
C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 286 – 297, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Self Managing Middleware for Dynamic Grids

Sachin Wasnik, Terence Harmer, Paul Donachy, Andrew Carson, Peter Wright,
John Hawkins, Christina Cunningham, and Ron Perrott

Belfast e-Science Centre, The Queen's University of Belfast,
Belfast, BT7 1NN, UK

{s.wasnik, t.harmer, p.donachy, a.carson, pwright04,
j.hawkins, christina.cunningham, r.perrott}@qub.ac.uk

Abstract. As grid infrastructures become more dynamic in order to cope with
the uncertainty of demand, they are becoming extremely difficult to manage. At
the Belfast e-Science Centre, we are attempting to address this issue by devel-
oping Self Managing Grid Middleware. This paper gives an overview of the
middleware and focuses on the design, implementation and evaluation of a Re-
source Manager. Also in this paper we will see how our approach, which is
based on federated UDDI registries, has enabled us to implement some of the
desired features of next generation grid software.

Keywords: Grid Computing, UDDI Registries, Grid Resource Manager, SLA.

1 Introduction

Most production Grids [1], irrespective of whether they are being deployed in com-
mercial or academic environments, must cope with variation in demand. A goal for
next generation Grid research and development is to produce a “...fully distributed,
dynamically reconfigurable, scalable and autonomous infrastructure to provide loca-
tion independent, pervasive, reliable, secure and efficient access to a coordinated set
of services encapsulating and virtualizing resources (computing power, store, instru-
ments, data etc) in order to generate knowledge”, according to the CoreGrid European
Network of Excellence [2]. There has been a significant improvement in focus of the
vision of Grid Computing [3] since the term was introduced. A vital improvement still
to be implemented satisfactorily is to make Grid Computing more dynamic so that it
is able to cope with uncertainty of demand. Some recent work including HAND [4]
and Dynamic Deployments [5] has focused on dynamically deploying and scaling
Grids in production as and when needed.

The term “autonomic computing” is representative of a vast and somewhat tangled
hierarchy of natural self governing systems, which consist of many interacting, self
governing components that are often compromised of a large number of interacting,
autonomous self governing components at the next level down. According to the
vision of Autonomic Computing [6], the self-managing systems feature automatic
mechanisms for operator free maintenance of stand alone and distributed resources,
including self-configuration, self optimization, self-healing, self-protection and

 Self Managing Middleware for Dynamic Grids 287

others. This vision overlaps in its’ goals with the pursuits of adaptability and depend-
ability as described above in the recent definition of Grid Computing.

In particular, the adaptability of Grids can be interpreted as self-management on a
different scale (and environment), thus making it worthwhile to exploit the discovered
approaches in both domains. On the other hand, dependability mechanisms share a lot
of scenario problems and approaches with self-management mechanisms (e.g. auto-
matic fault recovery and preventive management actions such as software rejuvena-
tion), thus calling for a convergence of research in these areas.

Trends in automating Service Level Agreement (SLA) management [7], from
SLA creation to the performance monitoring of SLA’s, can help the Resource Man-
ager to sense the exact needs of users. With the help of an SLA Manager, middle-
ware can act as a biological system which can sense and respond to the needs of the
user. This should enable the effective utilization of resources by dynamically deploy-
ing, un-deploying and reconfiguring resources as and when needed. In such an infra-
structure, Resource Managers are not only responsible for managing the resources,
but also for selecting the resources on which the applications are to be deployed on.
Thus the Resource Manager can act as the backbone of the self managing grid
middleware.

Although a centralized Resource Manager can be very useful for a small number
of resources, it may not be able to scale as the number of resources increases. A
centralized Resource Manager acts as single point of failure and is vulnerable to
security attacks. A decentralized Resource Manager can provide fault tolerance for
the middleware by devolving responsibilities to a number of Resource Managers
interacting with each other. A decentralized Resource Manager provides us with the
necessary backbone of the next generation grid middleware but it is also difficult to
maintain. This is where the self managing approach can assist in enabling the devel-
opment of middleware which is self configuring, self healing, self optimizing and
self protect.

The rest of the paper is organized as follows. Section 2 describes the architecture of
the Self Managing Middleware. Section 3 describes the design and implementation of
the federated Registries. Section 4 describes a use case for the middleware followed
by the conclusion in section 5.

2 Self Managed Grid Middleware

According to our view of an infrastructure, infrastructure components are organised
or grouped into domains. The name “domain” attempts to indicate that it is an area
of responsibility and also serves to separate this infrastructural component view
from other users and organizations ideas such as virtual organizations—a virtual
organization might, for example, be built upon a collection of domains as shown in
Figure 1.

A domain is a group of computing resources that it is natural to manage collec-
tively; for example, it could be all of the resources in a small organization or
it could be the resources in a particular computing rack that share a network

288 S. Wasnik et al.

Fig. 1. Different organizations A, B and C forming a virtual organization

connection via a shared network connection or switch. The identification and selec-
tion of domains is performed as part of infrastructure design with the intention of
identifying natural organizational units. A domain is our mechanism for providing a
simple and distributed collection of managed infrastructure components.

The (self) management of grid resources is performed at the domain level. A do-
main provides a mechanism by which a group of related resources (i.e. services or
applications) can be deployed and managed.

A domain may have sub domains. This hierarchical view enables requests to be di-
rected to high-level management components and split between the organization units
that are available within a domain—these high level components may enforce local
management rules or act as brokers by selecting the best available local domains for
deployment.

As shown in figure 2, each domain is managed using the core components of a
Software Manager, a Security Manager, a Software Repository and a Resource Man-
ager. A Resource Manger at the domain level is based on a single Registry but at the
Grid level, Resource Manager is based on Registry Federation. Resource Manager at
the grid level appears as a single logical Resource Manager of all the domains, to
which a software manager can issue a single request against multiple Resource Man-
ager and get a single response that contains results based on all the data contained in
all the registries.

 Self Managing Middleware for Dynamic Grids 289

Fig. 2. Managed nodes being directed by the Managers

2.1 Software Manager

The Software Manager component takes a deployment request and performs the
specified deployment. A deployment request consists of the deployment action
and a configuration definition that enables management of the deployment action.
A deployment action can be the installation of software, the execution of a par-
ticular application, the deployment of a web/grid service, the un-deployment of an
application or web/grid service, the storage of a data source such as a database,
the un-deployment of a data source, the recovery of the data held in a data source,
or the deployment of a security definition, for example the modification of fire-
wall rules.

The Software Manager may require several deployment actions to fulfil a particular
user deployment action; for example, the deployment of a web service may require
the deployment of a specific Java environment, a web service container application,
applications or web services to support the user web service.

A portal provides a user interface where a user can upload a package by supply-
ing its configuration file—a web service provides the same functionality for an
application.

A deployment request may be in one of the following formats:

− A war file
− An RPM
− A resource bundle for Globus container
− A resource bundle for OMII container
− A security configuration schema instance
− A data source bundle
− A meta tar file containing a combination of the above resources

The configuration definition specifies the required environment for the deployment.
The action of the Software Manager is to select a suitable host, deploy software to
that host that is required, deploy a security and the resources deployed.

290 S. Wasnik et al.

An example configuration file for deploying a simple web service might look like
this:

<config>
 <bundle>
 <summary>
 <bundleType>rpm</bundleType>
 <systemPackageInfo>
 <vendor>none</vendor>
 <name>gridftp_transfer</name>
 <version>2.1</version>
 <description>GridFTP</description>
 </systemPackageInfo>
 <validFrom>12/02/07</validFrom>
 <validTo>12/03/08</validTo>
 </summary>
 <firewall/>
 <callback><url/></callback>
…

…
 <dependencies>
 <hardware>
 <cpu>
 <speed>1500</speed>
 </cpu>
 <memory>512</memory>
 <storage>
 <freeSpace>15</freeSpace>
 <raid>5</raid>
 </storage>
 </hardware>
 <software/>
 </dependencies>
 </bundle>
</config>

2.2 Security Manager

The Security Manager is responsible for configuring and maintaining security on
infrastructure components—currently this involves the deployment of digital certifi-
cates to enable user and host authentication, updating certificate revocation lists and
defining firewall rules.

The Security Manager keeps track of the status of the firewall on each of the man-
aged nodes with the help of an agent installed on them. When a service or application
being deployed has a particular security requirement, the Software Manager sends a
request to the infrastructure component of the Security Manager which performs the
necessary security modifications. A security modification that conflicts with the basic
security rules defined for an infrastructure component will cause a deployment re-
quest to be rejected; a modification that conflicts with rules deployed to support other
applications will result in a different infrastructure component being selected as the
deployment target. When a service or application is un-deployed, the security modi-
fications are also un-deployed.

2.3 Software Repository

A Software Repository is maintained to hold different versions of applications and
services that can be specified as software dependencies in the configuration file as
shown above. When a user submits a configuration file for deployment to the soft-
ware manager, the Software Repository provides the software to carry out the de-
ployment action. For example, a deployment of war file needs java and a web service
container. In this case war file will be provided by the user and the software reposi-
tory will provide dependent packages of java and web service container.

 Self Managing Middleware for Dynamic Grids 291

3 Resource Manager

The convergence of grid computing and service oriented computing has enabled the
service registries to take on the role of a Resource Manager [8]. Job scheduling in grid
environments has taken a new form relating to the interaction between the service
provider and the service consumer, which is shown here in Figure 3.

Fig. 3. Interaction diagram showing the interactions between the Service Provider and the
Service Consumer

As the user demand on Grids becomes more agile and dynamic, service discovery
using static information is not enough and a need emerges for storing Quality of Ser-
vice (QoS) information inside service registries as well as a complete abstract map-
ping of compute resources. The compute resources should be mapped in such a way
so as to allow a consistent view and management of the resources and this mapping
may vary across different infrastructures.

3.1 Resource Mapping

The GLUE Schema [9] is an abstract modelling for Grid resources and mapping to
concrete schemas that is being used by most of the production Grids. Glue Schema is
widely used in most of the production grids. It has been integrated in number of Grid
middleware such as EGEE [10], LCG [11], OSG [12], Globus [13] and NorduGrid
[14]. We have represented the GLUE Schema as shown in Figure 4, inside the service
registry. A number of specifications for service registries such as UDDI [15], ebXml
[16] are available and their implementations are being used for web/grid service dis-
covery. For our middleware we chose the Universal Description, Discovery and Inte-
gration (UDDI) registry.

A web/grid service is represented inside the UDDI registry as a Business Service.
A service runs within a compute resource. These compute resources are mapped as
Business Entity inside the UDDI registry in a similar way as if they own the service.

292 S. Wasnik et al.

Fig. 4. GLUE Schema

As described in section 2, a site which consists of compute and storage resource is
considered as domain which is represented as a business entity. This site business
entity can have one or more compute resources and storage resources. The relation-
ship between the machine business entity and the service container business entity is
represented as a parent-child relation by using publisher assertions.

3.2 Architecture

An analysis of the individual and collective state of the compute resources can deter-
mine the performance of a Grid and enable (self) management activities to respond in
an efficient and directed manner; for example, if the Grid is performing poorly then
the Resource Manager should identify the compute resources which are contributing
to the poor performance and enable the activation of a reactive procedure. The
Resource Manager is named as Open Grid Manager (OGM). To achieve the above
objective, the OGM for each domain is composed number of components, namely

1) GridManagerAgents (GMA)
2) GridManagerServer (GMS)
3) Web based User Interface (GMUI)
4) UDDI Registry

 Self Managing Middleware for Dynamic Grids 293

Fig. 5. Architecture of Open Grid Manager (OGM)

The GridManagerServer consists of two services – a Collector Service and a Query
Service. The GridManagerAgents are responsible for deducing a machine’s state and
reporting this to a Collector Service. The Collector Service collects state data from
nodes in a distributed environment and forwards this to the UDDI registry.

Each Managed Node registers itself by sending core information to the Collector
Service with the help of installed GridManagerAgent. The process of registration is
carried out by following steps as shown in the Interaction diagram Figure 6.

1) GridManagerAgent sends the core information to the Collector Service.
2) Collector Service of the GridManagerServer, upon receiving the core information

address, makes a create Business Entity call to the UDDI registry.
3) UDDI registry creates a Business Entity and sends back the business key to the

Collector Service.
4) Collector Service sends the Business Key back to the GridManagerAgent.

The GridManagerAgent uses the same Business key to continuously update the Busi-
ness Entity with dynamic information and Provider information. The process of up-
date follows the same steps. The frequency of update is configured via the GridMan-
agerAgent’s configuration file.

Apart from the resource information, a collector service also stores information
about deployments and un-deployments sent by the Software Manager which is con-
sidered as static data, as it doesn’t change frequently. Whenever a deployment request
is made to the Software Manager, the manager sends the information about the de-
ployment request to the Collector Service. Upon receiving the deployment request
and the IP address of the machine on which it is to be deployed, the Collector Service
creates a business entity with the resource name, which is a child of the Business
Entity representing the machine on which it is deployed.

294 S. Wasnik et al.

Fig. 6. Interaction between the different components of OGM

For example, while deploying packages such as Grid-FTP, the Software Manager
sends information such as the port on which the deployed packages will be running, a
username and their associated credentials. When the Collector Service receives this
information, it is stored inside the UDDI registry as a Business Entity. These Business
Entities have descriptions of transport packages and are children of the Machine En-
tity on which they are installed.

The Query Service is responsible for answering the queries sent by the software
manager. The Software Manager can send queries:

1) To check which machines satisfy certain hardware requirements.
2) To ascertain what packages are already deployed on a given machine. This can

help the software manager to discover which machines satisfy the software de-
pendency requirements of a given package to be installed.

To make the domain fault tolerant, the domain operator can keep a backup of their
domain registries using database mirroring. In case of a failure of the Resource Man-
ager in a particular domain, a Collector Service and a Query Service is installed and
configured to use the stored backup data. Thus the domain manager can roll back to
its state just before the failure.

3.3 Federation of Registry

In large distributed grid environments, a single registry can degrade the performance
of the whole system as number of clients becomes too large. Also, it becomes a single
point of failure, as the whole system depends on the single registry. To make the sys-
tem more scalable, multiple registries should be utilized.

The latest UDDI version 3 [17] specifications promotes a replication model of data
for multiple registries to enable a single view of multiple registries; such a replication
model is not suited to the grid environment.

It is preferable that each domain in the federation would have complete autonomy
of the data related to the domain. Each domain operator should be able to configure
what data to share and with whom it is to be shared. Thus replication between regis-
tries owned by multiple independent operators is more complex but more relevant in a

GMA GMS Registry

Core

Dynamic

Providers

GMUI

1 2

3 4

 Self Managing Middleware for Dynamic Grids 295

Grid environment which is targeted at cooperating yet independent stake holders.
Such a setup requires communication between individual registries to synchronise
registration data.

Replication adds communication traffic between the registries for keeping registra-
tion data in sync. There is a trade-off between the amount of traffic and the timeliness
of the replicated data. If changes to the registration data are propagated to all regis-
tries immediately, all registries will have a more or less consistent and current view of
the service setup, resulting in a large amount of traffic between the registries. If the
registration updates are propagated less frequently and in batches the traffic size de-
creases (as communication set-up costs are averaged over all changes), but registries
will be out of sync for some time. Depending on the application domain, inconsisten-
cies may or may not be tolerable.

Although replication enables scalability, the load is not distributed automatically.
Registration is performed at the domain registry but queries can arrive at any of the
participating registries. Which registry is to be used is decided by the Query Peer.
Load distribution is taken care by the cluster of Query Peers, each of which maintains
a list of possible registries. After initial setup, the list could be maintained by auto-
matically updating it with the information from the registry to use.

Each replicated registry keeps a copy of the complete registration data of the whole
system. The advantage is that every registry can answer a query by just looking at its
database. However a disadvantage of this approach is the large amount of data which
may be kept at every site. In our approach, each registry keeps only a subset of the
registration data and can only answer query relating to that subset. The data distribu-
tion is based on locality.

As the registration data is distributed across registries, multiple registries are in-
volved in answering a query. Orchestrating the devolved registries is performed by
the Query Peer which knows all the registries that have answers to their query.

4 Use Case

As part of its core business, a Financial Company analyses Stock Market data from
each of the world’s main Stock Exchanges. This depends heavily on process and data
intensive computations for Risk Management purposes. Feeds are received from each
of the exchanges which are fed into a high performance financial database. A number
of databases are also maintained containing historical financial data. A number of
financial calculations are performed, such as Implied Volatility calculations, on each
portfolio managed by the company using the data held in each of the databases.

This system works well for the company on a day-to-day basis. However, to allow
them to react more quickly to changes in stock prices as a result of unforeseen major
world events, the company would like the option to bring in additional computation
power and resources as required. This would enable the Financial Company to react
more quickly than their competitors, performing all the additional calculations re-
quired to obtain results in near real time, thus gaining a market advantage for their
clients.

A system such as the one provided by the Self Managing Middleware described in
this paper would clearly benefit this company when they need to react quickly to

296 S. Wasnik et al.

unpredictable events. Once the increased activity within the stock exchanges has been
identified, the company could increase their computational power by quickly deploy-
ing additional services to a 3rd party hardware provider and running some calculations
from there. This would require transport services to be deployed both at the com-
pany’s home location and the 3rd party hardware provider’s location so that the high
performance financial databases could be deployed onto the additional machines.
Three databases are required to perform the calculations. One database is required for
capturing the data from the live feeds, one database for the intra-day data and another
database where historical data is stored. Services which undertake the calculations
could then be deployed and initiated, the various calculations performed and the re-
sults transported back to the Financial Company for dissemination or use by another
application. When the additional capacity was no longer required, the services and
databases deployed to the 3rd party hardware provider would be un-deployed.

The Financial Company would be able to impose certain conditions on where their
data and services were deployed to. Certain financial regulations imposed upon the
Financial Company dictate that the data cannot leave the United Kingdom. The Fi-
nancial Company may also impose certain restrictions such as ‘Don’t deploy services
or data onto machines owned or managed by one of our competitors’. Information
such as this can be included in the configuration file sent with the bundle to be de-
ployed. The Self Managing Middleware enables the Company to have immediate
access to additional computational power when required without having to maintain
this hardware on a day to day basis.

Secure on-demand provisioning of Risk Management capabilities represents a real
and valuable next step for the financial services industry to increase competitiveness
and reduce costs. It is also relevant to service provision and consultancy companies
currently competing in the international market.

5 Conclusion

In this paper we have discussed the use of Self Managing Software and a Resource
Manager to enable the management and control of large-scale grid infrastructures. In
the Belfast e-Science centre we have deployed this software in the field for approxi-
mately a year and it is an integral part of the testing development of grid of our large-
scale commercial projects.

References

1. Foster, I., Gieraltowski, J., Gose, S., et al, : The Grid2003 Production Grid: Principles and
Practice. Proc. 13th IEEE Intl. Symposium on High Performance Distributed Computing
(2004) 236–245.

2. http://www.coregrid.net
3. Foster, I., Kesselman, C., Nick, J., Tuecke, S., : The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Open Grid Service Infra-
structure WG, Global Grid Forum (2002).

4. Qi, Li., Foster, I., Gawor, J.,: HAND: Highly Available Dynamic Deployment Infrastruc-
ture for Globus Toolkit 4. Submitted for publication (2006)

 Self Managing Middleware for Dynamic Grids 297

5. Watson, P., Fowler, C., Kubicek, C., et al, : Dynamically Deploying Web Services on a
Grid using Dynasoar. Proc. 13th IEEE Intl. Symposium on Object And Component-
Oriented Real-Time Distributed Computing. ISORC 2006, April (2006)

6. Kephert, J., Chess., D. : The Vision of Autonomic Computing. Computer. Vol. 36 Issue 1.
(2003)

7. Sahai, A., Durante, A., Machiraju, V. : Towards automated SLA management for web ser-
vices. Research Report HPL-2001-310(R.1) Hewlett-Packard laboratories Palo Alto.
(2002)

8. Joseph, J., Ernest, M., Fellenstein, C.: Evolution of Grid Computing architecture and Grid
adoption models. IBM Syst. J. 43, 624-625 (2004)

9. Andreozzi, S., Burke S., et al: GLUE Schema Specification version 1.2 (2005)
10. Enabling Grids for E-sciencE Project http://www.eu-egee.org/
11. LHC Computing Grid Project http://lcg.web.cern.ch/LCG/
12. Open Science Grid http://www.opensciencegrid.org/
13. http://www.globus.org/
14. http://www.nordugrid.org/
15. Bellwood, T., UDDI Version 2.04 API Specification
16. http://www.ebxml.org
17. Bellwood, T., UDDI Version 3.0 Spec Technical Committee Specification July (2002)

	Introduction
	Self Managed Grid Middleware
	Software Manager
	Security Manager
	Software Repository

	Resource Manager
	Resource Mapping
	Architecture
	Federation of Registry

	Use Case
	Conclusion
	References

