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Abstract. Imbalanced workload-distribution can significantly degrade performance 
of grid computing environments. In the past, the theory of divisible load has been 
widely investigated in static heterogeneous systems. However, it has not been 
widely applied to grid environments, which are characterized by heterogeneous 
resources and dynamic environments. In this paper, we propose a performance-
based approach to workload distribution for master-slave types of applications on 
grids. Furthermore, applications with irregular workloads are addressed. We 
implemented three kinds of applications and conducted experimentations on our grid 
test-beds. Experimental results show that this approach performs more efficiently 
than conventional schemes. Consequently, we claim that dynamic workload 
distribution can benefit applications on grid environments. 

1   Introduction 

Grid platforms, which consist of various computational and storage resources, have 
become promising alternatives to traditional multiprocessors and computing clusters 
[3, 4, 7-9, 14, 25-28, 40]. The goal of grid computing is to share resources through the 
internet. Therefore, users can access more computing resources through grid 
technologies. On the other hand, inappropriate management of grid environments 
might result in using grid resources in an inefficient way. Moreover, the characteristic 
of dynamic changing makes it different from conventional parallel and distributed 
computing systems, such as multiprocessors and computing clusters. Consequently, it 
is challenging to use the grid efficiently. 
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In the past, the master-slave paradigm is a common model for task dispatching in 
parallel and distributed computing environments [16]. In this model, the master node 
holds a pool of tasks to be dispatched to other slave nodes. A well-known application of 
this model is Divisible Load Theory (DLT) [1, 17-19, 32, 36], which deals with the case 
where the total workload can be partitioned into any number of independent subjobs. In 
[23], a data distribution method was proposed for host-client type of applications. Their 
method was an analytic technique, and only verified on homogeneous and 
heterogeneous cluster computing platforms. In [24], an exact method for divisible load 
was proposed, which was not from a dynamic and pragmatic viewpoint as ours. 

This paper aims to address the problem of dynamic distribution of workload for 
master-slave applications on grids. Since grid environments are dynamically changing 
and heterogeneous, the problem is more challenging than the traditional DLT problem. 
We propose a performance-based approach, which is implemented in three types of 
applications, Matrix Multiplication, Association Rule Mining and Mandelbrot Set 
Computation, and is executed a grid test-bed. Experimental results show that effective 
workload partitioning can significantly reduce the total completion time. 

Our major contributions can be summarized as follows. First, this paper proposes a 
new performance function to estimate the performance of grid nodes. Second, we apply 
this approach to programs with irregular workload distribution. Consequently, 
experimental results show the obvious effectiveness of our approach. Our previous work 
[37-39] presents different heuristics to the parallel loop self-scheduling problem. This 
paper generalizes their main idea and proposes to solve the dynamic workload 
distribution problem. This approach is applied to both the parallel loop self-scheduling 
application and the association rule mining application. There have been a lot of 
researches of parallel and distributed data mining [12, 13, 29, 47]. However, this paper 
focuses on workload distribution, instead of proposing a new data mining algorithm. 

The remainder of this paper is organized as follows. In Section 2, background on 
parallel loop scheduling and association rule mining is reviewed. In Section 3, we 
describe the proposed approach to solve the dynamic workload distribution problem. 
Next, the configuration of our grid testbed is specified and experimental results on 
three types of applications are also presented in Section 4. Finally, the concluding 
remarks are given in the last section. 

2   Background Review 

In this section, parallel loop scheduling and association rule mining are briefly reviewed. 

2.1   Dynamic Loop Scheduling Schemes 

Dynamic loop scheduling schemes make a scheduling decision at runtime. Its 
disadvantage is more overhead at runtime, while the advantage is load balance. The 
schemes we focus in this paper are self-scheduling, which a large class of dynamic 
loop scheduling schemes. Several self-scheduling schemes have been reviewed in [15, 
21, 22, 30, 33, 41, 42, 46], and they are restated here as follows.  

• Pure Self-scheduling (PSS). This is a straightforward dynamic loop scheduling 
algorithm [32]. Whenever a processor becomes idle, a loop iteration is assigned to 
it. This algorithm achieves good load balance but also induces excessive overhead. 
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• Chunk Self-scheduling (CSS). Instead of assigning one iteration to an idle 
processor at one time, CSS assigns k iterations each time, where k, called the chunk 
size, is a constant.  

• Guided Self-scheduling (GSS). This scheme can dynamically change the number 
of iterations assigned to each processor [35]. More specifically, the next chunk size 
is determined by dividing the number of remaining iterations of a parallel loop by 
the number of available processors. 

• Factoring Self-scheduling (FSS). The Factoring algorithm addresses this problem 
[31]. The assignment of loop iterations to working processors proceeds in phases. 
During each phase, only a subset of the remaining loop iterations (usually half) is 
divided equally among the available processors.  

• Trapezoid Self-scheduling (TSS). This approach tries to reduce the need for 
synchronization while still maintaining a reasonable load balance [43]. This 
algorithm allocates large chunks of iterations to the first few processors and 
successively smaller chunks to the last few processors.  

In [44], the authors enhanced well-known loop self-scheduling schemes to fit an 
extremely heterogeneous PC cluster environment. A two-phased approach was proposed 
to partition loop iterations and it achieved good performance in heterogeneous test-beds. 
In [20, 45, 46], NGSS was further enhanced by dynamically adjusting the parameter α 
according to system heterogeneity. A performance benchmark was used to determine 
whether target systems are relatively homogeneous or relatively heterogeneous. In 
addition, the types of loop iterations were classified into four classes, and were analyzed 
respectively. The scheme enhanced from GSS is called ANGSS in this paper. 

2.2   Association Rule Mining 

The objective of association rule mining is to discover correlation relationships 
among a set of items [29]. The well-known application of association rule mining is 
market basket analysis. This technique can extract customer buying behaviors by 
discover what items they buy together. The managers of shops can place the 
associated items at the neighboring shelf to raise their probability of purchasing. For 
example, milk and bread are frequently bought together. 

The formulation of association rule mining problem is described as follows [12-13]. Let 
I={I1, I2, I3, …, Im} be a set of items, and D a database of transactions. Each transaction in 
D is a subset of I. An association rule is a rule of the form A⇒B, where A ⊂ I, B ⊂ I, and 
A∩B={}. The well-known algorithm for finding association rules in large transaction 
databases is Apriori. It utilizes the Apriori property to reduce the search space. 

As the rising of parallel processing, parallel data mining have been well investigated 
in the past decade. Especially, much attention has been directed to parallel association 
rule mining. A good survey can be found in [47]. 

3   Approach: Performance-Based Workload Distribution (PWD) 

In this section, the system and programming model is introduces first. Then, the 
parameters of performance ratio and static-workload ratio are described. Finally, we 
present the skeleton algorithm for the performance-based workload distribution. 
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3.1   The System Model 

The system in this work is modeled by a master-slave paradigm, which is represented 
by a star graph, G = (N, E). In this graph, N means the set of all nodes on the grid, and 
E is the set of all edges between the master and the slaves. In this model, there are two 
kinds of attributes associated with nodes, constants and variables. The values of the 
constant attributes do not vary during the lifetime of the node. For example, CPU 
clock speed, memory size, etc. are all constant attributes. On the other hand, the 
values of the variable attributes may fluctuate during the lifetime of the node. For 
example, CPU loading, available memory size, etc. are all constant attributes. In the 
following sections, the two kinds of attributes are utilized to model the heterogeneity 
of the dynamic grid. 

3.2   Performance Ratio 

The concept of performance ratio was previously defined in [37-39] in different forms 
and parameters, according to the requirements of applications. In this work, a 
different formulation is proposed to model the heterogeneity of the dynamic grid 
nodes. The purpose of calculating performance ratio is to estimate the current 
capability of processing for each node. With this metric, we can distribute appropriate 
workloads to each node, and load balancing can be achieved. The more accurate the 
estimation is, the better the load balance is. 

To estimate the performance of each slave node, we define a performance function 
(PF) for a slave node j as 

PFj (V1, V2, …, Vm) (1) 

where Vi, 1< i <m, is a variable of the performance function. In more detail, the 
variables could include CPU speed, networking bandwidth, memory size, etc. We 
propose to utilize a Grid Resource Monitoring Tool [11] to acquire the values of 
variable attributes for all slaves, and to acquire the values of constant attributes by 
MDS. In this paper, the PF for node j is defined as  
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where 

• N is the set of all grid nodes. 
• CSi is the CPU clock speed of node i, and it is a constant attribute. The value of 

this parameter is acquired by the MDS service. 
• CLi is the CPU loading of node i, and it is a variable attribute. The value of this 

parameter is acquired by the Ganglia tool, as shown in Figure 1. 
• Bi is the bandwidth (Mbps) between node i and the master node. 
• w1 is the weight of the first term. 
• w2 is the weight of the second term. 
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Fig. 1. The snapshot of the monitoring tool on the TIGER Grid 

3.3   Determination of Static-Workload Ratio (SWR) 

Another important factor to be estimated is the proportion of the workload which can 
be statically scheduled. For example, Mandelbrot Set Computation is a problem 
involving irregular workloads. In each iteration, the workload is different and varies 
significantly, as shown in Figure 2. Obviously, a distribution scheme which does not 
consider the effect of irregular workload could not estimate PR accurately. 

We propose to use a parameter, SWR (Static-Workload Ratio), to alleviate the 
effect of irregular workload. In order to take advantage of static scheduling, SWR 
percentage of the total workload is dispatched according to Performance Ratio. If the 
workload of the target application is regular, SWR can be set to be 100. However, if 
the application has irregular workload, such as Mandelbrot Set Computation, it is 
reasonable to reserve some amount of workload for load balancing. We propose to 
randomly take five sampling iterations, and compute their execution time. Then, the 
SWR of the target application i is determined by the following formula. 

i

i
i MAX

min
SWR =  (3) 

where 

• mini is the minimum execution time of all sampled iterations for application i. 
• MAXi is the maximum execution time of all sampled iterations for application i. 

 
For example, for a regular application with uniform workload distribution, the five 

sampled iterations are the same. Therefore, the SWR is 100%, and the whole workload 
can be dispatched according to Performance Ratio, with good load balance. However, 
for another application, the five sampling execution time might be 7, 7.5, 8, 8.5 and 
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Fig. 2. The Mandelbrot Set on [-1.8, 0.5] to [-1.2, 1.2] an 800×800 pixel window 

10 seconds, respectively. Then the SWR is 7/10, i.e. a percentage of 70. Therefore, 70 
percentages of the workload would be scheduled statically according to PR, while 30 
percentages of the workload would be scheduled dynamically by GSS. 

3.4   Algorithm 

Our algorithm is composed of four stages. In stage one, the related information are 
acquired. Then, stage two calculates the Static-workload Ratio and Performance 
Ratio. Next, SWR percentage of the total workload is statically scheduled according to 
the performance ratio among all slave nodes in stage three. Finally, the remainder of 
the workload is dynamically scheduled by Guided Self-Scheduling for load balancing. 
The algorithm of our approach is described as follows. 

 

Module MASTER 

Stage 1: Gathering the following information 
− CPU_Loading 
− CPU_Clock_Speed 
− the sample execution time 

Stage 2: Calculate two scheduling parameters 
Stage 3: Static Scheduling for SWR% of workload 
Stage 4: dynamic Scheduling for the remaining 
END MASTER 
 
Module SLAVE 

While (a chunk of workload arrives) { 
   Receive the chunk of workload 
   Compute on this chunk 
   Send the result to the Master 
} 
END SLAVE 
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4   Experimental Results 

To verify our approach, a grid test-bed is built based on the TIGER grid [11], and 
three types of application programs are implemented with MPI (Message Passing 
Interface) to be executed on this test-bed. This grid test-bed consists of one master 
and four domains, totally 33 nodes. The master node is at Tunghai University (THU), 
and the 32 slave nodes are located at Tunghai University (THU), Providence 
University (PU), Li-Zen High School (LZ), and Hsiuping Institute of Technology 
School (HIT). We have built this grid test-bed by the following middleware: 

• Globus Toolkit 4.0.1 [2, 10] 
• Mpich library 1.2.6 [5, 6] 

In this study, we have implemented applications in C language, with message 
passing interface (MPI) directives for parallelizing code segments to be processed by 
multiple CPUs. For readability of experimental results, the brief description of all 
implemented programs is listed in Table 1. 

Table 1. Description of all implemented programs 

Scheduling 
Scheme 

Description Reference 

static Weighted static scheduling  
gss Dynamic scheduling (GSS) [35] 
fss Dynamic scheduling (FSS) [31] 
tss Dynamic scheduling (TSS) [43] 

ngss Fixed α scheduling + GSS [44] 
angss Adaptive α scheduling + GSS [46] 
pwd Performance-based Workload Distribution  
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Fig. 3. Execution time for Matrix multiplication with different input sizes 
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4.1   Application 1: Matrix Multiplication 

Matrix Multiplication is a fundamental operation in many numerical linear algebra 
applications. In this application, the workload is loop iterations. First, we want to 
compare the proposed PWD scheme with previous schemes with respect to the 
execution time. Figure 3 illustrates the execution time for input matrix size 512×512, 
1024×1024, 1536×1536 and 2048×2048 respectively. The results are shown as follows. 

• Among these schemes, PWD performs better than other schemes. The reason is 
that PWD accurately estimates the PR, and takes the advantage of static 
scheduling, thus reducing the runtime overhead. 

• The weighted static scheme obviously performs worse than other dynamic 
schemes. It is reasonable to say that the static scheme is not suitable for a dynamic 
environment, with respect to performance. 

• It is interesting that traditional self-scheduling schemes (FSS and TSS) perform 
slightly better than NGSS and ANGSS. However, this result is inconsistent with 
that of previous research. The reason might be that the parameter α is set too high, 
75. If the parameter α is set appropriately, it is possible for NGSS and ANGSS to 
perform better, as previous work has shown. 

4.2   Application 2: Association Rule Mining 

In this application, the workload is the dataset to be mined on. We implemented the 
Apriori algorithm, and applied our approach to conduct data distribution. Specifically, 
the parallelized version of Apriori we adopt is Count Distribution (CD) [12, 13]. In this 
experiment, “cd_eq” means to distribute the workload to slaves equally, and “cd_cpu” 
means to distribute the workload to slaves according to the ratio of CPU speed values of 
slaves. And, cd_pwd is the proposed scheme. Our datasets are generated by the tool as 
in [13]. The parameters of the synthetic datasets are described in Table 2. 

Table 2. Description of our dataset 

Dataset Number of 
Transactions 

Average 
Transaction Length  

Number of Items 

D10KT5I10 10,000 5 10 
D50KT5I10 50,000 5 10 

D100KT5I10 100,000 5 10 
D200KT5I10 200,000 5 10 

First, execution time on the grid for the three schemes is investigated. As shown in 
Figure 4, cd_pwd outperforms cd_eq and cd_cpu. From this experiment, we can see 
the significant influence of partition schemes on the total completion time. In grid 
environments, network bandwidth is an important criterion to evaluate the 
performance of a slave node. Cd_eq and cd_cpu are static data partition schemes. 
Therefore, they can not adapt to the practical network status. When communication 
cost becomes a major factor, the proposed scheme would be well adaptive to the 
dynamic network environment. 
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Moreover, the reason why cd_cpu got the worst performance can be contributed to 
the inappropriate estimation of node performance. In grid computing environments, 
CPU speed is not the only factor to determine the node performance. A node with the 
fastest CPU is not necessary the node with optimal performance. 
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Fig. 4. Performance of data partition schemes for different datasets 
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Fig. 5. Execution time for Mandelbrot Set Computation with different input sizes 

4.3   Application 3: Mandelbrot Set Computation 

The Mandelbrot set computation is a problem involving the same computation on 
different data points which have different convergence rates [34]. In the following 
experiment, we want to compare the execution time of previous schemes with the 
proposed approach. Figure 5 illustrates the results for input image size 64×64, 
128×128, 192×192 and 256×256 respectively. The execution time of weighted static 
scheduling is omitted due to its bad performance. According to the experience in 
Matrix Multiplication example, the parameter α is set to 30. The results are discussed 
as follows. 
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• Among these schemes, the PWD still performs better than other schemes. The 
reason is also that PWD accurately estimates the PR, and takes the advantage of 
static scheduling, thus reducing the runtime overhead. 

• Traditional self-scheduling schemes (GSS, FSS and TSS) perform worse than 
NGSS and ANGSS. The reason is that irregular workload is difficult to schedule. If 
the parameter α is set appropriately, it is certain for NGSS and ANGSS to perform 
better, as previous work has shown. 

5   Conclusions 

In this paper, we have investigated the workload distribution problem on dynamic and 
heterogeneous grid environments. First, a performance-based approach was proposed 
to schedule workloads on grid environments. In this approach, the system 
heterogeneity is estimated by performance functions, and the variation of workload is 
estimated by Static-Workload Ratio. On our grid platform, the proposed approach can 
obtain performance improvement on previous schemes. In our future work, we will 
implement more types of application programs to verify our approach. 
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