
A Visual Framework for Deploying and Managing
Context-Aware Services

Ichiro Satoh�

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. A framework for managing pervasive computing is presented. It en-
ables end-users to easily and naturally build visual interfaces for monitoring and
customizing context-aware services. It is built on an exiting a symbolic loca-
tion model to represent the containment relationships between physical entities,
computing devices, and places. It supports a compound document framework for
visualizing and customizing the model. It provides physical entities, places, com-
puting devices, and services in smart spaces with visual components to annotate
and control them and to dynamically assemble visual components into a visual
interface for managing the spaces. It can visualize and configure the spatial struc-
ture of physical entities and places and the status and attributes of computing
devices and services, e.g., the location in which context-aware services are avail-
able. By using the framework, end-users can monitor and customize pervasive
computing environments by viewing and editing documents.

1 Introduction

Pervasive computing tends to consist of many computing devices like grid computing.
However, the former often lacks management systems, unlike the latter. In fact, the fo-
cus of current research on pervasive computing is on the design and implementation
of application-specific context-aware services. As a result, the task of management in
pervasive computing has attracted scant attention so far. This is a serious obstacle in
the growth of pervasive computing. The purpose of pervasive computing is to bridge
the gap between computing systems and the real world. In fact, one of the most typical
and popular applications of pervasive computing is in context-aware services. To sup-
port such services, pervasive computing systems must be able to know the context and
process this in the real world, e.g., people, location, and time. Such information tends
to depend on the offices/houses, businesses and lifestyles of users. Therefore, they must
customize many pervasive computing devices to their individual requirements and ap-
plications. Pervasive computing systems often lack professional administrators unlike
grid computing systems.

This paper presents a user-friendly management framework to solve these problems.
It was inspired by our experiences with practical applications of pervasive computing
in the real world, e.g., home appliance controls and location/user-aware user-assistance

� e-mail: ichiro@nii.ac.jp

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 397–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

398 I. Satoh

systems. The framework provides visual interfaces for deploying, customizing, and con-
trolling computing devices and context-aware services. Since pervasive computing en-
vironments are changed dynamically, such a management framework, including visual
interfaces, for these environments, must be able to autonomously adapt itself to the
changes. For example, when devices and services are added to a smart space, a visual
interface for managing the devices or services should be added to the interface for the
space. The framework is constructed as a combination of a location model, called M-
Spaces [11], and an active document framework, called MobiDoc [12,13], developed by
the author. The former is a symbolic-location model to maintain the locations of com-
puting devices and software for defining context-aware services as well as the locations
of physical spaces and entities in the real world. The latter is constructed as a Java-based
compound document framework. It enables one document to be composed of various
visible parts, such as text, image, and video created by different applications, like other
compound document frameworks, e.g., COM/OLE [3], OpenDoc [1], CommonPoint
[10], and Bonobo [7]. The framework presented in this paper provides visual interfaces
for a location model as a management tool for end-users to deploy, customize, and
monitor context-aware services. Since the framework itself is designed independently
of the location model as much as possible, it can be used for other location models for
pervasive computing.

2 Background

The framework presented in this paper has two bases, i.e., symbolic-location model
and compound document framework. The former is useful for providing context-aware
services in smart spaces, because such a model is useful for context-aware services as
discussed in the previous section. The latter enables end-users to build a visual man-
agement interface from components for compound documents and customize context-
aware services through GUI-manipulations. This paper addresses location-aware com-
munication between humans-machines or between machines-machines indoors, e.g., in
buildings and houses, rather than in outdoor settings.

2.1 Symbolic Location Model

The current implementation is constructed with a symbolic-location model, called M-
Spaces [11]. The framework can be used with other existing symbolic location models.
It enables us to monitor contextual information in the models, but we cannot manage
context-aware services, because the models themselves do not support services and
computing devices. The M-spaces model can spatially bind the positions of entities
and spaces with the locations of their virtual counterparts by using location sensing
systems, and when they move in the physical world, it can automatically deploy their
counterparts at proper locations within it. Physical spaces and entities are often orga-
nized in a containment relationship, where each space is often composed of more than
one sub-space. For example, each floor is contained within at most one building, each
room is contained within at most one floor, and a person or object may be contained in
at most one room. Unlike other existing location models, it can maintain the location

A Visual Framework for Deploying and Managing Context-Aware Services 399

and deployment of software to define context-aware services and information about the
computational resources of computing devices that can execute the services, as well as
represent contextual information in the real world like other existing location models.

2.2 Compound Document-Based Management Interface

The framework presented in this paper uses a compound document component frame-
work, called MobiDoc [12,13], as a visual user interface to monitor changes in the real
world and deploy and customize context-aware services. It enables an enriched docu-
ment to be dynamically and nestedly composed of software components corresponding
to various types of content, e.g., text, images and windows. Unlike other existing com-
pound document frameworks, it permits the content of all components and program
codes to access the content that is inseparable within the components so that the com-
ponents can be viewed or modified without the need for any applications. It provides an
editing environment to enable the visual components to be manipulated. It also provides
in-place editing services similar to those provided by OpenDoc and OLE. It offers sev-
eral value-added mechanisms to allow the visual estate of a container to efficiently be
shared among embedded components and to coordinate their use of shared resources,
such as keyboards, mice, and windows.

2.3 Basic Approach

The framework presented in this paper provides more than one visual component for a
virtual counterpart object corresponding to a physical entity, space, computing device,
and service to bridge the gap between the location model and the compound document
framework. Visual components are organized according to the structure of their target
virtual counterpart objects and they enable the spatial relationships between the ob-
jects’s targets to be visualized, e.g., physical entities, objects, and computing devices in
the model (Fig. 1).

The framework supports bidirectional communications between runtime systems for
virtual components and the model and communications between each visual component
and virtual counterpart objects that the component represents. The framework reflects
the structure of virtual counterpart objects in the structure of visual components and
it permits the runtime systems to request the model to change the structure of virtual
counterpart objects. We can customize the locations that the services should be available
at and the users that the services should be provided for, by deploying visual compo-
nents for context-aware services at other visual components corresponding to entities
and places through GUI manipulations. Furthermore, since each virtual component is
a programmable entity, it can directly communicate with its target counterpart object
to visualize and customize the status and attributes of the object’s target, e.g., physi-
cal entity, and place, computing device, and service via the object, through its built-in
protocols or the object’s favorite protocols.

Since compound document technology supports the dynamic composition of compo-
nents, compound document-based management interfaces for pervasive computing en-
vironments can adapt themselves to changes in the physical world. For example, when
computing devices and services are added, their visual components are dynamically

400 I. Satoh

Room 1

Room 2 Room 3

Computer

Floor

User

Visual component (floor)

Visual component (room 1)

 Visual component
(room 2)

Visual component
(user)

Virtual
counterpart

object (floor)

Virtual
counterpart

object (room 1)

Virtual
counterpart

object (room 2)

Virtual
counterpart

object (room 3)

Virtual
counterpart

object (computer)

Virtual
counterpart

object (user)

Service-
provider
software

Visual component
(service)

 Visual component
(room 3)

Sensing

Updating
events

Monitoring/
customization request

Visualization

Service

Location model layer

Visual component layer

Fig. 1. Rooms on floor in physical world and virtual counterpart objects in location model

downloaded from specified servers or devices and then automatically displayed within
the scope of the components corresponding to the spaces that contain them.

2.4 Remarks

We should explain the reason why our framework supports two layers. This is because
the upper layer, i.e., visual interfaces, should be general so that is can be used for other
models and other computing, including grid computing. In fact, it is designed inde-
pendently of the lower layer, i.e., the M-Spaces model and can support non tree-based
models. We should also note that the framework itself can be easily used for other loca-
tions models to monitor them but it does not support the deployment and customization
of context-aware services, because they cannot maintain any services and computing
devices unlike the M-Spaces model.

3 M-Space: Location Model for Smart Spaces

Existing location models can be classified into two: physical world and symbolic world.
The former represents the position of people and objects as geometric information,
which can be measured by GPS and ultra-sonic location sensing systems. The former
is not suitable in indoor settings, because although the geometric locations of two ob-
jects may be neighboring, the objects themselves may be in different rooms. In fact,
most emerging applications in indoor settings require a more symbolic notion. We use
a symbolic location model, called M-Spaces model. This section outlines the model
before explaining the framework.1

1 Detail of the model was presented in our previous paper[11].

A Visual Framework for Deploying and Managing Context-Aware Services 401

3.1 Containment Relationship Model

This model is unique to other existing location models, because it not only consists of
data elements but also programmable entities, called agents, as virtual counterpart ob-
jects of physical entities or places. Agents have the following notions: (1) Each agent
is a virtual counterpart of a physical entity or place, including the coverage area of the
sensor, computing device, or service-provider software. (2) Each agent can be contained
within at most one agent according to containment relationships in the physical world
and cyberspace. It can move between agents as a whole with all its inner agents. Agents
When an agent contains other agents, we call the former a parent and the latter children.
The model permit agents to interact with each others. The model represents facts about
entities or places in terms of the semantic or spatial-containment relationships between
agents that are associated with these entities or places. When physical entities, spaces,
and computing devices move from location to location in the physical world, the model
detects their movements through location-sensing systems and changes the containment
relationships between agents corresponding to moving entities, their sources, and des-
tinations. The below figures of Fig. 1 shows the correlation between spaces and entities
in the physical world and their counterpart agents. Each agent is a virtual counterpart
object of its target in the world model and maintains the target’s attributes.

3.2 Agent

The model cannot only maintains the location of physical entities, such as people and
objects, but also the locations of computing devices and services in a unified manner.

– The virtual counterpart agent (VCA) is a digital representation of a physical
entity, such as a person or object, except for the computing device itself, or physical
surroundings such as a building or room,

– The proxy agent (PA) bridges the model and computing device, and maintains a
subtree of the model or executes services located in a VCA.

– The service agent (SA) is software that defines application-specific services de-
pendent on physical entities or places.

For example, a car carries two people and moves from location to location with its oc-
cupants. The car is mapped into a VCA on the model and this contains two VCAs that
correspond to the two people. The movement of the car is mapped into the VCA migra-
tion corresponding to the car, from the VCA corresponding to the source to the VCA
corresponding to the destination. Also, when a person has a computer for executing ser-
vices, his or her VCA has a PA, which represents the computer and runs SAs to define
the services.

Virtual counterpart agent. A person, physical object, or place can have more than one
VCA, and each VCA can contain other VCAs and PAs according to spatial containment
relationships in the physical world. However, unlike other existing location models, ours
does not distinguish between entities and places in the physical world; some entities can
be viewed as spaces, e.g., cars and desks, in the sense that they can contain other entities
inside them.

402 I. Satoh

VCA

PAS VCA

SASAForwarding

Computer 1 for

managing space model 1

Computer 2 for managing space model 2

SA
migration

VCA

PAL VCA

SA

Communcation

Computer 1 for

executing its program
 Computer 2 for managing space model 2

interaction

Black

box

a)

b)

SA

Fig. 2. Two types of proxy agents

Proxy agent. VCAs can have software to define the context-dependent services inside
them. However, they may not be able to be executed in the software, because none of the
computing devices that maintain these have unlimited computational resources. Instead,
there are two facilities through which services can be provided. The first is to forward
such services to computing devices embedded in or visiting a space and execute them on
the devices. The second is to directly use services provided by computing devices within
a space. We introduced proxy agents to maintain the location of computing devices and
used the devices as service providers.2 Our model also allows PAs to be classified into
two sub-types that handle computing devices according to their functions.

– The first agent, i.e., PAS (PA for Service provider), is a proxy of a computing device
that can execute services (Fig. 2(a)). If such a device is in a place, its proxy is
contained in the VCA corresponding to the space. When a PAS receives software
for defining services, it forwards this to the device to which the software refers.
After the PAS forwards the software, it enables other agents to fetch the software
as if this were in it.

– The second agent, called PAL (PAC for Legacy device), is a proxy of a computing
device that cannot execute SAs (Fig. 2(b)). If such a device is in a space, its proxy
is contained in the VCA corresponding to the space and it communicates with the
device through the device’s favorite protocols.

Service agent. We should reuse existing location-based and personalized services as
much as possible. The model introduces several typical software agents, e.g., Java Beans
and Java Applets as service-provider programs. However, such existing agents may
not be suitable for our model. Each SA is a wrapper for software modules to define
application-specific services and each specifies the attributes of its services, e.g., the
requirements that a device must satisfy to execute these services. The model maintains
the locations of services by using SAs.

2 Proxy agents are unique to other existing location models and are useful for maintaining and
using computing devices.

A Visual Framework for Deploying and Managing Context-Aware Services 403

4 Compound Document Framework for Managing Pervasive
Computing

This section presents a compound document framework for building and operating vi-
sual interfaces for context-aware services. The framework inherits many features of our
compound document framework, MobiDoc, but is extended to manage pervasive com-
puting. The framework provides each agent in the model with more than one visual
component to view and customize the status and attributes of the agent by using the
program code defined in the agent. It organizes these components in a tree structure ac-
cording to their target agents. It consists of two parts: component runtime systems and
visual components. The former can communicate with the model and organize visual
components. The latter maintains its visual content and program code to enable content
inside it be viewed or edited.

4.1 Visual Component

Each visual component is a collection of Java objects wrapped in a component and it
has its own unique identifier and image data displayed as its icon. All the objects that
each component consists of need to implement the java.io.Serializable inter-
face, because they must be marshaled using Java’s serialization mechanism. Each visual
component needs to be defined as a subclass of either the java.awt.Component
or java.awt.Container from which most of Java’s visual or GUI objects are
derived. To reuse existing software, we implemented an adapter to use typical Java
components, e.g., Java Applets and JavaBeans, that are defined as subclasses of the
java.awt.Component or java.awt.Container class within our components.
This is not compatible with all kinds of Applets and JavaBeans, because some of those
existing components manage their threads and input and output devices depreciatively.
Nevertheless, the framework provide adapters for several canonical Applets and Jav-
aBeans to be used as visual components.

4.2 Component Runtime System

Each runtime system governs all the components within it and provides them with APIs
for components in addition to Java’s classes. It assigns one or more threads to each
component and interrupts them before the component migrates, terminates, or is saved.
Each component can request its current runtime system to terminate, save, and migrate
itself and its inner components to the destination that it wants to migrate to. This frame-
work provides each component with a wrapper, called a component tree node. Each
node contains its target component, its attributes, and its containment relationship and
provides interfaces between its component and the runtime system. When a component
is created in a runtime system, it creates a component tree node for the newly created
component. When a component migrates to another location or duplicates itself, the
runtime system migrates its node with the component and makes a replica of the whole
node.

Each VCA, PA, and SA, has more than one visual component and the structure of
VCAs, PAs, and SAs in the model is reflected in the hierarchical structure of visual com-
ponents. Each hierarchy is maintained in the form of a tree structure of component tree

404 I. Satoh

MDContainer

size
position

size
position

component layout manager

program
data

MDContainer

size

position

component layout manager

Box Component

program
data

Visual component
tree node

program
data

MDComponent

Text Component

program
data

C

D

B

Image Component

MDComponent

Visual component
tree node

Visual
component
tree node

Component tree node

Window Component

Video Stream Player

Box Frame

Button

Window

Visual component
tree node

MDComponent

Text Component

program
data

Button

SA
(Video Stream

Server)

Fig. 3. Visual component hierarchy

Room 2 Room 3

Visual component (floor)

Visual component (room 1)

 Visual component

(room 2)

Visual component

(user)

VCA
(floor)

VCA
(room 1)

VCA
(room 2)

VCA
(room 3)

PAS
(computer)

VCA
(user)

 Visual component

(room 3)Sensing

Step 1.

Floor

User migration

VCA
(user)

Agent migration

Visual component

(user)

Component

migration

Reflection

Step 2. Step 3.

Fig. 4. The movement of agents and components when changes in the real world

Fig. 5. Relocation of visual components

nodes of components (Fig. 3). Each node is defined as a subclass of MDContainer
or MDComponent, where the first supports components, which can contain more than
one component inside them while the second supports components, which cannot con-
tain any components. For example, when a component has two other components in-
side it, the nodes that contain these two inner components are attached to the node that
wraps the container component. Component migration is only performed as a trans-
formation of the subtree structure of the hierarchy. The framework does not support
direct-interactions between visual components. Instead, it permit each VCA, PA, or
SA, to have more than one visual component.

A Visual Framework for Deploying and Managing Context-Aware Services 405

VCA (floor)

VCA (room 1)

VCA
(floor)

VCA
(room 1)

VCA
(room 2)

VCA
(room 3)

PAS
(computer)

Step 1.

Service platte repository

Component migration

Step 2.

Step 4.

Sevice-
provider
software

Service platte component

SA (service)

Service platte

window

Drag-and-drop

manipulation

VCA
(user)

SA
(service)

Agent migration

Step 3.

Components

(services)

SA (service-provider software)

is dynamically deployed

at the computer that PAS refers.

Fig. 6. Dynamic service-deployment according to migration of visual component

5 Binding Between Visual Components and Virtual Counterparts

The framework permits each agent to have more than one visual component. When it
detects changes in the attributes of an agent, it sends events to the visual components
that refer the agent.

5.1 Updating the Structure and Attributes of Visual Components

Component runtime systems support WebDAV servers. When the framework detects
changes in the structure of agents in the model (Fig. 4), it transforms the structure
of visual components that refer the agents by sending WebDAV-based commands to
the runtime systems (Fig. 5). When new physical entities and people arrive at spaces,
visual components that refer the counterpart objects for the visiting entities or people
may not be available in these runtime systems. When entities or people leave from
spaces, visual components for the missing entities or people may be unnecessary. To
solve these problems, the framework provides a mechanism for fetching/dispatching
components from/to specified servers, called repository servers. When a component is
fetched from or dispatched to servers, the runtime system marshals the node of the
component, including its state and codes, and the nodes of its descendants, into a bit-
stream by using Java’s object serialization mechanism and then transmits the bit-stream
to/from the servers. Therefore, the attributes and structure of visual components become
persistent, even while they are stored in these servers.

5.2 Updating the Structure and Attributes of Agents

Each component can display its content within the rectangular estate maintained by
its container component. The node of the component, which is defined as a subclass
of the MDContainer or MDComponent class, specifies attributes, e.g., its minimum
size and preferable size, and the maximum size of the visible estate of its component

406 I. Satoh

Serial

line Powerline

X10 powerline

contoller

X10 powerline

contoller

X10

powerline

control

module

powerline

powerline

Slider switch

visual component

for electric fan

Legacy Appliance

(Electric Fan)

Legacy Appliance

(Electric light)

Push switch

visual component

for Electric light

X10

protocol X10

control server

 PAL for

electric light

 PAL for

electric fan

M-Spaces model

Compound

document-

based interface

Fig. 7. X10-based power-outlet controlling system

in the estate is controlled by the node of its container component. These classes can
define their new layout manager as subclasses of the java.awt.LayoutManager
class. When a component is dynamically added to a container, the layout manager of
the container’s MDContainer manage the position and size of the new component. For
example, if a container has an instance of Java’s java.awt.FlowLayout as its
layout manager, components that visit it automatically stand in rows in its estate.

This framework provides an editing environment for manipulating the components
for network processing, as well as for visual components. It offers several value-added
mechanisms for effectively sharing the visual estate of a container among embedded
components and for coordinating their use of shared resources, such as keyboards, mice,
and windows. Each component tree node can dispatch certain events to its components
to notify them when certain actions occur within their surroundings. MDContainer
and MDComponent classes support built-in GUIs for manipulating components. For
example, when we want to place a component on another component, including a docu-
ment, we move the former to the latter through GUI manipulations, e.g., drag-and-drop
or cut-and-paste.

When users change the structure or attributes of visual components, the framework
sends events to the model to update the structure or attributes of corresponding agents
(Fig. 6). When the underlying sensing system detects the arrival of people and physical
objects, the model fetch and load agents corresponding to these people and objects from
such storage and then issue specified events to runtime systems. To duplicate agents
or components, the system marshals them into a bit-stream and then duplicates the
marshaled agent or component, because Java has no deep-copy mechanisms that can
make replicas of all objects embedded in and referred to from these components.3

3 Since the framework treats a component and its clones as independent, it does not support any
consistency control mechanisms between them.

A Visual Framework for Deploying and Managing Context-Aware Services 407

Visual

component

 for room 1

Visual

component

 for room 2

Visual

component

 for room 3

Visual

component

 for house

Visual

component

 for electric litght

Visual

component

 for electric litght

Fig. 8. Screenshot of remote control interface

6 Early Experience

We developed various components for managing VCAs, PASs, PALs, and SAs as well
as basic visual components, e.g., text viewer/editor component , JPEG or GIF viewer
components, and stream-video player components.4 Most java Swing and AWT GUI
Widgets can be used as our components in the framework without modifications, be-
cause they have been derived from the java.awt.Component class. The perfor-
mance of visual components is reasonable as management interfaces.

We describe a remote controller for power-outlets of lights through a commercial
protocol called X10 with this framework. The lights are controlled by switching their
power sources on or off according to the X10-protocol. We provide all lights with their
PALs to switch them on or off. Each PAL communicates with an X10-base server,
which controls an X10-module connected to the power-outlet to switch the outlet on
or off, and it has its own visual component to display the GUI of its target (Fig. 7).
The current implementation of the component sends commands to its PAL through an
HTTP-based protocol. When a new PAL is added to the model, it sends a specified event
to the component runtime system, which downloads a visual component for the PAL.

4 Visual components corresponding to visual components, e.g., documents, image viewers, and
text editors, were presented in our previous papers [12,13].

408 I. Satoh

We developed an improved version of the remote controller for electronic lights in
several rooms of a house and each room had more than one light. The VCA correspond-
ing to the house contained the VCA corresponding to the rooms in the containment rela-
tionship between these physical spaces and entities, We constructed an interface for the
controller with the framework (Fig. 8). The visual component for the VCA correspond-
ing to the house had several visual components displayed for the VCAs corresponding
to the rooms in its area. The visual component for the house drew a map of arrangement
of the rooms in the house. It contained VCAs corresponding to the rooms in spaces cor-
responding to the rooms on the map. A VCA corresponding to a room could contain
PALs and PASs, e.g., PALs for controlling X10 modules connected to power outlets in
the room through the X10 protocol. The interface was used to control home appliances,
including lights.

6.1 Management System for Context-Aware Services

The second application is a management system for context-aware assistant services.
The system was constructed with the framework and actually used at an exhibition in
a public museum. This was in the Museum of Nature and Human Activities at Hyogo,
Japan, which mainly has information and objects that concerned the natural environ-
ment. The exhibition space had RFID-tag readers installed and visitors were provided
with active RFID-tags to track their locations. When they came sufficiently close to
some objects, e.g., zoological specimens and fossils, located at several spots in the ex-
hibition, they could listen to sound content that annotated the objects. The RFID-tag
readers identified all the visitors within their coverage range, i.e., a 2-meters diameter
and selected sound content according to their knowledge and interests. Fig. 9 shows

Drag-and-drop visual component
corresponding to sound content

on areas

Visual components
corresponding to sound contents

When user enter area,
visual component for user

is deployed at visual component
for area

Sound contents are assigned at
areas

Visual container component
corresponding to area

Fig. 9. Screenshot of monitor system windows for location/user-aware audio guiding system

A Visual Framework for Deploying and Managing Context-Aware Services 409

a screenshot of the visual interface for the management system. The interface enables
users to deploy services at areas by using drag-and-drop manipulation. Each day the
exhibition has more than 200 visitors and the system continued to monitor and manage
RFID-tag readers and location-aware services for one week without any experiencing
problems.

The interface consisted of four visual components that monitored four RFID-tag
readers located at spots throughout the exhibition. When a visitor with an RFID-tag en-
tered a spot, the VCA corresponding to him or her is deployed at the VCA correspond-
ing to the spot. We could dynamically add/remove location-aware services to/from
spots. To add a service to a spot, we deployed SA to define the service at the VCA
corresponding to the spot by a drag-and-drop operation of the visual component of
the SA on the visual component of the VCA. Curators who have no knowledge about
pervasive computing systems, can easily and naturally change audio-based assistance
services at the exhibition.

7 Related Work

This paper addresses a user-friendly management system of context-aware services in
indoors settings, e.g., in buildings and houses, rather than in outdoor settings.

7.1 Location Models

Perceptual technologies have made it possible to sense contextual information in the
real world. For example, indoor location systems, such as Radio Frequency IDentifica-
tion (RFID) tag systems, measure and track the locations of physical entities attached
to RFID tags. Existing context-aware services tend to be selected and operated in an
ad-hoc manner. For example, most existing services explicitly and implicitly depend
on the underlying sensing systems. They are not available with other sensing systems
that they have not initially assumed. To solve these problems, some research projects on
context-aware services have attempted to offer general-purpose world models to cancel
the differences between sensing systems. Since location is one of the most typical and
useful kinds of contextual information, location models will be discussed [2]. Existing
location models, unfortunately, lack any user-friendly interfaces to enable end-users to
easily manage and customize them.

7.2 Management Systems for Pervasive Computing

As mentioned in the previous section, there have been a few attempt to construct man-
agement systems or tools that monitor and customize context-aware services in per-
vasive computing environments. The EasyLiving project [4] provides context-aware
spaces, with a particular focus on homes and offices. It uses mounted sensors such as
stereo cameras on a room’s walls and tracks the locations and identities of people in the
room. The system can dynamically aggregate networked-enabled input/output devices,
such as keyboards and mice, even when they belong to different computers in the space.
It provides monitoring tools for visualizing the positions of users in rooms. However,

410 I. Satoh

the project, including its monitoring tools, seemed only to be designed for its target
rooms in an ad-hoc manner. Cambridge University’s Sentient Computing project [5]
provides a platform for location-aware applications using an ultrasonic-based locating
system in a building. It can track the movement of tagged entities, such as individuals
and objects, so that the graphical user interfaces of the users’ applications follow them
while they move around. It provides a visual editor to enable the ranges of location-
aware services to be configured, but cannot deploy services at locations.

There have been several mechanisms for automatically generate graphical user inter-
faces for pervasive computing services and devices [6,9,8]. Most existing approaches
can provide GUIs for individual devices and can support the dynamic generation of
GUIs for devices, which may be added. However, they assume the use of specified pro-
tocols to communicate with their target devices. They do not support the deployment
and configuration of context-aware services.

8 Conclusion

We presented a visual framework for monitoring and managing context-aware services
in smart spaces. It supports a symbolic location model to represent the containment
relationships between physical entities, spaces, computing devices, and software for
defining services as virtual counterpart objects that correspond to them. It enables phys-
ical entities, places, computing devices, and services in smart spaces to have visual
components to annotate and control them and to dynamically and seamlessly assem-
ble multiple visual components into a visual interface for managing the spaces. It can
monitor the spatial structure of physical entities and places and customize the status
and attributes of computing devices, and services, e.g., the location in which context-
aware services are available. It provides document-based interfaces to monitor and cus-
tomize pervasive computing environments as viewing and editing documents by using
a GUI to manipulate the compound document technology. For example, end-users can
add and customize location-aware services at specified locations by deploying the vi-
sual component corresponding to the services at the visual component corresponding
to the location. The framework presented in this paper can be used for the management
of grid computing. Our visual components themselves are independent of the model.
Since they are also programmable entities, they can communicate with computers in
grid computing environments and displays various information of the computers.

References

1. Apple Computer Inc., OpenDoc: White Paper, 1995.
2. M. Beigl, T. Zimmer, C. Decker, A Location Model for Communicating and Processing of

Context, Personal and Ubiquitous Computing, vol. 6 Issue 5-6, pp. 341-357, Springer, 2002.
3. K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.
4. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiving: Technologies for Intel-

ligent Environments, Proceedings of International Symposium on Handheld and Ubiquitous
Computing, pp. 12-27, 2000.

A Visual Framework for Deploying and Managing Context-Aware Services 411

5. A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster, The Anatomy of a Context-
Aware Application, Proceedings of Conference on Mobile Computing and Networking (MO-
BICOM’99), pp. 59-68, ACM Press, 1999.

6. K. Gajos and D. S. Weld, SUPPLE: automatically generating user interfaces, Proceedings
of the 9th International Conference on Intelligent User Interface (IUI’04) pp.93-100, ACM
Press, 2004.

7. The GNOME Project, Bonobo, http://developer.gnome.org/ arch/component/ bonobo.html,
2002.

8. T. D. Hodes, R. H. Katz, E. Servan-Schreiber, L. Rowe, Composable ad-hoc mobile services
for universal interaction, Proceedings of International Conference on Mobile Computing and
Networking (MobiCom’97), pp.1-12, 1997.

9. J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, and M. Pignol,
Generating remote control interfaces for complex appliances, Proceedings of Symposium on
User Interface Software and Technology (UIST’02), pp.161-170, ACM Press, 2002.

10. M. Potel and S. Cotter Inside Taligent Technology, Addison-Wesley, 1995.
11. I. Satoh, A Location Model for Pervasive Computing Environments, Proceedings of IEEE

3rd International Conference on Pervasive Computing and Communications (PerCom’05),
pp,215-224, IEEE Computer Society, March 2005.

12. I. Satoh, Network Processing of Documents, for Documents, by Documents, Proceedings of
ACM/IFIP/USENIX 6th International Middleware Conference (Middleware’2005), Lecture
Notes in Computer Science (LNCS), vol. 3790, pp.421-430, December 2005.

13. I. Satoh, A Document-centric Component Framework for Document Distributions, Proceed-
ings of 8th International Symposium on Distributed Objects and Applications (DOA’2006),
Lecture Notes in Computer Science (LNCS), vol.4276, pp.1555-1575, Springer, October
2006.

	Introduction
	Background
	Symbolic Location Model
	Compound Document-Based Management Interface
	Basic Approach
	Remarks

	M-Space: Location Model for Smart Spaces
	Containment Relationship Model
	Agent

	Compound Document Framework for Managing Pervasive Computing
	Visual Component
	Component Runtime System

	Binding Between Visual Components and Virtual Counterparts
	Updating the Structure and Attributes of Visual Components
	Updating the Structure and Attributes of Agents

	Early Experience
	Management System for Context-Aware Services

	Related Work
	Location Models
	Management Systems for Pervasive Computing

	Conclusion

