
C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 385 – 396, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance-Based Workload Distribution on Grid
Environments*

Wen-Chung Shih1, Chao-Tung Yang2,**, Tsui-Ting Chen2, and Shian-Shyong Tseng1,3

1 Department of Computer Science
National Chiao Tung University, Hsinchu, 30010, Taiwan (R.O.C.)

{gis90805, sstseng}@cis.nctu.edu.tw
2 High-Performance Computing Laboratory

Department of Computer Science and Information Engineering
Tunghai University, Taichung, 40704, Taiwan (R.O.C.)

{ctyang, g95280003}@thu.edu.tw
3 Department of Information Science and Applications
Asia University, Taichung, 41354, Taiwan (R.O.C.)

sstseng@asia.edu.tw

Abstract. Imbalanced workload-distribution can significantly degrade performance
of grid computing environments. In the past, the theory of divisible load has been
widely investigated in static heterogeneous systems. However, it has not been
widely applied to grid environments, which are characterized by heterogeneous
resources and dynamic environments. In this paper, we propose a performance-
based approach to workload distribution for master-slave types of applications on
grids. Furthermore, applications with irregular workloads are addressed. We
implemented three kinds of applications and conducted experimentations on our grid
test-beds. Experimental results show that this approach performs more efficiently
than conventional schemes. Consequently, we claim that dynamic workload
distribution can benefit applications on grid environments.

1 Introduction

Grid platforms, which consist of various computational and storage resources, have
become promising alternatives to traditional multiprocessors and computing clusters
[3, 4, 7-9, 14, 25-28, 40]. The goal of grid computing is to share resources through the
internet. Therefore, users can access more computing resources through grid
technologies. On the other hand, inappropriate management of grid environments
might result in using grid resources in an inefficient way. Moreover, the characteristic
of dynamic changing makes it different from conventional parallel and distributed
computing systems, such as multiprocessors and computing clusters. Consequently, it
is challenging to use the grid efficiently.

∗ This work was partially supported by National Science Council of Republic of China under

the number of NSC95-2752-E-009-015-PAE.
∗∗ Corresponding author.

386 W.-C. Shih et al.

In the past, the master-slave paradigm is a common model for task dispatching in
parallel and distributed computing environments [16]. In this model, the master node
holds a pool of tasks to be dispatched to other slave nodes. A well-known application of
this model is Divisible Load Theory (DLT) [1, 17-19, 32, 36], which deals with the case
where the total workload can be partitioned into any number of independent subjobs. In
[23], a data distribution method was proposed for host-client type of applications. Their
method was an analytic technique, and only verified on homogeneous and
heterogeneous cluster computing platforms. In [24], an exact method for divisible load
was proposed, which was not from a dynamic and pragmatic viewpoint as ours.

This paper aims to address the problem of dynamic distribution of workload for
master-slave applications on grids. Since grid environments are dynamically changing
and heterogeneous, the problem is more challenging than the traditional DLT problem.
We propose a performance-based approach, which is implemented in three types of
applications, Matrix Multiplication, Association Rule Mining and Mandelbrot Set
Computation, and is executed a grid test-bed. Experimental results show that effective
workload partitioning can significantly reduce the total completion time.

Our major contributions can be summarized as follows. First, this paper proposes a
new performance function to estimate the performance of grid nodes. Second, we apply
this approach to programs with irregular workload distribution. Consequently,
experimental results show the obvious effectiveness of our approach. Our previous work
[37-39] presents different heuristics to the parallel loop self-scheduling problem. This
paper generalizes their main idea and proposes to solve the dynamic workload
distribution problem. This approach is applied to both the parallel loop self-scheduling
application and the association rule mining application. There have been a lot of
researches of parallel and distributed data mining [12, 13, 29, 47]. However, this paper
focuses on workload distribution, instead of proposing a new data mining algorithm.

The remainder of this paper is organized as follows. In Section 2, background on
parallel loop scheduling and association rule mining is reviewed. In Section 3, we
describe the proposed approach to solve the dynamic workload distribution problem.
Next, the configuration of our grid testbed is specified and experimental results on
three types of applications are also presented in Section 4. Finally, the concluding
remarks are given in the last section.

2 Background Review

In this section, parallel loop scheduling and association rule mining are briefly reviewed.

2.1 Dynamic Loop Scheduling Schemes

Dynamic loop scheduling schemes make a scheduling decision at runtime. Its
disadvantage is more overhead at runtime, while the advantage is load balance. The
schemes we focus in this paper are self-scheduling, which a large class of dynamic
loop scheduling schemes. Several self-scheduling schemes have been reviewed in [15,
21, 22, 30, 33, 41, 42, 46], and they are restated here as follows.

• Pure Self-scheduling (PSS). This is a straightforward dynamic loop scheduling
algorithm [32]. Whenever a processor becomes idle, a loop iteration is assigned to
it. This algorithm achieves good load balance but also induces excessive overhead.

 Performance-Based Workload Distribution on Grid Environments 387

• Chunk Self-scheduling (CSS). Instead of assigning one iteration to an idle
processor at one time, CSS assigns k iterations each time, where k, called the chunk
size, is a constant.

• Guided Self-scheduling (GSS). This scheme can dynamically change the number
of iterations assigned to each processor [35]. More specifically, the next chunk size
is determined by dividing the number of remaining iterations of a parallel loop by
the number of available processors.

• Factoring Self-scheduling (FSS). The Factoring algorithm addresses this problem
[31]. The assignment of loop iterations to working processors proceeds in phases.
During each phase, only a subset of the remaining loop iterations (usually half) is
divided equally among the available processors.

• Trapezoid Self-scheduling (TSS). This approach tries to reduce the need for
synchronization while still maintaining a reasonable load balance [43]. This
algorithm allocates large chunks of iterations to the first few processors and
successively smaller chunks to the last few processors.

In [44], the authors enhanced well-known loop self-scheduling schemes to fit an
extremely heterogeneous PC cluster environment. A two-phased approach was proposed
to partition loop iterations and it achieved good performance in heterogeneous test-beds.
In [20, 45, 46], NGSS was further enhanced by dynamically adjusting the parameter α
according to system heterogeneity. A performance benchmark was used to determine
whether target systems are relatively homogeneous or relatively heterogeneous. In
addition, the types of loop iterations were classified into four classes, and were analyzed
respectively. The scheme enhanced from GSS is called ANGSS in this paper.

2.2 Association Rule Mining

The objective of association rule mining is to discover correlation relationships
among a set of items [29]. The well-known application of association rule mining is
market basket analysis. This technique can extract customer buying behaviors by
discover what items they buy together. The managers of shops can place the
associated items at the neighboring shelf to raise their probability of purchasing. For
example, milk and bread are frequently bought together.

The formulation of association rule mining problem is described as follows [12-13]. Let
I={I1, I2, I3, …, Im} be a set of items, and D a database of transactions. Each transaction in
D is a subset of I. An association rule is a rule of the form A⇒B, where A ⊂ I, B ⊂ I, and
A∩B={}. The well-known algorithm for finding association rules in large transaction
databases is Apriori. It utilizes the Apriori property to reduce the search space.

As the rising of parallel processing, parallel data mining have been well investigated
in the past decade. Especially, much attention has been directed to parallel association
rule mining. A good survey can be found in [47].

3 Approach: Performance-Based Workload Distribution (PWD)

In this section, the system and programming model is introduces first. Then, the
parameters of performance ratio and static-workload ratio are described. Finally, we
present the skeleton algorithm for the performance-based workload distribution.

388 W.-C. Shih et al.

3.1 The System Model

The system in this work is modeled by a master-slave paradigm, which is represented
by a star graph, G = (N, E). In this graph, N means the set of all nodes on the grid, and
E is the set of all edges between the master and the slaves. In this model, there are two
kinds of attributes associated with nodes, constants and variables. The values of the
constant attributes do not vary during the lifetime of the node. For example, CPU
clock speed, memory size, etc. are all constant attributes. On the other hand, the
values of the variable attributes may fluctuate during the lifetime of the node. For
example, CPU loading, available memory size, etc. are all constant attributes. In the
following sections, the two kinds of attributes are utilized to model the heterogeneity
of the dynamic grid.

3.2 Performance Ratio

The concept of performance ratio was previously defined in [37-39] in different forms
and parameters, according to the requirements of applications. In this work, a
different formulation is proposed to model the heterogeneity of the dynamic grid
nodes. The purpose of calculating performance ratio is to estimate the current
capability of processing for each node. With this metric, we can distribute appropriate
workloads to each node, and load balancing can be achieved. The more accurate the
estimation is, the better the load balance is.

To estimate the performance of each slave node, we define a performance function
(PF) for a slave node j as

PFj (V1, V2, …, Vm) (1)

where Vi, 1< i <m, is a variable of the performance function. In more detail, the
variables could include CPU speed, networking bandwidth, memory size, etc. We
propose to utilize a Grid Resource Monitoring Tool [11] to acquire the values of
variable attributes for all slaves, and to acquire the values of constant attributes by
MDS. In this paper, the PF for node j is defined as

∑∑
∈∀∈∀

×+×=

Snode
i

j

node
ii

jj
j

ii

B

B
w

CLCS

CLCS
wPF 2

N

1
 (2)

where

• N is the set of all grid nodes.
• CSi is the CPU clock speed of node i, and it is a constant attribute. The value of

this parameter is acquired by the MDS service.
• CLi is the CPU loading of node i, and it is a variable attribute. The value of this

parameter is acquired by the Ganglia tool, as shown in Figure 1.
• Bi is the bandwidth (Mbps) between node i and the master node.
• w1 is the weight of the first term.
• w2 is the weight of the second term.

 Performance-Based Workload Distribution on Grid Environments 389

Fig. 1. The snapshot of the monitoring tool on the TIGER Grid

3.3 Determination of Static-Workload Ratio (SWR)

Another important factor to be estimated is the proportion of the workload which can
be statically scheduled. For example, Mandelbrot Set Computation is a problem
involving irregular workloads. In each iteration, the workload is different and varies
significantly, as shown in Figure 2. Obviously, a distribution scheme which does not
consider the effect of irregular workload could not estimate PR accurately.

We propose to use a parameter, SWR (Static-Workload Ratio), to alleviate the
effect of irregular workload. In order to take advantage of static scheduling, SWR
percentage of the total workload is dispatched according to Performance Ratio. If the
workload of the target application is regular, SWR can be set to be 100. However, if
the application has irregular workload, such as Mandelbrot Set Computation, it is
reasonable to reserve some amount of workload for load balancing. We propose to
randomly take five sampling iterations, and compute their execution time. Then, the
SWR of the target application i is determined by the following formula.

i

i
i MAX

min
SWR = (3)

where

• mini is the minimum execution time of all sampled iterations for application i.
• MAXi is the maximum execution time of all sampled iterations for application i.

For example, for a regular application with uniform workload distribution, the five

sampled iterations are the same. Therefore, the SWR is 100%, and the whole workload
can be dispatched according to Performance Ratio, with good load balance. However,
for another application, the five sampling execution time might be 7, 7.5, 8, 8.5 and

390 W.-C. Shih et al.

0

50000

100000

150000

200000

1 101 201 301 401 501 601 701

i-th iteration of X

N
o

. o
f

It
er

at
io

n
s

o
f

Y

Fig. 2. The Mandelbrot Set on [-1.8, 0.5] to [-1.2, 1.2] an 800×800 pixel window

10 seconds, respectively. Then the SWR is 7/10, i.e. a percentage of 70. Therefore, 70
percentages of the workload would be scheduled statically according to PR, while 30
percentages of the workload would be scheduled dynamically by GSS.

3.4 Algorithm

Our algorithm is composed of four stages. In stage one, the related information are
acquired. Then, stage two calculates the Static-workload Ratio and Performance
Ratio. Next, SWR percentage of the total workload is statically scheduled according to
the performance ratio among all slave nodes in stage three. Finally, the remainder of
the workload is dynamically scheduled by Guided Self-Scheduling for load balancing.
The algorithm of our approach is described as follows.

Module MASTER

Stage 1: Gathering the following information
− CPU_Loading
− CPU_Clock_Speed
− the sample execution time

Stage 2: Calculate two scheduling parameters
Stage 3: Static Scheduling for SWR% of workload
Stage 4: dynamic Scheduling for the remaining
END MASTER

Module SLAVE

While (a chunk of workload arrives) {
 Receive the chunk of workload
 Compute on this chunk
 Send the result to the Master
}
END SLAVE

 Performance-Based Workload Distribution on Grid Environments 391

4 Experimental Results

To verify our approach, a grid test-bed is built based on the TIGER grid [11], and
three types of application programs are implemented with MPI (Message Passing
Interface) to be executed on this test-bed. This grid test-bed consists of one master
and four domains, totally 33 nodes. The master node is at Tunghai University (THU),
and the 32 slave nodes are located at Tunghai University (THU), Providence
University (PU), Li-Zen High School (LZ), and Hsiuping Institute of Technology
School (HIT). We have built this grid test-bed by the following middleware:

• Globus Toolkit 4.0.1 [2, 10]
• Mpich library 1.2.6 [5, 6]

In this study, we have implemented applications in C language, with message
passing interface (MPI) directives for parallelizing code segments to be processed by
multiple CPUs. For readability of experimental results, the brief description of all
implemented programs is listed in Table 1.

Table 1. Description of all implemented programs

Scheduling
Scheme

Description Reference

static Weighted static scheduling
gss Dynamic scheduling (GSS) [35]
fss Dynamic scheduling (FSS) [31]
tss Dynamic scheduling (TSS) [43]

ngss Fixed α scheduling + GSS [44]
angss Adaptive α scheduling + GSS [46]
pwd Performance-based Workload Distribution

0

50

100

150

200

250

300

350

400

450

512 * 512 1024 * 1024 1536 * 1536 2048 * 2048

Matrix Size

T
im

e
(s

)

static gss fss tss ngss angss pwd

Fig. 3. Execution time for Matrix multiplication with different input sizes

392 W.-C. Shih et al.

4.1 Application 1: Matrix Multiplication

Matrix Multiplication is a fundamental operation in many numerical linear algebra
applications. In this application, the workload is loop iterations. First, we want to
compare the proposed PWD scheme with previous schemes with respect to the
execution time. Figure 3 illustrates the execution time for input matrix size 512×512,
1024×1024, 1536×1536 and 2048×2048 respectively. The results are shown as follows.

• Among these schemes, PWD performs better than other schemes. The reason is
that PWD accurately estimates the PR, and takes the advantage of static
scheduling, thus reducing the runtime overhead.

• The weighted static scheme obviously performs worse than other dynamic
schemes. It is reasonable to say that the static scheme is not suitable for a dynamic
environment, with respect to performance.

• It is interesting that traditional self-scheduling schemes (FSS and TSS) perform
slightly better than NGSS and ANGSS. However, this result is inconsistent with
that of previous research. The reason might be that the parameter α is set too high,
75. If the parameter α is set appropriately, it is possible for NGSS and ANGSS to
perform better, as previous work has shown.

4.2 Application 2: Association Rule Mining

In this application, the workload is the dataset to be mined on. We implemented the
Apriori algorithm, and applied our approach to conduct data distribution. Specifically,
the parallelized version of Apriori we adopt is Count Distribution (CD) [12, 13]. In this
experiment, “cd_eq” means to distribute the workload to slaves equally, and “cd_cpu”
means to distribute the workload to slaves according to the ratio of CPU speed values of
slaves. And, cd_pwd is the proposed scheme. Our datasets are generated by the tool as
in [13]. The parameters of the synthetic datasets are described in Table 2.

Table 2. Description of our dataset

Dataset Number of
Transactions

Average
Transaction Length

Number of Items

D10KT5I10 10,000 5 10
D50KT5I10 50,000 5 10

D100KT5I10 100,000 5 10
D200KT5I10 200,000 5 10

First, execution time on the grid for the three schemes is investigated. As shown in
Figure 4, cd_pwd outperforms cd_eq and cd_cpu. From this experiment, we can see
the significant influence of partition schemes on the total completion time. In grid
environments, network bandwidth is an important criterion to evaluate the
performance of a slave node. Cd_eq and cd_cpu are static data partition schemes.
Therefore, they can not adapt to the practical network status. When communication
cost becomes a major factor, the proposed scheme would be well adaptive to the
dynamic network environment.

 Performance-Based Workload Distribution on Grid Environments 393

Moreover, the reason why cd_cpu got the worst performance can be contributed to
the inappropriate estimation of node performance. In grid computing environments,
CPU speed is not the only factor to determine the node performance. A node with the
fastest CPU is not necessary the node with optimal performance.

0

100

200

300

400

500

600

700

D10KT5I10 D50KT5I10 D100KT5I10 D200KT5I10

Data Set

E
xe

cu
tio

n
Ti

m
e

(S
ec

.)

cd_eq cd_cpu cd_pwd

Fig. 4. Performance of data partition schemes for different datasets

0

10

20

30

40

50

60

64 * 64 128 * 128 192 * 192 256 * 256

Image Size

Ti
m

e
(s

)

gss fss tss ngss angss pwd

Fig. 5. Execution time for Mandelbrot Set Computation with different input sizes

4.3 Application 3: Mandelbrot Set Computation

The Mandelbrot set computation is a problem involving the same computation on
different data points which have different convergence rates [34]. In the following
experiment, we want to compare the execution time of previous schemes with the
proposed approach. Figure 5 illustrates the results for input image size 64×64,
128×128, 192×192 and 256×256 respectively. The execution time of weighted static
scheduling is omitted due to its bad performance. According to the experience in
Matrix Multiplication example, the parameter α is set to 30. The results are discussed
as follows.

394 W.-C. Shih et al.

• Among these schemes, the PWD still performs better than other schemes. The
reason is also that PWD accurately estimates the PR, and takes the advantage of
static scheduling, thus reducing the runtime overhead.

• Traditional self-scheduling schemes (GSS, FSS and TSS) perform worse than
NGSS and ANGSS. The reason is that irregular workload is difficult to schedule. If
the parameter α is set appropriately, it is certain for NGSS and ANGSS to perform
better, as previous work has shown.

5 Conclusions

In this paper, we have investigated the workload distribution problem on dynamic and
heterogeneous grid environments. First, a performance-based approach was proposed
to schedule workloads on grid environments. In this approach, the system
heterogeneity is estimated by performance functions, and the variation of workload is
estimated by Static-Workload Ratio. On our grid platform, the proposed approach can
obtain performance improvement on previous schemes. In our future work, we will
implement more types of application programs to verify our approach.

References

[1] Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html
[2] Global Grid Forum, http://www.ggf.org/
[3] Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks
[4] KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/
[5] MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
[6] MPICH-G2, http://www.hpclab.niu.edu/mpi/
[7] Network Weather Service, http://nws.cs.ucsb.edu/
[8] Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/
[9] TeraGrid, http://www.teragrid.org/

[10] The Globus Project, http://www.globus.org/
[11] TIGER Grid Report, http://gamma2.hpc.csie.thu.edu.tw/ganglia/
[12] R. Agrawal and J. C. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions

on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962-969, Dec. 1996.
[13] R. Agrawal and R. Srikant, “Fast algorithms for Mining Association Rules,” Proc. 20th

Very Large Data Bases Conf., pp. 487-499, 1994.
[14] M. A. Baker and G. C. Fox. “Metacomputing: Harnessing Informal Supercomputers.”

High Performance Cluster Computing. Prentice-Hall, May 1999. ISBN 0-13-013784-7.
[15] I. Banicescu, R. L. Carino, J. P. Pabico, and M. Balasubramaniam, “Overhead Analysis of

a Dynamic Load Balancing Library for Cluster Computing,” Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium, 2005.

[16] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, “Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15, No. 4, pp. 319-330, Apr.
2004.

[17] O. Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang, “Scheduling Divisible
Loads on Star and Tree Networks: Results and Open Problems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 3, pp. 207-218, Mar. 2005.

 Performance-Based Workload Distribution on Grid Environments 395

[18] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Press, 1996.

[19] V. Bharadwaj, D. Ghose and T.G. Robertazzi, “Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-18,
Jan. 2003.

[20] K. W. Cheng, C. T. Yang, C. L. Lai, and S. C. Chang, “A Parallel Loop Self-Scheduling
on Grid Computing Environments,” Proceedings of the 2004 IEEE International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-414, KH, China,
May 2004.

[21] A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, “A Class of Loop Self-
Scheduling for Heterogeneous Clusters,” Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 282-291, 2001.

[22] A. T. Chronopoulos, S. Penmatsa, J. Xu and S.Ali, “Distributed Loop-Self-Scheduling
Schemes for Heterogeneous Computer Systems,” Concurrency and Computation:
Practice and Experience, vol. 18, pp. 771-785, 2006.

[23] N. Comino and V. L. Narasimhan, “A Novel Data Distribution Technique for Host-Client
Type Parallel Applications,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 13, No. 2, pp. 97-110, Feb. 2002.

[24] M. Drozdowski and M. Lawenda, “On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems,” Euro-Par 2005 Parallel Processing:
11th International Euro-Par Conference, Lecture Notes in Computer Science, vol. 3648,
pp. 231-240, Springer-Verlag, August 2005.

[25] I. Foster, N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems.” Proc. 1998 SC Conference, November, 1998.

[26] I. Foster, C. Kesselman., “Globus: A Metacomputing Infrastructure Toolkit,”
International J. Supercomputer Applications, 11(2):115-128, 1997.

[27] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer Applications, 15(3), 2001.

[28] I. Foster, “The Grid: A New Infrastructure for 21st Century Science.” Physics Today,
55(2):42-47, 2002.

[29] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, 2001.

[30] J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente, “Loosely-coupled loop
scheduling in computational grids,” Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium, 2006.

[31] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method scheme for
scheduling parallel loops,” Communications of the ACM, Vol. 35, 1992, pp. 90-101.

[32] `C. Kruskal and A. Weiss, “Allocating independent subtaskson parallel processors,” IEEE
Transactions on Software Engineering, vol. 11, pp 1001–1016, 1984.

[33] H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, vol. II, pp. 140-147, 1993.

[34] B. B. Mandelbrot, Fractal Geometry of Nature, W. H. Freeman: New york, 1988.
[35] C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling

Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, vol. 36, no. 12, pp
1425-1439, 1987.

[36] T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Computer, vol. 36, no. 5,
pp. 63-68, May 2003.

396 W.-C. Shih et al.

[37] W. C. Shih, C. T. Yang, and S. S. Tseng, “A Performance-Based Parallel Loop Self-
Scheduling on Grid Environments,” Network and Parallel Computing: IFIP International
Conference, NPC 2005, Lecture Notes in Computer Science, vol. 3779, pp. 48-55,
Springer-Verlag, December 2005.

[38] W. C. Shih, C. T. Yang, and S. S. Tseng, “A Hybrid Parallel Loop Scheduling Scheme on
Grid Environments,” Grid and Cooperative Computing: 4th International Conference,
GCC 2005, Lecture Notes in Computer Science, vol. 3795, pp. 370-381, Springer-Verlag,
December 2005.

[39] W. C. Shih, C. T. Yang, and S. S. Tseng, “A Performance-based Approach to Dynamic
Workload Distribution for Master-Slave Applications on Grid Environments,” GPC 2006,
Lecture Notes in Computer Science, vol. 3947, pp. 73-82, Springer-Verlag, 2006.

[40] L. Smarr, C. Catlett, “Metacomputing,” Communications of the ACM, vol. 35, no. 6, pp.
44-52, 1992.

[41] S. Tabirca, T. Tabirca and L. T. Yang, “A convergence study of the discrete FGDLS
algorithm,” IEICE Transactions on Information and Systems, vol. E89-D, no. 2, pp. 673-
678, 2006.

[42] P. Tang and P. C. Yew, “Processor self-scheduling for multiple-nested parallel loops,”
Proceedings of the 1986 International Conference on Parallel Processing, pp. 528-535,
1986.

[43] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4,
1993, pp. 87-98.

[44] C. T. Yang and S. C. Chang, “A Parallel Loop Self-Scheduling on Extremely
Heterogeneous PC Clusters,” Journal of Information Science and Engineering, vol. 20,
no. 2, pp. 263-273, March 2004.

[45] C. T. Yang, K. W. Cheng, and K. C. Li, “An Efficient Parallel Loop Self-Scheduling on
Grid Environments,” NPC’2004 IFIP International Conference on Network and Parallel
Computing, Lecture Notes in Computer Science, Springer-Verlag Heidelberg, Hai Jin,
Guangrong Gao, Zhiwei Xu (Eds.), Oct. 2004.

[46] C. T. Yang, K. W. Cheng, and K. C. Li, “An Efficient Parallel Loop Self-Scheduling
Scheme for Cluster Environments,” The Journal of Supercomputing, vol. 34, pp. 315-335,
2005.

[47] M. J. Zaki, “Parallel and Distributed Association Mining: A Survey,” IEEE Concurrency,
vol. 7, no. 4, pp. 14-25, 1999.

	Introduction
	Background Review
	Dynamic Loop Scheduling Schemes
	Association Rule Mining

	Approach: Performance-Based Workload Distribution (PWD)
	The System Model
	Performance Ratio
	Determination of Static-Workload Ratio (SWR)
	Algorithm

	Experimental Results
	Application 1: Matrix Multiplication
	Application 2: Association Rule Mining
	Application 3: Mandelbrot Set Computation

	Conclusions
	References

