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Abstract. Message races, which can cause nondeterministic executions
of a parallel program, should be detected for debugging because non-
determinism makes debugging parallel programs a difficult task. Even
though there are some tools to detect message races in MPI programs,
they do not provide practical information to locate and debug message
races in MPI programs. In this paper, we present an on-the-fly detection
tool, which is MPIRace-Check, for debugging MPI programs written in
C language. MPIRace-Check detects and reports all race conditions in
all processes by checking the concurrency of the communication between
processes. Also it reports the message races with some practical informa-
tion such as the line number of a source code, the processes number, and
the channel information which are involved in the races. By providing
those information, it lets programmers distinguish of unintended races
among the reported races, and lets the programmers know directly where
the races occur in a huge source code. In the experiment we will show
that MPIRace-Check detects the races using some testing programs as
well as the tool is efficient.

Keywords: message-passing programs, debugging, message races,
MPIRace-Check.

1 Introduction

In a distributed parallel program [1,4,9,14], processes communicate with each
other through message-passing and those messages may arrive at a process in a
nondeterministic order by variations in process scheduling and network latencies.
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Nondeterministic arrival of messages causes nondeterministic executions of a par-
allel program [7,10,11]. If two or more messages are sent over communication chan-
nels on which a receive listens, and they are simultaneously in transit without
guaranteeing the order of their arrivals, a message race [2,3,5,6,8,12,13] occurs in
the receive event and causes nondeterministic executions of the program.

Message races, which can cause nondeterministic executions of a parallel pro-
gram, should be detected for debugging because nondeterminism, intended or oth-
erwise, makes debugging message-passing parallel programs a difficult task
[7,10,11]. Even though some parallel programs are designed to have message races
in order to improve their performance, detecting message races is critical in de-
bugging parallel programs for two reasons. First, message races complicate debug-
ging because their nondeterministic nature can prohibit equivalent re-execution of
a program from being repeated [7]. Second, message races can prevent a program
from being tested in all the possible executions of a program [7]. Therefore message
races should be detected for debugging message-passing programs.

There are several tools for detecting message races such as MAD [8], MARMOT
[5,6], and MPVisualizer [2,3]. However those tools are not practical for debugging
message-passing programs because they do not provide practical information to
locate and debug message races. Also some of them can not exactly detect race
conditions because they detect message races just by identifying the use of wild
card receives as sources of race conditions. Therefore, due to lack of information
and wrong detection, programmers can be easily overwhelmed by the incorrect in-
formation or be incapable of finding where the races occurred in a huge source code.

In this paper, we present an on-the-fly detection tool, which is MPIRace-Check,
for debugging MPI [14,15] programs written in C language. MPIRace-Check de-
tects and reports all race conditions in all processes during an execution by check-
ing the concurrency of the communications between processes. Also it reports mes-
sage races with some practical information such as the line number of a source
code, the processes number, and the channel information which are involved in
the races. By providing those information, it lets programmers distinguish of un-
intended races among the reported races, and lets the programmers know directly
where the races occur in a huge source code. In the experiment we will show that
MPIRace-Check detects and reports the races using MPI RTED [15] testing pro-
grams as well as this tool is efficient using a kernel benchmark program.

In the following section 2, we describe the notion of message races and ex-
plain the problem of the previous tools. In section 3 we explain the methods
used in developing MPIRace-Check and then we show that the accuracy and
the efficiency of MPIRace-Check using MPI RTED testing programs and a ker-
nel benchmark program in the experiment of section 4. In the last section we
conclude this paper and discuss future work.

2 Background

In this section, we describe our model of parallel programs, and the notion of
message races. Also we introduce the previous tools to detect the races and
explain the problem of the previous tools.
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2.1 Message Races

An execution of a message-passing program [1,10,11,13] can be represented as
a finite set of events and the happened-before relations [4,9] defined over those
events. If an event a always occurs before another event b in all executions of
the program, it satisfies that a happens before b, denoted a → b. For example,
if there exist two events {a, b} executed in the same process, a → b ∨ b → a
is satisfied. If there exist a send event s and the corresponding receive event r
between a pair of processes, then s → r is satisfied. We denote a message, sent
by a send event s, as msg(s). The binary relation → is defined over its irreflexive
transitive closure; if there are three events {a, b, c} that satisfy a → b ∧ b → c,
it also satisfies a → c. When an event a does not happen before an event b, we
denote the relation between them as a � b.

A message race [2,3,5,6,8,13] occurs in a receive event, if two or more messages
are sent over communication channels on which the receive listens and they are
simultaneously in transit without guaranteeing the order of their arrivals. A
message race is represented as 〈r, M〉: r is the first receive event and M is a set
of racing messages toward r. Any send event s included in M , but not the one
received by r, satisfies s � r or r � s.

Even though some parallel programs are designed to have message races in
order to improve their performance, detecting message races is critical in debug-
ging parallel programs for two reasons. First, message races complicate debug-
ging because their nondeterministic nature can prohibit equivalent re-execution
of a program from being repeated [7]. Second, message races can prevent a pro-
gram from being tested in all the possible executions of a program [7]. Therefore
message races should be detected for debugging message-passing programs.

Figure 1 shows a partial order of events that occurred during an execution of
a message-passing program. In the figure two processes P3 and P4 send two mes-
sages msg(i) and msg(k) to P2. At this time two messages msg(i) and msg(k)
are racing toward the receive event j of P2 because the send event k satisfies
k � j. Also the message msg(m), which is sent by process P5, is also racing
toward j. Therefore the race, which occurs at the receive event j, can be denoted
as 〈j, J〉: the first receive event j, J = {msg(i), msg(k), msg(m)}.

2.2 Related Work

There are several tools for detecting message races such as MAD [8], MARMOT
[5,6], and MPVisualizer [2,3]. MAD offers a variety of debugging features such
as placement of breakpoints on multiple processes, inspection of variables, an
event manipulation feature, and a record&replay mechanism. MARMOT is to
verify the standard conformance of an MPI [14,15] program automatically during
runtime and help to debug the program in case of problems such as deadlocks,
and race conditions. MPVisualizer includes a trace/reply mechanism, a graphical
interface, and the engine of the tool which detects and notifies the occurrence of
race conditions.

In case of MAD and MARMOT, those tools detect message races just by iden-
tifying the use of wild card receives, mpi any source, as sources of race conditions.
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Fig. 1. An Example

In this case the detection result is not correct and also programmers will be over-
whelmed by the vast and incorrect information.

Figure 2 shows the cases that there are no race conditions even though receive
events are called with mpi any source. In Figure 2.(a), process P1 sends a mes-
sage to process P2 with a tag (1). Also process P3 sends a message to process
P2 with a tag (2). At this time, two receive events in process P2 are called with
mpi any source, but with different tags. In this example, even though two send
events are concurrent, two messages being sent by processes P1 and P3 will be
always received deterministically because of the different tags.

In Figure 2.(b), the second receive event in process P2 is called with
mpi any source and mpi any tag. In this example, however, two messages will
be received deterministically because the first message being sent by process P1
will be always received at the first receive event in process P2.

In Figure 2.(c), two messages are sent from the same process P1 and they
are received in the process P2. In process P2, two receive events receive the
messages respectively using mpi any source and mpi any tag. In this case, there
are no race conditions if successive messages sent by a process to another process
are ordered in a sequence and if receive events posted by the process are also
ordered in a sequence.

As shown in Figure 2, there are no race conditions even though mpi any source
or mpi any tag are used in the receive events. Therefore, if we detect race con-
ditions just by identifying the use of mpi any source, that will include wrong
detections of race conditions and then mislead programmers.

One the other hand, the method suggested by Nezer [12] can detect more
exactly race conditions. This technique focuses on detecting unaffected races
[12,13] so that it detects the first race in each process. For this, it requires
two executions of a program. In the first execution it checks if a race occurs and
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P1 P2 P3

Send (2, tag=1)

Recv (Any, tag=1)

Send (2, tag=2)
Recv (Any, tag=2)

P1 P2 P3

Send (2, tag=1)

Recv (1, tag=1)

Send (2, tag=2)
Recv (Any, tag=Any)

(a)

(b)

P1 P2

Send (2, tag=1)

Recv (Any, tag=Any)

Recv (Any, tag=Any)

(c)

Send (2, tag=2)

Fig. 2. No Race Conditions with MPI ANY SOURCE

identifies the location where the race occurs. In the second execution it halts
the execution at the location where the race occurred and then detects racing
messages. Even though this technique can detect race conditions more accurately,
it is not efficient because it requires two executions of a program.
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0 TimestampInit()
1 localclock := 0
2 for i from 0 to size do
3 timstamp[i] := 0
4 prevrecv [i] := 0
5 sender [i] := 0
6 end for

(a)
0 CheckConcurrency()
1 if prevrecv [pid] > sender [pid]
2 report this race
3 end if

(b)

0 TimestampInSend()
1 localclock := localclock + 1
2 timestamp[pid ] := localclock

(c)
0 TimestampInRecv()
1 call CheckConcurrency()
2 for i from 1 to size do
3 timestamp[i] := max(timestamp[i],
4 sender [i])
5 end for
6 localclock := localclock + 1
7 timestamp[pid ] := localclock
8 prevrecv := timestamp

(d)

Fig. 3. Algorithms for Timestamp

3 Race Detection

In this section, we explain the methods used in developing MPIRace-Check.
First we explain several algorithms to maintain vector timestamps during an
execution in order to detect race conditions. Also we show how the algorithms
can be called inside of MPI profiling interface.

3.1 Concurrency Check

Vector timestamps [4,9] have been used to determine the “happened before”
relations between two events during an execution. Each vector timestamp con-
sists of n values, where n is the number of processes involved in an execution. In
this paper, we use vector timestamps to check concurrency between send/receive
events in MPI parallel programs. Figure 3 shows the algorithms for maintaining
vector timestamps during an execution.

In Figure 3.(a), all variables are initialized with zero: localclock, timestamp,
prerecv, and sender. In the algorithm, size is an integer variable and indicates
the number of processes involved in an execution. localclock is an integer variable
for counting the number of events which occurred in each process. This will be
incremented by one whenever a send or a receive event occurs.

The variables timestamp, prerecv, and sender for maintaining the vector
timestamps are an array which consists of n elements, where n is the number
of processes. Whenever a send or a receive event occurs in a process, timestamp
will be updated by the current localclock during an execution. Only one element
of timestamp, corresponding to the process itself, will be updated. sender will
be used for keeping a vector timestamp of a sender which sends a message to
the current receive event. prevrecv will be used for keeping a vector timestamp
of the previous receive event.
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Figure 3.(c) shows the algorithm, TimestampInSend(), which will be called
in each send event. The variable pid indicates the current process which sends a
message. In each send event, it increments localclock by one and sets the element
of timestamp, corresponding to the current process pid, equal to localclock. This
timestamp will be attached to the outgoing message.

Figure 3.(d) shows the algorithm, TimestampInRecv(), which will be called
in each receive event. In each receive event, first of all, it checks if a race occurs
by calling CheckConcurrency(). In CheckConcurrency(), it checks if the
element of prevrecv, corresponding to the current process pid, is greater than
that of sender. If then, it means that the message, which was received in the
current receive event, can be received in the previous receive event. In this case
it reports that a message race occurs.

After calling CheckConcurrency(), it updates its timestamp using sender,
which was attached to this incoming message, by the operation max(). And it
increments localclock by one and sets the element of timestamp, corresponding to
the current process pid, equal to localclock. For the next receive event, it copies
timestamp into prevrecv because this receive event will become the previous
receive event in the next receive event.

Figure 4 shows the vector timestamps in each event when we applied the
algorithms to Figure 1. In the figure, lc means localclock in each event and each
timestamp in each event is represented with “[]”.

In the send event a in P2, TimestampInSend() will be called and local-
clock will be incremented by one. And localclock will be set into the element of
timestamp corresponding to the current process P2. So localclock becomes 1 and
timestamp becomes [01000]. In the receive event b in P4, TimestampInRecv()
will be called and localclock will be incremented by one. And localclock will be
set into the element of timestamp corresponding to the current process P4. Also
it updates its timestamp using sender by the operation max(). So localclock be-
comes 1 and timestamp becomes [01010]. In this way timestamp will be updated
and maintained in each event during an execution.

Let us show you how to detect race conditions using timestamp in each receive
event. For example, in the receive event j of process P2, TimestampInRecv()
calls CheckConcurrency(). CheckConcurrency() compares prevrecv, which
is the vector timestamp at d of P2, with sender which is the vector timestamp
of the send event i of P3. In this case, prevrecv [pid ], which is “2” from [12000]
(pid is P2), is not greater than sender [pid] which is “4” from [14200]. This means
that the message, which was received by the current receive event j of P2, is not
racing toward the previous receive event d of P2.

On the other hand, in the receive event l of process P2, prevrecv is greater
than sender. In case of the receive event l, prevrecv is at j which is [15200], and
sender is at k of P4 which is [01020]. Therefore, prevrecv [pid ], which is “5”, is
greater than sender [pid ] which is “1” (pid is P2). This means that the message,
which was received by the current receive event l of P2, is racing toward the
previous receive event j of P2. So there is a message race. In this way we can
detect message races.
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Fig. 4. An Example of Vector Timestamp

3.2 MPI Profiling Interface

MPI Profiling Interface included in MPI specification allows anyone to inter-
cept every call to the MPI library and perform an additional action. For this,
the MPI specification states that every MPI routine is callable by an alter-
native name; every routine of the form MPI xxx is also callable by the name
of the form PMPI xxx, allowing users to implement and experiment their own
MPI xxx.

For implementing MPIRace-Check, we used MPI profiling interface and we
wrapped all point-to-point functions. In each wrapped function, we used MPI-
PACK in order to attach a vector timestamp to the outgoing message and we
used MPI UNPACK in order to detach a vector timestamp from the incoming
message.

Figure 5 is an example of how we wrapped each function with the algorithms
explained before. Figure 5.(a) shows the wrapped MPI Send function. First it
calls TimestampInSend() in line 2 and packs the user message(buf ) and times-
tamp together using MPI PACK in order to attach timestamp to the outgoing
message in line from 4 to 5. After that, it calls PMPI Send.

Figure 5.(b) shows the wrapped MPI Recv function. First it received a mes-
sage by calling PMPI Recv and unpack the message into sender and buf in line
from 4 to 5. After that, it calls TimestampInRecv() in order to update its
timestamp and check if a race occurs.

In this way, we wrapped all point-to-point functions so that users can apply
our tool to their programs without modifying their code.
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0 MPI Send(buf, count, datatype, dest, tag, comm)
1 {
2 TimestampInSend();
3
4 MPI Pack(timestamp, size, MPI INT, buffer, buffersize, pos, comm);
5 MPI Pack(buf, count, datatype, buffer, buffersize, pos, comm);
6
7 PMPI Send(buffer, pos, MPI PACKED, dest, tag, comm);
8 }

(a)

0 MPI Recv(buf, count, datatype, source, tag, comm, status)
1 {
2 PMPI Recv(buffer, buffersize, MPI PACKED, source, tag, comm, status);
3
4 MPI Unpack(buffer, buffersize, pos, sender, size, MPI INT, comm);
5 MPI Unpack(buffer, buffersize, pos, buf, count, datatype, comm);
6
7 TimestampInRecv();
8 }

(b)

Fig. 5. Examples of Wrapped MPI Functions: MPI Send and MPI Recv

4 Experimentation

We implemented MPIRace-Check as a library using C language and MPI Pro-
filing Interface so that users can apply our tool to their programs without mod-
ifying their source code. Also we used gdb to provide detail information for
debugging race conditions. When a race is detected, gdb will be called within
MPI Profiling Interface. To enable this, users have to use the compiler option
‘-g’ when they compile their programs.

In this experiment we evaluated the accuracy and the efficiency of MPIRce-
Check. For evaluating the accuracy of race detection, we used MPI RTED [15]
testing programs written in C language. MPI RTED was developed to evaluate
MPI debugging tools. So some of them were designed to have message races to
evaluate the ability of detection of race conditions.

Table 1 shows all test programs and the detection results when we applied
our tool to MPI RTED programs. In the table, we can see each name of tested
programs, and MPI functions which are used in the testing programs. In those
programs, MPIRace Check detected all races as shown in the table.

Figure 6 shows an error message of our tool when it detects a race in a
test program. In the first line, it shows the localclocks of the events, and the
process number which are involved in the race: P1 (1) and P2 (1). In the second
line, it shows the channel information, the program name, and its line number:
−2 − 1, ‘c B 1 1 a M1.c’ and 76. In the third line, it shows the source code
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Table 1. The Result in MPI RTED

Name MPI Functions Detection
c B 1 1 a M1.c MPI RECV Yes
c B 1 2 a M1.c MPI RECV Yes
c B 1 1 b M1.c MPI SENDRECV Yes
c B 1 2 b M1.c MPI SENDRECV Yes
c B 1 1 c M1.c MPI SENDRECV REPLACE Yes
c B 1 2 c M1.c MPI SENDRECV REPLACE Yes
c B 1 1 d M1.c MPI IRECV Yes
c B 1 2 d M1.c MPI IRECV Yes
c B 1 1 e M1.c MPI RECV Yes
c B 1 2 e M1.c MPI SENDRECV Yes
c B 1 1 f M1.c MPI RECV Yes
c B 1 2 f M1.c MPI SENDRECV REPLACE Yes
c B 1 1 g M1.c MPI RECV Yes
c B 1 2 g M1.c MPI IRECV Yes

Fig. 6. An Example of Error Messages

Table 2. Overhead in MPIRace-Check

The number of Send/Recv Original Run Time (s) Monitored Run Time (s) Slowdown
10000 0.168 0.212 26%

100000 1.673 2.234 34%
1000000 16.399 22.034 34%

10000000 164.471 221.736 35%

which is involved in the race: ‘MPI Recv(&recvbuf 2, . . ., &status)’. Using those
information, programmers can easily notice whether the race was intended or
not, and they can directly modify the bug because they know where it occurs in
their source code.

For estimating the efficiency of our tool, we wrote a simple kernel benchmark
program. This benchmark program consists of MPI Send() and MPI Recv() op-
erations and users can change the number of those operations in the command
line. In this program, only a process with the rank 0 receives any messages with
mpi any source and the other processes send a message to the process with rank
0. To measure the slowdown of MPIRace-Check, we used MPI Wtime() in the
benchmark program.

Table 2 shows the slowdown of MPIRace-Check. For example, when we set
the number of send/recv operations 10000, it took 0.168 seconds without our
tool. However, the monitored execution by our tool took 0.212 seconds so that
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the slowdown is 26%. As we increase the number of send/recv operations, the
slowdown does not change proportionally. The worst case in the table shows only
35% slowdown when the number of send/recv operations is 10,000,000. Therefore
our tool is efficient as an on-the-fly detection tool.

5 Conclusion

In this paper, we have presented an on-the-fly detection tool, which is MPIRace-
Check, for debugging MPI programs written in C language. MPIRace-Check
detects and reports all race conditions in all processes during an execution by
checking the concurrency of the communications between processes. In our ex-
periment, we showed that MPIRace-Check detects and reports message races
using MPI RTED testing programs as well as our tool is efficient using a kernel
benchmark program.

Also our tool provides useful information for debugging such as the line num-
ber of a source code, the processes number, and the channel information which
are involved in the races. By providing those information, it lets programmers
distinguish of unintended races among the reported races, and lets the program-
mers know directly where the races occurred in a huge source code. Therefore
this tool will be useful to develop and debug MPI C parallel programs. In the
future we will expand MPIRace-Check to cover all collective routines of MPI-1.

References

1. Cypher, R., and E. Leu, “The Semantics of Blocking and Nonblocking Send and
Receive Primitives,” 8th Intl. Parallel Processing Symp., pp. 729-735, IEEE, April
1994.
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