
An Ad Hoc Approach to Achieve Collaborative
Computing with Pervasive Devices

Ren-Song Ko1 and Matt W. Mutka2

1 National Chung Cheng University, Department of Computer Science and
Information Engineering,

Chia-Yi 621, Taiwan
korenson@cs.ccu.edu.tw

2 Michigan State University, Department of Computer Science and Engineering,
East Lansing MI 48824-1226, USA

mutka@cse.msu.edu

Abstract. Limited computing resources may often cause poor perfor-
mance and quality. To overcome these limitations, we introduce the idea
of ad hoc systems, which may break the resource limitation and give mo-
bile devices more potential usage. That is, several resource-limited de-
vices may be combined as an ad hoc system to complete a complex com-
puting task. We illustrate how the adaptive software framework, FRAME,
may realize ad hoc systems by automatically distribute software to ap-
propriate devices via the assembly process. We discuss the problem that
ad hoc systems may be unstable under mobile computing environments
since the participating devices may leave the ad hoc systems at their
will. We also propose the reassembly process for this instability problem;
i.e., assembly process will be re-invoked upon environmental changes. To
further reduce the performance impact of reassembly, two approaches,
partial reassembly and caching, are described. Our experimental results
show that the caching improves performance by a factor of 7 ∼ 40.

1 Introduction

As technology improves, small devices and task-specific hardware begin to emerge.
These devices usually have limited resources or specialized interfaces to address
the desired goal of mobility and friendly usage. Thus, it will be a challenge to
execute complex applications on these devices with reasonable performance and
quality. However, the ubiquitous existence of computers may bring many possi-
ble solutions for this challenge. For instance, it is possible for computers to move
and interact with their environment to seek the available resources to accomplish
resource-intensive tasks more efficiently.

That is, instead of running software on a single device, one may look for avail-
able devices nearby and connect them together to form a temporarily organized
system for short-term usage. Once the software is launched, the appropriate
part of the code will be automatically distributed to each participating device.
After that, these devices will execute the assigned code to accomplish the task
collaboratively. Such a system without prior planning is called ad hoc [5].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 169–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 R.-S. Ko and M.W. Mutka

Image the scenario that a person may watch a movie with his mobile phone.
Because of limited computing capability, the video and audio quality may be
unacceptable, and the viewing experience may not be pleasant. On the other
hand, he may look for available intelligent devices nearby. For example, he may
find an ATM machine for its larger screen and a MP3 player for its stereo
sound quality. Thus, he may connect them together to form an ad hoc system as
shown in Fig. 1. After the video playback software is launched, the appropriate
part of the code will be distributed to each device, such as the code for audio
processing to the MP3 player and the code for video processing to the ATM.
As a consequence, instead of watching the movie on the mobile phone, he may
enjoy the movie on the ad hoc system with larger image on the screen of the
ATM and better sound on the MP3 player.

Fig. 1. A video playback application running on an ad hoc system

Such ad hoc systems may be realized by an adaptive Java software frame-
work, FRAME [6, 7]. FRAME may automatically distribute software components to
each participating devices and provide the functionalities of a middleware to
allow these components to execute cooperatively. However, mobile computing
environments are not likely static and, hence, ad hoc systems may be unstable.
For example, some participating devices may leave the ad hoc system during the
execution of the application. Therefore, the code on these leaving devices have
to migrate to other devices in the system for proper execution of the application.
In this paper, we shall illustrate the approach to improve FRAME for this chal-
lenge. We also discuss the issue of the performance impact on the application
execution, and introduce two possible performance improvement.

We shall briefly describe the architecture of FRAME in the next section. Section 3
illustrates an approach for solving instability problem of ad hoc systems, discusses
the performance issue, and describes how we improve it. We applied the improved
FRAME to a robot application and measured the performance impact. The results

An Ad Hoc Approach to Achieve Collaborative Computing 171

are illustrated in Sect. 4. Finally, the last two sections will give a summary, survey
of related work, and then discuss potential future investigations.

2 Adaptive Software Framework: FRAME

The central themes of FRAME are component, constraint, and assembly. The ar-
chitecture of FRAME [6, 7] may be summarized as follows.

Component: An application is composed of components. Each component pro-
vides services to cooperate with other components. The services define the
dependency of the components and form a software hierarchy tree, i.e., a par-
ent component requires services from its child components and vice versa.

Implementation: A component may have more than one implementation.
Each implementation provides the same functionality of the component but
with different performance, quality, and resource requirements. Only one
implementation of each component is needed to execute a program. For ex-
ample, the audio component of the video playback application may have two
implementations. Each is able to process the audio of the movie but with
different sound quality and computation resources. The implementation with
better sound quality may require more computation resources than the mo-
bile phone has. Of course, such an implementation should not be executed
on the mobile phone. The question for which implementation is feasible on
the given device will be answered with help from constraints. Finally, the
software hierarchy information, such as what components the application
has and what implementations of the component has, will be registered to a
database server called the component registry.

Constraint: Each implementation may have a set of constraints embedded. A
constraint is a predicate and used to specify whether the given computing
environment has resources that the implementation requires. It may also
specify the execution performance and quality of the implementation. The
constraints of the implementation are used by the assembly process to de-
termine whether the implementation is feasible on the given device.

Assembly: A process called assembly will resolve, on the fly by querying the
component registry, what components and their implementations an appli-
cation has. For each component, the assembly process will load each imple-
mentation and check its constraints on a given device. If all constraints are
satisfied, the implementation is feasible on the device. Hence, the compo-
nent with the feasible implementation will be distributed to the device. As
shown in Fig. 2, there may be an implementation for audio component with
better sound quality and all its constraints are satisfied on the MP3 player
but not the mobile phone and the ATM. Thus the audio component will be
distributed to the MP3 player.

Execution: After all the components are distributed, the application begin to
execute.

172 R.-S. Ko and M.W. Mutka

Fig. 2. Components will be distributed to appropriate devices based on their constraints

Table 1. if-else statement structure

if (constraints of component 1 with implementation 1)
{ // select component 1 with implementation 1

if (constraints of component 2 with implementation 1)
{ // select component 2 with implementation 1

// check each implementation of component 3, 4,...
}
else if (constraints of component 2 with implementation 2)
{ // select component 2 with implementation 2

// check each implementation of component 3, 4,...
}
... // more else if blocks for other implementations of component 2

}
else if (constraints of component 1 with implementation 2)
{ // select component 1 with implementation 2

// similar as the code in the if block of
// component 1 with implementation 1

}
... // more else if blocks for other implementations of component 1

The traditional approach to distribute components to appropriate devices
based on constraints is to use condition statements such as if-else statements. For
example, suppose there is an application that may have components 1, 2, . . . , N ,
where component i has Mi implementations. Thus, there may be nested if-else

An Ad Hoc Approach to Achieve Collaborative Computing 173

statements similar to Table 1. First, it checks if the constraints of component
1 with implementation 1 are true. If yes, it will has code in its if block to
check appropriate implementation of component 2, then 3, and so on. If not, it
will jump to else if block to check the component 1 with implementation 2.
The code in its else if block of implementation 2 are same as implementation
1. Thus, if constraints of implementation 2 are true, it will check appropriate
implementation of component 2, then 3, and so on. The process will find an
appropriate implementation for component 1 first, then 2, 3, and so on.

The condition statements approach is primitive from the software engineering
perspective. As the number of components and their implementations increase,
the code tends toward so called “spaghetti code” that has a complex and tangled
control structure and the software will become more difficult to maintain or
modify.

The most important limitation of the condition statements approach is that
condition statements are hard-coded. Thus, the availability of all implementa-
tions need to be known during the development stage. It is not flexible enough to
integrate newly developed implementations without rewriting and recompiling
the code, and, of course, the down-time.

To avoid the above limitations, the assembly process uses the following two-
step approach:

1. Components distribution: In this step, the assembly process will dis-
tribute components to participating devices. Note that there will be nc differ-
ent component distributions with n participating devices and c components.
By using the information stored in the component registry, the assembly
process may be able to identify all the component implementation of an
application. Since the assembly process queries this information during run-
time, the above limitations of the condition statements approach are avoided
as long as newly developed implementations register their information to the
component registry. When all components of a distribution are distributed,
all the constraints will be collected and the assembly process will proceed to
next step for solving these constraints.

2. Constraints solving: For each component, the assembly process will find
out if all the constraints are satisfied. If all the constraints of the distribution
are satisfied, the distribution is feasible and the application may execute on
this distribution. FRAME uses a backtracking algorithm [8] for solving con-
straint satisfaction problems. If one of the constraints within this distribu-
tion is not satisfied, the assembly process will return to the first step for next
distribution.

3 Reassembly

A straightforward idea for solving the instability problem of ad hoc systems
is to monitor the computing environment changes. If some of constraints fail
due to environmental changes, the application execution will be temporarily

174 R.-S. Ko and M.W. Mutka

suspended, the component assembly process will be re-invoked, and then the ap-
plication execution will resume with appropriate implementations of the compo-
nents. However, one challenge for this reassembly approach is performance, since
the assembly process involves I/O activities, such as communication between de-
vices, and intense computation, such as constraints solving to find the feasible
distribution. In our experiments, the assembly process of the robot application is
about 650 times slower than the similar application hard coded by if-else condi-
tion statements. It will be not feasible to simply re-invoke the assembly process
for the reassembly, especially on a small temporal scale of environment change.
Therefore, we propose two schemes, partial reassembly and caching, to improve
the performance.

First, we observe that not all components need to be changed for the reassem-
bly process and it is unnecessary to examine the constraints of these components.
Thus, developers may only specify the subset of the components to be examined
to reduce the run-time monitoring performance impact and the constraints solv-
ing time. For the video playback application example, the person may always
carry the mobile phone and MP3 player, but not the ATM. As the person walks
around, the connections between the ATM and other devices may drop, and
then the ATM will leave the ad hoc system. Therefore, as shown in Fig. 3, it is
only necessary to monitor the ATM and perform the video component migration
when the ATM leaves.

Fig. 3. Example of partial reassembly

The other performance improvement is to use cache, which may be done in two
different levels. The first level is to cache the component distribution results, i.e.,
the first step of the assembly process. The purpose of the first step is to find possi-
ble distributions and collect all the constraints of each distribution for constraints
solving. If no component implementation is added or removed, the constraints
of each distribution will remain the same and the first step may be avoided.

The second level is to cache the computing environment, a more aggressive
scheme based on the assumption that the computing environments will repeat.

An Ad Hoc Approach to Achieve Collaborative Computing 175

A computing environment will be used as a key, and its assembly results are
cached in a hash table with the key as shown in Fig. 4. That is, a computing
environment may contain information that an application requires for execution,
such as number of participating devices, network bandwidth, hardware, etc. Thus
the information may be converted to a key for caching via a hash function. If
the computing environment repeats, its assembly results may be obtained from
the cache with the key.

Fig. 4. Flow of reassembly cache

4 Performance Evaluation

We use a robot, XR4000 [12], to evaluate the performance of the component
reassembly process. We compare the performance of different implementation
selection schemes, including component reassembly with and without caching,
and also evaluate the performance of the similar application using hard coded if-
else condition statements. The performance is measured versus different number
of the component implementations registered in the component registry.

To highlight the relationship between the performance and these different im-
plementation selection schemes, we simplify the software hierarchy so the mea-
sured application has only one component with multiple implementations to be
assembled. As a consequence, what the reassembly process actually does is to
select an appropriate implementation of the component. Note that performance
is application dependent, and, therefore, the performance comparison may not
be same for different applications.

Figure 5 shows that the time required for the constraints solving step, which
is about 50% ∼ 60% of the total time for assembly or non-cached reassembly. If
the application hierarchy does not change and no new implementation is added,
the first level caching may be used. The non-cached reassembly may be approxi-
mately reduced to the constraint solving step, which is a 40% ∼ 50% time saving.

Figure 6 compares the time required to search for the appropriate implemen-
tation of the component by the different schemes, i.e., non-cached reassembly,
cached reassembly, and hard coded if-else statement. The if-else scheme requires
about 0.003 ∼ 0.018 ms that depends on the number of implementations. The

176 R.-S. Ko and M.W. Mutka

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Number of implementations

Reassembly Performance
Total

Constraint solving

Fig. 5. Constraints solving performance of reassembly

10-3

10-2

10-1

100

101

102

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Number of implementations

Performance Comparison
Cached
If-else

Non-cached

Fig. 6. Performance comparison for different component selection scheme

non-cached reassembly requires about 2.1 ∼ 12.1 ms that also depends on the
number of implementations, and it is about 650 times slower than the if-else
scheme.

The result also shows that the cached reassembly requires about 0.29 ms and
improves the reassembly speed by a factor of 7 ∼ 40, and may be only about 15
times slower than if-else scheme. Unlike if-else and non-cached schemes, the cache

An Ad Hoc Approach to Achieve Collaborative Computing 177

access time is constant and independent on the number of implementations.
Thus, the performance improvement becomes more significant while the number
of implementations increases. Also, the constant assembly time of cache makes
the execution time of the application more predictable, which is an important
issue for real-time applications.

Reassembly will load and unload the implementations of component whenever
necessary, which will free some unnecessary memory, a scarce resource in embed-
ded systems. Depending on how the application is developed, reassembly may
save the memory usage. For example, the robot application using hard coded
if-else statements has all implementations preloaded for better performance.
However, this is a trade-off with memory usage. Fig. 7 shows that preloaded
components require about 50% more memory than the reassembly scheme.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 18 20

M
em

or
y

si
ze

 (
M

B
)

Number of implementations

Memory Usage

Reassembly
Preload

Fig. 7. Memory usage comparison for ASAP and component-preloaded

5 Related Work

The original idea of ad hoc systems is introduced in [5]. Lai, et al. [9] use infrared
communication, which allows users to easily connect several devices as an ad hoc
system via infrared communication. They also propose an approach to improve
the performance of the assembly process by grouping the participating devices
into “virtual subsystems” based on the hardware characteristics of the devices.
With properly specifying the constraints, a component will only be distributed
to the devices of the specified virtual subsystem and the time for the assembly
process will be reduced.

There are several other related projects that may deliver applications on
resource-limited devices and perform adaptation when necessary. The Spectra

178 R.-S. Ko and M.W. Mutka

project [2] monitors both application resource usage and the availability of re-
sources in the environment, and dynamically determines how and where to exe-
cute application components. In making this determination, Spectra can gener-
ate a distributed execution plan to balance the competing goals of performance,
energy conservation, and application quality.

Puppeteer [1] is a system for adapting component-based applications in mo-
bile environments, which takes advantage of the exported interfaces of these
applications and the structured nature of the documents they manipulate to per-
form adaptation without modifying the applications. The system is structured
in a modular fashion, allowing easy addition of new applications and adaptation
policies.

Gu, et al. [3] propose an adaptive offloading system that includes two key
parts, a distributed offloading platform [11] and an offloading inference [4]. The
system will dynamically partition the application and offload part of the ap-
plication execution data to a powerful nearby surrogate. This allows delivery of
the application in a pervasive computing environment without significant fidelity
degradation.

Compositional adaptation exchanges algorithmic or structural system com-
ponents with others that improve a program’s fit to its current environment.
With this approach, an application can add new behaviors after deployment.
Compositional adaptation also enables dynamic recomposition of the software
during execution. McKinley, et al. [10] gives a review of current technologies
about compositional adaptation.

6 Conclusion and Future Work

Limited computing resources may often cause poor performance and quality.
To overcome these limitations, we introduce the idea of ad hoc systems, which
may break the resource limitation and give mobile devices more potential usage.
That is, several resource-limited devices may be combined as an ad hoc system to
complete a complex computing task. We also illustrate how the adaptive software
framework, FRAME, may realize ad hoc systems. FRAME provides the functionalities
of a middleware to allow software components to execute cooperatively. Most
importantly, with constraints embedded in the component implementations, the
assembly process of FRAME is able to automatically distribute these components
to appropriate devices.

However, mobile computing environments are dynamic and ad hoc systems
may be unstable since the participating devices may leave the ad hoc systems at
their will. Thus, the code on some devices may need to migrate to another de-
vices. We propose the reassembly process for this instability problem; i.e., if some
constraints fail due to environmental changes, the application execution will be
temporarily suspended, the component assembly process will be re-invoked, and
then the application execution will resume with appropriate implementations
of the components. Furthermore, the reassembly performance is an important
issue for seemlessly execution of applications. To further reduce the performance

An Ad Hoc Approach to Achieve Collaborative Computing 179

impact of the reassembly process, two approaches, partial reassembly and caching,
are proposed. Our experimental results show that the caching improves the re-
assembly speed by a factor of 7 ∼ 40 and the time for reassembly is constant
and hence predictable.

There is room for performance improvement. For instance, the constraints
solving performance depends on the number of distributions and the number
of constraints in each distribution. To improve the backtracking algorithm, if
more information may be extracted from the relationship between constraints,
some redundancy may be found between the constraints. Thus, truth checking
for some constraints may be avoided. Moreover, more performance evaluation
and measurement will be conducted in the future, including power consumption
of large-scale ad hoc systems.

One important aspect of ubiquitous computing is the existence of disappear-
ing hardware [13] that are mobile, have small form factor and usually limited
computation resources. Since the constraints solving may require a lot of com-
putation, these disappearing hardware may not have enough resources. One so-
lution is to use a dedicated server for the off-site assembly process. Therefore,
the participating devices may send the environment information to the server
for assembly, and retrieve assembly results and the appropriate implementations
of the components.

References

[1] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer: Component-based
Adaptation for Mobile Computing. In Proceedings of the 3rd USENIX Symposium
on Internet Technologies and Systems, San Francisco, California, Mar. 2001.

[2] J. Flinn, S. Park, and M. Satyanarayanan. Balancing Performance, Energy, and
Quality in Pervasive Computing. In Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, Vienna, Austria, July 2002.

[3] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and K. Nahrstedt. Adaptive of-
floading for pervasive computing. IEEE Pervasive Computing, 3(3):66–73, July-
September 2004.

[4] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive Offload-
ing Inference for Delivering Applications in Pervasive Computing Environments.
In Proceedings of IEEE International Conference on Pervasive Computing and
Communications, pages 107–114, 2003.

[5] R.-S. Ko. ASAP for Developing Adaptive Software within Dynamic Heterogeneous
Environments. PhD thesis, Michigan State University, May 2003.

[6] R.-S. Ko and M. W. Mutka. Adaptive Soft Real-Time Java within Heterogeneous
Environments. In Proceedings of Tenth International Workshop on Parallel and
Distributed Real-Time Systems, Fort Lauderdale, Florida, Apr. 2002.

[7] R.-S. Ko and M. W. Mutka. FRAME for Achieving Performance Portability within
Heterogeneous Environments. In Proceedings of the 9th IEEE Conference on En-
gineering Computer Based Systems (ECBS), Lund University, Lund, SWEDEN,
Apr. 2002.

[8] V. Kumar. Algorithms for Constraints Satisfaction problems: A Survey. The AI
Magazine, by the AAAI, 13(1):32–44, 1992.

180 R.-S. Ko and M.W. Mutka

[9] C.-C. Lai, R.-S. Ko, and C.-K. Yen. Ad Hoc System : a Software Architecture
for Ubiquitous Environment. In Proceedings of the 12th ASIA-PACIFIC Software
Engineering Conference, Taipei, Taiwan, Dec. 2005.

[10] P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng. Composing Adap-
tive Software. IEEE Computer, 37(7), July 2004.

[11] A. Messer, I. Greenberg, P. Bernadat, D. S. Milojicic, D. Chen, T. J. Giuli, and
X. Gu. Towards a Distributed Platform for Resource-Constrained Devices. In
Proceedings of the IEEE 22nd International Conference on Distributed Computing
Systems, pages 43–51, Vienna, Austria, 2002.

[12] Nomadic Technologies, Inc., Mountain View, CA. Nomad
XRDEV Software Manual, Mar. 1999. Information available at
http://nomadic.sourceforge.net/production/manuals/xrdev-1.0.pdf.gz.

[13] M. Weiser. The Computer for the 21st Century. Scientific American, 265(3):66–75,
Sept. 1991. Reprinted in IEEE Pervasive Computing, Jan-Mar 2002, pp. 19-25.

	Introduction
	Adaptive Software Framework: FRAME
	Reassembly
	Performance Evaluation
	Related Work
	Conclusion and Future Work

