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Abstract. In this paper, we propose an improved model for predicting HPL 
(High performance Linpack) performance. In order to accurately predict the 
maximal LINPACK performance we first divide the performance model into two 
parts: computational cost and message passing overhead. In the message passing 
overhead, we adopt Xu and Hwang’s broadcast model instead of the 
point-to-point message passing model. HPL performance prediction is a 
multi-variables problem. In this proposed model we improved the existing model 
by introducing a weighting function to account for many effects such that the 
proposed model could more accurately predict the maximal LINPACK 
performance Rmax . This improvement in prediction accuracy has been verified on 
a variety of architectures, including IA64 and IA32 CPUs in a Myrinet-based 
environment, as well as in Quadrics, Gigabits Ethernet and other network 
environments. Our improved model can help cluster users in estimating the 
maximal HPL performance of their systems. 

1   Introduction 

The continuous improvement in commodity hardware and software has made cluster 
systems the most popular alternative [1-5] for high performance computing for both 
academic institutions and industries. 

In 1998, Pfister [5] estimated over 100,000 cluster systems were in use worldwide. 
In November 2006, more than 70% of machines on the 26th Top500 List were labeled as 
clusters [6]. Most of these clusters used HPL (High performance Linpack) to 
benchmark their system performance, in accordance with the requirement of the 
Top500 List. 

HPL utilizes LU factorization with row partial pivoting to solve a dense linear 
system while using a two-dimensional block-cyclic data distribution for load balance 
and scalability. A number of analysis models [7, 8] have been developed for HPL 
performance prediction for different architectures. However, these models did not 
consider the effect of hardware overhead, such as cache misses, pipeline startups, 
memory load or store and floating point arithmetic. Most models adhere to 
Hockney’s message passing model [9] in dealing with the message interchange 
overhead. 
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In this paper we propose an improved HPL performance prediction model where 
we use a weighting function to account for the hardware overhead on the 
computation side. On the communication side we adopt Xu and Hwang’s broad- 
cast model [10]. This improved model comes up with a closer prediction of the 
actual performance than the other models in the literature, after a series of 
experiments on the Myrinet-based, Gigabits Ethernet based, IA64- and IA32-based 
architectures. 

2   HPL Algorithm and Performance Score Model 

We first introduce the HPL algorithm in Section 2.1 and then the existing HPL 
performance prediction model from [7] in Sections 2.2.1-2.2.5. The improved model is 
discussed in Section 2.2.6. Here we list the definitions of the pertinent variables in 
Table 1. 

Table 1. Definition of the variables 

Variable Definition  
B Block size 

N×N Dimension of linear system 
P×Q Two dimensional map of computational processors 
α Latency of Hockney’s mode (point to point), constant 
β The reciprocal of throughput of Hockney’s model (point to point), constant 
α’ Latency of Xu and Hwang’s model (MPI broadcast), function of (PQ) 

β’ 
The reciprocal of throughput of Xu and Hwang’s model (MPI broadcast), 

function of (PQ) 
g3 Floating-point operation rate of matrix-matrix operations 
g2 Floating-point operation rate of matrix-vector operations 

γ
3
 the approximate floating-point operations per second when the processor is 

performing matrix-matrix operations 
γ= 

w×γ
3
 

The real computational performance of HPL, not including message passing 
overhead. w is the weighting function in our proposed performance model 

2.1   HPL Algorithm 

The HPL algorithm is designed to solve a linear system by LU factorization with row 
partial pivoting. The data are first logically partitioned into B×B blocks, and then  
distributed onto a two-dimensional P×Q grid, according to the block-cyclic scheme to 
ensure load balance as well as scalability. The block size B is for the data distribution as 
well as for the computational granularity. The best B value is a function of the 
computation-to-communication performance ratio in a system. A smaller B performs  
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better load balance from a data distribution point of view; but when it becomes too 
small, it may limit the computational performance because no data reuse occurs at the 
higher level of the memory hierarchy from a computational point of view. The 
recommended B value is between 32 and 256. 

At a given iteration of the main loop, each panel factorization occurs in one column 
of processes because of the Cartesian property of the distribution scheme. Once the 
panel factorization has been computed, this panel of columns is broadcast to the other 
process columns. The update of the trailing sub-matrix by the last panel in the 
look-ahead pipe is made in two phases. First, the pivots must be applied to form the 
current row panel U. U should then be solved by the upper triangle of the column panel. 
Finally U needs to be broadcast to each process row so that the local rank-B update can 
take place. 

2.2   Performance Score Model 

2.2.1   Assumption and Definition 
Let the communication time to transfer L length of double precision messages be Tc  = 
α+βL, whereαandβare latency and the reciprocal of maximum bandwidth, respectively. 
Both αandβare constants. Also, g1, g2 and g3 are defined as the times needed for 
performing one floating point of the vector-vector, matrix-vector and matrix-matrix 
operations, respectively. With the definitions behind us, we may proceed to solve an 
N×N linear system. 

2.2.2   Panel Factorization and Broadcast 
Let us consider an I×J panel distributed over a P-process column. The execution time 
for panel factorization and broadcast can be approximated by: 

Tpfact(I, J) = (I/P - J/3) J2
 g3 + J ln(P)(α+ 2βJ) +α+ βI J / P                  (1) 

2.2.3   Trailing Sub-matrix Update 
Let’s consider the update phase of an I×I trailing sub-matrix distributed on a P×Q 
process grid. From a computational point of view, one has to (triangular) solve I 
right-hand sides and to perform a local rank-J update of this trailing sub-matrix. Thus, 
the execution time for the update operation can be approximated by: 

Tupdate(I, J) = g3 (I J
2/Q + 2 I2 J /P/Q) +α(ln(P)+P-1)+ 3βI J /Q.           (2) 

2.2.4   Backward Substitution 
The number of floating point operations performed during the backward substitution is 
given by N2/P/Q. Then, the execution time of the backward substitution can be 
approximated by: 

Tbacks(N, B)= g2 N
2 /(PQ) + N (α/ B + 2β).                                (3) 
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2.2.5   The Original HPL Performance Model 
The total execution time T is given by: 
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The algorithm totally perform 2N
3 /3 + 3 N

2
/2 of floating point operations, Then, the 

performance score, hereinafter called Rest_original, becomes: 
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For a very large N, we need only to consider the dominant term in g3, α, and β. Then, 
Eq.(5) becomes: 
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2.2.6   Our HPL Performance Model 
Wang and co-workers [8] defined a new variationγ3 as the approximate floating point 
operations per second when the processor is performing matrix-matrix operations. 

Then, 
3

3
1

g
=γ . 

Now, we propose a weighting function w to include overheads such as cache misses, 
pipeline startups, and memory load or store. This weighting function w will be taken as 
the ratio of the time for matrix multiplication to the total HPL execution time on a 
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single processor; and 10 ≤≤ w . Next, we define a new variable γ =  w ×γ3  to represent 
the approximate floating point operations per second for the total HPL solution. 

The parameters representing the communication overhead, α and β in Eq.(5) and 
Eq.(6), are based on Hockey’s model; that is, they are constants. However, in our 
proposed model, we will adopt Xu and Hwang’s model to account for the 
communication overhead. The communication time to transfer L length of double 
precision messages is then Tc= α ′ + β ′ L, where α′ and β ′  are latency and the 

reciprocal of maximum bandwidth, respectively. Now, both α′  and β ′  are functions 

of the total number of processors (PQ). Therefore, the performance score of our 
modified HPL performance model, hereinafter call Rest_modified , becomes: 

For small size cluster, =ifiedmod_estR  
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For large cluster, 
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The denominator of Eq. (8) consists of three terms. The first term dominates the 
performance of the system if communication overhead is not considered, with the best 
score being PQγ. The second and the third terms account for the communication 
overhead resulting from discrete computing, while α ′ and β ′  depend on the latency 

and bandwidth of the network for MPI collective message, respectively. In general, 
when the size of a cluster system increases, so do the influences of α′  and β ′ . 

3   Comparative Analysis of Different Models on Various Clusters 

We now proceed to analyze the HPL performance on three different cluster systems, 
i.e., the Formosa Cluster [11], the Triton Cluster [12], and Dawning 4000A [13]. The 
Formosa cluster is equipped with IA32 CPUs and in a Gigabit Ethernet environment. 
The Triton Cluster uses the IA64 CPUs with Quadrics interconnection network [14]. 
The Dawning 4000A is a cluster of IA64 CPUs with Myrinet [15] network 
environment. Details of the systems are described in Sections 3.1, 3.2, and 3.3. 
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3.1   NCHC Formosa PC Cluster 

This PC Cluster was built by the National Center for High-Performance Computing 
(NCHC) in September 2003. Our team had diligently optimized the system, specifically 
the network drive, the MTU, two network interface cards with two different private 
subnets, and with unused services turned off. It was the 135th on the 22th Top500 List in 
November 2003, and it was then the fastest computer system in Taiwan [11]. 

The system utilizes IBM X335 servers with Intel Xeon 2.8GHz dual processors. 
There are 300 CPUs connected together by a Gigabit Ethernet network. We adopted 
Debain 3.0 (kernel 2.6.0) operating system (OS), Intel compile 8.0 compiler, 
LAM/MPI 7.0.6 [16], and GOTO BLAS [17]. 

To compare Eq.(7) with Eq.(5), we need to first decide the parameters in these two 
equations. We apply the DGEMM function in HPL; that is, matrix multiplication of 
double precision random numbers of HPL, to compute the floating-point operations per 
second of matrix multiplication, shown in figure 1. From figure 1, we obtainγ3  = 4.6 
GFLOPS. Similarly, 1/g2 = 633 MFLOPS. 

Next, we determine the value of the weighting function, w, by adding a timing merit 
of matrix multiplication in HPL software and enabling the option: 
-DHPL_DETAILED_TIMING. The output is shown as figure 2, and then w = 516.42 / 
586.77 = 0.88. 

In our previous research [18], we obtain α= 51.8μs, β= 0.011μs, 
8163315481 .)PQln(. −=′α , and 0085001930 .)PQln(. −=′β . Both α ′  

and β ′  are inμs. 
Table 2 lists the performance scores in GFLOPS of the measured Rmax value and the 

Rest-original using Eq. (5), and Rest-modified using Eq. (7) on 4, 6, and 8 processors. It 
demonstrates that Rest-modified is indeed closer to  Rmax  than Rest-original. 
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Fig. 1. MFLOPS vs. Matrix size on the Formosa Cluster 
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T/V N NB P Q Time Gflops
W00L2L88 15840 88 1 1 586.77 4.516e+00
--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV-
Max aggregated wall time HPL_DGEMM. . : 516.42
Max aggregated wall time rfact. . . : 17.06 
+ Max aggregated wall time pfact . . : 17.06 
+ Max aggregated wall time mxswp . . : 0.27 
Max aggregated wall time update . . : 569.30 
+ Max aggregated wall time laswp . . : 9.71 
Max aggregated wall time up tr sv . : 0.41 

 

Fig. 2. The output of HPL 

Table 2. Comparison of two Performance Scores in GFLOPS on 4-, 6-, and 8- CPUs on the 
Formosa Cluster 

No. of Procs  Rmax Rest-original Rest-modified 
Score 16.06 17.00 15.79 

4 
error -- 6 % 2 % 
Score 23.47 26.98 23.47 

6 
error -- 15% 0% 
Score 31.51 35.96 31.02 

8 
error -- 14% 2% 

Note: Rmax is the maximal LINPACK performance achieved. 

We reported a measured Rmax = 0.9975 TFLOPS to the Top500 List in October 2003. 
Rmax, as defined in the Top500 List, represents the maximal LINPACK performance 
achieved where B = 88, N = 188000, P = 12, and Q = 25. 

Table 3 lists the performance scores in TFLOPS of the measured Rmax value and the 
Rest-original using Eq. (6), and Rest-modified using Eq. (8). It demonstrates that Rest-modified of 
1.05 is indeed closer to  Rmax  of 0.9975. 

Table 3. Comparison of two Performance Scores in TFLOPS on 300 CPUs on the Formosa 
Cluster 

 Rmax Rest-original Rest-modified 
Score 0.9975 1.35 1.05 
error -- 35 % 5 % 

Note: Rmax is the maximal LINPACK performance achieved. 

3.2   NCHC Triton Cluster 

This Cluster was built by NCHC in March 2005 and is currently the fastest computer 
system in Taiwan [12]. The system contains 384 Intel Itanium 2 1.5GHz processors 
(192 HP Integrity rx2600 servers) connected together by a Quadrics interconnection 
network, with a RedHat AS3.0 operating system and Intel compile 8.1, HP MLIB 
v.19B, and HP MPI v2.01 software. 
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As in Section 3.1, we must first determine the parameters in Eqs. (6) and (8). With a 
sequential static analysis and curve fitting, we obtainα= 2.48μs, α ′ = 20.55μs, β= 
0.0040μs and β ′ = 0.010665μs. 

Rmax = 2.03 was measured and reported to the Top500 List with the following 
parameters B = 72, N = 25500, P = 12, and Q = 32. 

By the DGEMM function in HPL, we plot figure 3 and obtainγ3 of 5.88 GFLOPS. 
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Fig. 3. MFLOPS vs. Matrix size multiplication on the Triton Cluster 

Following the similar procedure in Section 3.1 gives the weighting factor w of 0.93. 
Table 4 lists the performance scores of the measured Rmax value and the scores using 

Eq. (6) and Eq. (8) for the Triton Cluster. It is clear that Rest-modified yields a score of 2.07, 
a much better prediction than Rest-original of 2.25 using the original model. 

Table 4. Comparison of two Performance Scores in TFLOPS on Triton Cluster 

 Rmax Rest-original Rest-modified 
Score 2.03 2.25 2.07 
error - 11 % 2 % 

3.3   Dawning 4000A 

This cluster system was ranked 10th in the 23rd Top500 List in November 2003. It 
contains 2560 AMD Opterons running at 2.2 GHz connected together by a Myrinet 
network. Parameters used on Eqs. (6) and (8) are: Rmax = 8.061 TFLOPS and N = 
728400 from the Top500 List. P = 40 and Q = 64 are assumed. 

We choose an B of 240 from reference [19], assuming identical behavior to the AMD 
Opterons running at 1.6 GHz found in the literature (AMD 2.2 GHz Opteron were used 
in the Dawning 4000A) andγ3 = 4.4 × 0.918 = 4.0392 GFLOPS [17]. 
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The message passing overhead is assumed to be similar to the Gunawan and Cai’s 
results [20] with a Linux platform with 64bit 66 MHz PCI; then α = 14.08μs, α ′  = 
259.79μs, β= 0.009μs and β ′ = 0.11μs. 

Assuming that the behavior of HPL on the Dawning 4000 was similar to that of 
reference [19], we then calculate the weighting function w to be 0.9. The prediction 
results Rest-original and Rest-modified are listed in Table 6. Again, our improved model gives 
an error of 4 % versus 27 % if we use the original model. 

Table 6. Comparison of two Performance Scores in TFLOPS on the Dawning 4000A 

 Rmax Rest-original Rest-modified 
Score 8.061 10.28 8.417 
error - 27 % 4 % 

4   Prediction of Rmax on SIRAYA 

The maximal LINPACK performance achieved Rmax in the Top500 List depends on 
network communication overhead, BLAS, motherboard, PCI system, size and 
bandwidth of main memory, compiler, MPI-middleware. In Sections 3.1-3.3, our 
improved model of Eq. (8) has resulted in a better correlation with Rmax in all three 
clusters: the Formosa, the Triton, and the Dawning 4000A clusters. It should be noted 
on the first two clusters we use the actually measured parameters, and in the cases of the 
last, only “estimated” parameters are used. We believe once the parameters for the last 
become available, the prediction results should be even more accurate. 

The authors of HPL suggest that the problem size N should be about 80% of the total 
amount of memory in reference[7]; that is N = 0.8 × Nmax, where Nmax = SQRT(TM/8) is 
the allowable maximum problem size, TM is total memory size, reserving 20% of the 
total memory for system kernel overhead. In our experience, the problem sizes of the 
IA32-based cluster, Formosa, is quite near Nmax, and may be larger than the suggested 
values. On the other hand, the problem sizes for the two IA64-based platforms--both 
Triton and Dawning--are smaller than the suggested, where N = 0.58 × Nmax for the 
Triton and N = 0.46 × Nmax for the Dawning 4000A, because the IA64 based clusters 
need to save large memory for system kernel overhead [6]. 

SIRAYA is a high-performance Beowulf cluster located within the Southern 
Business Unit of NCHC. The cluster was designed and constructed by the 'HPC Cluster 
Group' at NCHC for computational science applications. 

The computing nodes in SIRAYA are 80 IBM eSeries e326 in 1U cases mounted in 
three racks. Each IBM eSeries e326 has two AMD Opteron 275 DualCore processors 
running at 2.2 GHz with 1 MB of L2 cache, 4 GB of DDR400 registered ECC SDRAM. 
This means SIRAYA has 320 cores. All computers are connected together in a star 
topology to six stackable Nortel BayStack 5510-48T 10/100/1000 Mbps switches. 

Based on above elaboration, we use the following parameters to predict the maximal 
performance score on SIRAYA. N = 0.5 × Nmax = 105, B = 240, w = 0.9, γ3 = 4.0392  
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GFLOPS from section 3.4, α ′ = 405.24μs, and β ′  =  0.10283μs from section 3.1. 

Then, Rest-modified of 835.6 GFLOPS using Eq. (8) is very close to Rmax of 848.2 
GFLOPS. 

Next phase, we will upgrade the system to 8 GB RAM for each node and fat-tree 
high performance network. Moreover, the system will be increased sixteen nodes. 
Then, the parameters become N = 1.5 × 105. Therefore, we predict the maximal 
performance score on SIRAYA will be 1.37 TFLOPS after upgrade at the second 
phase. 

5   Conclusion 

Building on Wang’s HPL performance model, we propose an improved HPL 
performance prediction models. Four existing clusters are used for comparing the 
prediction results. One of them is IA32 system and the other three are IA64 systems. 
The intercommunication media used in these four clusters are Myrinet, Quadrics, and 
Gigabit Ethernet network. In all cases, our improved model shows consistently better 
predictions than those using the existing model. 

Our improved HPL performance prediction model would be a great help for those 
who wish to better understand their systems. It helps reduce the time for trial-and-error 
runs; it provides a user in scientific computing with useful information in predicting the 
performance and scalability of his own program as well. 
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