
Architecture-Based Autonomic Deployment
of J2EE Systems in Grids

Didier Hoareau1, Takoua Abdellatif2, and Yves Mahéo1

1 Valoria, University of South Brittany, France
{didier.hoareau,yves.maheo}@univ-ubs.fr

2 ENISO, University of Sousse, Tunisia
takoua abdellatif@yahoo.fr

Abstract. The deployment of J2EE systems in Grid environments remains a dif-
ficult task: the architecture of these applications are complex and the target en-
vironment is heterogeneous, open and dynamic. In this paper, we show how the
component-based approach simplifies the design, the deployment and the recon-
figuration of a J2EE system. We propose an extended architecture description lan-
guage that allows specifying the deployment of enterprise systems in enterprise
Grids, driven by resources and location constraints. With respect to these con-
straints we present a deployment process that instantiates propagatively the ap-
plication, taking into account resources and hosts availability. Finally, we present
an autonomic solution for recovery from failures.

1 Introduction

Grid environments have moved from the mere aggregation of computational resources
dedicated to parallel and scientific applications to more general sharing of networked
resources. The kind of Grids we consider in this paper can be seen as a set of hetero-
geneous machines interconnected by links of various capacities. Moreover a number of
factors impacting the dynamism of the system (machine crashes, user disconnections,
system failures etc.) cannot be neglected. Such Grids become attractive to multi-tier In-
ternet service providers who want to improve the quality of service they offer. For this
reason, many recent research works aim at finding the best models and techniques to ex-
ploit the Grids for better performance and high availability (e.g. [1,2]). However, these
works concentrate more on finding models and proving their effectiveness and do not
propose efficient solutions automating the deployment and the recovery from failures of
enterprise middleware and applications. Such features are very important and are still
challenging in the context of interactive applications. Indeed, unlike scientific parallel
applications whose parts can be independently deployed and executed, multi-tier mid-
dleware and applications are composed of interdependent pieces of software that have
to coexist at execution time. Furthermore, the failure of one part of the enterprise system
may involve service discontinuity or performance degradation. Recovering the system
architecture, as initially defined at deployment time, is very important to preserve the
agreed quality of service.

In this paper, we propose a solution for deploying enterprise systems in Grids and
automating the recovery from failure of parts of the system. To achieve this goal, we

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 362–373, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Architecture-Based Autonomic Deployment of J2EE Systems in Grids 363

consider a J2EE system that we call a virtual cluster, similar to a classical J2EE cluster
in that EJB and Web containers are replicated for backup fault-tolerance considerations.
We believe that our solution is applicable to other models and other configurations of
multi-tier Internet applications on wide-area networks, and it can be of interest to re-
searchers in this field to easily experiment their different models on Grids and for ser-
vice providers to easily handle an important number of clients. Our approach consists
in applying an architecture-based deployment [3] and in automating the management
of distributed systems. The idea is to abstract the managed system into an assembly
of explicitly bound components and to use these components as units of configura-
tion, deployment and reconfiguration. We adopted this approach for J2EE systems in
a previous work—in classical cluster environments—by re-engineering an open source
application server [4]. The re-engineering work consists in transforming the server parts
into explicitly connected components. With the same component model, Fractal [5] in
our case, we also represent the underlying resources like the nodes of the Grid. An
ADL (Architecture Description Language) permits the description of the different parts
of the distributed system, their configuration and their relations in terms of bindings
and encapsulation. Finally, a deployment engine allows automating the deployment of
the J2EE system using its description on the cluster targets. Compared to J2EE clusters,
Grids are highly distributed, heterogeneous and dynamic. For this reason, our deploy-
ment system needs to be extended to manage virtual clusters within the Grid constraints.
In this paper, we demonstrate the extension of the Fractal ADL to describe the compo-
nent resources, a resource allocation mechanism and a solution for an automatic recov-
ery from failures.

The layout of this paper is the following. In Section 2, we present more in details the
context of our work and the main underlying assumptions. In Section 3, we describe
our deployment process and its resource allocation service. We detail the current state
of our implementation and some first results in Section 4. Section 5 discusses related
work. Finally, Section 6 concludes the paper and identifies future work.

2 Context and Main Assumptions

2.1 J2EE System Configuration and Deployment

J2EE application servers are complex service-oriented architectures. In a previous work,
we demonstrated that solving the deployment of J2EE applications requires that the in-
ternal software architecture of the J2EE server, in terms of the services that compose
it and their various interaction and containment dependencies, be made explicit and
modifiable at run time [4]. Indeed, the configuration of the system and its deployment
parameters have to be described using the elements of the system’s architecture. This
description can then be used as a basis to implement and automate different deployment
and reconfiguration policies. This is what is generally called architecture-based man-
agement [3]. For this purpose, we created JonasALaCarte, obtained by re-engineering
the JOnAS (Java Open Application Server1) open source application server using the
Fractal component model [5].

1 http://jonas.objectweb.org



364 D. Hoareau, T. Abdellatif, and Y. Mahéo

Thanks to a componentization of the server itself, where all the services are en-
capsulated into Fractal components, the architecture of the server is explicit. Both the
hardware and the software entities are represented by components.

2.2 Deployment in a J2EE Cluster

Building a J2EE cluster consists in replicating the Web and EJB tiers for load balancing
and fault tolerance. A front-end load balancer (generally a HTTP server like Apache)
dispatches the HTTP requests to the containers. A group communication system allows
the consistency between stateful data hosted in the containers to be maintained. In order
to deploy a clustered JonasALaCarte, the administrator has to produce an architecture
descriptor (written with an ADL) together with a deployment descriptor. The first one
defines the architecture of JonasALaCarte as a set of interconnected components and the
second one exhibits the resource requirements of each component. The instantiation of
this description allows the application server components to be configured and deployed
on the target machines in an automated manner. Unlike in current JOnAS clusters, the
unit of replication in JonasALaCarte is the service component and not the whole server.
This selective replication is important since the EJB containers and the Web containers
are generally execution bottlenecks and we need more replicas for these services than
for other ones (Registry service, Transaction service, etc).

Figure 1 presents an example of an architecture for a J2EE clustered application
server. Notice that we abstract the deployment and the configuration of an application
server cluster into the uniform handling of Fractal components. Besides, a cluster con-
figuration is just a particular configuration of the application server where components
are distributed and replicated (represented in greyed boxes) on different JVMs. The
same management tools are used to manage a stand-alone server in a single JVM and
to manage a cluster of servers.

Fig. 1. Component-based view of JonasALaCarte in a cluster environment

2.3 From J2EE Clusters Management to Virtual Clusters Management

We call a virtual cluster a J2EE system having the same configuration as a classical
cluster (a front-end load balancer, a set of replicated containers and a group commu-
nication system for stateful data replication) but deployed in a Grid. By defining the



Architecture-Based Autonomic Deployment of J2EE Systems in Grids 365

number of replicas and the configuration of the services, the virtual cluster can repre-
sent different deployment models in wide-area networks. In this paper, we consider that
our Grid system is composed of different zones; each zone groups a set of machines
geographically close. Moreover, for each zone, some particular machines are well iden-
tified and are made public (on a Web site for example). We call zone managers these
machines because they contribute in the deployment process.

Unlike a J2EE cluster, a Grid environment is highly distributed and are heteroge-
neous in terms of software and hardware configurations. Resource allocation is conse-
quently a complex task. Grid machines are more dynamic either because they belong to
end-users that frequently join and leave the Grid or because they are shared with other
dynamic applications. However, if a machine involved in the execution of a multi-tier
application leaves the system, a service discontinuity or a performance degradation may
be induced leading to disastrous economic consequences. In front of these limitations,
we identify the following requirements:

– Resource allocation should be automated. Each component has to explicitly de-
fine its required resources and the deployment system has to automatically find the
appropriate target machine offering necessary resources for each component.

– Each variation in the Grid machines involved in an application execution has to
be systematically detected and recovered. Indeed, in order to maintain the agreed
quality of service, the configuration of the J2EE system has to be preserved. If the
unavailable component is not replicated, its recovery allows ensuring the service
continuity. In some cases, the service continuity is ensured thanks to the replication
of the leaving component, like for containers. If the replica is a simple backup, this
component needs to be replaced in order to preserve the fault-tolerance degree of
the system and if the replica is involved in the load balancing, it also needs to be
replaced to preserve the same level of performance.

3 Virtual Cluster Deployment System

In order to deploy a J2EE server system in a network such as the one described in Sec-
tion 2.3, we cannot rely on a total knowledge of the different machines: this is hardly
feasible as the size of a zone is important and as they are heterogeneous. Moreover,
some machines—that were disconnected when the deployment was launched—can en-
ter the network. Thus, traditional approaches, consisting in defining a target machine
for each component of the application to be deployed, are not feasible in our context.
We propose an extension to existing ADLs (xAcme2, [6]) that allows the description of
the resource properties that must be satisfied by a machine for hosting a specific com-
ponent. In our approach, it is no more mandatory to give an explicit name or address
of a target machine: the placement of components is mainly driven by constraints on
the resources the target host(s) should satisfy. Then, we use the description of the archi-
tecture and the deployment specification to define a deployment of a J2EE system in a
zone: installation and redeployment of the component are made in an automatic way.

2 http://www-2.cs.cmu.edu/ acme/pub/xAcme



366 D. Hoareau, T. Abdellatif, and Y. Mahéo

In the following we present the general deployment algorithm in two steps. First, we
describe the deployment process that allows the parts of the application to be deployed
in a propagative way. Then, we present the mechanisms we have implemented to handle
failures of the machines and of the different parts of the system.

3.1 Deployment Specification

In order to specify the deployment of a J2EE system, we define two descriptor files
written with FractalADL. The architecture descriptor contains the architecture of the
system in terms of component definitions (their name, their client and server interfaces,
their implementation) and component interactions (the bindings between components).
The other descriptor, named deployment descriptor, contains, for each component, the
description of the resources that the target platform must satisfy and references to com-
ponent instances (defined in the architecture descriptor).

In the deployment descriptor a deployment context is defined for each component.
Such a context lists all the constraints that a hosting machine has to verify. There are two
types of constraints that can be defined in a deployment context: resource constraints
and location constraints. Resource constraints allow hardware and software needs to be
represented. Each of these constraints defines a domain value for a resource type that the
target host(s) should satisfy. With location constraints some control on the placement
of a component can be defined when more than one host applies for its hosting.

Figure 2 shows the deployment descriptor associated with the J2EE system repre-
sented in Figure 1 (Some repeated parts have been omitted). This descriptor contains
the resource constraints associated with every component (e.g. lines 10–17: EJB con-
tainer ejb1 has to be installed on a host that have at least 512 MB of free memory) and
location constraints, that indicate the co-location of some components (e.g. lines 45–47:
transaction service component transac1 must reside on the same host as the configura-
tion manager, for example because they share local resources). We can also control the
location of a component according to the bandwidth of the network: lines 51–53 spec-
ify that the bandwidth between the machines hosting component web1 and the others
machines must be greater than 150 Mb/s).

For both performance scalability and high availability, each tier can be replicated.
However, we should not require that all replicas be started at the same time. What is
usually desired is to activate as soon as possible the Internet application when an EJB
container is deployed and a Transaction Service is available. The other replicas, mainly
used for performance, can be deployed later as soon as necessary resources become
available. For this purpose, we have added a cardinality attribute to the description of a
component’s interface. This attribute takes the form of a couple of values that specify
the minimum and the maximum number of bindings allowed through the interface.

3.2 Deployment Process

As stated in section 2.3, dedicated machines—the zone managers—are defined for each
zone. A given zone manager has two roles: (1) Maintaining a list of the machines in a
zone and (2) orchestrating the deployment process in the zone.

We consider in this section a single manager per zone. The address of this manager is
maintained on an already known site. A machine joining a zone gets the zone manager



Architecture-Based Autonomic Deployment of J2EE Systems in Grids 367

Fig. 2. Deployment descriptor of JonasALaCarte

address and sends a presence notification message. The zone manager adds the newly
connected machine in a list. The case of multiple zone managers, necessary for fault-
tolerance, will be detailed in section 3.3.

The first step of the deployment process consists in sending the ADL files of the J2EE
system to deploy to the zone manager (whose identity has been obtained beforehand
by the administrator, from a given web site for example). As soon as the deployment
descriptor is received by the manager, the deployment tasks are performed as follows:

1. The manager multicasts the deployment and architecture descriptors to all the zone
nodes that are connected. The deployment descriptor contains resource and location
constraints, and the identity of the manager.

2. Having received the deployment and architecture descriptors, each node checks the
compatibility of its local resources with the resources required for each component.
If it satisfies all the resource constraints associated with a component, it sends to
the manager its candidature for the instantiation of this component.

3. The manager receives several candidatures and tries to compute a placement solu-
tion in function of the location constraints and the candidatures. In the case there is
no location constraint associated with a component, the first candidate is chosen.

4. Once a solution has been found (or if a candidate has been chosen in the previ-
ous step), the manager updates the deployment descriptor with the new placement
information and broadcasts it to all the zone nodes.

5. Each node that receives the new deployment descriptor updates its own one and is
thus informed of which component it is authorized to instantiate and of the new
location of the other components.

6. The final step consists in downloading necessary packages from well defined pack-
age repositories. The location of these repositories is defined in the deployment
descriptor (not shown in the example for sake of clarity). For the components that
are instantiated locally, their client interfaces (if any) must be bound to remote com-
ponents. When the remote component possesses a constrained cardinality, a request



368 D. Hoareau, T. Abdellatif, and Y. Mahéo

is sent to the corresponding machine in order to know if a binding is possible. If the
addition of a new binding is accepted at the server side and when a positive answer
is received, the binding is achieved with the remote reference hold in the answer
message. Besides, the number of incoming and outgoing binding is updated.

The above steps define a propagative deployment, that is, necessary components
for running J2EE applications can be instantiated and started without waiting for the
deployment of all the components in the ADL descriptor. As soon as a resource become
available or a machine offering new resources will enter the network, candidatures for
the installation of the “not yet installed” components will be sent to the zone manager,
making the deployment progress.

When a new deployment descriptor is received (step 5) the binding establishment
described at step 6 can also be made if the deployment descriptor contains new infor-
mation on the location of some components that have to be bound with some already
(locally) deployed components.

Let’s consider an example of resource constraint. The constraint alldiff in the deploy-
ment descriptor (lines 48–49) indicates that the three EJBContainer must reside on three
distinct hosts. In order to resolve this constraint, a machine must at least have the infor-
mation of three machines that can hosts each one an EJBContainer. Thus, by collecting
candidatures (step 3), the zone manager may decide on the placement of component
provided there exists a combination of candidatures that solves the location constraints.

We can notice that in this deployment process: (1) the host selection of a component
is made by the zone manager; (2) the instantiation of a component is achieved by the
host selected by the zone manager; (3) the bindings needed by a component are initiated
by the machine hosting it; (4) the activation of a component can be made as soon as its
client interfaces are bound. Note that in our case, the activation of the container com-
ponents (i.e. EJB and Web containers) involves the activation of the J2EE application
running inside.

3.3 Automatic Recovery from Failures

In the environment we target, resources can also become unavailable (e.g. the amount
of free memory demanded may decrease and become not sufficient), some parts of the
J2EE system can be faulty, some machine may fail etc. In this paper, a failure can be
due to a hardware crash of a machine, a disconnection from the network or a software
bottleneck. This last case constitutes a failure of a component.

Failure of a component. The recovery of a component and thus its redeployment con-
sists in sending to the zone manager a message holding the identity of the component
to redeploy. This is done by the machine hosting the faulty component (The failure,
i.e. the non-responsiveness of the component, is detected through a probe associated
with a control interface of the component.). Then, the zone manager updates the de-
ployment descriptor by removing the location of the component and broadcasts the new
descriptor to all the machines connected in the zone, automating the redeployment of
the faulty component. Indeed, for all the machines, a component remains undeployed
(i.e. it has no location), thus, they find themselves back in the propagative deployment.



Architecture-Based Autonomic Deployment of J2EE Systems in Grids 369

The phases of local evaluation of the resource constraints and the announcement of
candidatures will go along.

When a component fails, it is important to consider its state. If the component is
replicated, like the EJB container and the Web container services, the stateful data are
automatically sent to any replica added to the group. This ensured by the group com-
munication systems embedded within these components. Regarding the database, we
consider that a regular copy is done on a data-center allowing to obtain stateful data
when the database fails. This solution is frequently used in Internet applications de-
ployed in wide-area networks, like in the edge-computing models.

When Apache fails, all the incoming requests are lost during the reconfiguration
time. One solution consists in deploying a lightweight component storing the incoming
requests in a list during the time the Apache component is recovering.

Resource violation. When a resource constraint associated with a component is no
longer verified on a specific host (for example the amount of free memory required is
not sufficient), the corresponding component must be redeployed. This redeployment is
performed the same way, except that the state of the component can be saved properly.

Failure of a machine other than a zone manager. In a zone, a machine hosting one or
several components may definitively crash. A crash is detected by the zone manager
which maintains the list of the machine connected in the zone. When the manager de-
tects a crash, as in the case of the failure of a component, it updates its deployment
descriptor by removing the location of the component(s) that was running on the faulty
machine. Then, the deployment descriptor is broadcast to other machines so that the
missing components can eventually be re-instantiated.

Failure of a zone manager. The crash of the zone manager is critical as it is responsi-
ble for choosing a host for each component. In order to deal with the failure of such a
manager, we define several managers within a zone. Every manager has the same role as
defined previously: it maintains the list of the machines that are connected in the zone; it
collects the candidatures for the instantiation of components; and it resolves the location
constraints depending on the received candidatures. To ensure the fault-tolerance of the
zone manager, we consider a number of replicas. At a given time, a leader is in charge
of establishing the deployment process. The address of the zone manager is mentioned
in the deployment descriptor sent to the machines of the zone. Each information re-
ceived by the leader is multicast to the backup managers using a group communication
system offering the FIFO order and reliability. The failure of the leader is detected by
the backup machines and a new leader is elected. The zone manager identity is updated
in the deployment descriptor and like any descriptor change, this piece of information
is sent to the machines of the zone that will then deal with the new leader.

4 Implementation Status and Evaluation

4.1 Implementation Status

The ADL presented in section 3.1 allows the specification of the placement of the com-
ponents according to some conditions on resource and location constraints. We have



370 D. Hoareau, T. Abdellatif, and Y. Mahéo

chosen FractalADL to support the definition of deployment descriptors in an XML for-
mat. The main aspect with resource and location constraints are their manipulation at
run time in order to observe and detect changes in the environment, to react on these
changes and to find a placement solution at a given time according to some machine
candidatures. We use Cream3, a Java library for writing and solving constraint satis-
faction problems or optimization problems, to represent interface cardinality, possible
bindings and resource and location constraints.

Specific probes are used in order to introspect the resources needed by the compo-
nents. We use DRAJE (Distributed Resource-Aware Java Environment) [7], an extensi-
ble Java-based middleware to model hardware resources (processor, memory, network
interface...) or software resources (process, socket, thread...). For every resource con-
straint of the deployment descriptor, a resource in DRAJE is created and a periodic
observation is launched. The value returned by a probe allows a host to check the con-
sistency of a resource constraint according to the local resource state. If all the resource
constraints associated with a component are verified by a machine, it applies for its in-
stantiation. When the value returned by a probe does not respect a resource constraint,
our run-time support is notified in order to redeploy the components that requires this
resource as described in section 3.3. The current implementation of our system does not
support the computation of bandwidths between machines but relies on a predefined file
describing the properties of network links within a zone.

Component instantiation are made by a host when this host has been chosen by the
zone manager. When an updated deployment descriptor is received, the location of the
newly instantiated components is discovered, resulting in binding requests. When a
binding is accepted, a stub component and a skeleton component are dynamically cre-
ated thanks to the ASM library4 and are deployed with FractalRMI. The server inter-
faces of the stub component are of the same type as the one of the local client interface
that has to be bound. When the location of the EJBContainer is known, a new pair
stub/skeleton is created and deployed if the number of outgoing bindings allowed (i.e.
the interface cardinality) has not been reached.

4.2 Evaluation

A complete evaluation of the deployment and redeployment in the kind of environment
we target implies to precisely control the dynamism of the different resources and hosts.
We have indeed to take into account the announcement of machines’ candidatures—
which implies the availability of resources—in order to compute a placement solution.
However the feasibility and the performance of the deployment process and recovery
mechanisms can be measured accurately when all the resources are available. In this
case we can evaluate the time needed by a zone manager to compute a placement solu-
tion for the components of a virtual cluster.

Figure 3 shows the time for a zone manager to compute a placement solution when
the number of received candidatures is sufficient, in function of the number of compo-
nents to instantiate. We have considered a zone composed of a thousand of simulated

3 http://kurt.scitec.kobe-u.ac.jp/˜shuji/cream/
4 http://asm.objectweb.org



Architecture-Based Autonomic Deployment of J2EE Systems in Grids 371

Fig. 3. Time required for a zone manager to decide on the placement of a set of components in
function of the number of candidatures

machines on which the number of components to instantiate varies from one to one
hundred. The experiment corresponds to the deployment of the architecture of Figure 1
according to the constraint “each component must reside on a distinct host” (alldiff con-
straint). Somewhat contrived, this constraint encompasses the complexity of other con-
straints involved in our deployment specification (resource constraints resolution has a
negligible impact on the computation time). The evaluation has been conducted on a
laptop (1,7 GHz Pentium Centrino). This experiment allowed us to verify that the time
to compute—with the Cream library—a placement solution (when all conditions are
met) remains acceptable regarding communication cost between machines. This com-
putation time is likely not to be the prevalent factor in number of Grids configurations.
We are currently conducting the evaluation of the deployment of a virtual cluster and
the automatic management of failures on a Grid. The main difficult aspect remains the
control of hosts and resources availability.

5 Related Work

Our work is related to several different open-source and research domains. We sin-
gle out the following ones: component-based deployment in Grid environments, multi-
tier deployment in wide-area networks, resource allocation for distributed systems and
architecture-based systems.

We share with GridCCM [8], GridKit [9] and Proactive [10] the same approach con-
sisting in abstracting the system to deploy on the grids to an assembly of components.
Proactive work is closer to ours since it considers Fractal component model to rep-
resent hierarchical and parallel systems. However, our work covers both the resource
management issues and the automatization of recovery from failures.

Exploiting the Grid resources to increase multi-tier application performance and
fault-tolerance become recently the aim of many research teams [2,1,11]. However,
focus is more on defining the best configuration and models to increase performance
rather than on the management aspects.

Many works deal with resource allocation in distributed systems [12,13,14,15]. In
our work, we propose a simple solution for resource allocation and we believe that,
thanks to our modular component-model, we can easily adopt different policies and
algorithms for an optimal resource usage. Furthermore, to our knowledge, most of
the works on the Grids like PlanetLab and Globus, focus on parallel applications that



372 D. Hoareau, T. Abdellatif, and Y. Mahéo

are composed of independent tasks. Compared to the proposed solutions, we adopt an
architecture-based approach motivated by the complex architecture of the multi-tier In-
ternet application we address.

The architecture-based management approach [3] is mainly experimented in close
environment like in SmartFrog [16] system or Jade system [17]. In these two systems,
the deployment process considers that target machines are stable and homogeneous,
which is not the case in Grids. Furthermore, handling failures relies on a centralized
management unit, which hardly applies to the highly distributed Grid machines. In our
solution, the machines collaborate in finding appropriate resources and for handling
failures.

6 Conclusion

This paper proposes a solution for the deployment of enterprise systems in Grids and an
automatic recovery management in face of failures. Deployment in such environment is
quite challenging as the platforms we target are highly distributed, heterogeneous and
dynamic. We offer a resource-aware deployment feature for J2EE systems, which is
essential in Grid heterogeneous environments. We also demonstrate that the constraint-
resolution is performed in a reasonable time. The role of the administrator is reduced
to the writing of the deployment descriptor. All the deployment process and the recov-
ery from failures are automated. Furthermore, the administrator does not need to be
expert of the heterogeneous and complex J2EE systems. All the parts of the system
are abstracted into Fractal components and the configuration is therefore unified. In our
work, we aimed at maintaining the structure described in the ADL descriptor by replac-
ing each time a faulty component by another. This allows ensuring the continuity of
Internet services and maintaining their quality of service.

In this paper we adopted a special architecture of the J2EE system, the virtual clus-
ters. We believe that our solution and mechanisms are applicable to other architectures.
It is only necessary to write appropriate deployment descriptors and constraints. We
are currently investigating a more complete evaluation of our approach on a Grid by
taking into account resources and hosts availability. Moreover, some optimization can
be defined when dealing with the placement decision of replicas by considering the
symmetry of such components.

References

1. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley, Reading,
Massachusetts, USA (2002)

2. Pierre, G., van Steen, M.: Globule: a Collaborative Content Delivery Network. IEEE Com-
munications Magazine 44 (2006)

3. Dashofy, E., van der Hoek, A., Taylor, R.: Towards Architecture-Based Self-Healing Sys-
tems. In: Workshop on Self-Healing Systems, Charleston, South Carolina, USA (2002)

4. Abdellatif, T., Kornaś, J., Stefani, J.B.: J2EE Packaging, Deployment and Reconfiguration
Using a General Component Model. In: Int. Working Conference on Component Deploy-
ment, Grenoble, France (2005)



Architecture-Based Autonomic Deployment of J2EE Systems in Grids 373

5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open Component
Model and its Support in Java. In: Int. Symposium on Component-based Software Engineer-
ing, Edinburgh, Scotland (2004)

6. Dashofy, E., van der Hoek, A., Taylor, R.: An Infrastructure for the Rapid Development of
xml-based Architecture Description Languages. In: Int. Conference on Software Engineer-
ing, Orlando, Florida, USA (2002)

7. Mahéo, Y., Guidec, F., Courtrai, L.: A Java Middleware Platform for Resource-Aware Dis-
tributed Applications. In: Int. Symposium on Parallel and Distributed Computing, Ljubljana,
Slovenia (2003)

8. Denis, A., Pérez, C., Priol, T., Ribes, A.: Padico: A Component-Based Software Infras-
tructure for Grid Computing. In: Int. Parallel and Distributed Processing Symposium, Nice,
France (2003)

9. Cai, W., Coulson, G., Grace, P., Blair, G.A., Mathy, L., Yeung, W.K.: The Gridkit Distributed
Resource Management Framework. In: European Grid Conference, Amsterdam, The Nether-
lands (2005)

10. Baude, F., Caromel, D., Morel, M.: From Distributed Objects to Hierarchical Grid Compo-
nents. In: Int. Symposium on Distributed Objects and Applications, Catania, Italy (2003)

11. Sivasubamanian, S., Alonso, G., Pierre, G., van Steen, M.: GlobeDB: Autonomic Data Repli-
cation for Web Applications. In: Int. World-Wide Web Conference, Chiba, Japan (2005)

12. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource man-
agement in cluster-based network servers. In: Conference on Measurement and Modeling of
Computer Systems, Santa Clara, California, USA (2000)

13. Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S., Pazel,
D., Pershing, J., Rochwerger, B.: Oceano - SLA based management of a computing utility.
In: Int. Symposium on Integrated Network Management, Seattle, Washington, USA (2001)

14. Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: an architecture for secure
resource peering. In: Symposium on Operating Systems Principles, Bolton Landing, New
York, USA (2003)

15. Chase, J., Irwin, D., Grit, L., Moore, J., Sprenkle, S.: Dynamic Virtual Clusters in a Grid
Site Manager. In: Int. Symposium on High Performance Distributed Computing, Seattle,
Washington, USA (2003)

16. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Config-
uration and Automatic Ignition of Distributed Applications. In: Plenary Workshop of the HP
OpenView University Association, Geneva, Switzerland (2003)

17. Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S., Mos, A., de Palma, N., Quéma, V.,
Stefani, J.B.: Architecture-Based Autonomous Repair Management: An Application to J2EE
Clusters. In: Symposium on Reliable Distributed Systems, Orlando, Florida, USA (2005)


	Introduction
	Context and Main Assumptions
	J2EE System Configuration and Deployment
	Deployment in a J2EE Cluster
	From J2EE Clusters Management to Virtual Clusters Management

	Virtual Cluster Deployment System
	Deployment Specification
	Deployment Process
	Automatic Recovery from Failures

	Implementation Status and Evaluation
	Implementation Status
	Evaluation

	Related Work
	Conclusion

