
C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 298 – 309, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Workflow Scheduling Strategy
in Service-Based Grids*

JongHyuk Lee1, SungHo Chin1, HwaMin Lee2, TaeMyoung Yoon1,
KwangSik Chung3, and HeonChang Yu1,**

1 Dept. of Computer Science Education, Korea University
{spurt, wingtop, tmyoon, yuhc}@comedu.korea.ac.kr

2 The Korean Intellectual Property Office
hwamin@kipo.go.kr

3 Dept. of Computer Science, Korea National Open University
kchung0825@knou.ac.kr

Abstract. During the past several years, the grid application executed same jobs
on one or more hosts in parallel, but the recent grid application is requested to
execute different jobs linearly. That is, the grid application takes the form of
workflow application. In general, efficient scheduling of workflow applications
is based on heuristic scheduling method. The heuristic considering relation
between hosts would improve execution time in workflow applications. But
because of the heterogeneity and dynamic nature of grid resources, it is hard to
predict the performance of grid application. In addition, it is necessary to deal
with user’s QoS as like performance guarantee. In this paper, we propose a
service model for predicting performance and an adaptive workflow scheduling
strategy, which uses maximum flow algorithms for the relation of services and
user’s QoS. Experimental results show that the performance of our proposed
scheduling strategy is better than common-used greedy strategies.

Keywords: adaptive grid scheduling, workflow, maximum flow.

1 Introduction

In the mid 1990s, Grid computing has emerged as an important new field,
distinguished from conventional distributed computing by its focus on large-scale
resource sharing, innovative applications, and high-performance orientation [1]. Grid
computing system [2] consists of large sets of diverse, geographically distributed
resources that are grouped into virtual computers for executing specific applications.
In common Grid computing, resource components could be processes, processors
within a computer, network interfaces, network connections, entire sites, database, file
system and specific computers. Today, Grid computing offers the strongest low cost
and high throughput solutions [1, 2] and is spotlighted as the key technology of the
next generation Internet. Grid computing is used in fields as diverse as astronomy,
biology, drug discovery, engineering, weather forecasting, and high-energy physics.

* This work was supported by the Korea Research Foundation Grant funded by the Korean

Government(MOEHRD) (KRF-2006-D00173).
** Corresponding author.

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 299

Recently, the Grid and Web Service are converging as WSRF (Web Service-Resource
Framework)[3] that defines a system for creating stateful resources between Web
services in terms of an implied resource pattern. The current methodology in Grid
computing is service oriented architecture.

In service-based Grids, Grid resources are virtualized as services(e.g., database,
data transfer). So the Grid not only provides computational resource and data
resource, but also supports logic application that cooperates with services integration
with the composition of the Grid service. Instead of application executing a single job,
Grid application consists of a collection of several dependency services. Therefore,
many grid applications belong to the category of workflow application. Most of
science and business grid applications take the form of linear workflow structure.
That is, the science grid application is a parameter sweep application processed using
same code for different data, and the business grid application is a transaction
application that queries at databases, processes data, and stores in database. Because
of processing data in parallel with extensive parameter bounds, workflow application
is of benefit to performance. In service-based Grids, it is necessary to consider a
relation of services for execution performance because a linear workflow application
executed parallel jobs via several services on one or more hosts.

It is easy for workflow structure not only to compose services but also to visualize,
verify, schedule, execute, and monitor services. Many kinds of workflow
management systems are developed for grid workflow applications. There are two
steps for producing workflow. The first step is a service composition to use workflow
language and the second step is a scheduling to map sub-task to service. In general, an
efficient scheduling of workflow applications is based on heuristic scheduling
method. The heuristic considering relation between hosts would improve execution
time in workflow applications. But due to the heterogeneity and dynamic nature of
grid resources, it is hard to predict the performance of grid application. In addition, it
is necessary to deal with user’s QoS like performance guarantee.

In this paper, we propose service model for predicting performance and adaptive
workflow scheduling strategy, which uses maximum flow algorithms for considering
the relation of services and user’s QoS.

The rest of the paper is as follows. In section 2, we state a scheduling problem and
propose a service model for predicting performance. Section 3 describes the novel
strategy to execute the workflows adaptively. In section 4, we present an experimental
evaluation of our scheduling by comparing it with existing scheduling strategies.
Section 5 presents related works. In section 6, we conclude the paper and discuss
some future works.

2 Problem Statement

Workflow scheduling system is to translate application task graph into service graph
in computing environment.

2.1 Task Graph

A task graph is an abstract workflow that represents an application as a general model
of directed acyclic graph. It is represented as follows;

300 J. Lee et al.

GT = (VT, ET)
VT : the set of tasks
ET : the set of edges between tasks that represent a partial order among them

The fact that an edge ei,j is a partial order between task vi and vj means that a task vj
is executed after completing a task vi. In case a task vi and vj are a same parent, two
task can be executed parallelly. Representing GT as matrix M of size vⅹv, di,i is a
computation cost of vi, and di,j is a communication cost between vi and vj. In this
paper, we assume that a task graph implies a start task and a end task.

2.2 Service Graph

A service graph is an directed weighted graph of services in grid computing
environments. It is represented as follows.

GS = (VS, ES)
VS : {s1, s2, …, sn} the set of services that can be executed at available node
ES : the set of edges between services

A service graph is a complete connected graph. VS denotes a computation
performance and ES denotes a communication performance between services. A k-th
service node that executes service sj is sj,k. The computation cost of task vi at service
si,k is wi,j,k. If service si,k can’t execute task vi, then wi,j,k = ∞. The communication cost
between service node sm,k for task vi and sn,k for vj is ci,m,k|j,n,k.

2.3 Performance Criteria

Application completion time is consist of computation time and communication time.
We assume that grid application executes task t1 and t2 sequentially. A task graph is
composed with two nodes and one edge between them. That is, GT = ({t1, t2}, ET). For
mapping this task graph to service graph, we have to search service s1 and s2 that can
process task t1 and t2. That is GS = ({s1, s2}, ES). If service s1 completes before
communicating with s2, completion time of this application is defined as follows.

completion time = communication time(A, s1) + computation time(s1) +
communication time(s1, s2) + computation time(s2) + communication time(s2,
A) + computation time(A)

(1)

Grid application A invokes service s1 and the result of service s1 is sent to service
s2. Service s2 processes a task and the result of service s2 is sent to grid application A.
In practice, completion time is determined according to a node that a service is
executed in. Therefore, completion time of a node about some service should be
predicted and be applied for mapping task graph to service graph.

For predicting completion time of grid service, it is necessary to select optimized
service according to performance model described the characteristics of service and to
compose workflow. In addition, we need to consider not only scheduling using
information of physical resource, but also supporting user’s QoS. Hence, in this
paper, the performance model is considered as follows.

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 301

 service static model : considering a static information of resources like CPU,
memory, disk space, and network bandwidth.

 service dynamic model : Owing to influencing service performance by
resource capability directly, considering a dynamic information of resources
like available CPU, available memory, available disk space, available network
bandwidth, and network latency. We also consider the predicted resource
status using service patterns like service reservation, frequency of service use,
and service throughput.

Since Grid is free of participation and withdrawal of a node, it is necessary that
grid service scheduler predicts the performance of a service and applies it
dynamically. In this paper, we use a statistical method to predict the performance of a
service. Regression is a statistical method that supports relationships between
variables and is an appropriate method for predicting an effect about a cause. In
regression, the dependent variable(y) that is an effect and the independent

variable(x) that is a cause denote as x� y . That is, the relation between x and y is

represented as follows;

y = 0β + x1β + ε (2)

where 0β is a constant; 1β is a coefficient of regression; ε is an error rate.

After regression analysis, we can determine a relationship between a dependent
variable and an independent variable. If we applied this regression technique with
performance as a dependent variable and each resource status as an independent
variable, we can predict the performance of a service that participates newly in Grids
using existing regression coefficient. In our work, we use a multiple linear regression
that allows the modeling of multiple independent variables, which are information of
resources defined by service model in Grids.

We consider static and dynamic physical elements ix such as CPU, memory, disk

space, network bandwidth, service reservation, frequency of service use in a service
model. The service throughput (sy), the equation applied these elements to multiple

regression, is as follows.

sy = 0β + ∑
=

n

i
ii x

1

β + ε (3)

where 0β is a constant; iβ is a coefficient of regression; n is a count of elements; ε

is an error rate.
Table 1 is an example data for performance model using multiple linear regression

that is executed in same service. The Independent variables are CPU, CPU available,
memory available, disk available, and network bandwidth. The dependent variable is
throughput. Table 2 is a model summary that multiple linear regression is done. As
shown in Table 2, this model can be explained well because coefficient of
determination(R Square) is 0.971. That is, the strength of the linear association
between independent variables and dependent variable of this model is high. As
shown in Table 3, F-test is 93.634 and significant probability is 0.000. Therefore, the

302 J. Lee et al.

one of regression coefficients in the population is not 0 at least. Table 4 is regression
coefficients about each independent variable. We can predict a throughput of new
entrance node using these coefficients.

Table 1. Example data for performance model

CPU
CPU

available
Memory
available

Disk
available

Network
bandwidth

Throughput

1600 .80 234 3320 25 40
1800 .40 346 4592 35 28
2000 .60 78 9295 29 33
2400 .40 321 2934 90 34
1600 .50 398 2039 34 45

… … … … … …
3000 .30 455 3945 10 36

Table 2. Model summary

R R Square
Adjusted R

Square
Std. Error of
the Estimate

.985(a) .971 .961 3.678

Table 3. ANOVA(Analysis Of Variance between groups)

Sum of
Squares

df Mean Square F Sig.

Regression 6333.602 5 1266.720 93.634 .000
Residual 189.398 14 13.528
Total 6523.000 19

Table 4. Coefficients

Unstandardized
Coefficients

Standardized
Coefficients

 B

Std.
Error

Beta
t

Sig.

(Constant) -41.266 5.793 -7.124 .000
CPU .016 .002 .510 8.863 .000
CPU_available 64.981 5.261 .724 12.350 .000
memory_available .026 .004 .339 5.826 .000
disk_available .000 .000 .037 .704 .493
network_bandwidth .015 .037 .022 .417 .683

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 303

3 Adaptive Scheduling Using Dynamic Maximum Flow Algorithm

It is important to select a computation node and a data node for minimizing overall
job completion time. It is necessary to minimize completion time for processing data
and communication time between computation node and data node. Moreover, it is
essential to optimize use of resource through scheduling algorithm. Our objective is to
minimize overall job completion time and to optimize use of resource. For our
objective, we present an adaptive scheduling using dynamic maximum flow algorithm
that finds a flow of maximum value in flow network G with source s and sink t.

The adaptive workflow scheduling algorithm presented in Algorithm 1 works as
follows. The input of WorkflowScheduling in Algorithms 1 is task graph GT and
service level agreement SLA which involve user’s QoS. GT is mapped to service
graph GS by SLA and resource performance criteria. Then Algorithm 2 is invoked
with GS. MaximumFlow in Algorithm 2 is based on Ford-Fulkerson method[9] which
finds some augmenting path p and increases the flow f on each edge of p by the
residual capacity cf(p). Algorithm 3 based on breadth-first search is to find
augmenting path in residual network of GS. FindAugmentingPath in Algorithm 3
assumes that the input graph GS is represented by adjacency lists in descending order
by sufferage heuristic value. Migration in Algorithm 1 is a function that migrates the
tasks through comparison of flow before rescheduling with flow after rescheduling if
a performance guarantee is violated. After all tasks executed, scheduler updates
service’s makespan(e.g. throughput) for performance criteria.

WorkflowScheduling(GT, SLA)
Gs ← Find available services satisfied SLA about GT

 MaximumFlow(GS)
 while all tasks not executed
 do Fetch task
 if a performance guarantee is violated
 then do update Vs[Gs]
 MaximumFlow(Gs) // rescheduling
 Migration(Gs, Gsprev)
 update service’s makespan

Algorithm 1. Workflow Scheduling

MaximumFlow(GS) // find maximum flow about workflow GS
 for each edge (si, sj) � ES[GS]

 do f[si, sj] ← 0
 f[sj, si] ← 0

while (there exists a path p from start service to end
service in the residual network GS)

 // min{cf(si, sj) : (si, sj) is in p}
 do cf(p) ← FindAugmentingPath(GS, source, sink)
 for each edge (si, sj) in p
 do f[si, sj] ← f[si, sj] + cf(p)
 f[sj, si] ← -f[si, sj]

Algorithm 2. Maximum Flow

304 J. Lee et al.

FindAugmentingPath(GS, source, sink)
for each vertex u � V[GS] – {source}

 do color[u] ← WHITE
color[source] ← GRAY
Enqueue(Q, source)
cf[source] ← -1
while Q ≠ 0

 u = Dequeue(Q)
// Adj[u] is sorted by sufferage value

 for each v � Adj[u]
do if (color[v] == WHITE &&

capacity[u][v] - flow[u][v] > 0)
 then color[v] ← GRAY
 Enqueue(Q, v)
 cf[v] = u
 color[u] ← BLACK
return cf;

Algorithm 3. Find Augmenting Path

For example, assume that Grid application A is composed of task TB, TC, and TD.
The number of service nodes for tasks TB, TC, and TD is 2, 3, and 1 respectively. The
linear workflow and the workflow mapped service are represented in Fig. 1. The edge
capacity of workflow is calculated by performance criteria.

Fig. 1. Linear workflow and workflow mapped service

Fig. 2. Result through performance modeling and maximum flow

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 305

Fig. 2(a) is a result through performance modeling and MaximumFlow in
Algorithm 2. The edge of workflow denotes ‘flow/capacity’. The capacity of 70
between As and SB,1 means that SB,1 can process requested job of As at the throughput
rate of 70. If a performance guarantee is violated, the workflow scheduler reschedules
after updating current capacity of workflow. Fig. 2(b) is the result of rescheduling. As
shown in Table 5, the maximum flow increases. If the maximum flow decreases, it
means that a new service node should be added.

Table 5. Service order and comparison of flow before rescheduling and flow after rescheduling

Service order Flow before rescheduling Flow after rescheduling
ASB1C2Dt 10 10
ASB1C1Dt 20 20
ASB1C3Dt 15 15
ASB2C1Dt 14 14
ASB2C2Dt 10 10
ASB2C3Dt 6 15

4 Experiment

Although experiments and performance evaluations need to be performed in a
practical large-scale grid platform, it is difficult to build a large-scale grid platform
and to experiment repeatedly. Therefore, we simulate our scheduling algorithm using
SimGrid toolkit and experiment performance of real grid application implemented a
service based virtual screening system in practical small-scale grid environments.

Simulation scenario is classified into two categories: adding service and adding
task. In this paper, we compare our scheduling with greedy heuristic scheduling that
allocates more tasks to node with better performance. Performance prediction
scheduling is greedy heuristic scheduling with performance model described in this
paper. Experiment workflow is a generic science workflow that searches, downloads,
processes data, and stores result in Fig. 1.

4.1 Performance Evaluation According to the Number of Nodes for Services

In Grid workflow, the number of nodes for service A requesting workflow is 1, the
number of nodes for service D collecting results is 1, the number of nodes for service
B is 3, and the number of nodes for service C is 5, 10, 15 in each experiments. The
number of tasks is 5,000. Fig. 3 shows the result of evaluation. As shown in Fig. 3,
our scheduling is better than other algorithms by 15% ~ 20%. The difference of
execution time between case that the number of nodes for service C is 10 and case
that the number of nodes for service C is 15 is small. It is because the collection of
service C could process mostly data from the collection of service B in the former.
Therefore, although the number of nodes for service increases in some collection of
service, the efficiency of performance doesn’t increase. Through our scheduling, we
predict a sudden change of efficiency in that the number of nodes for service C is 10.

306 J. Lee et al.

0

50

100

150

200

250

300

5 10 15

Number of nodes for service C

E
x
e
c
u
ti
o
n
 T
im
e
(
 x
 1
,
0
0
0
)

greedy heruistic

performance prediction

adaptive

Fig. 3. Result of performance evaluation according to the number of nodes for service C

4.2 Performance Evaluation According to the Number of Tasks

In Grid workflow, the number of nodes for service A requesting workflow is 1, the
number of nodes for service D collecting results is 1, the number of nodes for service
B is 3, and the number of nodes for service C is 10. The number of tasks is from
1,000 to 11,000 at intervals of 2,000. Fig. 4 shows the result of evaluation. As shown
in Fig. 4, our scheduling is better than other algorithms by 10% ~ 15%.

0

100

200

300

400

500

1 3 5 7 9 11

Number of tasks(x 1,000)

E
x
e
c
u
ti
o
n
 T
im
e
(
x
 1
,
0
0
0
) greedy heruistic

performance prediction
adaptive

Fig. 4. Result of performance evaluation according to the count of tasks

4.3 Performance Evaluation in Real Grid Application

We implemented a service-based virtual screening system which is one of large-scale
scientific applications that require large computing power and data storage capability.
A virtual screening is the process of reducing an unmanageable number of
compounds to a limited number of compounds for the target of interest by means of
computational techniques such as docking [10, 11]. Thus this application suits with
Grid computing technology which supports a large data intensive operation.

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 307

We experimented our virtual screening system in a testbed that consists of 15
computation nodes and 5 data nodes. We performed docking jobs with 30,000 ligand
molecules on a target receptor. Fig. 5 shows the comparison of execution times as the
number of docking jobs increases. We compared three different approaches to execute
docking jobs. The first approach is to execute docking jobs on only single node which
has the best computing performance. The second approach is to execute docking jobs
on selected 5 computation nodes. We selected 5 computation nodes according to high
computing performance. The third approach is to execute docking jobs using our Grid
service-based virtual screening system applied our scheduling. Fig. 5 shows that the
performance of our virtual screening system is better than other approaches. When
30,000 docking jobs were executed, the execution time of first approach was 587,541
seconds, the execution time of second approach was 221,516 seconds, and third
approach was 162,964 seconds.

Fig. 5. Comparison of execution time for three cases

5 Related Works

Grid Scheduling is a superscheduling[4] or metascheduling that is the process of
scheduling resource where that decision involves using multiple administrative
domains. Scheduling is classified into a static scheduling and a dynamic scheduling
according to a point of scheduling time. The static scheduling resolves the order of all
jobs before executing jobs. The dynamic scheduling can modify the order of jobs in
runtime.

In [5], Muthucumaru et al gives an overview of two types of mapping heuristics:
on-line and batch mode heuristic. These heuristics are dynamic mapping heuristics for
a class of independent tasks in heterogeneous distributed computing. In online mode,
mapper allocates tasks to resources as soon as it arrives at the mapper. In batch mode,
mapper collects tasks until calling mapping events and allocates tasks to resources
after calling mapping events. In particular, sufferage heuristic is newly proposed,

308 J. Lee et al.

which is different with min-min, max-min heuristic[6]. Sufferage value is defined as
difference between minimum earliest completion time and second earliest completion
time. In [7], Casanova et al extends sufferage heuristic as Xsufferage. In XSufferage,
the sufferage vaule is computed not with minimum earliest completion time, but with
cluster-level minimum earliest completion time, which is important in Grid
environment. In [8], Eduardo et al proposed the GridWay framework which executes
and schedules efficiently parameter sweep application in Grid environment. This
framework applied adaptive scheduling to reflect the dynamic Grid characteristic,
adaptive execution to migrate running jobs to better resource, and reuse of common
file to reduce file transfer overhead. [5] and [7] are a static scheduling and [8] is a
dynamic scheduling. But [5], [7], and [8] can’t support the form of workflow. In this
paper, we support the dynamic scheduling of dependent task using sufferage value.

6 Conclusion

In this paper, we proposed adaptive scheduling strategy for parallel execution of a
linear workflow considering dynamic resource in service-based Grids. We presented a
performance model using regression technique and an adaptive scheduling strategy
using maximum flow algorithm. Our experiments showed that our scheduling is better
than other algorithms.

In the future, we plan to investigate our scheduling strategy at commercial point of
view as shown in performance evaluation according to the number of nodes for
services. We also plan to work on applying not only linear workflow but also complex
workflow.

References

1. I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid : Enabling Scalable
Virtual Organizations, International Supercomputer Applications, Vol. 15, No. 3 (2001)

2. Ian Foster, and Carl Kesselman, The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers (1998)

3. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling, S.
Tuecke, From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring
& Evolution,

4. http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf, (2004)
5. J.M. Schopf, Ten Actions when SuperScheduling, Global Grid Forum Document GFD.04,

July (2001)
6. Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and

Richard F. Freund, Dynamic Matching and Scheduling of a Class of Independent Tasks
onto Heterogeneous Computing Systems, Proceedings of the 8th Workshop on
Heterogeneous Computing Systems (HCW '99), San Juan, Puerto Rico, Apr. (1999)

7. O. Ibarra and C. Kim, Heuristic Algorithms for Scheduling Independent Tasks on
Nonidentical Processors. Journal of the ACM, 24(2):280-289, (1977)

8. Casanova, H., Legrand, A., Zagorodnov, D., and Berman, F., Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments, Proceedings of the 9th
Heterogeneous Computing Workshop (HCW’00), pp. 349-363, (2000)

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 309

9. Eduardo Heudo, Ruben S. Montero, Ignacio M. Lorente, Experiences on Adaptive Grid
Scheduling of Parameter Sweep Applications, Proceedings of the 12th Euromicro
Conference on Parallel Distributed and Network-Based Processing(EUROMICRO-
PDP'04), (2004)

10. Lestor R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press,
(1962)

11. Jordi Mestres and Ronald Knegtel, Similarity versus docking in 3D virtual screening,
Journal of Perspectives in Drug Discovery and Design, Vol. 20, (2000)

12. Shoichet, Bodian, and Kuntz, Molecular docking using shape descriptors, Journal of
Computational Chemistry, Vol. 13, No. 3, pp. 380-397, (1992)

	Introduction
	Problem Statement
	Task Graph
	Service Graph
	Performance Criteria

	Adaptive Scheduling Using Dynamic Maximum Flow Algorithm
	Experiment
	Performance Evaluation According to the Number of Nodes for Services
	Performance Evaluation According to the Number of Tasks
	Performance Evaluation in Real Grid Application

	Related Works
	Conclusion
	References

