
Optimizing Server Placement for QoS
Requirements in Hierarchical Grid Environments

Chien-Min Wang1, Chun-Chen Hsu2, Pangfeng Liu2,
Hsi-Min Chen3, and Jan-Jan Wu1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.
{cmwang,wuj}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan, R.O.C.

{d95006,pangfeng}@csie.ntu.edu.tw
3 Department of Computer Science and Information Engineering, National Central

University, Taoyuan, Taiwan, R.O.C.
seeme@selab.csie.ncu.edu.tw

Abstract. This paper focuses on two problems related to QoS-aware
I/O server placement in hierarchical Grid environments. Given a hi-
erarchical network with requests from clients, the network latencies of
links, constraints on servers’ capabilities and the service quality require-
ment, the solution to the minimum server placement problem attempts
to place the minimum number of servers that meet both the constrains
on servers’ capabilities and the service quality requirement. As our model
considers both the different capabilities of servers and the network la-
tencies, it is more general than similar works in the literatures. Instead
of using a heuristic approach, we propose an optimal algorithm based
on dynamic programming to solve the problem. We also consider the
optimal service quality problem, which tries to place a given number of
servers appropriately so that the maximum expected response time is
minimized. We prove that an optimal server placement can be achieved
by combining the dynamic programming algorithm with a binary search
on the service quality requirement. The simulation results clearly show
the improvement in the number of servers and the maximum expected
response time.

1 Introduction

Grid technologies enable scientific applications to utilize a wide variety of dis-
tributed computing and data resources [1]. A Data Grid is a distributed storage
infrastructure that integrates distributed, independently managed data resources.
It addresses the problems of storage and data management, data transfers and
data access optimization, while maintaining high reliability and availability of
the data. In recent years, a number of Data Grid projects [2,3] have emerged in
various disciplines.

One of the research issues in Data Grid is the efficiency of data access. One
way of efficient data access is to distribute multiple copies of a file across different

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 181–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 C.-M. Wang et al.

server sites in the grid system. Researches [4,5,6,7,8,9] have shown that file repli-
cation can improve the performance of the applications.

The existing works focus on how to distribute the file replicas in Data Grid in
order to optimize different criteria such as I/O operation costs [5], mean access
latencies [8] and bandwidth consumption [9]. However, few works use the quality
of services as an performance metric of Data Grid. We believe the service quality
is also an important performance metric in Data Grid due to the dynamic nature
in the grid environment. In [10,11], quality of service is considered. Those works,
however, fail to take the heterogeneity of servers’ capabilities into consideration.
That is, in those works, servers are assumed to be able to serve all I/O requests
it received. This assumption omits one of the characteristics in grid computing
infrastructure: the heterogeneity of its nature. In an early work by Wang [12],
they considered the servers’ capabilities when minimizing the number of servers.

In this paper, we focus on two QoS-aware I/O server placement problems in
hierarchical Grid environments which consider the service quality requirement,
the capabilities of servers and the network latencies. As our model consider both
the different capabilities of servers and the network latencies, it is more general
than similar works in the literatures. The minimum server placement problem
asks how to place the minimum number of servers to meet both the constrains on
servers’ capabilities and the service quality requirement. We propose an optimal
algorithm based on dynamic programming to solve this problem. We also con-
sider the optimal service quality problem, which tries to place a given number of
servers appropriately so that the maximum expected response time is minimized.
We prove that such a server placement can be achieved by combining the dy-
namic programming algorithm with a binary search on the maximum expected
response time of servers. The experimental results clearly show the improvement
in the number of servers and the maximum expected response time.

2 The System Model

In this paper we use a hierarchical Grid model, one of the most common archi-
tectures in current use [7,9,10,11,12,13]. Consider Fig. 1 as an example. Given a
tree T = (V, E), V is the set of sites and E ∈ V × V represents network links
between sites. A distance duv associated with each edge (u, v) ∈ E represents
the latency of the network link between sites u and v. We may further extend
the definition of duv as the latency of a shortest path between any two sites u
and v.

Leaf nodes represent client sites that send out I/O requests. The root node is
assumed to be the I/O server that stores the master copies of all files. Without
loss of generality, we assume that the root node is the site 0. Intermediate nodes
can be either routers for network communications or I/O servers that store file
replicas. We assume that, initially, only one copy (i.e., the master copy) of a file
exists at the root site, as in [9,10,11,12,13]. Let Ti be the sub-tree rooted at node i.

Associated with each client site i, there is a parameter ri that represents the
arrival rate of read requests for client site i. A data request travels upward from

Optimizing Server Placement for QoS Requirements 183

Site 0

Site 5Site 4 Site 6 Site 7

Site 10 Site 11 Site 12 Site 13

Site 3

Site 2

Site 8

Site 1

Site 9

Fig. 1. The hierarchical Grid model

a client site and passes through routers until it reaches an I/O server on the
path. Upon receiving the request, the I/O server sends the requested file back to
the client site if it owns a copy of the requested file. Otherwise, it forwards the
request to its parent server. This process continues up the hierarchy recursively
until a node that has the requested file is encountered or the root node is reached.
The network latency of a I/O request from a client site to a server site can be
computed as the sum of the network latencies of all intermediate links between
both sites. The root server might update the contents of a file. For each update,
corresponding update requests are sent to the other I/O servers to maintain file
consistency. Let u be the arrival rate of update requests from the root server.

For each server site j, μ′
j and λ′

j are represented as the service rate and the
arrival rate of I/O requests of server site j respectively. λ′

j can be computed as:
λ′

j =
∑

i∈Cj
ri + u, where Cj is the set of clients served by server site j. We

assume each server in the grid system is a M/M/1 queueing system. Thus, the
expected waiting time at server j will be 1/(μ′

j − λ′
j) = 1/(μ′

j − u −
∑

i∈Cj
ri).

To simplify the notations, we will use μj = μ′
j − u and λj =

∑
i∈Cj

ri as the
service rate and the arrival rate of server site j throughout this paper.

μj and λj will be used to decide the expected response times of requests it
served. Suppose the I/O requests from site i are served by server j. The expected
response time of a request from site i can be defined as the sum of the network
latencies in the path and the server j’s expected waiting time, i.e., dij + 1

μj−λj
.

Given the service quality requirement t, a server site j must satisfy the follow-
ing conditions: (1) the arrival rate of all requests it served is less than its service
rate, i.e., λj < μj and (2) the expected response times of all requests it served
are less than or equal to t, i.e., maxi∈Cj {dij + 1

μj−λj
} ≤ t, where Cj is the set

of clients served by server site j. Let the expected response time of serverj be
the maximum expected response time of requests it served.

3 The Minimum Server Placement Problem

In this section, we formally define the minimum server placement problem and
introduce our optimal algorithm to this problem. Our first problem is to place
the minimum number of I/O servers that will satisfy capability constrains of
servers as well as the service quality requirement from clients.

184 C.-M. Wang et al.

Definition 1. Given the network topology, network latencies, request arrival
rates, I/O service rates and the service quality requirement, the minimum server
placement problem tries to place the minimum number of servers such that the
expected response time of any request is less than or equal to the service quality
requirement.

Before introducing the optimal algorithm, we first give definitions on three basic
functions as follows:

Definition 2. Let λ(i, m, d, t) be the minimum arrival rate of requests that reach
node i among all the server placements that meet the following three conditions.

1. At most m servers are placed in Ti − {i}
2. The expected response time of any request served by these servers must be

less than or equal to t.
3. If requests that reach node i exist, the maximum latency of these requests to

node i must be less than or equal to d.

Definition 3. Let ω(i, m, d, t) be the minimum arrival rate of leakage requests
that pass through node i among all the server placements that meet the following
three conditions.

1. At most m servers are placed in Ti.
2. The expected response time of any request served by these servers must be

less than or equal to t.
3. If leakage requests that pass through node i exist, the maximum latency of

these leakage requests to node i must be less than or equal to d.

Definition 4. Ω(i, m, d, t) is an optimal server placement that meets all the
requirements for ω(i, m, d, t).

Leakage requests that pass through node i are those requests generated by leaf
nodes in the sub-tree rooted at node i, but not served by servers in that sub-tree.
Such requests must be served by a server above node i in the hierarchy. Hence, it is
desirable to minimize the arrival rate of these leakage requests. Depending on the
server placement, the arrival rate of leakage requests may changes. ω(i, m, d, t)
represents the minimum arrival rate of leakage requests among all possible server
placements that satisfy the above three conditions while Ω(i, m, d, t) represents
an optimal server placement. If no server placement satisfy the above three con-
ditions, ω(i, m, d, t) simply returns null. Let n be the number of nodes in the grid
system. By definition, we can derive the following lemmas.

Lemma 1. ω(i, m1, d, t) ≤ ω(i, m2, d, t) for any node i, m1 ≥ m2 ≥ 0, d ≥ 0
and t ≥ 0.

Lemma 2. ω(i, m, d, t1) ≤ ω(i, m, d, t2) for any node i, m ≥ 0, d ≥ 0 and
t1 ≥ t2 ≥ 0.

Lemma 3. ω(i, m, d1, t) ≤ ω(i, m, d2, t) for any node i, m ≥ 0, d1 ≥ d2 ≥ 0 and
t ≥ 0.

Optimizing Server Placement for QoS Requirements 185

Lemma 4. If ω(i, m, d1, t) = 0 for some d1, then ω(i, m, d, t) = 0 for any d ≥ 0.

Based on the above lemmas, theorems for computing the minimum arrival rate of
leakage requests can be derived. We show that it can be computed in a recursive
manner.

Theorem 1. If node i is a leaf node, then ω(i, m, d, t) = λi and Ω(i, m, d, t) is
an empty set for 0 ≤ m ≤ n, d ≥ 0 and t ≥ 0.

Proof. Since a leaf node cannot be a server, all requests generated by a client
site will travel up the tree toward the leaf node’s parent. In addition, the latency
to node i must be 0. By definition, ω(i, m, d, t) = λi and Ω(i, m, d, t) is an empty
set for 0 ≤ m ≤ n, d ≥ 0 and t ≥ 0.

Theorem 2. For an intermediate node i with two child nodes, j and k, we can
derive:

λ(i, m, d, t) = min0≤r≤m{ω(j, r, d − dji, t) + ω(k, m − r, d − dki, t)}
ω(i, m, d, t) = 0 if there exists 0 ≤ d′ ≤ t such that

λ(i, m − 1, d′, t) + 1/(t − d′) ≤ μi.
ω(i, m, d, t) = λ(i, m, d, t), otherwise.

Proof. For node i, there are two possibilities for an optimal placement of at
most m servers:

Case 1: A server is placed on node i. At most m − 1 servers can be placed on Tj

and Tk. Suppose that, in an optimal server placement, there are p servers on Tj

and q servers on Tk, as shown in Fig. 2(a). Obviously, we have 0 ≤ p, q ≤ m − 1

j i
0

10ω (j ,p , d−d , t)

 (j ,q , d−d , t)ω

j i
2

1
ij

ω (i , m, d, t)

λ (i ,p , d, t)1 2

 (i ,p , d, t)λ

ikij

Sitej Sitek

(i, m, d, t) = 0ω

ω(j, p, d−d , t)

ji(j, p, d−d , t)ω

ω(i, m, d, t) = 0

kSitejSite

Sitej Sitek

(i, m, d, t) = 0ω

j0Site

j1Site

j2Site

iSite

Site jk−1

j0Site j1Site j2Site Site jk−1

iSite

j i
k−1

 (j ,q , d−d , t)

 (j ,q , d−d , t)

(k, m−1−p, d−d , t)

(e)

 (i ,p +q , d, t)λ

0 1

(d)

(c)

Sitei iμ

2ω

(b)

μiiSite

2ω1ω

(a)

Sitei iμ

...

...

k−1 k−1k−1

 (i ,p , d, t)λk−2 k−1 k−1 k−1

22ω

1 1ω

ω

Fig. 2. (a), (b) and (c) illustrate the concept of Theorem 2. (d) and (e) illustrate the
basic concept of Theorem 3.

186 C.-M. Wang et al.

and p + q ≤ m − 1. Without loss of generality, we may assume the arrival rates
of leakage requests from node j and node k are ω1 and ω2 and the maximum
latencies of their leakage requests are d1 and d2, respectively. The maximum
latency of requests that reach node i is assumed to be d′.

Next, we show that another optimal server placement can be generated by
substituting the placement of p servers on Tj with Ω(j, p, d′ − dji, t) as shown in
Fig. 2(b). If ω1 �= 0, then d′ ≥ d1 + dji. We can derive

ω1 ≥ ω(j, p, d1, t) ≥ ω(j, p, d′ − dji, t)

After the substitution, the arrival rate of requests that reach node i can be
reduced while the maximum latency of requests remains unchanged. Thus, it is
also an optimal server placement. On the other hand, if ω1 = 0, we can derive

0 = ω1 = ω(j, p, d1, t) = ω(j, p, d′ − dji, t)

In this case, it is also an optimal server placement. Therefore, another optimal
server placement can be generated by substituting the placement of p servers on
Tj with Ω(j, p, d′ − dji, t). Similarly, we can show that another optimal server
placement can be generated by replacing the placement of q servers on Tk with
Ω(k, m − 1 − p, d′ − dki, t) as shown in Fig. 2(c).

ω2 ≥ ω(k, q, d2, t) ≥ ω(k, q, d′ − dki, t) ≥ ω(k, m − 1 − p, d′ − dki, t) if ω2 �= 0

0 = ω2 = ω(k, q, d2, t) = ω(k, q, d′ − dki, t) = ω(k, m − 1 − p, d′ − dki, t) if ω2 = 0

By assumption, the maximum expected response time of leakage requests that
reach node i is less than or equal to t. In other words, d′ + 1/(μi − ω1 − ω2) ≤ t.
Accordingly, we an derive

μi ≥ ω1 + ω2 + 1/(t − d′)
≥ ω(j, p, d′ − dji, t) + ω(k, m − 1 − p, d′ − dki, t) + 1/(t − d′)
≥ λ(i, m − 1, d′, t) + 1/(t − d′)

Therefore, there exists 0 ≤ d′ ≤ t such that λ(i, m − 1, d′, t) + 1/(t − d′) ≤ μi.
In this case, Fig. 2(c) is an optimal server placement and ω(i, m, d, t) = 0. This
completes the proof of Case 1.

Case 2: No server is placed on node i. Consequently, at most m servers are placed
on Tj and Tk. Obviously, we have 0 ≤ p, q ≤ m and p + q ≤ m. Suppose that,
in an optimal server placement, there are p servers on Tj and q servers on Tk.
Without loss of generality, we may assume the arrival rates of leakage requests
from node j and node k are ω1 and ω2 and their maximum latencies are d1 and
d2, respectively. The maximum latency of requests that reach node i is assumed
to be d. Similar to the proof of Case 1, the optimal arrival rate of leakage requests
can be computed as

ω(i, m, d, t) = ω1 +ω2
≥ ω(j, p, d1, t) +ω(k, q, d2, t)
≥ ω(j, p, d − dji, t) +ω(k, q, d − dki, t)
≥ ω(j, p, d − dji, t) +ω(k, m − 1 − p, d − dki, t)
≥ λ(i, m, d, t)

Optimizing Server Placement for QoS Requirements 187

Since it is an optimal server placement, all the equalities must hold. Therefore,
this theorem holds for Case 2. Since an optimal server placement must be one
of the two cases, this completes the proof of this theorem.

Theorem 3. For an intermediate node i with k child nodes j0, . . . , jk−1, the
minimum arrival rate of leakage requests that pass through node i can be com-
puted iteratively as follows:

λ0(i, m, d, t) = ω(j0, m, d − dj0i, t)
λq(i, m, d, t) = min0≤r≤m{λq−1(i, r, d, t) + ω(jq, m − r, d − djqi, t)},

1 ≤ q ≤ k − 1,
ω(i, m, d, t) = 0 if there exists 0 ≤ d′ ≤ t such that

λk−1(i, m − 1, d′, t) + 1/(t − d′) ≤ μi

ω(i, m, d, t) = λk−1(i, m, d, t), otherwise

Proof. Fig. 2(d) and 2(e) illustrate the basic concept of this theorem. To find an
optimal server placement, we can view an intermediate node with k child nodes
in Fig. 2(d) as the sub-tree in Fig. 2(e). Then, the minimum arrival rate of
leakage requests can be computed recursively along the sub-tree. As the detailed
proof of this theorem is similar to that of Theorem 3, it is omitted here.

Theorem 4. The minimum number of I/O servers that meet their constraints
can be obtained by finding the minimum m such that ω(0, m, 0, t) = 0.

Corollary 1. Let m′ be the minimum number of servers found by the dynamic
programming algorithm. m′ grows nondecreasingly when the service quality re-
quirement t decreases.

Based on Theorems 1 to 3, we can compute the minimum arrival rates of leakage
requests that start from leaf nodes and work toward the root node. After the
minimum arrival rate of leakage requests that reach the root node has been
computed, the minimum number of I/O servers that meet their constraints can
be computed according to Theorem 4. The proposed algorithm is presented in
Fig. 3.

In the first line of the algorithm, we sort all nodes according to their distances
to the root node in decreasing order. This ensures that child nodes will be com-
puted before their parents so that Theorems 1 to 3 can be correctly applied. The
execution time of this step is O(n log n). The loop in line 2 iterates over every
node in the system. Note that there are at most n values on the maximum latency
to some node i. Thus, for each leaf node, it takes O(n2) execution time in line 4.
For an intermediate node that has k child nodes, it takes O(n3) execution time
in line 9, and iterates k−1 times in line 8. This results in O(kn3) execution time
for lines 8 to 10. Lines 11 to 16 also take O(n2) execution time. Consequently, the
complexity of lines 3 to 16 is O(kn3) and the complexity of the whole algorithm
is O(n4), where n is the number of nodes in the Grid system. The complexity
can be further reduced to O(p2n2), where p is the minimum number of servers,
by computing ω(i, m, d, t) incrementally from m = 0 to m = p.

188 C.-M. Wang et al.

Algorithm Minimum Leakage

Input: 1. the arrival rate λi for all leaf nodes.

2. the service rate μi for all intermediate nodes.

3. the network latency dji

4. the service quality requirement t.

Output: the minimum arrival rate ω(i, m, d, t) for 0 ≤ i, m ≤ n.

Procedure:
1. sort all nodes according to their distance to the root node in decreasing order.
2. for each node i do
3. if node i is a leaf node then
4. compute ω(i, m, d, t) = λi for 0 ≤ m ≤ n
5. else
6. let the child nodes of node i be nodes j0, . . . , jk−1
7. compute λ0(i, m, d, t) = ω(j0, m, d − dj0i, t), 0 ≤ m ≤ n
8. for q from 1 to k − 1 do
9. λq(i, m, d, t) = min0≤r≤m{λq−1(i, r, d, t) + ω(jq, m − r, d − djqi, t)}, 0 ≤ m ≤ n
10. endfor
11. for m from 0 to n do
12. if exists d′, 0 ≤ d′ ≤ t, such that λk−1(i, m − 1, d′, t) + 1/(t − d′) ≤ μi

13. ω(i, m, d, t) = 0
14. else
15. ω(i, m, d, t) = λk−1(i, m, d, t)
16. endfor
17. endif
18. endfor

Fig. 3. An optimal algorithm for the minimum server placement problem.

4 The Optimal Service Quality Problem

In this section, we try to place a given number of servers appropriately so that
the maximum expected response time of servers is minimized. We call this the
optimal service quality problem.

Definition 5. Given the network topology, request arrival rates, service rates
and network latencies of links, the optimal service quality problem aims at placing
a given number of I/O servers so that the maximum expected response time of
the Grid system is minimized.

Let m be the number of servers to be placed. We aim to place m servers such
that the maximum expected response time is minimized. To achieve this goal, we
can perform a binary search on the service quality requirement t. Given a service
quality requirement t, we can use the dynamic programming algorithm described
in Section 3 to find an optimal server placement such that the maximum expected
response time of servers is less or eqaul to t. Let the minimum number of servers
be m′. If m′ > m, according to Corollary 1, we cannot find a placement of
m servers whose maximum expected response time is less than or equal to t.
Therefore, when m′ > m, we need to increase t to find a server placement with
m servers and, when m′ < m, we may decrease t to find if a better server
placement exists.

Before applying a binary search, we have to determine an upper bound and
a lower bound. It is rather easy to get an upper bound and a lower bound on

Optimizing Server Placement for QoS Requirements 189

the maximum expected response time. We can use 1/(μmax − λmin) as a proper
lower bound, where μmax is the maximum server capability of servers and λmin

is the minimum requests of clients. A upper bound can be computed by the
following steps. First, we set t to a sufficient large value and find a server place-
ment. According to Corollary 1, the number of used servers must be smaller
than or equal to m. Then we can use the maximum expected response time of
servers as a proper upper bound. Next, we can combine a binary search of the
maximum expected response time and the dynamic programming algorithm for
the minimum server placement problem to find the optimal value of the maxi-
mum expected response time. Because the lower bound and the upper bound of
the binary search are both functions of the input parameters, the algorithm is
strongly polynomial.

5 Experimental Results

In this section we conduct several experiments to evaluate the proposed algo-
rithms. Test cases are generated based on the proposed Grid model. The height
of each case is at most 8. Each node has at most 4 children. The number of
nodes in each test case is between 1250 and 1500. The request arrival rates for
the leaf nodes and the service rates for intermediate nodes are generated from a
uniform distribution. There are four testing groups. Each group has a different
range of network latencies: 0.00005∼0.00015, 0.0005∼0.0015, 0.005∼0.015, and
0.05∼0.15. We will refer them as group 1, 2, 3 and 4, respectively. There are
1000 test cases in each group. Table 1 shows the summary of these parameters.

Table 1. Parameters of experiments

Parameter Description
Height of tree ≤ 8

Number of child nodes ≤ 4
Number of nodes in each case ≈ 1300

Range of arrival rates 1∼4
Range of service rates 50∼350

Range of network latencies 0.00005∼0.00015, 0.0005∼0.0015,
0.005∼0.015 and 0.05∼0.15

First, the experiments for the minimum server placement problem are con-
ducted. We use a greedy heuristic algorithm as a performance comparison with
our dynamic programming algorithm since, to the best of our knowledge, there
are no similar studies on QoS server placement problems that both consider
the server’s capacity and the network latency. The Greedy algorithm works as
follows: in each iteration, it first selects all candidate servers that can satisfy
the service quality requirement t, i.e., the expected response time of requests it
served will less than t. Then it selects a site who has the maximum arrival rate
of I/O requests. The process is repeated until all requests are served.

As the experiments with the four testing groups show similar results , we will
present only the result with group 4. The performance metric is the difference in

190 C.-M. Wang et al.

the number of servers used by Greedy and DP, i.e., the extra number of servers
used by Greedy. The experimental results for the minimum server placement
problem is shown in Fig. 4. The vertical axis shows the number of test cases,
while the horizontal axis shows the difference in the number of servers used by
these two algorithms.

 0

 50

 100

 150

 200

 250

 300

 350

 400

-1 0 1 2 3 4 5 6 7

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(a)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(b)

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(c)

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(d)

Fig. 4. Performance comparison for the minimum server problem. (a), (b), (c) and (d)
are experimental results when t is set to 1, 0.75, 0.6 and 0.45 respectively.

In Fig. 4, it is clear that the difference in the number of servers used becomes
significant as t decreases, i.e., as the service quality requirement becomes crucial.
In Fig. 4(a), Greedy generates optimal solutions in 23.9% of the test cases and,
in 84.4% of the test cases, the differences are between 0 and 2. However, in
Fig. 4(d), Greedy generates no optimal solution and over 80% of test cases, the
differences are between 10 and 28 when t is set to 0.45. Although Greedy is rather
fast and easy to implement, the results show that it cannot generate acceptable
solutions when the service quality requirement becomes crucial.

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(a)

WTB
Greedy

DP

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

1201008060

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(b)

WTB
Greedy

DP

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0.022

1201008060

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(c)

WTB
Greedy

DP

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

1201008060

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(d)

WTB
Greedy

DP

 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95

 1

1201008060

Fig. 5. Performance comparison for the optimal service quality problem. (a), (b), (c)
and (d) are experimental results for group 1, 2, 3, and 4 respectively.

We next conduct the following experiments for the optimal service quality
problem. We compare three algorithms: (1) the DP algorithm combined a binary
search as described in Section 4, (2) the Greedy algorithm combined a binary

Optimizing Server Placement for QoS Requirements 191

search and (3) a waiting-time based(WTB) server placement algorithm described
in [12]. Note that there is no guarantee of performance for the Greedy algorithm
combined a binary search since the Greedy algorithm does not have the property
of Corollary 1. A binary search is only used to adjust t such that Greedy can
generate a placement with m servers. The WTB algotithm is similar to the
algorithm described in Section 4 except it only tries to minimize the maximum
waiting time of servers.

In the experiments, for each group of test cases, we use 4 different values of
server numbers m: 60, 80, 100 and 120. The performance metric is the average of
maximum expected response times of test cases. For each test case, there will be
a maximum expected response time among those m servers. We use the average
of maximum expected response times in 1000 test cases as our performance
metric. The experimental results are shown in Fig. 5. The vertical axis shows
the average expected response time, while the horizontal axis shows the number
of servers m.

In Fig. 5, it is clear that the difference in performance between DP and WTB
becomes larger as the network latency increases. When the network latency is
small with respect to the server’s waiting time, the difference of the average
expected response time is less significant. However, as the network latency in-
creases, the difference becomes larger because the expected response time is
dominated by the network latency and WTB does not take network latencies
into consideration. This result explains the advantage of DP algorithm: it takes
both the server’s waiting time and the network latency into consideration. Thus,
DP can always get the best performance no matter the expected response time
is dominated by either server’s waiting time as the result shown in Fig. 5(a) or
the network latency as the result shown in Fig. 5(d).

In Fig. 5(c) and 5(d), Greedy has a good performance when the number of
I/O servers increases and the network latency dominates the expected response
time. This is mainly due to the power of the binary search. However, as the
expected waiting time dominates the expected response time, Greedy performs
worse than WTB as shown in Fig. 5(a). Therefore, Greedy does not perform well
in all kind of situations like DP does.

6 Conclusions

In this paper, we focus on two QoS I/O server placement problems in Data
Grid environments. We consider the minimum server placement problem which
asks how to place the minimum number of servers that meet both the con-
strains on servers’ capabilities and the service quality requirement. Instead of
using a heuristic approach, we propose an optimal algorithm based on dynamic
programming as a solution to this problem.

The optimal service quality problem is also considered, which tries to place a
given number of servers appropriately so that the maximum expected response
time of servers can be minimized. By combining the dynamic programming al-
gorithm with a binary search on the service quality requirement, we can find

192 C.-M. Wang et al.

an optimal server placement. Several experiments are also conducted, whose re-
sults clearly show the improvement on the number of servers and the maximum
expected response time compared with other algorithms.

Acknowledgments

The authors acknowledge the National Center for High-performance Computing
in providing resources under the national project, “Taiwan Knowledge Innova-
tion National Grid”. This research is supported in part by the National Science
Council, Taiwan, under Grant NSC NSC95-2221-E-001-002.

References

1. Johnston, W.E.: Computational and data Grids in large-scale science and engi-
neering. Future Generation Computer Systems. 18(8) (2002) 1085–1100

2. Grid Physics Network (GriphyN). (http://www.griphyn.org)
3. TeraGrid. (http://www.teragrid.org)
4. Wang, C.M., Hsu, C.C., Chen, H.M., Wu, J.J.: Efficient multi-source data transfer

in data grids. In: CCGRID ’06. (2006) 421–424
5. Lamehamedi, H., Shentu, Z., Szymanski, B.K., Deelman, E.: Simulation of Dy-

namic Data Replication Strategies in Data Grids. In: IPDPS 2003. (2003) 100
6. Deris, M.M., Abawajy, J.H., Suzuri, H.M.: An efficient replicated data access

approach for large-scale distributed systems. In: CCGRID. (2004) 588–594
7. Hoschek, W., Jaén-Mart́ınez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data

Management in an International Data Grid Project. In: GRID 2000. (2000) 77–90
8. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM

Transactions on Networking 8(5) (2000) 568–582
9. Ranganathan, K., Foster, I.T.: Identifying Dynamic Replication Strategies for a

High-Performance Data Grid. In: GRID 2001. (2001) 75–86
10. Tang, M.X., Xu, M.J.: QoS-aware replica placement for content distribution. IEEE

Trans. Parallel Distrib. Syst. 16(10) (2005) 921–932
11. Wang, H., Liu, P., Wu, J.J.: A QoS-aware heuristic algorithm for replica placement.

In: International Conference on Grid Computing. (2006) 96–103
12. Wang, C.M., Hsu, C.C., Liu, P., Chen, H.M., Wu, J.J.: Optimizing server placement

in hierarchical grid environments. In: GPC. (2006) 1–11
13. Abawajy, J.H.: Placement of File Replicas in Data Grid Environments. In: Inter-

national Conference on Computational Science. (2004) 66–73

	Introduction
	The System Model
	The Minimum Server Placement Problem
	The Optimal Service Quality Problem
	Experimental Results
	Conclusions

