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Abstract. During the past several years, the grid application executed same jobs 
on one or more hosts in parallel, but the recent grid application is requested to 
execute different jobs linearly. That is, the grid application takes the form of 
workflow application. In general, efficient scheduling of workflow applications 
is based on heuristic scheduling method. The heuristic considering relation 
between hosts would improve execution time in workflow applications. But 
because of the heterogeneity and dynamic nature of grid resources, it is hard to 
predict the performance of grid application. In addition, it is necessary to deal 
with user’s QoS as like performance guarantee. In this paper, we propose a 
service model for predicting performance and an adaptive workflow scheduling 
strategy, which uses maximum flow algorithms for the relation of services and 
user’s QoS. Experimental results show that the performance of our proposed 
scheduling strategy is better than common-used greedy strategies.  

Keywords: adaptive grid scheduling, workflow, maximum flow. 

1   Introduction 

In the mid 1990s, Grid computing has emerged as an important new field, 
distinguished from conventional distributed computing by its focus on large-scale 
resource sharing, innovative applications, and high-performance orientation [1]. Grid 
computing system [2] consists of large sets of diverse, geographically distributed 
resources that are grouped into virtual computers for executing specific applications. 
In common Grid computing, resource components could be processes, processors 
within a computer, network interfaces, network connections, entire sites, database, file 
system and specific computers. Today, Grid computing offers the strongest low cost 
and high throughput solutions [1, 2] and is spotlighted as the key technology of the 
next generation Internet. Grid computing is used in fields as diverse as astronomy, 
biology, drug discovery, engineering, weather forecasting, and high-energy physics. 
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Recently, the Grid and Web Service are converging as WSRF (Web Service-Resource 
Framework)[3] that defines a system for creating stateful resources between Web 
services in terms of an implied resource pattern. The current methodology in Grid 
computing is service oriented architecture. 

In service-based Grids, Grid resources are virtualized as services(e.g., database, 
data transfer). So the Grid not only provides computational resource and data 
resource, but also supports logic application that cooperates with services integration 
with the composition of the Grid service. Instead of application executing a single job, 
Grid application consists of a collection of several dependency services. Therefore, 
many grid applications belong to the category of workflow application. Most of 
science and business grid applications take the form of linear workflow structure. 
That is, the science grid application is a parameter sweep application processed using 
same code for different data, and the business grid application is a transaction 
application that queries at databases, processes data, and stores in database. Because 
of processing data in parallel with extensive parameter bounds, workflow application 
is of benefit to performance. In service-based Grids, it is necessary to consider a 
relation of services for execution performance because a linear workflow application 
executed parallel jobs via several services on one or more hosts. 

It is easy for workflow structure not only to compose services but also to visualize, 
verify, schedule, execute, and monitor services. Many kinds of workflow 
management systems are developed for grid workflow applications. There are two 
steps for producing workflow. The first step is a service composition to use workflow 
language and the second step is a scheduling to map sub-task to service. In general, an 
efficient scheduling of workflow applications is based on heuristic scheduling 
method. The heuristic considering relation between hosts would improve execution 
time in workflow applications. But due to the heterogeneity and dynamic nature of 
grid resources, it is hard to predict the performance of grid application. In addition, it 
is necessary to deal with user’s QoS like performance guarantee. 

In this paper, we propose service model for predicting performance and adaptive 
workflow scheduling strategy, which uses maximum flow algorithms for considering 
the relation of services and user’s QoS. 

The rest of the paper is as follows. In section 2, we state a scheduling problem and 
propose a service model for predicting performance. Section 3 describes the novel 
strategy to execute the workflows adaptively. In section 4, we present an experimental 
evaluation of our scheduling by comparing it with existing scheduling strategies. 
Section 5 presents related works. In section 6, we conclude the paper and discuss 
some future works. 

2   Problem Statement 

Workflow scheduling system is to translate application task graph into service graph 
in computing environment. 

2.1   Task Graph 

A task graph is an abstract workflow that represents an application as a general model 
of directed acyclic graph. It is represented as follows; 
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GT = (VT, ET) 
VT : the set of tasks 
ET : the set of edges between tasks that represent a partial order among them 

The fact that an edge ei,j is a partial order between task vi and vj means that a task vj 
is executed after completing a task vi. In case a task vi and vj are a same parent, two 
task can be executed parallelly. Representing GT as matrix M of size vⅹv, di,i is a 
computation cost of vi, and di,j is a communication cost between vi and vj. In this 
paper, we assume that a task graph implies a start task and a end task. 

2.2   Service Graph 

A service graph is an directed weighted graph of services in grid computing 
environments. It is represented as follows. 

GS = (VS, ES) 
VS : {s1, s2, …, sn} the set of services that can be executed at available node 
ES : the set of edges between services 

A service graph is a complete connected graph. VS denotes a computation 
performance and ES denotes a communication performance between services. A k-th 
service node that executes service sj is sj,k. The computation cost of task vi at service 
si,k is wi,j,k. If service si,k can’t execute task vi, then wi,j,k = ∞. The communication cost 
between service node sm,k for task vi and sn,k for vj is ci,m,k|j,n,k. 

2.3   Performance Criteria 

Application completion time is consist of computation time and communication time. 
We assume that grid application executes task t1 and t2 sequentially. A task graph is 
composed with two nodes and one edge between them. That is, GT = ({t1, t2}, ET). For 
mapping this task graph to service graph, we have to search service s1 and s2 that can 
process task t1 and t2. That is GS = ({s1, s2}, ES). If service s1 completes before 
communicating with s2, completion time of this application is defined as follows. 

completion time = communication time(A, s1) + computation time(s1) + 
communication time(s1, s2) + computation time(s2) + communication time(s2, 
A) + computation time(A) 

(1) 

Grid application A invokes service s1 and the result of service s1 is sent to service 
s2. Service s2 processes a task and the result of service s2 is sent to grid application A. 
In practice, completion time is determined according to a node that a service is 
executed in. Therefore, completion time of a node about some service should be 
predicted and be applied for mapping task graph to service graph. 

For predicting completion time of grid service, it is necessary to select optimized 
service according to performance model described the characteristics of service and to 
compose workflow. In addition, we need to consider not only scheduling using 
information of physical resource, but also supporting user’s QoS. Hence, in this 
paper, the performance model is considered as follows. 
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 service static model : considering a static information of resources like CPU, 
memory, disk space, and network bandwidth.  

 service dynamic model : Owing to influencing service performance by 
resource capability directly, considering a dynamic information of resources 
like available CPU, available memory, available disk space, available network 
bandwidth, and network latency. We also consider the predicted resource 
status using service patterns like service reservation, frequency of service use, 
and service throughput. 

Since Grid is free of participation and withdrawal of a node, it is necessary that 
grid service scheduler predicts the performance of a service and applies it 
dynamically. In this paper, we use a statistical method to predict the performance of a 
service. Regression is a statistical method that supports relationships between 
variables and is an appropriate method for predicting an effect about a cause. In 
regression, the dependent variable( y ) that is an effect and the independent 

variable( x ) that is a cause denote as x� y . That is, the relation between x and y is 

represented as follows; 

y  = 0β  + x1β  + ε  (2) 

where 0β  is a constant; 1β  is a coefficient of regression; ε  is an error rate. 

After regression analysis, we can determine a relationship between a dependent 
variable and an independent variable. If we applied this regression technique with 
performance as a dependent variable and each resource status as an independent 
variable, we can predict the performance of a service that participates newly in Grids 
using existing regression coefficient. In our work, we use a multiple linear regression 
that allows the modeling of multiple independent variables, which are information of 
resources defined by service model in Grids. 

We consider static and dynamic physical elements ix  such as CPU, memory, disk 

space, network bandwidth, service reservation, frequency of service use in a service 
model. The service throughput ( sy ), the equation applied these elements to multiple 

regression, is as follows. 

sy  = 0β  + ∑
=

n

i
ii x

1

β  + ε  (3) 

where 0β  is a constant; iβ  is a coefficient of regression; n  is a count of elements; ε  

is an error rate. 
Table 1 is an example data for performance model using multiple linear regression 

that is executed in same service. The Independent variables are CPU, CPU available, 
memory available, disk available, and network bandwidth. The dependent variable is 
throughput. Table 2 is a model summary that multiple linear regression is done. As 
shown in Table 2, this model can be explained well because coefficient of 
determination(R Square) is 0.971. That is, the strength of the linear association 
between independent variables and dependent variable of this model is high. As 
shown in Table 3, F-test is 93.634 and significant probability is 0.000. Therefore, the 
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one of regression coefficients in the population is not 0 at least. Table 4 is regression 
coefficients about each independent variable. We can predict a throughput of new 
entrance node using these coefficients. 

Table 1. Example data for performance model 

CPU 
CPU 

available 
Memory 
available 

Disk 
available 

Network 
bandwidth 

Throughput 

1600 .80 234 3320 25 40 
1800 .40 346 4592 35 28 
2000 .60 78 9295 29 33 
2400 .40 321 2934 90 34 
1600 .50 398 2039 34 45 

… … … … … … 
3000 .30 455 3945 10 36 

Table 2. Model summary 

R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

.985(a) .971 .961 3.678

Table 3. ANOVA(Analysis Of Variance between groups) 

 
Sum of 
Squares 

df Mean Square F Sig. 

Regression 6333.602 5 1266.720 93.634 .000 
Residual 189.398 14 13.528    
Total 6523.000 19     

Table 4. Coefficients 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

  
  B 

Std. 
Error 

Beta 
t 

  
Sig. 

  

(Constant) -41.266 5.793  -7.124 .000 
CPU .016 .002 .510 8.863 .000 
CPU_available 64.981 5.261 .724 12.350 .000 
memory_available .026 .004 .339 5.826 .000 
disk_available .000 .000 .037 .704 .493 
network_bandwidth .015 .037 .022 .417 .683 
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3   Adaptive Scheduling Using Dynamic Maximum Flow Algorithm 

It is important to select a computation node and a data node for minimizing overall 
job completion time. It is necessary to minimize completion time for processing data 
and communication time between computation node and data node. Moreover, it is 
essential to optimize use of resource through scheduling algorithm. Our objective is to 
minimize overall job completion time and to optimize use of resource. For our 
objective, we present an adaptive scheduling using dynamic maximum flow algorithm 
that finds a flow of maximum value in flow network G with source s and sink t. 

The adaptive workflow scheduling algorithm presented in Algorithm 1 works as 
follows. The input of WorkflowScheduling in Algorithms 1 is task graph GT and 
service level agreement SLA which involve user’s QoS. GT is mapped to service 
graph GS by SLA and resource performance criteria. Then Algorithm 2 is invoked 
with GS. MaximumFlow in Algorithm 2 is based on Ford-Fulkerson method[9] which 
finds some augmenting path p and increases the flow f on each edge of p by the 
residual capacity cf(p). Algorithm 3 based on breadth-first search is to find 
augmenting path in residual network of GS. FindAugmentingPath in Algorithm 3 
assumes that the input graph GS is represented by adjacency lists in descending order 
by sufferage heuristic value. Migration in Algorithm 1 is a function that migrates the 
tasks through comparison of flow before rescheduling with flow after rescheduling if 
a performance guarantee is violated. After all tasks executed, scheduler updates 
service’s makespan(e.g. throughput) for performance criteria. 

WorkflowScheduling(GT, SLA) 
Gs ← Find available services satisfied SLA about GT 

    MaximumFlow(GS) 
    while all tasks not executed 
        do Fetch task  
           if a performance guarantee is violated 
               then do update Vs[Gs] 
                    MaximumFlow(Gs)       // rescheduling 
                    Migration(Gs, Gsprev) 
    update service’s makespan 

Algorithm 1. Workflow Scheduling 

MaximumFlow(GS) // find maximum flow about workflow GS 
  for each edge (si, sj) � ES[GS]  

        do f[si, sj] ← 0 
           f[sj, si] ← 0 

while (there exists a path p from start service to end  
service in the residual network GS) 

        // min{cf(si, sj) : (si, sj) is in p} 
        do cf(p) ← FindAugmentingPath(GS, source, sink)  
             for each edge (si, sj) in p 
                 do f[si, sj] ← f[si, sj] + cf(p) 
                    f[sj, si] ← -f[si, sj] 

Algorithm 2. Maximum Flow 
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FindAugmentingPath(GS, source, sink) 
for each vertex u � V[GS] – {source} 

        do color[u] ← WHITE     
color[source] ← GRAY 
Enqueue(Q, source) 
cf[source] ← -1 
while Q ≠ 0  

        u = Dequeue(Q) 
// Adj[u] is sorted by sufferage value 

        for each v � Adj[u]  
do if (color[v] == WHITE &&  

capacity[u][v] - flow[u][v] > 0) 
        then color[v] ← GRAY 
              Enqueue(Q, v) 
              cf[v] = u 
        color[u] ← BLACK 
return cf; 

Algorithm 3. Find Augmenting Path 

For example, assume that Grid application A is composed of task TB, TC, and TD. 
The number of service nodes for tasks TB, TC, and TD is 2, 3, and 1 respectively. The 
linear workflow and the workflow mapped service are represented in Fig. 1. The edge 
capacity of workflow is calculated by performance criteria.  

 

Fig. 1. Linear workflow and workflow mapped service 

 

Fig. 2. Result through performance modeling and maximum flow 
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Fig. 2(a) is a result through performance modeling and MaximumFlow in 
Algorithm 2. The edge of workflow denotes ‘flow/capacity’. The capacity of 70 
between As and SB,1 means that SB,1 can process requested job of As at the throughput 
rate of 70. If a performance guarantee is violated, the workflow scheduler reschedules 
after updating current capacity of workflow. Fig. 2(b) is the result of rescheduling. As 
shown in Table 5, the maximum flow increases. If the maximum flow decreases, it 
means that a new service node should be added. 

Table 5. Service order and comparison of flow before rescheduling and flow after rescheduling 

Service order Flow before rescheduling Flow after rescheduling 
ASB1C2Dt 10 10 
ASB1C1Dt 20 20 
ASB1C3Dt 15 15 
ASB2C1Dt 14 14 
ASB2C2Dt 10 10 
ASB2C3Dt 6 15 

4   Experiment 

Although experiments and performance evaluations need to be performed in a 
practical large-scale grid platform, it is difficult to build a large-scale grid platform 
and to experiment repeatedly. Therefore, we simulate our scheduling algorithm using 
SimGrid toolkit and experiment performance of real grid application implemented a 
service based virtual screening system in practical small-scale grid environments. 

Simulation scenario is classified into two categories: adding service and adding 
task. In this paper, we compare our scheduling with greedy heuristic scheduling that 
allocates more tasks to node with better performance. Performance prediction 
scheduling is greedy heuristic scheduling with performance model described in this 
paper. Experiment workflow is a generic science workflow that searches, downloads, 
processes data, and stores result in Fig. 1. 

4.1   Performance Evaluation According to the Number of Nodes for Services 

In Grid workflow, the number of nodes for service A requesting workflow is 1, the 
number of nodes for service D collecting results is 1, the number of nodes for service 
B is 3, and the number of nodes for service C is 5, 10, 15 in each experiments. The 
number of tasks is 5,000. Fig. 3 shows the result of evaluation. As shown in Fig. 3, 
our scheduling is better than other algorithms by 15% ~ 20%. The difference of 
execution time between case that the number of nodes for service C is 10 and case 
that the number of nodes for service C is 15 is small. It is because the collection of 
service C could process mostly data from the collection of service B in the former. 
Therefore, although the number of nodes for service increases in some collection of 
service, the efficiency of performance doesn’t increase. Through our scheduling, we 
predict a sudden change of efficiency in that the number of nodes for service C is 10. 
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Fig. 3. Result of performance evaluation according to the number of nodes for service C 

4.2   Performance Evaluation According to the Number of Tasks 

In Grid workflow, the number of nodes for service A requesting workflow is 1, the 
number of nodes for service D collecting results is 1, the number of nodes for service 
B is 3, and the number of nodes for service C is 10. The number of tasks is from 
1,000 to 11,000 at intervals of 2,000. Fig. 4 shows the result of evaluation. As shown 
in Fig. 4, our scheduling is better than other algorithms by 10% ~ 15%. 
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Fig. 4. Result of performance evaluation according to the count of tasks 

4.3   Performance Evaluation in Real Grid Application 

We implemented a service-based virtual screening system which is one of large-scale 
scientific applications that require large computing power and data storage capability. 
A virtual screening is the process of reducing an unmanageable number of 
compounds to a limited number of compounds for the target of interest by means of 
computational techniques such as docking [10, 11]. Thus this application suits with 
Grid computing technology which supports a large data intensive operation. 
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We experimented our virtual screening system in a testbed that consists of 15 
computation nodes and 5 data nodes. We performed docking jobs with 30,000 ligand 
molecules on a target receptor. Fig. 5 shows the comparison of execution times as the 
number of docking jobs increases. We compared three different approaches to execute 
docking jobs. The first approach is to execute docking jobs on only single node which 
has the best computing performance. The second approach is to execute docking jobs 
on selected 5 computation nodes. We selected 5 computation nodes according to high 
computing performance. The third approach is to execute docking jobs using our Grid 
service-based virtual screening system applied our scheduling. Fig. 5 shows that the 
performance of our virtual screening system is better than other approaches. When 
30,000 docking jobs were executed, the execution time of first approach was 587,541 
seconds, the execution time of second approach was 221,516 seconds, and third 
approach was 162,964 seconds. 

 

Fig. 5. Comparison of execution time for three cases 

5   Related Works 

Grid Scheduling is a superscheduling[4] or metascheduling that is the process of 
scheduling resource where that decision involves using multiple administrative 
domains. Scheduling is classified into a static scheduling and a dynamic scheduling 
according to a point of scheduling time. The static scheduling resolves the order of all 
jobs before executing jobs. The dynamic scheduling can modify the order of jobs in 
runtime. 

In [5], Muthucumaru et al gives an overview of two types of mapping heuristics: 
on-line and batch mode heuristic. These heuristics are dynamic mapping heuristics for 
a class of independent tasks in heterogeneous distributed computing. In online mode, 
mapper allocates tasks to resources as soon as it arrives at the mapper. In batch mode, 
mapper collects tasks until calling mapping events and allocates tasks to resources 
after calling mapping events. In particular, sufferage heuristic is newly proposed, 
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which is different with min-min, max-min heuristic[6]. Sufferage value is defined as 
difference between minimum earliest completion time and second earliest completion 
time. In [7], Casanova et al extends sufferage heuristic as Xsufferage. In XSufferage, 
the sufferage vaule is computed not with minimum earliest completion time, but with 
cluster-level minimum earliest completion time, which is important in Grid 
environment. In [8], Eduardo et al proposed the GridWay framework which executes 
and schedules efficiently parameter sweep application in Grid environment. This 
framework applied adaptive scheduling to reflect the dynamic Grid characteristic, 
adaptive execution to migrate running jobs to better resource, and reuse of common 
file to reduce file transfer overhead. [5] and [7] are a static scheduling and [8] is a 
dynamic scheduling. But [5], [7], and [8] can’t support the form of workflow. In this 
paper, we support the dynamic scheduling of dependent task using sufferage value. 

6   Conclusion 

In this paper, we proposed adaptive scheduling strategy for parallel execution of a 
linear workflow considering dynamic resource in service-based Grids. We presented a 
performance model using regression technique and an adaptive scheduling strategy 
using maximum flow algorithm. Our experiments showed that our scheduling is better 
than other algorithms. 

In the future, we plan to investigate our scheduling strategy at commercial point of 
view as shown in performance evaluation according to the number of nodes for 
services. We also plan to work on applying not only linear workflow but also complex 
workflow. 
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