
Server Placement in the Presence of
Competition

Pangfeng Liu1, Yi-Min Chung1, Jan-Jan Wu2, and Chien-Min Wang2

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, R.O.C.

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

Abstract. This paper addresses the optimization problems of placing
servers in the presence of competition. We place a set of extra servers
on a graph to compete with the set of original servers. Our objective
is to find the placement that maximizes the benefit, which is defined
as the profits from the requests made to the extra servers despite the
competition, minus the cost of constructing those extra servers.

We propose an O(|V |3k) time dynamic programming algorithm to find
the optimal placement of k extra servers that maximizes the benefit in a
tree with |V | nodes. We also propose an O(|V |3) time dynamic program-
ming algorithm for finding the optimal placement of extra servers that
maximizes the benefit, without any constraint on the number of extra
servers. For general connected graphs, we prove that the optimization
problems are NP-complete. As a result, we present a greedy heuristic
for the problems. Experiment results indicate that the greedy heuristic
achieves good results, even when compared with the upper bounds found
by a linear programming algorithm. The greedy heuristic yields perfor-
mances within 15% of the upper bound in the worst case, and within 2%
of the same theoretical upper bound on average.

1 Introduction

This paper considers a strategy for setting up servers to compete with existing
ones. For example, we assume that there are originally a number of McDonald’s
restaurants in a city, but no Kentucky Fried Chicken (KFC) restaurants. Now,
if we decide to set up a number of KFC restaurants in the same city, where
should we place them? We need to determine the locations for KFC so that
they can compete with McDonald’s and maximize their profits. Due to heavy
competition among business of similar nature, it is important to choose locations
of new servers in the area where the competitors have deployed their servers.

We define the servers we would like to set up as extra servers, and the existing
(competitor) servers as original servers. Thus, in the above example, KFC restau-
rants are the extra servers and McDonald’s restaurants are the original servers.

We use a graph to model the locations of the servers and users. A node in the
graph represents a geographic location, and an edge represents a path between
two locations. Building servers in these locations enables users at a node to

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 124–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Server Placement in the Presence of Competition 125

request services from the servers. Each edge has a communication cost. The
distance between two nodes is the length of the shortest path that connects them.

For efficiency, We assume that requests from users always go to the nearest
server. However, when the shortest distances from a user to the original and ex-
tra servers are the same, the user will go to the original server. That is, a user will
NORMALLY go to the nearest restaurant, either McDonald’s or KFC; however, if
the distances to the two restaurants are the same, the user will go to McDonald’s.

After extra servers have been established, users who previously went to Mc-
Donald’s may now go to KFC. We define the benefit of an extra server placement
to be the profit derived from user requests made to the server, minus the cost of
constructing the server. The cost may vary, depending on the location of the ex-
tra server. This paper considers two placement problems related to extra servers,
in the presence of competition from original servers.

1. Given the city configuration and a number k, locate k extra servers such
that they will earn the most profit;

2. Given the city configuration, locate extra servers such that they earn the
most profit, without any constraint on the number of extra servers.

We solve these two problems for a tree graph in O(|V |3k) and O(|V |3) time,
respectively. For a general graph, we show that the two problems are intractable
(NP-complete) and propose a heuristic to solve them. We also run experiments
and compare our results for the heuristic with theoretical upper bounds.

Similar server placement problems, such as replica placement problems
[4,3,6,10], p-Medians [5], and facility location problems [8], have been studied
in the literature. For example, Kariv and Hakimi [5] formulate the p-median
problem as locating p points such that the sum of each node’s weight multiplied
by its shortest distance to the p points is minimized. However, the p-median
problem they considered does not take the building costs into account, and it
minimizes the costs, instead of maximizing the profits. The facility location prob-
lem is similar to the p-median problem, with the additional consideration of the
facility’s costs.

Our extra server model differs from the model in [5] because it introduces
the concept of competition. Extra servers must compete with original servers for
user requests, in order to maximize their profits. The number of extra servers
established is controlled by the building costs, which differ from location to
location. Our dynamic programming model uses a similar technique to that
in [4]. The presence of competition demands innovative proof techniques.

Tamir [9] described a dynamic programming model that solves p-median prob-
lems on a tree topology with building and access costs. The algorithm assumes
that the cost for a client to request services is an increasing function of the dis-
tance between the client and the server. If the benefit function in our model is a
decreasing function of the distance between the client and the server, our place-
ment problem can be solved by transforming it into a p-median problem, and
solving it by the dynamic programming described in [9]. However, the method
proposed in this paper can deal with any arbitrary benefit functions, and still
obtain the optimal solution for a tree topology.

126 P. Liu et al.

The remainder of this paper is organized as follows. Section 2 formally de-
scribes our server placement models. In Section 3, we introduce the dynamic
programming for finding the optimal extra server placement in a tree. Section 4
contains the proof that the problems are NP-complete for general graphs and
presents a heuristic algorithm to solve them. Section 5 reports the experiment
results, and Section 6 contains our conclusions.

2 Problem Formulation

We consider a connected graph G = (V, E), where V is the set of nodes and E
is the set of edges. Each edge (u, v) ∈ E has a positive integer distance denoted
by d(u, v). For any two nodes u, v ∈ V , d(u, v) also denotes the distance of the
shortest path between them. For ease of representation, we also let d(v, S) =
minu∈S d(v, u) be the length of the shortest path from v to any node in X ,
where X ⊆ V .

We consider servers that provide service to nodes in the graph. Every node v
must go to the nearest server u for service. If a server is located at node v, then
v will be serviced by that server. To simplify the concept of “the nearest server”,
we assuem that for every node v, its distances to all other nodes are different,
i.e., d(v, u) �= d(v, w) for u �= w. As a result the nearest server for every node is
uniquely defined.

By serving a client v, a server node u earns a benefit of b(v, u). Note that the
function b can be arbitrary. For example, unlike [9], we do not assume that, for
the same client node v, the function value must be monotonic with respect to
the distance between v and the server node u.

We assume that there are a number of original servers O ⊆ V in G. In addition
to the original server set O, and we would like to add a number of extra servers
to G to obtain the maximum benefit. Let c(v) be the cost of building a server
at node v ∈ V , and X be the set of new servers we would like to add into the
system. A node v ∈ V goes to either O or X for service - v goes to X for service
when d(v, X) < d(v, O); otherwise (d(v, X) > d(v, O)), v goes to O for service.
Let VX denote the set of nodes that go to X for service, and VO = V − VX be
the set of nodes that go to O for service.

We define the nearest servers NS(v) of v as the server v uses. Consequently
NS(v) ∈ O if v ∈ VO, and NS(v) ∈ X if v ∈ VX . We can now define the benefit
function of adding the servers X as follows.

B(X) =
∑

v∈VX

b(v, NS(v)) −
∑

v∈X
c(v). (1)

We now define the problem as follows.

k-Extra-Server Problem. Given an integer k, 1 ≤ k ≤ |V − X |, we want to
find the optimal placement of k extra servers such that the benefit function is
maximized (Equation (2)).

max
X⊆(V −X),|X |=k

B(X) (2)

Server Placement in the Presence of Competition 127

Extra-Server Problem. We want to place extra servers to maximize the benefit
function, without any constraint on the number of the extra servers. We call this
optimization problem the extra-server problem.

3 Finding Extra Server Locations

We present algorithms that utilize global information to solve server placement
problems. The use of global information facilitates the optimality of the algo-
rithm and the assumption of global information is reasonable since we are dealing
with a city or grid configuration and the location of servers are static and can
be known completely in advance.

We focus on the case where the graph G = (V, E) is a tree. Let T be the tree
and r be the root of T . For each node v ∈ V , let Tv be the subtree of T rooted
at v. If v is an internal node, then we use child(v) = {v1, v2, . . . , v|child(v)|} to
denote the children of v. Following the notations in [4], let T

(i)
v be the subtree

of T that consists of v and the subtrees rooted at the first i children of v, i.e.,
T

(i)
v = {v} ∪ ∪i

j=1Tvj .

Definition 1 (Benefit function, B). For nodes v, u ∈ V , an integer k, and
an integer i between 0 and |child(v)|, we define Bv,u

k,i to be the maximum benefit

derived by placing k extra servers in T
(i)
v , under the condition that u = NS(v).

Consequently u is either an original server or an extra server.

We now consider the benefit function Bv,u
k,i by placing X in T

(i)
v . We define X to

be the set of k extra servers that maximize the following benefit function. Recall
that O is the set of original servers.

Bv,u
k,i = max

X
{

∑

w∈T
(i)
v ,NS(w)∈X∪u

b(w, NS(w)) −
∑

s∈X
c(s)}, u /∈ O,

Bv,u
k,i = max

X
{

∑

w∈T
(i)
v ,NS(w)∈X

b(w, NS(w)) −
∑

s∈X
c(s)}, u ∈ O.

The definition indicates that the benefit includes those nodes that will either
go to the extra servers X or u (when u /∈ O) for service, minus the construction
cost of the extra server set X .

For the case where u is not in O, by definition u is v’s nearest server, so u

has an extra server. However, u can be a node outside of T
(i)
v , – in which case it

will not be in X because X is a subset of T
(i)
v . We still need to add the benefit

from T
(i)
v to u, since we assume that an extra server is placed in u.

Lemma 1. For every node v ∈ V and every child vi of v, if u ∈ Tvi is the
nearest server to v, then u is also the nearest server to vi.

Proof. We prove this lemma by contradictions and assume that the nearest server
for vi is u′, not u. Since u′ is the nearest server to vi, the distance d(vi, u

′) must

128 P. Liu et al.

be strictly smaller than d(vi, u). The length of the shortest path between v and
u′ is d(v, u′) ≤ d(v, vi) + d(vi, u

′) < d(v, vi) + d(vi, u) = d(v, u), which suggests
that u′ is closer to v than u; however, this contradicts the assumption that u is
the nearest server of v.

For ease of discussion of the following lemma, we define a node set Vv,u,i. This
set contains those nodes in Tvi that could be the nearest server for vi, under the
condition that u is the nearest server for v, but not for vi, i.e., NS(v) = u and
NS(vi) �= u. Intuitively, the set Vv,u,i stands for those nodes in Tvi that are far
enough from v so that it will not be the nearest server for v (when compared
with u), but close enough to vi so that it is the nearest server of vi.

Definition 2 (Vv,u,i). Let u be the nearest server of v and i be an integer
between 1 and |child(v)|. Vv,u,i is the subset of those u′ in Tvi such that u′ is
the nearest server to vi, but it is not the nearest server to v. That is, Vv,u,i =
{u′|u′ ∈ Tvi , d(vi, u

′) < d(vi, u), d(v, u)d(v, u′)}

Lemma 2. For every node v ∈ V and every child vi of v, if u /∈ Tvi is the
nearest server of v, then either u is the nearest server of vi or there exists a
node u′ ∈ Vv,u,i that is the nearest server of vi.

Proof. If u is the nearest server of vi, the lemma follows. Otherwise, we conclude
that the nearest server of vi must be within Tvi , since the path from vi to nodes
not in Tvi must pass through v, which already has u as its nearest server. The
lemma then follows by the definition of Vv,u,i.

Theorem 1. For every node v ∈ V and an integer i between 0 and |child(v)|, if
u is the nearest server of v, then for every node w in Tvi , we can find the nearest
server for w in Tvi ∪ {u}.

Proof. The only way a shortest path from a node w in Tvi to any node outside
Tvi is to go through the edge (vi, v). However, any such shortest path must end
at node u since u is the nearest server for v; otherwise we will be able to find a
closer server for v other than u – a contradiction to the fact that NS(v) = u.

Terminal Conditions. We first derive two terminal conditions for the recursion
of B, the benefit function.

k = 0. When k is 0, we do not place any extra servers in T
(i)
v . If u is an original

server in O, every node in T
(i)
v will go to O for service, so the benefit is 0. If

u is not in O, we consider two cases. First if u is not in T
(i)
v , every node in

T
(i)
v will either go to an original server or to u for service; thus, the benefit

can be determined by Equation (3).

B′ =
∑

w∈T
(i)
v ,d(w,u)<d(w,O)

b(w, u) (3)

Server Placement in the Presence of Competition 129

In the second case, u is not an original server but u is in T
(i)
v , which means

that there is at least one extra server in T
(i)
v . This contradicts the assumption

that k is 0. For the purpose of dynamic programming, we define the benefit
to be −∞.

k = 1,u /∈ O,u ∈ T(i)
v . When k is 1, u is in T

(i)
v , so it is not an original server,

but it is definitely the only extra server in T
(i)
v . Every node in T

(i)
v will either

go to O or u for service; thus, the benefit can be calculated in the same way
as B′ − c(u). Note that, since u is now in the X that maximizes the benefit
of T

(i)
v , c(u) should be deducted from the benefit.

Recursion. Next, we derive the recursion function for Bv,u
k,i .

Bv,u
k,i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if k = 0 and u ∈ O
B′, if k = 0, u /∈ O, and u /∈ T

(i)
v

B′ − c(u), if k = 1, u /∈ O, and u ∈ T
(i)
v

B′′, if u ∈ Tvi

max {B′′, B′′′}, if u /∈ Tvi

−∞, otherwise,

(4)

where
B′′ = max

0≤j≤k

{
Bv,u

k−j,i−1 + Bvi,u
j,|child(vi)|

}
, (5)

and
B′′′ = max

0≤j≤k

{
Bv,u

k−j,i−1 + Ev,u
j,i

}
. (6)

The first three cases were discussed as the terminal conditions in Section 3,
so we only need to consider the rest.

u ∈ Tvi

If u ∈ Tvi , u will also be the nearest server to vi by Lemma 1, since u is the
nearest server of v. Then, by Theorem 1, every node in Tvi goes to either
Tvi or u for service. In addition, u is the nearest server to v. By Theorem 1,
all nodes in T

(i−1)
v obtain service from u or T

(i−1)
v .

Assume that there are j extra servers in Tvi , then there will be k−j extra
servers in T

(i−1)
v , where 0 ≤ j ≤ k. To obtain the best X that maximizes

the benefit, we need to consider all possible values of j, as formulated in
Equation (5). The recursion follows.

u /∈ Tvi

If u is not in Tvi , we need to consider two sub-cases.
Case 1: If u is the nearest server of vi, the value of Bv,u

k,i is defined as
in Equation (5), because we can isolate two subtrees, as we did in the
previous case where u ∈ Tvi .

Case 2: If the nearest server of vi is not u, by Lemma 2, we can find the
nearest server u′ for vi in Tvi . We formulate the benefit as B′′′ in Equa-
tion (6).

Consider these two sub-cases, if u /∈ Tvi , Bv,u
k,i is formulated as max {B′′, B′′′}.

130 P. Liu et al.

Now, in order to finish the recursion the only missing element is the new cost
function Ev,u

k,i .

Definition 3 (Ev,u
k,i). For nodes v, u ∈ V , an integer k, and the i-th child of

node v (denoted by vi), we define Ev,u
k,i to be the maximum benefit derived by

placing k extra servers in the subtree Tvi , where u /∈ Tvi is the nearest server of
v, but u is not the nearest server of vi. Instead, the nearest server of vi is a u′

in Tvi . The benefit is similarly defined in Equation (7):

Ev,u
k,i = max

X
{

∑

w∈Tvi
,NS(w)∈X

b(w, NS(w)) −
∑

s∈X
c(s)}. (7)

From the above discussion, the maximum benefit Ev,u
k,i is derived by Equation (8).

That is, we need to enumerate all the possible u′ and use the one that maximizes
Bvi,u

′

k,|child(vi)|. The set Vv,u,i is exactly the possible set to select u′ from, since vi

will go to u′ for service, but not to u. This is exactly the definition of Vv,u,i.

Ev,u
k,i = max

u′∈Vv,u,i

{
Bvi,u

′

k,|child(vi)|
}

. (8)

The Final Solution. Finally, the maximum benefit of locating k extra servers in
the tree T can be calculated by Equation (9):

max
u∈T

{
Br,u

k,|child(r)|
}

. (9)

The possible candidates for u are subject to the following constraints: If u is
an original server d(r, u) must be d(r, O), i.e., u is the nearest original server to
the root. If u is not an original server, the distance d(r, u) must be smaller than
d(r, O) to ensure that u is the nearest extra server to the root.

Theorem 2. Given a tree T = (V, E) and a set O ⊆ V as the original servers,
the k-extra-server problem for T can be solved in O(|V |3k) time, where 0 ≤ k ≤
|V − O| is an integer.

Proof. The problem can be solved by Equations (3) to (9). The time of the
dynamic programming is derived by calculating all the entries of Bv,u

k,i and Ev,u
k,i .

Consider each pair of v and i, so that there are totally
∑

v∈V |child(v)| = |V |−1
pairs. Thus, the number of entries of Bv,u

k,i is (k+1)·|V |·(|V |−1) = O(|V |2k), and
it takes O(|V |) time to calculate each entry; hence, the time required to calculate
all the entries of Bv,u

k,i is bounded by O(|V |3k). Similarly, there are O(|V |2k)
entries of Ev,u

k,i , and it takes O(|V |) time to calculate each entry; therefore, the
time required to calculate all the entries of Ev,u

k,i is O(|V |3k). The total time
required is therefore O(|V |3k).

Using similar techniques we derive the following theorem. The proof is removed
due to space limitation.

Server Placement in the Presence of Competition 131

Theorem 3. Given a tree graph T = (V, E) and O ⊆ V are the original servers
of T , the extra-server problem for T can be solved in O(|V |3) time.

Proof. The proof is similar to that of Theorem 2. There are O(|V |2) entries
of Bv,u

i and O(|V |2) entries of Ev,u
i , and the calculation of each entry requires

at most O(|V |) computing time. Hence, the problem can be solved in O(|V |3)
time.

4 NP-Completeness

The NP-complete proof is derived from the dominating set problem [2], and is
removed due to space limitation. A subset V ′ ⊆ V is a dominating set if for all
u ∈ V − V ′, there is a v ∈ V ′ such that the edge (u, v) is in E. The decision
problem of the dominating set can be formulated as follows: Given a graph G =
(V, E) and a positive integer K ≤ |V |, is there a dominating set of size K or less?

k-EXTRA-SERVER. We now consider the k-extra-server problem and define the
corresponding decision problem as follows: In a k-extra-server problem instance,
is there a placement of k extra servers such that the benefit is at least B?

EXTRA-SERVER. Similarly, we define the decision problem of EXTRA-
SERVER as follows: In a extra-server problem instance, is there a placement
of extra servers such that the benefit is at least B?

Theorem 4. The k-EXTRA-SERVER problem is NP-complete.

Theorem 5. The EXTRA-SERVER problem is NP-complete.

Since the k-extra-server problem and the extra-server problem are both NP-
complete, we propose a greedy heuristic (denoted as Greedy) for these prob-
lems. Here, we only describe Greedy for the k-extra server problem because the
method for the extra-server problem is very similar.

The greedy method works in rounds. In each round, we locate an extra server
that maximizes its benefit. We add the benefit produced by the selected extra
server to the total benefit, which was set to 0 initially, and then mark the se-
lected server as an original server. We repeat the process until k extra servers
are selected.

5 Experiment Results

We conduct simulations to compare performance of Greedy with the linear pro-
gramming optimal solutions acquired using GLPK (GNU Linear Programming
Kit) [7] for the k-extra-server problem. GLPK is a set of routines designed to
solve large-scale linear programming (LP), mixed integer programming (MIP),
and other related problems. It is written in ANSI C and organized in the form

132 P. Liu et al.

of a library [7]. Let the 0-1 variable Xu and u ∈ V denote whether there is an
extra server on u, and let the 0-1 variable Zuv, u ∈ V , v ∈ V denote whether
v is a client of u. The integer programming for the k-extra-server problem is
formulated as follows:

maximize
∑

u∈(V −X)

∑

v∈V

Zuvb(v, u) −
∑

u∈V

Xuc(u), (10)

subject to

Xu ∈ {0, 1}, for each u ∈ V , (11a)
Zuv ∈ {0, 1}, for each u ∈ V , v ∈ V , (11b)

Xu = 0, for each u ∈ O, (11c)
∑

u∈V

Xu = k, (11d)

∑

u∈V

Zuv = 1, for each v ∈ V , (11e)

Xu − Zuv ≥ 0, for each u ∈ (V − O), each v ∈ V , (11f)
Zuv = 0, for each u ∈ V , each v ∈ V , and d(v, u) > d(v, O). (11g)

Consider the 0-1 variables Xu and Zuv in constraints (11a) and (11b) respec-
tively. We replace them with constraints (12a) and (12b) respectively, so that
we have a linear programming formulation.

0 ≤ Xu ≤ 1, for each u ∈ V , (12a)
0 ≤ Zuv ≤ 1, for each u ∈ V , v ∈ V . (12b)

The optimal benefit gained from linear programming only serves as a upper
bound, since it allows a fraction number of an extra server to be placed on a node.
However, in our experiments, we find that, in most cases, linear programming
produces integer solutions, i.e., Xu and Zuv are in the range {0, 1}.

5.1 Experiment Setting

In our experiments, we use GT-ITM [1] to generate random graphs according
to Waxman model [11]. Each of the graphs is connected, and nodes are added
randomly in a s×s square. The probability of an edge between u and v is given by

p(u, v) = αe−d/βL,

where 0 < α, β ≤ 1, d is the Euclidean distance between u and v, and L =
√

2s
is the largest possible distance between any two nodes. In our experiments, we
set s to 20, α to 0.2 and β to 1.

For each v, we set a value r(v) to be a random integer between 20 and 40,
and set the building cost c(v) to be r(v) plus a random integer between 1 and
10. The benefit function b(v, u) is defined as r(v) divided by the distance from
v to u. Finally, we place original servers randomly in the graph. We simulate up
to 150 nodes since this is a reasonable size for city or grid configuration.

Server Placement in the Presence of Competition 133

5.2 Effect of α

We evaluate the performance of Greedy compared with the upper bounds found
by linear programming under different values of α. In these experiments, for each
α we set |V | from 50 to 150, and for each |V | we set |O| from 0 to 0.1|V |. As a
result, we have 1066 graphs to simulate, and for each graph we set k from 1 to
0.1|V |. Figure 1 shows that when α increases the average degree of each node
also increases. Figure 1 shows that Greedy performs very well; on average, its
performance differs from the theoretical upper bounds by only 1% and in the
worst case the difference is no more than 15% of the upper bound.

Figure 1 also shows that as α increases, the average difference between Greedy
and the upper bound derived by linear programming also increases. Since the aver-
age degree of each node increases as α increases, there is a higher probability that
the extra servers will affect each other. However, to maximize the benefit, Greedy
only considers the current configuration when it selects the next location to place
an extra server; thus, it can not predict the “long range” effects and the interac-
tion among the extra servers. Hence, as α increases, the average difference (as a
percentage) between Greedy and the upper bound also increases.

|V | α = 0.2 α = 0.3 α = 0.4 α = 0.5
50 3.56 5.37 7.11 8.78

150 10.45 15.59 20.87 26.12
Average 8.11 12.01 16.03 20.03

α Avg. difference Max. difference
0.2 0.43% 9.54%
0.3 0.49% 14.35%
0.4 0.52% 13.20%
0.5 0.58% 11.95%

Fig. 1. The average degree of a node under different values of α and the average
difference (as a percentage) between Greedy and the upper bound under different
values of α

5.3 Effect of the Number of Original Servers

We now consider the effect of the number of original servers on the average dif-
ference as a percentage of the upper bounds. In these experiments we set |V | to
100, |O| from 1 to 50, and k to 10.

Figure 2 (a) shows the error-bar between Greedy and the upper bounds
derived by the linear programming. The upper markers are the average upper
bounds and the lower markers are the average benefits of Greedy. In the figure,
the average benefits produced by Greedy are so close to the upper bounds that
they coincide. Furthermore, the figure suggests that as |O| increases the benefit
will decrease. This is reasonable since a large number of competitors only have
a negative impacts on the extra servers.

5.4 Effect of k

Next, we consider the effects of k on the average difference as a percentage be-
tween Greedy and the theoretical upper bound. In these experiments we set

134 P. Liu et al.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
en

ef
it

Number of original servers

(a) The benefits of Greedy and the average upper
bounds under different numbers of original servers.

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
en

ef
it

k

(b) The average benefits of Greedy and the upper
bounds under different values of k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
iff

er
en

ce
 p

er
ce

nt
ag

e
[%

]

k

(c) The average percentage difference for Greedy under
different values of k.

Fig. 2. Average benefits under different number of original and extra servers ((a) and
(b)), and derivation percentage from the theoretical bounds (c)

|V | to 100 and |O| to 10, so we generate 100 graphs in total. For each graph we
set k from 1 to 50, which gives us 5000 simulation results.

Figure 2 (b) shows the error-bars in our simulations. We observe that the ben-
efit of Greedy is extremely close to the theoretical upper bounds. The figure
also shows that, initially, as k increases, the benefit increases because we can
make more profit. As the number of extra servers increases substantially, the
benefit decreases due to the cost of constructing the extra servers.

Figure 2(c) shows that as k increases the average difference between Greedy
and the theoretical upper bound also increases. This is because Greedy places
an extra server to maximize the benefit at each step because it can not consider
the overall situation; thus, the difference accumulates at each step – more servers
means a larger difference between Greedy and the upper bound.

In summary, we conclude that the Greedy algorithm performs extremely well.
Considering all the simulation parameter setting, the greedy algorithm yields av-
erage benefits that are within 2% of the average theoretical upper bounds. It is
also extremely efficient and easy to implement.

6 Conclusion

We have formulated two optimization problems, the k-extra-server problem and
the extra-server problem. We consider the profit and construction costs at each
location, and place extra servers to maximize the benefit in the presence of

Server Placement in the Presence of Competition 135

competition from original servers. For trees, we formulate dynamic programming
algorithms to solve the k-extra-server problem and the extra-server problem in
O(|V |3k) time and O(|V |3) time, respectively. For general graphs, we prove that
the problems are NP-complete and propose a greedy heuristic to solve them. The
experiment results demonstrate that the greedy heuristic yields performances
within 15% of the theoretical upper bound in the worst case, and within 2% of
the same theoretical upper bound on average.

In the future we will investigate the possibility of designing efficient and effec-
tive algorithms for graphs other than trees. For example, our greedy algorithms
perform well on general graphs, so we should be able to show that the greedy
algorithm performance is guaranteed to be within a constant factor of the opti-
mum. We would also like to generalize dynamic programming to other graphs,
such as planar graphs.

References

1. K. Calvert and E. Zegura. Gt-itm: Georgia tech internetwork topology models.
http://www-static.cc.gatech.edu/projects/gtitm/.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

3. X. Jia, D. Li, X. Hu, W. Wu, and D. Du. Placement of web-server proxies with
consideration of read and update operations on the internet. The Computer
Journal, 46(4):378–390, 2003.

4. K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in
trees with read, write, and storage costs. IEEE Transactions on Parallel and
Distributed Systems, 12(6):628–637, June 2001.

5. O. Kariv and S. L. Hakimi. An algorithmic approach to network location
problems. ii: The p-medians. SIAM J. Appl. Math., 37(3):539–560, 1979.

6. B.-J. Ko and D. Rubenstein. A greedy approach to replicated content placement
using graph coloring. In SPIE ITCom Conference on Scalability and Traffic
Control in IP Networks II, Boston, MA, July 2002.

7. A. Makhorin. http://www.gnu.org/software/glpk/glpk.html.
8. D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility

location problems (extended abstract). In Proc. 29th ACM STOC., pages 265–274,
1997.

9. A. Tamir. An o(pn2) algorithm for the p-median and related problems on tree
graphs. Operations Research Letters, 19(2):59–64, 1996.

10. O. Unger and I. Cidon. Optimal content location in multicast based overlay
networks with content updates. World Wide Web, 7(3):315–336, 2004.

11. B. M. Waxman. Routing of multipoint connections. pages 347–352, 1991.

	Introduction
	Problem Formulation
	Finding Extra Server Locations
	NP-Completeness
	Experiment Results
	Experiment Setting
	Effect of
	Effect of the Number of Original Servers
	Effect of k

	Conclusion

