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Abstract. It is important to debug unintended data races in OpenMP
programs efficiently, because such programs are often complex and long-
running. Previous tools for detecting the races does not provide any
effective facility for understanding the complexity of threads involved in
the reported races. This paper presents a thread visualization tool to
present a partial order of threads executed in the traced programs with
a scalable graph of abstract threads upon a three-dimensional cone. The
scalable thread visualization is proved to be effective in debugging races
using a set of synthetic programs.
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1 Introduction

OpenMP program model [14] is an industry standard of parallel programming
model which supports Fortran and C language. However, it is still more diffi-
cult to debug OpenMP programs than sequential programs, because unexpected
non-deterministic executions may be incurred from unintended data races [12]
and such programs are often complex and long-running with a huge number of
threads and accesses to shared variables. Thus these problems make users still
difficult to debug races efficiently.

Thread Checker [4,5,16] of Intel Corporation is a unique tool to detect thread-
ing errors including data races in the relaxed sequential program which is a kind
of programs parallelized only with OpenMP directives. During a sequentially
monitored execution, Thread Checker projects the parallel memory traces of
logical threads derived from the annotated sequential memory trace, and de-
tects threading errors including races while every instruction in the program is
executed. But this tool does not provide any effective facility for understanding
the complexity of threads involved in the reported races.

This paper presents a thread visualization tool to represent the partial order
of threads in the traced OpenMP programs with a scalable graph of abstract
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threads upon a three-dimensional cone. We consider OpenMP programs which
may include critical sections and nested parallelism. The visualization on three-
dimensional cone makes it overcome the limitation of visual space on one plane
and use an execution graph [1,11] to represent effectively a partial order over
threads. This tool solves the visual complexity using the abstract visualization
which replaces a set of events with an abstract symbol and provides the thread
information which is traced by RaceStand [9], an on-the-fly race detection tool.
The abstraction concept reduces the space complexity of thread visualization and
helps programmers to understand the complex structure of threads effectively.
We experimented this visualization tool on a Windows-XP computer based on
Pentium-4 using Visual C++ and OpenGL libraries.

Section 2 illustrates data races that occur in OpenMP programs, indicates the
problems of the previous tool for debugging races. Section 3 presents the design
concepts of our scalable thread-visualization tool. Section 4 shows the screen-
shots of the implemented tool using a set of synthetic programs to demonstrate
that scalable thread visualization is effective to debugging races efficiently. The
last section includes conclusions and future work.

2 Background

This section illustrates data races which occur in OpenMP programs and intro-
duces the problem of the previous tools, Thread Checker and RaceStand, that
detect data races.

2.1 OpenMP Program

OpenMP [14] is an industry standard model of shared memory with a set of direc-
tives and libraries that extend standard C/C++ and Fortran 77/90. OpenMP
can easily convert sequential programs into parallel programs using OpenMP
directives, and can provide scalable parallel programs using the orphan direc-
tive to make coarse-grain parallelism. The OpenMP directives include paral-
lelism directives and synchronization directives. The parallelism directives in-
clude “#pragma omp parallel for” for parallel loops and “#pragma omp section”
for parallel sections. We consider the parallel loop as an example of parallelism.
If there is no other loop contained in a loop body, the loop is called an innermost
loop. Otherwise, it is called an outer loop. In a nested loop, an individual loop can
be enclosed by many outer loops. The nesting level of an individual loop is equal
to one plus the number of the enclosing outer loops. The nesting depth of a loop
is the maximum nesting level of loops in the loop. The synchronization directives
include “#pragma omp atomic,” “#pragma omp barrier,” and “#pragma omp
critical” that control an execution order among threads. OpenMP also provides
library functions and environment variables that can control run-time execution
of programs. For example, two logical threads are created by “#pragma omp
parellel” through line 11 and line 13 of Figure 1. Due to “#pragma omp for
private(i, y, z)” of line 12, the created thread takes the specified job in the loop
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10: · · ·
11: #pragma omp parallel
12: #pragma omp for private (i,y,z)
13: for (i=1 ; i < 3 ; i++) {
14: if (i==1) { y = x + 2;
15: #pragma omp critical(L1)
16: z = x + 2; x = y + z;
17: } else {
18: #pragma omp critical(L1)
19: x = 100; y = x + 1;
20: }}
21: printf("x value = %d ", x);
22: · · ·

r1

r2

w3

w4

r5

Fig. 1. An OpenMP Parallel Program and its POEG

body from line 14 to the brace of line 20, in which, the index variable i is a pri-
vate variable used in each thread, and the integer variable x is a shared variable
shared by the two threads.

Data races may occur in the program of Figure 1 during its program exe-
cutions. First, we assume that the variable x has zero as an initial value. The
statements of line 14, 15, and 16 are executed by the first thread of the two
created threads and the statement of line 18 and 19 are executed by the sec-
ond thread. Unintended races do not exist toward the variable x between line
16 and line 19, because these two blocks are protected as critical sections by
“#pragma omp critical(L1).” However, regarding the read access in the state-
ment of line 14 and the write access to the shared variable x in the statement
of line 19, the random speed of two threads may make the value of variable x
in the statement of line 21 become 100 or 104 nondeterministically. It is be-
cause these two accesses are involved in a race which include at least one write
access without proper inter-thread coordination for the accesses to the shared
variable x.

The right of Figure 1 shows an execution instance of the program in Figure 1
by means of a directed acyclic graph called Partial Order Execution Graph
(POEG) [1]. A vertex of POEG means a fork or join operation for parallel
threads, and an arc started from a vertex represents a thread started from the
vertex. The access r and w drawn with small disks upon the arcs represent a
read and a write access which access a same shared variable. A number attached
to each access indicates an observed order, and an arc segment delimited by the
symbols {�, �} means a critical section protected by the lock variable L1. With
POEG, we can easily understand the partial order or happened-before relation-
ship [10] of accesses occurred in an execution instance of programs. POEG of
Figure 1 makes it easy to understand that r1 and w4 are involved in a race,
because it shows that r1 in thread T 1 and w4 in thread T 2 are concurrent with
each other, and r1 is not protected by any lock variable.
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Fig. 2. An Example of RaceStand Traces and Labeling Information in POEG

2.2 Race Detection Tools

The projection technique of Thread Checker [4,5,16] for OpenMP programs col-
lects execution information obtained during the compilation of program and
checks data dependency detected during the sequential run-time of program.
This technique is applied only to the relaxed sequential OpenMP programs [16]
which provides only OpenMP directives for parallelism. Thread Checker detects
races as follows. First, when the programs written in OpenMP directives are
compiled by Intel C/C++ Compiler [3], a part of this tool integrated in the
compiler modifies the programs to trace the information related to OpenMP
directives and shared variables into an exclusive database. Second, when the
complied program is executed sequentially, the tool uses the traced information
in the database to check data dependency of accesses to shared variables when-
ever an OpenMP directive is located. Last, the tool reports the accesses as races
if it satisfies an anti, flow, or output data dependency except an input data
dependency.

Unfortunately, Thread Checker has some problems. First, although r1 and
w4 are involved in a race in the POEG of Figure 1, this tool can not report the
race because it ignores access r1 involved in the race. Second, this tool does not
provide any effective information about the dynamic view of the detected races.
This kind of reporting is difficult for users to understand the detected races and
debug effectively OpenMP programs, because it does not provide any facility for
understanding the complexity of threads involved in the reported races.

RaceStand [9] can verify the existence of races in OpenMP programs using
a set of scalable thread-labeling techniques [2,13] and protocol techniques [2,11]
for detecting races. The labeling techniques generate information called label for
logical concurrency among the created threads during a program execution. A
label is a unique identifier of thread, and is used to detect races because any
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two labels can be compared to identify the logical concurrency between any two
threads. The protocol techniques detect races by comparing the label of the
current access with that of the previous accesses that are saved in a shared-
data structure called access history whenever an access occurs in a thread. An
access history consists of a set of mutually-concurrent accesses occurred in a
program execution. These protocols guarantee to detect at least one race [12] if
any in their corresponding model of programs. Unfortunately, RaceStand does
not provide any effective information about the dynamic view of the reported
races.

3 Scalable Thread Visualization

For a visual environment which can help users to debug races effectively using
the additional information traced by RaceStand, this section presents two func-
tion modules for thread visualization and two abstraction concepts for scalable
visualization.

3.1 Thread Visualization

Our tool visualizes a partial order of threads executed in the traced programs
through a scalable graph of abstract threads upon a three-dimensional cone to
help programmers to debug races intuitively. This tool requires the levels of
nested parallelism and the thread information generated by RaceStand. The
nesting levels can be traced whenever a join operation occurs in an execution.
The thread information includes the thread labels generated whenever a par-
allel or synchronization directive is executed. The table of Figure 2 shows the
information traced in an execution of OpenMP program captured with POEG
in Figure 2. In the figure, the nesting depth is three since the nesting levels of
T 1 and T 2 are one, the nesting levels of T 3, T 4, T 5, and T 6 are two, and the
nesting levels of T 7 and T 8 are three. Each thread label in the right POEG of
Figure 2 is a English-Hebrew (EH) label [13].

Our tool consists of two function modules: The Cone Visualizer and The
Thread Visualizer. The Cone Visualizer parses the trace of nesting levels and
then draws a three-dimensional cone by calculating the nesting depth and the
number of multi-way loops which are defined as executed serially in a thread
at each nesting level. The number of multi-way loops executed in a thread at a
nesting level i is the number of ‘Ji’s generated by the thread, where J means a
join operation and an integer i means a nesting level less than i. The maximum
value of i is the nesting depth. The table of Figure 2 shows a trace of four nesting
levels, by which the nesting depth is three because the maximum level is three.
In the initial thread or T 6, the number of multi-way loops is one, and the thread
T 2 executed two multi-way loops.

The Thread Visualizer parses the thread information and then draws the
threads on the three-dimensional cone. The thread information consists of seven
elements: source line number, event type, EH-label, loop index, nesting level, lock
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Fig. 3. The Abstract Visualization

variables, and for-statement information. The source line number identifies the
source code location at which the threads occurred. The event type expresses a
type of operations occurred in the execution: I-type for the initial thread, F -type
for a fork operation, J-type for a join operation, C-type for a lock operation,
and U -type for an unlock operation. An EH label is a thread label created by
English-Hebrew Labeling scheme [13]. The table of Figure 2 shows an example
trace of thread information.

3.2 Scalable Visualization

This section presents the concepts of space abstraction and thread abstraction
for scalable three-dimensional visualization using the traced information. To il-
lustrate an abstract visualization, we use the visualization information shown in
POEG and the table of Figure 2.

The space of thread visualization is represented with a three-dimensional cone
which is divided vertically as many layers as the nesting depth. Each nesting level
is associated with a combo box which represents the number of loops executed
by the thread in the upper nesting level. Figure 3(A) shows an example of the
space abstraction. The first or third nesting level has only one loop and the
second nesting level has two loops. The combo box for the second level allows to
select one of the two loops as shown in Figure 3(A). the user can set the nesting
depth at will. For example, if the user set the value of the nesting depth to five
in the case of nesting levels (J4, J3, J3, J2, J1), the cone becomes divided into
five layers. In this case, each combo box for the nesting level but the third has
one loop. The combo box for the third nesting level has two loops, because J3
appears twice. The combo box for the fifth nesting level can not be created,
because the information corresponding to the nesting level does not exist.

The threads at the same nesting level are visualized as circles on the same
circumference of the corresponding cone layer with the optional vertical and hor-
izontal abstraction. The vertical abstraction represents a thread which created
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#pragma omp parallel for shared (s) {

for (i=0;i<2;i++) {

if( i>0) {

#pragma omp parallel for shared (s) {

for (j=0;j<2;j++){

#pragma omp critical(L1) {

if (j<1) { z=s+1; k=s*z; }

Visualization View

Source code View

Rotation Menu

Main Menu

1

2

1

Main Menu

Fig. 4. The Overall Interface for Scalable Thread Visualization

child thread in the lower nesting levels with a special circle symbol. A parent
thread can be represented with a symbol “+” or “-” inside a circle. The symbol
“+” means that the parent thread has child threads which are not shown and
the symbol “-” means that the parent thread has child threads which are drawn
on the cone. A circle symbol which is colored and rounded by a thick line is
an abstract thread which includes a critical section. Figure 3(A) shows an ex-
panded example of the vertical abstraction. Although threads can be visualized
with vertical abstraction, the space complexity for visualization may be still big.
The horizontal abstraction reduces the number of threads visualized on the same
circumference, by representing a set of threads with one abstract thread. Fig-
ure 3(B) shows an example of horizontal abstraction. The second nesting level in
the figure shows horizontal abstraction by the rate of four and the third nesting
level by the rate of two.

The thread abstraction allows us to understand intuitively whether a pair
of threads is concurrent or ordered with each other, because we can see easily
an explicit path between any two threads on the cone. For example, in the
Figure 3(B), the left thread in the first nesting level is concurrent with the right
thread in the third nesting level, because the explicit path from the upside to the
downside does not exist on the visualized cone. Users can check easily whether
a pair of threads at the different nesting levels are concurrent or ordered with
each other through the thread abstraction.
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#pragma omp parallel for shared firstprivate(label_fork1){

for(i=0;i<2;i++){

if(i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;}  else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

Fig. 5. No Critical Sections and No Nested Parallelisms

4 Experimentation

We implemented scalable thread visualization and experimented its function-
ality using a set of synthetic programs. This section presents the interface of
implemented tool and the principles in which the tool draws the symbols using
an execution trace of the synthetic programs.

4.1 Visualization Engines

Figure 4 shows the interface of our thread visualization tool which is composed
two views and two menus: Visualization View, Source code View, Main Menu,
and Rotation Menu. In the Main Menu, Visualizer Mode has four modes in which
two modes are currently implemented: Cone Visualizer and Thread Visualizer.
Nesting Level Mode provides the possible values of each nesting level and then
users can select a numeral in each nesting level. The OPTION menu make it
possible to set the maximum value of nesting levels and multi-way loops. The
SYMBOL menu shows the legend of symbols to be used for scalable visualization.
The SOURCE and ROTATION menus allow users to control the activation of
Source code View and Rotation Menu. The QUIT menu quits the interface.
The Rotation Menu located at the lower left part of the interface allows users to
rotate on the three-dimensional space or move up, down, left, and right using one
button labelled Objects or the other four buttons labelled Objects XY, Objects
X, Objects Y, and Object Z. When the visualized cone is rotated, its position and
size are fixed. The Visualization View shown at the top of the figure visualizes
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#pragma omp parallel for shared (s) {

for (i=0;i<2;i++){

if (i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for (i=0;i<2;i++){ if (j<1) { z=s+1; k=s*z;}  else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

Fig. 6. Critical Sections and No Nested Parallelisms

the cone and abstract threads. The Source code View shows the corresponding
program codes.

For visualization, a cone is divided horizontally by the nesting depth acquired
from trace as shown in the figure. A thread is drawn on the cone based on
the calculated height, angle, and symbol’s position and can be abstracted for a
thread set, critical sections, and nested parallel loop which are created during
a program execution. The user understands races intuitively by visualizing a
partial order of threads involved in races selectively. For example, in Figure 4,
left symbol at the first nesting level is concurrent with the right symbol at the
second nesting level, because these is no path between the left symbol and the
right symbol.

4.2 Visualization Cases

The visualization tool has been implemented using Visual C++ and OpenGL
library under Windows XP on Pentium 4 computer. We verified the cone and
thread visualization with four kinds of synthetic programs with respect to the
existence of critical sections and nested parallelisms: (1) no nested parallelisms
and no critical sections, (2) nested parallelisms and no critical sections, (3) no
nested parallelisms and some critical sections, (4) nested parallelisms and critical
sections. Any critical section uses one lock variable. The nesting depth is three,
and each nesting level has 20, 100, 300 threads.

For example, Figure 5 visualizes an execution of synthetic program with no
nested parallelism and no critical section, which creates one hundred threads.
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#pragma omp parallel for shared firstprivate(label_fork1){

for(i=0;i<2;i++){

if(i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;}  else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

(A)

#pragma omp parallel for shared firstprivate(label_fork1){

for(i=0;i<2;i++){

if(i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;}  else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

(B)

Fig. 7. Nested Parallelisms and No Critical Sections

#pragma omp parallel for shared (s) {

for (i=0;i<2;i++){

if (i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for (i=0;i<2;i++){ if (j<1) { z=s+1; k=s*z;}  else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

Fig. 8. Critical Sections and Nested Parallelisms

The cone in the figure is not divided, because the execution does not include
nested parallelism. Figure 6 visualizes an execution of synthetic program with
critical sections and no nested parallelisms, which has twenty threads and con-
tains critical sections in every other thread. The figure shows every thread with
critical section has a unique color according to its lock variable. Figure 7 visual-
izes an execution of synthetic program with nested parallelisms and no critical
sections. Each nesting level has twenty threads; the nesting depth is three; a
one-way loop within the second nesting level is two, the second one-way loop of
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the second nesting level has the third nesting level. Figure 7(A) marks twenty
threads within the first nesting level and one of them has twenty nested threads
to exist in the second nesting level. These threads are marked in the limited
area like the second nesting level of Figure 7(A), because the overlap among
threads occurs in the second nesting level if all threads of the first nesting level
have nested threads. If this overlap phenomenon is occur, we can not understand
duly the visualized results so we provide a horizontal abstraction like Figure 7(B).
Figure 7(B) abstracts the threads at the rate of a quarter about twenty threads
of the second nesting level of Figure 7(A). As the result, only four threads are
visualized in the second level. Figure 8 visualizes threads the synthetic program
with nested parallelism and critical section. It is identical with the explanation
of Figure 7(A) except the mark of critical section.

5 Conclusion

Data race in OpenMP programs must be detected for debugging, because it
may cause unexpected results incurred from unintended non-deterministic exe-
cutions. OpenMP programs are often complex and long-running, because parallel
programs may consist of a large number of threads and accesses to shared vari-
ables. Thread Checker of Intel Corporation is a unique tool to detect threading
errors including data races in the relaxed sequential program which is defined
as parallelized only with OpenMP directives. The tool however does not provide
any effective facility for understanding the complexity of threads involved in the
reported races.

This paper presents a thread visualization tool to represent the partial order
of threads in the traced OpenMP programs with a scalable graph of abstract
threads upon a three-dimensional cone. This tool solves the visual complexity
using the abstract visualization which replaces a set of events with an abstract
symbol and provides the thread information which is traced by RaceStand, an
on-the-fly race detection tool. We have been trying to apply this tool using a set
of published benchmark programs in addition to our synthetic programs specially
developed for experimenting this tool.
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