is the
equivalent moment of inertia of the rotating components in the vehicle. rd is
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the dynamic tire radius, Bwh is the viscous damping, Fr and Fa are the rolling
resistance force and the aerodynamic drag force. Obviously, the relationship
between the driving load and the acceleration/speed of the vehicle is complex
and nonlinear.

There are infinite kinds of future load sequences. Theoretically speaking, it
may be best if we could forecast an entire load sequence, however, forecasting
the entire load sequence will cost enormous computation and is not necessary.
After considering the trade-offs between computational cost and HEV power
control strategy requirement, in this paper, we divide the driving load into 5
levels which are very low (VL), low (L), medium (M), high (H) and very high
(VH) and a fuzzy logic approach is used to determine the driving load level.
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Fig. 1. Membership function for input variables
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0  

 

 

 

 

1
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Fig. 2. Membership function for output variables

The average acceleration and speed are chosen as the input parameters of
the fuzzy logic approach and are divided into 5 levels. Membership functions
of the fuzzy sets are shown in Figure (1) and Figure (2). The fuzzy rules are
represented in a linguistic form in Table 1. The rules are formulated based on
the experience gained. To reduce the computational burden of defuzzification,
the centroid method is selected to be the defuzzifier. After gaining a single output
value, we round it to one of the 5 driving load levels.
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Table 1. Fuzzy rules

Acceleration 
 

NB NS Z PS PB 

VL VL VL VL L L 

L VL L L L M 

M L M M M H 

H M M H H VH 

Speed 

VH H H VH VH VH 

  VL: Very Low, L: Low, M: Medium, H: High, VH: Very High 

NB: Negative Big, NS: Negative Small, Z: Zero,  

PS: Positive Small, PB: Positive Big 

For example, if the membership of ith speed is μSi , and that of acceleration is
μAi , the firing strength, μi, of the premise is calculated based on min operator.
The firing strength of each rule is calculated as follows:

μi = min(μSi , μAi) (2)

After the firing strength μi is calculated for all 25 rules, the corresponding driving
load level is obtained by a weighted average given by the equation (3)

L = round(
25∑

i=1
μiαi

/
25∑

i=1
μi

) (3)

where αi is a value of consequent parts on ith rule.

3 Load Forecasting Approach Based on CNN-NDEKF

Our goal is to decide the driving load level in a future time slot Ts based on the
past driving sequence so that the value of the load level can be used in the HEV
power control strategy to reduce the fuel consumption and emission. We address
this problem as a pattern recognition problem using CNN-NDEKF.

3.1 A Brief Introduction of CNN-NDEKF

In recent years, neural networks have shown great promise in identifying complex
non-linear mappings from observed data, and have found many applications in
non-linear system. Despite significant progress in the application of neural net-
works to many real-world problems, however, the vast majority of neural network
research still relies on fixed-architecture networks trained through backpropaga-
tion or some other slightly enhanced gradient descent algorithm. There are two
main problems with this prevailing approach. First, the “appropriate” network
architecture varies from application to application; yet, it is difficult to guess this
architecture, the number of hidden units and number of layers - a priori for a spe-
cific application without some trial and error. Even within the same application,
functional complexity requirements can vary widely, as is the case, for example,
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in modeling human tracking strategies from different individuals[7]. Second, the
backpropagation and other gradient descent techniques tend to converge rather
slowly, often exhibit oscillatory behavior, and frequently convergence to poor
local minima.

Therefore, Nechyba and Xu [8] developed a new neural network learning archi-
tecture to counter these problems mentioned above. This neural network is well
known flexible Cascade Neural Network with Node-Decoupled Extended Kalman
Filtering (CNN-NDEKF). Below, we briefly summarize the CNN-NDEKF train-
ing algorithm and why we selected this learning algorithm to forecast the future
driving load level.

Firstly, no a priori model structure is assumed; the neural network automati-
cally adds hidden units to an initially minimal network as the training requires.
Fig.3 illustrates how a two point, single-output network grows as two hidden
units are added. Thus, a cascade network with inputs, hidden units and out-
puts, has connection where,

nw = ninn0 + nh(nin + n0) + (nh − 1)
nh

2
(4)

Secondly, hidden unit activation function are not constrained to be a particular
type. Rather, for each new hidden unit, the incrementally learning algorithm can
select that functional form, which maximally reduces the residual error over the
training data. Typical alternatives to the standard sigmoidal function are sine,
cosine, and the Gaussian function.

 

Fig. 3. The cascade learning architecture

Finally, it has been shown that NDEKF, a quadratically convergent alterna-
tive to slower gradient descent training algorithms, such as backpropagation or
quickprop, fits well within the cascade learning framework and converges to good
local minima with less computation. NDEKF is a natural formulation for cas-
cade learning for we only train the input-side weights of one hidden neuron and
the output units at any one time; we can partition the m weights by unit into
groups-one group for the current hidden unit, groups for the output units. In fact,



Driving Load Forecasting Using Cascade Neural Networks 993

by iteratively training one hidden unit at a time and then freezing that unit’s
weights, we minimize the potentially detrimental effect of the node-decoupling.

Denote ωi
k as the input-side weight vector of lengths mi at iteration k, for

unit i ∈ 0, 1, . . . , n0, where i = 0 corresponds to the current hidden unit being
trained, and i ∈ 0, 1, . . . , n0 corresponds to the ith output unit.

The NDEKF weight-update recursion is given by

ωi
k+1 = ωi

k + (ψi
k)T (Akξk)φi

k (5)

where ξk is the n0-dimensional error vector for the current training pattern, ψi
k

is the n0-dimensional error vector for the partial derivatives of the network’s
output unit signals with respect to the ith unit’s net input, and

φi
k = P i

kζi
k (6)

Ak = (I +
n0∑

i=0

[(ψi
k)T φi

k][φi
k(φi

k)T ])−1 (7)

P i
k+1 = P i

k − φi
k)T (Akφi

k)φi
k(φi

k)T + ηI (8)

where (ψi
k)T is the mi-dimensional input vector for the ith unit, P i

k+1 is the
mi × mi approximate conditional error covariance matrix for the ith unit, and η
is a small real number which alleviates singularity problem for P i

k+1.
The flexible functional form which cascade learning allows, is ideal for fore-

casting the future driving load levels. By making as few prior assumptions as
possible in driving load forecasting, we improve the likelihood that the learning
algorithm will converge to a good predictive model of the driving data.

The goal that we are achieving here is to forecast the future driving load level.
We consider the driving load sequence as a measurable stochastic process and
the knowledge behind it as a underlying stochastic process. A CNN-NDEKF is
employed to generate classifier for future load level identification, and the model
parameters are updated through a learning process which ensures the model best
represents the training data. The procedures for CNN-NDEKF-based learning
can be summarized as follows:

1. Initially, there are no hidden units in the network, only direct input-output
connections. These weights are trained first, thereby capturing any linear rela-
tionship between the inputs and the outputs.

2. With no further significant decrease in the root mean square (RMS) error
between the network outputs and the training data (eRMS), a first hidden unit
is added to the network from a pool of candidate units. These candidate units
are trained independently and in parallel with different random initial weights
by using the quick-prop algorithm.

3. The best candidate unit will be selected and installed into the network if
no more appreciable error reduction occurs, therefore, the first hidden node is
produced.

4. Once the hidden unit is installed, the hidden-unit input weights are frozen,
while the weights to the output unit is going to train again. This allows for such
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faster convergence of the weights during training than a standard multi-layer
feed-forward network.

5. This process (from step2-step4) is repeated until the eRMS reduces suf-
ficiently for the training set or the number of hidden units reach a predefined
maximum number.

In modeling future driving load level, as with other poorly understood phe-
nomena, we must rely on modeling by observation, or learning, rather than
theoretical or physical derivation. A future driving load level is characterized by
unique, complex, and unknown properties; so we require a learning paradigm
that can cope with many difficult challenges, first of all, little if anything is
known a prior about the a) structure, b) order, c) granularity, or d) delay. Sec-
ond, future driving load level is dynamic, stochastic, and nonlinear in nature. It
is prone to gradual changes over time. In order to address these challenges, the
CNN-NDEKF mentioned above can satisfy the requirement by learning driving
load data.

3.2 Training Samples Build-Up

In order to develop a load forecasting classifier, a CNN-NDEKF is selected due to
its effectiveness in the classification of complex and nonlinearly separable target
classes. A CNN-NDEKF classifies its input vector into one of 5 target load levels
through a two stage process.

To train the CNN network for load forecasting classification problem, the sta-
tistics of three typical drive cycles, i.e. US06 (average speed: 77.2mh/h), NEDC
(average speed: 33.3mh/h) and Manhattan (average speed: 10.98mh/h) will be
calculated to generate the training database. These cycles represent a wide va-
riety of conditions because no two cycles seem to provide similar features they
are significantly different in acceleration rate, average speed.

The corresponding flow diagram to prepare training data is shown in Figure 4
and the procedure for one driving cycle is described as below:

1. Initialize the segment lengths of Tp and Tf . Tp represents a past time slot which
are used to forecast future load level, while Tf represents an objective future
time slot.

2. Randomly choose a start point Ts, if Ts + Tp + Tf is larger than the driving
cycle length or Ts is smaller than Tp, go to step 2.

3. Apply fast fourier transform (FFT) on the past driving cycle to select charac-
teristic features and generate CNN-NDEKF input vector P .

4. Calculate the average speed and acceleration of the future driving cycle. Apply
the fuzzy logic approach introduced in Section 2 to calculate the load level as
CNN-NDEKF output y. Generate a training sample {P, y}

5. Go to step 2 until there are 100 training samples.

Since three driving cycles are considered in this paper and one hundred training
samples are generated from each driving cycle, we can obtain 3 × 100 training
samples totally.
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Fig. 4. Flow of training data preparation

4 Simulation Study

4.1 Segment Selection

The selection of Tp and Tf will influence the performance of training significantly.
Generally speaking, a larger Tp means more past information will be considered
so that the corresponding result will be better while the computational cost will
be much more. Similarly, a smaller Tf implies that the classifier will work more
frequently but cost more computation.

In order to balance the performance and cost, in this paper, we let Tp = 150
and Tf = 100. The reason is that the typical cycles in urban traffic situations is
approximately 180 seconds. So the value of Tp, i.e. 150 seconds, which is slightly
less than 180 seconds, will be enough to reflect the past driving cycle. The value
of Tf , i.e. 100 seconds, will make the classifier work in every 100 seconds so that
it will not miss any traffic situation changes.

4.2 Feature Selection

The past driving cycle can not be used to train directly because the dimension of
the past driving cycle, i.e. 150, is so large that it requires numerous instances to
determine the result. In our application, fast fourier transform (FFT) is used on
past driving cycle to select characteristic features and reduce the dimension. The
first n coefficients of FFT transform are chosen to form a new input vector.
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Table 2. Training performance comparison of different number of coefficients
 

Features Number 4 6 8 10 13 15 20 

Error Rate 36.67% 22.67% 10.67% 7.5% 7.333% 6.67% 6% 

 

In Table 2, we compare the training performance by choosing different numbers
of FFT coefficients. It shows we can achieve better accuracy by choosing more
coefficients, while the time consumption increases. It can be seen that when the
number of coefficients is bigger than 10, the accuracy increases slowly. Therefore,
in the experiments of this paper, we choose 10 features to generate new input vec-
tors. Moreover, a 92.5% accuracy proves the feasibility of CNN-NDEKF to future
driving load classification problem.

4.3 Error and Hidden Unit

In CNN-NDEKF, MaxHidden is an very important parameter to the classification
result. In Table 3, we compare the number of Maximum Hidden Unit and error
classification rate of the CNN-NDEKF classifier with different MaxHidden value.

Table 3. Number of max hidden unit versus error rate

MaxHidden 2 4 5 6 8 10 15 20 

Error Rate 0.2667 0.1333 0.075 0.1733 0.2267 0.2333 0.2333 0.24 

 

As shown in Table 3, when MaxHidden is 5, we get a minimum classification
error rate 7.5%. This result shows that our approach can get a high accuracy in
future driving load level classification. When MaxHidden increases from 2 to 5, the
error rate reduces from 26.67% to 7.5%. Contrarily, it increase from 7.5% to 24%
when MaxHidden increases from 5 to 20. A larger MaxHidden might correspond
to higher testing accuracy, as well as more iterations, and however over fitting will
occur. To avoid the over fitting, it can not be too large. In this paper, we choose
the max hidden unit number as 5.

4.4 Case Study

After obtaining the CNN-NDEKF classifier in the previous sections, we use 5 dif-
ferent standard driving cycles which are Highway Fuel Economy Test (HWFET),
Urban Dynamometer Driving Schedule (UDDS), City Driving for a Heavy Vehi-
cle (WVUCITY), Interstate Driving for a Heavy Vehicle (WVUINTER) and New
York City Cycle (NYCC) to evaluate it. Obviously, these cycles represent a wide
variety of conditions. It is effective to validate the classification performance by
these driving cycles.
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Table 4. Training performance pomparison of different number of coefficients

 

Driving Cycle HWFET UDDS WVUCITY WVUINTER NYCC 

Error Rate 11.33 8.67 11.33 16.67 17.33 

 

Simulation results of this case are shown in Table 4. It can be seen that an aver-
age error rate of 13.066% is gained, which proves the feasibility of the our driving
load forecasting approach.

5 Conclusions

In this paper, we present a future driving load forecasting approach based on
CNN-NDEKF classification method. We use a fuzzy logic method to determine
the driving load and forecast the load level instead of forecasting the entire load
sequence. Simulation study is given to illustrate the feasibility of the driving load
forecasting approach. Further works focus on utilizing the future driving load level
in the HEV power control approach to improve the control results.
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Abstract. Optimal message scheduling is one of the key issues in the field of 
controller area network (CAN) bus system. There are numerous approaches re-
lated to this issue. Most of them are essentially based on priority-based strate-
gies. In 1, we utilized Radial Basic Function (RBF) network 2 as a message 
scheduling controller to dynamically schedule messages. Furthermore, an 
online Backward-Through-Time (BTT) algorithm is presented for parameter 
optimization under a priori fixed network structure. Intuitively, an inappropri-
ate RBF network structure leads to performance degradation. In the worst case, 
the CAN system diverges. In this paper, we extend our previous works by in-
cluding Minimal Resource Allocation (MRA) algorithm for structure determi-
nation. In this way, both problems of parameter optimization and structure de-
termination can be resolved at the same time. Simulation results demonstrated 
that the proposed BTT with MRA methods outperform our previous results in 
terms of convergence time, stability, and the number of required hidden neurons 
(or radial basis functions).  

1   Introduction 

CAN 34 is a real-time distributed bus protocol with many desirable properties for 
embedded and online systems. It is a priority-based mechanism where collisions are 
avoided by using priorities for bus arbitration. The priority-based arbitration mecha-
nism requires that different CAN nodes never simultaneously send messages with 
equal identifiers. According to this mechanism, as soon as the bus is idle, each node 
competing for the bus begins to send the arbitration field of its message. At the end of 
the arbitration field, only the node which is sending the message with the lowest  
arbitration field value, will be transmitting. 

CAN must carry both periodic and sporadic real-time messages, as well as non real-
time messages. All these messages must be properly scheduled on the network so that 
real-time messages meet their deadlines while co-existing with non real-time messages. 
Previous work regarding scheduling such messages on CAN bus focused on fixed-
priority mechanisms 56. Although static systems can be scheduled easily by fixed-
priority scheduling, it does not suitable on scheduling of dynamic systems, where an 
                                                           
* This research was supported by the National Science Council under contract number NSC95-

2221-E-212-062. 
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offline feasibility test has incomplete knowledge about the future behavior of the sys-
tem. In general, fixed-priority schemes give lower utilization than other schemes such 
as non-preemptive earliest deadline first (EDF) 7. Based on the EDF access mecha-
nism, soft real-time communication will be scheduled optimally with EDF approach. 
To guarantee deadlines of hard real-time communication, calendar-based resource 
reservation is applied. An application of this scheduling approach in a distributed ob-
ject-oriented real-time control system has been introduced by 8. The drawback of EDF 
is its high overhead which makes EDF impractical for CAN system. Recently, a novel 
approach 1 based on the concept of controller-plant model is proposed to realize real-
time scheduling on CAN system (or plant) for different messages scheduling. These 
messages are classified into three broad categories: (1) hard real-time (HRT) messages, 
(2) soft real-time (SRT) messages, and (3) non real-time (NRT) messages, respec-
tively. The controller is implemented by RBF network. Due to its self-learning capabil-
ity, the RBF network is treated as an adaptive message scheduling controller (MSC), 
which dynamically accommodates itself to the current network flow rate and waiting 
time for existing messages. It is apparent that the purposes of the MSC are to avoid 
delay transmissions. Simulation results show that the MSC can reduce failure rate of 
messages sending efficiently, even in high flow rate. However, the network structure of 
the MSC, i.e., the number of RBFs1 is determined by an ad-hoc method. Although the 
structure of the MSC can be changed to achieve an optimal configuration, several trials 
have to be applied such that the minimum failure rate can be attained. From our 
knowledge, the number of RBFs influences the failure rate significantly. During stage 
of adding/deleting neurons, undesired transition time makes the system unstable and 
leads to performance degradation. To overcome this problem, a more advanced and 
efficient structure adaptation algorithm called Minimal Resource Allocation (MRA) 
method 9, is applied to reduce this instability. 

The rest of the paper is organized as follows. Section 2 introduces the basic struc-
ture of MSC. The advantages and drawbacks of the MSC are discussed. To defeat the 
problems of the given MSC, the MRA algorithm is described in section 3. Experimen-
tal simulations compared with 1 are conducted in section 4. Finally, section 5 gives 
our conclusions and future works. 

2   Message Scheduling Controller (MSC) 

In this section, the complete framework of the proposed controller-plant model is 
depicted in Fig 1 and the functions of MSC are introduced briefly. In Fig 1, MSC is 
constructed by a RBF network which is a special structure of neural networks with 
single hidden layer. The structure of RBF network is described in Fig 2. The values of 
the input variables formulate an input vector x, which is forwarded from the input 
layer to the hidden layer. The hidden layer is comprised of a number of nonlinear 
processing nodes or radial basis function ψk(x). In this paper, we employ Gaussian 
function as the radial basis function 
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1 In this paper, the number of RBFs is the same as the number of hidden neurons. In the rest of 

the paper, “RBFs” and “hidden neurons” will be used interchangeably. 
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where ck and σk are center vector and width, respectively. The output of each hidden 
node is then multiplied by a particular synaptic weight wkj, while the final output of 
the network is a simple summation of all the weighted hidden node activations. In 
formula, 

1

( ),   
p

i ki k

k

y w iψ
=

= ∀∑ x
 

(2) 

In 0, wki is the connection weight from kth RBF to output yi. The output vector y(t) 
= [y(HRT,t) y(SRT,t) y(NRT,t)]T should denote corresponding probabilities for differ-
ent types of messages Ωi and Ωi∈{HRT,SRT,NRT}. The one with maximum value in 
y ( { }1 2 3arg max ( ), ( ), ( )

i
k y t y t y t= , Ωk∈{HRT,SRT,NRT}) indicates the most appro-

priate message type for transmitting in the next time instant. In 1, input vector is de-
fined as x(t) = [D(t) F(t)]T, where D(t) = [D(HRT,t) D(SRT,t) D(NRT,t)]T and F(t) = 
[F(HRT,t) F(SRT,t) F(NRT,t)]T are waiting time and flow rate of messages, respec-
tively. In our design, HRT messages should deserve more bandwidth than the others, 
while NRT messages have the lowest priority. 

It is obvious that the fitting parameter vector in Fig 2 can be expressed as Θ = [wij, 
ci, σi]

T, ∀ i, j and wij, ci, and σi can be tuned by backpropagation learning on the basis 
of steepest descent iterations 
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as long as the desired outputs tk can be obtained. Unfortunately, the desired target 
values are always unavailable and the supervised learning can not proceed. Therefore, 
a Backward-Through-Time algorithm (BTT) is presented for online supervised learn-
ing. Detail descriptions of BTT algorithm can refer to 1. 
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Fig. 1. The proposed framework of controller-plant model for message scheduling on CAN bus 
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Fig. 2. RBF network with n inputs, p RBFs, and m outputs 

Although the supervised learning can minimize output errors, it is apparent that 
most of the literature related to RBF network optimization considers a fixed topology 
and proposes methods for optimizing the set of parameters under that unchangeable 
structure, i.e., a fixed number of RBFs. The specifications of the topology can be 
supplied either by human experts or by exhaustive trial-and-error studies. However, 
consulting an expert may be difficult and/or expensive; furthermore, there may be 
even no human experts available when the RBF network must be constructed. There-
fore, structure identification is crucial and important. The fact that much more effort 
has been dedicated to dealing with the problem of parameter adjustment than that of 
structure identification is understandable since the latter is a very complicate task. An 
additional difficulty is that unlike methods for parameter adjustment, it is not possible 
to test structure identification algorithms without using parameter adjustment algo-
rithms. Thus, both problems must be tackled simultaneously. Recently, an online 
structural adaptive learning algorithm is suggested by Lu Yingwei et al. 9. The MRA 
algorithm combines the growth criteria of resource allocation with a pruning strategy 
to realize a minimal network structure. In MRA, radial basis functions are added 
based on the novelty of the new data and the weights connecting the hidden neurons 
to the outputs are estimated using the least squares method or its alternatives. On the 
other hand, neurons that consistently made little contributions to the network output 
are considered to be removed. In the following section, we will discuss the MRA 
algorithm more in detail. 

3   Minimal Resource Allocation (MRA) 

In the MRA algorithm, the RBF network begins with no hidden units. As long as each 
new input-output data, which is decided by BTT algorithm, is received, the network is 
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built up based on certain growing and pruning criteria. MRAN came with a dynamic 
network topology structure by adding the hidden neurons sequentially based on the 
novelty of the input data or by deleting neurons on the basis of the normalized contri-
bution of each hidden neuron to the overall outputs. A new input pattern x is consid-
ered as novel (1) if that sample is far away from the existing nearest center cir and (2) 
if the error between the output y(kT) and the target d(kT) is large, and (3) If the root 
mean square value of the output error over a sliding window M is above a predefined 
value. In formula 

1ir θ− >x c  (4) 
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The purpose of introducing a sliding window reduces the effect of noise and en-
sures smooth change of the number of hidden neurons. If the input pattern satisfies the 
above-mentioned criteria in Esq. 0, 0, and 0, a new hidden neuron is added and the 
corresponding parameters cnew, σnew, and wnew should be initialized accordingly to 
ensure stable transition 
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Fig. 3. The flowchart of MRA algorithm 
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If the input pattern does not pass the criteria for novelty, then no hidden neuron 
will be added and the network parameters will be adjustment either by the Least Mean 
Square (LMS) or Extended Kalman Filter (EKF) algorithms. 

To avoid excessive number of hidden neurons, which make the network suscepti-
ble to noise and cause the problem of overfitting, a pruning process proceeds to get 
rid of the inactive neurons. In pruning mechanism, a redundant neuron which has 
smallest contribution to overall RBF network is always removed. The contributions rkj 
of each hidden neuron is measured by the normalized output of each hidden neuron to 
all the outputs 
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where Okj = |wkjψk|. The normalized output of each neuron rkj is then observed for N 
consecutive inputs. Hidden neuron k is pruned, if its output rkj falls below a threshold 
value for the N consecutive inputs. Fig 3 shows the flowchart of MRA algorithm. 

4   Simulation Results 

In this section, the applicability of the proposed BTT with MRA method is demon-
strated through simulation examples and the results are compared with our previous 
works. The messages are generated randomly in a predefined range and the flow rate 
is defined by the traffic load F(Ωi), where Ωi∈{HRT,SRT,NRT}. Table 1 summa-
rizes these essential information, including Dmax(Ωi) and F(Ωi). It should be noted that 
the dimensions of F are defined as the number of messages have to be served in per 
time unit T. 

Table 1. Simulation conditions 

Maximum 
transmission time 

Dmax(HRT) = 120, Dmax(SRT) = 200, Dmax(NRT) = 400 

Traffic load F(HRT) = 30~55, F(SRT) = 30~55, F(NRT) = 30~55 

Fig 4. shows the simulation results by using BTT method for parameter identifica-
tion and MRA algorithm for structure determination. The MSC starts with no hidden 
neuron. The bar chart in Fig 4(b)(c)(d) indicates the number of delay-transmitted 
messages in each 500 T interval. In the first 1,000 T, all messages suffer from a high 
delay rates. This is due to the fact that the MSC gains less experience from the input 
data. Therefore, it fails to capture the dynamics of the underlying system. As simula-
tion goes on, the MRA algorithm starts to add more hidden neurons to accommodate 
with the incoming data. After 1,000 T, the system is complex enough to manage mes-
sages scheduling properly and no more delay transmission happens. Finally, the num-
ber of necessary hidden neurons is six in this simulation as shown in Fig 4(a). 

To make the simulation results more comparable with the first one, we conduct the 
second experiment using an ad-hoc structure determination method proposed by the 
first author 10. In this trial, all simulation conditions are the same as listed in Table 1.  
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Fig. 4. Message scheduling on CAN bus using BTT and MRA algorithms. (a). The required 
number of hidden neurons and (b)(c)(d) the number of delayed-transmitted HRT, SRT, and 
NRT messages, respectively. 
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Fig. 5. Message scheduling on CAN bus using BTT and 10 for structure determination 
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In Fig 4, beginning of the simulation results bears the similarity as shown in the first 
experiment. The number of hidden neurons increases steadily. However, the CAN 
system becomes stable until 7,000 T for each type of messages. There is no surprise 
with these consequences since the ad-hoc method requires more parameter optimiza-
tion epochs to stabilize the system. Therefore, the convergence rate is slow when 
compared with the first example. 

5   Conclusions 

In this paper, we present a complete framework for online adaptation of the RBF 
network that can be applied for dynamical modeling of time-varying nonlinear CAN 
systems. The proposed BTT methodology and MRA algorithm use combined struc-
ture and parameter adaptation so that changes in the dynamics of the given system can 
be tracked more accurately. The quality of the performance of the proposed methods 
is evident in the examples provided, which show how the algorithm, when it modifies 
the structure of the  RBF network, takes the correct decisions of message scheduling. 
There is, nevertheless another important issue that must be taken into account for our 
future work: how to estimate the bandwidth in the given CAN system. This is a prob-
lem that, perhaps, may be tackled by estimating the available bandwidth using fuzzy 
inference system 11 in advance. 
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Abstract. A back-propagation neural network method is proposed for accurate 
frequencies, amplitudes and phases estimation from periodic signals in power 
systems, and the convergence theorem shows that the proposed algorithm can 
be convergent asymptotically to its global minimum. The method is aimed at 
the system in which the sampling frequency cannot be locked on the actual 
fundamental frequency. Some simulating examples are given and the results 
show that the accuracy of the estimates provided by the proposed approach in 
the asynchronous case is relatively better than that of the estimates obtained 
with the conventional harmonic analysis methods. 

1   Introduction 

In recent years the harmonic pollution is becoming more and more serious with the 
widely use of nonlinear components in electric and electronic devices [1]. It has 
become a curse to power system, which deteriorates the quality of electric energy and 
greatly affects the safe and economical operation of electric power system. Therefore, 
it is necessary to measure the real-time content of harmonic and control the status of 
harmonic in electric network. 

Presently, the spectral analysis of continuous periodic signals, such as voltages and 
currents in power networks, is based on the Fast Fourier transform (FFT). However, 
because of the grid effect and energy leakage of FFT, the calculated signal 
parameters, including frequencies, amplitudes and especially phases, are not precise 
and cannot meet the need of harmonic measurement. To improve the precision of FFT 
algorithm, the windowed interpolating algorithms [2]–[6] are proposed. The 
interpolating algorithms can eliminate the errors caused by grid effect, but the errors 
produced by leakage effect must be reduced by windowing the signals. Recent 
techniques employed are based on wavelet transform theory [7]–[9], which exploits 
time-frequency characterization of input signal to identify particular harmonics within 
sub-bands of interest. However, this technique requires a complex procedure. 
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The algorithm proposed in this paper is developed for high accuracy estimation of 
frequencies, amplitudes and phases of power system, under asynchronous sampling 
case. It is aimed at the system in which the sampling frequency cannot be locked on 
the actual fundamental frequency. 

2   The Proposed Algorithm 

For a sampling frequency of fs, the following discrete-time signal model is considered 
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where, An is the amplitude, nθ  the phase, nω  the angular frequency of the nth-

harmonic, and Ts sampling period. In power system, equation (1) can be expressed as 
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where nnn Aa θsin= , nnn Ab θcos= , and 0ω  is the fundamental angle frequency. 

The matrix expression of (2) can be written as 

SbCaxy TT)( +=   (3) 

where 

T
21 ],...,,[ Naaa=a  (4) 

T
21 ],...,,[ Nbbb=b  (5) 

⎥
⎦

⎤
⎢
⎣

⎡
=

b

a
x  (6) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

]cos[...]2cos[]cos[

]2cos[...]22cos[]2cos[

]cos[...]2cos[]cos[

000

000

000

sss

sss

sss

MTNTNTN

MTTT

MTTT

ωωω

ωωω
ωωω

C  (7) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

]sin[...]2sin[]sin[

]2sin[...]22sin[]2sin[

]sin[...]2sin[]sin[

000

000

000

sss

sss

sss

MTNTNTN

MTTT

MTTT

ωωω

ωωω
ωωω

S . (8) 

 



1008 X. Wang, Y. He, and Y. Long 

 

Now we define error function as 

yze −=  (9) 

where z is the actual distorted vector, and y is the output vector of the neural network. 
The performance criterion uses the mean-squared error function defined as 
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To solve the design problem of minimizing J, we take a back-propagation neural 
network of size 2N, whose neuron states are x(n) (n=1,2,…,2N), then the steepest 
descent algorithm for the approximate square error is 
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where 0>η  is learning rate. 
In order to ensure convergence of the neural network, it is important to select 

proper learning rateη . Assume that the fundamental frequency of power system is 

known, we have the following theorem. 

Theorem 1. If learning rate satisfies 
2

TT SSCC +< Mη , the neural networks 

algorithm is stable, and convergent asymptotically to its global minimum. 

Proof. Define (10) as a Lyapunov function. Since 
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It is easy to see from (13) that if 

2

TT SSCC +< Mη  (14) 
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Therefore, if 
2

TT4 SSCC +<η , the neural network is stable, and the neural is 

convergent asymptotically to its global minimum. The theorem is proved completely. 
In the above neural network algorithm, only weighted coefficient vector x is 

updated, this means that if the sampling frequency can be locked on the actual 
fundamental frequency, then accurate harmonic amplitude and phase estimation can 
be obtained when the neural network is convergent. However, in some applications, it 
is not possible to make the sampling rate synchronizing to the actual fundamental 
frequency. So it is necessary to make the parameter 0ω  approximate the actual 
fundamental angle frequency. Now we define 
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where β , 0>β , is the learning rate to 0ω , and “.*” is matrix element group 

multiplication operation in MATLAB, i.e., MNijij CD ×= ][*. CD . 

Obviously, it can be seen from above neural network algorithm that accurate 
harmonic frequency, amplitude and phase estimation can be obtained by training the 
neural network. 
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3   Algorithm Implementation 

Due to the illustration purpose we designated for the present paper, some design 
guidelines listed below are used to simplify the numerical simulation procedure. 

1) Initial value: Produce a random initial weight vector x, let initial fundamental 
frequency 500 =f Hz, and specify sampling frequency fs, sample data length M, 

error bound ε , and suitable learning rateη  and β . 

2) Produce new predicted output y of the neural network using (3). 
3) Calculate e and J(e) via (9) and (10). 
4) Update the weighted coefficient vector x according to (11), and the parameter 

0ω  to (21). 

5) If ε>)(eJ , go to step 2), otherwise, close the training of the neural network.  

4   Simulation Results 

In this section, we present some simulation results in order to evaluate the 
performance of the neural network algorithm. Considering the signal in [6], signal 
with four harmonics are generated following the model in (1). The magnitudes are 
defined as A1=1, A2=1/8, A3=1/4, A4=1/16; and phases as θ1=π/8, θ2=π/4, θ3=3π/8, 
θ4=π/2. The fundamental frequency can take as values in the continuous interval 
defined by the ±1% deviations tolerated in the power system. The signal is sampled as 

frequency fs=1000 Hz and the length of data is 25 sampling points. Specify 2610−=ε , 
9.0=η . 

Now we study the sensitivity of fundamental frequency estimation with different 
values 49.5, 50, and 50.5 Hz of actual fundamental frequency depending on the 
different learning rate β . Fig. 1 illustrates the sensitivity of estimation. The case with 

2800=β  is used to test the proposed algorithm in this section. In this case, the 

estimation errors are the least.  
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Fig. 1. Frequency estimation sensitivity depending on the value of learning rate β  
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Fig. 2. Frequency estimation error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Amplitude and phase errors by 376 times training and 0.078 seconds estimation time, at 
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Fig. 4. Amplitude and phase errors by 377 times training and 0.078 seconds estimation time, at 

099.0 ff =  

Fig. 2 illustrates the fundamental frequency estimation error, and Figs. 3–5 show 
the relative-error percentage on amplitude and the absolute error on phase (in degrees) 
of the harmonic estimations obtained from the test signal using the proposed 
approach. Fig. 3 shows the synchronous sampling case, Fig. 4 and 5 show the extreme 
asynchronous sampling cases. In all cases, the proposed method provides similar 
excellent results, with magnitude and phase errors being less than 10-10, and 
fundamental frequency errors less than 10-12. Comparing with the results in [6], the 
standard raised-cosine (SRC), generalized raise-cosine (GRC), and Hanning windows 
are used to estimate the harmonics of this test signal. In all cases, the SRC pulse 
provides better results: in the synchronous sampling case, it obtains excellent results 
with amplitude and phase errors being less than 10-13, while in the extreme 
asynchronous sampling cases, the approach provides errors ranging between one 
thousandth and one hundredth of a percentage point. This means that the proposed 
approach is better than the method in [6]. 
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Fig. 5. Amplitude and phase errors by 399 times training and 0.079 seconds estimation time, at 

001.1 ff =  

5   Conclusion 

In the extreme asynchronous sampling cases, the accuracy of the harmonic 
estimations obtained with the proposed neural network algorithm is relatively better 
than that of the estimations provided by the shaping pulses without amplitude 
compensation and the Hanning window with amplitude compensation (in [6]). The 
results of simulation analysis with the help of MATLAB software packages confirm 
the validity of the proposed method for harmonic estimations at high accuracy of 
99.99999999%. 
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Abstract. Hardware/software partitioning of System-on-chip (SoC partitioning) 
has a significant effect on the cost and performance of the SoC. Given an em-
bedded system specification and an available core library, the goal of low 
power SoC partitioning is to select appropriate intellectual-property (IP) cores 
or software components for the SoC, such that the power consumption of the 
SoC is minimized under price and timing constraints. SoC partitioning is first 
formulated to the constrained single-pair shortest-path problem in a directed, 
weighted graph, and then a novel discrete pulse coupled neural network 
(PCNN) approach is proposed to get the optimal solution. Autowaves in PCNN 
are designed specially to meet the constraints and find the optimal path in the 
constructed graph. Experimental results are given to demonstrate the feasibility 
and effectiveness of the proposed method.  

1   Introduction 

Technology development has made it possible to implement an entire system on a 
single die, a so-called System-on-chip (SoC). SoC development is based on the design 
reuse philosophy, using pre-designed, pre-verified cores known as intellectual-
property (IP) cores in hardware and components in software. Different from tradi-
tional method that designs hardware and software independently, hardware/software 
co-design has evolved as a new style of SoC design [1]. Hardware/software partition-
ing of SoC (SoC partitioning) is a crucial step in it. Starting from system specifica-
tions, SoC partitioning determines the corresponding hardware and software portions 
of a SoC, thus it has a significant effect on the cost and performance of the SoC. In 
[2-4], the hardware/software partitioning problem was addressed by using heuristic 
techniques, such as genetic algorithm, simulated annealing, taboo search, and Hop-
field neural networks. But most of them did not target core-based SoCs. 

Pulse coupled neural networks (PCNN) is different from traditional artificial neu-
ron networks [5, 6]. PCNN models have biological background. Lately, PCNN is  
applied in many fields [7], such as image processing, pattern recognition, and optimi-
zation. Since the original work of Caulfield and Kinser [8] in 1999, there are several 
researches [9-11] using autowaves in PCNNs to solve the combinatorial optimization 
problems, especially the shortest-path problems.  
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In this paper, we first formulate SoC partitioning to the constrained single-pair 
shortest-path problem of a directed, weighted graph, and then propose a novel PCNN 
approach to get the optimal solution. Autowaves in PCNN are designed specially to 
meet the constraints and find the optimal path in the constructed graph. Different from 
traditional heuristic techniques, all the solutions found by this algorithm are globally 
optimal solutions. 

This paper is organized as follows. In Section 2, the description and formulation of 
SoC partitioning is presented. The model of a novel PCNN and its application to find 
the constrained shortest-path are described in Section 3. Experimental results from a 
practical SoC are given in Section 4 followed by conclusions in Section 5. 

2   Formulation of SoC Partitioning 

Most embedded systems are designed today as core-based SoCs to produce high per-
formance and shorten time-to-market. Resorting to hardware/software partitioning, 
the design process must determine a SoC that achieves low power consumption, low 
cost, and high performance, from the design space defined by the set of cores and the 
set of tasks that need to execute on them. 

2.1   Definition of SoC Model 

Before introducing the system representation, we list the assumptions made for this 
work. 

1. The SoC is specified in terms of a task graph. Nodes of the task graph represent 
tasks, and edges represent the data or control dependencies between the tasks. Each 
task may be performed on an IP core in hardware or a component in software. 

2. A library including IP cores and software components is built up. For each task of 
the SoC, a wide range of cores is available in the library for implementing it.  

3. Each core within the library has its specific performance measures, such as price, 
runtime and power consumption.  

4. The total price of a SoC is equal to the sum of the prices of all the cores used by 
the SoC. For runtime and power consumption, it is the same case. 

Given the task graph and the core library of a SoC, the main objective of low 
power SoC partitioning is to optimally allocate the task nodes to the IP cores and 
software components under price and timing constraints, such that the power con-
sumption of the SoC is minimized. 

Formally, we define T = {t1, t2, …, tn} where ti represents a task of the SoC, and 
CL = {Core1, Core2, …, Coren }, in which Corei = { Corei1, Corei2, …, Coreim } is a 
set of candidates for task ti, m = | Corei | is the size of Corei. For Corei and Corej 
where i≠ j, m may have different value. Coreij indicates a core model, and is defined 
as Coreij = (Pij, Cij, Tij), in which Pij is the power consumption of Coreij to perform ti, 
Cij is the price of Coreij, and Tij is the runtime of Coreij to perform ti. We define Cmax 
and Tmax as the maximum price and runtime the SoC must not exceed respectively.  
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SoC partitioning is defined as the following constrained optimization problem of 
finding a solution S = (Core1i, Core2j, …, Corenk): 

min  fP(S) = ( P1i +P2j + … + Pnk ) , (1) 

s.t.  

 gC(S) = ( C1i + C2j + … + Cnk ) ≤ Cmax , (2) 

gT(S) = ( T1i + T2j + … + Tnk ) ≤ Tmax , (3) 

where Core1i∈Core1, Core2j∈Core2, …, Corenk∈Coren. 

2.2   Formulating SoC Partitioning to the Constrained Single-Pair Shortest-Path 
Problem 

Based on the definitions in Section 2.1, we can convert SoC partitioning to the con-
strained single-pair shortest-path (CSPSP) problem in a directed, weighted graph, as 
shown in Fig. 1. 

1. A vertex Coreij ( i representing the task index and j representing the alternative 
core index ) is connected to all vertices in the next column (i.e., Corei+1,k ) with di-
rected, weighted edges. The weight of the edge connecting vertices Coreij and 
Corei+1,k is Pi+1,k . 

2. In addition, two special nodes, the source Start and the destination End are added. 
Node Start connects the vertices Core1i (1≤ i≤ a , a = | Core1 |) with a weight P1i. 
The vertices Coreni (1≤ i≤ c, c = | Coren |) connect to node End with a weight 
PEnd ＞0.  

Core11

End

Corenc

Coren2

Coren1

Core2b

Core22

Core21

Core1a

Core12

Start

.    .    .

.    .    .

.    .    .

.    .    .

.  .  .

.  .  .

.  .  . Pnc

Pn2

Pn1

P2b

P22

P21

P1a

P12

P11

PEnd

t1 tnt2

PEnd

PEnd

 

Fig. 1. A directed, weighted graph constructed from SoC partitioning  

Accordingly, SoC partitioning is converted to the problem of finding a shortest-
path pc = (Start, Core1i, Core2j, ..., Corenk, End ) from Start to End, subject to two ad-
ditive constraints as Eqs. (2) - (3). The power consumption of the SoC can be  
calculated by 
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fP(S) = W(pc) － PEnd ,  W(pc) is the weight of path pc. (4) 

3   A PCNN Approach 

In [9-11], the authors utilize autowaves in PCNNs to find the shortest-paths in a non-
deterministic and parallel way, but there is no constraints on the paths. For the CSPSP 
problem, we use the discrete-time PCNN (DPCNN) network based on Output-
threshold coupled neural network [10]. 

3.1   The DPCNN Model 

Given a weighted graph G with N nodes, WIJ denoting the weight of the edge that 
connects node I and J, we will introduce the designation of a DPCNN model to find 
an unconstrained shortest-path p between the source nodes S and the destination node 
D in graph G. 

Each neuron in the network corresponds to a node in the graph. In addition, each 
directed connection between neurons in the network corresponds to the directed edge 
between the nodes in the graph, i.e. the network itself is isomorphic to the graph. Each 
neuron I has a output YI, and YI is designed as the following function: 

, ..., 2, 1,    
otherwise,,0

 ),()(  if,1
))()((step)( NI

kkU
kkUkY II

III =
⎩
⎨
⎧ >

=−=
θ

θ   (5) 

where UI(k) andθI(k) are the internal activity and threshold at time k, respectively. 
UI(k) is always set to 0 at any time, i.e. UI(k) = 0 for k≥0, I = 1, 2, …, N. All of the 
neurons are set reset in initial time instant, i.e.θI(0) = 0, for I = 1, 2, …, N.  

The threshold of neuron I is designed as Eqs. (6) - (8). It is clear that the threshold 
of neuron I is decrease linearly respected to a constant value tΔ . 
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where Vθ is a predetermined positive constant and its value is problem independent, 
WJI is the linking strength from neuron J to neuron I. If there have no linking connec-
tion between neuron J and neuron I, then WIJ = 0. θJI is the threshold contribution of 
neuron J to neuron I. 
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Neuron I is said to fire if its output changes from 0 to 1. It is known from Eqs. (6)-(8) 
that when the autowave travels along a connection between neuron J and neuron I, the 
time periods from J fires to I fires is proportional to the link strength WJI. When m neu-
rons J1, J2, …, and Jm are linked to neuron I, and at least one of these neurons fires be-
fore neuron I, the autowave that arrives at neuron I at the earliest time is allowed to 
continue traveling. 

The algorithm of DPCNN for finding the unconstrained shortest-path p in graph G 
is expressed in the following steps. 

(1) Initialize the network, set iterate number k = 0, YI(k) = 0 andθI(k) = 0, ( I = 1, 
2, …, N ). 

(2) Set k = k +1, andθS(k) = －1, then the neuron S fires first, as shown in  

         
⎩
⎨
⎧

=
=

,0)(

,1)(

kY

kY

I

S     (I = 1, 2, …, N and I≠s), 

autowaves are generated and neuron S is the source of the autowaves. 
(3) CalculateθI(k) and YI(k) according to Eqs. (6) - (8), (I = 1, 2, …, N). 

For 0 ≠JIW , if YI(k) ==1and YI(k-1) == 0 andθI(k) ==θJI(k), then update the 

route. 
(4) Set k = k +1, repeat step 3 until neuron D in the network is in fired state. Go re-

verse the route table, path p and the weight of the shortest-path from S to D: 
W(p)is determined.  

3.2   The Algorithm for Solving the CSPSP Problem Using DPCNN 

While DPCNN is applied to the CSPSP problem shown in Fig. 1, all of the autowaves 
in the network travel toward the same direction, i.e. they have the same sequence 
(Start, Core1i, Core2j, ..., Corenk, End) of fired neurons. But the constraints require to 
be considered while the autowave is traveling ahead to the destination node End. As a 
result, we must check whether each autowave meets the constraints at every iteration, 
so the satisfied autowaves may continue to travel. On the other hand, the ones that 
cannot satisfy the constraints will be deleted, guaranteeing that other links with a lar-
ger weight or loose constraints have the opportunity to be chosen.   

We illustrate how the autowaves are designed to meet the constraints. Consider the 
case when an autowave has neurons Start, Core1i, Core2j, …, and Coreuk fired, and I 
represents the neuron fired latest among them. Before this autowave explores all the 
neurons which neuron I connects, it is examined whether the constraints can be satis-
fied if them fires next. Among these neurons, the neuron J not satisfying the con-
straints would not allow to be fired by this autowave, thus we setθIJ(k) = +∞. When 
no one of these neurons is allowed to fire next, neuron I would return to unfired state, 
thus its output YI is reset to 0. If I is neuron Start, we can draw a conclusion that there 
is no valid solution for this problem. Otherwise, assuming that neuron H fired  
previous to neuron I, we setθHI(k) = +∞ . As a result, neuron I may fire from other 
neurons. 
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The algorithm of DPCNN for the CSPSP problem is described below.  
 

//k: the current iterate; 
//WIJ : the linking strength from neuron I to neuron J; 
//Core01: neuron Start, set C01 = 0, T01 =0, and Core0 = {Core01}; 
//Coren+1,1: neuron End, set Cn+1,1 = 0, Tn+1,1 =0, and Coren+1 = {Coren+1,1}; 
//Price[I]: the sum prices of the neurons along the autowave traveling from neuron 
Start to neuron I;  
//Time[I]: the sum runtime of the neurons along the autowave traveling from neu-
ron Start to neuron I; 
//PreNode[I]: an array to record the routes, PreNode[I] = H, if neuron H connects 
neuron I, and the autowaves travel from H to I; 
 

(1) Initialize the network, set k = 0, and for each neuron I = Coreij, 
( iCorejni ≤≤+≤≤ 1 ,10 ), in the network, YI(k) = 0 ,θI(k) = 0, Price[I] = 0, 

Time[I] = 0, PreNode[I] = Start. 
(2) Set k = k+1, andθStart(k) = －1.  
(3) For each neuron I = Coreij in the network, ( iCorejni ≤≤+≤≤ 1 ,10 ) 

(3.1) CalculateθI(k) and YI(k) according to Eqs. (6) - (8). 
(3.2) If YI(k) == 1 and YI(k-1) == 0 and I ≠ End  

(3.2.1) For each neuron H in the previous column, (i.e. WHI ≠ 0)   
IfθI(k) ==θHI(k), then set PreNode[I] = H. 

(3.2.2) Set Price[I] = Price[PreNode[I]] + Cij, and Time[I] = 
Time[PreNode[I]]+ Tij.  

(3.2.3) For each neuron J= Corei+1,r in the next column (i.e. WIJ ≠ 0) 
                        If Price[I] + Ci+1,r > Cmax or Time[I] + Ti+1,r > Tmax , then set 

θIJ(k) = +∞. 
(3.2.4) If min{θIJ(k): J= Corei+1,r, ∀ J∈Corei+1} == +∞ , 

(3.2.4.1) Return neuron I to unfired state, set YI(k) = 0. 
(3.2.4.2) If I == Start, then this algorithm ends, and there is no 

valid solution. 
(3.2.4.3) Set H = PreNode[I], andθHI(k) = +∞ . 

(4) Set k = k+1, repeat step 3, until 01)( and 1)( ==−== kYkY EndEnd . 

(5) Go reverse the route according to PreNode[I], then the constrained optimal path  
pc and its weight W(pc)is determined. gC(S) and gT(S) is record in Price[End], and 
Time[End], respectively.  

4   Experimental Results 

To verify the feasibility and effectiveness of our method for real applications, we ap-
ply this algorithm to a SoC that is designed as video/audio sender subsystem of a 
PDA platform. The task graph of this SoC is shown in Fig. 2, and Table 1 shows the 
core library.  
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t 1 

t 6 

t 5t 4 

t 3t 2 

t1:  user interface

t2:  audio data capture unit

t3:  video data capture unit

t4:  MP3 encoder

t5:  MPEG encoder

t6:  synchronization unit

 

Fig. 2. Task graph of the example SoC of a PDA platform 

A directed, weighted graph is constructed as described in Section 2.2, shown in 
Fig. 3. The weight of all the edges connecting node End is: PEnd = 0.005. In our ex-
periments, we set Vθ= 5, and ⊿t = 0.005. DPCNN is applied to find the constrained 
optimal path from Start to End in this graph, and then we get the optimal solutions for 
the SoC under different constraints. The experimental results are shown in Table 2, 
and the entry with N/A indicates that there is no valid solution satisfying such con-
straints. 

Start
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Core12

Core22

Core23

Core21 Core31

Core33

Core32

Core41

Core43

Core44

Core42

Core51

Core54

Core53

Core52

Core61

Core63

Core62 End

0.1

0.08

0.2
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0.15

0.3

0.3

0.2

0.6

0.5

0.5

0.6

0.4 0.4

0.5

0.5

0.4

0.3

0.3

0.005

0.005

0.005

(30,20)

(50,10)

(80,80)

(110,50)
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(150,60)

(180,50)

(180,400)

(220,350)

(350,120)

(420,70)

(150,400)

(180,380)

(320,130)

(380,80)

(120,150)

(150,120)

(220,50)
 

Fig. 3. The target graph constructed from the example SoC 

When Cmax = 1500 ￥, and Tmax = 500 ms, the solution found by DPCNN is S = 
(Core12, Core23, Core33, Core44, Core54, Core63), and its optimized power consump-
tion is fP(S) = 1.53 W. As a result, task t1 is implemented as components in software, 
and the other 5 tasks are implemented as IP in hardware.  

When Cmax = 1000 ￥, and Tmax = 1000 ms, a different solution is found. Tasks 
t2 and t3 are implemented in hardware, and the other 4 tasks are implemented in  
software.  

The experimental results demonstrated that the solutions found by DPCNN are 
globally optimal solutions, since they are same as solutions found by exhaustive 
search.  
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Table 1. The core library for the example SoC of a PDA platform 

 Core ID Type Power/W Price/￥ Time/ms 
Core11 Component 0.1 30 20 Core1 Core12 Component 0.08 50 10 
Core21 Component 0.2 80 80 

Core22 IP 0.25 110 50 Core2 
Core23 IP 0.15 180 30 
Core31 Component 0.3 95 100 
Core32 IP 0.3 150 60 Core3 
Core33 IP 0.2 180 50 
Core41 Component 0.6 180 400 
Core42 Component 0.5 220 350 
Core43 IP 0.5 350 120 

Core4 

Core44 IP 0.4 420 70 
Core51 Component 0.6 150 400 
Core52 Component 0.5 180 380 
Core53 IP 0.5 320 130 

Core5 

Core54 IP 0.4 380 80 
Core61 Component 0.4 120 150 
Core62 Component 0.3 150 120 Core6 
Core63 IP 0.3 220 50 

Table 2. The solutions for the example SoC found by DPCNNs 

Constraints Results 
Cmax Tmax Solution S fP(S) gC(S) gT(S) 
1500 500 (Core12, Core23, Core33, Core44, Core54, Core63) 1.53 1430 290 
1000 1000 (Core12, Core23, Core33, Core42, Core52, Core62) 1.73 960 940 
500 1500 N/A N/A N/A N/A 

5   Conclusions 

In this paper, we have addressed the problem of low power hardware/software parti-
tioning of core-based SoCs subject to price and timing constraints. Based on a system 
specification and an available core library, SoC partitioning is formulated to the con-
strained single-pair shortest-path problem in a directed, weighted graph. Autowaves 
in PCNN are designed specially to satisfied the price and timing constraints, and find 
the optimal path in the constructed graph. This is a nondeterministic approach that 
would guarantee the globally optimal solutions. It has been demonstrated that PCNN 
is feasible and effective to solve the SoC partitioning problems. Due to the highly 
parallel computation of the network, it would be much faster to find the solution if the 
network is realized with VLSI. 
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Abstract. This paper presents a method for predicting nonlinear time
series. It is based on the multiscale filtering, fundamental and techni-
cal model and artificial neural networks. In the technical model we used
wavelet transform for disjoin the time series trends then to smooth the
economic time series by multiscale filtering. We used too the fundamental
analysis, that is, financial and macroeconomics variables to improve the
network forecasting. The results were compared with the technical analy-
sis showing that the multiscale filtering and addition of the fundamental
variables increase the network forecasting ability.

1 Introduction

About the technical analysis, the Dow theory assert that there are three kinds of
trends in temporal economics series: short-time trends, intermediate-time trends
and long-time trends. The long-time trends and intermediate-time trends are
related with the just price of the scrip while that short-time trends are related
with the random behavior of the prices. The short-time trends are hardly models
because is hardship to find variables that influence your behavior pattern. The
short-time trends are more correlated with the rumors and “humorlessly” of the
stock exchange.

In this paper, we explored the wavelet transform multiscale capability it can
take advantage of the fact that the multiscale decomposition separates the trend
from the signal for smooth the short-time trends. In the context of the signal
processing long-time trends and intermediate-time trends are related with the
low frequency and short-time frequency are related with the high frequency.

The first suggestion is that, in many instances, the trend affects the low fre-
quency components, while the high frequencies may still be purely stochastic

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 1024–1032, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and can be smooth. The second suggestion is that, the prices quotation forecast
can be improved using a Artificial Neural Network (ANN) to find economics
variables (fundamental analysis) correlated with stock exchange behavior after
to smooth random behavior.

2 Our Approach

Various methods, such as linear regression methods, Fourier transform based
methods have been used to analyze time series and make predictions [4,8]. How-
ever, these models are based on the assumption of stationarity and require trans-
formation of non-stationary data for analysis. Both linear and non-linear models
have limitations when it comes to analyzing non-stationary data. The wavelet
transform (WT) has been proposed for time series analysis in many papers over
the last few years [11]. The big advantage of a WT is the time-frequency re-
solution that enable the localization of high-frequency in fine time intervals, in
finance, they often mean observations taken daily or at a finer time scale. The
idea behind these localization time-frequency is to cut the signal of interest into
several parts and then analyze the parts separately with the aim to smooth
random behavior.

In your discrete version the WT is give to:

f(t) =
∑

k

cj
kφj,k(t) +

∞∑

j=−∞

∞∑

k=−∞
dj

kΨ j
k(t) (1)

where the function

Ψ j
k(t) = Ψ(2jt − k) (2)

is called mother wavelet and the function

φj,k(t) = 2
j
2 φ(2jt − k) (3)

is called father wavelet or scaling function and the coefficients j, k are the wavelet
transform coefficients.

Wavelet transforms specify location (via translation) and frequency (via dila-
tion) using the father and mother wavelet, that is, using base functions φ and Ψ
respectively. The wavelet function is in effect a band-pass filter and scaling it for
each level halves its bandwidth. The signal is decomposed simultaneously using
a high-pass filter. The outputs giving the detail coefficients (from the high-pass
filter) and approximation coefficients (from the low-pass). This decomposition
is repeated to further increase the frequency resolution and the approximation
coefficients decomposed with high and low pass filters and then down-sampled.
For time series we used 2 level wavelet decomposition. In wavelet decomposition,
universal threshold and soft thresholding have been applied as techiniques [2,3].
Equation 4 presents the universal threshold expression.

σ
√

2logn (4)
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Then, the equation 4 is applied in detail coefficients for each level wavelet
decomposition, afterwards the smoothed signal is recovered by inverse wavelet
transform.

Layer Context

V(t) V(t-1) V(t-2) V(t-n)

V(t+1) V(t+p)

Fig. 1. Elman’s network

The ANN showed in figure 1 implement two memory mechanisms. The first
one is the input layer by delayed time data. The data window (V (t − 1), V (t −
2), V (t − 3), . . . , V (t − n)) applied to the network input layer implement
temporal memory of the p past data, where the n numbers of past time are
called delay window. The network forecast the t + p future prices in agreement
with the t − n input delay. The second memory mechanisms is implemented in
the hidden layer, where each hidden unit is connected to itself and also connected
to all the other hidden units. The network hidden layer makes a copy of the past
inputs characteristics in the context layer. The recurrence indirectly memorize
all the previous input values presented to the network. For the network training
is used the backpropagation algorithm that employ the descending gradient to
adjust the network weights for the training data. The weights adjust is given by
equation 5 where η is a positive constant called learning tax.

Δwij = η
∂E(t′, t)

∂wij
(5)

For more detail about the backpropagation algorithm, is recommended the
reading of Rumelhart’s original paper [12].

2.1 Joining Fundamental and Technical Analysis

In Jang [5] is proposed the use of two ANN for technical analysis: an ANN to
forecast the price in long-time and other to forecast the price in short-time. It
was used the following data: peak values, low values, close values, and volume
negotiated for each day. In Kim [6] was used the feature transformation based on
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domain knowledge for the forecast of futures quotations. The data filters classify
and extract rules to reduces the feature space dimensionality.

Although the Jang [5] and Kim [6] works present relevant results, they do
not consider economics aspects related with the data. Qi [9] and Racine [10]
demonstrated that there are economic variables correlated with the financial
scrips quotations. We used the Spearman rank correlation coefficient (SRCC)
for select important variables. SRCC is commonly used to find relationship be-
tween two variables that can be non-linear relationship. The Spearman’s rank
correlation coefficient r is give to:

|r| =
∑n

i=1 R(xi)R(yi) − n
(

n+1
2

)2

(∑n
i=1 R(xi)2 − n

(
n+1

2

)2
)0.5 (∑n

i=1 R(yi)2 − n
(

n+1
2

)2
)0.5 (6)

where R(x) and R(y) are the ranks of a pair of variables (x and y) and r varies
from 1 (perfect correlation) through 0 (no correlation or independence). The
decision criterion for the addition of variable is |r| > 0.1.

We extracted too financial statement data from the economic report of the
companies and macroeconomic variables from the Getúlio Vargas foundation,
main organization of financial studies in the Brazil. Based on recommendations
from previous studies [1,7,9,10] we tested 5 financial statement variables and 6
macroeconomic variables as the predictor attributes because we judge that the
variable number is sufficient for the study. The definitions of the variables used
are given in table 1.

Table 1. Fundamental variables

Financial variables
Variable Description

v1 Current assets/Current liabilities
v2 Net sales/Total assets
v3 Market capitalization = Stock price x Common shares outstanding
v4 Earnings per share
v5 Capital expenditure

Macroeconomic variables
v6 Government interest rate
v7 Consumer price index
v8 Effective exchange rate
v9 Purchase price of crude oil
v10 BOVESPA index†

v11 Country risk classification‡

† The Bovespa Index is the main indicator of the Brazilian stock market’s average
performance.
‡ The country risk classification method measures the likelihood that a countrywill
service its external debt.
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The technical model variables, quotations of the opening price, maximum
price, minimum price, closing price and trading volume are joining the funda-
mental model variables what satisfy the SRCC test for the ANN input.

To evaluate the network predict capacity is necessary to mensure the error.
The error quantifiers for this task are the PME (Percentile Mean Error) defined
in the equation 7 and PQME (Root of Percentile Quadratic Mean Error) defined
in the equation 8.

PME =
1
N

N∑

t=1

(V (t) − V (pt))
V (t)

(7)

PQAE =

√√
√√ 1

N

N∑

t=1

(V (t) − V (pt))
V (t)

2

(8)

In both equations 7 and 8 V (t) is a true value in time t, V (pt) is a quotation
for the time t and N is the number of observations at validation set. For the
equation (7) the result is positive in case of underestimated quotation forecast
and negative in case of overestimated. For the equation (8) the result indicates
the forecasting mean error, where the minimum value is zero.

3 Results and Discussion

The preferential scrips prices of the type Pn from distinct economic sectors were
obtained from São Paulo stock exchange (BOVESPA): Pão de açúcar group (su-
permarket), ITAUSA group (financial group), EMBRAER (aircraft industry),
Vale do rio doce company (iron ore extraction), Petrobrás (exploration and pro-
duction of petroleum) and America drink company (drinks company).

The referring quotations from the period of 2004 till 2005 year will be used
in the training set of the network. After the data normalization the data set
were smooth by wavelet transform describe in the section 2. The most suitable
resolution level is identified based on the smoothness of the approximation signal
at that level, that is, having all the high frequency components smoothed. The
desired approximation signal should depict a general pattern of its original. For
the proposed model, different resolution level are tested and found that approxi-
mation signal at resolution level two is sufficiently smooth to represent a general
pattern of the original signal.

The figure 2 shows the smoothing results of short-time trend related previous.
Observe in the figure 2 that fine time intervals with low frequency not are sliced,
this fact is not possible using Fourier transform. The high frequency located in
particular slices (for example in the space of time 0 to 100 daily evolution) of the
series are smoothed preserve fine peaks with low frequency. This is possible with
the localization time-frequency of the wavelet transform. Eventually the window
Fourier transform can be used, but the dilemma is determine the ideal window
length for each time series.
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Fig. 2. Quotation Forecast Results for the Pão de Açúcar Group

Table 2. Spearman rank correlation coefficient results for fundamental variables

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 Choice variables

C1 0.19 0.23 0.05 0.20 0.01 0.08 0.12 0.03 0.01 0.13 0.27 v1, v2, v4, v7, v10 and v11

C2 0.10 0.04 0.08 0.22 0.05 0.13 0.08 0.07 0.01 0.11 0.23 v1, v4, v6, v10 and v11

C3 0.12 0.22 0.05 0.21 0.03 0.01 0.01 0.04 0.01 0.10 0.20 v1, v2, v4, v10 and v11

C4 0.11 0.12 0.01 0.21 0.04 0.01 0.01 0.11 0.02 0.12 0.27 v1, v2, v4, v8, v10 and v11

C5 0.11 0.01 0.01 0.18 0.00 0.10 0.07 0.09 0.19 0.21 0.19 v1, v4, v9, v10 and v11

C6 0.12 0.14 0.02 0.23 0.03 0.06 0.10 0.03 0.01 0.15 0.23 v1, v2, v4, v4, v10 and v11

where C1: Pão de Açúcar Group, C2: ITAUSA Group, C3: Embraer, C4: Vale do rio
doce company, C5: Petrobrás and C6: AMBEV.

With the time series smoothed we applied the SRCC test for addition funda-
mental variables. The results of Spearman rank correlation coefficient and the

Table 3. Final results obtained

Company Method A1 Method B2 Method C3

EMP REMQP EMP REMQP EMP REMQP

C1
� -1.94x10−3 1.37x10−2 -1.88x10−5 9.32x10−3 2.04x10−5 1.89x10−4

C2
� 5.04x10−2 1.20x10−1 3.36x10−4 4.820x10−2 1.92x10−5 1.45x10−3

C3
� -8.04x10−1 2.06 3.94x10−1 7.07x10−2 -4.31x10−3 7.20x10−2

C4
� 7.61x10−5 5.88x10−2 6.02x10−5 4.90x10−2 8.32x10−4 9.57x10−4

C5
� 4.71x10−2 3.53x10−1 4.00x10−2 3.53x10−1 4.34x10−3 2.13x10−2

C6
� 7.01x10−2 8.99x10−2 3.74x10−3 5.30x10−3 4.22x10−3 5.08x10−3

� Forecasting using 40 neurons in the output layer.
� Forecasting using 150 neurons in the output layer.
1 Method A: Only past data in ANN input (Technical Model).
2 Method B: Past Data smoothed by wavelet transform in ANN input.
3 Method C: Past Data smoothed by wavelet transform and fundamental variables
(Fundamental model) in ANN input.
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(a) Pão de açúcar group scrips quota-
tion forecasting using method A.
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(b) Pão de açúcar group scrips quota-
tion forecasting using method C.
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(c) ITAUSA group scrips quotation
forecasting using method A.
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(d) ITAUSA group scrips quotation
forecasting using method C.
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(e) Embraer scrips quotation forecast-
ing using method A.
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(f) Embraer scrips quotation forecast-
ing using method C.

Fig. 3. Scrips quotation forecasting

resume of choice variables after of SRCC test are shows in table 2. The results
of table 2 shows that for each economic time series distinct variables can be
correlated. The addition of no-correlated variables with the serie can not help
in the forecasting. For Pão de Açúcar group the variables v2, v4, v7, v10 and v11
can be correlated with the time series behavior and variables v1, v3, v5, v6, v8
and v9 not. However for the Petrobrás the variables v1, v4, v6, v10 and v11 can
be correlated with te time series behavior and v2, v3, v5, v6 and v8 not. For each
time series the fundamental variables choice are addition in the ANN input for
future quotations forecast.

The quotations forecasting refer to mean values for the future days from the
analyzed values. After the data normalization the network was trained with the
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learning algorithm backpropagation using sixty delay input, sixty neurons in the
hidden layer and the number of neurons in the output layer is determinate by
the forecasting length. The final results are showed in table 3 and figures 3(a, b,
c, d, e and f).

The table 3 show that the better results were obtained using the wavelet
transform and fundamental variables. In spite of wavelet transform help the
ANN generalization the ANN get to find behavior patterns with addition of
fundamental variables. The use only wavelet transform or other method that
not use economic aspects can not be appropriate. The forecasting can be make,
but which are the economic conditions for the forecasting? Is possible foresee the
economic recession? We think that for better that it is the method, it he must
consider the economic conditions for forecast the economic time series. Long-time
forecast can be made but the success of forecast quotation will depend of ideal
economic scenery. Another approach is to generate futures economic sceneries
with the possible fundamental variables condition.

It is observed in the figure 3 that the network had an improvement in the
prices quotation forecast. The empiric results indicate that the short-time trend
are little related with market behavior pattern and long-time and intermediate
trends are correlated with fundamental variables. The result demonstrates that
not only the historical data affect the quotation behavior. The investors do
not follow a logic established only by past quotation. The past quotations are
important but not the unique factor.

4 Conclusion

In this paper, we presented a method for predicting nonlinear time series. It is
based on the multiscale filtering, fundamental and analysis model and neural
networks modelling. The series obtained after wavelet decomposition filter con-
tains information about the trends with the random behavior smoothed. The
results presented show that wavelet transform is an efficient tool for the time
series analysis. Using the wavelet transform were possible to smooth the ran-
dom behavior of the time series. Using the Elman’s network was possible make
quotation forecasting with addition of economic variables that influence the fi-
nancial scrips quotations. The combination of data considered presented when
comparative relatively satisfactory performance to the traditional models that
are only based on the technical analysis.

The methodology used for future quotation forecast provides an improvement
in the forecast capacity of ANNs offering results more parsimonious.

4.1 Future Works

For the future works is propose the M -channels filter bank in wavelet transform.
The time series is decomposed by M -channels, so-called subband signals, in M
frequencies on the contrary of only high frequencies and low frequencies.
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Each one of the subband signals carries information on the time series in
a particular frequency band that can be correlated with distinct trends and
economics variables.
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Abstract. In this paper, we address the problem of detection and cor-
respondence of moving persons in a multi-camera set. A novel algorithm
is proposed based on object occupancy random field (abbreviated by
OORF), which has a robust performance even under severe occlusions
and a fast implementation speed. The core of our algorithm is OORF
and object window structure. The latter is essential to compute OORF
and provides a scheme to detect and correspond objects simultaneously.

Keywords: Detection, correspondence,occlusion, multi-view, object oc-
cupancy random field, ground plane, occupancy probability.

1 Introduction

In this paper, we address the problem of detection and correspondence of multi-
ple moving persons in a multi-view set. Human detection is a common problem
in surveillance applications. And object correspondence is a special one in multi-
camera situation where persons in the scene may emerge in more than one views
at the same time, and it is required labelling the consistent ones across different
views. Both of the two problems are crucial in multi-view systems and are the
base for following operations such as tracking, behavior analysis, information
fusion and so on. We are interested in crowded situations where partial or total
occlusions are common and it can not guarantee that any of the people will be
visually isolated. In this set, an efficient algorithm should face two difficulties:
occlusion and heavy computational burden. However, few algorithms can deal
well with these two problems. For most existing systems, human detection is first
performed in the 2D image of each view and then corresponded across views.
In densely crowded scenes, correct detection is difficult due to occlusion and the
following correspondence based on the former detection results cannot be guar-
anteed to be right and robust. Another strategy, which first fuses information
from all views and then deals with the problem in fusion space, has a better
performance against occlusion but suffers from heavy computational burden.

The paper propose a novel approach which unifies human detection and cor-
respondence in multi-view set under a uniform framework. The idea is straight-
forward. The algorithm’s core is object occupancy random field (OORF) and

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 1033–1042, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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object window structure. OORF depicts the probabilistic property that an ob-
ject occupies a position on the ground plane. The object window structure helps
compute the occupancy probability and is also the tool to detect and correspond
people across views. Experiment results show that the algorithm can deal with
occlusion correctly and robustly and be performed in real time.

2 Related Work

Multi-camera surveillance is a relatively new domain in computer vision, which
is gaining increasing interest recently. Human detection and correspondence are
two substantial problems in multi-view environment. Related work on this topic
can be organized into two loose categories by what types of space information
are deal with in, i.e. image space and fusion space.

The image-space based scheme implements people detection in 2D image space
first, and then associates detection results of different views to label them. Most
multi-view approaches adopt this scheme[1]-[4].Utsumi et al. [1], assuming that
cameras are calibrated, detect objects relying on human models and label them
by features such as position, velocity, height and visual angle constrains.Javed et
al. [4] model connected blobs obtained from background subtraction to extract
human and use color histogram to label them. To be robust against occlusion,
this scheme usually needs a sufficient number of occlusion-free views for each
object and cannot work well under severe occlusions.

The fusion-space based scheme solves the problems not in image space but in
fusion space where all information from different views are combined together.
This scheme is a newly-emerging one and there is just a little related literature
[8][9]. Fleuret et al.[8] introduce fixed point probability field in top view which
is computed from binary foreground image of all views and estimate the human
position in probability field.Saad et al. [9] select one view as a reference image
and use a planar homograph constraint to resolve occlusions and determine peo-
ple’s locations. The planar homograph constraint combines foreground likelihood
information probability of a pixel in the image belonging to the foreground from
different views. These approaches have a better performance to tackle occlusion
but suffer from the heavy burden of computation.

3 Object Occupancy Random Field

The section details object occupancy random field. We assume that cameras are
calibrated, and that people are moving on a calibrated ground plane.

3.1 The Ground Plane Π

Multiple cameras monitor a scene, as can be seen in Fig. 1.We call the intersected
area of all views the valid area and restrict it a ground plane Π . The ground
plane constraint will simplify the problem and is reasonable in most applications
such as crossroads, corridors, and airdromes are approximatley planar.
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Fig. 1. Oject occupancy field. (a) Valid area for multiple cameras. (b) Discrete object
occupancy field.

3.2 Definition of OORF

The valid monitored area with the ground plane constraint is called object oc-
cupancy field due to observable objects moving on this site. We discretize object
occupancy field with equidistance grids, as Fig. 1-b shows. Now we give the
definition of object occupancy random field p(Π), describing the probabilistic
property that an object occupies one position in the field. Let Ei ∈ {0, 1} de-
note a binary random variable which means that an object exists at position
i if Ei = 1 while not existing if Ei = 0. Let n denote the number of cam-
eras monitoring the scene and Ik be the observed image obtained from the kth

camera. I = {I1, I2, ..., In} means observed image set from all the cameras in
the scene. Let θk be intrinsic and external parameters for the kth camera and
Θ = {θ1, θ2, ..., θn} represents parameter set of all cameras. Now let V = {I, Θ}
combine all observed images and parameters from the n cameras into a set.
Given observed images and parameters of all cameras,the occupancy probability
is written as

P (Ei = 1|V ) (1)

we call object occupancy field with the definition of occupancy probability object
occupancy random field.

4 Computation of the Occupancy Probability

The core of OORF is how to compute occupancy probability. The paper com-
putes occupancy probability using local images through a structure called object
window structure. The object window structure is also the key element that uni-
fies the process of human detection and correspondence.

4.1 Object Window Structure S

We define a structure called object window structure according to the imaging
principle of a camera, denoted by S. Let M be a primitive human model which
is a cylinder with radius r and height h as Fig. 2(a). Let W denote a set which
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consists of n sub-windows (w1, w2, ..., wn). The kth sub-window wk is the projec-
tion of human model M at a position in OORF to the kth camera. To compute
conveniently, the sub-window is simplified to a rectangle. S is composed of M
and W and is written as S = (M, W ).

The definition of object window structure is too abstract to be comprehended.
Now we interpret the physical meaning of the object window structure accord-
ing to the imaging process. As can be seen in Fig. 2, there is a configuration
of 3 cameras with known parameters Θ = {θ1, θ2, θ3} on OORF Π . The ob-
served binary foreground images from all views are I = {I1, I2, I3}. We place
one primitive human model on each of the 3 positions in the OORF in Fig. 2
and consider the case that the 2nd position is occupied by a person and others
not occupied. Project a human model to individual cameras according to their
camera parameters and then we get 3 projected areas which are approximately
rectangular (in order to computer conveniently we simplify them as rectangles).
The projected areas in images for the 1th, 2nd and 3rd human models are indi-
vidually represented by yellow, purple and red rectangles. It can be seen from
the figure that the projected points of a human model at a position will only
fall within the area of the associate sub-windows in images. It indicates that the
occupancy probability in a position merely has relation with its sub-windows.
Consequently we will consider only the area in the sub-windows when computing
the occupancy probability. It can be seen from Fig. 2 that foreground pixels will
only fall within most area of the associate sub-windows if a human model occu-
pied by a person. Let fore(wi

k) denote the number of foreground pixels that fall
within the kth sub-window of the position i and area(wi

k) the number of pixels

that the kth sub-window of the position i contains. We use filldensity = fore(wi
k)

area(wi
k)

to denote the ratio of the foreground pixel number to the pixel number that the
sub-window contains.

We can see from Fig. 2 that:

1. If a person contained in a human model stands at a position, then his/her
projected pixels will fall only in area of the associate sub-windows in images.

2. A person will not occupy only one single position since he/she is not a point
object. We call the center of those positions that a person occupies the
person’s position. And the filldensity of the position occupied by a person
will decrease as the distance away from the person’s center position increases.

3. The sub-windows for a not-occupied position may be partially filled by fore-
ground pixels due to occlusion or image noise. However, the filldensity of
these sub-windows will be not all high.

The 1st property indicates that the occupancy probability of a position has
only relation with its object window structure and others tell that the filldensity
will influence the occupancy probability.

4.2 Computing Occupancy Probability

Now we will show how to compute occupancy probability. We first provide the
deduction of the computational formula and then give the implementation of the
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Fig. 2. Object window structure

computational formula in practice. Before the deduction we state the following
two assumptions.

Assumption 1: Occupancy probabilities of different positions are independent.
Assumption 2: Individual observed images simultaneously captured from dif-
ferent cameras are conditional independent given all cameras’ parameters.

Then we can deduce the occupancy probability formula as follows.

p(Ei = 1|V ) = p(Ei = 1|I, Θ)

=
p(I|Ei = 1, Θ)p(Ei = 1|Θ)

p(I|Θ)

=
n∏

k=1

p(Ik|Ei = 1, Θ)
p(Ei = 1|Θ)
∏n

k=1 p(Ik|Θ)

=
p(Ei = 1|Θ)
∏n

k=1 p(Ik|Θ)

n∏

k=1

p(Ei = 1|Ik, Θ)p(Ik|Θ)
p(Ei = 1|Θ)

=
1

(p(Ei = 1|Θ))n−1

n∏

k=1

p(Ei = 1|Ik, Θ) (2)

As the term 1
(p(Ei=1|Θ))n−1 has nothing with observed images, it can be got

rid of. We can write occupancy probability form as

p(Ei = 1|V ) ∝
n∏

k=1

p(Ei = 1|Ik, Θ) (3)

Formula 3 tells us, p(Ei = 1|V ) is determined by the individual term p(Ei =
1|Ik, Θ). As the previous discussion indicates that the occupancy probability
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of a position has only relation with its object window structure and that the
filldensity will influence the occupancy probability, we compute p(Ei = 1|Ik, Θ)
as follows

p(Ei = 1|Ik, Θ) = filldensity =
fore(wi

k)
area(wi

k)
(4)

Plugging 4 into 3 we get,

p(Ei = 1|V ) ∝
n∏

k=1

fore(wi
k)

area(wi
k)

(5)

The formula 5 is the practical computational form of occupancy probability.

5 OORF Based Human Detection and Correspondence

Fig. 3 shows the flow chart for implementing the algorithm and an implementing
example. The flow char consists of 4 parts: 1st is foreground extraction, 2nd

OORF computation, 3rd object position extraction in OORF and 4th object
extraction and correspondence. The following content will detail the flow chart.

5.1 Foreground Extraction

From the previous section we know that the occupancy probability is calculated
based on binary foreground images from individual views. This part provides
the foregrounds of individual images by the mixed Gaussian model [6]. Fig. 3-b
shows foreground images from two cameras.

5.2 OORF Computation

The binary foregrounds are sent to this part to compute occupancy probability
of OORF according to the formula 5 and Fig. 3-c shows the computing result.

5.3 Object Position Extraction in OORF

This part analyzes the computing result of OORF. It cannot be guaranteed due
to occlusion, not-point objects, or noise that the value of occupancy probability
is 1 at the occupied position and 0 at the not-occupied position. In practice, the
probability is high at the center position of a person and is getting lower and
lower as it is away from the center. Therefore, it is essential to analyze the OORF
to obtain true object positions. Here we do as follows. First select an experiential
threshold for occupancy probability to remove those positions with low value.
Then we implement morphologic operator to dispel those isolated pixels because
real occupied positions will form a crest not just a vertex. At last, we will label
the connected area and select the center of each connected area as the object’s
positions. Fig. 3-d shows the post-processing result of OORF.
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5.4 Object Extraction and Correspondence

According to the estimated positions obtained from OORF, we use the sub-
windows of object window structure to extract objects, which, at the same time,
indicates the correspondence relationship of objects between different views, as
we can see from Fig. 3-e.

Fig. 3. Implementing process of our algorithm. The left part is the flow chart while the
right part gives an example with the configuration of 2 cameras. (a) input images, (b)
binary foreground images, (c) computation result of OORF, (d) result after processing
OORF, the white areas are object areas, (e) the last result for human detection and
correspondence. The grids in images are discrete positions.

6 Results and Discussions

In this section, we show experimental results on two sequences shot in a room
about 4 × 5m2. Cameras are located at three corners of the room. The two
sequences are obtained by 2 and 3 cameras respectively. The experiments are
implemented on a 3.0G Hz Intel Pentium-4 CPU with 1.0G RAM.

6.1 Results

Fig. 4 demonstrates a few frames of each sequence. In each case, we display the
original images with the results of detection and correspondence based on object
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window structure, and the OORF result map with the locations of detected
people. The top three rows are the result of a two-person sequence by 2 cameras
and the bottom three a three-person sequence by 3 cameras. Table 1 shows some
evaluation parameters we obtain from two sequences of 300 frames, including
processing time (time span for implementing our algorithm once), false negative
rate and false positive rate.

Fig. 4. Results. The top three rows are results under a 2-view set and the bottom
three under a 3-view set. The left numbers are frame sequence indices, a, b and c are
results of detection and correspondence results and d is the post-processing map result
of OORF.

Table 1. Test performance

parameter performance

processing time 2-view 18ms
processing time 3-view 34ms
False negative 2-view 12.3%
False negative 3-view 9.1%
False positive 2-view 9.8%
False positive 3-view 6.5%

6.2 Occlusion

Occlusion is common in our experiments. As can be seen ,occlusion is more
severe in Fig. 4. For example, total occlusion occurs in the left image of frame
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2-225 and partially occlusion in Frame 2-248. However, the performance of our
algorithm is robust. The reason that our algorithm has a powerful ability against
occlusion is that we fuse foreground information of all views into 3-dimensional
space to locate humans rather than detect humans directly in 2-dimensional
image space. Under occlusion, the occluded parts cannot provide information
for human detection directly in image space but they still fall in the foreground
area, which will support locating them in 3-dimensional space. Then we detect
and correspond humans across views based on their location in OORF.

6.3 Computational Complexity

Most implementing time is spent on the part of the computation of the proba-
bility of OORF, so we just analyze the computational complexity of OORF. To
compute conveniently, we simplify the projection area of human models on each
view as rectangular area.Let N be the number of discrete positions of OORF.
Assume that the height of the rectangular projection area in the kth camera of
a human model at position i is hk,i (represented by pixel unit) and the width

is fixed as wk,i = hk,i/4. The computation of fore(wi
k)

area(wi
k) needs wk,i × hk,i − 1

additions, 1 products and 1 division. Thus, the total computational cost is∑N
i=1

∑n
k=1 wk,i × hk,i − 1 additions, N × n products and N × n divisions. For

our experiments n = 3 and the room 4×5m2. The discrete square grid of OORF
is 75mm so 4×5m2 so N ≈ 4000. One total computation of OORF needs nearly
1.2× 107 additions, 1.2× 104 products and 1.2× 104 divisions. It can be tackled
quickly for a 3.0GHz Intel Pentium-4 CPU with 1.0G RAM. Table 1 shows that
we can perform the algorithm about 55 times per second under 2 cameras and
30 times per second under 3 cameras. (The original images are of size 768× 576
and we scale them to 384 × 288. One implementation process includes the com-
putation and analysis of OORF, human detection and correspondence, but don’t
include foreground extraction.)

7 Conclusion

The paper proposes a novel unified algorithm of multi-view human detection and
correspondence based on object occupancy random field. The main contributions
of our algorithm are as follows: the first is the presentation of the unified scheme for
solving detection and correspondence simultaneously; the second is a fast compu-
tational approach for OORF. Both of these contributions are based on a structure
called object window. The experiment results demonstrate that the algorithm is
robust and efficient even under occlusion while the implementation speed is fast.
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Abstract. A simple, fast and nondestructive approach was put forward to clas-
sify rice seed of different storage time. This discrimination was conducted by 
integrated with wavelet transform (WT), principal component analysis (PCA) 
and artificial neural networks (ANN) based on near infrared reflectance spec-
troscopy (NIRS). Four classes’ samples from four different storage times were 
used for Vis/NIR spectroscopy on 325-1075 nm using a field spectroradiometer. 
WT and PCA were used to reduce spectral data dimension and extract diagnos-
tic information from spectra data. The first eight PCs, which accounted for 
99.94% of the raw spectral variables, were used as input of the ANN model. 
The ANN model yielded high discrimination accuracy. The discrimination ac-
curacy was 97.5% for rice seed samples of four different storage years.   

1   Introduction 

Rice sustains two-thirds of the world’s population. So, a quick, accurate and nonde-
structive way is needed to classify the rice seed of different storage time. Near infra-
red spectroscopy (NIRS) has been used to measure the quality of rice and classified 
many materials from different class successfully. However, few researches focused on 
discrimination the rice seeds of different storage time based on Vis/NIR spectroscopy 
technique.      

NIR spectroscopy technology has been effectively combined with chemometrics 
such as partial lest squares (PLS), multiple partial lest squares (MPLS), principal 
component analysis [1][2] and discriminant analysis for classification, discrimination 
and authentication purposes [3]. These methods failed with many variables, common 
solutions are to reduce the dimension of the predictor matrix by using data com-
pressed arithmetic and then apply LDA. Wavelet transform [4] [5], PCA [6] [7] has 
be proved as effective tool for feature extraction. In qualitative and quantitative 
analysis, artificial neural networks are more and more widely applied during the past 
several years. Compared with SIMCA、PLS、DPLS、QDA and LDA et al method, 
the better advantage of ANN is its anti-jamming, anti-noise and robust nonlinear 
transfer ability [8]. But the shortcoming of ANN is nonconvergent mostly when the 
input data is mass. So, the spectral data must be compressed as low-dimension data 
before ANN. 
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Inspired by this, we present a novel chemometrics method for differentiating the 
rice seed of different storage time, by integrating artificial neural network with wave-
let extraction and principal component analysis. The wavelet transform was used to 
extract features from the spectrum, and the features were visualized by principal com-
ponent analysis in PCs space, then the PCs which is closely correlative with the cate-
gories of these samples were used as the input of an ANN model for discrimination 
the classes of samples with different storage time.  

2   Materials and Method 

2.1   Materials 

210 Samples of rice seed of same varieties produced from 2002 to 2005 were taken in 
experiment. The rice seed samples were obtained from Grain Supply Center of Hang-
zhou, Zhejiang, China. The corresponding samples were storage for one year (OYS), 
two year (TWYS), three year (THYS) and four year (FYS). All samples were stored 
without any chemical or biological preservative treatment. The samples states can be 
seen in table1.  

Table 1. Status of the samples in the research 

Storage time Varietie Producing area Storage area No. 

One year early-indica type rice Jiangxi,China Hangzhou,China 54 
Two year early-indica type rice Jiangxi,China Hangzhou,China 51 

Three year early-indica type rice Jiangxi,China Hangzhou,China 52 
Four year early-indica type rice Jiangxi,China Hangzhou,China 53  

2.2   NIR Spectra Collection 

A Vis/NIR spectroradiometer (Handheld FieldSpec) was used to collect spectrum 
from 325 to 1075 nm at 3.5 nm bandwidth. The uniform glass vessel (diameter: 
d=60mm, height: h=14nm) was used to load the rice seed, and the vessel was filled 
with paddy. The spectroradiometer was fixed at 120 mm above the surface of the 
sample with the visual angle of 25°. The light source of a Lowell pro-lam 14.5 V Bulb 
tungsten halogen that could be used both in the visible and near infrared region was 
placed about 100 mm away form the sample surface.    

A 100 mm2 thick Teflon® disk was used as the optical reference standard for the 
system. A reflectance (R) was calculated by comparing near infrared energy reflected 
from the sample with the standard reference. Due to imperfection in the own system, 
a big scattering can be observed in the beginning and end of the spectral data, affect-
ing the measurement accuracy, so the first 75 and the last 75 wavelengths data were 
taken out of all analysis, starting from here all the considerations were based on this 
range of wavelengths. The absorbance spectra of all the four classes can be seen in 
fig.1.  
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Fig. 1. Absorbance spectra of four classes samples 

2.3   Chemometrics 

The wavelet transform (WT) enables the signal (spectrum) to be analyzed as a sum of 
functions (wavelets) with different spatial and frequency properties [2]. The generated 
waveforms are analyzed with wavelet multiresolution analysis to extract sub-band 
information from the simulated transients. Principal component analysis (PCA) is a 
very effective data reduction technique for spectral data [6]. It summarizes data by 
forming new variables, which are linear composites of the original variables. Artifi-
cial neural networks (ANN) are known as useful tools for pattern recognition, identi-
fication, and classification. And such a model can provide data approximation and 
signal-filtering functions beyond optimal linear techniques. PCA was performed using 
the Unscrambler 9.5 software (CAMO). The matlab Wavelet Toolbox was used to 
perform the standard wavelet packet transform using the predefined wavelet filters. 
The matlab Neural Networks Toolbox was used to build the back-propagation  
network model. 

3   Results and Discussion 

Fig.1 shows the average absorbance spectra of paddy samples from four different 
storage time. Seemingly, there isn't a remarkable difference among these four classes 
in these spectra range. After comparing in detail, some differences can be detected 
from 600 nm to 700 nm, which makes it possible to discriminate the samples with 
difference storage. The differences may be caused by the different internal attribute of 
these samples, such as the starch and protein. The baseline drift in the spectra (shown 
in fig.1.) is mostly due to system noise, which can be eliminated by smoothing pre-
treatment. 
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3.1   Feature Extraction  

In this research, the wavelet transform was used to select features from the raw spec-
tra. The WT was implemented using a dyadic filter tree. After trying, daubechies2 
wavelet was selected as the suitable function to decompose the spectral signal. Then 
the spectra data, which have 210 rows and 601 columns, were decomposed at third 
level by db2 wavelet. After decomposition, low-frequency coefficients (cA3) and 
high-frequency coefficients cD3, cD2 and cD1were obtained. It can be found that the 
high-frequency signals cD3, cD2 and cD1 contain mass high-frequency noise, and it 
can barely give any help to classify the varieties. So, the low-frequency coefficients 
(cA3) were used to replace the spectral signal with low-frequency data.   

3.2   Data Visualization by Principal Components Analysis 

Principal component analysis aimed to mapping the wavelet coefficients in a low-
dimension space with the largest variability. PCA was performed on the 77-wavelet 
coefficients of each sample, the dimensionality of the wavelet coefficients was re-
duced from 77 to 8 by PCA, and hence 8 principal components could be achieved. 
Fig.2 is the scatter image on the PC1 (variability, 84.4%) vs. PC2 (variability, 9.7%) 
scores space. The PCs 1 and 2 accounted for 94.1% of the variation.  

 

Fig. 2. Scatter plot of PC1vs PC2 scores of all samples 

The image defined by the PCs 1 and 2 shows some difference among the OYS, 
TWYS, THYS and FYS samples. The four classes samples are distributed in parallel 
strap shape. Analyzing fig.2, it is obvious that the PC1 and PC2 promote the pretty 
good separation of the samples of the OYS class、TWYS class and THYS class. The 
samples of OYS class、THYS class and FYS class can be differentiate by the scores 
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of PC1 and PC2. But the TYS and FYS samples are overlapped in the image. A more 
accuracy and clear separation need to be made. So, an artificial neural network algo-
rithm was applied to classify these classes with digital discriminative result.It can be 
found that the cumulative reliabilities of the first 8 principal components are 99.9%. It 
means these components can explain 99.9% of the variables the rest components don't 
give more useful information for detecting the classes. 

3.3   Discrimination Sample by ANN 

The whole samples were separated randomly into two parts, the randomly selected 
170 samples were used as calibration samples, and the remains 40 were used as pre-
diction samples. The first eight principal components from PCA were used as input 
vector. As there were four different classes samples, the output vectors of these sam-
ples were assumed to be as a matrix with one row and four column, only one element 
was assigned 1, the other 3 were assigned 0. Such as, the output binary vector (1 0 0 0) 
was denoted as the paddy seed of one-year storage time. A BP neural network model 
with three-layers was built. The transfer function of hidden layer was tansig function. 
The transfer function of output layer was logsig function. The train function was 
trainlm. The best neural network architecture was obtained with 8-8-4. The threshold 
value was 0.1. The neural network yielded a very high discrimination accuracy, all of 
the OYS、TWYS and THYS samples were correctly classified for the calibration and 
prediction sample sets, respectively. The FYS rice seed was more difficult to classify 
in prediction. However, 90% of FYS samples were correctly classified in the predic-
tion set. The total accuracy rate was 97.5% for all the four classes. The classification 
and prediction rate of this model can be seen in table 2. 

Table 2. Classification and prediction rate of this model 

 Classification Prediction 
Classes No. FNo. Ar No. FNo. Ar 

OYS 44 0 100% 10 0 100% 
TWYS 41 0 100% 10 0 100% 
THYS 42 0 100% 10 0 100% 
FYS 43 0 100% 10 1 90% 
Total 170 0 100% 40 1 97.5% 

              Note: No.-number, FNo.-fault number, Ar-accuracy rate. 

4   Conclusion 

The proposed method of integration of the wavelet transform, principal component 
analysis and artificial neuron network has shown a pretty good separation of rice seed 
of different storage time based on Vis/NIRS technology. In this application, wavelet 
transforms was used as a tool for dimension reduction and noise removal. The princi-
pal component analysis mapped the wavelet coefficients in a low-dimension PCs 
space with the largest variability. The structures of dataset correlation with the storage 
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time were discovered in the PCs space. The diagnostic spectral information was used 
as input to build the ANN model, this model shown a very good result for classifying 
the four classes. It means that NIR spectroscopy can be used to classify rice seed of 
different storage time nondestructively. And this chemometrics way combined with 
WT, PCA and ANN is effective to extract diagnostic information and build quantita-
tive discrimination model.  
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Abstract. The paper describes the application of an artificial neural
network in natural language text reasoning. The task of knowledge dis-
covery in text from a database, represented with a database file consist-
ing of sentences with similar meanings but different lexico-grammatical
patterns, was solved with the application of neural networks which recog-
nize the meaning of the text using designed training files. We propose
a new method for natural language text reasoning that utilizes three-
layer neural networks. The paper deals with recognition algorithms of
text meaning from a selected source using an artificial neural network.
In this paper we present that new method for natural language text rea-
soning and also describe our research and tests performed on the neural
network.

1 Introduction

For linguistic research, there is a need for consciously created and organized
collections of data and information that can be used to carry out knowledge
discovery in texts and to evaluate the performance and effectiveness of the
tools for these tasks. Knowledge discovery in text is the non-trivial process of
identifying valid, novel, potentially useful, and ultimately understandable pat-
terns in unstructured textual data [14,15]. These patterns are unknown, hidden
or implicit in semi-structured and unstructured collections of text. Below are
some of the kinds of knowledge discovery tasks that many subject disciplines are
interested in:

– Identification and retrieval of relevant documents from one or more large
collections of documents.

– Identification of relevant sections in large documents (passage retrieval).
– Co-reference resolution, i.e., the identification of expressions in texts that

refer to the same entity, process or activity.
– Extraction of entities or relationships from text collections.
– Automated characterization of entities and processes in texts.

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 1049–1057, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– Automated construction of ontologies for different domains (e.g., character-
ization of medical terms).

– Construction of controlled vocabularies from fixed sets of documents for
particular domains.

The need to construct controlled vocabularies for subject domains has meant
that terminological extraction from corpora has become an important process
in tasks related to knowledge discovery in text [14].

The proposed system for knowledge discovery in text uses neural networks for
natural language understanding in Fig. 1.

Database

(selected

data

source)

Data source input feedback information

sentences

with similar

meanings

text

meaning

(reasoning)

Intelligent

(Neural Networks)

knowledge

discovery

mechanisms

word recognition

sentence recognition

syntax analysis

Human
but different

lexico-

grammatical

patterns

knowledge discovery parameters

Fig. 1. Steps involved in proposed knowledge discovery in text

The system consists of a selected data source, 3-layer artificial neural net-
works, network training sets, letter chain recognition algorithms, syntax analysis
algorithms, as well as coding algorithms for words and sentences.

2 The State of the Art

Knowledge discovery is a growing field: There are many knowledge discovery
methodologies in use and under development. Some of these techniques are
generic, while others are domain-specific.

Learning algorithms are an integral part of knowledge discovery. Learning
techniques may be supervised or unsupervised. In general, supervised learning
techniques enjoy a better success rate as defined in terms of usefulness of discov-
ered knowledge. According to [1,2], learning algorithms are complex and gener-
ally considered the hardest part of any knowledge discovery technique. Machine
discovery is one of the earliest fields that has contributed to knowledge discovery
[4]. While machine discovery relies solely on an autonomous approach to infor-
mation discovery, knowledge discovery typically combines automated approaches
with human interaction to assure accurate, useful, and understandable results.

There are many different approaches that are classified as knowledge discov-
ery techniques [16]. There are quantitative approaches, such as the probabilis-
tic and statistical approaches. There are approaches that utilize visualization
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techniques. There are classification approaches such as Bayesian classification,
inductive logic, data cleaning/pattern discovery, and decision tree analysis [2,4].
Other approaches include deviation and trend analysis, genetic algorithms,
neural networks, and hybrid approaches that combine two or more techniques.

The probabilistic approach family of knowledge discovery techniques utilizes
graphical representation models to compare different knowledge representations
[7]. These models are based on probabilities and data independencies. The sta-
tistical approach uses rule discovery and is based on data relationships. An
inductive learning algorithm can automatically select useful join paths and at-
tributes to construct rules from a database with many relations [3]. This type of
induction is used to generalize patterns in the data and to construct rules from
the noted patterns.

Classification is probably the oldest and most widely-used of all the knowledge
discovery approaches [3,7,16]. This approach groups data according to similari-
ties or classes. There are many types of classification techniques e.g. the Bayesian
approach, pattern discovery and data cleaning, and the decision tree approach.
Pattern detection by filtering important trends is the basis for the deviation and
trend analysis approach. Deviation and trend analysis techniques are normally
applied to temporal databases [4,6].

Neural networks may be used as a method of knowledge discovery. Neural net-
works are particularly useful for pattern recognition, and are sometimes grouped
with the classification approaches. A hybrid approach to knowledge discovery
combines more than one approach and is also called a multi-paradigmatic ap-
proach. Although implementation may be more difficult, hybrid tools are able
to combine the strengths of various approaches. Some of the commonly used
methods combine visualization techniques, induction, neural networks, and rule-
based systems to achieve the desired knowledge discovery. Deductive databases
and genetic algorithms have also been used in hybrid approaches.

3 Method Description

In the proposed knowledge discovery system shown in Fig. 2, sentences are ex-
tracted from the database. The separated words of the text are the input signals
of the neural network for recognizing words [5]. The network has a training file
containing word patterns. The network recognizes words as the sentence compo-
nents, which are represented by its neurons in Fig. 3. The recognized words are
sent to the algorithm for coding words [12]. Then, the coded words are trans-
ferred to the sentence syntax analysis module. It is equipped with the algorithm
for analysing and indexing words. The module indexes words properly and then
they are sent to the algorithm for coding sentences [13]. The commands are
coded as vectors and they are input signals of the sentence recognition module
using neural networks. The module uses the 3-layer Hamming neural network in
Fig. 4, either to recognize the sentence in order to find out its meaning or just
does not recognize the sentence. The neural network is equipped with a training
file containing patterns of possible sentences whose meanings are understood.
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Because of the binary input signals, the Hamming neural network is chosen
in Fig. 5 which directly realizes the one-nearest-neighbour classification rule
[9,10,11]. Each training data vector is assigned a single class and during the
recognition phase only a single nearest vector to the input pattern x is found
and its class Ci is returned. There are two main phases of the operation of
the expert-network: training (initialization) and classification. Training of the
binary neural network consists of copying reference patterns into the weights of
the matrix Wpn, as follows (1):
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wi = xi , 1 ≤ i ≤ p (1)

where p is the number of input patterns-vectors x, each of the same length n, wi

is the i-th row of the matrix W of dimensions p rows and n columns. For given
n the computation time is linear with the number of input patterns p.

The goal of the recursive layer N2. is selection of the winning neuron.The
characteristic feature of this group of neurons is a self connection of a neuron to
itself with a weight mii=1 for all 1 ≤ i ≤ p, whereas all other weights are kept
negative. Initialization of the N2. layer consists in assigning negative values to
the square matrix Mpp except the main diagonal. Originally Lippmann proposed
initialization [8] (2):

mkl = −(p − 1)−1 + ξkl for k �= l , 1 for k = l
where 1 ≤ k, l ≤ p, p > 1 (2)

where ξ is a random value for which |ξ| �(p−1)−1. However, it appears that the
most efficient and still convergent solution is to set equal weights for all neurons
N2. which are then modified at each step during the classification phase, as
follows (3):

mkl = εk(t) = −(p − t)−1 for k �= l , 1 for k = l
where 1 ≤ k, l ≤ p, p > 1 (3)

where t is a classification time step. In this case the convergence is achieved in
p − 1 − r steps, where r > 1 stands for the number of nearest stored vectors in
W .

In the classification phase, the group N1. is responsible for computation of the
binary distance between the input pattern z and the training patterns already
stored in the weights W . Usually this is the Hamming distance (4):

bi(z, W ) = 1 − n−1DH(z, wi) , 1 ≤ i ≤ p (4)

where bi ∈ [0, 1] is a value of an i-th neuron in the N1. layer, DH(z, wi) ∈
{0, 1, ..., n} is a Hamming distance of the input pattern z and the i-th stored
pattern wi (i-th row of W ).

In the classification stage, the N2. layer operates recursively to select one
winning neuron. This process is governed by the following equation (5):

ai[t + 1] = ϕ

⎛

⎝
n∑

j=1

mijaj [t]

⎞

⎠ = ϕ

⎛

⎝ai[t] +
n∑

j=1, i�=j

mijaj [t]

⎞

⎠ (5)

where ai[t] is an output of the i-th neuron of the N2. layer at the iteration step
t, ϕ is a threshold function given as follows (6):

ϕ(x) = x for x > 0 , 0 otherwise (6)

Depending on the chosen scheme (2)-(3) of the mij weights in (5), we obtain
different dynamics of the classification stage. The iterative process (5) proceeds
up to a point where only one neuron has value different than 0 - this neuron is
a winner.
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4 Research Results

The dataset for the tests carried out contained a database of 1500 sentences,
files consisting of 522 letter chains, 87 word training patterns and 510 sentence
meaning training patterns. The first test measured the performance of the
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Fig. 6. Sentence meaning recognition rate as a set of words recognised earlier

sentence meaning recognition with the sentence recognition module using ar-
tificial neural networks as a set of words recognised earlier in Fig. 6.

As shown in Fig. 7a, the ability of the implemented neural network for word
recognition to recognise the word depends on the number of letters. The neural
network requires a minimum number of letters of the word being recognized
as its input signals. As shown in Fig. 7b, the ability of the neural network for
sentence meaning recognition to recognise the sentence depends on the number
of sentence component words. Depending on the number of component words
of the sentence, the neural network requires a minimum number of words of the
given sentence as its input signals.

5 Conclusions and Perspectives

Knowledge discovery is a rapidly expanding field with promise for great applica-
bility. Knowledge discovery purports to be the new database technology for the
coming years. The need for automated discovery tools had caused an explosion
in research.

The motivation behind using the binary neural networks in knowledge dis-
covery comes from the possible simple binarization of words and sentences, as
well as very fast training and run-time response of this type of neural networks.
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Fig. 7. a) Sensitivity of word recognition: minimum number of letters of the word being
recognized to number of word component letters; b) Sensitivity of sentence meaning
recognition: minimum number of words of the sentence being recognized to number of
sentence component words
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Application of binary neural networks allows for recognition of sentences in nat-
ural language with similar meanings but different lexico-grammatical patterns,
which can be encountered in documents, texts, vocabularies and databases. The
presented methods can be easily extended.

It is anticipated that commercial database systems of the future will include
knowledge discovery capabilities in the form of intelligent database interfaces.
Some types of information retrieval may benefit from the use of knowledge dis-
covery techniques. Due to the potential applicability of knowledge discovery in
so many diverse areas there are growing research opportunities in this field.
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Abstract. As a novel optimization technique, neural network based optimiza-
tion has gained much attention and some applications during the past decade. 
To enhance the performance of Differential Evolution Algorithm (DEA), which 
is an evolutionary computation technique through individual improvement plus 
population cooperation and competition, an intelligent Differential Evolution 
Algorithm (IDEA) is proposed by incorporating neural network based search 
behaviors into classic DEA. Firstly, DEA operators are used for exploration by 
updating individuals so as to maintain the diversity of population and speedup 
the search process. Secondly, a multi-layer feed-forward neural network is em-
ployed for local exploitation to avoid being trapped in local optima and improve 
the convergence of the IDEA. Simulation results and comparisons based on 
well-known benchmarks and optimal designing of trading-ratio system for wa-
ter market demonstrate that the IDEA can effectively enhance the searching  
efficiency and greatly improve the searching quality. 

1   Introduction 

Neural network (NN) has shown to be an effective optimization technique for com-
plex function optimization problems. Since the pioneer work of Tank and Hopfield’s 
in 1986 [1], NN-based searching algorithms have aroused intense interests. However, 
simple NN-based search often needs a large number of iterations to reach the global 
optimum and are sensitive to the initial conditions.  

Recently, a new evolutionary technique, differential evolution algorithm (DEA), 
has been proposed [2] as an alternative to genetic algorithm (GA) [3] and particle 
swarm optimization (PSO) [4] for unconstrained continuous optimization problems. 
Although the original objective in the development of DEA was for solving the Che-
bychev polynomial problem, it has been found to be an efficient and effective solution 
technique for complex functional optimization problems. In a DEA system, a popula-
tion of solutions is initialized randomly, which is evolved to find optimal solutions 
through the mutation, crossover, and selecting operation procedures. Compared with 
GA and PSO, DEA has some attractive characteristics. It uses simple differential 
operator to create new candidate solutions and one-to-one competition scheme to 
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greedily select new candidate, which work with real numbers in natural manner and 
avoid complicated generic searching operators in GA. It has memory, so knowledge 
of good solutions is retained in current population, whereas in GA, previous knowl-
edge of the problem is destroyed once the population changes and in PSO, a secon-
dary archive is needed. It also has constructive cooperation between individuals,  
individuals in the population share information between them. Due to the simple con-
cept, easy implementation and quick convergence, nowadays DEA has attracted much 
attention and wide applications in different fields mainly for various continuous opti-
mization problems [5].  

To the best of our knowledge, there is no any published work for dealing with nu-
merical optimization by hybridizing DEA and NN-based local search. And there is 
also no research on DEA for optimal designing of optimal designing of trading-ratio 
system for water market. In this paper, an intelligent DEA (IDEA) is proposed by 
incorporating differential evolution algorithm (DEA) and neural network based search 
behaviors into classic DEA. Firstly, DEA operators are used for exploration by updat-
ing individuals so as to maintain the diversity of population and speedup the search 
process. Secondly, a multi-layer feed-forward neural network is employed for local 
exploitation to avoid being trapped in local optima and improve the convergence of 
the IDEA. Simulation results and comparisons based on well-known benchmarks and 
optimal designing of optimal designing of trading-ratio system for water market dem-
onstrate that the IDEA can effectively enhance the searching efficiency and greatly 
improve the searching quality.  

2   Formulation of Water Right Trading System 

In this section we design a water right trading system [6], which could avoid third-
party effects as reducing the instream flow of the intermediate stream and down-
stream. The initial water right is distributed to meet the minimum instream flow stan-
dard which the authority sets exogenously. Then water users may trade water right 
according to a set of given trading ratios. The trading ratios are set exogenously based 
on return flow parameters to ensure that any trading would not violate minimum in-
stream flow standards. The trading rules can take care of the location effects of users 
and may achieve social optimum [7]. 

The social planner’s problem is to maximize the social benefits of all traders: 

Max ( ) ,ib
i i i iB q a q=∑ ∑  (1) 
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where jq  is quantitative water use of user j; )( ii qB  is the utility function of user i 

with water quantity jq ; ia  and ib  are the given parameters; 0V  is the headstream 

water supply; iR  is the return flow; iiniq  denotes the initial endowment, which is 

derived from equation (2); iF  is the minimum instream flow requirement of user i; 

)1/()1( ji RR −−  is the trading ratio between down stream user j and up stream user i; 

),( jitq  represent the water quantity transformed from i to j. Equation (2) denotes that 

the initial endowment should satisfy minimum instream flow requirement. Equation 
(3) requires that each user’s trading balance should under the trading rules.  

3   Introduction on DEA and NN-Based Local Search 

3.1   DEA 

DEA is a population-based evolutionary computation technique, which uses simple 
differential operator to create new candidate solutions and one-to-one competition 
scheme to greedily select new candidate. The theoretical framework of DEA is very 
simple and DEA is easy to be coded and implemented with computer. Besides, it  
is computationally inexpensive in terms of memory requirements and CPU times. 
Thus, nowadays DEA has attracted much attention and wide applications in various 
fields [5].  

In DEA, it starts with the random initialization of a population of individuals in 
the search space and works on the cooperative behaviors of the individuals in the 
population. Therefore, it finds the global best solution by utilizing the distance and 
direction information according to the differentiations among population. However, 
the searching behavior of each individual in the search space is adjusted by dynami-
cally altering the differentiation’s direction and step length in which this differentia-
tion performs. 

The i-th individual in the d-dimensional search space at generation t can be rep-
resented as ],...,,[)( ,2,1, diiii xxxtX = , ( NPi ,...,2,1= , where NP  denotes the size of 

the population). At each generation t, the mutation and crossover operators are 
applied on the individuals, and a new population arises. Then, selection takes place, 
and the corresponding individuals from both populations compete to comprise the 
next generation. 

For each target individual )(tX i , according to the mutation operator, a mutant vec-

tor )]1(),...,1([)1( ,1, ++=+ tvtvtV diii  is generated by adding the weighted difference 
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between a defined number of individuals randomly selected from the previous popula-
tion to another individual, which is described by the following equation: 

1 2( 1) ( ) ( ( ) ( )),i best r rV t X t F X t X t+ = + −  (6) 

where },...,2,1{2,1 Nrr ∈  are randomly chosen and mutually different and also differ-

ent from the current index i . ]2,0(∈F  is constant called scaling factor which con-

trols amplification of the differential variation )()( 21 tXtX rr − , and NP  is at least 4 

so that the mutation can be applied. )(tXbest , the base vector to be perturbed, is the 

best member of the current population so that the best information could be shared 
among the population. 

After the mutation phase, the crossover operator is applied to increase the diversity 
of the population. Thus, for each target individual )(tX i , a trial vector 

)]1(),...,1([)1( ,1, ++=+ tututU diii  is generated by the following equation: 

dj
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where )( jrand  is the j-th independent random number uniformly distributed in the 

range of [0, 1]. )(irandn  is a randomly chosen index from the set },...,2,1{ d . 

]1,0[∈CR  is constant called crossover parameter that controls the diversity of the 
population. 

Following the crossover operation, the selection arises to decide whether the trial 
vector )1( +tUi  would be a member of the population of the next generation 1+t . 

For a minimum optimization problem, )1( +tUi  is compared to the initial target indi-

vidual )(tX i  by the following one to one based greedy selection criterion: 

⎩
⎨
⎧ <++

=+
otherwise. ),(

)),(())1(( if ),1(
)1(

tX

tXFtUFtU
tX

i

iii
i  (8) 

where F  is the objective function under consideration, )1( +tX i  is the individual of 
the new population. The procedure described above is considered as the standard 
version of DEA, and it is denoted as DE/best/1/bin. Several variants of DEA have 
been proposed, depending on the selection of the base vector to be perturbed,  
the number and selection of the differentiation vectors and the type of crossover  
operators [5]. 

The key parameters in DEA are NP  (size of population), F  (scaling factor) and 
CR  (crossover parameter). Proper configuration of the above parameters would 
achieve good tradeoff between the global exploration and the local exploitation so as 
to increase the convergence velocity and robustness of the search process. Some basic 
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principles have been given for selecting appropriate parameters for DEA [5]. In  
general, the population size NP  is choosing from d⋅5  to d⋅10  (number of dimen-
sion). F  and CR  lies in the range of [0.4, 1.0] and [0.1, 1.0] respectively. The proce-
dure of DEA is summarized in Fig.1.  

 
For each individual i in the population, initialize )0(iX  randomly, 0=g  

Repeat until a stopping criterion is satisfied: 
  Mutation step: 

))()(())()(()( ,2,1,,,, gxgxFgxgxgxv jrjrjijbestjiji −+−+= λ , 

Ni ≤∀  and dj ≤∀  . 

  Crossover step:  

⎪⎩

⎪
⎨
⎧

−
=

 1y probabilit   with)(

 y probabilit with     

,

,
, CRgx

CRv
u

ji

ji
ji , Ni ≤∀  and dj ≤∀  . 

  Selection step:  
if ))(()( gXfUf ii < then ii ugx =+ )1(  else )()1( gxgx ii =+ , Ni ≤∀  

   1.g g= +  

Fig. 1. Procedure of DEA algorithm 

3.2   NN-Based Local Search 

In addition, to further improve the solution quality and convergence speed of DEA, a 
NN, trained with the DEA results, is used to guide the DEA search for a better opti-
mum value in the subsequent generations. In this paper, we uses a three-layer feed-
forward NN with hyperbolic tangent sigmoid transfer function and Powell-Beale's 
learning algorithm, which has shown to be very efficient in improving the conver-
gence of the IDEA. 

4   Intelligent DEA (IDEA) 

By hybridizing DEA and NN, a two-phased iterative strategy named intelligent DEA 
(IDEA) is proposed, in which DEA operators are used for exploration by updating 
individuals so as to maintain the diversity of population and speedup the search proc-
ess, and a multi-layer feed-forward neural network is employed for local exploitation 
to avoid being trapped in local optima and improve the convergence of the IDEA. The 
procedure of IDEA is illustrated in Fig.2.  

It can be seen that DEA operators are used for exploration by updating in the popu-
lation, and NN-based local search is applied for exploitation by locally modified the 
best individual resulted by DEA. 
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Step 1: Randomly initialize the population of individual for DEA, where each 
individual contains n  variables. 

Step 2: Evaluate the objective values of all individuals, and determine bestX  

which has the best objective value. 
Step 3: Perform mutation operation for each individual according to Eq. (6) in 

order to obtain each individual’s mutant counterpart. 
Step 4: Perform crossover operation between each individual and its correspond-

ing mutant counterpart according to Eq. (7) in order to obtain each individual’s trial 
individual. 

Step 5: Evaluate the objective values of the trial individuals. 
Step 6: Perform selection operation between each individual and its correspond-

ing trial counterpart according to Eq. (8) so as to generate the new individual for 
the next generation. 

Step 7: Determine the best individual of the current new population with the best 
objective value. If the objective value is better than the objective value of bestX , 

then update bestX  and its objective value with the value and objective value of the 

current best individual. 
Step 8: Train a neural network with the objective function values of each indi-

vidual (as an input) and the individual (as an output). 
Step 9: Predict a combination of the variables which could possibly produce an 

objective function value slightly better than the bestX  objective value by the above 

trained network. 
Step 10: Replace the worst individual’s by the objective value and the corre-

sponding variables found in step 9.  
Step 11: Update the bestX  and its corresponding value.  

Step 12: If a stopping criterion is met, then output bestX  and its objective value; 

otherwise go back to Step (3). 

Fig. 2. Procedure of IDEA algorithm 

5   Numerical Simulations and Comparisons 

5.1   Comparisons of IDEA, DEA, GA, and PSO on Benchmarks 

To test the performance of the proposed algorithms, four famous benchmark optimi-
zation problems [3] are used, which are described in the Appendix. Firstly, we com-
pare the IDEA with the standard DEA [5], PSO [8], and GA [9]. In both DEA and 
IDEA, 20=NP , CR=0.5, 8.0== Fλ . In PSO, the population size is 20, 1c  and 2c  

are set to 2.0, and maxv  is clamped to be 15% of the search space, and uses a linearly 

varying inertia weight over the generations, varying from 1.2 at the beginning of the 
search to 0.2 at the end. The GA [9] with a population of 40 is real-valued with ran-
dom initialization, tournament selection with tournament size four, a 2-element  
elitist strategy, arithmetic crossover with random weight, Gaussian mutation with 
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distribution ( )aN ,0 = ( )ax
a

2exp
2

1 2−
π

, where a  is linearly decreasing from 1 to 

0. Crossover and mutation probabilities are set as 0.8 and n1  respectively, where n  

is the dimension of the problem. Fixed the total number of function evaluation as 
2000, Table 1 lists the average best function value and the standard deviation of 50 
independent runs.  

Table 1. Comparisons of IDEA, DEA, GA, and PSO 

F IDEA DEA GA PSO 
F1 0 ± 0 0 ± 0 6.31E-7 ± 6.41E-13 1.27E-3 ± 4E-3 

F2 2.14E-172 ± 0 
1.97E-104 ± 6.00E-

104 
2.39E-4 ± 6.56E-8 

3.83E-7 ± 6.77E-7 

F3 1.97E-31 ± 1.94E-61 1.51E-30 ± 3.32E-30 0.132 ± 0.0089 0.257 ± 0.346 
F4 680.63 ± 1.50E-8 680.63 ± 0.005 684.78 ± 3.277 684.44 ± 2.056 

From Table 1, it can be seen that the results of IDEA are much closer to the theo-
retical optima, and IDEA is superior to DEA, GA, and PSO in term of searching qual-
ity and derivation of the results. So, it is concluded that IDEA is more effective and it 
is more robust on initial conditions. 

5.2   Optimal Designing of the Water Right Trading System 

In this section we use the proposed IDEA to design the trading-ratio system for water 
market, which is to maximize the social benefits of all traders. For the model pro-
posed in Section 2, the parameters are set as follows: the number of water users is 
four; 0V  is equal to 150; 45) 55, 35, (30,=ia ; )22.0,14.0,28.0,18.0(=ib ; 

0.5) 0.3, 0.4, (0.5,=iR ; 20) 30, 35, (40,=iF  (i=1, 2, 3, 4). By using our proposed 

IDEA, the maximum benefits of all traders is 325.385)( =∑ ii qB  under the decision 

variables )76.81,40.27,32.90,49.31(=iq . 

6   Conclusions  

To our knowledge, this is the first report of hybridizing differential evolution algo-
rithm and neural network-based search to propose an effective and efficient optimiza-
tion algorithm for numerical functions and optimal designing of optimal designing of 
trading-ratio system for water market. The proposed approach not only performs 
exploration by using the population-based evolutionary searching ability of DEA, but 
also performs exploitation by using the NN-based local searching behavior. The pro-
posed IDEA is superior in term of searching quality, efficiency and robustness on 
initial conditions. The future work is to apply the IDEA for some real-life optimiza-
tion problems. 
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Appendix: Four Benchmark Optimization Problems Used  

F1: Rastrigin’s function (n=2) 

12.512.5,))2cos(10(10)(
1

2
1 ≤≤−−+= ∑

=
i

n

i
ii xxxnxF π . 

The global minimum is equal to 0 and the minimum point is (0, 0). 
F2: Sphere function (n=5) 

55,
1

2
2 ≤≤−=∑

=
i

n

i
i xxF . 

The global minimum is equal to 0 and the minimum point is (0, 0, 0, 0, 0). 
F3: Rosenbrock’s function (n=3)  

1
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The global minimum is equal to 0 and the minimum point is (1, 1, 1). 
F4: Constrained function (n=7) 

2 2 4 2 6
4 1 2 3 4 5

2 4
6 7 6 7 6 7

( 10) 5( 12) 3( 11) 10

7 4 10 8 .

F x x x x x

x x x x x x

= − + − + + − +

+ + − − −
 

Subject to nonlinear constraints: 
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The global minimum is equal to 680.6300573 and the minimum point is (2.330499, 
1.951372, -0.4775414, 4.365726, -0.624487, 1.038131, 1.594227). 



Neural Network-Based H∞ Filtering for

Nonlinear Jump Systems�

Xiaoli Luan and Fei Liu

Institute of Automation, Southern Yangtze University
Wuxi 214122, P.R. China

fliu@thmz.com

Abstract. This paper addresses the problem of designing a Markovian
H∞ filter for a class of nonlinear stochastic Markovian jump systems.
Firstly, neural networks are employed to approximate the nonlinearities
in the different jump modes. Secondly, the overall system is represented
by the mode-dependent linear difference inclusion (LDI). Then, a neural
network-based Markovian H∞ filter is developed using the stochastic
Lyapunov-Krasovskii stability theory under some linear matrix inequal-
ity (LMI) constraints. Finally, a numerical example is worked out to show
the usefulness of the theoretical results.

1 Introduction

Stochastic Markovian jump systems (MJS), which are appropriate to describe
dynamic systems with structures and parameters varying abruptly in a random
way, have gained a great deal of attention [1]. Stochastic MJS can be regarded
as a special class of hybrid systems with many operation modes, which are
determined by a Markov chain taking values in a finite set [2, 3]. In the past
decade, a lot of control issues have been investigated for linear MJS, which cover
a large variety of problems such as H∞ control [4], output feedback control [5],
passive control [6], guaranteed cost control [7], etc. As for the filtering problems
concerning linear MJS, a number of results are also available. For example, the
Kalman filtering problem was studied in [8] and [9], where the results were given
in terms of coupled Ricatti equations. Based on linear matrix inequality (LMI)
approach, a robust H∞ filter was designed in [10] and reduced-order H∞ filtering
problem was tackled in [11] with matrix rank constraints. It is worth noticing
that all above results are limited to linear MJS. In practice, however, a nonlinear
MJS may be more reasonable to account for the nonlinear structural changes.
Due to its complexity, until now, the filtering problems commence gaining initial
attention, see e.g. [12]. Compared with linear cases, there have been few papers
dealing with filter design problems for general nonlinear MJS. This situation
motivates us to study the filtering problem for a class of nonlinear MJS.
� This work is supported by The National Natural Science Foundation of China

(NSFC: 60574001)and by Program for New Century Excellent Talents in University
(NCET-05-0485).

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 1067–1076, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



1068 X. Luan and F. Liu

In recent years, neural network has been widely used in nonlinear area owing
to its universal approximation capability. Details concerning neural networks and
their relations to the deterministic linear and nonlinear systems can be found
everywhere [13, 14]. In spite of these successes, there are many basic issues
remain to be addressed. One of them is how to achieve a systematic design
that guarantees closed-loop stability and performance [15]. Recently, a class of
multi-layer neural networks that admit a linear difference inclusion (LDI) state-
space representation to approximate a deterministic nonlinear system has been
proposed in [16, 17]. Based on LDI model, some systematic model-based neural
network control design methodologies have been developed [18].

This paper contributes to develop a Markovian H∞ filter for a class of non-
linear stochastic MJS based on neural networks. The problem we address is the
design of Markovian H∞ filter such that the resulting error system achieves as-
ymptotical stability and the H∞ gain from the noise signal to the filtering error
remains bounded by a prescribed value. To solve this problem, an LMI approach
is developed and sufficient conditions for the solvability are obtained. The de-
sired filter can be constructed through a convex optimization problem, which
can be efficiently handled by using standard numerical algorithm.

2 Problem Formulation and Analysis

Consider a class of nonlinear MJS described as follows:

ẋ(t) = A(rt)x(t) + B(rt)w(t) + f(x(t), rt),

y(t) = C(rt)x(t)

z(t) = L(rt)x(t)

(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is measured output vector,
z(t) ∈ Rp is the signal to be estimated, w(t) ∈ Ln

2 [0, ∞) is the disturbance input
vector, f(·) : Rn �→ Rn is continuous nonlinear mapping. A(rt), B(rt), C(rt),
L(rt) are mode-dependent matrices with appropriate dimensions, rt represents
a continuous-time discrete-state Markov process with values in a finite set S =
{1, 2, · · · , s} with transition probability matrix Π = [πij ] given by

πij = P (rt+Δt = j|rt = i) =

⎧
⎨

⎩

πijΔt + o(Δt), if i �= j

1 + πiiΔt + o(Δt), if i = j
(2)

where πij is the transition rate from mode i to j, and Δt > 0 . For , i �= j,

πij ≥ 0, −πii =
s∑

j=1,j �=i

πij

For presentation convenience, when rt = i , we denote f(x(t), rt), A(rt), B(rt),
C(rt) and L(rt) as fi(x(t)), Ai, Bi, Ci and Li respectively.



Neural Network-Based H∞ Filtering 1069

For each mode i, the nonlinear function fi(x(t)) can be approximated ar-
bitrarily well on a compact interval by single hidden layer neural networks
Ni(x(t), Wi1 , Wi2) described as following

Ni(x(t), Wi1 , Wi2) = Ψi2[Wi2Ψi1[Wi1x(t)]] (3)

where for r = 1, 2, the activation function vector is defined as

Ψir[υ] = [ϕir(υ1), ϕir(υ2), · · · , ϕir(υni)]
T

with

ϕir(υ) = λ(
1 − e−υ/q

1 + e−υ/q
) q, λ > 0

and Wir denotes the connecting weights matrices need to be trained by back
propagation learning algorithm, ni is the neurons of the ith layer. According to
the neural network theory, for a set of error upper bounds ρi > 0, there exist
optimal approximation weights defined as W ∗

i1, W
∗
i2 such that

‖fi(x(t)) − Ni(x, W ∗
i1, W

∗
i2)‖ ≤ ρi‖x(t)‖ (4)

While the maximum and minimum values Si(0, ϕir) and Si(1, ϕir) of activa-
tion function ϕ

′

ir(υ) are defined, respectively, as follows:

S(k, ϕir) =

⎧
⎪⎨

⎪⎩

minυ
∂ϕj(υ)
∂(υ) , k = 0

maxυ
∂ϕj(υ)
∂(υ) , k = 1

(5)

It is direct to represent ϕir(υ) as

ϕir(υ) = hi(0)Si(0, ϕir) + hi(1)Si(1, ϕir) (6)

where hi(k), k = 0, 1 is a set of positive real number associated with ϕir satisfying
hi(k) > 0 and hi(0) + hi(1) = 1.

Denote a set of ni dimensional index vectors of the hidden layer as

γni = γni(δ) = {δ ∈ Rni |δh ∈ {0, 1}, h = n1, n2}

where δ is used as a binary indicator. Obviously, the ith layer with ni neurons
has 2ni combinations of binary indicator with k = 0, 1 and the elements of index
vectors for two-layers neural network have 2n2 × 2n1 combinations in the set

Ω = γn2 ⊕ γn1

By using (5), the neural network Ni(x(t), W ∗
i1, W

∗
i2) can be expressed as

Ni(x(t), W ∗
i1, W

∗
i2) =

∑

σ∈γn2⊕γn1

μiσAiσ(σ, Ψi, W
∗
i )x(t) (7)
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where
Aσ = diag[Si2k(υi2k, ϕi2k)]W ∗

i2diag[Si1k(υi1k, ϕi1k)]W ∗
i1 (8)

which is a constant matrix whose coefficients depend on optimal weighs W ∗
i ,

activation functions Ψir and all index vectors δ. Further, μiσ is the product of
the real number hi(k) of all neurons in whole neural network, and for σ ∈ Ω,

μiσ > 0,
∑

σ∈γn2⊕γn1

μiσ = 1.

Thus, by means of neural networks, nonlinear MJS (1) is translated into a
group of linear differential inclusions, in which the different inclusion is powered
by stochastic Markovian process, i.e.

ẋ(t) =
∑

σ∈Ω μiσ(Aiσ + Ai)x(t) + Biw(t) + Δfi(x(t)),

y(t) = Cix(t)

z(t) = Lix(t)

(9)

where
Δfi(x(t)) = fi(x(t)) −

∑

σ∈Ω

μiσAiσx(t) ≤ ρi‖x(t)‖ (10)

3 H∞ Filter Design

The intention of the H∞ filtering problem is to obtain an estimate ẑ(t) of the
signal z(t) such that a guaranteed performance criterion is minimized in an
estimated error sense. Consider the following linear Markovian full-order filter
for which the jumping process {rt} is available for t ≥ 0:

˙̂x(t) = Ki1x̂(t) + Ki2y(t)

ẑ(t) = Ki3x̂(t)
(11)

where the matrices Ki1, Ki2 and Ki3 are to be determined in the course of the
design.

In terms of the state error e(t) = x(t) − x̂(t), it follows from system (9) and
filter (11) that the state error dynamics has the form

ė(t) = (A
′

i − Ki2Ci − Ki1)x(t) + Ki1e(t) + Biw(t) + Δfi(x(t)) (12)

where A
′

i =
∑

σ∈Ω μiσ(Aiσ + Ai).
A state-space augmented model of the filtering error, z̃(t) = z(t) − ẑ(t) , can

then be constructed using (9), (11) and (12)

˙̃x(t) =

[
ẋ

ė

]

= Ãix̃(t) + B̃iw(t) + ẼiΔfi(x̃),

z̃(t) = C̃ix̃(t)

(13)



Neural Network-Based H∞ Filtering 1071

where

Ãi =

⎡

⎣
A

′

i 0

A
′

i − Ki2Ci − Ki1 Ki1

⎤

⎦

B̃i =

[
Bi

Bi

]

Ẽi =

[
1 0

1 0

]

C̃i =
[
Li − Ki3 Ki3

]

Δfi(x̃) =

[
Δfi(x)

Δfi(e)

]

The primary objective of this paper is to provide a practical design procedure
for a Markovian H∞ filter for the nonlinear MJS (1). In other words, we shall
design the filter parameter Ki1, Ki2 and Ki3 such that the filtering error systems
(13) is stochastically stable and for all non-zero w ∈ L2[0, ∞)

E{
∫ ∞

0
z̃T (t)z̃(t)dt − γ2

∫ ∞

0
wT (t)w(t)dt} < 0

Lemma 1 [19]. let x ∈ Rn, y ∈ Rn and ε > 0, then

xT y + yT x ≤ εxxT + ε−1yT y

Theorem 1. Consider the nonlinear MJS (1) and given γ > 0, if there exist
positive definite symmetric matrices Pi1, Pi2, matrices Xi, Yi, Ki3and a set of
positive real number εi such that

⎡

⎣
Ei Oi

OT
i Xi

⎤

⎦ < 0 (14)

where

Ei =

�
�Pi1A

′′
i + (A

′′
i )T Pi1 + εiρ

2
i I +

�s
j=1 πijPj1 (A

′′
i )T Pi2 − CT

i Y T
i − XT

i

∗ Xi + XT
i + εiρ

2
i I +

�s
j=1 πijPj2

�
�

Oi =

⎡

⎣
Pi1Bi LT

i − KT
i3 Pi1 0

Pi2Bi KT
i3 Pi2 0

⎤

⎦

Xi = −diag
[
γ2I I εiI εiI

]

A
′′

i = Aiσ + Ai
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then the H∞ filtering problem for system (1) is solvable. Moreover, the matrices
of the filter is given by

Ki1 = P−1
i2 Xi

Ki2 = P−1
i2 Yi

Proof. For T > 0, introduce the following cost function for system (13)

J(T ) = E{
∫ T

0
z̃T (t)z̃(t)dt − γ2

∫ T

0
wT (t)w(t)dt} (15)

with concerned stochastic Lyapunov function

V (x̃(t), rt = i) = V (x̃, i) = x̃T Pix̃ (16)

where Pi is mode-dependent positive definite symmetric matrix for each i.
Then the weak infinitesimal operator Â of (13) is given by

ÂV (x̃, i) = limΔt→0
1

Δt [E{V (x̃(t + Δt), rt+Δt)|x̃(t), rt} − V (x̃(t), rt)]

= 2x̃T Pi[Ãix̃ + B̃iw + ẼiΔfi(x̃)] + x̃T
∑s

j=1 πijPj x̃

(17)

Applying Lemma 1 and noticing (10), it follows that

ÂV (x̃, i) ≤ x̃T Λix̃ + 2x̃T PiB̃iw

where

Λi = PiÃi + ÃT
i Pi + ε−1

i PiẼiẼ
T
i Pi + εiρ

2
i I +

s∑

j=1

πijPj

In zero initial condition, the index J(T ) can be rewritten as

J(T ) = E{
∫ T

0 [‖z̃(t)‖2 − γ2‖w(t)‖2 + ÂV (x̃, i)]dt} − V (x̃, i)

≤ E{
∫ T

0 [x̃T (Λi + C̃T
i C̃i)x̃ + 2x̃T PiB̃iw − γ2wT w]dt} − V (x̃, i)

= E{
∫ T

0

[
x̃

w

]T
⎡

⎣
Λi + C̃T

i C̃i PiB̃i

B̃T
i Pi −γ2I

⎤

⎦
[

x̃

w

]

dt} − V (x̃, i)

Let

Θ =

⎡

⎣
Λi + C̃T

i C̃i PiB̃i

B̃T
i Pi −γ2I

⎤

⎦ .

If Θ < 0 , then for w(t) = 0,

PiÃi + ÃT
i Pi +

s∑

j=1

πijPj < 0
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which guarantees the stability of filtering error dynamics (13). On the other
hand, for T → ∞, Θ < 0 yields

J(∞) < −V (∞) < 0

i.e.

E{
∫ ∞

0
z̃T (t)z̃(t)dt − γ2

∫ ∞

0
wT (t)w(t)dt} < 0

Applying Schur complements, condition Θ < 0 is equivalent to following
inequality: ⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

Λi PiB̃i C̃T
i PiẼi

∗ −γ2I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −εiI

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

< 0 (18)

Now defining Pi =

[
Pi1 0

0 Pi2

]

, where Pi1 ∈ Rn×n, Pi2 ∈ Rn×n, the above

inequality can be rewritten as
[

Σi Oi

OT
i Xi

]

< 0 (19)

where

Σi =

⎡

⎣
Hi (A

′

i)
T Pi2 − CT

i KT
i2Pi2 − KT

i1Pi2

∗ Pi2Ki1 + KT
i1Pi2 + εiρ

2
i I +

∑s
j=1 πijPj2

⎤

⎦

Hi = Pi1A
′

i + (A
′

i)
T Pi1 + εiρ

2
i I +

s∑

j=1

πijPj1

Introduce a class of variables

Xi = Pi2Ki1, Yi = Pi2Ki2,

then LMI (14) can be obtained from (19) using
∑

σ∈Ω μiσ = 1 . This concludes
the proof.

4 Numerical Example

Consider the nonlinear MJS (1) with parameters given by Mode 1:

A1 =

[−1 −3

0 −5

]

, B1 =

[
0

3

]

, C1 =
[
2 3

]
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L1 =
[
0.1 0

]
, f1(x) =

[
0

sin(x1(t))

]

Mode 2:

A2 =

[
0 −2

0 −3

]

, B2 =

[
0

1

]

, C2 =
[
1 1.8

]

L2 =
[
0.2 0.1

]
, f2(x) =

[
0

sin(0.3x1(t))

]

Mode 3:

A3 =

[
1 −3

0 −4

]

, B3 =

[
0

1.7

]

, C3 =
[
1.2 1.5

]

L3 =
[
0 0.1

]
, f3(x) =

[
0

sin(0.5x1(t))

]

the transition rate matrix is defined by

Π =

⎡

⎢⎢
⎢
⎣

−3 1.8 1.2

0.3 −2 1.7

0.3 0.7 −1

⎤

⎥⎥
⎥
⎦

In this example, the same three single hidden layer neural networks with h = 2
are chosen to respectively approximate three nonlinear functions fi(x(t)) for
each mode, and three LDI are obtained as

A11 =

[
0 0

0 0

]

, A12 =

[
0 0

0.515 0

]

, A13 =

[
0 0

−0.225 0

]

, A14 =

[
0 0

0.74 0

]

A21 =

[
0 0

0 0

]

, A22 =

[
0 0

1.248 0

]

, A23 =

[
0 0

4.43 0

]

, A24 =

[
0 0

−3.182 0

]

A31 =

[
0 0

0 0

]

, A32 =

[
0 0

1.366 0

]

, A33 =

[
0 0

2.61 0

]

, A34 =

[
0 0

−2.607 0

]

The upper bounds of approximation errors are ρ1 = 0.2, ρ2 = 0.19, ρ3 = 0.42,
respectively.

By solving LMI (14), the Markovian H∞ filter is obtained with the parameters
described by

K11 =

[
2.0668 1.6107

−34.9113 −49.448

]

, K12 =

[−1.4649

17.6371

]

, K13 =

[
0.0972

−0.0015

]T
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K21 =

[−92.3674 −141.8372

45.2211 60.6040

]

, K22 =

[
93.8452

−45.9772

]

, K23 =

[
0.1983

0.0897

]T

K31 =

[−51.9729 −40.5190

17.2689 −0.5486

]

, K32 =

[
44.448

−15.5181

]

, K33 =

[−0.0017

0.2663

]T

For addressed stochastic nonlinear MJS, the simulation results of the state re-
sponse of the system are given in Fig.1, where the initial condition is

[
1.5 1

]T ,
and w(t) is chosen from a normal disturbance with mean zero and variance one.
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Fig. 1. Real state response x(t) and estimated state �x(t)

5 Conclusions

In this paper, we develop a methodology for designing Markovian H∞ filter
that ensures asymptotically stable for the filtering error system and a prescribed
bound on the H∞ gain from the noise signals to the estimation error. By applying
matrix transformation and variable substitution, the main results are provided
by LMI form. Moreover, further research can be extended to the general nonlin-
ear MJS with time-delays and parameter uncertainties.
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Abstract. This paper proposes a novel off-line signature verification method 
based on adaptive multi-resolution wavelet zero-crossing and one-class-one-
network classification. First, the horizontal, vertical, 45 degree direction and the 
135 degree direction projections of the binarizated signature images are calcu-
lated, respectively. The curvature data of the projections are decomposed into 
multi-resolution signals using wavelet transforms. Then the zero-crossings cor-
responding to the curvature data are extracted as features for verification. At 
last, one-class-one-network classifier is used to verify the signatures. The signa-
ture verification system was experimented on real data sets and the results show 
the system is very effective. 

1   Introduction 

Handwritten signature is one of the most widely accepted personal attributes for iden-
tity verification. As a symbol of consent and authorization, especially in the preva-
lence of credit cards and band cheques, handwritten signature has long been the target 
of fraudulence. Therefore, with the growing demand for processing of individual 
identification faster and more accurately, the design of an automatic signature system 
faces a real challenge. 

Handwritten signature verification can be divided into on-line (or dynamic) and 
off-line (or static) verification. On-line verification refers to a process that the signer 
uses a special pen called a stylus to create his or her signature, producing the pen 
location, speeds and pressures, while off-line verification just deals with signature 
images acquired by a scanner or a digital camera.  

During the last few years, researchers have made great efforts on off-line signature 
verification. Ammar et al. [1] proposed parametric and reference-pattern based fea-
tures to verify skillful simulated handwritten signatures. Qi and Hunt [2] adopted a 
multi-resolution approach for off-line signature verification. They only made use of 
lowpass data to extract some geometrical and statistical features. Highpass data, 
                                                           
* Corresponding author. 



1078 Z. Ma et al. 

 

which are believed to have discriminating power, were not used at all. To decompose 
a curvature-based signature into a multi-resolution format, wavelet theory [3, 4] is 
introduced. Wavelet theory has broad applications in image analysis [5, 6]. In order to 
build an efficient off-line handwritten signature verification system, we propose a 
new representation scheme for a signature and then use wavelet transforms to decom-
pose and analyze the transformed signals. In the first stage of the system, the horizon-
tal, vertical, 45 degree direction and the 135 degree direction projections of the  
binarizated signature images are calculated, respectively. The four pieces of one-
dimensional data are transformed into another space using Daubechies Wavelets 
transform, respectively. Then the zero-crossings corresponding to the curvature data 
are extracted as features for verification. At last, One-class-one-network classifier is 
employed to identify the signature images.  

The remainder of the paper is organized as follows: Section 2 introduces the data-
base used in our study and the preprocessing stage, Section 3 describes the features 
selected, Section 4 provides a brief introduction to one-class-one-network classifier, In 
Section 5 the verification strategies and experimental results are presented, Section 6 
presents the conclusion and future work. 

2   The Signature Database and Preprocessing 

2.1   Database 

The signature database consists of 672 signature images, scanned at a resolution of 
300 dpi, 8-bit gray-scale. They are organized into 21 sets; each set corresponds to one 
signature enrollment. There are 12 genuine signatures and 20 forgery signatures in 
each set. Each volunteer was asked to sign his or her own signature on a white paper 
with base-lines 12 times. After this process had been done, we invited some people 
who are good at imitating other’s handwritings. Before formal collection, they could 
practice any times they wanted when imitating. Each person’s name was imitated 20 
times in total. Fig. 1 shows some samples in the database. 

 

   
(a)                         (b)                              (c)                              (d)   

Fig. 1. (a), (b) Genuine signature. (c), (d) Forgery signature. 

2.2   Preprocessing 

The preprocessing stage is divided into four different parts: noise removal, image 
binarization, data area cropping, and width normalization. 

Standard noise reduction and isolated peak noise removal techniques, such  
as median-filtering and average filtering [7] are used to clean the initial image.  
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Morphological operations are applied to fill small holes and to remove small con-
nected components mostly generated by the noisy background. 

The signature area is separated from the background by using the well-known seg-
mentation method of vertical and horizontal projections [7]. Thus, the white space 
surrounding the signature is discarded. Fig. 2 shows the image binarization. 

             
(a)                                                         (b)    

Fig. 2. (a), (b) Image binarization 

3   Feature Extraction 

For each preprocessed signature image, the projections of the horizontal, vertical, 
45 degree direction and the 135 degree direction are calculated, respectively. Then 
these data are represented by one-dimensional signal, respectively (see Fig. 3). So 
we can obtain four one-dimensional signals from a signature image, the next step is 
to extract features from these signals data and use them as the bases for signature 
verification. 

Basically, the features to be extracted should be stable and should retain the char-
acteristics of the original pattern. At this stage, we use Daubechies wavelets transform 
to perform feature extraction. In general, the multi-resolution wavelet transform can 
decompose a signal into lowpass and highpass information [3, 4]. The lowpass (i.e., 
low frequency) information represents the main body of the original data while the 
highpass (i.e., high frequency) information usually represents features that contain 
sharper variations. The zero-crossings of the transformed highpass data naturally 
indicate sharper variation points.  

In our study, for every zero-crossing point, three attributes associated with the 
zero-crossing point will be extracted. They are: (1) the abscissa of the zero-crossings 
[8], (2) the variance of the abscissa calculated by formula (1) and (2), and (3) the 
left-hand side wavelet integral between the current zero-crossing and the previous 
one [4]. 
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(a) (b) 

  

(c)                                                                   (d) 

Fig. 3. (a), (b), (c) and (d) The four one-dimensional signals of the horizontal projection, verti-
cal projection, 45 degree direction projection and the 135 degree direction projection of a  
preprocessed signature, respectively 

 

Fig. 4. Illustration showing the meaning of wavelet integrals between zero-crossings 



 A Novel Off-Line Signature Verification 1081 

 

Fig. 4 is a typical example showing how the attributes are calculated. Let 5z  be 
the zero-crossing point under consideration. Its abscissa is close to 6.0. The third 
attribute associated with 5z  is the wavelet integral bound by 5z and 4z  (i.e., the 

area of 4a ). 
When decomposing the four one-dimensional signals, we restrict the dyadic scale 

to j2 in order to obtain a complete and stable representation (detailed in [3, 4]) of 
the four projections.  Fig. 5 show the wavelet transformed one-dimensional signals 
of the horizontal projection of a preprocessed signature. From top to bottom in the 
figure, the signals on the left-hand side are the lowpass data with resolutions  
of 20 (the original signal), 2-1, 2-2, 2-3 and 2-4, respectively, and the signals on  
the right-hand side are the highpass data with resolutions of 2-1, 2-2, 2-3 and 2-4, 
respectively. 

As above, the other three one-dimensional signals of the vertical, 45 degree direc-
tion and the 135 degree direction projections are wavelet transformed in proper reso-
lution level, respectively. As mentioned previously, the three attributes associated 
with the zero-crossing point of the transformed highpass data are extracted as features 
to verify. 

Using wavelet transform in alterable resolution levels to extract the features of the 
projections can get better effect. We can select different resolution levels for different 
signature images to obtain the best verification result. The experiments show that the 
 
Lowpass data                                                            Highpass data 
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Fig. 5. The multi-resolution wavelet transformed signals of the horizontal projection of a pre-
processed signature. The resolutions shown are from 20 to 2-4, respectively, from top to bottom. 
The left column represents the lowpass data, and the right column shows the highpass data.  

number of the zero-crossings which applied to the same signature image are diverse in 
different resolution levels. And even signatures of the same person may vary in the 
number of zero-crossings in the same resolution level. Therefore, we consider if the 
variance of the number of the zero-crossings which belong to genuine signatures in 
the same resolution level is smaller and in reasonable bound, the resolution level is 
better. So for a special enrollment, the optimal resolution level is corresponding to the 
smallest variance. Here, we make an example to show how to decide the optimal 
resolution for an enrollment. There are 8 genuine signatures of training samples for 
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every person. In this paper, we use L =1, 2, 3 … to denote the resolutions of highpass 
data is 2-1, 2-2, 2-3 … respectively. Table 1 shows the variance of the number of the 
zero-crossings in the highpass data of the horizontal projection signal, and the signal 
data are wavelet transformed in different resolution levels. 

Table 1. The results showing the variance of the number of the zero-crossings in different 
resolution levels 

                            Genuine signature i  
L  

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

 
Variance 

1     42     46   49     46     33     49  42 43 0.81 
2     30     24   22     26 23     23 22 32 0.57 
3 14 16   22 20  18 19    12     15 0.65 
4 9 9 8     6 10     12  8  6 0.47 
5 4 5 6 3 4 8 3 4 0.61 
6 1 1 2 1 2 1 2 1 0.19 

 
The variance showed in table 1 are calculated by  the formula: (1), (2) and (3). 

μσ / . (3) 

From the table 1, we can see that when L =4, the variance is the smallest except 
the 6=L . Although L =6 the variance is the smallest, the zero-crossings corre-
sponding to the signals data are make no sense. So for this enrollment, the optimal 
resolution is 4 when transforming the horizontal projection signals. 

4   One-Class-One-Network  

Neural network presents a computational paradigm for constructing classifiers that 
can perform as accurately as conventional techniques [9]. In our system we use a 
completely connected feedforward neural network with the classical backpropagation 
learning algorithm, more simply known as the Backpropagation Network (BPN) 
which is described in detail in many textbooks [10], [11]. 

We have understood that for a signature verification system to be functional in 
practical applications, the ability to easily add/remove signatures from new/obsolete 
owners to its database must be inherent. Our approach towards this goal is to imple-
ment the structure of the neural network classifier is a one-class-one-network scheme. 
That is for each signature owner an individual classifier is being implemented. Each 
time the signatures from a new owner are added to the signature verification database, 
only a small, fixed-size, neural-network-based classifier must be trained. 

5   Experiments 

In this section, we shall report some experimental results. For training the system  
we randomly selected 420 signature images from the database. There are 21 small, 
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fixed-size, neural-network-based classifiers corresponding to the 21 sets, each set 
includes 8 genuine signatures and 12 forgery signatures. To verify the performance of 
our approach, the other 252 signatures include 84 genuine signatures and 168 forgery 
signatures are used to test the system.  

 In Section 3, we described the detailed feature extraction process. The next step is 
to use these features to verify whether a signature is genuine or forgery. Due to differ-
ent personal writing styles, it is impossible to uniquely determine a resolution level to 
fit all writers. The only thing that we can do is to get training samples from every 
writer and then determine his/her own resolution level. First of all, we shall show 
how L , the chosen resolution, affects the performance. Table 2 shows the false reject 
rate (FRR), false accept rate (FAR) and the average rate error (ARR), respectively. 
The first six rows correspond, respectively, to the six cases with L  fixed at from 1 to 
6 for all writers. The bottom row of Table 1, on the other hand, corresponds to errors 
determined by using the optimal L value dynamically for each writer. From the data 
shown in Table 2, it is obvious that the average error generated by dynamic selection 
of L  is smaller than that of any of the other six cases, in which a fixed resolution for 
signature verification was used. 

Table 2. The results showing how resolution selection affects system performance 

Resolution FRR         FAR            ARR 
1. L =1  6.4% 7.9% 7.2% 

2. L =2 6.2% 5.9% 6.1% 

3. L =3 5.4% 6.1% 5.8% 

4. L =4 7.1% 6% 6.6% 

5. L =5 4.9% 6.5% 5.3% 

6. L =6 5% 7.3% 6.2% 
7. Optimal dynamic 

L  
4% 2.4% 3.2% 

Thereinto, the experiment results showed in table 2 are obtained by using the struc-
ture of one-class-one-network to verify.  

Using only one BP network and the optimal L value dynamically for each writer is 
also implemented in our experiment. The results showed in table 3. 

Table 3. Results of using only one network to verify 

FRR FAR ARR 
11.8% 9.6% 10.7% 

Compared with the structure that using only one network, the one-class-one-network 
classifier can gain a higher accuracy. As we know, for English handwritten signature 
verification system designed for skilled forgeries, the ever-reported accuracy rate is 
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less than 80 %( Mizukmi et al.., 1999; Yoshiki et al.., 2002). Of course, they are 
based on different databases. So the approach proposed in this paper is very effective 
and accurate. 

6   Conclusion and Future Work 

Off-line signature verification is a difficult two-class pattern recognition problem. A 
new approach based on wavelet and one-class-one-network classifier has been pro-
posed in this paper. A major contribution of this work is using four one-dimensional 
signals to represent a signature and using a wavelet-based feature extractor to extract 
complete features from multi-resolution signals. Synchronously, the one-class-one-
network classifier is employed in the field of signature verification. Despite the fact 
that the approach shown in this paper seems to be effective, it should be validated on 
a large signature database where several types of signatures can be taken into account 
(North American, European, Arabic, etc.).  

Further perspectives and attractive challenges for future research lie in three as-
pects: how to extract more effective features, how to combine one-class-one-network 
classifier with other signature verification methods and how to devise an effective 
wavelet-based approach to detect forgeries by projecting only genuine signature. This 
is one of the most difficult types of forged signatures to detect. 
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Abstract. Stock market prediction has always been one of the hottest topics in 
research, as well as a great challenge due to its complex and volatile nature. 
However, most of the existing methods neglect the impact from mass media 
that will greatly affect the behavior of investors. In this paper we present a 
system that combines the information from both related news releases and 
technical indicators to enhance the predictability of the daily stock price trends. 
The performance shows that this system can achieve higher accuracy and return 
than a single source system. 

1   Introduction 

Stock market prediction has always been one of the hottest topics in research, as well 
as a great challenge due to its complex and volatile nature. Research suggests that the 
financial time series do not exhibit random behavior and the stock price is predictable 
[28]. Numerous publications have attempted to construct an accurate model for the 
stock market. Most of these works focus on time series prediction with various AI 
models, such as Artificial Neural Networks [1, 17], Genetic Algorithm [10], Fuzzy 
System [18], Hidden Markov Model [9] or some hybrid combinations [26, 29], as 
well as statistical techniques, such as moving average [6]. However, these methods 
inevitably have their own limitations. Back-propagation neural network for example, 
suffers from the risk of over-fitting and large number of parameters. More 
importantly, they have neglected other source of information such as mass media that 
will greatly affect the behavior of investors.  

The entities listed on the Australian stock exchange are required to fully inform the 
investors at all times so that investment decision can be made with rich and timely 
information. The materials include negotiations of purchase, director 
appointment/resignation and divestitures of businesses. Since most of this information 
can be obtained from the news articles, major financial newspapers become a good 
source of information in assisting the traders. Mitchell and Mulherin [13] studied the 
influence of public information reported by Dow Jones and concluded that a direct 
relation does exists between released news articles and stock market activities. News 
release provides abundant information regarding the activities that companies are 
involved in and it may produce speculations among traders that results in movements 
of the stock prices. NofSinger [16] showed that in some cases, investors tend to buy 
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after positive news which results in buying pressure and push the price higher; and 
sell after negative news which results in a drop in price. While there is no doubt that 
news releases create expectations among investors, there are only a few researches 
conducted recently in predicting the price movement using this information. 
Mittermayer [14] proposed a trading system to predict stock price trends immediately 
after the release of a news article through text mining techniques. They found the 
system significantly outperforms a random trader. However, only news that is directly 
related to the stock is included in their study while NofSinger’s study suggests that 
both the firm specific and the general economics news affect trading behaviors [16].  

However, using investors’ expectations caused by news alone as a trading strategy 
is inadequate, as concluded by Brown and Cliff [23]. Therefore, this paper proposes to 
combine the information from both the news release and technical indicators to 
enhance the predictability of the daily stock price trends. The news articles used are 
composed of both company specific and relevant market sector news to reflect the 
overall impact of the media. Text mining techniques are employed to encode the news 
articles by forming and extracting important concepts. While support vector machine 
(SVM) [2], a supervised learning method, is applied as classifier. The resulting system 
is shown to be more accurate than the one that uses only single source of information.  

The rest of the paper is organized as follow. Section 2 briefly introduces SVM and 
its application in financial and text mining. Section 3 presents the architecture of the 
system and design of various components. Research data and experiment results are 
detailed in Section 4. Conclusion and future research directions are given in Section 5. 

2   Support Vector Machine 

The SVM, originated form the work of Vapnik [22], is now being widely used to 
solve classification and prediction problems. SVM performs classification by 
constructing a hyperplane that separates the input space into two classes. It attempts 
to find the maximum margin hyperplane so that the separation between the decision 
classes is maximized. The input vectors that define the width of maximum margin are 
called support vectors and all the other points are not important in defining the 
separation. SVM maps the original input feature space into a higher dimension so that 
it can be separately by a linear model in the high dimensional space.  

However, not all the problems can be separated by this hard margin. Therefore, in 
case of non-separable feature spaces, a soft margin is applied to allow some points to 
be misclassified. It chooses a hyperplane that separates the inputs as cleanly as 
possible, while still maximizing the distance between the support vectors. a penalty 
parameter of the error term C, (C > 0) can be set to be the upper bound in order to 
control the amount of deviation to be tolerated.   

SVM has several advantages: it has little control parameters that need to be 
selected, over-fitting is unlikely to occur and it does not get trapped in a local 
optimum. It has been used in both areas of financial forecasting and text mining  
[8, 11].  There is a number of researches that has apply SVM to financial time series 
predictions and showed that SVM outperforms back-propagation networks [11, 20]. 
Dumais et al and Joachims demonstrated the applicability of SVM to text clustering 
applications and also suggest that SVM has outperformed others [3, 8].  
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3   System Architecture and Design 

An overview of the system architecture is shown in Figure 1. The final prediction is 
determined base on two factors: the forecasting of price movement based on the 
technical indicators extracted from historical data and the combined impact of direct 
and indirect news articles related to the stock.  

3.1   Price Forecast  

Seven technical indicators [11, 24] are selected and computed for each trading day 
from the prices in the past five days. Table 1 presents the formula for each feature. 

     
Company

specific news
General market

news
Price history

Preprocessing and feature selection

SVM SVM SVM

SVM

Prediction

Indicators

 

Fig. 1. Overview of the system architecture 

Table 1. Summary of price features 

Feature Formula Feature Formula 
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Ct is the closing price at day t, Lt is the lowest price at day t, Ht is the highest price at day t, 
MAn is the moving average of the past n days, LLn and HHn is the lowest low and highest high 
in the past n days, respectively. 
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The direction of next day’s price movement is categorized into two classes: ‘1’ or 
‘-1’. ‘1’ indicates the next day’s closing price is higher or equal to today’s closing 
price, and  ‘-1’ indicate a drop in share price.  

3.2   News Prediction  

There are two groups of news releases: the ones that directly relate to the stock and 
the ones that relate to the general market. Each group is trained separately as they 
may have different measure of influence on the stock. The categorization of the 
output classes is the same as in price forecasting. News is assumed to have valid 
influence on the stock only on the same day it is published.  

The vector space model [19] is a commonly used technique in text mining, which 
has been successfully used in document categorization [12]. This model is employed 
in this study to represent the document in high dimensional space. It represents each 
document as binary vectors where each element is a word from a vocabulary. The 
elements will have a value of 1 if the corresponding word is present within the 
document or have a value of zero otherwise. A weight can be associated with each 
element to reflect their relative importance. 

The preprocessing stage starts by first removing common stop words (such as 
“the”, “a”, etc) from each documents, and then the remaining words are tagged with 
their corresponding Part-Of-Speech (POS) tag.  Instead of using each word directly, a 
background thesaurus WordNet [4] is used to replace words by higher level concepts 
[7]. WordNet is a semantic network that can give hierarchical hypernyms and 
hyponyms relations between words. The use of concepts increases the flexibility of 
the system to be able to account for vocabulary changes, as well as reduces the 
dimensions of feature space. The POS tag generated earlier is utilized to help 
disambiguating the word when assigned to WordNet.  

The concepts are weighted by the conventional multiplicative combination of term 
frequency (TF) and the inverse document frequency (IDF), so that terms occur more 
often in a document and/or rarer in other documents will be given a higher weight. 
Moreover, those concepts that only occur in one class but not in the other are given a 
higher weight (multiplied by an arbitrary constant, 2 in this case) to help better 
distinguish between classes. Examples of some the unique concepts from documents 
that are considered as “good news” are: establishment, accumulation, growth, etc; 
while the ones from “bad news” are: separate, discharge, impair, etc. The feature 
space is then reduced to be the top 30 concepts with the highest weights, which are 
used to code each document.  

The two groups of news are trained and classified using SVM and their results feed 
into another SVM to produce the combined prediction of price trends.  

3.3   SVM  

In this study, Gaussian RBF kernel and polynomial kernel are used for SVM. The 
only controlling parameters are the upper bound C and the feature width σ in case of 
BRF or the power d in case of polynomial. These parameters are varied to ensure the 
optimal values are selected. Table 2 below presents an example of the performance of 
SVM with different parameters on the price data set. 
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Table 2. Prediction performance with various parameter values 

Parameter value Hit ratio (%) 
C = 10 

σ =  1 35.5 
σ = 3 58.8 
σ = 5 50.0 
σ = 7 50.0 

σ = 3 
C = 1 50.0 

C = 20 61.7 
C = 50 52.9 

C = 10 
d =  2 57.6 
d = 3 52.9 
d = 4 51.9 

d = 2 
C = 1 38.8 

C = 20 47.1 
C = 50 44.1 

The results obtained conforms to Tay and Cao’s findings where the prediction 
performance deteriorates when the value of C and σ are either too small or too large 
[20]. Finally, the value of C is set to be 20, σ to be 3 and d to be 3. 

Gaussian RBF kernel is used most of the time as it performs slightly better and 
takes less time. However when classifying the news articles, it often reaches 100% 
classification rate for one class, yet 0% for the other. Therefore, polynomial kernel is 
used instead in this case as it is less biased toward one class.  

4   Experiment and Results 

The research data used in this study is the daily prices (open, high, low, close) of BHP 
Billiton Ltd. (BHP.AX) of Australian Stock Exchange between March 1st, 2005 and 
May 31st, 2006. As well as the news articles related to BHP and its market sector in 
the same period that are published on Australian Financial Review, a major 
newspaper on business, finance and investment news in Australia. BHP is chosen 
because not only it has a large trading volume (20 Million on average) so it can be 
assumed that the transactions can take place whenever required, but also due to its 
popularity that attracts a lot of media attentions. Since BHP mainly involves in 
material mining, articles that concerns the directions of the metal market are included 
as general economic news. However, any press releases that only report the outcome 
of the day before are specifically excluded as it gives no new information. The data 
points in the first 12 months were used as training set, while the remaining two 
months serves as validation set. There are 286 training data and 34 holdout data from 
the price section. And for the news section, there are 120 training data and 28 holdout 
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data within the direct news category, while 53 training data and 15 holdout data are in 
the indirect news category. Table 3 below shows the prediction accuracy for using 
different data sets as inputs. 

Table 3. Prediction accuracy 

Data sets Accuracy (%) 
Price 58.8 

Direct news 62.5 
Indirect news 50.0 

Combined news 64.7 
Price & News 70.1 

 
While the prediction accuracy is comparable to that obtained by Kim [11] using 

technical indicators only (on a different stock index), it is clear that with the combined 
information from both time series and textual data, the performance of stock trend 
prediction is noticeably improved. 

It is also observed that when the predictions made from the numerical data are in 
conflict with the predictions from news articles, the later is more accurate most of the 
time. In the training data set, there are 39 inconsistent predictions, and the combined 
news predictions are correct for all of them and in the testing data, the accuracy is 
four out of six. Thus, news predictions in this case are considered more important 
than the data predictions. 

4.1   Market Simulation  

A market simulation is conducted to evaluate the profitability of the system under real 
life conditions. It is assumed that the initial investment is $10,000 and each 
transaction (buy/sell) incurs a fee of $20. The two months validation data (April and 
May 2006) used in previous section are employed in this test. Figure 2 below shows 
the price movements of BHP during those two months, which is a reasonably 
representative example. Further more, in order to avoid excessive transaction charges 
that will result from frequent operations, each day is limited to one transaction 
(buy/sell) only.  

Three sets of similar strategies are used in this study for different input sets. If the 
prediction is based on past prices only, then the strategy for buy, sell and hold follows 
five simple rules:  

• If the predicted trend is positive and the share has been bought, then hold. 
• If the prediction is negative and the share hasn’t been bought, then do 

nothing. 
• If the prediction is positive and the share hasn’t been bought, then buy. 
• If the prediction is negative and the share has been bought, then sell. 
• All transaction take place at the end of each trading day, thus the closing 

price is assumed to be the trading price. 
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Fig. 2. Plot of closing/opening prices vs. date of BHP.ax during April and May, 2006 

If the prediction is based on news only, then the above tactics are no longer 
applicable. This is due to the fact that news articles for each day can only be obtained 
in the morning before stock market opens. Therefore, changes are made to 
accommodate for the late arrival of news input and it is summarized as follows: 

• Assuming the overall trend of the stock is rising (this assumption certainly 
may not be valid and it is solely used to simplify the experiment) 

• If the news prediction is positive and the share hasn’t been bought, then buy 
at opening price. 

• If the prediction is positive and the share has been bought, then hold. 
• If the prediction is negative and share hasn’t been bought, buy at closing 

price. 
• If the prediction is negative and the share has been bought, sale at opening 

price. 
• If the news prediction is absent, then buy at closing price. 

 

A recent study on the relationship between public announcements and stock 
volatility from Australian Stock Exchange suggests that the non-trading period 
overnight acts as a barrier for information to be reflected on the stock price. 
Therefore, the difference between yesterday’s closing price and today’s opening 
prices is normally negligible [25]. It can also be seen from Figure 2 that the opening 
price follows the trace of the closing price really closely. This justifies the above 
strategy to operate at the opening price instead of the closing price, when the news 
releases take place during non-trading hours. 

If information from both the news releases and past prices are combined together, 
then the decision follows the predictions made from technical indicators at a day’s 
close and it is revised at the next day’s open based on the news predictions (if 
present). If the two predictions are contradictory, then the outcome of the news 
always supersedes, as discussed earlier.  It operates as follows: 

• If news releases are absent, the strategy is unchanged from strategy one 
above. 

• If the share has been bought and the news prediction is negative for that day, 
the share will be sold at the opening price 



1094 Y. Zhai, A. Hsu, and S.K. Halgamuge 

 

• If the share has been bought and the news prediction is positive, do nothing 
• If the share has been sold and the news prediction is negative, do nothing. 
• If the share has been sold and the news prediction is positive, buy at the 

opening price. 
 

Table 4 below displays the net compound profit of the system in two month with 
different information input. A trading system that employs random strategy that has 
approximately the same number of transactions is used as the benchmark for 
comparison. 

It can be seen that by supplementing conventional technical indicators with the 
influences of news releases, the proposed system demonstrates promising results 
under real life situation. Since the stock market is an extremely complicated system, 
richer information source will be able to provide a better model. 

Table 4. Compound net profit for different inputs 

System No. of trades Net profit 

Random 8 $-54 

Price  Only 9 $284 

News Only 7 $275 

Price and News 11 $511 

5   Conclusions 

In this paper, news paper releases are combined with the technical indicators to 
predict daily direction of a stock price using SVM. The case study results showed that 
both the prediction performance and the profitability of the system are enhanced.  

However, the current system only categorizes the output into simple rise/fall 
without specifying the level of change. Therefore, future research efforts will focus on 
refining the prediction of price trends. Furthermore, the general applicability of the 
system also needs to be examined further by applying it to other stocks in different 
sectors. 
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Abstract. We have designed a kind of practical artificial neural network 
development software for ordinary engineering technicians. This software, with 
graphic interface, not only supports multiple types and algorithms of artificial 
neural networks, but also supports the IEC 61131-3 International Standard. This 
article, through three application examples of artificial neural networks, shows 
the feasibility and the easy implementation of this development software, as 
well as the realization of artificial neural networks in IEC 61131-3 Standard-
based software. It also shows the application value of artificial neural networks 
development tool and the realistic significance of applying artificial neural 
networks control in the projects. 

1   Introduction 

Artificial neural networks have massive parallel processing and distributed 
information storage capacity, and they have good adaptation, self-organization, strong 
learning function, association function and fault tolerance function. Thanks to these 
advantages, artificial neural networks have been widely applied in industrialized 
countries. But in China, because of some engineering technicians’ lack of in-depth 
understanding of the artificial neural networks design, and the complexity of training 
and parameter adjustment in practical application of artificial neural networks, it is 
not easy for them to apply artificial neural networks in regular industrial control 
equipment such as PLC, industrial PC, and DCS etc. In order to popularize the 
applications of artificial neural networks, we have developed a kind of artificial neural 
networks development software NNDS. NNDS can effectively combine with industrial 
equipment and industrial control software, and it can also operate integrally with such 
industrial hardware equipment as PLC, industrial PC, DCS etc., IEC 61131-3 
International Standard-based industrial control software, as well as configuration 
software. NNDS has promoted the applications of artificial neural networks. 

2   Composition of NNDS 

Based on the demand analysis and functional requirements of artificial neural 
network-controlled development software, and abided by the modular approach, we 
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have designed the general structure of NNDS, which mainly includes artificial neural 
networks, design of training and algorithms, as well as data interface (see Figure 1). 

data file data table

data input

data processingprocessing of rules defining I/O

sampling testing suite
and training suite

select ing type of network
(select ing study pat tern) ......

ordinary multi-layer BP
network

PNN

training network

output verifying datagraphic analysis

generating formula data tablegenerating program  

Fig. 1. Basic Structure of NNDS 

3   Functions of Each Component 

3.1   Design of Type, Training and Algorithms of Artificial Neural 
Networks[2][3] 

The whole artificial neural networks software is designed with modular approach, 
which includes data input, data preprocessing, type-selecting, training networks, 
networks output, etc. Ordinary data file (e.g. txt file) and data table file (e.g. Excel 
file) can be indirectly input into the data input module.  

Data preprocessing module: Define the input and output variables, and set the 
maximum values and minimum values for input and output.  

Type-selecting module: With the adoption of multiple types of artificial neural 
networks, this software can be applied to the following types of artificial neural 
networks. Appropriate type of network is selected in real control based on different 
objects: 

(1) Standard Linkage Multi-layer Forward Artificial Neural Networks;  
(2) Double Parallel Forward Artificial Neural Networks; 
(3) Elman Forward Artificial Neural Networks; 
(4) Ward Forward Artificial Neural Networks; 
(5) Fuzzy Artificial Neural Networks; 
(6) Kohonen Networks; 
(7) Normal Regression Networks. 
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Different class definitions are adopted for different artificial neural networks, and 
different training methods are adopted according to different networks. We can use 
the figure to monitor the decrease curve of error of training suite during the whole 
training process. The networks result can not only be input directly by the data output 
module as table file or output as C function, but also be generated as a controller 
program. 

3.2   Data Interface 

3.2.1   OPC Mode 
OPC Communication Mode: OPC (OLE for Process Control) is an industrial technical 
code and standard to resolve the communication problems between application 
software and various device drivers. By following the OPC standard and designing 
the OPC server and client, NNDS can communicate with all OPC standard-based 
industrial control equipment and software.  
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Fig. 2. OPC Mode 

3.2.2   ODBC Mode 
ODBC Communication Mode: ODBC (Open Database Connectivity), a standard 
brought forward by Microsoft, aims to realize the interconnection among 
heterogeneous database. NNDS, through open ODBC interface, can operate integrally 
with a variety of configuration software, such as Chinese configuration software, 
Force Control SCADA software, Configuration Software KingView, MCGS, Century 
star Configuration Software, etc. But the real-time capability of this communication 
mode is not as good as others, and therefore it is not appropriate to be applied in the 
occasion with high real-time requirements. 
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Fig. 3. ODBC Mode 
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3.2.3   Embedded Mode[4] 
The IEC 61131-3 Standard, a PLC standardization programming standard, was issued 
by International Electrotechnical Commission (IEC) in 1993. The IEC 61131-3 
Standard has prescribed five kinds of programming languages. With many advantages 
of the IEC 61131-3 automation programming language, it has become an international 
standard with extensive application bases in the automation industry. The standard is 
not only applied in PLC, but also widely used in distributed control systems, 
industrial control computers, numerical control systems, remote terminal units and so 
on. Many of the world leading automation equipment manufacturers have 
manufactured products under IEC 61131-3 Standard. IEC 61131-3 Standard allows 
users by themselves to define function blocks, so the users can easily create advanced 
control algorithms and special functions into function blocks and add them into the 
function block database within the software.  

NNDS provides an interface for IEC 61131-3 Standard-based software. Artificial 
neural networks developed by NNDS, after certain processing, can be altered into a 
function block of IEC 61131-3 Standard-based software. These kinds of software 
include OpenPCS of infoteam in Germany, the Paradym-31 used by ADAM5510 of 
ADVANTECH and OMC of Mirle, etc.  

Applications of NNDS in IEC 61131-3 Standard-based software are indicated in 
Figure 4. 
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Standard-based

Software

NNDS

PLC, DSP,
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Programming System
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Operation System
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Fig. 4. Embedded Mode 
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Fig. 5. ActiveX Control Mode 
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3.2.4   ActiveX Control Mode 
Some kinds of industrial monitor configuration software provide ActiveX control to 
communicate with third-party software, as shown in Figure 5. NNDS, through these 
ActiveX control, is able to read and write the real time data of configuration software, 
such as ForceControl. 

4   Application Examples 

4.1   Designing a PID Artificial Neural Networks Controller with NNDS to 
Control Three-Tank Liquid Level Control Apparatus 

As is shown in figure 6, the structure of a PID artificial neural networks controller is a 
3-layer networks and includes the input layer, the hidden layer, and the output layer, 
with their structure being 2-3-1. There are two neurons in the input layer, inputting 
respectively the given output r(t) and the output value of controlled object y(t); there 
are three neurons in the hidden layer, and each output function of the neurons is 
different, referring respectively to proportion, integral and differential; the output of 
output layer is the control volume of the controlled system. By applying the PID 
artificial neural networks as a controller, the effective control of the controlled object 
can be achieved without needing to identify the complication. 
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Fig. 6. Structure of PID Artificial Neural Networks 

The controlled object of this experiment is a two-tank object that is composed of an 
experimental apparatus controlled by three-tank liquid level (we use LT1 and LT2 in 
the experiment), and the control objective is the liquid level of LT2, as illustrated in 
figure. 

The control trend graph attained from the level control experiment is shown in 
figure 8. In the figure, the abscissa refers to the running time of monitor configuration 
software, and the ordinate refers to the controlled liquid level (unit: mm). As we can 
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Fig. 7. Three-tank Liquid Level 

see from the figure, the overshoot of PID artificial neural networks control system is 
about 8%, and the control accuracy is within ± 1%, attaining relatively good control 
effect. Therefore, the PID artificial neural networks controller developed by NNDS 
can well control the two-tank object. 

 

Fig. 8. Graph of Control Results 

4.2   Application of NNDS in Short-Term Load Forecast in Power Systems 

Short-term load forecast in power system is the basis of optimizing the operation of 
power systems and is one of the important tasks for power companies. We use 
artificial neural networks to forecast short-term load 24 hours on a particular day. The 
structure of artificial neural networks includes seven nodes in the input layer: I(n-14, 
j), I(n-7, j), I(n-2, j), I(n-1, j), I(n, j-2), I(n, j-1) and T(n), and one node in the output 
layer: I(n, j). 

Of which, I (n, j) refers to the load at the jth hour on the nth day; I(n-14, j) refers to 
the load at the jth hour on the n-14th day; (n-7, j) refers to the load at the jth hour on 
the n-7th day; I(n-2, j) refers to the load at the jth hour on the n-2th day; I(n-1, j) 
refers to the load at the jth hour on the n-1th day; I(n, j-2) refers to the load at the j-2th 
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hour on the nth day; I(n, j-1) refers to the load at the j-1th hour on the nth day; T(n) 
refers to the average temperature on the nth day. 

Table 1. Forecast Results and Error of Multi-layer Forward Artificial Neural Networks Based 
on Different Types of Networks 

Time 
(h) 

Actual 
(MW) 

Net1 
(MW) 

Error1 
(%) 

Net2 
(MW) 

Error2 
(%) 

Net3 
(MW) 

Error3 
(%) 

Net4 
(MW) 

Error4
(%) 

1 2158 2176 0.8 2163 0.3 2195 1.7 2118 -1.9 
2 2127 2123 -0.2 2112 -0.7 2176 2.3 2164 1.7 
3 2119 2076 -2 2082 -1.7 2098 -1.0 2024 -4.5 
4 2109 2115 0.3 2118 0.4 2141 1.5 2076 -1.6 
5 2108 2109 0.05 2113 0.2 2120 0.6 2075 -1.6 
6 2197 2243 2.1 2250 2.4 2230 1.5 2245 2.2 
7 2437 2448 0.5 2443 0.2 2449 0.5 2338 -4.1 
8 2497 2536 1.6 2545 1.9 2533 1.4 2469 -1.1 
9 2672 2658 -0.5 2650 -0.8 2657 -0.6 2629 -1.6 

10 2691 2710 0.7 2705 0.5 2715 0.9 2717 1.0 
11 2761 2844 3.1 2868 3.9 2843 3.0 2844 3.0 
12 2668 2706 1.4 2702 1.3 2770 1.2 2709 1.5 
13 2382 2498 4.9 2490 4.5 2540 6.6 2478 4.0 
14 2541 2531 -0.4 2544 0.1 2589 1.9 2506 -1.4 
15 2610 2722 4.3 2728 4.5 2700 3.4 2728 4.9 
16 2642 2622 -0.8 2662 0.8 2665 0.9 2665 0.9 
17 2848 2833 -0.5 2866 0.6 2875 0.9 2799 -1.7 
18 2967 2833 -4.5 3008 1.4 2999 1.1 2956 -0.4 
19 3205 3291 2.7 3296 2.8 3270 2.0 3277 2.3 
20 3128 3174 1.5 3156 0.9 3146 0.6 3130 0.06 
21 2984 3011 0.9 3000 0.5 2993 0.3 2990 0.2 
22 2740 2763 0.8 2753 0.5 2787 1.7 2771 1.1 
23 2436 2466 1.2 2466 1.2 2464 0.3 2412 1.0 
24 2188 2227 1.8 2236 2.2 2310 5.6 2155 -1.5 

Different types of multi-layer forward artificial neural networks were trained, and 
then the well trained networks were applied to forecast the load at each integral point 
of time (24h). The forecast results are shown in the table (In order to save space, the 
sampled data are not herein listed). Within the table, Actual refers to the actual load 
value at a corresponding period; Net1 refers to the forecast value of typical and 
standard-linkage three-layer forward networks, and Error1 refers to its relative error; 
Net2 refers to the forecast value of standard-linkage four-layer forward networks, and 
Error2 refers to its relative error; Net3 refers to the forecast value of double parallel 
forward networks, and Error3 is its relative error; Net4 refers to the forecast value of 
Elman forward networks, and Error4 is its relative error. 
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4.3   Implementation of IEC 61131-3 Standard-Based Artificial Neural Networks 
Control System[5] 

The control system is composed of industry PC, ADVANTECH IO Board, OpenPCS 
(a kind of IEC 61131-3 Standard-based development software, it is developed by 
infoteam in Germany and provides user-defined function block interface programmed 
in standard C language), as well as the controlled object. The controlled object is a 
vertical experimental furnace, within which the temperature field is irregularly 
distributed and keeps changing as the time changes, as shown in Figure 9. In this 
experiment, NNDS is applied to create a single neuron adaptive PSD (proportion, 
summation and differential) intelligent control algorithm function block, then the 
function block is embedded into the IEC 61131-3 Standard-based control software 
platform to realize the control of furnace. 

E1 220V AC

E2 200V AC

T10~1000 CStove Shell

Porcelain
Bushing

Steel Bar

Test Bar Collet

T20~1000 C

1# Heating Wire 750W

2# Heating Wire 750W

o

o

 

Fig. 9. Structure Plan of Vertical Furnace 

The structure of single neuron adaptive PSD intelligent controller is shown in 
Figure 10. 

In Figure 10, Σrefers to the neuron; yr refers to the set point of temperature; y 
refers to the measured temperature; and u refers to the control volume.  

Within the NNDS, artificial neural networks module created based on the adaptive 
PSD algorithm, ADVANTECH board driver module, and the sampling period timing 
function block are programmed into user-defined function blocks in standard C 
language and then added into the function block database of OpenPCS. The control 
program programmed by FBD function block diagram language is shown in  
Figure 11. The control software is able to directly read data and output control volume 
through an ADVANTECH board card. The control result illustrated by ForceControl 
SCADA is indicated in Figure 12. 



 Project-Based Artificial Neural Networks Development Software and Applications 1105 

 

 

Fig. 10. Control Diagram of Single Neuron Adaptive PSD  

 

Fig. 11. FBD Control Program  

 

Fig. 12. Control Result Graph of Single Neuron Adaptive PSD 

5   Conclusion 

Artificial neural networks development software NNDS, with graphic display, is able 
to accomplish the design and training process of artificial neural networks, and it can 
operate integrally with configuration software and the IEC 61131-3 Standard-based 
software. NNDS makes it easier to develop and improve the artificial neural networks 
system and it reduces greatly the debugging time in practical application and 
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improves the production efficiency, therefore, it plays significant and positive roles in 
applying artificial neural networks to the projects. 
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Abstract. The gamma ray dual modality densitometry was presented to meas-
ure salinity independent of water volume fraction in pipe flows. The simulation 
geometries of the dual modality densitometry were built using Monte Carlo 
software Geant4. Computer simulations were carried out with different types of 
salt and various salinity. The results show that type of salt and salinity have sig-
nificant effects on the water volume fraction measured by dual modality densi-
tometry. By means of measuring attenuation of transmitted and scattered radia-
tion of dual modality densitometry, the information about the salinity changes 
can be obtained. But it is difficult to calculate WVF and salinity from dual  
modality densitometry models. The RBF neural networks were used to predict 
salinity and water volume fraction. The results show that the predicting values 
fit true values well. It was demonstrated that the water volume fraction measur-
ing errors caused by salinity can be reduced by using RBF neural networks. 

1   Introduction 

The petroleum industry has a need for accurate measurement gas volume fraction 
(GVF) and water volume fraction (WVF) in the pipe flows [1]. Gamma ray densi-
tometries are often used to measure GVF and WVF due to their robustness and non-
intrusive character. The gamma ray densitometry consists of a source and detectors, 
and its basic principle is to measure ray beams attenuation. The attenuation of gamma 
ray beams depends on the composition of the flow, the photon energy and the diame-
ter of the pipe. Since both the photon energy and the pipe diameter are constant, the 
gamma ray attenuation will be influenced only by the change of the composition of 
the flow. According to this feature, gamma ray densitometry can be used to measure 
phase volume fraction of oil water and gas mixture flow. 

Dual-energy and single-energy gamma ray densitometry are two main types of 
gamma densitometry. Dual-energy gamma densitometry can measure oil, water and 
gas three components of volume fraction of mixture flow [2]. The single-energy  
densitometry was used in situations where there is no gas in pipeline [3]. Because 
single-energy densitometry can set up exact models, it was widely used in petroleum 
industry. But the water from oil wells could be the mixture of formation water,  
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injected water and cleaning well water, all of which have different composition and 
often change. The dominating composition in water is salt of various types. The typi-
cal salt includes positive ions such as Na+, Mg2+,Ca2+ etc. and negative ions such as 
Cl-, HCO3

- SO4
- etc. These ions are equal to new phase adding in mixture flows. For 

these reasons, the precision of measurement WVF using single-energy gamma ray 
densitometry will be affected by the salinity. 

Dual modality densitometry (DMD) is another type of gamma densitometry, it was 
primarily used to measure oil water gas three-phase flow [4]. G. A. Johansen etc. have 
studied salinity independent measurement of gas volume fraction in oil water gas pipe 
flows using DMD and carried out captive test in their paper [5]. M. B. Holstad etc. 
have measured salinity and the types of salt in the produced water of offshore oil 
wells using DMD [6]. In this study, the effects of salinity on measuring WVF were 
analyzed using Geant4 Monte Carlo simulation package and DMD was used to 
measure WVF. The methods of correcting salinity effects were presented for 
measuring WVF based on RBF neural networks. 

2   The Principle of Dual Modality Densitometry 

The DMD consists one single-energy source and two detectors, one is used to detect 
transmitted radiation intensity and another is used to detect scattered radiation 
intensity. The scatter detector is positioned at the vertical direction of source and 
transmitted detector line. At this position, the scattering radiation energy is obviously 
different from the incident radiation energy and it is easy to design the measurement 
machinery. Figure 1 gives a simplfied measurement sketch of DMD. 

 

Fig. 1. Sketch of the horizontal cross-section of the simulation geometries 

In figure 1, the diameter of pipe is d. The solid angle as which the scattered 
detector faces to the scattered target is θ. The average width of scattered target is d1. 
The distance from the center of scattered target to scattered detector is d2. The 
distance from the scattered target to the window of gamma source is d0. According to 
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the theory of gamma ray attenuation, the intensities detected by the transmitted 
detector and the scattered detector are [10] 

0
−= d

tI I e μ  (1) 

'
0 1 2

0 (1 )− − −= −d d d
sI BI e e eμ μ μσμ

μ
 (2) 

where I0 is the intensity detected by transmission detector as the pipe is vacuum, μ 
and μ’ are the linear attenuation coefficients of the mixture flow at the energy of 
incident and scattered radiation respectively. μσ is the attenuation coefficient of 
Compton scattering. B is a ratio constant between scattered intensity counted by 
scattered detector and all scattered intensity. The radiation energy decreased in the 
Compton scattering process, and the attenuation coefficient of scattered radiation is 
thus higher. The attenuation process of scattering is more complex than transmission 
from (1) and (2), it relates to the attenuation from source to scatter target, the volume 
of scatter target, the attenuation from scatter target to scatter detector and so on. So it 
is difficult to directly solve WVF and salinity from (1) and (2). In this study, a RBF 
neural network was used to predict WVF as salinity changing. 

3   Simulation Geometries 

Nuclear experiment is difficult to carry out for the reasons of ionizing radiation, meas-
urement structure complexity and many existing radiation source types. The best way to 
study feasibility of nuclear measurement is to use simulation software. There are many 
particle simulation software such as MNCP, EGS4 and Geant4 [7] using Monte Carlo 
methods. These softwares can be used to design instruments and to get simulation data 
[8]. Geant4 is an open source toolkit for the simulation of the passage of particles 
through matter. Its areas of application include high energy, nuclear physics, as well as 
studies in medical and space science. In this paper the simulation geometries was devel-
oped as a tool for the study of detector responding to different salinities. Figure 2 shows 
a 3D simulation geometry constructed by the Geant4 software. 

 

Fig. 2. The 3D simulation geometry constructed by Geant4 

In figure 2, the inner diameter of pipe is 100mm. The 59.5keV gamma radiation 
energy produced by 241Am source is used for these simulation geometries. The 

Source 

Transmitted Detector 

Scattered Detector 

Oil/Water/Gas  
Mixture Flow 

The World of Particle 
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detectors are the Φ40mm×40mm NaI crystal. In front of the detectors and source, 
there are lead collimators. Instead of using crude oil in the simulation, the cetene 
(molecular formula, C16H34, density, 0.7733g/cm3) was employed. The simulation 
events are 100,000. The threshold value for transmission detector is set at 50keV and 
for scatter detector it is set at 45keV to eliminates multiple scattering effects. 

4   Simulation Results 

The simulations were done with the geometries shown in figure 2. Four different 
types of salt were used in simulations, they are NaCl, MgCl2, CaCl2 and NaHCO3. 
The salts were added into water and get 2%, 4%, 6%, 8% and 10% solutions of NaCl, 
MgCl2, CaCl2.and NaHCO3. All percentages are weight percent (% w/w) of salt in 
water. 
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Fig. 3. The counts of transmitted detector 
against salinity in the simulations 

Fig. 4. The counts of scattered detector 
against salinity in the simulation 

Figures 3 and 4 show that the counts in both detectors depend on both salinity and 
type of salt and at the same time the WVF keeps at 0.8. As the photons hit the detec-
tors and its energy above the threshold values, it was counted. The results show a 
more linear decrease as salinity increases in figure 3 than in figure 4. This is because 
the transmitted radiation is only related to the components of mixed liquid and the 
scattered radiation is not only related to the components of mixture material but to  
the scattered radiation intensity, energy and the position of scattered detector. Also 
the scattered count is lower than transmitted count, so the statistical uncertainty  
becomes more significant. 

As seen from the figures 3 and 4, the curve of NaCl is similar to that of MgCl2.and 
has large difference to that of CaCl2. This is because the atomic number of natrium 
element approximates magnesium element, and the atomic number of calcium ele-
ment is bigger than natrium and magnesium, so that the attenuation of radiation in 
CaCl2 solution is larger than that in NaCl and MgCl2. Because the elements of  
NaHCO3 are similar to those of water and oil and the atomic number of natrium  
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element is lower, the curve of NaHCO3 decreases more slowly than others. From figure 
3 and 4 it can be seen that the different types of salt have different attenuation for both 
transmitted and scattered intensities. This is equal to adding various salt phases in oil 
and water mixture flows, so it is difficult to calculate salinity and WVF using DMD 
models. In this study, the RBF neural networks were used to predict WVF and  
salinity. 

5   Neural Networks and Results Analyze 

It has been demonstrated that a neural network can approach any nonlinear function 
based on inputs and outputs. It can be applied to the recognition and function 
approximation of a wide range of situation, pattern and individual features of different 
systems. Bishop ect. [9] and Jing Chunguo [10] have shown that it is possible to 
determine oil, water and gas fraction in multiphase pipelines using neural networks 
based on dual-energy densitometry and DMD. The aim of this study was to apply 
neural network technique to measure WVF and salinity of flow using DMD. 
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Fig. 5. A architecture of a RBF neural network 

The back-propagation (BP) neural network is the most widely applied neural net-
work technique. In general, the BP neural network encounters local minimum, slow 
convergence speed and convergence instability. The radial basis function (RBF) neu-
ral network is similar to the BP. It can be trained very quickly because the algorithm 
uses a fixed Gaussian function [11]. In this paper RBF neural network was used. A 
RBF neural network architecture for measuring WVF with salt in flows is shown in 
figure 5. The input layer consists of two neurons which are the intensities of transmit-
ted and scattered. The output layer is two neurons predicting WVF and salinity. The 
hidden layer nodes has ten neurons and was called RBF units, determined by a pa-
rameter vector called center and a scalar called width. The Gaussian density function 
is used in the hidden layer as an activation function. The overall input-output mapping 
is as follows: 
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where X=[x1(It), x2(Is)]
T is the input vector, cj is the ith center of RBF unit in the hid-

den layer, N is the number of RBF units, wi is the weight between the hidden and 
output layers, respectively, Y=[y1s, y2w]T is output vector.  
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Fig. 6. The comparisons of the predicting 
WVF to true WVF. Form 12 sample to 25, 
three different types of salt with salinity from 
1% to 9% in step 2%. 

Fig. 7. The comparisons of the predicting 
salinity to true salinity. Form 1 sample to 10, 
the change of WVF was from 0.05 to 0.95 in 
step 0.1. 

The training set and test set were produced by computer simulation. There are 26 
samples in training set, in 11 samples, there is no salt in water and WVF is from 0 
to 1 in step 0.1. the rest are NaCl, MgCl2 and CaCl2 brine whose salinity is from 2% 
to 10% in step 2% and at the same time WVF is 0.8. The test set corresponds to 
training set and has 25 samples, but WVF and salinity are different to those of the 
training set. The WVF is from 0.05 to 0.95 in step 0.1 with no salt in water and 
salinity is from 1% to 9% in step 2%. Figure 6 is the comparison of the predicting 
WVF to true WVF. From figure 6 it can be seen that the predicting WVF are close 
to true WVF. The predicting salinity fit true salinity well in figure 7. Table 1 is 
statistical results of predicting WVF and salinity. Although the maximal absolute 
error of WVF is 0.06 between predicting WVF and true WVF, the mean square 
error (MSE) of WVF is very low. The MSE of Salinity is 10 times lower than MSE 
of WVF.  

Table 1. The statistical results of predicting WVF and salinity 

Performance WVF Salinity 
MSE 0.000685439 6.48106E-05 
Min Abs Error 0.001114083 0.0242663 
Max Abs Error 0.062112194 1.7159279 
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5   Conclusions 

When salinity and type of salt change, the attenuations of transmitted radiation and 
scattered radiation detected by transmitted and scattered detectors in DMD are obvi-
ous. It can be used to measure WVF in salinity changing situation. But it is difficult to 
find out the algorithm from DMD models to calculate salinity and WVF. In order to 
verify the feasibility of RBF neural networks predicting WVF and salinity, the train-
ing and test set were produced by Geant4. The test results show that predicting WVF 
is close to true WVF as salinity changes. All these demonstrate that it is feasible to 
eliminate the effects of salinity in calculating WVF using DMD. 
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Abstract. In this paper research and development are ongoing in the implemen-
tations of Brillouin-active fiber based, highly versatile active optical device for 
optical communication, sensing and computation. An active device in general 
requires the employment of nonlinearity, and possibly feedback for increased 
efficiency in device function. However, the presence of nonlinearity together 
with intrinsic delayed feedback has been repeatedly demonstrated to lead to in-
stabilities and ultimate optical chaos. Our effort is then to exploit device func-
tion and suppress instabilities by simulation, and design for optimization based 
on neural networks in smart structures. Instabilities are unavoidable in optical 
fiber due to its intrinsic nonlinearity and feedback instabilities. The suppression 
of such instabilities is devoted to the exploitation of them for memory capacity. 
These memories can be estimated as an optical logic function used for all-optic 
in-line switching, channel selection, oscillation, optical logic elements in optical 
computation with neural network application. 

1   Introduction 

Optical fibers based on neural networks and hardware implementation has been 
extensively used in optical systems [1], [2]. Recent interest has been also focused on 
using optical fibers as sensors since fiber parameters are sensitive to the fiber 
immediate environment [3]. Specially, in the case of stimulated Brillouin scattering 
(sBs) sensor, the backward scattering nature of scattering has long been viewed as an 
ultimate intrinsic loss mechanism in long haul fibers since Brillouin threshold 
decreases with increasing effective fiber length. On the other hand, the very 
backscattering nature of this process and the existence of a threshold, provide 
potential optical device functions, such as optical switching, channel selection, 
amplification, sensing, arithmetic and neural functions in optical signal processing, 
and neural network applications and hardware implementation. The theoretical and 
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physical background of this nonlinear process has been well explained [4],[5]. The 
backward scattering scheme based on neural networks in optical fiber is shown in 
Figure 1. 

Optical System kP
kB

q

in fiber

 Fiber

Signal 1 Signal 2

Backward signal 1 Backward signal 2

 

Fig. 1. Brillouin-active fiber with forward/backward scattering schemes in neural networks 

Active device in optical systems generally require the employment of nonlinearity, 
and possibly feedback for increased device efficiency. The presence of nonlinearity 
together with intrinsic delayed feedback has been repeatedly demonstrated to lead to 
instabilities and optical chaos [6], [7]. This phenomenon has extensively investigated 
by us for its potential detrimental effect to the Brillouin fiber sensor [8], [9].  

Such a smart sensor system would implement a massively parallel computational 
architecture with its attendant reduction in processing time while managing the com-
plexity of the system, i.e. the sensing/actuation grid. Our sBs network would learn the 
correct "algorithms" by example during training and have the ability to generalize to 
untrained inputs after training is completed. The inputs to the network are the fiber 
optic sensor signal outputs, and the network outputs are the control signals for actua-
tion controls. The true advantage of this system for application to smart sensor struc-
tures lies both in its capability to analyze complex sensor signal patterns and its speed 
in generating the appropriate control signal for the actuators. The key lies in the im-
plementation of a neuron operation using sBs in optical fibers. 

2   SBS Optical Logic 

An artificial neuron, used in neural network research, can be thought of as a device 
with multiple inputs and single or multiple outputs in hardware implementations. The 
inputs to a neuron are weighted signals. Neuron-type operations can be performed by 
an optoelectronic system that uses sBs for the weighted summation required in a neu-
ron. Weighting can be achieved by optical summation and subtraction, conveniently 
carried out in an optical fiber using sBs. Weighted additions and subtractions are 
needed in many situations. For example, a neuron performs weighted summation of 
the incoming signals. The performance of such a device will enhance if it operates 
optically. We propose to study a system that can perform the practical implementation 
of a Brillouin-active fiber for optical neural net, neural function by exploiting the 
acousto-optic nature of the sBs process [7]. 
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Nonlinear effects in optical fibers, specifically sBs has emerged as a versatile ap-
proach to the construction of active optical devices for all-optic in-line switching, 
channel selection, amplifiers and oscillators in optical sensing, and optical communi-
cations[2], [3]. The backward scattering nature of Brillouin scattering, which is the 
light reflection by laser induced acoustic wave in the fiber, has long been viewed as 
an ultimate intrinsic loss mechanism in long haul fibers, since Brillouin threshold 
decreases with increasing effective fiber length[5], [6]. The very backscattering nature 
of this nonlinear process and the existence of a threshold provide potential optical 
device functions, such as optical switching, arithmetic and neural functions in net-
works. An artificial neuron, used in neural network research, can be thought of as a 
device with multiple inputs and a single or multiple outputs. The inputs to a neuron 
are weighted signals. The neuron adds the weighted signals, compares the result with 
a preset value, and activates if the sum exceeds threshold. In the nonlinear optical 
phenomenon, the system combined weighted signals also produces an output if the 
weighted sum is greater than the threshold. A theoretical sBs based neural network, 
utilizing SBS threshold sensing with an embedded sensor is seen in Figure 2. 
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out ... Even output waves: I0
out, I2

out ...

z = L z = 0

Odd Circulating Waves: I1, I3 Even Circulating Waves: I0, I2

 

Fig. 2. Hardware implementations based Brillouin-active fiber with forward/backward scatter-
ing schemes 

The arithmetic building block of energy addition and subtraction, as in Fig.2, can 
conceivably be accomplished by the sBs process, which involves energy transfer 
between waves. Thus, if two waves at a frequency difference equal to the stokes shift 
of the fiber propagate in the fiber in opposite directions, then energy is “subtracted” 
from the higher frequency wave and “added” to the lower frequency wave.  If three 
waves are present in a fiber with equal stokes shifts, then the wave at the middle fre-
quency will receive energy from the higher frequency wave and lose energy to the 
lower frequency wave. Practical implementation of this scheme calls for all the waves 
to be generated by the same laser. 

3   SBS Based Threshold Logic Implementation 

A practical sBs logic implementation of theoretical neuron calls for all the waves to 
be generated by the same laser. We are very familiar with this method and a scheme is 
devised in Figure 3.  
, 
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Fig. 3. Practical hardware implementation sBs based threshold logic. Optical fibers are used for 
neuron operation as the medium for providing sBs gain to the stokes wave. 

We assume that two input waves at frequencies νp and νn are launched in a fiber of 
length L and a third wave, called a sensor signal νs, is launched from the other end of 
the fiber. The sensor signal wave will act as a Stokes wave for the νp signal and as a 
pump wave for the νn when νp - νs ≈ ΔνB, and νs - νn ≈ ΔνB, where ΔνB is Brillouin 
shift. The frequencies are such that the difference νp - νn ≈ 2ΔνB. This spacing is cho-
sen to eliminate any interference due to sBs. The intensity level of each wave is below 
the Brillouin threshold, (Ith = 21/gBLeff) in order to avoid the generation of backward 
Stokes waves from spontaneous scattering. Here Leff is the effective length. The en-
ergy can be added to and/or subtracted from the sensor wave by its interaction with νp 
and νn signal via sBs. The addition of energy to the sensor wave is proportional to the 
pump intensity; while the subtraction is proportional to the pump intensity νn. The 
weighted summation can be performed by properly setting the intensity of each pump 
beam. An optical amplifier can be used for this purpose. The energy transfer can take 
both positive and negative values. Generally, positive weights of energy can be easily 
accomplished in optics field. However, the negative weighting is not so direct. It can 
be achieved via stimulated Brillouin scattering process, which requires the shifted 
frequency of the signal in optical fiber. This will be shown that energy can be added 
to or subtracted from an optical signal via sBs optical fiber-ring based on logic princi-
ples. The arithmetic building block of energy addition and subtraction can conceiva-
bly be accomplished by the sBs process (see Figure 4), which involves energy transfer 
between waves. Thus, if two waves at a frequency difference equal to the Stokes shift 
of the fiber propagate in the fiber in opposite directions, then energy is “subtracted” 
from the higher frequency wave and “added” to the lower frequency wave. 

If three waves are present in a fiber with equal Stokes shifts, then the wave at the 
middle frequency will receive energy from the higher frequency wave and lose energy 
to the lower frequency wave. Intensity wave subtraction is unique to the sBs process 
since the negative value was not so direct accomplished in optics field. 
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Fig. 4. (a) sBs oscillator amplification scheme with no mixing in fiber 3 (b) addition = energy 
from νp added to νs (c) subtraction = energy from νs added to νn 
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Fig. 5. (a) addition: energy νp added to vs1+ 
vs2 (b) addition: energy νp added to vs1+ vs2+ 
vs3 

Fig. 6. (a) subtraction: energy νs added vn1+ 
vn2  (b) subtraction: energy νs added vn1+ vn2+ 
vn3 

In the neuron building block-3 wave optical addition and subtraction, the arithme-
tic building block of optical addition and subtraction in the form of energy can con-
ceivably be readily accomplished by the sBs process, which involves energy transfer 
between waves. A practical implementation scheme, using the 4-wave sBs based 
threshold logic studied as shown Figure 5 and Figure 6. 
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4   Conclusions 

We studied that the ability of sBs to perform both sensing and optical arithmetic ren-
der such a scheme as the simplest building block for neural network based smart 
structures. The potential of extremely low generation threshold for multiple Stokes 
lines with ready energy exchange among them lends the process to optical addition 
and subtractions, simulating neuron functions. The building block for energy addition 
and subtraction can conceivably be accomplished by such sBs process, which in-
volves energy transfer between waves. The experiments show the sBs instabilities 
with periodic and chaotic dynamics that are in good agreement with results. In addi-
tion to application, a theoretical possibility of applying multistability as a memory 
device for complicated information has been discussed for sBs logic element. 
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Abstract. This paper presents a novel approach to solve the hydro plant dispatch 
problem based on the artificial neural network (ANN) and genetic algorithm 
(GA). In this work, the difficult water balance constraints are embedded and 
satisfied throughout the proposed encoding and decoding algorithms. The ANN 
is used as a pre-dispatch tool to generate raw hydro output for each hour 
temporarily ignoring time-dependent constraints. Then, the proposed decoding 
algorithm decodes the raw schedule of each plant into a feasible one. Finally, a 
GA is used to find the optimal schedule. The proposed approach is applied to an 
actual utility system of four hydro plants and 22 thermal units with great success. 
Results show that the new approach obtains a more highly optimal solution than 
the conventional dynamic programming method. 

1   Introduction 

Hydro plants play important roles within the power system security due to their fast 
response characteristics. Hydro plant dispatch is a difficult task in the hydro-thermal 
coordination. The problem is mainly concerned with both hydro plants scheduling and 
thermal units dispatching. Both electric and hydraulic couplings create a 
multi-dimensional, non-linear programming problem. To solve such a complex 
problem, several methods have been proposed in the literature [1-6]. Among these 
methods, the dynamic programming (DP) method [1, 2, 5, 6] has gained much 
popularity. In our previous work [6], a hydro plant dispatch software using the DP 
method was completed and applied to the actual Taipower system of Taiwan. Since the 
DP technique belongs to the class of "greedy search" algorithms, the solution cost 
usually got stuck at a local optimum rather than at the global optimum. However, the 
optimality of solution is very important to the utility. Even a small reduction in 
percentage production cost may lead to a large money saving. Obviously, a complete 
and efficient algorithm for solving the hydro plant dispatch is still in demand. 

In recent years, biologically artificial intelligence techniques, such as artificial 
neural network (ANN) and genetic algorithm (GA) have emerged as candidates for the 
optimization problem [7-8]. ANN is intended to model the behavior of biological 
neural network. It is modeled as a massively parallel interconnected network of 
elementary neurons. GA is a stochastic searching algorithm combining an artificial 



 Hydro Plant Dispatch Using Artificial Neural Network and Genetic Algorithm 1121 

survival of the fittest with genetic operators that is suitable for a variety of optimization 
problems. In this paper, a new approach based on the ANN and GA is developed for 
solving the 24-hour ahead hydro plant dispatch. The ANN is used as a pre-dispatch tool 
to generate raw hydro schedule for each hour temporarily ignoring time-dependent 
constraints. Then, the proposed decoding algorithm decodes the raw schedule of each 
plant into a feasible one. The GA is finally used to find the optimal schedule. 
Comparative studies on the actual Taipower system show that the new approach 
obtains lower solution cost than the conventional DP method. 

2   Problem Description and Formulation 

2.1   List of Symbols 

Phj
t
 : power generation of hydro plant j in hour t 

Psi
t
 : power generation of thermal unit i in hour t 

F Pi
t

si
t

( )  : production cost for Psi
t
 

T : number of scheduling hours 

Nh  : number of hydro plants 

Ns  : number of thermal units 

PL
t
 : system load demand in hour t 

Ploss
t

 : system transmission network losses in hour t 

Vj
t
 : water volume of reservoir j at the ending of hour t 

I j
t
 : natural inflow into reservoir j in hour t 

Qj
t
 : water discharge of hydro plant j in hour t 

S j
t
 : water spillage of hydro plant j in hour t 

τ j−1  : water travel time from plant j-1 to plant j 

URsi  : up ramp rate limit of thermal unit i 

DRsi  : down ramp rate limit of thermal unit i 

R Psi
t

si
t

( ) : spinning reserve contribution of unit i for Psi
t
 

R Phj
t

hj
t

( ) : spinning reserve contribution of plant j for Phj
t
 

Rreq
t

 : system spinning reserve requirement in hour t 
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2.2   Equivalent Hydro Plant Model 

The number of hydro units is usually much greater than the number of hydro plants. 
Therefore, in practical hydro plant dispatch, it is advantageous to model hydro 
generation at the plant (or reservoir) level to reduce the problem size. The equivalent 
plant model can be obtained using an off-line mathematical procedure which 
maximizes the total plant generation output under different water discharge rates [1]. 
The generation output of an equivalent hydro plant is a function of the water discharge 
through the turbine and the net head (or the content of reservoir). The general form is 
expressed by: 

P f Q Vhj
t

j
t

j
t= −

( , )
1

.                                                (1) 

The quadratic discharge-generation function to be used in this paper as a good 
approximation of the hydro plant generation characteristics, considering the head 
effect, is given below: 

P Q Qhj
t

j
t

j
t

j
t

j
t

j
t= + +− − −α β γ1 1 1

2

,                                     (2) 

where coefficients α j
t−1

, β j
t−1

, and γ j
t−1

 depend on the content of reservoir j at the 

ending of hour t-1. In this work, the read-in data include five groups of α β γ, ,   
coefficients that relate to different storage volumes, from minimum to maximum, for 
each reservoir. Then, the corresponding coefficients for any reservoir volume are 
calculated by using a linear interpolation between the two closest volumes. 

2.3   Objective Function and Constraints 

The hydro plant dispatch deals with the problem of obtaining the optimal generations 
for both hydro plants and thermal units. It aims to minimize the production costs of 
thermal units while satisfying various constraints. With discretization of the total 
scheduling time into a set of shorter time intervals (say, one hour as one time interval), 
the hydro plant dispatch can be mathematically formulated as a constrained nonlinear 
optimization problem as follows: 

Problem:       Minimize F Pi
t

si
t

i

N

t

T s
( )

==
∑∑

11
. (3) 

Subject to the following constraints: 

o USystem power balanceU 

P P P Psi
t

i

N

hj
t

j

N

L
t

loss
ts h

= =
∑ + ∑ − − =

1 1
0 .                                      (4) 

o UWater dynamic balance with travel timeU 
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V V I Q S Q Sj
t

j
t

j
t

j

t

j

t

j
t

j
tj j= + + + − −−

−
−

−
−− −1

1 1
1 1τ τ

.                         (5) 

o UThermal generation and ramp rate limits 

Max P P DR P Min P P URsi si
t

si si
t

si si
t

si( , ) ( , )
− −− ≤ ≤ +1 1

.               (6) 

o UHydro discharge (generation) limits 

Q Q Qj j
t

j≤ ≤ .                                                 (7) 

o UReservoir limits and specified final volume 

V V Vj j
t

j≤ ≤ .                                                  (8) 

o USystem spinning reserve requirement 

R P R P Rsi
t

si
t

i

N

hj
t

hj
t

j

N

req
ts h

( ) ( )
= =
∑ + ∑ ≥

1 1
.                                 (9) 

3   Solution Methodology 

The basic conception of ANN is intended to model the behavior of biological neural 
functions. The original desire for the development of ANN is intended to take 
advantage of parallel processors computing than traditional serial computation. The 
GA is essentially a search algorithm combining solution evaluation with randomized, 
structured exchanges of information between solutions to obtain optimality. The power 
of this algorithm comes from its ability to exploit historical information structures from 
previous solution guesses in an attempt to increase the performance of future solution 
structures. In every generation, a new set of artificial strings is created using bits and 
pieces of the fittest of the old ones. The three prime operators associated with the GA 
are matching, crossover, and mutation.  

In this work, a novel approach based on the ANN and GA is developed for solving 
the hydro plant dispatch within the daily hydro-thermal coordination. The ANN is used 
as a pre-dispatch tool to generate raw hydro schedule for each hour ignoring 
time-dependent constraints temporarily. Then, the proposed decoding algorithm 
decodes the raw schedule of each plant into a feasible one. The GA is finally used to 
find the optimal schedule. The solution methodology for solving the hydro plant 
dispatch by the proposed approach is outlined in the flowchart in Fig. 1 and will be 
described in detail later. 

From the literature survey, several models and learning algorithms of ANN have 
been proposed for solving combinatorial optimization problems [9]. In this work, we 
establish a triple-layer feed-forward back-propagation neural network (BPNN), as 
shown in Fig. 2, for solving the hydro plant dispatch problem. The number of output 
layer neurons is set at N, where N is the number of hydro plants. The number of hidden 
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layer neurons is set at 24 according to experimental results. The input data for the 
BPNN include hourly load demand, hourly remaining thermal load, storage of 
reservoir, and a heuristic control variable. The output layer neurons generate raw unit 
combinations for each hour temporarily ignoring time-dependent constraints. In this 
work, the transfer function used in the hidden layer is a hyperbolic tangent function 
[11], as shown in Fig. 3. The transfer function used in the output layer is a sigmoid 
function [11] as shown in Fig. 4. 

Read in data and define constraints.

 Use ANN to create hourly raw generation output for 
each hydro plant.

Last generation ?

The first rank is the best solution.

Rank matrixes according to their thermal cost.

Repeat for each hour.

 Use the proposed decoding algorithm to obtain a 
feasible generation schedule.

Repeat for each plant.

Do thermal unit commitment for the remaining thermal 
      loads to obtain a thermal cost.

Population full ?

No

Matrix=
Matrix+1

Use GA operation (matching, crossover, and mutation) 
to generate new matrixes. 

Do unit commitment for the new matrixes and insert the 
best offspring to displace weaker parents.

No

Yes

 

Fig. 1. General flow chart of the proposed approach 
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Fig. 2. Triple-layer feed-forward BPNN 

 

  

Fig. 3. Hyperbolic tangent function Fig. 4. Sigmoid function 

3.1   Learning Algorithm 

In the training procedure, A faster off-line back-propagation learning algorithm named 
“RPROP algorithm” is used as the learning rule. Riedmiller and Braun [10] showed that 
both convergence speed and memory requirement of the RPROP algorithm are better 
than traditional gradient-descent learning algorithms. In the RPROP algorithm, the 
update-values for each weight are modified according to the behavior of the sequence 
of signs of the partial derivatives in each dimension of the weight space, not according 
to the gradient value. The modified procedure of a weight of the RPROP algorithm can 
be mathematically formulated as follows: 
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)()()1(W tWtWt ijijij Δ+=+                                             
(12)

 

where 
( )ijW t : weight back propagated from neuron j to neuron i 

η + / η − : learning velocity, where 0<η − <1<η +  

( )E t : error function 

( )ij tΔ : update value of ( )ijW t  

3.2   Encoding and Decoding 

The encoding must be carefully designed to efficiently transfer information between 
encoding strings and objective function of a problem. The encoding scheme that 
translates the encoded parameter-water discharges of each hydro plant into their binary 
representation is shown in Fig. 5. Using a plant's water discharge, instead of the plant's 
generation output, the encoded parameter is more beneficial for dealing with the 
difficult water balance constraints. Each string contains 4x24 digital bits to represent a 
solution for a 24-hour discharge schedule. Each hour is assigned the same number of 

four bits to represent a normalized water discharge t
jq . The resolution is equal to 1/2 P

4
P 

of the discharge difference from minimum to maximum. 
 

1
jq  2

jq  ..... 
24
jq  

1 0 1 0 1 0 1 1 ..... 0 0 1 0

Fig. 5. The proposed encoding scheme 

Evaluation of a hydro schedule is accomplished by decoding the encoded string and 
computing the schedule's corresponding thermal cost using the decoded parameter. The 
detailed decoding procedure is summarized in the following stages: 

1. Decode each hour of the string to obtain the normalized discharge t
jq  in decimal 

values: 

t
jq  

b B1B b B2B b B3B b B4B 

× × × ×

2 P

-1
P

 2 P

-2
P

 2 P

-3
P

 2 P

-4
P

 

{ }q bj
t

i
i

i
= × ∈−

=
∑( ) ,2 0 1

1

4
           b i

 
 
2. Calculate the upper and lower boundaries of the discharge: 

Q Min Q V Q I V V I Q Vj
t

j j
t

j

t

j
t

j j
t

j
t

j j
j= + + − − − + +−

−
−

+
−

+ + +
−[ ,( ),( )]

1
1 1

1
1 1 1

1τ
, (13) 
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Q Max Q V Q I V V I Q Vj
t

j j
t

j
t

j
t

j j
t

j
t

j j
j= + + − − − + +−

−
−

+
−

+ + +
−[ ,( ),( )]

1
1 1

1
1 1 1

1τ
, (14) 

 where Qj
t
 and Qj

t
 denote, respectively, the upper and lower bounds of Qj

t
. 

3. Translate the normalized value q j
t
 to the actual value Qj

t
: 

Q Q q Q Qj
t

j
t

j
t

j
t

j
t= + −( ).                                           (15) 

4. Calculate the hydro generation output t
hjP  using (2). 

5. Continue the computation for each plant, and for hour 1 to hour 24. 
6. Calculate the remaining thermal load profile: 

24  1,2,.....,t        PPP
hN

1j

t
hj

t
L

t
rm =−= ∑

=
.                           (16) 

where t
rmP  is the remaining thermal load in hour t. 

7. Do thermal unit commitment for the remaining thermal load profile, and return the 
corresponding thermal cost. 

 

In the proposed approach, the thermal subproblem can be solved entirely 
independently. Each string represents a complete discharge schedule of a hydro plant. 
The UC package was executed to calculate the corresponding thermal cost of this 
discharge schedule. Then, the genetic iterations proceed to search the optimal string 
(discharge schedule) which has the lowest thermal cost. 

4   Test Results 

The proposed approach was implemented into a software and tested on the actual 
Taipower generation system, which consists of 22 thermal units and four hydro plants 
in cascade. Detailed characteristic data of the four plants are given in Table 1. Besides 
the common constraints listed in Section III, the Taipower system has the following 
unique characteristics that increase the difficulty of the problem. 

1. Chin-Shan is a must-run unit, because it is connected to Taipower's Automatic 
Generation Control (AGC) system. But, it has only a small reservoir. 

2. There is a one-hour water travel time delay between the Chin-Shan and Ku-Kuan 
plants. 

3. The 300MW system spinning reserve requirement must be satisfied. 
4. The large load fluctuation at the noon break hours can not be completely handled by 

thermal units due to their ramp rate limits. 

The proposed approach is tested on a summer weekday whose load profile, as shown in 
Fig. 6, is obtained by subtracting the expected generation output of other hydro plants 
and base load units from the actual system load profile. Throughout the study, the DP 
method [6] is then used as the main benchmark of comparison for the proposed 
approach. Fig. 7 shows the total generation profile of the four hydro plants created by 
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Table 1. Characteristic of hydro plants 

Plant 

Maximal 
Output 
(MW) 

Minimal
Output 
(MW) 

Maximal 
Discharge 

(mP

3
P/s) 

Maximal 
Storage  
(k x mP

3
P) 

Natural 
Inflow 
(mP

3
P/s) 

Te-Chi 234 60 177 254420 58 

Chin-Shan 360 40 150 427 - 

Ku-Kuan 180 30 113 7960 6 

Tien-Lun 90 30 62 395 - 

Total 864 MW     

Load Factor=0.63

0
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0 2 4 6 8 10 12 14 16 18 20 22 24
HOUR

M
W

 

Fig. 6. A summer weekday load profile 

Cost (Thousand NT$):   61,267(ANN+GA)    62,589(DP)
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Fig. 7. Total generation profile of the four hydro plants 
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the proposed approach, and the one created by the DP method. From the test results, 
two interesting and important observations can be summarized as follows: 

1. Both generation profiles basically follow the load fluctuation that is consistent with 
our economic expectation. However, an additional cost saving of 1,322 thousand NT 
dollars has been realized by the proposed approach. 

2. The reason the hydro plants are not generating to their maximum in peak-hours is 
due to the system spinning reserve requirement. 

5   Conclusions 

This paper presents a new solution method based on the ANN and GA for solving the 
hydro plant dispatch problem. The difficult water balance constraints due to hydraulic 
coupling are embedded in the encoding string and are satisfied throughout the proposed 
decoding algorithm. To make the dispatching results more practical, the effects of net head 
and water travel time are also taken into account. Numerical results from an actual utility 
system indicate the attractive properties of the proposed approach in practical application, 
namely, a highly optimal solution cost and more robust convergence behavior. 
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Abstract. The paper presents a wavelet packet neural network (WPNN)  
approach for solving the waveform distortion problem of protective relaying 
testing instrument. With its excellent time-frequency localization property and 
approximation ability, WPNN is used to establish an identification model of the 
non-linear amplifier of the protective relaying testing instrument. The fault data 
to be put into the instrument is compensated by an adjusting function getting 
from the identification model, which makes the whole instrumentation system 
show linear performance so that the distortion of the output waveform is con-
strained greatly. Simulation results indicate the feasibility and validity of the 
proposed approach, and a prototype has been put into practical operation. 

1   Introduction 

The continuous expansion of the modern electric network’s scale and complication of 
its configuration requires higher reliability of protection relays in power system, and 
testing protection relays with fault recoding data amplified by instrument before put-
ting into operation is an effective way for improving their performance [1], [2]. Tradi-
tional protective relaying testing instruments could realize such testing function, but 
they used to adopt analog amplifier, which is a typical non-linear system, to realize 
power amplifying. So the non-linear distortion of output waveform inevitably be-
comes a serious problem for the relay protection testing. In the paper, a WPNN ap-
proach is presented for resolving this problem. 

WPNN is a combination of wavelet packet theory and conventional neural  
network, which not only possesses good localization property and feature extraction 
ability of wavelet packet, but also inherits most merits of neural network such as self-
study, adaptability and high fault-tolerant [3], [4]. It selects wavelet packet basis as its 
neuron’s activation function and has normative design procedures and solid academic 
foundation, so WPNN has been widely applied in many technical fields [5], [6], [7]. 

In this study, WPNN is adopted to establish an identification model of the non-
linear amplifier of the protective relaying testing instrument. And by comparing the 
identification model’s output with idea output, an adjusting function is generated to 
guide adaptive adjustment of fault data before to be put into the instrument, which 
makes the whole instrumentation system show linear performance so that the distor-
tion of the output waveform is constrained greatly. A simulation using fault recording 
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data is carried out, whose results demonstrate the feasibility and validity of applica-
tion of WPNN on relay protection testing of power system, and a prototype with the 
proposed approach has been put into practical operation. 

2   Construction of WPNN 

WPNN is the development of wavelet neural network (WNN). WNN can be viewed 
as the combination of reconstructions using wavelet basis of orthogonal wavelet 
spaces of L2(R) based on multi-resolution analysis (MRA) [8], [9], [10]. As everyone 
knows, wavelet space can be decomposed further using wavelet packet, so signals can 
be decomposed in more frequency bands to increase frequency resolution than by 
MRA. Therefore, selecting best wavelet packet basis to be network neuron’s activa-
tion function will obtain better time-frequency localization property and approxima-
tion ability for the network. So WPNN utilizes wavelet packet basis extracting feature 
of input signal and neural network in WPNN takes charge of information identifica-
tion, i.e., WPNN can be divided into two parts: wavelet packet feature extraction and 
neural network information identification, which is shown in Fig.1. 

Throughout the paper, Z denotes the set of all integers. Let ( )ψ i  and { ( )}n n Zu ∈i  

denote wavelet basis and wavelet packet generated from ( )ψ i respectively. The struc-

ture design of WPNN consists of following three primary steps: 

Step 1. Calculating scale range: Using [t1, t2] and [tmin, tmax] to denote the time ex-
tent of ( )ψ i and the goal system ( )f i , their energy concentrating areas of frequency 

extent can be estimated with training data, which are expressed as [f1, f2] and [fmin, 
fmax] separately. According to the properties of Fourier transform, with the increase of 
the wavelet scale j, frequency extent will expand by 2j, i.e., frequency extent of ( )jψ i  

is [2j f1, 2
j f2]. Therefore the wavelet scale j contains a finite range for covering [fmin, 

fmax], and it can be calculated by below: 

maxmin
2 2

1 2

{ } [int (log ,int (log )]
ff

J j
f f−∞ +∞= =  (1) 

Where int−∞ and int+∞ denote choosing smaller or bigger integer value nearby respec-

tively. 
Step 2. Selecting best wavelet packet basis: Shannon entropy criterion is introduced 

to calculating the entropies for the set of coefficients of each node in scale range get-
ting in step1. Then, replace the parent nodes by the two children nodes directly below 
it if the sum of children’s entropies is less than that of parent. In this method, we can 
uncover the set of minimum entropy basis, which can be denoted as follows: 

,{ },1 ,
e en jU u e E e Z= ≤ ≤ ∈  (2) 

Where E is the number of best wavelet packet basis. 
Step 3. Determination of number of nodes: This step is also can be seen as deter-

mination of translation factor k for each wavelet scale j. It is known as that the time  
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extent of wavelet packet { ( )}n n Zu ∈i is invariable with n changes, so the time extent of 

wavelet packet basis , ( )n ju i can be expressed as [2-j (t1+k), 2-j (t2+k)]. With the in-

crease or decrease of k, the extent slides on the time axis. For covering the time area 
[tmin, tmax] of ( )f i , range of k is determined as: 

min 1 max 2{ } [int (2 ), int (2 ))]j jK k t t t t−∞ +∞= = × − × −  (3) 

By the three steps above, the structure and parameters of first part of WPNN (fea-
ture extraction) can be definitely determined. So the second part (information identifi-
cation) can be viewed as a simple three-layered neural network with known input 
value, whose connection rights ( , , )w n j k are also that of WPNN. The whole structure 

of WPNN is thus of the following form, and is illustrated in Fig.1. 

( , )

( ) ( , , ) (2 )j
n

n j U k K

f t w n j k u t k
∈ ∈

≈ × × −∑ ∑  
(4) 

1

min

max

min+1
( , , )

( , , )

( , , )

...
Subnet 1

...

E

min

max

min+1
( , , )

( , , )

( , , )

Subnet E

( )

... ...

......

... ... ...

feature extraction
(wavelet packet)

information identification
(neural network)  

Fig. 1. The structure of WPNN 

3   Overall Scheme of Relay Protection Testing Instrument 

As referred in introduction, the non-linear distortion of output waveform is the most 
serious problem for relay protection testing. Aiming at this problem, a new scheme of 
closed-loop relay protection testing instrument is proposed as shown in Fig.2. 
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Fig. 2. Overall scheme of relay protection testing instrument 

Double CPUs configuration including upper-controller and lower-amplifier is  
applied in this system. 

Upper-controller adopts high-performance portable computer or embedded com-
puter as its core, which realizes data acquisition, fault analysis and integrated control. 
Besides, it can also adjust sampling frequency, value, releasing speed or harmonic 
content of the input data according to the requirements of testing. And a suit of pro-
tection testing digital simulation software is successfully embedded into upper-
controller of the instrument. It can simulate the testing process before analog testing 
on the digital platform, which improves the flexibility and repeatability and avoids 
potential harm to the tested equipments [11]. 

Lower-amplifier mainly consists of Digital Signal Processing (DSP) chip, array of 
Intelligent Power Modules (IPM), and feedback circuit. DSP receives data form  
upper-controller computer through CAN bus and generates PWM (Pulse Width 
Modulation) pulse by regular sampling method, and IPM is drove by the PWM pulse 
to realize power amplification. Feedback circuit is designed to sample the output sig-
nals to compose closed-loop configuration, which mainly takes charge of the trans-
formation of amplitude and polarity. 

For eliminating non-linear distortion, an algorithm of digital closed-loop modifica-
tion is used based on the proposed hardware [12], which can be described as follow: 
Identify the lower-amplifier part with training data and establish an input-output 
model for the instrumentation system. By comparing the identification model’s output 
with idea output, an adjusting function is generated to guide adaptive adjustment of 
fault data in numeric area before being to be input to the instrument, so that the output 
waveform can furthest approach to ideal value. It is clear that accurate identification 
of system is of great importance in the algorithm, and WPNN can be applied to com-
plete this task because of its excellent time-frequency localization property and ap-
proximation ability. 

4   Procedure of the Algorithm with WPNN 

The procedure of digital closed-loop modification with WPNN is shown in Fig.3, 
which can be explained like that: Some random sampling points within the effective 
range are input to the actual instrument with proposed configuration and the output 
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waveform is recorded using the feedback circuit. The group composing by the sam-
pling data and their corresponding feedback is regarded as training data set. An identi-
fication model ( )idf i is established by the training data set as substitute of unknown 

non-linear performance ( )f i  of instrument’s amplifier in the algorithm. And then 

compare the output of ( )idf i  to the idea output, and construct an adjusting function to 

compensate the initial to be put into the instrumentation system for realizing the goal 
of constraining distortion of output waveform greatly. 

actual 
instrument

sampling points

training data set

feedback( )f i

initial data

ix WPNN

identification 
model

( )idf i
idea value

iAx

A meet precision? 

adjusted data

ix∗

Y

N

δ

+ _

+
+

model output

actual output

 

Fig. 3. Procedure of digital closed-loop modification with WPNN 

Accurate system identification and acquirement of adjusting function are two the 
key points of the algorithm.  

With its excellent time-frequency localization property and approximation ability, 
WPNN is used to establish the identification model for the system. Select a suitable 
mother wavelet function and estimate the frequency domain of the non-linear per-
formance ( )f i  with training data set. Network structure and neurons number of 

WPNN can be determined by the method proposed in the second section, and the 
connection weights of WPNN can be trained by some optimization algorithm, e.g., 
back propagation (BP), genetic algorithm (GA), and etc. 

And the adjusting function is obtained by the method of iterative modification. As 
shown in Fig.3, xi denotes a certain data point of the fault data to be input to the in-
strument and fid(xi) is its output amplified by the identified model ( )idf i . The differ-

ence δ of fid(xi) and idea amplifying value Axi, where A is the idea amplification  
factor, is used to adjust the original data xi to xi

*. And then setting xi'
* as initial point, 

repeat the process above until δ meets the precision requirement. The last δ is re-
corded into adjusting value form and the last xi

* will be input to the testing instrument 
to realize fault waveform amplification. 

This algorithm is essentially a compensating method for the non-linear perform-
ance of the amplifier, which makes the instrumentation system show linear character-
istics on the whole, so that the non-linear error of output waveform can be greatly  
reduced. 
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5   Simulation Results 

To testify the effectiveness of applying WPNN on relay protection testing of power 
system, a simulation experiment is carried out using actual fault data recorded in a 
certain region of Jiangxi Province. 

Following the procedure mentioned above, an identification model is established 
using WPNN based on the training data and the compensating value related to each 
sampling data can be calculated by close-loop modifying, which is draw out in Fig.4. 
The results show that the identification model can accurately approximate the simu-
lated non-linear performance and its tracking error is within 0.1%. 

 

Fig. 4. System identification 

Fig.5 displays a segment of initial input data of the simulation and its adjustment 
process by the compensating value. The initial data is a phase current of a current os-
cillation fault, whose maximum reaches up to 10A. And in peak or vale points, input 
data has bigger compensating value because of more serious non-linear attenuation. 

 

Fig. 5. Initial input data of the simulation and its adjustment 

The comparison of output waveform with and without the method proposed in the 
paper is shown as Fig.6. Results from the analysis of the waveforms indicate that 1) 
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Because of non-linear performance of amplifier, the distortion will inevitably come 
into being in the output waveform which possibly leads to false relay protection test-
ing conclusions; 2) By using system identification and close-loop modification, the 
root mean square error of output waveform reduces from 2.09 to 0.76. The distortion 
is constrained so greatly that the output waveform could simulate the power fault ex-
actly, 3) and the compensation function is most remarkable especially at the points 
near peak or vale value. 

 

Fig. 6. Simulation results 

6   Conclusion 

(1) A novel neural networks, WPNN, with best wavelet packet basis as neuron’s acti-
vation function is introduced in the paper, which has normative procedures of struc-
ture design and accurate system approximation performance. 

(2) In this study, WPNN is applied to resolve the output waveform’s distortion 
problem of protective relaying testing instrument. The simulation results prove its 
feasibility and validity and a prototype with the proposed algorithm has now put into 
practical operation. 

(3) WPNN has excellent capability of approximating the complex nonlinear system, 
so it can also be applied to other modeling or optimizing problems in power system 
such as pattern recognition, fault diagnosis, load forecasting and data compress. 
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Abstract. The controlled system is an uncertain nonlinear differential-algebraic 
subsystem (DASs) in a large-scale system. The problem of robust stabilization 
for such class of uncertain nonlinear DASs is considered in this paper. The 
robust stabilization controller is proposed based on backstepping approach 
using two-layer Artificial Neural Networks (ANN) whose weights are updated 
on-line. The closed-loop error systems are uniformly ultimately bounded 
(UUB) and the error of convergence can be made arbitrarily small. Finally, 
using the design scheme proposed in this paper, a governor controller is 
designed for one synchronous generator in a multi-machine power systems. The 
simulation results demonstrate the effectiveness of the proposed scheme. 

1   Introduction 

Many physical systems are described by differential-algebraic equation systems 
(DAS). Compared to ordinary differential equation (ODE) systems description, the 
differential-algebraic system description is a more general form of system description. 
Now the theoretic system of linear DAS has in principle formed parallel to that of the 
linear ODE systems[1]. Some great progress has been made recently for nonlinear 
DAS. The sufficient conditions are presented for the stability of nonlinear DAS in [2]. 
The concept of controlled invariant distribution is introduced into nonlinear DAS in 
[3]. The problem of exact linearization for nonlinear DAS is considered in [4,5]. 

However, the controlled system in many practical engineering applications is often 
a nonlinear differential-algebraic subsystem (DASs) within a large-scale system. 
There exists constraint between the controlled DASs and the rest of the large-scale 
system, which constraint arises naturally from the point of physics. The controlled 
DASs is influenced by the rest of the large-scale systems. A so-called power systems 
component structural model formulated in [6] just falls into this category. As far as 
the writer knows, the research for nonlinear DASs has seldom been found. 

Owing to its excellent ability to approximate a nonlinear function with satisfactory 
accuracy, Artificial Neural Network (ANN) has been applied to system identification 
or identification-based control[7].The goal of this paper is to investigate the robust 
stabilization problem for uncertain nonlinear DASs. Firstly an equivalent system is 
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achieved through a local diffeomorphism and a feedback. Then the robust 
stabilization controller is proposed for the equivalent system based on backstepping 
approach[8] using ANN whose weights are tuned on- line. At last a governor controller 
is designed for one synchronous generator in multi-machine power systems to show 
the effectiveness of the proposed scheme in this paper. 

2   System Description and Problem Formulation 

We consider the following uncertain nonlinear DASs within large-scale systems [6]: 

1

2

( , ) ( , ) ( , , ),

0 ( , , ),

( , ),

x f x z g x z u H x z

f x z

y h x z

υ
υ

= + +
=
=

 (1) 

where nx R∈  is the vector of differential variables, mz R∈  is the vector of algebraic 

variables, sRυ ∈ is the interconnection input acted on (1) by the rest of the large-
scale systems, u R∈  is the control input , y R∈  is the control output, 1 2, , , ,f g H f h  

are all sufficiently smooth vector fields. ( )H ⋅ contains both parametric and 

nonparametric uncertainties. The interconnection input υ  and its sufficient order time 
derivatives are local measurable and bounded.  

Denote { }2( , , ) : ( , , ) 0n m sx z R R R f x zυ υΩ = ∈ × × = .Without loss of generality, 

we assume that the origin is the isolated equilibrium of (1) and the zero equilibrium is 
not affected by the uncertainties. 

The objective of this paper is to find a controller defined on a neighborhood of the 
origin such that the closed-loop system (1) has the following properties:  

1) for υ∀  there exists a unique solution 0 0 0 0 0 0( ( , , , ), ( , , , ))x t x z z t x zυ υ with 

0 0 0( (0), (0), (0)) ( , , )x z x zυ υ= , where 0 0 0( , , )x z υ  is the compatible initial condition[2], 

2) the state of the closed-loop system (1) can stay around the origin equilibrium as 
close as possible. 

3   Main Results 

Throughout this paper, the following assumptions are made for (1): 

Assumption 1. The Jacobi matrix 2f

z

∂
∂

 of 2f  with respect to z  is nonsingular on Ω . 

For convenience, we give the following notation 

1

2 2
( , , )

nI

F x z f f

z x

υ −

⎡ ⎤
⎢ ⎥= ∂ ∂⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

 (2) 
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Definition. The DASs (1) is said to have uniform relative degree (1 )r r n≤ ≤  at the 

origin, if on a neighborhood 0U ∈Ω  of the origin the following conditions hold:  

1

1

0

1

( , ) 0, 0, , 2, ( , )

(0,0) 0,

k
Fg Ff

r
Fg Ff

L L h x z k r x z U

L L h−

= = − ∀ ∈

≠
 (3) 

Assumption 2. The DASs (1) has uniform relative degree n  at the origin. 

Theorem 1. If the Assumptions 1 and 2 hold for (1), then on 0U there exist a local 

diffeomorphism and a state feedback control such that the DASs (1) can be 
equivalently transformed into the following form: 

1 2 1

1 1

2

1

( , , ),

( , , ),

( , , ),

( , , ) 0,

n n n

n nv

f x z

y

ξ ξ φ ξ υ υ

ξ ξ φ ξ υ υ
ξ φ ξ υ υ
χ υ

ξ

− −

= +

= +

= +
= =
=

 (4) 

where 1 1 1

1 1 1 1

2 2
1( , , ) , , 1, ,

i i i
Ff Ff FfT

n i

L h L h L h f f
FH i n

x z z z
ξ ξ ξ φ υ

υ

− − − −⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= = − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
. 

Proof. Define the following nonlinear transformation for (1) on 0U   

2

( , , )

( , , )

T x z

f x z

ξ υ

χ υ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5) 

where
1

1
1 1 ( , ) ( , ), , ( , , ) ( , )n

n n FfT x z h x z T x z L h x zξ ξ υ −= = = = .Similar to [5,9], it can 

be verified that (6) is a diffeomorphism. Then from (1) and (6), we can obtain that  

1 1

1

1

,1 1i i i

n n
n Ff Fg Ff n

i n

L h L L hu

ξ ξ φ
ξ φ

+

−

= + ≤ ≤ −

= + +
 

where ,1i i nφ ≤ ≤  as indicated in (5). Then with diffeomorphism (6) and the 

following feedback 

1

1

1

1
( ),n

Ffn
Fg Ff

u v L h
L L h−= −  (6) 

the nonlinear DASs (1) is equivalently transformed into (5) where v  is the new 
control input to de designed later. The proof is completed. 

Theorem 2. If Assumption 1 and 2 hold for (1) and the following conditions 
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1( , , ) ( , , , , ), 1, ,i i i i nφ ξ υ υ φ ξ ξ υ υ= =  (7) 

are satisfied for (5), then the DASs (1) is robust stabilizable.  

Proof. Suppose each iφ  is approximated by a two-layer ANN for some ideal constant 

weights , 1, ,iW i n=  , i.e., 

, , 1, ,T
i i i i iW c cons i nφ ψ ε ε= + ≤ = =  (8) 

where iψ  is radial basis function. Then the estimate of iφ  can be chosen as  

ˆ ˆ T
i i iWφ ψ=  (9) 

where ˆ
iW  is the current ANN weight estimate. In this note, ˆ

iW  is updated on-line by 

following adaptive algorithm 

ˆ ˆ , 1, ,i i i i i iW e W i nγ ψ σ= − =  (10) 

where , 0i iγ σ >  are design parameters. Then define the following error variables 

ˆT T T
i i iW W W= − and 1 1 1, , 2, ,i i ie e i nξ ξ α −= = − = , where the virtual controller iα  is 

chosen as ( )1 1
1 ( 1)

1 1

ˆ
i i

ji i
i i i i i j j

j jj

c e e e
e

α αα φ υ
υ

− −
− −

= =

∂ ∂
= − − − + +

∂ ∂∑ ∑  and the actual controller 

v  is ( )1 1
1 ( 1)

1 1

ˆ
n n

jn n
n n n n j j

j jj

v c e e e
e

α αφ υ
υ

− −
− −

= =

∂ ∂
= − − − + +

∂ ∂∑ ∑ with 0ic >  is the design 

parameter. The Lyapunov function for the whole closed-loop error system is picked as  

2

1 1

1 1 1

2 2

n n
T

i i i
i i i

V e W W
γ= =

= +∑ ∑  (11) 

It can be verified that with v  and (7), the time derivative of V  along the whole 
closed-loop error system satisfies the following inequality  

1

1
( )
2 2

n
i

i i i

V kV M c
c

σ
γ=

≤ − + +∑  (12) 

where min( , ), 1, ,i ik c i nσ= =  and M  is the upper bound of iW .Then by virtue of 

Assumption 1 and Theorem 2 in [2], the closed-loop DASs (1) is uniformly ultimately 
bounded (UUB). Furthermore, all states of the closed-loop systems converge to a 
compact residual set which can be made arbitrarily small if ,i ic σ are chosen large 

enough. The proof is completed. 

4   Application to Power Systems 

Based on the proposed control scheme, the speed governor control of turbo-generator 
set G1 (DASs) in the two-area four-machine large power systems (Fig.1) is studied 
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[10]. Based on MATLAB, simulation is conducted under the following operating 
status: at the beginning the system operates with double lines in a stable state; at 0.5s 
a three-phase symmetrical short-circuit to ground on one of the lines occurs at point 

0.1k =  (see Fig.1); at 0.65s the fault is cleared, and the system operates in two-line 
mode. 

k

7L 7C 8C
8L

km220k km2201 k

G1

Area1

G2

2

1 5 6 7

10km25km
220km 8 9 10 3 G3

25km10km

4
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Fig. 1. Two-area four-machine power systems 

The DAS model of the generator G1 is[6]: 

( )

0

0
0 0

0

' '0

0

,

{ ( )

( ) },

1
,

H ML m

q q d d q

H H H m H c

H

D
P C P

H

E x x I I
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P P C P C U
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δ ω ω
ωω ω ω

ω
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 (13) 
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Q x I P r I
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I Q x I P r I

x I r I
f ctg

E
θ δ

+
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+ + +

+
= ⋅ = −

+ + +

+ + + +
= ⋅ = −

+ + +

−
= ⋅ = − −

'
d d a qx I r I− −

 (14) 

where vector of differential variables ( , , )T
HPδ ω  are relative power angle between 

G1 and G4, rotate speed deviation of G1 and the high pressure mechanical power 
respectively, the vector of algebraic variables ( , , , )T

d q t UI I Q θ are the d-axis current, 

the q-axis current, the reactive power and the angle of voltage respectively, and the 
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interconnection input ( , )t tI P  are the generator stator current and active power. The 

governor position cU  is the control input, and the output of G1 is chosen as y δ= .  

We can verify that the conditions in Theorem 2 hold. According to the design 
scheme proposed in Theorem 2, the simulation results show as follows: 
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Fig. 2. Relative power angle between G1 and 
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Fig. 3. Rotate speed deviation of G1 
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Apparently, all the states of G1 have good performance of convergence. 
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5   Conclusion 

For a class of uncertain nonlinear DASs, the robust stabilization controller design 
scheme is proposed in this paper based on backstepping approach using ANN whose 
weights are updated on-line. 
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Abstract. This paper presents a state-of-charge (SOC) estimation method based 
on extension neural network (ENN) theory for lead-acid batteries. First, a con-
stant electric current discharging experiment with an electronic load for lead-acid 
batteries is made to measure and record the internal resistance and open-circuit-
voltage by utilizing internal resistance tester. Then, the experimental data are 
adopted to construct an estimation method based on ENN for recognizing the re-
sidual capacity of the lead-acid battery. The simulated results indicate that the 
proposed estimation method can determine the residual capacity of lead-acid bat-
teries rapidly and accurately with less time and memory consumption. 

1   Introduction 

There are currently many methods for estimating the residual capacity of lead-acid 
batteries, including electrolyte specific gravity, open circuit voltage, internal resistance, 
coulometric measurement, and loaded voltage [1-4]. Among these, the open circuit 
voltage and internal resistance methods are the most commonly used. The open circuit 
voltage method uses the linear relation between voltage and the residual capacity of the 
lead-acid batteries to carry out SOC estimation. However, it requires between half an 
hour to one hour, which is the recovery time of the open circuit voltage of the battery 
after moving charge state to discharge state, for a lead-acid battery to achieve a stable 
state. Therefore, the open circuit voltage of a battery is used during this period to esti-
mate the residual capacity, there will be sizable errors. Moreover, during this period, 
the open circuit voltage with respect to remnant capacity is not linear but quasi-linear 
relation. The internal resistance method is adopted to estimate the residual capacity of 
lead-acid battery by using the change of internal resistance during battery discharging. 
However, mistakes may occur when the value is not sufficiently accurate enough due 
to the small variety of resistance at the early discharge period. 

This paper presents a residual capacity estimation method based on ENN for SOC 
estimation of the lead-acid battery, which uses a combination of neural networks and 
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extension theory. The extension theory [5-6] provides a novel distance measurement 
for classification processes, while the neural network can embed the salient features 
of parallel computation power and learning capability [7]. The proposed residual 
capacity estimation method will first create a set of remant capacity matter-elements 
of the lead-acid battery, and then a regular extended correction function can directly 
estimate the residual capacity of the battery by calculating the degrees of extended 
correction. According to the results, the proposed capacity estimation method can 
discriminate the residual capacity exactly, and thus make the most efficient use of the 
lead-acid battery energy. 

2   Lead-Acid Battery 

Figure 1 shows the equivalent circuit of a lead-acid battery [8]. Here 1inR  is the 

equivalent resistance between the electrode and the electrolyte of a battery, and 2inR  

is the interface resistance of the battery electrode and the battery electrolyte. C is the 
variety quantity of voltage during discharging, which is the electricity capacity through 
the space charge between the active substrate and the electrolyte interface. I  is the 
discharge current. The equation of the battery voltage can be obtained from Fig.1: 

( ) ( )
1 2

1 2 2( )

t t

CR CRin in
b oc in in in CV V R R I R Ie V e

− −

= − + + −  
(1) 

If electric circuit is in a steady state, equation (1) can be simplified as equation (2) 

1 2( )b oc in inV V I R R= − +                                                                    (2) 
Then the internal resistance can be derived as equation (3) 

1 2( ) /in inR R V I+ = Δ                                                               (3) 

where oc bV V VΔ ≅ −  

 

Fig. 1. Equivalent circuit of lead-acid battery 



A Novel Residual Capacity Estimation Method Based on ENN for Lead-Acid Batteries 1147 

 

3   The Summary of Extension Theory 

Based on extension theory, we can define matter, called N, whose characteristic  
vector is C , and V  is the value vector related to C  [5]. The multi-dimensional matter-
element can be expressed as 

 ( )
1 1 1

2 2 2

n n n

R N , c , v

R c , v
R N , C, V

... ... ...

R c , v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                       (4) 

Based on the matter-element model, a new mathematical concept can be estab-
lished to characterize the relationship between the quality and quantity of a matter by 
matter-element model. The extension set extends the fuzzy set from [0, 1] to ( ,−∞ ∞ ) 
[5]. An extension set is composed of the following two definitions. 

Definition 1. Let U be a space of objects and x a generic element of U, then an exten-

sion set E  in U is defined as a set of ordered pairs as follows: 

 { }( , ) , ( ) ( , )E x y x U y K x= ∈ = ∈ −∞ ∞                                                                                                                                      (5) 

where y=K (x) is called the correlation function for extension set E
~

. The K (x) maps 

each element of U to a membership grade between - ∞ and ∞ . An extension set E
~

 in 
U can be denoted by: 

                    oE E Z E+ −= ∪ ∪                                                                                         (6) 

where 

           { }( , ) , ( ) 0E x y x U y K x+ = ∈ = >                                                                                      (7) 

           { }( , ) , ( ) 0oZ x y x U y K x= ∈ = =                                                                         (8) 

           { }( , ) , ( ) 0E x y x U y K x− = ∈ = <                                                                                          (9) 

In Eqs. (7) to (9), ,E+ E− and oZ  are called the positive field, negative field and 

zero boundary in E , respectively. 

Definition 2. If ,oX a b=  and ,X f g=  are two intervals in the real number 

field, and XXo ⊂ , where oX and X are the classical (concerned) and neighborhood 

domains, respectively. The correlation function in the extension theory can be defined 
as follows: 

                         

( , )

( ) ( , )

( , ) ( , )

o o

o
o

o

x X x X

K x x X
x X

x X x X

−ρ ∈⎧
⎪= ρ⎨ ∉⎪ρ − ρ⎩

                                                                                         (10) 

where 

                         ( , )
2 2o

a b b a
x X x

+ −ρ = − −                                                              (11) 
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                         ( , )
2 2

f g g f
x X x

+ −ρ = − −                                                                                                                     (12) 

The correlation function can be used to calculate the membership grade between x 
and oX . 

4   Extension Neural Network 

4.1   The Structure of ENN 

The schematic structure of the ENN is depicted in Fig. 2. It includes both the input 
layer and the output layer. The nodes in the input layer receive an input feature pattern 
and use a set of weighted parameters to generate an image of the input pattern. In this 
network, there are two connection values (weights) between input nodes and output 
nodes, one connection represents the lower bound for this classical domain of the fea-
tures, and the other connection represents the upper bound. The connections between 
the j-th input node and the k-th output node are L

kjW  and U

kjW . This image is further 

enhanced in the process characterized by the output layer. Only one output node in the 
output layer remains active to indicate a classification of the input pattern. The opera-
tion mode of the proposed ENN can be separated into the learning phase and the opera-
tion phase. The learning algorithm of the ENN is discussed in the next section. 

 

Fig. 2. The structure of extension neural network 

4.2   Learning Algorithm of the ENN 

The learning of the ENN can be seen as supervised learning, and its purpose is to tune 
the weights of the ENN to achieve good clustering performance or to minimize the 
clustering error. Before the learning, several variables have to be defined. Let training 
pattern set be { }1 2, ,..., NP

X X X X≡ , where PN  is the total number of training patterns. 

The i-th pattern is { }1 2, ,...,
p p p p

i i i inX x x x≡ , where n is the total number of the feature of 
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patterns, and the category of the i-th pattern is p. To evaluate the clustering perform-
ance, the total error number is set as 

mN , and the total error rate Eτ  is defined below: 

N
mE

N
p

=τ
                                                                                         (13) 

The detailed supervised learning algorithm can be described as follows: 

Step 1: Set the connection weights between input nodes and output nodes. The range 
of classical domains can be either directly obtained from the previous re-
quirement, or determined from training data as follows: 

{ }min
L k

kj kji N
w x

∈
=                                                                 (14) 

{ }max
U k

kj kji N
w x

∈
=                                                                                     (15) 

Step 2: Calculate the initial cluster center of every cluster. 

{ }1 2, ,...,k k k knZ z z z=                                                                                              (16)  

( ) / 2

         fo r 1, 2 ... ; 1, 2 , ...

L U
kj kj k j

c

z w w

k n j n

= +

= =
                                                          (17) 

Step 3: Read the i-th training pattern and its cluster number p . 

{ }1 2, ,..., ,p p p p
i i i in cX x x x p n= ∈                                                                    (18) 

Step 4: Use the proposed extension distance (ED) to calculate the distance between 

the training pattern 
p

iX  and the k-th cluster, as follows: 

( )
( )1

/ 2
1

/ 2

1,2,...,

p U Ln
ij kj kj kj

ik U L
j kj kj

c

x z w w
ED

w w

k n

=

⎡ ⎤− − −
⎢ ⎥= +
⎢ ⎥−⎣ ⎦

=

∑                                                           (19) 

The proposed distance is a modification of extension distance [5], and it can be 
graphically presented as in Fig. 3. It can describe the distance between the x and a 

range ,
L U

w w . Figure 3 shows that different ranges of classical domains can arrive at 

different distances due to different sensitivities. This is a significant advantage in 
classification applications. Usually, if the feature covers a large range, the data should 
be fuzzy or less sensitive to distance. On the other hand, if the feature covers a small 
range, the data should be precise or highly sensitive to distance. 
Step 5: Find the *k , such that { }*

min
ik

ik

ED ED= . If *k p=  then go to Step 7, other-

wise Step 6. 
Step 6: Update the weights of the p-th and the *k -th clusters as follows: 

(a) Update the centers of the p-th and the *k -th clusters. 

( )new old p old

pj pj ij pjz z x z= + η −                                                                                                                                                                     (20) 

( )* * *

new old p old

ijk j k j k j
z z x z= − η −                                                                                                            (21) 

(b) Update the weights of the p-th and the *k -th clusters. 



1150 K.-H. Chao, M.-H. Wang, and C.-C. Hsu 

 

( ) ( )

( ) ( )

( )

( )

L new L old p old

pj pj ij pj

U new U old p old

pj pj ij pj

w w x z

w w x z

= + η −
= + η −

⎧
⎨
⎩

                                                  (22) 

* * *

* * *

( ) ( )

( ) ( )

( )

( )

L new L old p old

ijk j k j k j

U new U old p old

ijk j k j k j

w w x z

w w x z

= − η −

= − η −

⎧⎪
⎨
⎪⎩

                                                 (23) 

where η  is a learning rate. The result of tuning two clusters' weights shown in Fig. 4, 

which clearly indicates the change of 
AED  and

BED . The cluster of pattern ijx  is 

changed from cluster A to B because 
AED >

BED . From this step, we can clearly see 

that the learning process is only to adjust the weights of the p-th and the 
*k -th clus-

ters. Therefore, the proposed method has a rapid speed advantage over other super-
vised learning algorithms and can quickly adapt to new and important information. 

 

Fig. 3. The proposed extension distance 

Step 7: Repeat Step 3 to Step 6, and if all patterns have been classified then a learning  
epoch is finished. 

Step 8: Stop if the clustering process has converged or the total error rate Eτ  has 

arrived at a preset value; otherwise, return to Step 3. 
It should be noted that the proposed ENN can take input from human expertise  

before the learning, and it can also produce meaningful output after the learning, be-
cause the classified boundaries of the features are clearly determined. 

        

Fig. 4. The results of tuning cluster weights: (a) original condition; (b) after Tuning 
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4.3   Operation Process of ENN 

There can be recognition or sorting when the ENN completes a learning procedure, 
and its operation procedure is summarized as follows:  

Step 1: Read the weight matrix of ENN. 
Step 2: Calculate the initial cluster centers of every cluster by using equation (16) and 

equation (17). 
Step 3: Read the tested pattern. 

{ }1 2, ,...,t t t tnX x x x=                                                                            (24) 

Step 4: Use the proposed extension distance (ED) to calculate the distance between 
the tested pattern and every existing cluster by equation (19). 

Step 5: Find the *k , such that { }* min
ikik

ED ED= , and set the * 1
ik

O =  to indicate the 

cluster of the tested pattern. 
Step 6: Stop, if all the tested patterns have been classified, otherwise go to Step 3. 

5   Proposed SOC Estimation Method 

5.1   Operation Phase of the Proposed SOC Estimation Method 

Classify the SOC of lead-acid batteries into ten types according to the possible range 
of open circuit voltage, internal resistance and short circuit current (which defined 
as /oc inV R ). The definitions of these ten types are listed in Table 1. Fig. 5 shows the 

flowchart of the operation process for the proposed SOC estimation method based on 
ENN. The operation procedure is shown as follows: 

Step 1: Input the training data and implement the training process of the ENN in 
section 4.3 until it matches the setting recognized rate of 0.01%. 

Step 2:  Input test data. 
Step 3: Carrying on the SOC estimation of the battery by using the ENN which has 

been trained. 
Step 4: Return to step 2 and carry on next test data for SOC estimation, until all test 

data have been completed. 

Table 1. The ten types definition of the residual capacity for lead-acid batteries 

K1 
Definition of the residual 

capacity is 90% 
K6 

Definition of the residual 
capacity is 40% 

K2 
Definition of the residual 

capacity is 80% 
K7 

Definition of the residual 
capacity is 30% 

K3 
Definition of the residual 

capacity is 70% 
K8 

Definition of the residual 
capacity is 20% 

K4 
Definition of the residual 

capacity is 60% 
K9 

Definition of the residual 
capacity is 10% 

K5 
Definition of the residual 

capacity is 50% 
K0 

Definition of the residual 
capacity is 0% 
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Fig. 5. Flowchart of the operation process for the proposed SOC estimation method based on 
ENN 

5.2   Simulation Results 

In order to confirm the effectiveness of the proposed SOC estimation method based 
on ENN, 100 random sample data with known SOC are selected for testing by using 
the MATLAB software package. The simulated results for the SOC estimate based on 
extension theory and on ENN are shown in Fig. 6 and Fig. 7 respectively, which indi-
cates that there are four errors caused by extension theory, but only two errors occur 
when using the proposed ENN. This shows that the recognition rate based on exten-
sion theory estimation is 96%, whereas it is 98% for ENN. 

Table 2 compares the results of SOC estimation by using ENN and by using exten-
sion theory, showing that the recognition rate of ENN is better than that of only  
extension theory since the weight can be adjusted by using ENN.  
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Fig. 6. The recognition results of extension method 

Estimated Capacity (%)  
Fig. 7. The recognition results of ENN method 

Table 2. The comparison of SOC estimation by using ENN and extension theory 

Training set Testing set 
Method 

Error/Total Accuracy Error/Total Accracy 
Extension 0/100 100% 4/100 96% 

ENN 0/100 100% 2/100 98% 

6   Conclusions  

In this paper, an SOC estimation method for lead-acid batteries based on the ENN 
was proposed. The proposed novel ENN method is based on the extension theory and 
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neural networks. First, the SOC data of batteries are measured by charging and  
discharging experiments. Secondly, the recognition rate of the proposed ENN are 
compared with extension theory. The simulated results show that the proposed ENN 
estimation method can recognize the residual capacity of lead-acid batteries accu-
rately and rapidly. The proposed ENN method combines the neural network learning 
process, and the fast recognition characteristic of the extension theory, so it has the 
advantages of less learning time, higher accuracy and less memory consumption. The 
use of less training data and a higher identification rate are the advantages of the pro-
posed ENN method. When the capacity of the lead-acid batteries increases, only a 
small portion of the data should be modified, so the updata interval may be signifi-
cantly reduced. 
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Abstract. Laser cutting and welding is an efficient way to produce
Tailor-Welded Blanks (TWBs). A genetic algorithm (GA)-based arti-
ficial neural network (ANN) approach is designed for parameter selec-
tion of laser cutting and welding to produce TWBs. These parameters
include laser power for cutting and welding, speed for cutting and weld-
ing, and pressure of assistant gas. Experimental results demonstrate that
the proposed parameter selection approach combines the merits of GA
and ANN, and solves the problem of local optimum in ANN and low
convergence speed in GA. As a result, it tackles the difficulty in parame-
ter selection of laser cutting and welding and paves the way for TWBs’
production.

1 Introduction

Tailor-Welded Blanks (TWBs) are composed of the materials with different char-
acteristics and dimension. The materials are welded together by many kinds of
arts. TWBs have their great advantages in automobile’s design and manufac-
ture [1] [2] [3]. They enhance the precision of part by the procedure of welding
their components together before they are stamped. The left material tailored
from the large blocks can be reused to form TWBs. The number of dies used
in stamping is decreased and the assembly process is simplified accordingly. In
addition, the flexibility of components’ design is increased as the type of mate-
rials used in TWBs can be added as needed. TWBs have been widely used in
automobile industry since 1980s. Experiments from laboratories and automobile
manufactures have verified that TWBs could be successfully and reliably used to
produce automobile components and parts [4] [5] [6]. Laser cutting and welding
is an efficient art to produce TWBs with high quality, in which, the steel blanks
are cut first, and then are welded together without any filling material along
the gap formed by the two cuts. The parameter selection for laser cutting and
welding is a difficult but very important step in the course of TWBs’ manufac-
turing for it directly affects the quality of TWBs’ seam. The factors affecting the
quality of laser cutting are numerous and complicated. J. Fieret et al. think the

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 1155–1164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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number of the factors is up to 50 [7]. In the early time, the good parameters for
cutting and welding can be obtained by experiences from a certain number of
experiments, as the working mode of laser is single and processing on the target
is simple. However, because of the improvement of laser’s quality and the high
requirement from the processing target, the parameters can’t be simply acquired
from experiences as before. In [8] [9], an analytical expression of processing qual-
ity about cutting and welding parameters is established by the study on energy
balance, and heat balance, etc, in the course of cutting and welding. However,
obtaining the analytical expression demands a lot of hard work, which is ob-
viously unfeasible for the practical manufacturing. In [10], an artificial neural
network (ANN) has been employed to analyze the experimental data, and to
predict the processing parameters. It provides a new insight for parameter se-
lection. The back propagation (BP) algorithm is suitable for the optimization
of objects with undetermined models [11] [12], so it enjoys wide application in
industry. However, the training algorithm of BP demands the conversion from
an object with a group of inputs and outputs into an optimization of nonlinear
problem without constraints. Usually, there are many locally optimal solutions
for the weights connecting the network because of high dimension brought up
by the conversion.

If the conventional gradient descent search (GDS) is used, the solution will
be easily trapped in the local optimal locations. As a result, the object function
cannot reach global optimal values. In order to overcome the local optimal, the
genetic algorithm (GA) may be a desirable choice. However, low speed of GA’s
convergence retards it from wide application. The extended genetic algorithm
(EGA) is also proposed to deal with the difficulty. Experiments show that EGA
enhances the training speed and precision for ANN. For small and middle model
ANN, EGA converges more slowly than GDS does. Therefore, the combination
of EGA and GDS may be a good solution. In the trap of locally optimal points,
EGA is used to escape away from the trapping. However, in the space outside of
the traps, the converging speed is increased if GDS is employed. The combination
of EGA and GDS is desirable in theory, however, its difficulty lies in finding
the exchange points between EGA and GDS. A GA-based ANN approach is
presented for parameter selection, in which, GA is used to train the weights
connecting ANN.

2 A GA-Based Training Method for the ANN’s
Connecting Weights

GA has been used in training ANN’s connecting weights and structure [12].
Here, GA is used for the former case. As the objective of ANN’s learning course
is to lower its energy function, the learning course can be seen as a course of
minimizing the energy function with the connecting weights as its variables.
So it is feasible to optimize the connecting weights with GA. The scheme of
the course is shown in Fig.1. The structure of ANN can be determined by the
number of inputs and outputs, complexity of the problem to be solved, designer’s
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experiences, etc. Usually, trial and error may be a good approach to determine
the structure. The seed group will be generated when the binary codes for the
weights connecting the net are encoded according to the precision requirement.
The seeds are initialized randomly. Using the samples from experiments, the
fitness is calculated for every seed in the group. If the precision requirement is
met, the training course will be completed. Otherwise, the good seeds will be
selected, and a new offspring will be produced after the operation of crossover
and mutation. The course will be reiterated until a desirable result is obtained.

Yes

No

End

Determine  the  structure
 of  the ANN

Generate and initialize the 
seed group 

Calculate the fitenss

Precision meets requirement ?

Start

Generate a new generation after 
genetic operation 

Select seeds 

Fig. 1. The control flow of GA training for ANN’s connecting weights

As is stated earlier, the disadvantage of GA lies in its low evolutionary speed.
In EGA, the crossing and adaptive mutation for multiple points have been used
to enhance training speed of BP algorithm. However, optimizing ANN is a new
challenge to GA, as GA is built on the assumption that the problem to be
optimized with high dimension can be expressed in binary codes. In conventional
GA, the length of the solution for GA (i.e., the chromosome) is less than 50 bits,
but the length of codes for ANN may be up to thousands of bits. Therefore, the
arising problems are not only how GA can be applied in ANN, but also how to
improve evolutionary speed and make it meet the required precision.

3 The ANN Model for Parameter Selection of Laser
Cutting and Welding

According to the discussion in Section 1, there are numerous factors affecting the
quality of laser cutting and welding. However, for a specified kind of steel blank,
only laser power, pressure of assistant gas, thickness of steel, speed of cutting
and welding are the main factors. For each kind of material, a sample group
is built for it. The built model is shown in Fig. 2, which consists of an input
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layer, a hidden layer and an output layer. The weights of the network are trained
by samples. For different types of materials, different samples are used. In this
model, the input parameters include the laser power for cutting and welding,
assistant gas pressure for cutting and welding, the thickness of steel blanks, and
the output parameters are the speed for cutting and welding. The hidden layer’s
structure of the ANN (i.e., six sub-layers and six neurons for each sub-layer) is
determined by the results from our trial and error.

Laser power for cutting 

Laser power for welding 

Assistant gas pressure  for 
welding

Assistant gas pressure  for 
cutting

Thickness of steel blanks 

Cutting speed

Welding speed 

Input layer Hidden layer Output layer 

…

Fig. 2. The ANN model for parameter selection of laser cutting and welding

4 Parameter Selection Algorithm of GA-Based ANN

According to the rule of GA, the parameters to be optimized should be encoded
first. In the parameter selection model, the connecting weights are the targets
to be optimized. For convenience, we define a matrix M1 with the dimension of
5×6 for the weights connecting the input layer with the sub-layer 1 of the hidden
layer, Mn(2 ≤ n ≤ 6) with the dimension of 6× 6 for the weights connecting the
sub-layer n−1 with sub-layer n in the hidden layer, and Mo with the dimension
of 2 × 6 for weights connecting the last sub-layer of the hidden layer with the
output layer. So we have

M1 =

⎡

⎢
⎢
⎣

W
(1)
11 · · · W

(1)
11

...
...

...
W

(1)
61 · · · W

(1)
65

⎤

⎥
⎥
⎦

6×5

, M2 =

⎡

⎢
⎢
⎣

W
(2)
11 · · · W

(2)
16

...
...

...
W

(2)
61 · · · W

(2)
66

⎤

⎥
⎥
⎦

6×6

, · · · , M6 =

⎡

⎢
⎢
⎣

W
(6)
11 · · · W

(6)
16

...
...

...
W

(6)
61 · · · W

(6)
66

⎤

⎥
⎥
⎦

6×6

.

(1)

where W
(1)
ij (1 ≤ i ≤ 6, 1 ≤ j ≤ 5) is the weight connecting the input neuron in

row j of the input layer with the neuron in row i in sub-layer 1 of the hidden
layer; W

(m)
kl (1 ≤ k ≤ 6, 1 ≤ l ≤ 6, 2 ≤ m ≤ 6) is the weight connecting the
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neuron in row k of sub-layer m− 1 with the neuron in row l in sub-layer m. The
input matrix of the connecting weights for the output layer is defined as

Mo =

[
W

(o)
11 · · · W

(o)
16

W
(o)
21 · · · W

(o)
26

]

2×6

, (2)

where W
(o)
ij (2 ≤ i ≤ 6, 1 ≤ j ≤ 6) is the weight connecting the input neuron in

row i of the sub-layer 6 in the hidden layer with the neuron in row j of output
layer. In order to optimize the weights listed above, they should be encoded into
binary codes. Generally, the weights range in the interval [−100, 100] according
to experiments. Here, the precision is set as δ = 0.0001 to meet the precision
requirement. According to the definition of precision, we have

δ =
Umax − Umin

2l − 1
, (3)

where l is the length of the code for each weight, Umax and Umin are the max-
imum and minimum values that the weights can reach, respectively. After the
simple transformation, the length of the code is given by

l =
[
log

Umax−Umin
2l−1

+1
2

]
, (4)

where the operator [a] is to obtain the integer part of a.
The weights are encoded in the following order, w

(1)
11 , w

(1)
12 , w

(1)
13 , w

(1)
14 , w

(1)
15 , w

(1)
16

, . . . , w
(1)
61 , w

(1)
62 , w

(1)
63 , w

(1)
64 , w

(1)
65 , . . . , w

(6)
61 , w

(6)
62 , w

(6)
63 , w

(6)
64 , w

(6)
65 , w

(6)
66 . One chain of

the above binary code is called a gene, the length of the chromosome is

lch = l(6 × 5 + 6 × 6 × 6 + 2 × 6). (5)

The fitness function is defined as

Ffitness =
n∑

i=1

[
(yci − ypci)2 + (ywi − ypwi)2

]
, (6)

where yci and ypci are the cutting speed from experiment and from prediction,
respectively; ywi and ypwi are the welding speed from experiment and from
prediction, respectively; and n is the number of samples.

When the weight training is completed, the weights will be input into the
ANN built in Section 3. Using the ANN acquired, we could predict the unknown
parameters (i.e., welding and cutting speed), according to the input parameters
(i.e., laser power for cutting and welding, thickness of the steel blanks, pressure
of the assistant gas for cutting and welding).

The prediction course goes as the following. Here we assume that the input
vector for the network is (x1, x2, x3, x4, x5)T , composed of the input parameters,
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and the output vector for the sub-layer 1 in hidden layer is (y(1)
1 , y

(1)
2 , y

(1)
3 , y

(1)
4 ,

y
(1)
5 , y

(1)
6 )T , then

(y(1)
1 , y

(1)
2 , . . . , y

(1)
6 )T =

(
1

1+e−λ11 , 1
1+e−λ12 , . . . , 1

1+e−λ16

)T

,

(λ11, λ12, . . . , λ16)T = M1(x1, x2, . . . , x5)T .
(7)

As the obtained vector, (y(1)
1 , y

(1)
2 , y

(1)
3 , y

(1)
4 , y

(1)
5 , y

(1)
6 )T , is the input of sub-layer

2 in the hidden layer, the output vector of sub-layer 2, (y(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 ,

y
(2)
6 )T , can be acquired. That is,

(y(2)
1 , y

(2)
2 , . . . , y

(2)
6 )T =

(
1

1+e−λ21 , 1
1+e−λ22 , . . . , 1

1+e−λ26

)T

,

(λ21, λ22, . . . , λ26)T = M2(y
(1)
1 , y

(1)
2 , . . . , y

(1)
6 )T .

(8)

As the former layer’s output is the input of the next layer, the outputs and
inputs for every layer can be calculated in the similar way. In the end, we could
obtain the output vector of the network

(y1, y2)T =
(

1
1+e−λ1 , 1

1+e−λ2

)T

,

(λ1, λ2)T = Mo(y
(6)
1 , y

(6)
2 , y

(6)
3 , y

(6)
4 , y

(6)
5 , y

(6)
6 )T .

(9)

where the vector, (y(6)
1 , y

(6)
2 , y

(6)
3 , y

(6)
4 , y

(6)
5 , y

(6)
6 )T , is the output vector of sub-

layer 6 in the hidden layer, and the vector (y1, y2)T is the final output vector of
the network.

From the deducing course above, it can be found that the computation burden
for this approach is heavy. Oftentimes, it needs to adjust the structure of the
network such as the number of hidden layer, the number of neurons in each sub-
layer in the hidden layer, the initial values of the weights and so on. All these
adjustments usually are determined by the problem specified, and depend on the
designer’s experiences. So there is no universal formula for building the model.
However, the proposed approach circumvents the learning rate and stability
encountered in BP algorithm as they are replaced by crossover and mutation
rates, which are set to be 0.8 and 0.15, respectively, in this case according to
experiment.

5 Experiment

5.1 Experiment System

Laser Cutting and Welding Machine. The mechanical structure of laser
cutting and welding is shown in Fig.3. The manipulator has two degrees of
freedom (DOFs), the translations in the Z− and X−directions. The manipulator
translates in the X−direction to cut and weld the blanks. The manipulator’s
translation in the Z−direction facilitates it to adjust the position of the laser’s
focus with respect to the steel blanks in the course of cutting and welding.
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Fig. 3. The configuration of the system for laser cutting and welding. 1 stands for
positioning machine, 2 for X−axis for manipulator’s translation, 3 for hydraulic control
system, 4 for cutting and welding manipulator, 5 for cutting and welding head, 6 for
right bracket for steel blank, 7 for right fixture holder, 8 for laser generator, 9 for
computer control system, 10 for left bracket for the steel blanks, 11 for steel blank for
cutting and welding. 12 for left fixture group, 13 for left fixture holder, and 14 for head
exchanging machine.

The fixtures are divided into two groups: right and left fixture groups, which
are employed to fix the blanks on the right and left fixture holders, respectively.
The brackets on the right and left sides aid the fixtures to hold the blanks when
the length of the blanks surpasses the maximum length of the blanks that the
fixture holders can hold.

The manipulator cuts the steel blanks on the right and left fixture groups,
separately. On the completion of cutting, the cutting head will be exchanged
with the welding head by the head exchanging machine automatically. After the
cuts of the two blanks are put together face to face, the manipulator will weld
the blanks along the gap to produce TWBs.

Laser Generator. The cross current CO2 laser generator with the power of
2KW, from PRC Company, U.S.A.

Materials. The IF steel and WLZn coated 08Al steel, whose composition
is shown in Tab. 1, are made by Wuhan Steel Company. Other parameters:
0.75∼1.2mm in thickness; and 2000mm×3000mm in width and length.

Table 1. Chemical composition of the material for experiment

Type of Steel C Si Mn P S Al
IF 0.003 0.012 0.11 0.006 0.003 /

WLZn 0.006 / 0.28 0.01 0.09 0.06
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5.2 Experiment Steps

Train the Network with Experiment Data and Predict the Speed for
Cutting and Welding. Firstly, train the network built for the materials listed
in Tab.1 with two groups of samples for IF and WLZn, respectively. Each group
contains two hundred samples from experiment. Secondly, input the network
with the parameters, including thickness of steel blanks, laser power for cutting
and welding, pressure of the assistant gas for cutting and welding, listed in Tab.2.
Finally, using the trained ANN, we obtain the predicted speed for cutting and
welding listed in Tab.2.

Table 2. The predicted parameters with the GA-based ANN

Type of Steel Thickness Pc Pw Prec Prew Vc Vw

(mm) (KW) (KW) (Bar) (Bar) (m/s) (m/s)
IF 0.75 1.8 1.8 5 1 4.50 3.52
IF 0.8 1.1 1.5 6 1 4.25 3.05
IF 0.85 1.8 1.8 6 1 4.33 2.92
IF 0.90 1.8 1.8 6 1 4.00 2.80
IF 0.95 1.6 1.8 4 1 3.67 2.60
IF 1.00 1.5 1.8 6 2 4.00 2.83
IF 1.1 1.9 1.9 8 1 4.40 3.20

WLZn 0.75 1.7 1.5 6 1 4.6 2.57
WLZn 0.8 1.3 1.9 6 2 3.82 3.32
WLZn 0.85 1.6 1.4 7 1 3.96 2.92
WLZn 0.90 1.5 1.8 6 1 3.65 3.68
WLZn 0.95 1.4 1.0 5 2 2.37 1.86
WLZn 1.00 1.8 1.8 5 1 3.58 3.06

Notes: Pc and Pw stand for the power of laser for cutting and welding, respectively;

Prec and Prew stand for the pressure of the assistant gas for cutting and welding,

respectively; Vc and Vw stand for the speed for cutting and welding, respectively.

Cut and Weld the Steel Blanks with the Predicted Parameters. The
parameters used for laser cutting and welding are from row 3 in Tab. 2 for IF steel
blanks. After the experiment, the Zn coat on the edge of the cut has not been
found to be burned but 0.3 mm wide melted zone without being oxygenized.
The roughness on the section of the cut is less than 0.248 μm, which ensures
that the cuts of the two blanks can be put together face to face with maximum
width of the gap less then 0.5 μm and can be welded together without any
filling materials. No oxygenized film of the cuts guarantees the good quality of
the welding seam. As a result, the cuts are welded together directly without any
further processing.

The photos of the seam’s structure are shown in Fig.4. From the photos, it can
be seen that the structure of the seam is denser than that of its body material.
Experiments demonstrate that the seam has good mechanical characteristics for
component production in automobile industry.
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(a) (b)

Fig. 4. The photos for the cross section of the welding seams: (a) IF (X60) and (b)
WLZn (X60)

6 Conclusion

In this paper, a GA-based ANN approach is presented for parameter selection,
in which, GA is used to train the weights connecting the ANN. The network
is trained by the samples from experiments. Experimental results demonstrate
that this parameter selection approach combines the merits of GA and ANN,
and solves the problem of the local optimum in ANN and the low convergence
speed in GA. Given the parameters (i.e., blank’s thickness, laser power for cut-
ting and welding, pressure of the assistant gas for cutting welding and cutting),
the proposed approach could predict the cutting and welding speed efficiently.
Experiment verifies the correctness of the predicted parameters by the fact that
the cuts have good quality for welding and the welding seam has the desirable
mechanical characteristics. However, the construction of the network is closely
related to the specified processing system and the developer’s experiences, which
manifests the limitation of the proposed approach.
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Abstract. This paper describes the development of an artificial neural 
networks-based in-process flash monitoring system (ANN-IPFM) in the 
injection molding process. This proposed system integrates two sub-systems. 
One is the vibration monitoring sub-system that utilizes an accelerometer sensor 
to collect and process vibration signals during the injection molding process. 
The other, a threshold prediction sub-system, predicts a control threshold based 
on the process parameter settings, thus allowing the system to adapt to changes 
in these settings. The integrated system compares the monitored vibration 
signals with the control threshold to predict whether or not flash will occur. The 
performance of the ANN-IPFM system was determined by using varying ratios 
of polystyrene (PS) and low-density polyethylene (LDPE) in the injection 
molding process, and comparing the number of actual occurrences of flash with 
the number of occurrences predicted by the system. After a 180 trials, results 
demonstrated that the ANN-IPFM system could predict flash with 92.7% 
accuracy. 

1   Introduction 

The plastic injection molding process is the most commonly used manufacturing 
process in the plastics industry due to its capability for mass production at a relatively 
low cost. In this relatively simple process, plastic is melted and then forced into the 
cavity of a closed mold under high pressure. After sufficient cooling time, the molten 
material solidifies into the desired shape, the mold is opened, and the part is removed. 
Then next injection cycle begins [1].   

The demand for injection-molded products has grown tremendously in recent 
years. More and more plastics have been consumed and discarded, which has resulted 
in a shortage of petroleum, as well as waste disposal and pollution problems [2, 3]. 
Therefore, recycled plastics from defective parts, trimmings, and other manufacturing 
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scraps have been widely used in the injection molding process, ranging in use from 
very small-scale reprocessing in small companies to huge programs that utilize 
several tons of recycled materials per year [4].   

Recycling plastics can often result in aggregate material with differing thermal and 
mechanical properties that can vary significantly from batch to batch. When mixed 
material is processed by injection molding, careful attention must be given to process 
parameters, regrind composition, and moisture content.   

This study describes “mixed material” as a composition of plastic aggregate 
containing two different materials that differ in thermal and mechanical properties. 
Product defects may result from using mixed materials due to their different melting 
temperatures, resulting in inconsistent flow rates into the mold [5]. One of the more 
common defects is flash, which occurs when material flows outside of the edge of the 
mold cavity.   

Machinists in an injection molding operation can control flash by setting proper 
process parameters. Some of those process parameters include proper material drying, 
mold clamp pressure, cylinder temperature, holding and injection pressure, and 
injection speed. However, even if parameters are controlled appropriately, flash may 
still occur. Therefore, a system that could monitor the occurrence of flash online 
would greatly improve process efficiency [6].  

An in-process flash prediction system that can predict flash occurrence in real-time 
and online with a high degree of accuracy could prevent flash from occurring between 
routine inspection times. In recent years, considerable research has been conducted on 
in-process defect prediction systems in the injection molding process. For example, a 
few systems have been developed to monitor part weight or dimensions [7-9]. In these 
systems, when the part weight or dimensions are out of tolerance, the system notifies 
the operator that a defect has occurred and requires inspection immediately. Lee and 
Young [10] developed an on-line part shrinkage monitoring system to predict the 
shrinkage range of crystalline polymers and thus identify defective parts. Other 
systems have been developed [11-13] to allow effective setting and resetting of 
processing parameters based on the various part defects, such as flash, short shot, 
weld line, and cracking.  

These systems were shown to work successfully in establishing process parameters 
and minimizing defects. Once these parameters are set to an optimal value, flash or 
other defects rarely happen if virgin or a homogeneous material is used. However, 
when recycled mixed materials are used in injection molding, flash often occurs, even 
at the optimum processing parameter settings. This research focuses on developing an 
in-process flash monitoring system (IPFMS) operating within optimum injection 
molding processing parameters.  

This system consists of two major components. The first, the sensing mechanism, 
detects key characteristics of the injection molding process. The second, the decision-
making mechanism, analyzes the sensor signal and performs monitoring functions. 

To develop a real-time decision-making mechanism, this study employed artificial 
neural networks (ANN). These systems can model arbitrary input data by adjusting 
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their internal network connections. These adjustments systematically minimize the 
margin of error between the network output and the desired response. This process of 
supervised learning reduces the network error using a training set of matching input-
output vectors [14].  

Artificial neural networks have been widely used in plastics engineering to monitor 
part quality [7, 15] and shrinkage (10), as well as to control processing parameters 
[11, 12, 16]. For example, Choi, Lee, Chang, and Kim [11] used artificial neural 
networks to optimize processing parameters and predict injection molding part 
defects. 

In summary, this research serves to develop an ANN-based in-process flash 
monitoring (ANN-IPFM) system in the injection molding process. The system has 
two capabilities: 1. to collect and analyze vibration signatures generated during the 
injection molding process; and 2. to determine and alert an operator when flash has 
occurred. 

2   Structure of the ANN-IPFM System 

The structure of the ANN-IPMFM system (Figure 1) integrates two sub-systems, 
vibration monitoring and threshold prediction.  

1. The vibration monitoring sub-system detects the occurrence of flash caused by 
mixed materials during the injection molding cycle. This system utilizes an 
accelerometer sensor to monitor the difference in the vibration signals between 
injection-molded specimens with flash and without flash during the last period 
of the injection filling stage. Using statistical analysis, a process characteristic 
indicator, 

jγ , was calculated as the subsystem parameter for determining 
whether flash has occurred.  

2. The threshold prediction sub-system predicts the control threshold value, based 
on training data, according to the current processing parameter settings. The 
significant processing parameters (injection speed, holding pressure, and melt 
temperature) are the inputs to this sub-system. The ANN training process 
incorporates results based on a combination of parameter settings within the 
optimum setting range.   

The flash control threshold values were determined through a statistical process 
control (SPC) methodology. A component of the X-bar control charting procedure 
was followed when calculating the cutoff values. The upper and lower control 
limits were calculated, where the upper control limit represented the cutoff values 
for the flash control threshold. These values were generated from the data 
collected during cycles when no flash occurred (i.e., control material). In testing 
the ANN model, the output of the threshold prediction sub-system is the proposed 
flash control threshold value (

iθ ). This value represents the maximum for which 
flash does not occur. 
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3   Methodology 

This section describes the experimental setup, vibration monitoring sub-system 
development, and the threshold prediction sub-system development. The experimental 
setup consists of a BOY 22M injection molding machine outfitted with a Procan MD 
microprocessor control (Pennsylvania, USA); a Windows-based personal computer 
with DaqView 8.0 from IOtech, Inc. (Ohio, USA) installed; a PCB Piezotronics model 
356B08 3-axis accelerometer sensor (New York, USA); an IOtech model DBK11A 
screw terminal expansion card; and an IOtech DaqBook 100 data acquisition system 
(Ohio, USA). The accelerometer sensor was installed on the top-center of the 
stationary mold-half with its Z- axis parallel to the travel of the movable platen. The 
X-axis was perpendicular-vertical and the Y-axis was perpendicular-horizontal to 
platen travel. A PCB model 480E09 (New York, USA) signal conditioner was used to 
power the accelerometer, amplify the signal, and filter noise before the signal is 
passed to the data acquisition system.   
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Fig. 1. The structure of the ANN-IPMFM system (S denotes injection speed, T denotes melting 
temperature, P denotes holding pressure.) 

An example of the vibration signal collected during the injection molding cycle is 
shown in Figure 2. The first main signal peak is generated when the mold closes; the 
second main signal peak shows the beginning of the plastic injection filling stage.   

3.1   Vibration Monitoring Sub-system Development        

The vibration monitoring sub-system was developed by devising an experimental 
design to collect and analyze data, generate the process characteristic indicator for 
flash determination, and build the decision-making mechanism.  
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3.1.1 Experimental Design 
The goal of the experimental design was to capture the difference in the vibration 
signals between the specimens with and without flash. The polymer materials used in 
this research were Polystyrene (PS) 147F manufactured by INEOS Styrenics and low-
density polyethylene (LDPE) 2072 manufactured by the Huntsman Corporation.   

PS was considered the control material, while a PS and LDPE mix was the 
treatment material.    
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Fig. 2. An example of an injection molding processing vibration signal for a good specimen 

The treatment material was a mixed material consisting of artificially mixed PS 
and LDPE (90% PS + 10% LDPE). This aggregate composition simulated aggregate 
compositions of virgin and regrind material often used in the injection molding 
process.  

The specimen molded was a tensile bar measuring 4.95 x 0.5 inches. The specimen 
had a weight of 0.35 ounces and a volume of 0.62 in3. This research utilized 
processing parameter settings suggested by the material manufacturers to establish 
optimal processing ranges for the injection molding process in this study.  

3.1.2   Processing Characteristic Indicator  
Flash occurred in conjunction with stronger vibration signals during the last period of 
the filling stage (0.4 seconds circled in Figure 2). An approach for data treatment was 
then developed to compare the signals in the last period of the injection filling stage. 
The researchers utilized the following procedure to calculate a processing 
characteristic indicator (

jγ ) to compare the signals in the last period of the filling 
stage:  

Step 1: Starting from the point when the mold initiates closing, collect 3000 Z-axis 
vibration data points. This data collection covers vibration signals from the 
moment the machine initiates mold closing until the end of the injection 
filling stage (see Figures 2). 
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Step 2: Locate the second peak of the Z-axis vibration signal, which represents the 
beginning of the injection filling stage. 

Step 3: Starting from the second peak point, collect 850 (1.7 seconds) Z-axis data 
points. (Zij,i=1, 2 ,…850, j =1, 2,…15, where i denotes the data point and j 
denotes the specimen number used in this research.) 

Step 4: Find the maximum absolute peak value Zj max within the last 200 data points: 

 Zjmax = Max|Zij| = Max{|Z651j|,|Z652j|,…|Z850j|} (1) 

 
Step 5: Calculate the average absolute peak value of the 200 (0.4 seconds) points: 

 200

850

651
∑
== i

ij

j

Z
Z

 (2) 

Step 6: Calculate the ratio of the maximum peak value over the average peak value. 

This is called the max-avg. ratio jγ , which has the following formula: 

 j

j
j

Z

Z max=γ
, where j is number of experiments (3) 

Step 7: Save the max-avg. ratio as  jγ . 

Step 8: Calculate the average of two consecutive max-avg. ratio data to generate the 

sub-group statistic jγ  from jγ  (sub-group size = 2): 

 2

1++
=

jj

j

γγ
γ

, where j =1, 2…15 (4) 

jγ  would then be considered as a processing characteristic indicator for 

monitoring the injection molding process. 
 

3.1.3   Experimental Setup and Procedures 
The researchers collected and recorded vibration data from fifteen consecutively 
molded specimens. Researchers reviewed each specimen visually for the presence of 
flash.  

The injection filling time was set at 1.7 seconds. The data collection time was set 
to 6 seconds at a scanning frequency of 500 Hz, which was enough time to record 
activity during the mold closing and after the filling stage. Once the pilot data 
collection and analysis was complete, the monitoring sub-system processing 

characteristic indicator (
jγ ) was determined.  

3.2   Threshold Prediction Sub-system Development 

Backpropagation (BP), one of the most widely used and successfully applied 
supervised learning methods in many different neural network applications, was  
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applied in this study [17]. Backpropagation networks are usually layered, with each 
layer fully connected to surrounding layers by weighted connections. 

The following four steps were used to develop the threshold prediction sub-system: 

Step 1. Construct an experimental design to collect data for ANN training 
Processing parameters of injection speed (S), melt temperature (T), and holding 

pressure (P) were recognized as significantly influencing the occurrence of flash and 
were used as inputs [5]. 

Table 1 lists the processing parameters of the experimental design at different 
treatment combinations. For the control (i.e., polystyrene) and treatment (i.e., 90% 
polystyrene + 10% low density polyethylene) material each experimental condition 
had a replication of fifteen consecutively produced specimens.  

For each run, a flash control threshold was calculated based on the average-
maximum ratio (

jγ ). The flash control threshold (
iθ ), also called the subgroup 

statistic, was calculated with size n = 2.  The formula is defined as follows: 

Subgroup average:     
2

1++
= jj

j

γγ
γ ,   j  = 1,2…15 (5) 

Subgroup range:     
jjjR γγ −= +1

,  j = 1,2…15 (6) 

    The upper and lower control limit can be calculated as: 

                                          RAUCL 2+= γγ , (7) 

                                          RALCL 2−= γγ , (8) 

where γ  is the average of jγ , j  = 1,2…15; 

R  is the average of jR , j  = 1,2…14; 

2A  = 1.88 is the control chart coefficient if subgroup size is 2 [18].   

The calculated upper control limit, 
γUCL , also called flash control threshold (

iθ ), 

is used as the target output for the ANN training 
 
Step 2. Assignment of input and output variable to form data sets 
The input and output variables were next assigned to construct the threshold 

prediction sub-system. There were three input factors in this sub-system, which were 
injection speed (S), melt temperature (T), and holding pressure (P). The output factor 
was the flash control threshold (

iθ ). The twelve runs of data collected for training 

were evaluated and broken into data sets. Each data set was expressed as: 

 [ ]iiii PTS θ;,, ,           =i 1 to 12. (9) 

 
Step 3. Scale and prepare the data set before ANN training 

After data scaling, the data set was expressed as: 
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 [ ]'''' ,,, iiii TPS θ ,               =i 1 to 12. (10) 

 
Step 4. Determine the optimal ANN model 

The best configuration containing two hidden layers with seven hidden neurons in 
each layer was selected as the final ANN-threshold prediction sub-system model. 
Based on this, a 3-7-7-1 ANN-threshold prediction sub-system was developed (three 
input layers, two levels of seven hidden layers, and one output layer).   

Table 1. Training data for the ANN-IPMFM sub-system 

Run 
Number 

Injection 
Speed 
(%) 

Melt 
Temperature 

(oF) 

Hold 
Pressure 

(psi) 

Flash 
Control 

Threshold 
( iθ ) 

1 95 450 1100 5.69 

2 95 450 900 5.81 
3 95 430 1100 5.57 

4 95 430 900 5.63 

5 90 450 1100 5.60 

6 90 450 900 5.75 

7 90 430 1100 5.32 

8 90 430 900 5.48 
9 85 450 1100 5.50 

10 85 450 900 5.56 

11 85 430 1100 5.24 

12 85 430 900 5.28 

4   ANN-IPMFM System Evaluation and Results  

The ANN-IPMFM system evaluation was based on the experimental test conditions 
listed in Table 2. The three process parameters were randomized within 12 testing 
runs. Each test run combination had fifteen replications. The system decision-making 
mechanism was applied to determine whether or not flash occurred.   

Test runs 1 through 6 were conducted using the control material. Each test run had 
15 specimens, resulting in a total evaluation of 90 test specimens. For example, in test 
run 1, the injection speed (89%), the melt temperature (445o F), and the holding 
pressure (1020 psi), were employed as input to the ANN-IPMFM threshold prediction 
sub-system.  The material condition was the control material, and the output 
(predicted flash control threshold) was calculated based on the threshold prediction 
sub-system as 

iθ = 5.73. The flash occurrence was then determined by comparing 

jγ with iθ .   
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As indicated in Table 2, when the control material was used, no flash was found 

among any of the 90 products. Six specimens were found to have higher 
jγ  than iθ , 

indicating that flash had been predicted, but had not occurred. Test runs 7 through 12 
were conducted using the treatment material; each test run had 15 specimens, for a 
total evaluation of 90 test specimens. All 90 specimens were identified as having 

flash. Seven products had lower 
jγ than the flash threshold value iθ , which 

indicated that no flash had occurred.   
There were a total of 180 testing samples using these two material conditions. The 

accuracy of the ANN-IPMFM system was calculated using the total number of errors 
made by the system divided by the total number of testing samples. As indicated by 
the results of this calculation, the ANN-IPMFM system efficiently predicted flash 
with 92.7% accuracy. 

Table 2. The testing results for the ANN-IPMFM system 

5   Conclusions  

A new approach for a neural networks-based in-process flash monitoring (ANN-IPFM) 
system in the injection molding process was developed and evaluated in this study. The 
completed system was shown to be able to effectively monitor flash during the 
 

 
 

 
 

 
 

 
 

 System Monitoring 
Result 

Actual Result 

Test 
Run 

S 
(%) 

T 
(ºF) 

P 
(psi) 

Flash 
Thres
hold 

iθ  

# of 
flash 

# of 
Non-flash 

# of 
flash 

# of 
Non-
flash 

1 94 445 1020 5.73 1 14 0 15 
2 94 445 920 5.55 2 13 0 15 
3 94 435 1020 5.75 0 15 0 15 
4 94 435 920 5.65 1 14 0 15 
5 89 445 1020 5.61 0 15 0 15 
6 89 445 920 5.72 2 13 0 15 
7 94 445 1020 5.38 13 2 15 0 
8 94 445 920 5.57 14 1 15 0 
9 89 445 1020 5.58 14 1 15 0 

10 89 445 920 5.60 15 0 15 0 
11 84 435 1020 5.39 13 2 15 0 
12 84 435 920 5.45 14 1 15 0 
Total number of test runs = 180    FNN-IPMFM system accuracy = 92.7% 
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injection molding operation. The main conclusions drawn from this research are 
summarized as follows: 

1. A threshold prediction sub-system has been integrated with the vibration 
monitoring sub-system within optimum ranges of processing parameter 
settings. 

2. The ANN approach used in the threshold prediction sub-system successfully 
predicted the flash control threshold under varying processing parameter 
settings. 

3. The ANN-IPMFM system successfully predicted flash with 92.7% accuracy. 
 

This research was limited to only two types of polymer (PS and LDPE) and one 
type of injection mold. Enlarging this system to include more materials and various 
types of workpiece molds could provide greater applicability to future automated 
machining processes and implementation in the plastics industry. 
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Abstract. Aiming at the existence of relativity between repeat or similar 
samples and character parameters during diagnosis of character data, this paper 
presents an effective data analysis approach for character data compression 
from bi-direction, which can reduce the burden of learning machine without 
losing the connotative character knowledge of character data. At the first step of 
the algorithm, basing on the theory of component analysis, the paper adopt a 
principal component analysis approach to reduce the dimension of data 
horizontally, then after comparison of existing clustering algorithms, put 
forward an immune clustering algorithm based on similarity measurement of 
principle component core for vertical reduction by using related mechanism of 
clone selection as well as immune network self-stabilization in organism natural 
immune system for reference. Finally, to analyze machine behavior 
quantitatively, a pattern discrimination model based on a cerebellar model 
articulation controller neural network (NN) was developed. Simulation 
experiments proved the effectiveness of this algorithm. 

1   Introduction 

To monitor complex large-scale system effectively, we often need mass of process 
data in different working conditions and various fault states. This adds difficulty to 
utilize them efficiently while supplying available message. Now, more and more 
researchers are paying attention to this problem in fault diagnosis area based on 
knowledge. Clustering analysis is a basic method for data mining. The common 
clustering algorithms are as follows [1]: 1) K-means clustering algorithm (CM); 2) 
Fuzzy C- means clustering algorithm (FCM); 3) Clustering algorithm based on 
adaptive neural network, such as fuzzy adaptive resonance network (Fuzzy ART); 4) 
Optimal statistic analysis based on genetic algorithm (GAC). In the research, 
according to above theory, the redundancy data were managed to eliminate from two 
directions based on two possibilities of information redundancy.   

The layout of the paper is as follows: Section 2 gives the model of multi-symptom 
characteristic knowledge. Dimension reduction of horizontal characteristic parameter 
based on principal component analysis will be presented in Section 3. Immune 
clustering-vertical reduce based on similarity measurement of principle component 
core will be put forward in Section 4. Finally, some simulations and experimental 
results are drawn in Section 5. 
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2   Model of Multi-symptom Domain’s Comprehensive Knowledge 

The main problems for current intelligent fault diagnosis are as follows: The 
diagnosis system based on knowledge can’t solve the bottleneck of information 
acquisition. According to the above contradiction, the paper presents the concept of 
Comprehensive Feature Knowledge in Multi-Symptom Domains called M-K. The 
essential is to improve diagnosis ability through reasonable formation and diagnosis 
information and knowledge digging. 

Definition 1. Multi-symptom comprehensive feature knowledge (M-K) is a set of 
three elements described as >< InteractSID ,, . 

Where, ID represents the symbol of current M-K. In a complicated system, the 
hierarchical knowledge structure is composed of many M-K. The element 

},{ 21 mi SSSSS=  indicates that the characteristic knowledge contains m entity of 

profiles all of which formed a solid knowledge structure. Each profile can be 
expressed by various knowledge expressions such as generation formula and semantic 

network. The operator ),( ji SSInteract  denotes the mutual excitation between the 

profiles of iS and jS , the result is that the content of message in knowledge increases 

explosively, and it brings amalgamation and increases of knowledge from different 
profiles and eliminates the contradiction between knowledge. 

3   Dimension Reduction Based on PCA 

Suppose that 
iKM−  is corresponded to some subsystem to be diagnosed. Matrix X is 

the acquired symptom set of the thj  profile to describe this diagnosis subsystem. The 

row vector of X is the m-dimensional sample expressed as ],,[ 21 imii xxx , while the 

list vector is the n group of detecting data. Here the bi-directional condensation of  
the sample data means that the matrix X is compressed from the direction of both row 
and list without loss of the main feature information contained.  
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(1) 

where nn <′ , mm <′ , the rate of condensation can be defined as: 

nm
mnnm ′′−=ρ . The general strategies used in the bi-directional feature 

condensation are given here: 

1) With the sequence from row to list, that is, we compress the number (n) of 
sample first, and then do it with m-dimension parameters of each sample. 

2) With the sequence from list to row, that is the opposite of 1). 
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3) Compress by turns, the number ( n ′′ ) of one part of sample is compressed first, 

then goes with the dimension ( m ′′ ) of a part of sample parameters, then take turns 
until get the demand ratio of condensation or the algorithm converged. 

In fact, the former method of 1) and 2) are more operative. The condensation 
strategy of bi-directional feature data in this paper is that, in the process of cutting 
down the dimension of sample parameter, a method of condensation was adopted 
based on principal component analysis (PCA) [1]. 

4   Clustering-Vertical Reduce Based on Similarity Measurement  

A. Definition and Notion of Algorithm as well as Parameter Illustration  

Definition 2. Immune shape space S is a L-dimensional matrix, which defines all 
possible immune operation in immune system between antibody and antigen (Ab-Ag) 
or between antibody(Ab-Ab). Each coordinate component in the space denotes the 
physical-chemistry measures property about the immune operation to shape variation 
of immune molecule.   

The L-dimensional vector Si is used to denote each element in shape space S, 

],,,[ 21 L
iiii ssss = , Ssi ∈ , nSi ,2,1= , nS is the number of samples in space S . 

Definition 3. The affinity f between the immune molecule is the interaction among 
the sample vector in shape space S. There are two cases, the affinity of the Ab-Ag 
interaction is defined as the matching between antigenic epitope and antibody 
contraposition in shape space, the affinity of the Ab-Ab interaction is the inhibiting 
effect of immune network adjustification, which is expressed by comparability 
measure. 

},,{ 21 NAbAbAbAb= is a set of antibody, LNSAb ×∈ , N is the number of antibody in 

the set; },,{ 21 MAgAgAgAg= is the set of antigen, LMSAg ×∈ , M is the number of 

antigen in space S ; Lm
m SAb ×∈}{

denotes the set of memory antibody, Nm ≤ , m  

is the number of memory antibody; jif , is the affinity between antibody iAb and 

antigen jAg , jif , ∝ jid , , jid , is the comparability distance between two points in 

space S ; },,,{ 21 cNcAbcAbcAbcAb= represents the cN  entities of new antibody for 

clone selecting, LNcScAb ×∈ ; },,,{ 21 cNamcAbamcAbamcAbamcAb= indicates the 

clone antibody after the mutation of super-gene, maturation of affinity; jM is the 

memory clone set of relative antigen jAg ; 
*

jM  is the memory clone set after 

inhibiting clone; ρ  is the purified limit value of effective antigen; dσ  is the 

supposed natural death limit value, which can eliminate the antibody with lower 
affinity to antigen so as to improve the adaptability of whole selected clony. It can 

also control the level of latest network antibody; sσ  is the immune inhibiting limit, it 



 Reduce Feature Based NN for Transient Stability Analysis 1179 

 

can dominate the number of latest antibody and reveal the capability of controlling 
network flexibility. The bigger the value is, the looser the memory antibody is. So the 
antibody is of more generality and the number of clustering types is less. Meanwhile, 
the smaller it is, the more compact the memory antibody is. The antibody is of more 
difference and the number of the clustering type is a bit more, finally the 
misclassification will occur if the number is overhigh. 

B. Modified Immune Clustering Algorithm  

The author makes great modification to the algorithm [2,3] from the project 
application point of view, presents a more valuable definition. The modification of the 
algorithm is as follows: 

1) Increase operation of normalization of antigen data at beginning of algorithm. 
The normalization of antigen data is to transform all original antigens to the area 

between lb and ub . We can eliminate the influence of dimension difference of the 
original data and on the other hand control the selection area of important parameter 
between 0 and 1 in the following algorithm, which brings the convenience of 
parameter selecting. 

The value of normalization for any coordinate value j
is of any vector is in S can 

be expressed as: lbsslbubsss j
n
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, 10 ≤<< ublb , in 

general, we take the value as 1.0=lb , 0.1=ub . 
2) Increase the cleaning operation of effective antigen.  
The operation is to eliminate accumulative duplicate or similar sample of reference 

antigen by computing the Euclid distance between samples. If ρ<jid , , then wipe 

off the sample labelled with i, which accelerates the convergence speed of the 
algorithm, ρ  is often taken as 0.01. 

3) Definition of appetency based on principal component core. 
Here the author adopts an affinity definition based on the similarity measurement 

of principal component core, which take the reciprocal of the Euclid distance in 
various principal component spaces as affinity.  

In mode identifying, the similarity measurement is a definition of certain distance 
in space. For a given set X of input sample, the similarity measurement 

),( ji xxδ between any two samples i jx and x should satisfy the following 

requirements: the similarity measurement is nonnegative, that is 0),( ≥ji xxδ ; the 

similarity measurement of the sample itself should be the largest; the similarity 

measurement must be symmetrical, namely ),( ji xxδ = ),( ij xxδ ; in the case of 

compact pattern class, it is a monotone function of the distance between two points. 

Definition 4. The degree of similarity between samples in principal component 
subspace can be measured by the Euclid distance between principal components 
directly, that is: )]()[()]()[(),( ji

T
jjji

T
ji

T
jjjiji ssUUssssUUssss −−−−−−=Δ . 
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Definition 5. For the data transformed by principal component space, we can simplify 
the above expression using transformed Euclid distance similarly. Thus define the 
affinity between immune molecules in shape space as follows: 

jiji gAbAf ′−′= 1,
. Where ibA ′ and jgA ′ should be the data in principal 

component subspace. We adopt the affinity definition in the form of principal 
components kernel all through the algorithm. 

4) Select original antibody set utilizing experienced knowledge. 
A key merit of clone selecting algorithm is that we need not to know the 

experienced knowledge of sample data distribution. But if we know a certain possible 
distribution to sample data in advance, we can select a representative sample as  
the original antibody set, which will improve the convergence and efficiency of the 
condensation algorithm. 

5) The convergence condition of the algorithm. 
We will take the following strategy to determine the end of iterative algorithm, set 

the iterative time g (it is of great reduction compared to the iterative time of optimal 
searching in inheritance algorithm) in ahead, provide the expression for condensation 

ratio of algorithm: [ ] [ ]cr Ab Ag= , the algorithm ends if c rr δ≥ . ][Ab  is the 

number of antibody after condensation, [ ]Ag is the number of antigen mapped from 

problem set. rδ  is the required ratio of condensation. The specified steps of the 

solution are as follows [1]. 

5   Simulation and Conclusion 

The system is realized by adopting VC++6.0 based on Windows2000. Next it will be 
confirmed by analyzing a certain computing case in a simulating experiment. 
Training samples and Measuring samples are as follows[5]. 

A. Feature Reduction Using PCA and Immune Clustering 
Though the number of data has been reduced greatly after the condensation of PCA, 
there are still quite a few redundancies between the samples. If the data are sent to the 
classification machine directly, the training number of samples will be very great. As 
the sort of the sample data is known, we can use the algorithm of immune clustering 
in each type of data directly to compress the data of sample.  

After the process of the above data condensation from bi-direction, the last 
remaining character sample is a 64 7× dimensional data matrix. The condensation 

ratio of bi-direction can be expressed as: %2.89=ρ .  

B. Monitoring Complex System Using Neural Network  
Automated fault detection and diagnostic systems based on neural networks have 
been implemented for complex large-scale system in this paper. Briefly speaking, the 
cerebellar model articulation controller (CMAC) can be described as a computing 
device that accepts an input vector S = (S1 ,S2 ,...,Sn ) and produces an output vector P 
= F(S). To compute the output vector P for a given input state S, pair mapping is 
performed, namely: f: S --> A; g: A --> P. A procedure for entering a function in 
CMAC is given in Reference [4,5]. 
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Domain value selection: The net’s stable index distributing figure responsing for the 
training samples is combined with the stable pattern of training samples to determine 
the field value of unstable field, fuzzy field, stable field separately and then depend on 
them to determine the stable pattern of measuring samples. It’s seen that unstable 
field, fuzzy field and stable field can be defined as 1≤ iy ＜1.25; 1.25≤ iy ＜1.7; 

1.7≤ iy ≤2.0. 

Measuring result: The net makes good effect on predicted contingency set under the 
known working state and possesses a certain deductive ability for predicted 
contingency set under the unknown working state, which shows that the function of 
the net depends on the covering range of the training samples on a large degree.  

6   Conclusion 

Aiming at the situation that there may exist two kind of information redundancy in 
constructing the multi-symptom domains character knowledge, namely, the relativity 
between the repeated or similar sample and character data, the author proposed an 
effective bi-directional condensation method of character data and implemented it. 
Compare the classification result of sample data pre-condensation to that after 
condensation, we will find that the sample data of the later keep the structure 
character of original data well, it eliminates lots of redundancy, has the ability of 
classification similarly. Finally, to analyze machine behavior quantitatively, a pattern 
discrimination model based on a cerebellar model articulation controller neural 
network was developed. Experiments proved the effectiveness of this algorithm. 
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Abstract. In this paper, the control approach to irregular structures excited by 
multi-dimensional ground motions is presented by using semi-active tuned liq-
uid column damper (TLCD). A back propagation Artificial Neural Network 
(ANN) is used to predict the responses of structure due to two-dimensional 
seismic inputs. The semi-active control strategy is established and implemented 
based on ANN. The numerical examples have shown that it is an effective 
method presented for controlling the translational and rotational responses of ir-
regular structures. 

1   Introduction 

The dynamic response of tall buildings due to earthquake is very important to civil 
engineers. These dynamic responses can result in uncomfortable, and even seriously 
dangerous circumstances for buildings. With the growing use of high-strength materi-
als and modern construction techniques, buildings have become relatively light, flexi-
ble and lightly damped. The dynamic responses are often much more serious than 
those for earlier structures, resulting in increased discomfort to the occupants. The 
inclusion of vibration absorbers in tall buildings can be a successful method of miti-
gating the effects of these dynamic responses. 

Vibration absorbers can be categorized as either active or passive. Tuned mass 
damper (TMD)[1], both passive and active, have been found to be effective in reducing 
the response of structures subjected to dynamics loads since 1970s. Tuned mass 
dampers have been installed in quite a few tall buildings and structures including the 
Sydney Tower and Chifley Tower in Sydey. The dampers that depend on liquid motion 
to absorb and dissipate vibration energy, such as tuned liquid dampers (TLD) and tuned 
liquid column dampers (TLCD) have also been proposed for suppressing structural 
vibration. Tuned liquid column damper (TLCD) as a passive control device can 
suppress the structural vibration by the motion of liquid in a column container. The 
potential advantages of liquid vibration absorbers include: low manufacturing and 
installation costs; the ability of the absorbers to be incorporated during the design stage 
of a structure, or to be retrofitted to serve a remedial role; relatively low maintenance 
requirements; and the availability of the liquid to be used for emergency purposes, or for 
the everyday function of the structure if fresh water is used [2]. Analytical and 
experimental research on this type of vibration has been conducted by Samali et al [3]. 
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Viscous interaction between a liquid and solid boundary has been investigated and used 
to control vibration. The nonlinear mathematical description of the original TLCD was 
given by Sakai et al.[4]. Their experiments, defining the relationship between the 
coefficient of head loss (as well as its dependence on the orifice opening ratio) and the 
liquid damping, confirms the validity of their proposed equation of motion in describing 
liquid column relative motion under moderate excitation.  

Yet, there are some problems in the present control ways, the Artificial Neural 
Network (ANN) gives an efficient approach to solve the above problems (Li et al., 
1999) [5]. The ANN is the simulation of biology neural networks (Wang et al., 1995) 
[6-7]. It consists of a number of simple cells that are similar to the biology neural 
networks. The function of single cell is simple and limited, but the networks com-
posed by numerous neural cells can finish some complex assignments. The ANN 
controller is an efficient method for vibration reduction, which is different from the 
conventional method in that it can learn control task. It is an adaptive controller with 
ability of learning and can compensate the time delay in the process of control.  

In this paper, two tuned liquid column dampers (TLCDs) are set in orthogonal di-
rections to control the translational and torsional responses of eccentric structure sub-
jected to multi-dimensional earthquake excitations. The ANN is used to predict the 
response of structures to compensate the delay. The application of the ANN control 
method provides an effective way to solve these problems. 

2   Equations of Motion for Control System 

A model of multi-story eccentric structure is showed in figure1, in which O, S and M 
are the geometry center, stiffness center and mass center. Let u, v and θ denote the 
translational displacements of floor in x and y directions and rotational angle about 
the axis z, respectively. 

 

Fig. 1. Model of eccentric structure with TLCDs 

The equation of motion for TLCD in x is derived as follow: 
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The equation of motion for TLCD in y can also be derived through the same 
method: 

2
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(2) 

where h and s are the displacements of liquid in the TLCDs of u and v directions, ρ is 
the density of the liquid in TLCDs, ξh and ξs represent the damping ratios of TLCDs, 
Lh and Ls, Bh and Bs, Ah and As mean the lengths, widths and cross section areas of 
liquid in the TLCDs, luh and lvh denote the position coordinates of TLCD in the x 

direction, lus and lvs are the position coordinates of TLCD in the y direction, gu , gv  

and gθ  are the seismic ground accelerations in u, v and θ directions, and lu , lv  and 

lθ  are the accelerations of the lth floor in x, y and θ directions. The values of the 

fourth parts in the right brackets of Eqs. (1) and (2) are generally very small and can 
be ignored. The equations are simplified as 

[ ( )],h h h h h l g vh l gm h c h k h A B x u lρ θ θ+ + = − + − +                   (3) 

[ ( )],s s s s s l g us l gm s c s k s A B y v lρ θ θ+ + = − + + +                    (4) 

where h h hm A Lρ= , s s sm A Lρ= ,
1

2h h hc A hρ ξ= ,
1

2s s sc A sρ ξ= ,

2h hk A gρ= and 2s sk A gρ= . The natural frequencies of TLCDs are 

/ 2 /h h hh
k m g Lω = = and 2 /s sg Lω = , respectively. The control forces 

produced by TLCDs can be expressed by 

( )( ) ( )( ) ,u h s l g h vh s vs l g h hW m m u u m l m l A B hθ θ ρ= + + − + + +         (5) 

( )( ) ( )( ) ,v h s l g h uh s us l g s sW m m v v m l m l A B sθ θ ρ= + + + + + +       (6) 

 

2 2

2 2

( )( ) ( )( )
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m l m l v v m l m l A B l s
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+ + + + + + +
   (7) 

where Wu, Wv and Wθ denotes the control forces in x, y and θ directions, respectively. 
The equation of motion for structural system can be derived as following 

{ } [ ]{ } [ ]{ } { } { }[ ] [ ] ,gm x c x k x m x W+ + = −                     (8) 
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where [m]=diag(m1···mn, m1···mn, J1···Jn) and{x}={u1···un, v1···vn, θ1···θn} are  the mass 
matrix and displacement vector of the structures, [k] and [c] is the stiffness and damp-
ing matrix of structure, {W}={0···Wu···0···Wv ···0···Wθ···}

T is control force vector. 
Assumed that [c] is a classical damping matrix and then the equation of motion for 

the ith mode of the controlled structure is expressed as: 

2 * *2 ,i i i i i i i iF Uη ξ ωη ω η+ + = −                                 (9) 

where  

2 3
* *

, , ,
1 1 2 1

( ) ( ) ( ) ) / ,
n n n

i k i k g k i k g k i k g i
k k n k n

F m u m v m mφ φ φ θ
= = + = +

⎡ ⎤= − + +⎢ ⎥⎣ ⎦
∑ ∑ ∑      (10) 

* *
, , 2 ,( ) / ,i l i u n l i v n l i iU W W W mθφ φ φ+ += + +                            (11) 

3
* 2

,
1

[ ] ,
n

T
i i i k i k

k

m m mφ φ φ
=

= =∑                                    (12) 

in which mi
* is the ith generalized modal mass, mk means the kth element in the di-

agonal of [m] matrix, φk,i represents the kth element of the ith mode shape, Fi
* is the 

ith modal excitation and Ui
*  is the ith modal control force. 

Considering the first r models, the displacement of structure can be expressed as: 

( )
1

.
r

i i
i

x φη
=

=∑                                                (13) 

3   Control Strategy 

The TLCD semi-active algorithm has been presented in reference (Abe and Fujino, 
1996) [8]. The equation of motion for a TLCD/SDOF structure system is: 

( )
0 0

,
0 0

0

s ss
s

T T

f t
c km Al Ab x x x

m
c kAb Al

ρ ρ
ρ ρ ξ ξ ξ

⎡ ⎤+ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

  (14) 

where x is the displacement of structure, ξ is the displacement of the liquid in the 
column. ms is the mass of structure, cs the damping coefficient of the structure, ks is 
the stiffness of structure, ρ is the mass density of the liquid, A is the cross sectional 
area of the column, b is the width of the column, l is the length of column, k is the 
head loss factor, f(t) is the external force and g is the gravitational acceleration. Here, 
the orifice head loss is assumed to be proportional to the square of the velocity of the 
liquid flow. 
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To apply perturbation analysis, the following normalization of parameters and lin-

earization of the head loss term are introduced: /s s sK Mω = , 2 /T g lω = , 

ζs=Cs/2Msωs, µ=ρAl/Ms, γ=ρAb/ρAl. 
The total hydraulic loss of half-cycle harmonic response of the liquid in the U type 

pipe is equal to the energy loss of the corresponding linear system. According to this 
condition, the equivalent damping coefficient of TLCD can be obtained as follows  

2
0 ,

3
T

T
s g

κω ξζ
ω π

=                                                  (15) 

where ζ0 is the displacement amplitude of liquid when the velocity of the liquid is 
zero and k is the energy loss coefficient of liquid. It can be known the effect of control 
on the structural response is the most effective when the equivalent frequency, ωT is 
tuned nearly to natural frequency ωs of the structure, i.e.: 

                                    1 ,s T a sω ω ω ω μ≈ ≈ = +                                    (16) 

where ωa is the mean value of the frequencies of two mode shapes: ωa=(ω1+ω2)/2. 
The modal frequencies and modal damping ratios are obtained by disturbing  
technology as 

1,2

Im
(1 ),

2a

βω ω= ±                                          (17) 

1,2 ( Re ) / 2.Tζ ζ β= ±                                         (18) 

The corresponding modes can be written by 

                             

1,2

1
,

( ) /( )
x

Tiξ

φ
φ ζ β μγ
⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬− ±⎩ ⎭⎩ ⎭
                                 (19) 

where { }
1,2

 
T

x ξφ φ represents the two mode shape vectors, Im means the imaginary 

part, Re denotes the real part and 2 2
Tβ ζ μγ= − . It can be known that the two 

damping factors may sufficiently take effect only when the damping ratios of the two 
modes are the same. Then, the optimal damping ratio can be expressed as follows  

                  .opt
Tζ γ μ=                                                (20) 

As the damping ratio ζT has relations with both cell-opening ratio and hydraulic en-
ergy loss coefficient, k can be controlled consecutively to keep damping ratio ζT have 
the optimal values. In order to make the application more convenient, the sloshing 
process of the liquid is divided into some parts. Only when the velocity of the liquid is 
zero, the area of orifice opening is adjusted swiftly. Hence, the loss coefficient is 
obtained by 
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2
0

3
.

a

gπ γ μκ
ω ξ

=                                              (21) 

The main aim of the adopted control criterion is only to excite the first mode and 
not the second mode by selecting rationally ζT, i.e., by adjusting the open-cell ratio to 
change the damping coefficient, ζT , of TLCD the participant value of the first mode at 
this time is the maximum. This process above can be realized by following equation 

.T

ax

ζ βξ
ωμγ

+= −                                                (22) 

At the moment of controlling the area of orifice opening of TLCD, which means at 

the moment merely after 0ξ = , the response of structure can be approximately ex-

pressed as 

                 0Re ,ai tx x e ω⎡ ⎤= ⎣ ⎦                                             (23) 

and 

0Re ,ai te ωξ ξ⎡ ⎤= ⎣ ⎦                                            (24) 

where 0x  is the displacement response of structure when the velocity of liquid is 

equal to zero. Substitution of Eqs. (17) and (18) into Eq. (16) yields: 

0
0

( )
.T

a

xζ βξ
μγω
+= −                                           (25) 

Due to Tζ γ μ>> and Tζ  being non-negative, Eq. (19) is simplified as:   

0

0

.
2

a
T x

μγω ξζ =                                               (26) 

Substituting Eq. (15) into Eq. (26) the following equation can be derived as 

3
0

3
.

2
s a

T

g

x

ω π μγωκ
ω

=                                           (27) 

4   Prediction of Structural Response 

The Multi-layer forward BP network is an algorithm often used in ANN controller. It 
has the learning capability to learn control criterion and strategy. The trained ANN 
can predict the structural future response by exerting the control to the structure in 
advance, and then wipe out the “time lag”. Here, multi-layer forward ANN is applied 
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by means of the improved BP learning algorithm to accelerate the training speed. 
First, the ANN must be trained to learn the rule of structural vibration and save the 
information in the weights. The trained ANN can predict the structural response in 
later time.  

A five-story eccentric structure is used to train the ANN. The mass of its every 
floor is 1.5×106 Ns2/m, the moment of inertia to the mass center is 4.9×105Kg·m2 and 
the translational stiffnesses in x and y directions are 1.5×108 N/m and 6.6×107 N/m, 
respectively. The torsional stiffness of each floor is 3.5×1010 N·m/Rad. The eccentric-
ity in x is 3m and 2m in y. A three-layer ANN is used to predict the structural re-
sponse. There are 22 nodes in input layer, which represent the translational structural 
responses of five stories in the foregoing two periods of time and the seismic input in 
x and y. There are two nodes in the output layer, which represent the structural trans-
lational response in the next period of time. The ANN is trained in the supervised way 
and the object error is 0.002.  
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Fig. 2. Predicted response in x (Tianjin) Fig. 3. Predicted response in y (Tianjin) 
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Fig. 4. Predicted response in x Fig. 5. Predicted response in y (El Centro) 

The structural responses under Tianjin seismic excitation are used as sampling 
data. The one third of data is used to train the ANN and others are used to test the 
ANN. The results are showed in Fig.2 and Fig. 3. The structural responses to El 
Centro seismic record is also predicted by the ANN to verify the ability of generaliza-
tion and the results are showed in Fig. 4 and Fig.5. 

5   Numercal Example and Analysis 

A five-story eccentric structure is as numerical example. Two TLCDs are installed on 
the top of structure in x and y directions respectively. The parameters of TLCD in x  
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direction are: µ=0.01, γ=0.5, L=2.42m. The parameters in y direction are: µ=0.01, 
γ=0.01, L=5.5m. El Centro north-south and east-west waves are input to the two di-
rections of the structure. The time history of structural displacements is showed in 
Fig.7 through Fig.9.  

e k-1

e k
x k-1

x k-1

xk-2

xk-2

e k
xk, xk

ANN Cont rol l er  

Fig. 6. Artificial neural Network 

The artificial neural networks can trace and compute the required orifice-opening 
ratio of TLCD in real time, and the required damping ratio instead of numerous non-
linear computations. The time history of orifice-opening ratio in x and in y is showed 
in Figure 10 and in Figure 11 respectively. The control effect of the top floor is 
showed in Table 1. Consequently, the effect of its control on seismic response of 
structures is very well.  

  

Fig. 7. History of displacements on top of 
structure in x direction (El Centro) 

Fig. 8. History of displacement on top of 
structure in y direction (El Centro) 
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Fig. 9. History of displacement on top of structure in θ direction (El Centro) 
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Fig. 10. Time history of orifice open ration in x Fig. 11. Time history of orifice open ratio; in y 

Table 1. Control effect on the top of structure 

Translation Rotation 

 x 
(cm) 

y 
(cm) 

θ 
(102Rad) 

ax 
(cm/s2) 

ay 
(cm/s2) 

aθ 
(10-2Rad/s2) 

Without controlPeak 12.67 8.57 0.44 432.22 217.35 16.60 
Passive control Peak 12.05 5.97 0.33 351.30 205.05 14.61 
Control effect (%) 4.87 30.31 23.72 18.72 5.65 11.96 

Semi-active control Peak 9.64 4.78 0.27 249.12 145.40 10.36 
Control effect (%) 23.9 44.25 38.98 42.36 33.09 37.56 

6   Conclusions 

In this paper, the torsionally coupled control of eccentric structure using semi-active 
TLCD is presented. The following conclusions according to above studies can be 
drawn as: 

(1) The translational-torsional coupled vibration can be controlled with TLCDs in-
stalled in two directions of structures. 

(2) The structural response can be predicted using the ANN and compensate the 
time delay in the process of control. 

(3) It can avoid the complicated non-linear computation of TLCD and save the cal-
culation time by replacing the control criterion with the ANN and the effectiveness of 
control is much better. 
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Abstract. This paper introduces a particle filter algorithm determin-
ing the measurement-track association problem in multi-target tracking.
This scheme is important in providing a computationally feasible alter-
native to complete enumeration of JPDA which is intractable. We have
proved that given an artificial measurement and track’s configuration,
particle filter scheme converges to a proper plot in a finite number of
iterations. Also, a proper plot which is not the global solution can be
corrected by re-initializing one or more times. In this light, even if the
performance is enhanced by using the particle filter, we also note that the
difficulty in tuning the parameters of the particle filter is critical aspect
of this scheme. The difficulty can, however, be overcome by developing
suitable automatic instruments that will iteratively verify convergence
as the network parameters vary.

1 Introduction

The primary purpose of a multi-target tracking(MTT) system is to provide an
accurate estimate of the target position and velocity from the measurement
data in a field of view. Naturally, the performance of this system is inherently
limited by the measurement inaccuracy and source uncertainty which arises from
the presence of missed detection, false alarms, emergence of new targets into the
surveillance region and disappearance of old targets from the surveillance region.
Therefore, it is difficult to determine precisely which target corresponds to each
of the closely spaced measurements. Although trajectory estimation problems
have been well studied in the past, much of this previous work assumes that the
particular target corresponding to each observation is known. Recently, with the
proliferation of surveillance systems and their increased sophistication, the tools
for designing algorithms for data association have been announced.

Generally, there are three approaches in data association for MTT : non-
Bayesian approach based on likelihood function[1], Bayesian approach[2,3,4], and
neural network approach[5]. The major difference of the first two approaches is
how treat the false alarms. The non-Bayesian approach calculates all the like-
lihood functions of all the possible tracks with given measurements and selects
the track which gives the maximum value of the likelihood function. Meanwhile,

D. Liu et al. (Eds.): ISNN 2007, Part III, LNCS 4493, pp. 1192–1201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the tracking filter using Bayesian approach predicts the location of interest us-
ing a posteriori probability. These two approaches are inadequate for real time
applications because the computational complexity is tremendous.

As an alternative approach, Sengupta and Iltis[5] suggested a Hopfield neural
network probabilistic data association (HNPDA) to approximately compute a
posteriori probability βt

j , for the joint probabilities data association filter
(JPDAF)[6] as a constrained minimization problem. This technique based on
the use of neural networks was also started by comparison with the traveling
salesman problem(TSP). In fact βt

j is approximated by the output voltage Xt
j

of a neuron in an (m + 1) × n array of neurons, where m is the number of mea-
surements and n is the number of targets. Sengupta and Iltis[5] claimed that the
performance of the HNPDA was close to that of the JPDAF in situations where
the numbers of measurements and targets were in the ranges of 3 to 20 and 2
to 6, respectively. The success of the HNPDA in their examples was credited to
the accurate emulation of all the properties of the JPDAF by the HNPDA.

However, the neural network developed in [5] has been shown the two prob-
lems. First, the neural network developed in [5] has been shown to have improper
energy functions. Second, heuristic choices of the constant parameters in the en-
ergy function in [5] didn’t guarantee the optimal data association.

2 CONDENSATION Algorithm

2.1 CONDENSATION Algorithm

The particle filter approach to track multi-target, also known as the condensation
algorithm [9] and Monte Carlo localisation, uses a large number of particles to
explore the state space. Each particle represents a hypothesised target location
in state space. Initially the particles are uniformly randomly distributed across
the state space, and each subsequent frame the algorithm cycles through the
steps illustrated in Figure 1:

1. Deterministic drift: particles are moved according to a deterministic motion
model (a damped constant velocity motion model was used).

2. Update probability density function (PDF): Determine the probability for
every new particle location.

3. Resample particles: 90 % of the particles are resampled with replacement,
such that the probability of choosing a particular sample is equal to the
PDF at that point; the remaining 10 % of particles are distributed randomly
throughout the state space.

4. Diffuse particles: particles are moved a small distance in state space under
Brownian motion.

This results in particles congregating in regions of high probability and dis-
persing from other regions, thus the particle density indicates the most likely
target states. See [9] for a comprehensive discussion of this method. The key
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strengths of the particle filter approach to localisation and tracking are its scala-
bility (computational requirement varies linearly with the number of particles),
and its ability to deal with multiple hypotheses (and thus more readily recover
from tracking errors). However, the particle filter was applied here for several
additional reasons:

– it provides an efficient means of searching for a target in a multi-dimensional
state space.

– reduces the search problem to a verification problem, ie. is a given hypothesis
face-like according to the sensor information?

– allows fusion of cues running at different frequencies.

The last point is especially important for a system operating multiple cues
with limited computational resources, as it facilitates running some cues slower
than frame rate (with minimal computational expense) and incorporating the
result from these cues when they become available. If a cue takes n frames to
return a result, by the time the cue is ready, the particles will have moved from
where they were n frames ago. To facilitate such cues the system keeps a record
of every particle’s history over a specified number of frames k. The cue value
determined for a particle nk frames ago can then be assigned to the children of
that particle in the current frame, thus propagating forward the cues response to
the current frame. Conversely, probabilities associated with particles that were
not propagated are discarded.

Resample
Particle

Diffuse
Particle

Deterministic
Drift

Update
P.D.F.

P.D.F

Particles

Fragmentation

Image 
Sources

People 
Detection

Particle Filter

MATLAB
Preprocessing

Calculate
Skin Positions

Masking

Fig. 1. Particle Filter Calculation Process

2.2 Application of CONDENSATION for the Multi-targt Tracking

In order to apply the Condensation Algorithm to the multi-targt tracking, we
extend the methods described by Black and Jepson [10]. Specifically, a state at
time t is described as a parameter vector: st = (μ, φi, αi, ρi) where: μ is the
integer index of the predictive model, φi indicates the current position in the
model, αi refers to an amplitudal scaling factor and ρi is a scale factor in the
time dimension.
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Initialization. The sample set is initialized with N samples distributed over
possible starting states and each assigned a weight of 1

N . Specifically, the initial
parameters are picked uniformly according to:

μ ∈ [1, μmax]

φi =
1 − √

y
√

y
, y ∈ [0, 1] (1)

αi = [αmin, αmax]
ρi ∈ [ρmin, ρmax]

Prediction. In the prediction step, each parameter of a randomly sampled st

is used to st+1determine based on the parameters of that particular st . Each
old state,st , is randomly chosen from the sample set, based on the weight of
each sample. That is, the weight of each sample determines the probability of its
being chosen. This is done efficiently by creating a cumulative probability table,
choosing a uniform random number on [0, 1], and then using binary search to
pull out a sample (see Isard and Blake for details[9]). The following equations
are used to choose the new state :

μt+1 = μt

φi
t+1 = φi

t + ρi
t + N(σφ) (2)

αi
t+1 = αi

t + N(σα)

ρt+1 = ρi
t + N(σρ)

where N(σ∗) refers to a number chosen randomly according to the normal dis-
tribution with standard deviation σ∗ . This adds an element of uncertainty to
each prediction, which keeps the sample set diffuse enough to deal with noisy
data. For a given drawn sample, predictions are generated until all of the para-
meters are within the accepted range. If, after, a set number of attempts it is
still impossible to generate a valid prediction, a new sample is created according
to the initialization procedure above. In addition, 10 percent of all samples in
the new sample set are initialized randomly as in the initialization step above
(with the exception that rather than having the phase parameter biased towards
zero, it is biased towards the number of observations that have been made thus
far). This ensures that local maxima can’t completely take over the curve; new
hypotheses are always given a chance to dominate.

Updating. After the Prediction step above, there exists a new set of N pre-
dicted samples which need to be assigned weights. The weight of each sample is
a measure of its likelihood given the observed data Zt = (zt, zt1 , · · · ). We define
Zt,i = (zt,i, z(t−1),i, · · · ) as a sequence of observations for the ith coefficient over
time; specifically, let Z(t,1), Z(t,2), Z(t,3).Z(t,4) be the sequence of observations of
the horizontal velocity of the left hand, the vertical velocity of the left hand, the
horizontal velocity of the right hand, and the vertical velocity of the right hand



1196 Y.W. Lee

respectively. Extending Black and Jepson [10], we then calculate the weight by
the following equation:

p(zt|st) =
4∏

i=1

p(Zt,i|st) (3)

where p(zt,i|st) = 1√
2π

exp
−�ω−1

j=0 (z(t−j),i−α∗mμ
(φ−ρ∗j),i)

2

2(ω−1) and where ω is the size
of a temporal window that spans back in time. Note that φ∗, α∗ and ρ∗ refer
to the appropriate parameters of the model for the blob in question and that
α∗m(μ)

(φ∗−ρ∗j),i refers to the value given to the ith coefficient of the model μ

interpolated at time φ∗ − ρ∗j and scaled by α∗ .

Classification. With this algorithm in place, all that remains is actually clas-
sifying the correct data association as one of the many observed measurements.
Since the whole idea of Condensation is that the most likely hypothesis will
dominate by the end, I chose to use the criterion of which measurement was
deemed most likely at the end of the measurements sequence to determine the
class of the entire track sequence. Determining the probability assigned to each
target is a simple matter of summing the weights of each sample in the sample
set at a given moment whose state refers to the model in question.

3 Development of the Energy Function

3.1 Representing Measurement-Target Relationship

Fig. 2 shows the overall scheme. This system consists of three blocks: acquisi-
tion, association, and prediction. The purpose of the acquisition is to determine
the initial starting position of the tracking. After this stage, the association and
prediction interactively determine the tracks. Our primary concern is the associ-
ation part that must determine the actual measurement and target pairs, given
the measurements and the predicted gate centers.

w(k)
y(k)

x(k)

z(k)

z(k-1)
Prediction

AssociationAcquisition

D

Fig. 2. An overall scheme for target tracking

Let m and n be the number of measurements and targets, respectively, in a
surveillance region. Then, the relationships between the targets and measure-
ments are efficiently represented by the validation matrix ω [6]:

ω = {ωjt|j ∈ [1, m], t ∈ [0, n]}, (4)
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where the first column denotes clutter and always ωj0 = 1. For the other columns,
ωjt = 1 (j ∈ [1, m], t ∈ [1, n]), if the validation gate of target t contains the
measurement j and ωjt = 0, otherwise.

Based on the validation matrix, we must find hypothesis matrix [6] ω̂(=
{ω̂jt|j ∈ [1, m], t ∈ [0, n]}) that must obey the data association hypothesis(or
feasible events [6]):

{∑n
t=0 ŵjt = 1 for (j ∈ [1, m]),∑m
j=1 ŵjt ≤ 1 for (t ∈ [1, n]). (5)

Here, ω̂jt = 1 only if the measurement j is associated with clutter (t = 0) or
target (t �= 0). Generating all the hypothesis matrices leads to a combinatorial
problem, where the number of data association hypothesis increases exponen-
tially with the number of targets and measurements.

3.2 Relations Between Data Association and Energy Function

Suppose there are n targets and m measurements. The energy function for the
data association is written below.

EDAP =
A

2

m∑

j=0

n∑

t=1

n∑

τ=1τ �=t

Xt
jX

τ
j +

B

2

n∑

t=1

m∑

j=0

m∑

l=0l �=j

Xt
jX

t
l +

C

2

n∑

t=1

(
m∑

j=0

Xt
j − 1)2

+
D

2

m∑

j=0

n∑

t=1

(Xt
j − ρt

j)
2 +

E

2

m∑

j=0

n∑

t=1

n∑

τ=1τ �=t

(Xt
j −

m∑

l=0l �=j

ρτ
l )2. (6)

Xt
j is the output voltage of a neuron in an (m + 1) × n array of neurons and

is the approximation to the a posteriori probability βt
j in the JPDAF[6]. This a

posteriori probability, in the special case of the PDAF[6] when the probability
PG that the correct measurement falls inside the validation gate is unity, is
denoted by ρt

j . Actually, PG is very close to unity when the validation gate size
is adequate. In (6), A,B,C,D, and E are constants.

In order to justify the first two terms of EDAP in (6), we assumed that the
dual assumptions of no two returns form the same target and no single return
from two targets are consistent with the presence of a dominating Xt

j in each row
and each column of the (m+1)×n array of neurons. The third term of EDAP is
used to constrain the sum of the Xt

j ’s in each column to unity i.e.
∑m

j=0 Xt
j = 1.

This constraint is consistent with the requirement that
∑m

j=0 βt
j = 1 in both the

JPDAF and the PDAF. Therefore, this constraint, by itself, does not permit us to
infer whether the βt

j ’s are from the JPDAF, or from the PDAF. The assumption
used to set up the fourth term is that this term is small only if Xt

j is close to
ρt

j , in which case the neural network simulates more closely the PDAF for each
target rather than the intended JPDAF in the multitarget scenario. Finally, the
fifth term is supposed to be minimized if Xt

j is not large unless for each τ �= t
there is a unique l �= j such that ρτ

l is large.
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3.3 MAP Estimates for Data Association

The ultimate goal of this problem is to find the hypothesis matrix ω̂ = {ω̂jt|j ∈
[1, m], t ∈ [0 ,n]}, given the observation y and x, which must satisfy (5). From
now on, let’s associate the realizations- the gate center x, the measurement y,
the validation matrix ω, and ω̂- to the random processes-X , Y , Ω, and Ω̂.

Next, consider that Ω̂ is a parameter space and (Ω, Y, X) is an observation
space. Then,a posteriori can be derived by the Bayes rule:

P (ω̂|ω,y,x) =
P (ω|ω̂)P (y,x|ω̂)P (ω̂)

P (ω,y,x)
. (7)

Here, we assumed that P (ω,y,x|ω̂) = P (ω|ω̂)P (y,x|ω̂), since the two variables
ω and (x,y) are separately observed. This assumption makes the problem more
tractable as we shall see later. This relationship is illustrated in Fig. 3.

Ω (X,Y)

Ω̂

Fig. 3. The parameter space and the observation space

Given the parameter Ω̂, Ω and (X, Y ) are observed. If the conditional proba-
bilities describing the relationships between the parameter space and the obser-
vation spaces are available, one can obtain the MAP estimator:

ω∗ = argmax
ω̂

P (ω̂|ω,y,x). (8)

3.4 Representing Constraints by Energy Function

As a system model, we assume that the conditional probabilities are all Gibbs
distributions: ⎧

⎪⎪⎨

⎪⎪⎩

P (y,x|ω̂) Δ= 1
Z1

exp{−E(y,x|ω̂)},

P (ω|ω̂) Δ= 1
Z2

exp{−E(ω|ω̂)},

P (ω̂) Δ= 1
Z3

exp{−E(ω̂)},

(9)

where Zs (s ∈ [1, 2, 3]) is called partition function:

Zs =
∫

ω̂∈E
exp{−E(ω̂)}dω̂. (10)
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Here, E denotes the energy function. Substituting (9) into (7), (8) becomes

ω̂∗ = argmin
ω̂

[E(y,x|ω̂) + E(ω|ω̂) + E(ω̂)]. (11)

Since the optimization is executed with respect to ω̂, the denominator in (7) is
independent of ω̂ and therefore irrelevant for its minimization.

The energy functions are realizations of the constraints both for the target tra-
jectories and the measurement-target relationships. For instance, the first term
in (11) represents the distance between measurement and target and could be
minimized approximately using the constraints in (5). The second term intends
to suppress the measurements which are uncorrelated with the valid measure-
ments. The third term denotes constraints of the validation matrix and it can be
designed to represent the two restrictions as shown in (5). The energy equations
of each term are defined respectively:

⎧
⎪⎪⎨

⎪⎪⎩

E(y,x|ω̂) Δ=
∑n

t=1
∑m

j=1 rjtŵjt,

E(ω|ω̂) Δ=
∑n

t=1
∑m

j=1(ŵjt − wjt)2,

E(ω̂) Δ=
∑n

t=1(
∑m

j=1 ŵjt − 1) +
∑m

j=1(
∑n

t=0ŵjt − 1).

(12)

Putting (12) into (11), one gets

ω̂∗ = argmin
ω̂

[
α

n∑

t=1

m∑

j=1

r2
jtŵjt +

β

2

n∑

t=1

m∑

j=1

(ŵjt − wjt)2

+
n∑

t=1

(
m∑

j=1

ŵjt − 1) +
m∑

j=1

(
n∑

t=0

ŵjt − 1)
]
, (13)

where α and β are a coefficient of the weighted distance measure and the match-
ing term respectively.

Using this scheme, the optimal solution is obtained by assigning observations
to tracks in order to minimize the weighted total summed distance from all
observations to the tracks to which they are assigned. This is thought of as a
version of the well-known assignment problem for which optimal solutions have
been developed with constraints [11].

4 Experimental Results

In this section, we present some results of the experiments comparing the per-
formance of the proposed particle filter with that of the JPDA [6]. We just used
the standard Kalman filter [12] for the estimation part once feasible matrix ω̂ is
computed. The performance of the particle filter is tested in two separate cases
in the simulation. In the first case, we consider two crossing and parallel targets
for testing the track maintenance and accuracy in view of clutter density. In the
second case, all the targets as listed in Table 1 are used for testing the multi-
target tracking performance. The dynamic models for the targets have been used
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by the Singer model developed in [13]. Target 8 and 9 in Table 1 were given ac-
celeration 20m/sec2 and 10m/sec2 between 15 and 35 turn period, respectively.

Table 1. Initial Positions and Velocities of 10 targets

Target Position (km) Velocity (km/s)
i x y ẋ ẏ
1 -4.0 1.0 0.2 -0.05

2 -4.0 1.0 0.2 0.05

3 -6.0 -5.0 0.0 0.3

4 -5.5 -5.0 0.0 0.3

5 8.0 -7.0 -0.4 0.0

6 -8.0 -8.0 0.4 0.0

7 -5.0 9.0 0.25 0.0

8 -5.0 8.9 0.25 0.0

9 0.5 -3.0 0.1 0.2

10 9.0 -9.0 0.01 0.2

Table 2 summarizes the rms position and velocity errors for each target in
the second test. From Table 3, we note that MAPADA’s track maintenance
capability is higher than JPDA, even if the rms error of each track is a little
larger than the JPDA. This result comes from the choosing the course weighted
distance measure. We also note that the general performance of the MAPADA is
almost equivalent to that of JPDA. The MAPADA appears to be a alternative to
the JPDA instead of HNPDA. Also, It could replace the sequential computations
required for the JPDA with a parallel scheme. But the difficulty in adjusting the
parameters still exist.

Table 2. RMS Errors in the case of ten targets

target Position error Velocity error Track maintenance
i (km) (km/s) (%)

JPDA Particle JPDA Particle JPDA Particle

1 0.039 0.042 0.017 0.018 100 100

2 0.038 0.043 0.021 0.019 100 100

3 0.039 0.042 0.016 0.018 100 100

4 0.044 0.042 0.021 0.018 93 100

5 0.040 0.044 0.016 0.019 100 100

6 0.040 0.042 0.011 0.045 100 100

7 0.040 0.042 0.011 0.045 100 100

8 0.251 0.295 0.072 0.118 65 53

9 0.056 0.052 0.024 0.020 85 93

10 0.040 0.044 0.017 0.018 100 98
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5 Conclusion

The purpose of this paper was to explore a particle filter for data association
method as a tool for applying multi-target tracking. It was shown that it always
yields consistent data association, in contrast to the JPDA, and that these as-
sociated data measurements are very effective for multi-target filters. Although
the particle filter finds the convergence recursively, the particle filter is a general
method for solving the data association problems in multi-target tracking.
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Araújo, Ricardo de A. II-602
Aung, M.S.H. II-1177

Bae, Hyeon III-641
Bae, JeMin I-1221
Baek, Gyeongdong III-641
Baek, Seong-Joon II-1240
Bai, Qiuguo III-1107
Bai, Rui II-362
Bai, Xuerui I-349
Bambang, Riyanto T. I-54
Bao, Zheng I-1303
Barua, Debjanee II-562
Bassi, Danilo II-391
Bastari, Alessandro III-783
Baten, A.K.M.A. II-1221
Bevilacqua, Vitoantonio II-1107
Bi, Jing I-609
Bin, Deng III-981
Bin, Liu III-981
Boumaiza, Slim I-582

Cai, ManJun I-148
Cai, W.C. I-786
Cai, Wenchuan I-70
Cai, Zixing I-743
Caiyun, Chen III-657, III-803
Calster, B. Van II-1177
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Konakoğlu, Ekrem I-14
Koo, Imhoi I-1117
Kozloski, James II-500, II-552
Kumar, R. Pradeep II-1012
Kurnaz, Sefer I-14

Lai, Pei Ling I-397
Lee, Ching-Hung I-38, II-317
Lee, Geehyuk II-104
Lee, InTae II-206
Lee, Jeongwhan II-1187
Lee, Jin-Young III-923
Lee, Joseph S. II-715
Lee, Junghoon I-1015
Lee, Malrey I-1201, II-871
Lee, Seok-Lae I-1045
Lee, SeungGwan I-704
Lee, Shie-Jue III-515
Lee, SungJoon III-246
Lee, Tsai-Sheng I-694
Lee, Yang Weon III-1192
Leu, Yih-Guang I-45
Leung, Kwong-Sak II-371
Li, Ang II-689
Li, Bin I-767, I-1087
Li, Chuandong II-24
Li, Chun-hua III-382
Li, Demin III-695

Li, Guang I-685
Li, Haibin I-994
Li, Hailong III-9
Li, Haisheng II-414
Li, Hongnan III-1182
Li, Hongru III-9
Li, Ji III-686
Li, Jianwei III-933
Li, Jing II-47, II-656
Li, Jiuxian II-889, III-392
Li, Jun I-676
Li, Jun-Bao II-905
Li, Kang I-496, II-483
Li, Li I-132
Li, Liming III-407
Li, Meng II-842, III-1077
Li, Minqiang II-448
Li, Ping II-33
Li, Qing II-251
Li, Qingdu II-96
Li, Qingguo II-424
Li, Qiudan I-1280
Li, San-ping III-382
Li, Shaoyuan I-505
Li, Shutao III-407
Li, Tao I-81, I-93, I-374, II-8
Li, Weidong III-147
Li, Weimin III-988
Li, Xiao-Li I-87
Li, Xiaodong I-176
Li, Xiaomei II-170
Li, Xiaoou I-487, II-483
Li, Xiuxiu I-796
Li, Xue III-741
Li, Yan II-1281
Li, Yang I-1286
Li, Yangmin I-757, I-813
Li, Yanwen II-842
Li, Yaobo II-1056
Li, Yi II-612
Li, Yibin I-1087
Li, Yinghong I-424
Li, Yong-Wei III-633
Li, Yongming I-1
Li, Yongwei III-950
Li, Yuan III-1130
Li, Yue I-414
Li, Yufei I-424
Li, Yunxia III-758
Li, Zhengxue III-117



1208 Author Index

Li, Zhiquan III-311
Lian, Qiusheng III-454
Lian, Shiguo II-79
Liang, Dong I-572
Liang, Hua I-618, I-920, III-399
Liang, Huawei I-843
Liang, Jinling II-33
Liang, Rui II-257
Liang, Yanchun I-8, I-652, II-1264
Liang, Yong II-371
Liao, Longtao I-505
Liao, Wudai I-897, III-164
Liao, X.H. I-70, I-786
Liao, Xiaofeng I-1104, II-724
Liao, Xiaoxin I-897, II-143,

III-164, III-292
Lim, Jun-Seok II-398, III-678
Lin, Chuan Ku III-998
Lin, Hong-Dar II-785
Lin, ShiehShing III-231
Lin, Sida I-968
Lin, Xiaofeng III-1097
Lin, Yaping II-1254
Lin, Yu-Ching II-317
Lin, Yunsong II-1048
Lin, Zhiling I-380
Ling, Zhuang III-213
Linhui, Cai II-151
Lisboa, P.J.G II-1177
Liu, Benyong II-381
Liu, Bin III-1107
Liu, Bo III-219, III-1058
Liu, Derong I-387, II-1299
Liu, Di-Chen III-1130
Liu, Dianting II-740
Liu, Dongmei II-1231
Liu, Fei III-1067
Liu, Guangjun II-251
Liu, Guohai I-257, I-642
Liu, Hongwei I-1303
Liu, Hongwu III-686
Liu, Ji-Zhen II-179
Liu, Jilin I-714
Liu, Jin III-751
Liu, JinCun I-148
Liu, Jinguo I-767
Liu, Ju II-1065
Liu, Jun II-772
Liu, Lu III-1176
Liu, Meiqin I-968

Liu, Meirong III-570
Liu, Peipei I-1069
Liu, Qiuge III-336
Liu, Shuhui I-480
Liu, Taijun I-582
Liu, Wen II-57
Liu, Wenhui III-721
Liu, Xiang-Jie II-179
Liu, Xiaohe I-176
Liu, Xiaohua III-751
Liu, Xiaomao II-680
Liu, Yan-Kui II-267
Liu, Ying II-267, III-1058
Liu, Yinyin II-534, II-956
Liu, Yongguo III-237
Liu, Yun III-1155
Liu, Yunfeng I-203
Liu, Zengrong II-16
Liu, Zhi-Qiang II-267
Liu, Zhongxuan II-79
Lloyd, Stephen R. II-1299
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